1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_get_eth_tlv_data(void *edev, void *data); 137 static void qede_get_generic_tlv_data(void *edev, 138 struct qed_generic_tlvs *data); 139 140 /* The qede lock is used to protect driver state change and driver flows that 141 * are not reentrant. 142 */ 143 void __qede_lock(struct qede_dev *edev) 144 { 145 mutex_lock(&edev->qede_lock); 146 } 147 148 void __qede_unlock(struct qede_dev *edev) 149 { 150 mutex_unlock(&edev->qede_lock); 151 } 152 153 #ifdef CONFIG_QED_SRIOV 154 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 155 __be16 vlan_proto) 156 { 157 struct qede_dev *edev = netdev_priv(ndev); 158 159 if (vlan > 4095) { 160 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 161 return -EINVAL; 162 } 163 164 if (vlan_proto != htons(ETH_P_8021Q)) 165 return -EPROTONOSUPPORT; 166 167 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 168 vlan, vf); 169 170 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 171 } 172 173 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 174 { 175 struct qede_dev *edev = netdev_priv(ndev); 176 177 DP_VERBOSE(edev, QED_MSG_IOV, 178 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 179 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 180 181 if (!is_valid_ether_addr(mac)) { 182 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 183 return -EINVAL; 184 } 185 186 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 187 } 188 189 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 190 { 191 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 192 struct qed_dev_info *qed_info = &edev->dev_info.common; 193 struct qed_update_vport_params *vport_params; 194 int rc; 195 196 vport_params = vzalloc(sizeof(*vport_params)); 197 if (!vport_params) 198 return -ENOMEM; 199 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 200 201 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 202 203 /* Enable/Disable Tx switching for PF */ 204 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 205 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 206 vport_params->vport_id = 0; 207 vport_params->update_tx_switching_flg = 1; 208 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 209 edev->ops->vport_update(edev->cdev, vport_params); 210 } 211 212 vfree(vport_params); 213 return rc; 214 } 215 #endif 216 217 static struct pci_driver qede_pci_driver = { 218 .name = "qede", 219 .id_table = qede_pci_tbl, 220 .probe = qede_probe, 221 .remove = qede_remove, 222 .shutdown = qede_shutdown, 223 #ifdef CONFIG_QED_SRIOV 224 .sriov_configure = qede_sriov_configure, 225 #endif 226 }; 227 228 static struct qed_eth_cb_ops qede_ll_ops = { 229 { 230 #ifdef CONFIG_RFS_ACCEL 231 .arfs_filter_op = qede_arfs_filter_op, 232 #endif 233 .link_update = qede_link_update, 234 .get_generic_tlv_data = qede_get_generic_tlv_data, 235 .get_protocol_tlv_data = qede_get_eth_tlv_data, 236 }, 237 .force_mac = qede_force_mac, 238 .ports_update = qede_udp_ports_update, 239 }; 240 241 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 242 void *ptr) 243 { 244 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 245 struct ethtool_drvinfo drvinfo; 246 struct qede_dev *edev; 247 248 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 249 goto done; 250 251 /* Check whether this is a qede device */ 252 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 253 goto done; 254 255 memset(&drvinfo, 0, sizeof(drvinfo)); 256 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 257 if (strcmp(drvinfo.driver, "qede")) 258 goto done; 259 edev = netdev_priv(ndev); 260 261 switch (event) { 262 case NETDEV_CHANGENAME: 263 /* Notify qed of the name change */ 264 if (!edev->ops || !edev->ops->common) 265 goto done; 266 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 267 break; 268 case NETDEV_CHANGEADDR: 269 edev = netdev_priv(ndev); 270 qede_rdma_event_changeaddr(edev); 271 break; 272 } 273 274 done: 275 return NOTIFY_DONE; 276 } 277 278 static struct notifier_block qede_netdev_notifier = { 279 .notifier_call = qede_netdev_event, 280 }; 281 282 static 283 int __init qede_init(void) 284 { 285 int ret; 286 287 pr_info("qede_init: %s\n", version); 288 289 qed_ops = qed_get_eth_ops(); 290 if (!qed_ops) { 291 pr_notice("Failed to get qed ethtool operations\n"); 292 return -EINVAL; 293 } 294 295 /* Must register notifier before pci ops, since we might miss 296 * interface rename after pci probe and netdev registration. 297 */ 298 ret = register_netdevice_notifier(&qede_netdev_notifier); 299 if (ret) { 300 pr_notice("Failed to register netdevice_notifier\n"); 301 qed_put_eth_ops(); 302 return -EINVAL; 303 } 304 305 ret = pci_register_driver(&qede_pci_driver); 306 if (ret) { 307 pr_notice("Failed to register driver\n"); 308 unregister_netdevice_notifier(&qede_netdev_notifier); 309 qed_put_eth_ops(); 310 return -EINVAL; 311 } 312 313 return 0; 314 } 315 316 static void __exit qede_cleanup(void) 317 { 318 if (debug & QED_LOG_INFO_MASK) 319 pr_info("qede_cleanup called\n"); 320 321 unregister_netdevice_notifier(&qede_netdev_notifier); 322 pci_unregister_driver(&qede_pci_driver); 323 qed_put_eth_ops(); 324 } 325 326 module_init(qede_init); 327 module_exit(qede_cleanup); 328 329 static int qede_open(struct net_device *ndev); 330 static int qede_close(struct net_device *ndev); 331 332 void qede_fill_by_demand_stats(struct qede_dev *edev) 333 { 334 struct qede_stats_common *p_common = &edev->stats.common; 335 struct qed_eth_stats stats; 336 337 edev->ops->get_vport_stats(edev->cdev, &stats); 338 339 p_common->no_buff_discards = stats.common.no_buff_discards; 340 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 341 p_common->ttl0_discard = stats.common.ttl0_discard; 342 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 343 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 344 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 345 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 346 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 347 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 348 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 349 p_common->mac_filter_discards = stats.common.mac_filter_discards; 350 p_common->gft_filter_drop = stats.common.gft_filter_drop; 351 352 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 353 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 354 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 355 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 356 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 357 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 358 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 359 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 360 p_common->coalesced_events = stats.common.tpa_coalesced_events; 361 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 362 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 363 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 364 365 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 366 p_common->rx_65_to_127_byte_packets = 367 stats.common.rx_65_to_127_byte_packets; 368 p_common->rx_128_to_255_byte_packets = 369 stats.common.rx_128_to_255_byte_packets; 370 p_common->rx_256_to_511_byte_packets = 371 stats.common.rx_256_to_511_byte_packets; 372 p_common->rx_512_to_1023_byte_packets = 373 stats.common.rx_512_to_1023_byte_packets; 374 p_common->rx_1024_to_1518_byte_packets = 375 stats.common.rx_1024_to_1518_byte_packets; 376 p_common->rx_crc_errors = stats.common.rx_crc_errors; 377 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 378 p_common->rx_pause_frames = stats.common.rx_pause_frames; 379 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 380 p_common->rx_align_errors = stats.common.rx_align_errors; 381 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 382 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 383 p_common->rx_jabbers = stats.common.rx_jabbers; 384 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 385 p_common->rx_fragments = stats.common.rx_fragments; 386 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 387 p_common->tx_65_to_127_byte_packets = 388 stats.common.tx_65_to_127_byte_packets; 389 p_common->tx_128_to_255_byte_packets = 390 stats.common.tx_128_to_255_byte_packets; 391 p_common->tx_256_to_511_byte_packets = 392 stats.common.tx_256_to_511_byte_packets; 393 p_common->tx_512_to_1023_byte_packets = 394 stats.common.tx_512_to_1023_byte_packets; 395 p_common->tx_1024_to_1518_byte_packets = 396 stats.common.tx_1024_to_1518_byte_packets; 397 p_common->tx_pause_frames = stats.common.tx_pause_frames; 398 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 399 p_common->brb_truncates = stats.common.brb_truncates; 400 p_common->brb_discards = stats.common.brb_discards; 401 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 402 p_common->link_change_count = stats.common.link_change_count; 403 404 if (QEDE_IS_BB(edev)) { 405 struct qede_stats_bb *p_bb = &edev->stats.bb; 406 407 p_bb->rx_1519_to_1522_byte_packets = 408 stats.bb.rx_1519_to_1522_byte_packets; 409 p_bb->rx_1519_to_2047_byte_packets = 410 stats.bb.rx_1519_to_2047_byte_packets; 411 p_bb->rx_2048_to_4095_byte_packets = 412 stats.bb.rx_2048_to_4095_byte_packets; 413 p_bb->rx_4096_to_9216_byte_packets = 414 stats.bb.rx_4096_to_9216_byte_packets; 415 p_bb->rx_9217_to_16383_byte_packets = 416 stats.bb.rx_9217_to_16383_byte_packets; 417 p_bb->tx_1519_to_2047_byte_packets = 418 stats.bb.tx_1519_to_2047_byte_packets; 419 p_bb->tx_2048_to_4095_byte_packets = 420 stats.bb.tx_2048_to_4095_byte_packets; 421 p_bb->tx_4096_to_9216_byte_packets = 422 stats.bb.tx_4096_to_9216_byte_packets; 423 p_bb->tx_9217_to_16383_byte_packets = 424 stats.bb.tx_9217_to_16383_byte_packets; 425 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 426 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 427 } else { 428 struct qede_stats_ah *p_ah = &edev->stats.ah; 429 430 p_ah->rx_1519_to_max_byte_packets = 431 stats.ah.rx_1519_to_max_byte_packets; 432 p_ah->tx_1519_to_max_byte_packets = 433 stats.ah.tx_1519_to_max_byte_packets; 434 } 435 } 436 437 static void qede_get_stats64(struct net_device *dev, 438 struct rtnl_link_stats64 *stats) 439 { 440 struct qede_dev *edev = netdev_priv(dev); 441 struct qede_stats_common *p_common; 442 443 qede_fill_by_demand_stats(edev); 444 p_common = &edev->stats.common; 445 446 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 447 p_common->rx_bcast_pkts; 448 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 449 p_common->tx_bcast_pkts; 450 451 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 452 p_common->rx_bcast_bytes; 453 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 454 p_common->tx_bcast_bytes; 455 456 stats->tx_errors = p_common->tx_err_drop_pkts; 457 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 458 459 stats->rx_fifo_errors = p_common->no_buff_discards; 460 461 if (QEDE_IS_BB(edev)) 462 stats->collisions = edev->stats.bb.tx_total_collisions; 463 stats->rx_crc_errors = p_common->rx_crc_errors; 464 stats->rx_frame_errors = p_common->rx_align_errors; 465 } 466 467 #ifdef CONFIG_QED_SRIOV 468 static int qede_get_vf_config(struct net_device *dev, int vfidx, 469 struct ifla_vf_info *ivi) 470 { 471 struct qede_dev *edev = netdev_priv(dev); 472 473 if (!edev->ops) 474 return -EINVAL; 475 476 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 477 } 478 479 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 480 int min_tx_rate, int max_tx_rate) 481 { 482 struct qede_dev *edev = netdev_priv(dev); 483 484 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 485 max_tx_rate); 486 } 487 488 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 489 { 490 struct qede_dev *edev = netdev_priv(dev); 491 492 if (!edev->ops) 493 return -EINVAL; 494 495 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 496 } 497 498 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 499 int link_state) 500 { 501 struct qede_dev *edev = netdev_priv(dev); 502 503 if (!edev->ops) 504 return -EINVAL; 505 506 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 507 } 508 509 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 510 { 511 struct qede_dev *edev = netdev_priv(dev); 512 513 if (!edev->ops) 514 return -EINVAL; 515 516 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 517 } 518 #endif 519 520 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 521 { 522 struct qede_dev *edev = netdev_priv(dev); 523 524 if (!netif_running(dev)) 525 return -EAGAIN; 526 527 switch (cmd) { 528 case SIOCSHWTSTAMP: 529 return qede_ptp_hw_ts(edev, ifr); 530 default: 531 DP_VERBOSE(edev, QED_MSG_DEBUG, 532 "default IOCTL cmd 0x%x\n", cmd); 533 return -EOPNOTSUPP; 534 } 535 536 return 0; 537 } 538 539 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 540 { 541 struct qede_dev *edev = netdev_priv(ndev); 542 int cos, count, offset; 543 544 if (num_tc > edev->dev_info.num_tc) 545 return -EINVAL; 546 547 netdev_reset_tc(ndev); 548 netdev_set_num_tc(ndev, num_tc); 549 550 for_each_cos_in_txq(edev, cos) { 551 count = QEDE_TSS_COUNT(edev); 552 offset = cos * QEDE_TSS_COUNT(edev); 553 netdev_set_tc_queue(ndev, cos, count, offset); 554 } 555 556 return 0; 557 } 558 559 static int 560 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f, 561 __be16 proto) 562 { 563 switch (f->command) { 564 case TC_CLSFLOWER_REPLACE: 565 return qede_add_tc_flower_fltr(edev, proto, f); 566 case TC_CLSFLOWER_DESTROY: 567 return qede_delete_flow_filter(edev, f->cookie); 568 default: 569 return -EOPNOTSUPP; 570 } 571 } 572 573 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 574 void *cb_priv) 575 { 576 struct tc_cls_flower_offload *f; 577 struct qede_dev *edev = cb_priv; 578 579 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 580 return -EOPNOTSUPP; 581 582 switch (type) { 583 case TC_SETUP_CLSFLOWER: 584 f = type_data; 585 return qede_set_flower(edev, f, f->common.protocol); 586 default: 587 return -EOPNOTSUPP; 588 } 589 } 590 591 static int qede_setup_tc_block(struct qede_dev *edev, 592 struct tc_block_offload *f) 593 { 594 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 595 return -EOPNOTSUPP; 596 597 switch (f->command) { 598 case TC_BLOCK_BIND: 599 return tcf_block_cb_register(f->block, 600 qede_setup_tc_block_cb, 601 edev, edev, f->extack); 602 case TC_BLOCK_UNBIND: 603 tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev); 604 return 0; 605 default: 606 return -EOPNOTSUPP; 607 } 608 } 609 610 static int 611 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 612 void *type_data) 613 { 614 struct qede_dev *edev = netdev_priv(dev); 615 struct tc_mqprio_qopt *mqprio; 616 617 switch (type) { 618 case TC_SETUP_BLOCK: 619 return qede_setup_tc_block(edev, type_data); 620 case TC_SETUP_QDISC_MQPRIO: 621 mqprio = type_data; 622 623 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 624 return qede_setup_tc(dev, mqprio->num_tc); 625 default: 626 return -EOPNOTSUPP; 627 } 628 } 629 630 static const struct net_device_ops qede_netdev_ops = { 631 .ndo_open = qede_open, 632 .ndo_stop = qede_close, 633 .ndo_start_xmit = qede_start_xmit, 634 .ndo_set_rx_mode = qede_set_rx_mode, 635 .ndo_set_mac_address = qede_set_mac_addr, 636 .ndo_validate_addr = eth_validate_addr, 637 .ndo_change_mtu = qede_change_mtu, 638 .ndo_do_ioctl = qede_ioctl, 639 #ifdef CONFIG_QED_SRIOV 640 .ndo_set_vf_mac = qede_set_vf_mac, 641 .ndo_set_vf_vlan = qede_set_vf_vlan, 642 .ndo_set_vf_trust = qede_set_vf_trust, 643 #endif 644 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 645 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 646 .ndo_fix_features = qede_fix_features, 647 .ndo_set_features = qede_set_features, 648 .ndo_get_stats64 = qede_get_stats64, 649 #ifdef CONFIG_QED_SRIOV 650 .ndo_set_vf_link_state = qede_set_vf_link_state, 651 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 652 .ndo_get_vf_config = qede_get_vf_config, 653 .ndo_set_vf_rate = qede_set_vf_rate, 654 #endif 655 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 656 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 657 .ndo_features_check = qede_features_check, 658 .ndo_bpf = qede_xdp, 659 #ifdef CONFIG_RFS_ACCEL 660 .ndo_rx_flow_steer = qede_rx_flow_steer, 661 #endif 662 .ndo_setup_tc = qede_setup_tc_offload, 663 }; 664 665 static const struct net_device_ops qede_netdev_vf_ops = { 666 .ndo_open = qede_open, 667 .ndo_stop = qede_close, 668 .ndo_start_xmit = qede_start_xmit, 669 .ndo_set_rx_mode = qede_set_rx_mode, 670 .ndo_set_mac_address = qede_set_mac_addr, 671 .ndo_validate_addr = eth_validate_addr, 672 .ndo_change_mtu = qede_change_mtu, 673 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 674 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 675 .ndo_fix_features = qede_fix_features, 676 .ndo_set_features = qede_set_features, 677 .ndo_get_stats64 = qede_get_stats64, 678 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 679 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 680 .ndo_features_check = qede_features_check, 681 }; 682 683 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 684 .ndo_open = qede_open, 685 .ndo_stop = qede_close, 686 .ndo_start_xmit = qede_start_xmit, 687 .ndo_set_rx_mode = qede_set_rx_mode, 688 .ndo_set_mac_address = qede_set_mac_addr, 689 .ndo_validate_addr = eth_validate_addr, 690 .ndo_change_mtu = qede_change_mtu, 691 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 692 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 693 .ndo_fix_features = qede_fix_features, 694 .ndo_set_features = qede_set_features, 695 .ndo_get_stats64 = qede_get_stats64, 696 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 697 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 698 .ndo_features_check = qede_features_check, 699 .ndo_bpf = qede_xdp, 700 }; 701 702 /* ------------------------------------------------------------------------- 703 * START OF PROBE / REMOVE 704 * ------------------------------------------------------------------------- 705 */ 706 707 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 708 struct pci_dev *pdev, 709 struct qed_dev_eth_info *info, 710 u32 dp_module, u8 dp_level) 711 { 712 struct net_device *ndev; 713 struct qede_dev *edev; 714 715 ndev = alloc_etherdev_mqs(sizeof(*edev), 716 info->num_queues * info->num_tc, 717 info->num_queues); 718 if (!ndev) { 719 pr_err("etherdev allocation failed\n"); 720 return NULL; 721 } 722 723 edev = netdev_priv(ndev); 724 edev->ndev = ndev; 725 edev->cdev = cdev; 726 edev->pdev = pdev; 727 edev->dp_module = dp_module; 728 edev->dp_level = dp_level; 729 edev->ops = qed_ops; 730 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 731 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 732 733 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 734 info->num_queues, info->num_queues); 735 736 SET_NETDEV_DEV(ndev, &pdev->dev); 737 738 memset(&edev->stats, 0, sizeof(edev->stats)); 739 memcpy(&edev->dev_info, info, sizeof(*info)); 740 741 /* As ethtool doesn't have the ability to show WoL behavior as 742 * 'default', if device supports it declare it's enabled. 743 */ 744 if (edev->dev_info.common.wol_support) 745 edev->wol_enabled = true; 746 747 INIT_LIST_HEAD(&edev->vlan_list); 748 749 return edev; 750 } 751 752 static void qede_init_ndev(struct qede_dev *edev) 753 { 754 struct net_device *ndev = edev->ndev; 755 struct pci_dev *pdev = edev->pdev; 756 bool udp_tunnel_enable = false; 757 netdev_features_t hw_features; 758 759 pci_set_drvdata(pdev, ndev); 760 761 ndev->mem_start = edev->dev_info.common.pci_mem_start; 762 ndev->base_addr = ndev->mem_start; 763 ndev->mem_end = edev->dev_info.common.pci_mem_end; 764 ndev->irq = edev->dev_info.common.pci_irq; 765 766 ndev->watchdog_timeo = TX_TIMEOUT; 767 768 if (IS_VF(edev)) { 769 if (edev->dev_info.xdp_supported) 770 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 771 else 772 ndev->netdev_ops = &qede_netdev_vf_ops; 773 } else { 774 ndev->netdev_ops = &qede_netdev_ops; 775 } 776 777 qede_set_ethtool_ops(ndev); 778 779 ndev->priv_flags |= IFF_UNICAST_FLT; 780 781 /* user-changeble features */ 782 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 783 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 784 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 785 786 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 787 hw_features |= NETIF_F_NTUPLE; 788 789 if (edev->dev_info.common.vxlan_enable || 790 edev->dev_info.common.geneve_enable) 791 udp_tunnel_enable = true; 792 793 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 794 hw_features |= NETIF_F_TSO_ECN; 795 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 796 NETIF_F_SG | NETIF_F_TSO | 797 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 798 NETIF_F_RXCSUM; 799 } 800 801 if (udp_tunnel_enable) { 802 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 803 NETIF_F_GSO_UDP_TUNNEL_CSUM); 804 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 805 NETIF_F_GSO_UDP_TUNNEL_CSUM); 806 } 807 808 if (edev->dev_info.common.gre_enable) { 809 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 810 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 811 NETIF_F_GSO_GRE_CSUM); 812 } 813 814 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 815 NETIF_F_HIGHDMA; 816 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 817 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 818 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 819 820 ndev->hw_features = hw_features; 821 822 /* MTU range: 46 - 9600 */ 823 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 824 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 825 826 /* Set network device HW mac */ 827 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 828 829 ndev->mtu = edev->dev_info.common.mtu; 830 } 831 832 /* This function converts from 32b param to two params of level and module 833 * Input 32b decoding: 834 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 835 * 'happy' flow, e.g. memory allocation failed. 836 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 837 * and provide important parameters. 838 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 839 * module. VERBOSE prints are for tracking the specific flow in low level. 840 * 841 * Notice that the level should be that of the lowest required logs. 842 */ 843 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 844 { 845 *p_dp_level = QED_LEVEL_NOTICE; 846 *p_dp_module = 0; 847 848 if (debug & QED_LOG_VERBOSE_MASK) { 849 *p_dp_level = QED_LEVEL_VERBOSE; 850 *p_dp_module = (debug & 0x3FFFFFFF); 851 } else if (debug & QED_LOG_INFO_MASK) { 852 *p_dp_level = QED_LEVEL_INFO; 853 } else if (debug & QED_LOG_NOTICE_MASK) { 854 *p_dp_level = QED_LEVEL_NOTICE; 855 } 856 } 857 858 static void qede_free_fp_array(struct qede_dev *edev) 859 { 860 if (edev->fp_array) { 861 struct qede_fastpath *fp; 862 int i; 863 864 for_each_queue(i) { 865 fp = &edev->fp_array[i]; 866 867 kfree(fp->sb_info); 868 /* Handle mem alloc failure case where qede_init_fp 869 * didn't register xdp_rxq_info yet. 870 * Implicit only (fp->type & QEDE_FASTPATH_RX) 871 */ 872 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 873 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 874 kfree(fp->rxq); 875 kfree(fp->xdp_tx); 876 kfree(fp->txq); 877 } 878 kfree(edev->fp_array); 879 } 880 881 edev->num_queues = 0; 882 edev->fp_num_tx = 0; 883 edev->fp_num_rx = 0; 884 } 885 886 static int qede_alloc_fp_array(struct qede_dev *edev) 887 { 888 u8 fp_combined, fp_rx = edev->fp_num_rx; 889 struct qede_fastpath *fp; 890 int i; 891 892 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 893 sizeof(*edev->fp_array), GFP_KERNEL); 894 if (!edev->fp_array) { 895 DP_NOTICE(edev, "fp array allocation failed\n"); 896 goto err; 897 } 898 899 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 900 901 /* Allocate the FP elements for Rx queues followed by combined and then 902 * the Tx. This ordering should be maintained so that the respective 903 * queues (Rx or Tx) will be together in the fastpath array and the 904 * associated ids will be sequential. 905 */ 906 for_each_queue(i) { 907 fp = &edev->fp_array[i]; 908 909 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 910 if (!fp->sb_info) { 911 DP_NOTICE(edev, "sb info struct allocation failed\n"); 912 goto err; 913 } 914 915 if (fp_rx) { 916 fp->type = QEDE_FASTPATH_RX; 917 fp_rx--; 918 } else if (fp_combined) { 919 fp->type = QEDE_FASTPATH_COMBINED; 920 fp_combined--; 921 } else { 922 fp->type = QEDE_FASTPATH_TX; 923 } 924 925 if (fp->type & QEDE_FASTPATH_TX) { 926 fp->txq = kcalloc(edev->dev_info.num_tc, 927 sizeof(*fp->txq), GFP_KERNEL); 928 if (!fp->txq) 929 goto err; 930 } 931 932 if (fp->type & QEDE_FASTPATH_RX) { 933 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 934 if (!fp->rxq) 935 goto err; 936 937 if (edev->xdp_prog) { 938 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 939 GFP_KERNEL); 940 if (!fp->xdp_tx) 941 goto err; 942 fp->type |= QEDE_FASTPATH_XDP; 943 } 944 } 945 } 946 947 return 0; 948 err: 949 qede_free_fp_array(edev); 950 return -ENOMEM; 951 } 952 953 static void qede_sp_task(struct work_struct *work) 954 { 955 struct qede_dev *edev = container_of(work, struct qede_dev, 956 sp_task.work); 957 958 __qede_lock(edev); 959 960 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 961 if (edev->state == QEDE_STATE_OPEN) 962 qede_config_rx_mode(edev->ndev); 963 964 #ifdef CONFIG_RFS_ACCEL 965 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 966 if (edev->state == QEDE_STATE_OPEN) 967 qede_process_arfs_filters(edev, false); 968 } 969 #endif 970 __qede_unlock(edev); 971 } 972 973 static void qede_update_pf_params(struct qed_dev *cdev) 974 { 975 struct qed_pf_params pf_params; 976 u16 num_cons; 977 978 /* 64 rx + 64 tx + 64 XDP */ 979 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 980 981 /* 1 rx + 1 xdp + max tx cos */ 982 num_cons = QED_MIN_L2_CONS; 983 984 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 985 986 /* Same for VFs - make sure they'll have sufficient connections 987 * to support XDP Tx queues. 988 */ 989 pf_params.eth_pf_params.num_vf_cons = 48; 990 991 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 992 qed_ops->common->update_pf_params(cdev, &pf_params); 993 } 994 995 #define QEDE_FW_VER_STR_SIZE 80 996 997 static void qede_log_probe(struct qede_dev *edev) 998 { 999 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1000 u8 buf[QEDE_FW_VER_STR_SIZE]; 1001 size_t left_size; 1002 1003 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1004 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1005 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1006 p_dev_info->fw_eng, 1007 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1008 QED_MFW_VERSION_3_OFFSET, 1009 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1010 QED_MFW_VERSION_2_OFFSET, 1011 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1012 QED_MFW_VERSION_1_OFFSET, 1013 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1014 QED_MFW_VERSION_0_OFFSET); 1015 1016 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1017 if (p_dev_info->mbi_version && left_size) 1018 snprintf(buf + strlen(buf), left_size, 1019 " [MBI %d.%d.%d]", 1020 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1021 QED_MBI_VERSION_2_OFFSET, 1022 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1023 QED_MBI_VERSION_1_OFFSET, 1024 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1025 QED_MBI_VERSION_0_OFFSET); 1026 1027 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1028 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1029 buf, edev->ndev->name); 1030 } 1031 1032 enum qede_probe_mode { 1033 QEDE_PROBE_NORMAL, 1034 }; 1035 1036 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1037 bool is_vf, enum qede_probe_mode mode) 1038 { 1039 struct qed_probe_params probe_params; 1040 struct qed_slowpath_params sp_params; 1041 struct qed_dev_eth_info dev_info; 1042 struct qede_dev *edev; 1043 struct qed_dev *cdev; 1044 int rc; 1045 1046 if (unlikely(dp_level & QED_LEVEL_INFO)) 1047 pr_notice("Starting qede probe\n"); 1048 1049 memset(&probe_params, 0, sizeof(probe_params)); 1050 probe_params.protocol = QED_PROTOCOL_ETH; 1051 probe_params.dp_module = dp_module; 1052 probe_params.dp_level = dp_level; 1053 probe_params.is_vf = is_vf; 1054 cdev = qed_ops->common->probe(pdev, &probe_params); 1055 if (!cdev) { 1056 rc = -ENODEV; 1057 goto err0; 1058 } 1059 1060 qede_update_pf_params(cdev); 1061 1062 /* Start the Slowpath-process */ 1063 memset(&sp_params, 0, sizeof(sp_params)); 1064 sp_params.int_mode = QED_INT_MODE_MSIX; 1065 sp_params.drv_major = QEDE_MAJOR_VERSION; 1066 sp_params.drv_minor = QEDE_MINOR_VERSION; 1067 sp_params.drv_rev = QEDE_REVISION_VERSION; 1068 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1069 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1070 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1071 if (rc) { 1072 pr_notice("Cannot start slowpath\n"); 1073 goto err1; 1074 } 1075 1076 /* Learn information crucial for qede to progress */ 1077 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1078 if (rc) 1079 goto err2; 1080 1081 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1082 dp_level); 1083 if (!edev) { 1084 rc = -ENOMEM; 1085 goto err2; 1086 } 1087 1088 if (is_vf) 1089 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1090 1091 qede_init_ndev(edev); 1092 1093 rc = qede_rdma_dev_add(edev); 1094 if (rc) 1095 goto err3; 1096 1097 /* Prepare the lock prior to the registration of the netdev, 1098 * as once it's registered we might reach flows requiring it 1099 * [it's even possible to reach a flow needing it directly 1100 * from there, although it's unlikely]. 1101 */ 1102 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1103 mutex_init(&edev->qede_lock); 1104 rc = register_netdev(edev->ndev); 1105 if (rc) { 1106 DP_NOTICE(edev, "Cannot register net-device\n"); 1107 goto err4; 1108 } 1109 1110 edev->ops->common->set_name(cdev, edev->ndev->name); 1111 1112 /* PTP not supported on VFs */ 1113 if (!is_vf) 1114 qede_ptp_enable(edev, true); 1115 1116 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1117 1118 #ifdef CONFIG_DCB 1119 if (!IS_VF(edev)) 1120 qede_set_dcbnl_ops(edev->ndev); 1121 #endif 1122 1123 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1124 1125 qede_log_probe(edev); 1126 return 0; 1127 1128 err4: 1129 qede_rdma_dev_remove(edev); 1130 err3: 1131 free_netdev(edev->ndev); 1132 err2: 1133 qed_ops->common->slowpath_stop(cdev); 1134 err1: 1135 qed_ops->common->remove(cdev); 1136 err0: 1137 return rc; 1138 } 1139 1140 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1141 { 1142 bool is_vf = false; 1143 u32 dp_module = 0; 1144 u8 dp_level = 0; 1145 1146 switch ((enum qede_pci_private)id->driver_data) { 1147 case QEDE_PRIVATE_VF: 1148 if (debug & QED_LOG_VERBOSE_MASK) 1149 dev_err(&pdev->dev, "Probing a VF\n"); 1150 is_vf = true; 1151 break; 1152 default: 1153 if (debug & QED_LOG_VERBOSE_MASK) 1154 dev_err(&pdev->dev, "Probing a PF\n"); 1155 } 1156 1157 qede_config_debug(debug, &dp_module, &dp_level); 1158 1159 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1160 QEDE_PROBE_NORMAL); 1161 } 1162 1163 enum qede_remove_mode { 1164 QEDE_REMOVE_NORMAL, 1165 }; 1166 1167 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1168 { 1169 struct net_device *ndev = pci_get_drvdata(pdev); 1170 struct qede_dev *edev = netdev_priv(ndev); 1171 struct qed_dev *cdev = edev->cdev; 1172 1173 DP_INFO(edev, "Starting qede_remove\n"); 1174 1175 qede_rdma_dev_remove(edev); 1176 unregister_netdev(ndev); 1177 cancel_delayed_work_sync(&edev->sp_task); 1178 1179 qede_ptp_disable(edev); 1180 1181 edev->ops->common->set_power_state(cdev, PCI_D0); 1182 1183 pci_set_drvdata(pdev, NULL); 1184 1185 /* Use global ops since we've freed edev */ 1186 qed_ops->common->slowpath_stop(cdev); 1187 if (system_state == SYSTEM_POWER_OFF) 1188 return; 1189 qed_ops->common->remove(cdev); 1190 1191 /* Since this can happen out-of-sync with other flows, 1192 * don't release the netdevice until after slowpath stop 1193 * has been called to guarantee various other contexts 1194 * [e.g., QED register callbacks] won't break anything when 1195 * accessing the netdevice. 1196 */ 1197 free_netdev(ndev); 1198 1199 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1200 } 1201 1202 static void qede_remove(struct pci_dev *pdev) 1203 { 1204 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1205 } 1206 1207 static void qede_shutdown(struct pci_dev *pdev) 1208 { 1209 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1210 } 1211 1212 /* ------------------------------------------------------------------------- 1213 * START OF LOAD / UNLOAD 1214 * ------------------------------------------------------------------------- 1215 */ 1216 1217 static int qede_set_num_queues(struct qede_dev *edev) 1218 { 1219 int rc; 1220 u16 rss_num; 1221 1222 /* Setup queues according to possible resources*/ 1223 if (edev->req_queues) 1224 rss_num = edev->req_queues; 1225 else 1226 rss_num = netif_get_num_default_rss_queues() * 1227 edev->dev_info.common.num_hwfns; 1228 1229 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1230 1231 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1232 if (rc > 0) { 1233 /* Managed to request interrupts for our queues */ 1234 edev->num_queues = rc; 1235 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1236 QEDE_QUEUE_CNT(edev), rss_num); 1237 rc = 0; 1238 } 1239 1240 edev->fp_num_tx = edev->req_num_tx; 1241 edev->fp_num_rx = edev->req_num_rx; 1242 1243 return rc; 1244 } 1245 1246 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1247 u16 sb_id) 1248 { 1249 if (sb_info->sb_virt) { 1250 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id); 1251 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1252 (void *)sb_info->sb_virt, sb_info->sb_phys); 1253 memset(sb_info, 0, sizeof(*sb_info)); 1254 } 1255 } 1256 1257 /* This function allocates fast-path status block memory */ 1258 static int qede_alloc_mem_sb(struct qede_dev *edev, 1259 struct qed_sb_info *sb_info, u16 sb_id) 1260 { 1261 struct status_block_e4 *sb_virt; 1262 dma_addr_t sb_phys; 1263 int rc; 1264 1265 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1266 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1267 if (!sb_virt) { 1268 DP_ERR(edev, "Status block allocation failed\n"); 1269 return -ENOMEM; 1270 } 1271 1272 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1273 sb_virt, sb_phys, sb_id, 1274 QED_SB_TYPE_L2_QUEUE); 1275 if (rc) { 1276 DP_ERR(edev, "Status block initialization failed\n"); 1277 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1278 sb_virt, sb_phys); 1279 return rc; 1280 } 1281 1282 return 0; 1283 } 1284 1285 static void qede_free_rx_buffers(struct qede_dev *edev, 1286 struct qede_rx_queue *rxq) 1287 { 1288 u16 i; 1289 1290 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1291 struct sw_rx_data *rx_buf; 1292 struct page *data; 1293 1294 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1295 data = rx_buf->data; 1296 1297 dma_unmap_page(&edev->pdev->dev, 1298 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1299 1300 rx_buf->data = NULL; 1301 __free_page(data); 1302 } 1303 } 1304 1305 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1306 { 1307 /* Free rx buffers */ 1308 qede_free_rx_buffers(edev, rxq); 1309 1310 /* Free the parallel SW ring */ 1311 kfree(rxq->sw_rx_ring); 1312 1313 /* Free the real RQ ring used by FW */ 1314 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1315 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1316 } 1317 1318 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1319 { 1320 int i; 1321 1322 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1323 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1324 1325 tpa_info->state = QEDE_AGG_STATE_NONE; 1326 } 1327 } 1328 1329 /* This function allocates all memory needed per Rx queue */ 1330 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1331 { 1332 int i, rc, size; 1333 1334 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1335 1336 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1337 1338 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1339 size = rxq->rx_headroom + 1340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1341 1342 /* Make sure that the headroom and payload fit in a single page */ 1343 if (rxq->rx_buf_size + size > PAGE_SIZE) 1344 rxq->rx_buf_size = PAGE_SIZE - size; 1345 1346 /* Segment size to spilt a page in multiple equal parts , 1347 * unless XDP is used in which case we'd use the entire page. 1348 */ 1349 if (!edev->xdp_prog) { 1350 size = size + rxq->rx_buf_size; 1351 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1352 } else { 1353 rxq->rx_buf_seg_size = PAGE_SIZE; 1354 } 1355 1356 /* Allocate the parallel driver ring for Rx buffers */ 1357 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1358 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1359 if (!rxq->sw_rx_ring) { 1360 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1361 rc = -ENOMEM; 1362 goto err; 1363 } 1364 1365 /* Allocate FW Rx ring */ 1366 rc = edev->ops->common->chain_alloc(edev->cdev, 1367 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1368 QED_CHAIN_MODE_NEXT_PTR, 1369 QED_CHAIN_CNT_TYPE_U16, 1370 RX_RING_SIZE, 1371 sizeof(struct eth_rx_bd), 1372 &rxq->rx_bd_ring, NULL); 1373 if (rc) 1374 goto err; 1375 1376 /* Allocate FW completion ring */ 1377 rc = edev->ops->common->chain_alloc(edev->cdev, 1378 QED_CHAIN_USE_TO_CONSUME, 1379 QED_CHAIN_MODE_PBL, 1380 QED_CHAIN_CNT_TYPE_U16, 1381 RX_RING_SIZE, 1382 sizeof(union eth_rx_cqe), 1383 &rxq->rx_comp_ring, NULL); 1384 if (rc) 1385 goto err; 1386 1387 /* Allocate buffers for the Rx ring */ 1388 rxq->filled_buffers = 0; 1389 for (i = 0; i < rxq->num_rx_buffers; i++) { 1390 rc = qede_alloc_rx_buffer(rxq, false); 1391 if (rc) { 1392 DP_ERR(edev, 1393 "Rx buffers allocation failed at index %d\n", i); 1394 goto err; 1395 } 1396 } 1397 1398 if (!edev->gro_disable) 1399 qede_set_tpa_param(rxq); 1400 err: 1401 return rc; 1402 } 1403 1404 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1405 { 1406 /* Free the parallel SW ring */ 1407 if (txq->is_xdp) 1408 kfree(txq->sw_tx_ring.xdp); 1409 else 1410 kfree(txq->sw_tx_ring.skbs); 1411 1412 /* Free the real RQ ring used by FW */ 1413 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1414 } 1415 1416 /* This function allocates all memory needed per Tx queue */ 1417 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1418 { 1419 union eth_tx_bd_types *p_virt; 1420 int size, rc; 1421 1422 txq->num_tx_buffers = edev->q_num_tx_buffers; 1423 1424 /* Allocate the parallel driver ring for Tx buffers */ 1425 if (txq->is_xdp) { 1426 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1427 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1428 if (!txq->sw_tx_ring.xdp) 1429 goto err; 1430 } else { 1431 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1432 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1433 if (!txq->sw_tx_ring.skbs) 1434 goto err; 1435 } 1436 1437 rc = edev->ops->common->chain_alloc(edev->cdev, 1438 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1439 QED_CHAIN_MODE_PBL, 1440 QED_CHAIN_CNT_TYPE_U16, 1441 txq->num_tx_buffers, 1442 sizeof(*p_virt), 1443 &txq->tx_pbl, NULL); 1444 if (rc) 1445 goto err; 1446 1447 return 0; 1448 1449 err: 1450 qede_free_mem_txq(edev, txq); 1451 return -ENOMEM; 1452 } 1453 1454 /* This function frees all memory of a single fp */ 1455 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1456 { 1457 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1458 1459 if (fp->type & QEDE_FASTPATH_RX) 1460 qede_free_mem_rxq(edev, fp->rxq); 1461 1462 if (fp->type & QEDE_FASTPATH_XDP) 1463 qede_free_mem_txq(edev, fp->xdp_tx); 1464 1465 if (fp->type & QEDE_FASTPATH_TX) { 1466 int cos; 1467 1468 for_each_cos_in_txq(edev, cos) 1469 qede_free_mem_txq(edev, &fp->txq[cos]); 1470 } 1471 } 1472 1473 /* This function allocates all memory needed for a single fp (i.e. an entity 1474 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1475 */ 1476 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1477 { 1478 int rc = 0; 1479 1480 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1481 if (rc) 1482 goto out; 1483 1484 if (fp->type & QEDE_FASTPATH_RX) { 1485 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1486 if (rc) 1487 goto out; 1488 } 1489 1490 if (fp->type & QEDE_FASTPATH_XDP) { 1491 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1492 if (rc) 1493 goto out; 1494 } 1495 1496 if (fp->type & QEDE_FASTPATH_TX) { 1497 int cos; 1498 1499 for_each_cos_in_txq(edev, cos) { 1500 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1501 if (rc) 1502 goto out; 1503 } 1504 } 1505 1506 out: 1507 return rc; 1508 } 1509 1510 static void qede_free_mem_load(struct qede_dev *edev) 1511 { 1512 int i; 1513 1514 for_each_queue(i) { 1515 struct qede_fastpath *fp = &edev->fp_array[i]; 1516 1517 qede_free_mem_fp(edev, fp); 1518 } 1519 } 1520 1521 /* This function allocates all qede memory at NIC load. */ 1522 static int qede_alloc_mem_load(struct qede_dev *edev) 1523 { 1524 int rc = 0, queue_id; 1525 1526 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1527 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1528 1529 rc = qede_alloc_mem_fp(edev, fp); 1530 if (rc) { 1531 DP_ERR(edev, 1532 "Failed to allocate memory for fastpath - rss id = %d\n", 1533 queue_id); 1534 qede_free_mem_load(edev); 1535 return rc; 1536 } 1537 } 1538 1539 return 0; 1540 } 1541 1542 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1543 static void qede_init_fp(struct qede_dev *edev) 1544 { 1545 int queue_id, rxq_index = 0, txq_index = 0; 1546 struct qede_fastpath *fp; 1547 1548 for_each_queue(queue_id) { 1549 fp = &edev->fp_array[queue_id]; 1550 1551 fp->edev = edev; 1552 fp->id = queue_id; 1553 1554 if (fp->type & QEDE_FASTPATH_XDP) { 1555 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1556 rxq_index); 1557 fp->xdp_tx->is_xdp = 1; 1558 } 1559 1560 if (fp->type & QEDE_FASTPATH_RX) { 1561 fp->rxq->rxq_id = rxq_index++; 1562 1563 /* Determine how to map buffers for this queue */ 1564 if (fp->type & QEDE_FASTPATH_XDP) 1565 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1566 else 1567 fp->rxq->data_direction = DMA_FROM_DEVICE; 1568 fp->rxq->dev = &edev->pdev->dev; 1569 1570 /* Driver have no error path from here */ 1571 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1572 fp->rxq->rxq_id) < 0); 1573 } 1574 1575 if (fp->type & QEDE_FASTPATH_TX) { 1576 int cos; 1577 1578 for_each_cos_in_txq(edev, cos) { 1579 struct qede_tx_queue *txq = &fp->txq[cos]; 1580 u16 ndev_tx_id; 1581 1582 txq->cos = cos; 1583 txq->index = txq_index; 1584 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1585 txq->ndev_txq_id = ndev_tx_id; 1586 1587 if (edev->dev_info.is_legacy) 1588 txq->is_legacy = 1; 1589 txq->dev = &edev->pdev->dev; 1590 } 1591 1592 txq_index++; 1593 } 1594 1595 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1596 edev->ndev->name, queue_id); 1597 } 1598 1599 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1600 } 1601 1602 static int qede_set_real_num_queues(struct qede_dev *edev) 1603 { 1604 int rc = 0; 1605 1606 rc = netif_set_real_num_tx_queues(edev->ndev, 1607 QEDE_TSS_COUNT(edev) * 1608 edev->dev_info.num_tc); 1609 if (rc) { 1610 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1611 return rc; 1612 } 1613 1614 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1615 if (rc) { 1616 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1617 return rc; 1618 } 1619 1620 return 0; 1621 } 1622 1623 static void qede_napi_disable_remove(struct qede_dev *edev) 1624 { 1625 int i; 1626 1627 for_each_queue(i) { 1628 napi_disable(&edev->fp_array[i].napi); 1629 1630 netif_napi_del(&edev->fp_array[i].napi); 1631 } 1632 } 1633 1634 static void qede_napi_add_enable(struct qede_dev *edev) 1635 { 1636 int i; 1637 1638 /* Add NAPI objects */ 1639 for_each_queue(i) { 1640 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1641 qede_poll, NAPI_POLL_WEIGHT); 1642 napi_enable(&edev->fp_array[i].napi); 1643 } 1644 } 1645 1646 static void qede_sync_free_irqs(struct qede_dev *edev) 1647 { 1648 int i; 1649 1650 for (i = 0; i < edev->int_info.used_cnt; i++) { 1651 if (edev->int_info.msix_cnt) { 1652 synchronize_irq(edev->int_info.msix[i].vector); 1653 free_irq(edev->int_info.msix[i].vector, 1654 &edev->fp_array[i]); 1655 } else { 1656 edev->ops->common->simd_handler_clean(edev->cdev, i); 1657 } 1658 } 1659 1660 edev->int_info.used_cnt = 0; 1661 } 1662 1663 static int qede_req_msix_irqs(struct qede_dev *edev) 1664 { 1665 int i, rc; 1666 1667 /* Sanitize number of interrupts == number of prepared RSS queues */ 1668 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1669 DP_ERR(edev, 1670 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1671 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1672 return -EINVAL; 1673 } 1674 1675 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1676 #ifdef CONFIG_RFS_ACCEL 1677 struct qede_fastpath *fp = &edev->fp_array[i]; 1678 1679 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1680 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1681 edev->int_info.msix[i].vector); 1682 if (rc) { 1683 DP_ERR(edev, "Failed to add CPU rmap\n"); 1684 qede_free_arfs(edev); 1685 } 1686 } 1687 #endif 1688 rc = request_irq(edev->int_info.msix[i].vector, 1689 qede_msix_fp_int, 0, edev->fp_array[i].name, 1690 &edev->fp_array[i]); 1691 if (rc) { 1692 DP_ERR(edev, "Request fp %d irq failed\n", i); 1693 qede_sync_free_irqs(edev); 1694 return rc; 1695 } 1696 DP_VERBOSE(edev, NETIF_MSG_INTR, 1697 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1698 edev->fp_array[i].name, i, 1699 &edev->fp_array[i]); 1700 edev->int_info.used_cnt++; 1701 } 1702 1703 return 0; 1704 } 1705 1706 static void qede_simd_fp_handler(void *cookie) 1707 { 1708 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1709 1710 napi_schedule_irqoff(&fp->napi); 1711 } 1712 1713 static int qede_setup_irqs(struct qede_dev *edev) 1714 { 1715 int i, rc = 0; 1716 1717 /* Learn Interrupt configuration */ 1718 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1719 if (rc) 1720 return rc; 1721 1722 if (edev->int_info.msix_cnt) { 1723 rc = qede_req_msix_irqs(edev); 1724 if (rc) 1725 return rc; 1726 edev->ndev->irq = edev->int_info.msix[0].vector; 1727 } else { 1728 const struct qed_common_ops *ops; 1729 1730 /* qed should learn receive the RSS ids and callbacks */ 1731 ops = edev->ops->common; 1732 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1733 ops->simd_handler_config(edev->cdev, 1734 &edev->fp_array[i], i, 1735 qede_simd_fp_handler); 1736 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1737 } 1738 return 0; 1739 } 1740 1741 static int qede_drain_txq(struct qede_dev *edev, 1742 struct qede_tx_queue *txq, bool allow_drain) 1743 { 1744 int rc, cnt = 1000; 1745 1746 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1747 if (!cnt) { 1748 if (allow_drain) { 1749 DP_NOTICE(edev, 1750 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1751 txq->index); 1752 rc = edev->ops->common->drain(edev->cdev); 1753 if (rc) 1754 return rc; 1755 return qede_drain_txq(edev, txq, false); 1756 } 1757 DP_NOTICE(edev, 1758 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1759 txq->index, txq->sw_tx_prod, 1760 txq->sw_tx_cons); 1761 return -ENODEV; 1762 } 1763 cnt--; 1764 usleep_range(1000, 2000); 1765 barrier(); 1766 } 1767 1768 /* FW finished processing, wait for HW to transmit all tx packets */ 1769 usleep_range(1000, 2000); 1770 1771 return 0; 1772 } 1773 1774 static int qede_stop_txq(struct qede_dev *edev, 1775 struct qede_tx_queue *txq, int rss_id) 1776 { 1777 /* delete doorbell from doorbell recovery mechanism */ 1778 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1779 &txq->tx_db); 1780 1781 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1782 } 1783 1784 static int qede_stop_queues(struct qede_dev *edev) 1785 { 1786 struct qed_update_vport_params *vport_update_params; 1787 struct qed_dev *cdev = edev->cdev; 1788 struct qede_fastpath *fp; 1789 int rc, i; 1790 1791 /* Disable the vport */ 1792 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1793 if (!vport_update_params) 1794 return -ENOMEM; 1795 1796 vport_update_params->vport_id = 0; 1797 vport_update_params->update_vport_active_flg = 1; 1798 vport_update_params->vport_active_flg = 0; 1799 vport_update_params->update_rss_flg = 0; 1800 1801 rc = edev->ops->vport_update(cdev, vport_update_params); 1802 vfree(vport_update_params); 1803 1804 if (rc) { 1805 DP_ERR(edev, "Failed to update vport\n"); 1806 return rc; 1807 } 1808 1809 /* Flush Tx queues. If needed, request drain from MCP */ 1810 for_each_queue(i) { 1811 fp = &edev->fp_array[i]; 1812 1813 if (fp->type & QEDE_FASTPATH_TX) { 1814 int cos; 1815 1816 for_each_cos_in_txq(edev, cos) { 1817 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1818 if (rc) 1819 return rc; 1820 } 1821 } 1822 1823 if (fp->type & QEDE_FASTPATH_XDP) { 1824 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1825 if (rc) 1826 return rc; 1827 } 1828 } 1829 1830 /* Stop all Queues in reverse order */ 1831 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1832 fp = &edev->fp_array[i]; 1833 1834 /* Stop the Tx Queue(s) */ 1835 if (fp->type & QEDE_FASTPATH_TX) { 1836 int cos; 1837 1838 for_each_cos_in_txq(edev, cos) { 1839 rc = qede_stop_txq(edev, &fp->txq[cos], i); 1840 if (rc) 1841 return rc; 1842 } 1843 } 1844 1845 /* Stop the Rx Queue */ 1846 if (fp->type & QEDE_FASTPATH_RX) { 1847 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1848 if (rc) { 1849 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1850 return rc; 1851 } 1852 } 1853 1854 /* Stop the XDP forwarding queue */ 1855 if (fp->type & QEDE_FASTPATH_XDP) { 1856 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1857 if (rc) 1858 return rc; 1859 1860 bpf_prog_put(fp->rxq->xdp_prog); 1861 } 1862 } 1863 1864 /* Stop the vport */ 1865 rc = edev->ops->vport_stop(cdev, 0); 1866 if (rc) 1867 DP_ERR(edev, "Failed to stop VPORT\n"); 1868 1869 return rc; 1870 } 1871 1872 static int qede_start_txq(struct qede_dev *edev, 1873 struct qede_fastpath *fp, 1874 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1875 { 1876 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1877 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1878 struct qed_queue_start_common_params params; 1879 struct qed_txq_start_ret_params ret_params; 1880 int rc; 1881 1882 memset(¶ms, 0, sizeof(params)); 1883 memset(&ret_params, 0, sizeof(ret_params)); 1884 1885 /* Let the XDP queue share the queue-zone with one of the regular txq. 1886 * We don't really care about its coalescing. 1887 */ 1888 if (txq->is_xdp) 1889 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1890 else 1891 params.queue_id = txq->index; 1892 1893 params.p_sb = fp->sb_info; 1894 params.sb_idx = sb_idx; 1895 params.tc = txq->cos; 1896 1897 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1898 page_cnt, &ret_params); 1899 if (rc) { 1900 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1901 return rc; 1902 } 1903 1904 txq->doorbell_addr = ret_params.p_doorbell; 1905 txq->handle = ret_params.p_handle; 1906 1907 /* Determine the FW consumer address associated */ 1908 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 1909 1910 /* Prepare the doorbell parameters */ 1911 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 1912 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 1913 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 1914 DQ_XCM_ETH_TX_BD_PROD_CMD); 1915 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 1916 1917 /* register doorbell with doorbell recovery mechanism */ 1918 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 1919 &txq->tx_db, DB_REC_WIDTH_32B, 1920 DB_REC_KERNEL); 1921 1922 return rc; 1923 } 1924 1925 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 1926 { 1927 int vlan_removal_en = 1; 1928 struct qed_dev *cdev = edev->cdev; 1929 struct qed_dev_info *qed_info = &edev->dev_info.common; 1930 struct qed_update_vport_params *vport_update_params; 1931 struct qed_queue_start_common_params q_params; 1932 struct qed_start_vport_params start = {0}; 1933 int rc, i; 1934 1935 if (!edev->num_queues) { 1936 DP_ERR(edev, 1937 "Cannot update V-VPORT as active as there are no Rx queues\n"); 1938 return -EINVAL; 1939 } 1940 1941 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1942 if (!vport_update_params) 1943 return -ENOMEM; 1944 1945 start.handle_ptp_pkts = !!(edev->ptp); 1946 start.gro_enable = !edev->gro_disable; 1947 start.mtu = edev->ndev->mtu; 1948 start.vport_id = 0; 1949 start.drop_ttl0 = true; 1950 start.remove_inner_vlan = vlan_removal_en; 1951 start.clear_stats = clear_stats; 1952 1953 rc = edev->ops->vport_start(cdev, &start); 1954 1955 if (rc) { 1956 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 1957 goto out; 1958 } 1959 1960 DP_VERBOSE(edev, NETIF_MSG_IFUP, 1961 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 1962 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 1963 1964 for_each_queue(i) { 1965 struct qede_fastpath *fp = &edev->fp_array[i]; 1966 dma_addr_t p_phys_table; 1967 u32 page_cnt; 1968 1969 if (fp->type & QEDE_FASTPATH_RX) { 1970 struct qed_rxq_start_ret_params ret_params; 1971 struct qede_rx_queue *rxq = fp->rxq; 1972 __le16 *val; 1973 1974 memset(&ret_params, 0, sizeof(ret_params)); 1975 memset(&q_params, 0, sizeof(q_params)); 1976 q_params.queue_id = rxq->rxq_id; 1977 q_params.vport_id = 0; 1978 q_params.p_sb = fp->sb_info; 1979 q_params.sb_idx = RX_PI; 1980 1981 p_phys_table = 1982 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 1983 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 1984 1985 rc = edev->ops->q_rx_start(cdev, i, &q_params, 1986 rxq->rx_buf_size, 1987 rxq->rx_bd_ring.p_phys_addr, 1988 p_phys_table, 1989 page_cnt, &ret_params); 1990 if (rc) { 1991 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 1992 rc); 1993 goto out; 1994 } 1995 1996 /* Use the return parameters */ 1997 rxq->hw_rxq_prod_addr = ret_params.p_prod; 1998 rxq->handle = ret_params.p_handle; 1999 2000 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2001 rxq->hw_cons_ptr = val; 2002 2003 qede_update_rx_prod(edev, rxq); 2004 } 2005 2006 if (fp->type & QEDE_FASTPATH_XDP) { 2007 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2008 if (rc) 2009 goto out; 2010 2011 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 2012 if (IS_ERR(fp->rxq->xdp_prog)) { 2013 rc = PTR_ERR(fp->rxq->xdp_prog); 2014 fp->rxq->xdp_prog = NULL; 2015 goto out; 2016 } 2017 } 2018 2019 if (fp->type & QEDE_FASTPATH_TX) { 2020 int cos; 2021 2022 for_each_cos_in_txq(edev, cos) { 2023 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2024 TX_PI(cos)); 2025 if (rc) 2026 goto out; 2027 } 2028 } 2029 } 2030 2031 /* Prepare and send the vport enable */ 2032 vport_update_params->vport_id = start.vport_id; 2033 vport_update_params->update_vport_active_flg = 1; 2034 vport_update_params->vport_active_flg = 1; 2035 2036 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2037 qed_info->tx_switching) { 2038 vport_update_params->update_tx_switching_flg = 1; 2039 vport_update_params->tx_switching_flg = 1; 2040 } 2041 2042 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2043 &vport_update_params->update_rss_flg); 2044 2045 rc = edev->ops->vport_update(cdev, vport_update_params); 2046 if (rc) 2047 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2048 2049 out: 2050 vfree(vport_update_params); 2051 return rc; 2052 } 2053 2054 enum qede_unload_mode { 2055 QEDE_UNLOAD_NORMAL, 2056 }; 2057 2058 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2059 bool is_locked) 2060 { 2061 struct qed_link_params link_params; 2062 int rc; 2063 2064 DP_INFO(edev, "Starting qede unload\n"); 2065 2066 if (!is_locked) 2067 __qede_lock(edev); 2068 2069 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2070 2071 edev->state = QEDE_STATE_CLOSED; 2072 2073 qede_rdma_dev_event_close(edev); 2074 2075 /* Close OS Tx */ 2076 netif_tx_disable(edev->ndev); 2077 netif_carrier_off(edev->ndev); 2078 2079 /* Reset the link */ 2080 memset(&link_params, 0, sizeof(link_params)); 2081 link_params.link_up = false; 2082 edev->ops->common->set_link(edev->cdev, &link_params); 2083 rc = qede_stop_queues(edev); 2084 if (rc) { 2085 qede_sync_free_irqs(edev); 2086 goto out; 2087 } 2088 2089 DP_INFO(edev, "Stopped Queues\n"); 2090 2091 qede_vlan_mark_nonconfigured(edev); 2092 edev->ops->fastpath_stop(edev->cdev); 2093 2094 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2095 qede_poll_for_freeing_arfs_filters(edev); 2096 qede_free_arfs(edev); 2097 } 2098 2099 /* Release the interrupts */ 2100 qede_sync_free_irqs(edev); 2101 edev->ops->common->set_fp_int(edev->cdev, 0); 2102 2103 qede_napi_disable_remove(edev); 2104 2105 qede_free_mem_load(edev); 2106 qede_free_fp_array(edev); 2107 2108 out: 2109 if (!is_locked) 2110 __qede_unlock(edev); 2111 DP_INFO(edev, "Ending qede unload\n"); 2112 } 2113 2114 enum qede_load_mode { 2115 QEDE_LOAD_NORMAL, 2116 QEDE_LOAD_RELOAD, 2117 }; 2118 2119 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2120 bool is_locked) 2121 { 2122 struct qed_link_params link_params; 2123 u8 num_tc; 2124 int rc; 2125 2126 DP_INFO(edev, "Starting qede load\n"); 2127 2128 if (!is_locked) 2129 __qede_lock(edev); 2130 2131 rc = qede_set_num_queues(edev); 2132 if (rc) 2133 goto out; 2134 2135 rc = qede_alloc_fp_array(edev); 2136 if (rc) 2137 goto out; 2138 2139 qede_init_fp(edev); 2140 2141 rc = qede_alloc_mem_load(edev); 2142 if (rc) 2143 goto err1; 2144 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2145 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2146 2147 rc = qede_set_real_num_queues(edev); 2148 if (rc) 2149 goto err2; 2150 2151 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2152 rc = qede_alloc_arfs(edev); 2153 if (rc) 2154 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2155 } 2156 2157 qede_napi_add_enable(edev); 2158 DP_INFO(edev, "Napi added and enabled\n"); 2159 2160 rc = qede_setup_irqs(edev); 2161 if (rc) 2162 goto err3; 2163 DP_INFO(edev, "Setup IRQs succeeded\n"); 2164 2165 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2166 if (rc) 2167 goto err4; 2168 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2169 2170 num_tc = netdev_get_num_tc(edev->ndev); 2171 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2172 qede_setup_tc(edev->ndev, num_tc); 2173 2174 /* Program un-configured VLANs */ 2175 qede_configure_vlan_filters(edev); 2176 2177 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2178 2179 /* Ask for link-up using current configuration */ 2180 memset(&link_params, 0, sizeof(link_params)); 2181 link_params.link_up = true; 2182 edev->ops->common->set_link(edev->cdev, &link_params); 2183 2184 edev->state = QEDE_STATE_OPEN; 2185 2186 DP_INFO(edev, "Ending successfully qede load\n"); 2187 2188 goto out; 2189 err4: 2190 qede_sync_free_irqs(edev); 2191 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2192 err3: 2193 qede_napi_disable_remove(edev); 2194 err2: 2195 qede_free_mem_load(edev); 2196 err1: 2197 edev->ops->common->set_fp_int(edev->cdev, 0); 2198 qede_free_fp_array(edev); 2199 edev->num_queues = 0; 2200 edev->fp_num_tx = 0; 2201 edev->fp_num_rx = 0; 2202 out: 2203 if (!is_locked) 2204 __qede_unlock(edev); 2205 2206 return rc; 2207 } 2208 2209 /* 'func' should be able to run between unload and reload assuming interface 2210 * is actually running, or afterwards in case it's currently DOWN. 2211 */ 2212 void qede_reload(struct qede_dev *edev, 2213 struct qede_reload_args *args, bool is_locked) 2214 { 2215 if (!is_locked) 2216 __qede_lock(edev); 2217 2218 /* Since qede_lock is held, internal state wouldn't change even 2219 * if netdev state would start transitioning. Check whether current 2220 * internal configuration indicates device is up, then reload. 2221 */ 2222 if (edev->state == QEDE_STATE_OPEN) { 2223 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2224 if (args) 2225 args->func(edev, args); 2226 qede_load(edev, QEDE_LOAD_RELOAD, true); 2227 2228 /* Since no one is going to do it for us, re-configure */ 2229 qede_config_rx_mode(edev->ndev); 2230 } else if (args) { 2231 args->func(edev, args); 2232 } 2233 2234 if (!is_locked) 2235 __qede_unlock(edev); 2236 } 2237 2238 /* called with rtnl_lock */ 2239 static int qede_open(struct net_device *ndev) 2240 { 2241 struct qede_dev *edev = netdev_priv(ndev); 2242 int rc; 2243 2244 netif_carrier_off(ndev); 2245 2246 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2247 2248 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2249 if (rc) 2250 return rc; 2251 2252 udp_tunnel_get_rx_info(ndev); 2253 2254 edev->ops->common->update_drv_state(edev->cdev, true); 2255 2256 return 0; 2257 } 2258 2259 static int qede_close(struct net_device *ndev) 2260 { 2261 struct qede_dev *edev = netdev_priv(ndev); 2262 2263 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2264 2265 edev->ops->common->update_drv_state(edev->cdev, false); 2266 2267 return 0; 2268 } 2269 2270 static void qede_link_update(void *dev, struct qed_link_output *link) 2271 { 2272 struct qede_dev *edev = dev; 2273 2274 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2275 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2276 return; 2277 } 2278 2279 if (link->link_up) { 2280 if (!netif_carrier_ok(edev->ndev)) { 2281 DP_NOTICE(edev, "Link is up\n"); 2282 netif_tx_start_all_queues(edev->ndev); 2283 netif_carrier_on(edev->ndev); 2284 qede_rdma_dev_event_open(edev); 2285 } 2286 } else { 2287 if (netif_carrier_ok(edev->ndev)) { 2288 DP_NOTICE(edev, "Link is down\n"); 2289 netif_tx_disable(edev->ndev); 2290 netif_carrier_off(edev->ndev); 2291 qede_rdma_dev_event_close(edev); 2292 } 2293 } 2294 } 2295 2296 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2297 { 2298 struct netdev_queue *netdev_txq; 2299 2300 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2301 if (netif_xmit_stopped(netdev_txq)) 2302 return true; 2303 2304 return false; 2305 } 2306 2307 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2308 { 2309 struct qede_dev *edev = dev; 2310 struct netdev_hw_addr *ha; 2311 int i; 2312 2313 if (edev->ndev->features & NETIF_F_IP_CSUM) 2314 data->feat_flags |= QED_TLV_IP_CSUM; 2315 if (edev->ndev->features & NETIF_F_TSO) 2316 data->feat_flags |= QED_TLV_LSO; 2317 2318 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2319 memset(data->mac[1], 0, ETH_ALEN); 2320 memset(data->mac[2], 0, ETH_ALEN); 2321 /* Copy the first two UC macs */ 2322 netif_addr_lock_bh(edev->ndev); 2323 i = 1; 2324 netdev_for_each_uc_addr(ha, edev->ndev) { 2325 ether_addr_copy(data->mac[i++], ha->addr); 2326 if (i == QED_TLV_MAC_COUNT) 2327 break; 2328 } 2329 2330 netif_addr_unlock_bh(edev->ndev); 2331 } 2332 2333 static void qede_get_eth_tlv_data(void *dev, void *data) 2334 { 2335 struct qed_mfw_tlv_eth *etlv = data; 2336 struct qede_dev *edev = dev; 2337 struct qede_fastpath *fp; 2338 int i; 2339 2340 etlv->lso_maxoff_size = 0XFFFF; 2341 etlv->lso_maxoff_size_set = true; 2342 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2343 etlv->lso_minseg_size_set = true; 2344 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2345 etlv->prom_mode_set = true; 2346 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2347 etlv->tx_descr_size_set = true; 2348 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2349 etlv->rx_descr_size_set = true; 2350 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2351 etlv->iov_offload_set = true; 2352 2353 /* Fill information regarding queues; Should be done under the qede 2354 * lock to guarantee those don't change beneath our feet. 2355 */ 2356 etlv->txqs_empty = true; 2357 etlv->rxqs_empty = true; 2358 etlv->num_txqs_full = 0; 2359 etlv->num_rxqs_full = 0; 2360 2361 __qede_lock(edev); 2362 for_each_queue(i) { 2363 fp = &edev->fp_array[i]; 2364 if (fp->type & QEDE_FASTPATH_TX) { 2365 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2366 2367 if (txq->sw_tx_cons != txq->sw_tx_prod) 2368 etlv->txqs_empty = false; 2369 if (qede_is_txq_full(edev, txq)) 2370 etlv->num_txqs_full++; 2371 } 2372 if (fp->type & QEDE_FASTPATH_RX) { 2373 if (qede_has_rx_work(fp->rxq)) 2374 etlv->rxqs_empty = false; 2375 2376 /* This one is a bit tricky; Firmware might stop 2377 * placing packets if ring is not yet full. 2378 * Give an approximation. 2379 */ 2380 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2381 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2382 RX_RING_SIZE - 100) 2383 etlv->num_rxqs_full++; 2384 } 2385 } 2386 __qede_unlock(edev); 2387 2388 etlv->txqs_empty_set = true; 2389 etlv->rxqs_empty_set = true; 2390 etlv->num_txqs_full_set = true; 2391 etlv->num_rxqs_full_set = true; 2392 } 2393