1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/crash_dump.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/version.h>
36 #include <linux/device.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/errno.h>
41 #include <linux/list.h>
42 #include <linux/string.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/interrupt.h>
45 #include <asm/byteorder.h>
46 #include <asm/param.h>
47 #include <linux/io.h>
48 #include <linux/netdev_features.h>
49 #include <linux/udp.h>
50 #include <linux/tcp.h>
51 #include <net/udp_tunnel.h>
52 #include <linux/ip.h>
53 #include <net/ipv6.h>
54 #include <net/tcp.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_vlan.h>
57 #include <linux/pkt_sched.h>
58 #include <linux/ethtool.h>
59 #include <linux/in.h>
60 #include <linux/random.h>
61 #include <net/ip6_checksum.h>
62 #include <linux/bitops.h>
63 #include <linux/vmalloc.h>
64 #include <linux/aer.h>
65 #include "qede.h"
66 #include "qede_ptp.h"
67 
68 static char version[] =
69 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
70 
71 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74 
75 static uint debug;
76 module_param(debug, uint, 0);
77 MODULE_PARM_DESC(debug, " Default debug msglevel");
78 
79 static const struct qed_eth_ops *qed_ops;
80 
81 #define CHIP_NUM_57980S_40		0x1634
82 #define CHIP_NUM_57980S_10		0x1666
83 #define CHIP_NUM_57980S_MF		0x1636
84 #define CHIP_NUM_57980S_100		0x1644
85 #define CHIP_NUM_57980S_50		0x1654
86 #define CHIP_NUM_57980S_25		0x1656
87 #define CHIP_NUM_57980S_IOV		0x1664
88 #define CHIP_NUM_AH			0x8070
89 #define CHIP_NUM_AH_IOV			0x8090
90 
91 #ifndef PCI_DEVICE_ID_NX2_57980E
92 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
93 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
94 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
95 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
96 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
97 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
98 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
99 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
100 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
101 
102 #endif
103 
104 enum qede_pci_private {
105 	QEDE_PRIVATE_PF,
106 	QEDE_PRIVATE_VF
107 };
108 
109 static const struct pci_device_id qede_pci_tbl[] = {
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
114 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
116 #ifdef CONFIG_QED_SRIOV
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
118 #endif
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
120 #ifdef CONFIG_QED_SRIOV
121 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
122 #endif
123 	{ 0 }
124 };
125 
126 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
127 
128 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
129 static pci_ers_result_t
130 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
131 
132 #define TX_TIMEOUT		(5 * HZ)
133 
134 /* Utilize last protocol index for XDP */
135 #define XDP_PI	11
136 
137 static void qede_remove(struct pci_dev *pdev);
138 static void qede_shutdown(struct pci_dev *pdev);
139 static void qede_link_update(void *dev, struct qed_link_output *link);
140 static void qede_schedule_recovery_handler(void *dev);
141 static void qede_recovery_handler(struct qede_dev *edev);
142 static void qede_schedule_hw_err_handler(void *dev,
143 					 enum qed_hw_err_type err_type);
144 static void qede_get_eth_tlv_data(void *edev, void *data);
145 static void qede_get_generic_tlv_data(void *edev,
146 				      struct qed_generic_tlvs *data);
147 static void qede_generic_hw_err_handler(struct qede_dev *edev);
148 #ifdef CONFIG_QED_SRIOV
149 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
150 			    __be16 vlan_proto)
151 {
152 	struct qede_dev *edev = netdev_priv(ndev);
153 
154 	if (vlan > 4095) {
155 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
156 		return -EINVAL;
157 	}
158 
159 	if (vlan_proto != htons(ETH_P_8021Q))
160 		return -EPROTONOSUPPORT;
161 
162 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
163 		   vlan, vf);
164 
165 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
166 }
167 
168 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
169 {
170 	struct qede_dev *edev = netdev_priv(ndev);
171 
172 	DP_VERBOSE(edev, QED_MSG_IOV,
173 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
174 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
175 
176 	if (!is_valid_ether_addr(mac)) {
177 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
178 		return -EINVAL;
179 	}
180 
181 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
182 }
183 
184 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
185 {
186 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
187 	struct qed_dev_info *qed_info = &edev->dev_info.common;
188 	struct qed_update_vport_params *vport_params;
189 	int rc;
190 
191 	vport_params = vzalloc(sizeof(*vport_params));
192 	if (!vport_params)
193 		return -ENOMEM;
194 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
195 
196 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
197 
198 	/* Enable/Disable Tx switching for PF */
199 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
200 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
201 		vport_params->vport_id = 0;
202 		vport_params->update_tx_switching_flg = 1;
203 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
204 		edev->ops->vport_update(edev->cdev, vport_params);
205 	}
206 
207 	vfree(vport_params);
208 	return rc;
209 }
210 #endif
211 
212 static const struct pci_error_handlers qede_err_handler = {
213 	.error_detected = qede_io_error_detected,
214 };
215 
216 static struct pci_driver qede_pci_driver = {
217 	.name = "qede",
218 	.id_table = qede_pci_tbl,
219 	.probe = qede_probe,
220 	.remove = qede_remove,
221 	.shutdown = qede_shutdown,
222 #ifdef CONFIG_QED_SRIOV
223 	.sriov_configure = qede_sriov_configure,
224 #endif
225 	.err_handler = &qede_err_handler,
226 };
227 
228 static struct qed_eth_cb_ops qede_ll_ops = {
229 	{
230 #ifdef CONFIG_RFS_ACCEL
231 		.arfs_filter_op = qede_arfs_filter_op,
232 #endif
233 		.link_update = qede_link_update,
234 		.schedule_recovery_handler = qede_schedule_recovery_handler,
235 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
236 		.get_generic_tlv_data = qede_get_generic_tlv_data,
237 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
238 	},
239 	.force_mac = qede_force_mac,
240 	.ports_update = qede_udp_ports_update,
241 };
242 
243 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
244 			     void *ptr)
245 {
246 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
247 	struct ethtool_drvinfo drvinfo;
248 	struct qede_dev *edev;
249 
250 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
251 		goto done;
252 
253 	/* Check whether this is a qede device */
254 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
255 		goto done;
256 
257 	memset(&drvinfo, 0, sizeof(drvinfo));
258 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
259 	if (strcmp(drvinfo.driver, "qede"))
260 		goto done;
261 	edev = netdev_priv(ndev);
262 
263 	switch (event) {
264 	case NETDEV_CHANGENAME:
265 		/* Notify qed of the name change */
266 		if (!edev->ops || !edev->ops->common)
267 			goto done;
268 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
269 		break;
270 	case NETDEV_CHANGEADDR:
271 		edev = netdev_priv(ndev);
272 		qede_rdma_event_changeaddr(edev);
273 		break;
274 	}
275 
276 done:
277 	return NOTIFY_DONE;
278 }
279 
280 static struct notifier_block qede_netdev_notifier = {
281 	.notifier_call = qede_netdev_event,
282 };
283 
284 static
285 int __init qede_init(void)
286 {
287 	int ret;
288 
289 	pr_info("qede_init: %s\n", version);
290 
291 	qed_ops = qed_get_eth_ops();
292 	if (!qed_ops) {
293 		pr_notice("Failed to get qed ethtool operations\n");
294 		return -EINVAL;
295 	}
296 
297 	/* Must register notifier before pci ops, since we might miss
298 	 * interface rename after pci probe and netdev registration.
299 	 */
300 	ret = register_netdevice_notifier(&qede_netdev_notifier);
301 	if (ret) {
302 		pr_notice("Failed to register netdevice_notifier\n");
303 		qed_put_eth_ops();
304 		return -EINVAL;
305 	}
306 
307 	ret = pci_register_driver(&qede_pci_driver);
308 	if (ret) {
309 		pr_notice("Failed to register driver\n");
310 		unregister_netdevice_notifier(&qede_netdev_notifier);
311 		qed_put_eth_ops();
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void __exit qede_cleanup(void)
319 {
320 	if (debug & QED_LOG_INFO_MASK)
321 		pr_info("qede_cleanup called\n");
322 
323 	unregister_netdevice_notifier(&qede_netdev_notifier);
324 	pci_unregister_driver(&qede_pci_driver);
325 	qed_put_eth_ops();
326 }
327 
328 module_init(qede_init);
329 module_exit(qede_cleanup);
330 
331 static int qede_open(struct net_device *ndev);
332 static int qede_close(struct net_device *ndev);
333 
334 void qede_fill_by_demand_stats(struct qede_dev *edev)
335 {
336 	struct qede_stats_common *p_common = &edev->stats.common;
337 	struct qed_eth_stats stats;
338 
339 	edev->ops->get_vport_stats(edev->cdev, &stats);
340 
341 	p_common->no_buff_discards = stats.common.no_buff_discards;
342 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
343 	p_common->ttl0_discard = stats.common.ttl0_discard;
344 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
345 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
346 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
347 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
348 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
349 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
350 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
351 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
352 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
353 
354 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
355 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
356 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
357 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
358 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
359 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
360 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
361 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
362 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
363 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
364 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
365 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
366 
367 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
368 	p_common->rx_65_to_127_byte_packets =
369 	    stats.common.rx_65_to_127_byte_packets;
370 	p_common->rx_128_to_255_byte_packets =
371 	    stats.common.rx_128_to_255_byte_packets;
372 	p_common->rx_256_to_511_byte_packets =
373 	    stats.common.rx_256_to_511_byte_packets;
374 	p_common->rx_512_to_1023_byte_packets =
375 	    stats.common.rx_512_to_1023_byte_packets;
376 	p_common->rx_1024_to_1518_byte_packets =
377 	    stats.common.rx_1024_to_1518_byte_packets;
378 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
379 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
380 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
381 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
382 	p_common->rx_align_errors = stats.common.rx_align_errors;
383 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
384 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
385 	p_common->rx_jabbers = stats.common.rx_jabbers;
386 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
387 	p_common->rx_fragments = stats.common.rx_fragments;
388 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
389 	p_common->tx_65_to_127_byte_packets =
390 	    stats.common.tx_65_to_127_byte_packets;
391 	p_common->tx_128_to_255_byte_packets =
392 	    stats.common.tx_128_to_255_byte_packets;
393 	p_common->tx_256_to_511_byte_packets =
394 	    stats.common.tx_256_to_511_byte_packets;
395 	p_common->tx_512_to_1023_byte_packets =
396 	    stats.common.tx_512_to_1023_byte_packets;
397 	p_common->tx_1024_to_1518_byte_packets =
398 	    stats.common.tx_1024_to_1518_byte_packets;
399 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
400 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
401 	p_common->brb_truncates = stats.common.brb_truncates;
402 	p_common->brb_discards = stats.common.brb_discards;
403 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
404 	p_common->link_change_count = stats.common.link_change_count;
405 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
406 
407 	if (QEDE_IS_BB(edev)) {
408 		struct qede_stats_bb *p_bb = &edev->stats.bb;
409 
410 		p_bb->rx_1519_to_1522_byte_packets =
411 		    stats.bb.rx_1519_to_1522_byte_packets;
412 		p_bb->rx_1519_to_2047_byte_packets =
413 		    stats.bb.rx_1519_to_2047_byte_packets;
414 		p_bb->rx_2048_to_4095_byte_packets =
415 		    stats.bb.rx_2048_to_4095_byte_packets;
416 		p_bb->rx_4096_to_9216_byte_packets =
417 		    stats.bb.rx_4096_to_9216_byte_packets;
418 		p_bb->rx_9217_to_16383_byte_packets =
419 		    stats.bb.rx_9217_to_16383_byte_packets;
420 		p_bb->tx_1519_to_2047_byte_packets =
421 		    stats.bb.tx_1519_to_2047_byte_packets;
422 		p_bb->tx_2048_to_4095_byte_packets =
423 		    stats.bb.tx_2048_to_4095_byte_packets;
424 		p_bb->tx_4096_to_9216_byte_packets =
425 		    stats.bb.tx_4096_to_9216_byte_packets;
426 		p_bb->tx_9217_to_16383_byte_packets =
427 		    stats.bb.tx_9217_to_16383_byte_packets;
428 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
429 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
430 	} else {
431 		struct qede_stats_ah *p_ah = &edev->stats.ah;
432 
433 		p_ah->rx_1519_to_max_byte_packets =
434 		    stats.ah.rx_1519_to_max_byte_packets;
435 		p_ah->tx_1519_to_max_byte_packets =
436 		    stats.ah.tx_1519_to_max_byte_packets;
437 	}
438 }
439 
440 static void qede_get_stats64(struct net_device *dev,
441 			     struct rtnl_link_stats64 *stats)
442 {
443 	struct qede_dev *edev = netdev_priv(dev);
444 	struct qede_stats_common *p_common;
445 
446 	qede_fill_by_demand_stats(edev);
447 	p_common = &edev->stats.common;
448 
449 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
450 			    p_common->rx_bcast_pkts;
451 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
452 			    p_common->tx_bcast_pkts;
453 
454 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
455 			  p_common->rx_bcast_bytes;
456 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
457 			  p_common->tx_bcast_bytes;
458 
459 	stats->tx_errors = p_common->tx_err_drop_pkts;
460 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
461 
462 	stats->rx_fifo_errors = p_common->no_buff_discards;
463 
464 	if (QEDE_IS_BB(edev))
465 		stats->collisions = edev->stats.bb.tx_total_collisions;
466 	stats->rx_crc_errors = p_common->rx_crc_errors;
467 	stats->rx_frame_errors = p_common->rx_align_errors;
468 }
469 
470 #ifdef CONFIG_QED_SRIOV
471 static int qede_get_vf_config(struct net_device *dev, int vfidx,
472 			      struct ifla_vf_info *ivi)
473 {
474 	struct qede_dev *edev = netdev_priv(dev);
475 
476 	if (!edev->ops)
477 		return -EINVAL;
478 
479 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
480 }
481 
482 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
483 			    int min_tx_rate, int max_tx_rate)
484 {
485 	struct qede_dev *edev = netdev_priv(dev);
486 
487 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
488 					max_tx_rate);
489 }
490 
491 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
492 {
493 	struct qede_dev *edev = netdev_priv(dev);
494 
495 	if (!edev->ops)
496 		return -EINVAL;
497 
498 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
499 }
500 
501 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
502 				  int link_state)
503 {
504 	struct qede_dev *edev = netdev_priv(dev);
505 
506 	if (!edev->ops)
507 		return -EINVAL;
508 
509 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
510 }
511 
512 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
513 {
514 	struct qede_dev *edev = netdev_priv(dev);
515 
516 	if (!edev->ops)
517 		return -EINVAL;
518 
519 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
520 }
521 #endif
522 
523 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
524 {
525 	struct qede_dev *edev = netdev_priv(dev);
526 
527 	if (!netif_running(dev))
528 		return -EAGAIN;
529 
530 	switch (cmd) {
531 	case SIOCSHWTSTAMP:
532 		return qede_ptp_hw_ts(edev, ifr);
533 	default:
534 		DP_VERBOSE(edev, QED_MSG_DEBUG,
535 			   "default IOCTL cmd 0x%x\n", cmd);
536 		return -EOPNOTSUPP;
537 	}
538 
539 	return 0;
540 }
541 
542 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
543 {
544 	DP_NOTICE(edev,
545 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
546 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
547 		  qed_chain_get_cons_idx(&txq->tx_pbl),
548 		  qed_chain_get_prod_idx(&txq->tx_pbl),
549 		  jiffies);
550 }
551 
552 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
553 {
554 	struct qede_dev *edev = netdev_priv(dev);
555 	struct qede_tx_queue *txq;
556 	int cos;
557 
558 	netif_carrier_off(dev);
559 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
560 
561 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
562 		return;
563 
564 	for_each_cos_in_txq(edev, cos) {
565 		txq = &edev->fp_array[txqueue].txq[cos];
566 
567 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
568 		    qed_chain_get_prod_idx(&txq->tx_pbl))
569 			qede_tx_log_print(edev, txq);
570 	}
571 
572 	if (IS_VF(edev))
573 		return;
574 
575 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
576 	    edev->state == QEDE_STATE_RECOVERY) {
577 		DP_INFO(edev,
578 			"Avoid handling a Tx timeout while another HW error is being handled\n");
579 		return;
580 	}
581 
582 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
583 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
584 	schedule_delayed_work(&edev->sp_task, 0);
585 }
586 
587 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
588 {
589 	struct qede_dev *edev = netdev_priv(ndev);
590 	int cos, count, offset;
591 
592 	if (num_tc > edev->dev_info.num_tc)
593 		return -EINVAL;
594 
595 	netdev_reset_tc(ndev);
596 	netdev_set_num_tc(ndev, num_tc);
597 
598 	for_each_cos_in_txq(edev, cos) {
599 		count = QEDE_TSS_COUNT(edev);
600 		offset = cos * QEDE_TSS_COUNT(edev);
601 		netdev_set_tc_queue(ndev, cos, count, offset);
602 	}
603 
604 	return 0;
605 }
606 
607 static int
608 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
609 		__be16 proto)
610 {
611 	switch (f->command) {
612 	case FLOW_CLS_REPLACE:
613 		return qede_add_tc_flower_fltr(edev, proto, f);
614 	case FLOW_CLS_DESTROY:
615 		return qede_delete_flow_filter(edev, f->cookie);
616 	default:
617 		return -EOPNOTSUPP;
618 	}
619 }
620 
621 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
622 				  void *cb_priv)
623 {
624 	struct flow_cls_offload *f;
625 	struct qede_dev *edev = cb_priv;
626 
627 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
628 		return -EOPNOTSUPP;
629 
630 	switch (type) {
631 	case TC_SETUP_CLSFLOWER:
632 		f = type_data;
633 		return qede_set_flower(edev, f, f->common.protocol);
634 	default:
635 		return -EOPNOTSUPP;
636 	}
637 }
638 
639 static LIST_HEAD(qede_block_cb_list);
640 
641 static int
642 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
643 		      void *type_data)
644 {
645 	struct qede_dev *edev = netdev_priv(dev);
646 	struct tc_mqprio_qopt *mqprio;
647 
648 	switch (type) {
649 	case TC_SETUP_BLOCK:
650 		return flow_block_cb_setup_simple(type_data,
651 						  &qede_block_cb_list,
652 						  qede_setup_tc_block_cb,
653 						  edev, edev, true);
654 	case TC_SETUP_QDISC_MQPRIO:
655 		mqprio = type_data;
656 
657 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
658 		return qede_setup_tc(dev, mqprio->num_tc);
659 	default:
660 		return -EOPNOTSUPP;
661 	}
662 }
663 
664 static const struct net_device_ops qede_netdev_ops = {
665 	.ndo_open = qede_open,
666 	.ndo_stop = qede_close,
667 	.ndo_start_xmit = qede_start_xmit,
668 	.ndo_select_queue = qede_select_queue,
669 	.ndo_set_rx_mode = qede_set_rx_mode,
670 	.ndo_set_mac_address = qede_set_mac_addr,
671 	.ndo_validate_addr = eth_validate_addr,
672 	.ndo_change_mtu = qede_change_mtu,
673 	.ndo_do_ioctl = qede_ioctl,
674 	.ndo_tx_timeout = qede_tx_timeout,
675 #ifdef CONFIG_QED_SRIOV
676 	.ndo_set_vf_mac = qede_set_vf_mac,
677 	.ndo_set_vf_vlan = qede_set_vf_vlan,
678 	.ndo_set_vf_trust = qede_set_vf_trust,
679 #endif
680 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
681 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
682 	.ndo_fix_features = qede_fix_features,
683 	.ndo_set_features = qede_set_features,
684 	.ndo_get_stats64 = qede_get_stats64,
685 #ifdef CONFIG_QED_SRIOV
686 	.ndo_set_vf_link_state = qede_set_vf_link_state,
687 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
688 	.ndo_get_vf_config = qede_get_vf_config,
689 	.ndo_set_vf_rate = qede_set_vf_rate,
690 #endif
691 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
692 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
693 	.ndo_features_check = qede_features_check,
694 	.ndo_bpf = qede_xdp,
695 #ifdef CONFIG_RFS_ACCEL
696 	.ndo_rx_flow_steer = qede_rx_flow_steer,
697 #endif
698 	.ndo_setup_tc = qede_setup_tc_offload,
699 };
700 
701 static const struct net_device_ops qede_netdev_vf_ops = {
702 	.ndo_open = qede_open,
703 	.ndo_stop = qede_close,
704 	.ndo_start_xmit = qede_start_xmit,
705 	.ndo_select_queue = qede_select_queue,
706 	.ndo_set_rx_mode = qede_set_rx_mode,
707 	.ndo_set_mac_address = qede_set_mac_addr,
708 	.ndo_validate_addr = eth_validate_addr,
709 	.ndo_change_mtu = qede_change_mtu,
710 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
711 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
712 	.ndo_fix_features = qede_fix_features,
713 	.ndo_set_features = qede_set_features,
714 	.ndo_get_stats64 = qede_get_stats64,
715 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
716 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
717 	.ndo_features_check = qede_features_check,
718 };
719 
720 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
721 	.ndo_open = qede_open,
722 	.ndo_stop = qede_close,
723 	.ndo_start_xmit = qede_start_xmit,
724 	.ndo_select_queue = qede_select_queue,
725 	.ndo_set_rx_mode = qede_set_rx_mode,
726 	.ndo_set_mac_address = qede_set_mac_addr,
727 	.ndo_validate_addr = eth_validate_addr,
728 	.ndo_change_mtu = qede_change_mtu,
729 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
730 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
731 	.ndo_fix_features = qede_fix_features,
732 	.ndo_set_features = qede_set_features,
733 	.ndo_get_stats64 = qede_get_stats64,
734 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
735 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
736 	.ndo_features_check = qede_features_check,
737 	.ndo_bpf = qede_xdp,
738 };
739 
740 /* -------------------------------------------------------------------------
741  * START OF PROBE / REMOVE
742  * -------------------------------------------------------------------------
743  */
744 
745 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
746 					    struct pci_dev *pdev,
747 					    struct qed_dev_eth_info *info,
748 					    u32 dp_module, u8 dp_level)
749 {
750 	struct net_device *ndev;
751 	struct qede_dev *edev;
752 
753 	ndev = alloc_etherdev_mqs(sizeof(*edev),
754 				  info->num_queues * info->num_tc,
755 				  info->num_queues);
756 	if (!ndev) {
757 		pr_err("etherdev allocation failed\n");
758 		return NULL;
759 	}
760 
761 	edev = netdev_priv(ndev);
762 	edev->ndev = ndev;
763 	edev->cdev = cdev;
764 	edev->pdev = pdev;
765 	edev->dp_module = dp_module;
766 	edev->dp_level = dp_level;
767 	edev->ops = qed_ops;
768 
769 	if (is_kdump_kernel()) {
770 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
771 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
772 	} else {
773 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
774 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
775 	}
776 
777 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
778 		info->num_queues, info->num_queues);
779 
780 	SET_NETDEV_DEV(ndev, &pdev->dev);
781 
782 	memset(&edev->stats, 0, sizeof(edev->stats));
783 	memcpy(&edev->dev_info, info, sizeof(*info));
784 
785 	/* As ethtool doesn't have the ability to show WoL behavior as
786 	 * 'default', if device supports it declare it's enabled.
787 	 */
788 	if (edev->dev_info.common.wol_support)
789 		edev->wol_enabled = true;
790 
791 	INIT_LIST_HEAD(&edev->vlan_list);
792 
793 	return edev;
794 }
795 
796 static void qede_init_ndev(struct qede_dev *edev)
797 {
798 	struct net_device *ndev = edev->ndev;
799 	struct pci_dev *pdev = edev->pdev;
800 	bool udp_tunnel_enable = false;
801 	netdev_features_t hw_features;
802 
803 	pci_set_drvdata(pdev, ndev);
804 
805 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
806 	ndev->base_addr = ndev->mem_start;
807 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
808 	ndev->irq = edev->dev_info.common.pci_irq;
809 
810 	ndev->watchdog_timeo = TX_TIMEOUT;
811 
812 	if (IS_VF(edev)) {
813 		if (edev->dev_info.xdp_supported)
814 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
815 		else
816 			ndev->netdev_ops = &qede_netdev_vf_ops;
817 	} else {
818 		ndev->netdev_ops = &qede_netdev_ops;
819 	}
820 
821 	qede_set_ethtool_ops(ndev);
822 
823 	ndev->priv_flags |= IFF_UNICAST_FLT;
824 
825 	/* user-changeble features */
826 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
827 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
828 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
829 
830 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
831 		hw_features |= NETIF_F_NTUPLE;
832 
833 	if (edev->dev_info.common.vxlan_enable ||
834 	    edev->dev_info.common.geneve_enable)
835 		udp_tunnel_enable = true;
836 
837 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
838 		hw_features |= NETIF_F_TSO_ECN;
839 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
840 					NETIF_F_SG | NETIF_F_TSO |
841 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
842 					NETIF_F_RXCSUM;
843 	}
844 
845 	if (udp_tunnel_enable) {
846 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
847 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
848 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
849 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
850 	}
851 
852 	if (edev->dev_info.common.gre_enable) {
853 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
854 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
855 					  NETIF_F_GSO_GRE_CSUM);
856 	}
857 
858 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
859 			      NETIF_F_HIGHDMA;
860 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
861 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
862 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
863 
864 	ndev->hw_features = hw_features;
865 
866 	/* MTU range: 46 - 9600 */
867 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
868 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
869 
870 	/* Set network device HW mac */
871 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
872 
873 	ndev->mtu = edev->dev_info.common.mtu;
874 }
875 
876 /* This function converts from 32b param to two params of level and module
877  * Input 32b decoding:
878  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
879  * 'happy' flow, e.g. memory allocation failed.
880  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
881  * and provide important parameters.
882  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
883  * module. VERBOSE prints are for tracking the specific flow in low level.
884  *
885  * Notice that the level should be that of the lowest required logs.
886  */
887 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
888 {
889 	*p_dp_level = QED_LEVEL_NOTICE;
890 	*p_dp_module = 0;
891 
892 	if (debug & QED_LOG_VERBOSE_MASK) {
893 		*p_dp_level = QED_LEVEL_VERBOSE;
894 		*p_dp_module = (debug & 0x3FFFFFFF);
895 	} else if (debug & QED_LOG_INFO_MASK) {
896 		*p_dp_level = QED_LEVEL_INFO;
897 	} else if (debug & QED_LOG_NOTICE_MASK) {
898 		*p_dp_level = QED_LEVEL_NOTICE;
899 	}
900 }
901 
902 static void qede_free_fp_array(struct qede_dev *edev)
903 {
904 	if (edev->fp_array) {
905 		struct qede_fastpath *fp;
906 		int i;
907 
908 		for_each_queue(i) {
909 			fp = &edev->fp_array[i];
910 
911 			kfree(fp->sb_info);
912 			/* Handle mem alloc failure case where qede_init_fp
913 			 * didn't register xdp_rxq_info yet.
914 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
915 			 */
916 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
917 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
918 			kfree(fp->rxq);
919 			kfree(fp->xdp_tx);
920 			kfree(fp->txq);
921 		}
922 		kfree(edev->fp_array);
923 	}
924 
925 	edev->num_queues = 0;
926 	edev->fp_num_tx = 0;
927 	edev->fp_num_rx = 0;
928 }
929 
930 static int qede_alloc_fp_array(struct qede_dev *edev)
931 {
932 	u8 fp_combined, fp_rx = edev->fp_num_rx;
933 	struct qede_fastpath *fp;
934 	int i;
935 
936 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
937 				 sizeof(*edev->fp_array), GFP_KERNEL);
938 	if (!edev->fp_array) {
939 		DP_NOTICE(edev, "fp array allocation failed\n");
940 		goto err;
941 	}
942 
943 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
944 
945 	/* Allocate the FP elements for Rx queues followed by combined and then
946 	 * the Tx. This ordering should be maintained so that the respective
947 	 * queues (Rx or Tx) will be together in the fastpath array and the
948 	 * associated ids will be sequential.
949 	 */
950 	for_each_queue(i) {
951 		fp = &edev->fp_array[i];
952 
953 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
954 		if (!fp->sb_info) {
955 			DP_NOTICE(edev, "sb info struct allocation failed\n");
956 			goto err;
957 		}
958 
959 		if (fp_rx) {
960 			fp->type = QEDE_FASTPATH_RX;
961 			fp_rx--;
962 		} else if (fp_combined) {
963 			fp->type = QEDE_FASTPATH_COMBINED;
964 			fp_combined--;
965 		} else {
966 			fp->type = QEDE_FASTPATH_TX;
967 		}
968 
969 		if (fp->type & QEDE_FASTPATH_TX) {
970 			fp->txq = kcalloc(edev->dev_info.num_tc,
971 					  sizeof(*fp->txq), GFP_KERNEL);
972 			if (!fp->txq)
973 				goto err;
974 		}
975 
976 		if (fp->type & QEDE_FASTPATH_RX) {
977 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
978 			if (!fp->rxq)
979 				goto err;
980 
981 			if (edev->xdp_prog) {
982 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
983 						     GFP_KERNEL);
984 				if (!fp->xdp_tx)
985 					goto err;
986 				fp->type |= QEDE_FASTPATH_XDP;
987 			}
988 		}
989 	}
990 
991 	return 0;
992 err:
993 	qede_free_fp_array(edev);
994 	return -ENOMEM;
995 }
996 
997 /* The qede lock is used to protect driver state change and driver flows that
998  * are not reentrant.
999  */
1000 void __qede_lock(struct qede_dev *edev)
1001 {
1002 	mutex_lock(&edev->qede_lock);
1003 }
1004 
1005 void __qede_unlock(struct qede_dev *edev)
1006 {
1007 	mutex_unlock(&edev->qede_lock);
1008 }
1009 
1010 /* This version of the lock should be used when acquiring the RTNL lock is also
1011  * needed in addition to the internal qede lock.
1012  */
1013 static void qede_lock(struct qede_dev *edev)
1014 {
1015 	rtnl_lock();
1016 	__qede_lock(edev);
1017 }
1018 
1019 static void qede_unlock(struct qede_dev *edev)
1020 {
1021 	__qede_unlock(edev);
1022 	rtnl_unlock();
1023 }
1024 
1025 static void qede_sp_task(struct work_struct *work)
1026 {
1027 	struct qede_dev *edev = container_of(work, struct qede_dev,
1028 					     sp_task.work);
1029 
1030 	/* The locking scheme depends on the specific flag:
1031 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1032 	 * ensure that ongoing flows are ended and new ones are not started.
1033 	 * In other cases - only the internal qede lock should be acquired.
1034 	 */
1035 
1036 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1037 #ifdef CONFIG_QED_SRIOV
1038 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1039 		 * The recovery of the active VFs is currently not supported.
1040 		 */
1041 		if (pci_num_vf(edev->pdev))
1042 			qede_sriov_configure(edev->pdev, 0);
1043 #endif
1044 		qede_lock(edev);
1045 		qede_recovery_handler(edev);
1046 		qede_unlock(edev);
1047 	}
1048 
1049 	__qede_lock(edev);
1050 
1051 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1052 		if (edev->state == QEDE_STATE_OPEN)
1053 			qede_config_rx_mode(edev->ndev);
1054 
1055 #ifdef CONFIG_RFS_ACCEL
1056 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1057 		if (edev->state == QEDE_STATE_OPEN)
1058 			qede_process_arfs_filters(edev, false);
1059 	}
1060 #endif
1061 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1062 		qede_generic_hw_err_handler(edev);
1063 	__qede_unlock(edev);
1064 
1065 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1066 #ifdef CONFIG_QED_SRIOV
1067 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1068 		 * The recovery of the active VFs is currently not supported.
1069 		 */
1070 		if (pci_num_vf(edev->pdev))
1071 			qede_sriov_configure(edev->pdev, 0);
1072 #endif
1073 		edev->ops->common->recovery_process(edev->cdev);
1074 	}
1075 }
1076 
1077 static void qede_update_pf_params(struct qed_dev *cdev)
1078 {
1079 	struct qed_pf_params pf_params;
1080 	u16 num_cons;
1081 
1082 	/* 64 rx + 64 tx + 64 XDP */
1083 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1084 
1085 	/* 1 rx + 1 xdp + max tx cos */
1086 	num_cons = QED_MIN_L2_CONS;
1087 
1088 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1089 
1090 	/* Same for VFs - make sure they'll have sufficient connections
1091 	 * to support XDP Tx queues.
1092 	 */
1093 	pf_params.eth_pf_params.num_vf_cons = 48;
1094 
1095 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1096 	qed_ops->common->update_pf_params(cdev, &pf_params);
1097 }
1098 
1099 #define QEDE_FW_VER_STR_SIZE	80
1100 
1101 static void qede_log_probe(struct qede_dev *edev)
1102 {
1103 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1104 	u8 buf[QEDE_FW_VER_STR_SIZE];
1105 	size_t left_size;
1106 
1107 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1108 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1109 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1110 		 p_dev_info->fw_eng,
1111 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1112 		 QED_MFW_VERSION_3_OFFSET,
1113 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1114 		 QED_MFW_VERSION_2_OFFSET,
1115 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1116 		 QED_MFW_VERSION_1_OFFSET,
1117 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1118 		 QED_MFW_VERSION_0_OFFSET);
1119 
1120 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1121 	if (p_dev_info->mbi_version && left_size)
1122 		snprintf(buf + strlen(buf), left_size,
1123 			 " [MBI %d.%d.%d]",
1124 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1125 			 QED_MBI_VERSION_2_OFFSET,
1126 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1127 			 QED_MBI_VERSION_1_OFFSET,
1128 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1129 			 QED_MBI_VERSION_0_OFFSET);
1130 
1131 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1132 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1133 		buf, edev->ndev->name);
1134 }
1135 
1136 enum qede_probe_mode {
1137 	QEDE_PROBE_NORMAL,
1138 	QEDE_PROBE_RECOVERY,
1139 };
1140 
1141 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1142 			bool is_vf, enum qede_probe_mode mode)
1143 {
1144 	struct qed_probe_params probe_params;
1145 	struct qed_slowpath_params sp_params;
1146 	struct qed_dev_eth_info dev_info;
1147 	struct qede_dev *edev;
1148 	struct qed_dev *cdev;
1149 	int rc;
1150 
1151 	if (unlikely(dp_level & QED_LEVEL_INFO))
1152 		pr_notice("Starting qede probe\n");
1153 
1154 	memset(&probe_params, 0, sizeof(probe_params));
1155 	probe_params.protocol = QED_PROTOCOL_ETH;
1156 	probe_params.dp_module = dp_module;
1157 	probe_params.dp_level = dp_level;
1158 	probe_params.is_vf = is_vf;
1159 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1160 	cdev = qed_ops->common->probe(pdev, &probe_params);
1161 	if (!cdev) {
1162 		rc = -ENODEV;
1163 		goto err0;
1164 	}
1165 
1166 	qede_update_pf_params(cdev);
1167 
1168 	/* Start the Slowpath-process */
1169 	memset(&sp_params, 0, sizeof(sp_params));
1170 	sp_params.int_mode = QED_INT_MODE_MSIX;
1171 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1172 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1173 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1174 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1175 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1176 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1177 	if (rc) {
1178 		pr_notice("Cannot start slowpath\n");
1179 		goto err1;
1180 	}
1181 
1182 	/* Learn information crucial for qede to progress */
1183 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1184 	if (rc)
1185 		goto err2;
1186 
1187 	if (mode != QEDE_PROBE_RECOVERY) {
1188 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1189 					   dp_level);
1190 		if (!edev) {
1191 			rc = -ENOMEM;
1192 			goto err2;
1193 		}
1194 	} else {
1195 		struct net_device *ndev = pci_get_drvdata(pdev);
1196 
1197 		edev = netdev_priv(ndev);
1198 		edev->cdev = cdev;
1199 		memset(&edev->stats, 0, sizeof(edev->stats));
1200 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1201 	}
1202 
1203 	if (is_vf)
1204 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1205 
1206 	qede_init_ndev(edev);
1207 
1208 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1209 	if (rc)
1210 		goto err3;
1211 
1212 	if (mode != QEDE_PROBE_RECOVERY) {
1213 		/* Prepare the lock prior to the registration of the netdev,
1214 		 * as once it's registered we might reach flows requiring it
1215 		 * [it's even possible to reach a flow needing it directly
1216 		 * from there, although it's unlikely].
1217 		 */
1218 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1219 		mutex_init(&edev->qede_lock);
1220 
1221 		rc = register_netdev(edev->ndev);
1222 		if (rc) {
1223 			DP_NOTICE(edev, "Cannot register net-device\n");
1224 			goto err4;
1225 		}
1226 	}
1227 
1228 	edev->ops->common->set_name(cdev, edev->ndev->name);
1229 
1230 	/* PTP not supported on VFs */
1231 	if (!is_vf)
1232 		qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1233 
1234 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1235 
1236 #ifdef CONFIG_DCB
1237 	if (!IS_VF(edev))
1238 		qede_set_dcbnl_ops(edev->ndev);
1239 #endif
1240 
1241 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1242 
1243 	qede_log_probe(edev);
1244 	return 0;
1245 
1246 err4:
1247 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1248 err3:
1249 	free_netdev(edev->ndev);
1250 err2:
1251 	qed_ops->common->slowpath_stop(cdev);
1252 err1:
1253 	qed_ops->common->remove(cdev);
1254 err0:
1255 	return rc;
1256 }
1257 
1258 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1259 {
1260 	bool is_vf = false;
1261 	u32 dp_module = 0;
1262 	u8 dp_level = 0;
1263 
1264 	switch ((enum qede_pci_private)id->driver_data) {
1265 	case QEDE_PRIVATE_VF:
1266 		if (debug & QED_LOG_VERBOSE_MASK)
1267 			dev_err(&pdev->dev, "Probing a VF\n");
1268 		is_vf = is_kdump_kernel() ? false : true;
1269 		break;
1270 	default:
1271 		if (debug & QED_LOG_VERBOSE_MASK)
1272 			dev_err(&pdev->dev, "Probing a PF\n");
1273 	}
1274 
1275 	qede_config_debug(debug, &dp_module, &dp_level);
1276 
1277 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1278 			    QEDE_PROBE_NORMAL);
1279 }
1280 
1281 enum qede_remove_mode {
1282 	QEDE_REMOVE_NORMAL,
1283 	QEDE_REMOVE_RECOVERY,
1284 };
1285 
1286 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1287 {
1288 	struct net_device *ndev = pci_get_drvdata(pdev);
1289 	struct qede_dev *edev;
1290 	struct qed_dev *cdev;
1291 
1292 	if (!ndev) {
1293 		dev_info(&pdev->dev, "Device has already been removed\n");
1294 		return;
1295 	}
1296 
1297 	edev = netdev_priv(ndev);
1298 	cdev = edev->cdev;
1299 
1300 	DP_INFO(edev, "Starting qede_remove\n");
1301 
1302 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1303 
1304 	if (mode != QEDE_REMOVE_RECOVERY) {
1305 		unregister_netdev(ndev);
1306 
1307 		cancel_delayed_work_sync(&edev->sp_task);
1308 
1309 		edev->ops->common->set_power_state(cdev, PCI_D0);
1310 
1311 		pci_set_drvdata(pdev, NULL);
1312 	}
1313 
1314 	qede_ptp_disable(edev);
1315 
1316 	/* Use global ops since we've freed edev */
1317 	qed_ops->common->slowpath_stop(cdev);
1318 	if (system_state == SYSTEM_POWER_OFF)
1319 		return;
1320 	qed_ops->common->remove(cdev);
1321 
1322 	/* Since this can happen out-of-sync with other flows,
1323 	 * don't release the netdevice until after slowpath stop
1324 	 * has been called to guarantee various other contexts
1325 	 * [e.g., QED register callbacks] won't break anything when
1326 	 * accessing the netdevice.
1327 	 */
1328 	if (mode != QEDE_REMOVE_RECOVERY)
1329 		free_netdev(ndev);
1330 
1331 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1332 }
1333 
1334 static void qede_remove(struct pci_dev *pdev)
1335 {
1336 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1337 }
1338 
1339 static void qede_shutdown(struct pci_dev *pdev)
1340 {
1341 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1342 }
1343 
1344 /* -------------------------------------------------------------------------
1345  * START OF LOAD / UNLOAD
1346  * -------------------------------------------------------------------------
1347  */
1348 
1349 static int qede_set_num_queues(struct qede_dev *edev)
1350 {
1351 	int rc;
1352 	u16 rss_num;
1353 
1354 	/* Setup queues according to possible resources*/
1355 	if (edev->req_queues)
1356 		rss_num = edev->req_queues;
1357 	else
1358 		rss_num = netif_get_num_default_rss_queues() *
1359 			  edev->dev_info.common.num_hwfns;
1360 
1361 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1362 
1363 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1364 	if (rc > 0) {
1365 		/* Managed to request interrupts for our queues */
1366 		edev->num_queues = rc;
1367 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1368 			QEDE_QUEUE_CNT(edev), rss_num);
1369 		rc = 0;
1370 	}
1371 
1372 	edev->fp_num_tx = edev->req_num_tx;
1373 	edev->fp_num_rx = edev->req_num_rx;
1374 
1375 	return rc;
1376 }
1377 
1378 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1379 			     u16 sb_id)
1380 {
1381 	if (sb_info->sb_virt) {
1382 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1383 					      QED_SB_TYPE_L2_QUEUE);
1384 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1385 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1386 		memset(sb_info, 0, sizeof(*sb_info));
1387 	}
1388 }
1389 
1390 /* This function allocates fast-path status block memory */
1391 static int qede_alloc_mem_sb(struct qede_dev *edev,
1392 			     struct qed_sb_info *sb_info, u16 sb_id)
1393 {
1394 	struct status_block_e4 *sb_virt;
1395 	dma_addr_t sb_phys;
1396 	int rc;
1397 
1398 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1399 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1400 	if (!sb_virt) {
1401 		DP_ERR(edev, "Status block allocation failed\n");
1402 		return -ENOMEM;
1403 	}
1404 
1405 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1406 					sb_virt, sb_phys, sb_id,
1407 					QED_SB_TYPE_L2_QUEUE);
1408 	if (rc) {
1409 		DP_ERR(edev, "Status block initialization failed\n");
1410 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1411 				  sb_virt, sb_phys);
1412 		return rc;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static void qede_free_rx_buffers(struct qede_dev *edev,
1419 				 struct qede_rx_queue *rxq)
1420 {
1421 	u16 i;
1422 
1423 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1424 		struct sw_rx_data *rx_buf;
1425 		struct page *data;
1426 
1427 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1428 		data = rx_buf->data;
1429 
1430 		dma_unmap_page(&edev->pdev->dev,
1431 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1432 
1433 		rx_buf->data = NULL;
1434 		__free_page(data);
1435 	}
1436 }
1437 
1438 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1439 {
1440 	/* Free rx buffers */
1441 	qede_free_rx_buffers(edev, rxq);
1442 
1443 	/* Free the parallel SW ring */
1444 	kfree(rxq->sw_rx_ring);
1445 
1446 	/* Free the real RQ ring used by FW */
1447 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1448 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1449 }
1450 
1451 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1452 {
1453 	int i;
1454 
1455 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1456 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1457 
1458 		tpa_info->state = QEDE_AGG_STATE_NONE;
1459 	}
1460 }
1461 
1462 /* This function allocates all memory needed per Rx queue */
1463 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1464 {
1465 	int i, rc, size;
1466 
1467 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1468 
1469 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1470 
1471 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1472 	size = rxq->rx_headroom +
1473 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1474 
1475 	/* Make sure that the headroom and  payload fit in a single page */
1476 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1477 		rxq->rx_buf_size = PAGE_SIZE - size;
1478 
1479 	/* Segment size to split a page in multiple equal parts,
1480 	 * unless XDP is used in which case we'd use the entire page.
1481 	 */
1482 	if (!edev->xdp_prog) {
1483 		size = size + rxq->rx_buf_size;
1484 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1485 	} else {
1486 		rxq->rx_buf_seg_size = PAGE_SIZE;
1487 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1488 	}
1489 
1490 	/* Allocate the parallel driver ring for Rx buffers */
1491 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1492 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1493 	if (!rxq->sw_rx_ring) {
1494 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1495 		rc = -ENOMEM;
1496 		goto err;
1497 	}
1498 
1499 	/* Allocate FW Rx ring  */
1500 	rc = edev->ops->common->chain_alloc(edev->cdev,
1501 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1502 					    QED_CHAIN_MODE_NEXT_PTR,
1503 					    QED_CHAIN_CNT_TYPE_U16,
1504 					    RX_RING_SIZE,
1505 					    sizeof(struct eth_rx_bd),
1506 					    &rxq->rx_bd_ring, NULL);
1507 	if (rc)
1508 		goto err;
1509 
1510 	/* Allocate FW completion ring */
1511 	rc = edev->ops->common->chain_alloc(edev->cdev,
1512 					    QED_CHAIN_USE_TO_CONSUME,
1513 					    QED_CHAIN_MODE_PBL,
1514 					    QED_CHAIN_CNT_TYPE_U16,
1515 					    RX_RING_SIZE,
1516 					    sizeof(union eth_rx_cqe),
1517 					    &rxq->rx_comp_ring, NULL);
1518 	if (rc)
1519 		goto err;
1520 
1521 	/* Allocate buffers for the Rx ring */
1522 	rxq->filled_buffers = 0;
1523 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1524 		rc = qede_alloc_rx_buffer(rxq, false);
1525 		if (rc) {
1526 			DP_ERR(edev,
1527 			       "Rx buffers allocation failed at index %d\n", i);
1528 			goto err;
1529 		}
1530 	}
1531 
1532 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1533 	if (!edev->gro_disable)
1534 		qede_set_tpa_param(rxq);
1535 err:
1536 	return rc;
1537 }
1538 
1539 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1540 {
1541 	/* Free the parallel SW ring */
1542 	if (txq->is_xdp)
1543 		kfree(txq->sw_tx_ring.xdp);
1544 	else
1545 		kfree(txq->sw_tx_ring.skbs);
1546 
1547 	/* Free the real RQ ring used by FW */
1548 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1549 }
1550 
1551 /* This function allocates all memory needed per Tx queue */
1552 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1553 {
1554 	union eth_tx_bd_types *p_virt;
1555 	int size, rc;
1556 
1557 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1558 
1559 	/* Allocate the parallel driver ring for Tx buffers */
1560 	if (txq->is_xdp) {
1561 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1562 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1563 		if (!txq->sw_tx_ring.xdp)
1564 			goto err;
1565 	} else {
1566 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1567 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1568 		if (!txq->sw_tx_ring.skbs)
1569 			goto err;
1570 	}
1571 
1572 	rc = edev->ops->common->chain_alloc(edev->cdev,
1573 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1574 					    QED_CHAIN_MODE_PBL,
1575 					    QED_CHAIN_CNT_TYPE_U16,
1576 					    txq->num_tx_buffers,
1577 					    sizeof(*p_virt),
1578 					    &txq->tx_pbl, NULL);
1579 	if (rc)
1580 		goto err;
1581 
1582 	return 0;
1583 
1584 err:
1585 	qede_free_mem_txq(edev, txq);
1586 	return -ENOMEM;
1587 }
1588 
1589 /* This function frees all memory of a single fp */
1590 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1591 {
1592 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1593 
1594 	if (fp->type & QEDE_FASTPATH_RX)
1595 		qede_free_mem_rxq(edev, fp->rxq);
1596 
1597 	if (fp->type & QEDE_FASTPATH_XDP)
1598 		qede_free_mem_txq(edev, fp->xdp_tx);
1599 
1600 	if (fp->type & QEDE_FASTPATH_TX) {
1601 		int cos;
1602 
1603 		for_each_cos_in_txq(edev, cos)
1604 			qede_free_mem_txq(edev, &fp->txq[cos]);
1605 	}
1606 }
1607 
1608 /* This function allocates all memory needed for a single fp (i.e. an entity
1609  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1610  */
1611 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1612 {
1613 	int rc = 0;
1614 
1615 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1616 	if (rc)
1617 		goto out;
1618 
1619 	if (fp->type & QEDE_FASTPATH_RX) {
1620 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1621 		if (rc)
1622 			goto out;
1623 	}
1624 
1625 	if (fp->type & QEDE_FASTPATH_XDP) {
1626 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1627 		if (rc)
1628 			goto out;
1629 	}
1630 
1631 	if (fp->type & QEDE_FASTPATH_TX) {
1632 		int cos;
1633 
1634 		for_each_cos_in_txq(edev, cos) {
1635 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1636 			if (rc)
1637 				goto out;
1638 		}
1639 	}
1640 
1641 out:
1642 	return rc;
1643 }
1644 
1645 static void qede_free_mem_load(struct qede_dev *edev)
1646 {
1647 	int i;
1648 
1649 	for_each_queue(i) {
1650 		struct qede_fastpath *fp = &edev->fp_array[i];
1651 
1652 		qede_free_mem_fp(edev, fp);
1653 	}
1654 }
1655 
1656 /* This function allocates all qede memory at NIC load. */
1657 static int qede_alloc_mem_load(struct qede_dev *edev)
1658 {
1659 	int rc = 0, queue_id;
1660 
1661 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1662 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1663 
1664 		rc = qede_alloc_mem_fp(edev, fp);
1665 		if (rc) {
1666 			DP_ERR(edev,
1667 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1668 			       queue_id);
1669 			qede_free_mem_load(edev);
1670 			return rc;
1671 		}
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static void qede_empty_tx_queue(struct qede_dev *edev,
1678 				struct qede_tx_queue *txq)
1679 {
1680 	unsigned int pkts_compl = 0, bytes_compl = 0;
1681 	struct netdev_queue *netdev_txq;
1682 	int rc, len = 0;
1683 
1684 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1685 
1686 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1687 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1688 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1689 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1690 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1691 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1692 
1693 		rc = qede_free_tx_pkt(edev, txq, &len);
1694 		if (rc) {
1695 			DP_NOTICE(edev,
1696 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1697 				  txq->index,
1698 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1699 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1700 			break;
1701 		}
1702 
1703 		bytes_compl += len;
1704 		pkts_compl++;
1705 		txq->sw_tx_cons++;
1706 	}
1707 
1708 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1709 }
1710 
1711 static void qede_empty_tx_queues(struct qede_dev *edev)
1712 {
1713 	int i;
1714 
1715 	for_each_queue(i)
1716 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1717 			int cos;
1718 
1719 			for_each_cos_in_txq(edev, cos) {
1720 				struct qede_fastpath *fp;
1721 
1722 				fp = &edev->fp_array[i];
1723 				qede_empty_tx_queue(edev,
1724 						    &fp->txq[cos]);
1725 			}
1726 		}
1727 }
1728 
1729 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1730 static void qede_init_fp(struct qede_dev *edev)
1731 {
1732 	int queue_id, rxq_index = 0, txq_index = 0;
1733 	struct qede_fastpath *fp;
1734 
1735 	for_each_queue(queue_id) {
1736 		fp = &edev->fp_array[queue_id];
1737 
1738 		fp->edev = edev;
1739 		fp->id = queue_id;
1740 
1741 		if (fp->type & QEDE_FASTPATH_XDP) {
1742 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1743 								rxq_index);
1744 			fp->xdp_tx->is_xdp = 1;
1745 		}
1746 
1747 		if (fp->type & QEDE_FASTPATH_RX) {
1748 			fp->rxq->rxq_id = rxq_index++;
1749 
1750 			/* Determine how to map buffers for this queue */
1751 			if (fp->type & QEDE_FASTPATH_XDP)
1752 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1753 			else
1754 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1755 			fp->rxq->dev = &edev->pdev->dev;
1756 
1757 			/* Driver have no error path from here */
1758 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1759 						 fp->rxq->rxq_id) < 0);
1760 		}
1761 
1762 		if (fp->type & QEDE_FASTPATH_TX) {
1763 			int cos;
1764 
1765 			for_each_cos_in_txq(edev, cos) {
1766 				struct qede_tx_queue *txq = &fp->txq[cos];
1767 				u16 ndev_tx_id;
1768 
1769 				txq->cos = cos;
1770 				txq->index = txq_index;
1771 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1772 				txq->ndev_txq_id = ndev_tx_id;
1773 
1774 				if (edev->dev_info.is_legacy)
1775 					txq->is_legacy = true;
1776 				txq->dev = &edev->pdev->dev;
1777 			}
1778 
1779 			txq_index++;
1780 		}
1781 
1782 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1783 			 edev->ndev->name, queue_id);
1784 	}
1785 }
1786 
1787 static int qede_set_real_num_queues(struct qede_dev *edev)
1788 {
1789 	int rc = 0;
1790 
1791 	rc = netif_set_real_num_tx_queues(edev->ndev,
1792 					  QEDE_TSS_COUNT(edev) *
1793 					  edev->dev_info.num_tc);
1794 	if (rc) {
1795 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1796 		return rc;
1797 	}
1798 
1799 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1800 	if (rc) {
1801 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1802 		return rc;
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 static void qede_napi_disable_remove(struct qede_dev *edev)
1809 {
1810 	int i;
1811 
1812 	for_each_queue(i) {
1813 		napi_disable(&edev->fp_array[i].napi);
1814 
1815 		netif_napi_del(&edev->fp_array[i].napi);
1816 	}
1817 }
1818 
1819 static void qede_napi_add_enable(struct qede_dev *edev)
1820 {
1821 	int i;
1822 
1823 	/* Add NAPI objects */
1824 	for_each_queue(i) {
1825 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1826 			       qede_poll, NAPI_POLL_WEIGHT);
1827 		napi_enable(&edev->fp_array[i].napi);
1828 	}
1829 }
1830 
1831 static void qede_sync_free_irqs(struct qede_dev *edev)
1832 {
1833 	int i;
1834 
1835 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1836 		if (edev->int_info.msix_cnt) {
1837 			synchronize_irq(edev->int_info.msix[i].vector);
1838 			free_irq(edev->int_info.msix[i].vector,
1839 				 &edev->fp_array[i]);
1840 		} else {
1841 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1842 		}
1843 	}
1844 
1845 	edev->int_info.used_cnt = 0;
1846 }
1847 
1848 static int qede_req_msix_irqs(struct qede_dev *edev)
1849 {
1850 	int i, rc;
1851 
1852 	/* Sanitize number of interrupts == number of prepared RSS queues */
1853 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1854 		DP_ERR(edev,
1855 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1856 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1857 		return -EINVAL;
1858 	}
1859 
1860 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1861 #ifdef CONFIG_RFS_ACCEL
1862 		struct qede_fastpath *fp = &edev->fp_array[i];
1863 
1864 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1865 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1866 					      edev->int_info.msix[i].vector);
1867 			if (rc) {
1868 				DP_ERR(edev, "Failed to add CPU rmap\n");
1869 				qede_free_arfs(edev);
1870 			}
1871 		}
1872 #endif
1873 		rc = request_irq(edev->int_info.msix[i].vector,
1874 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1875 				 &edev->fp_array[i]);
1876 		if (rc) {
1877 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1878 			qede_sync_free_irqs(edev);
1879 			return rc;
1880 		}
1881 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1882 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1883 			   edev->fp_array[i].name, i,
1884 			   &edev->fp_array[i]);
1885 		edev->int_info.used_cnt++;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static void qede_simd_fp_handler(void *cookie)
1892 {
1893 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1894 
1895 	napi_schedule_irqoff(&fp->napi);
1896 }
1897 
1898 static int qede_setup_irqs(struct qede_dev *edev)
1899 {
1900 	int i, rc = 0;
1901 
1902 	/* Learn Interrupt configuration */
1903 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1904 	if (rc)
1905 		return rc;
1906 
1907 	if (edev->int_info.msix_cnt) {
1908 		rc = qede_req_msix_irqs(edev);
1909 		if (rc)
1910 			return rc;
1911 		edev->ndev->irq = edev->int_info.msix[0].vector;
1912 	} else {
1913 		const struct qed_common_ops *ops;
1914 
1915 		/* qed should learn receive the RSS ids and callbacks */
1916 		ops = edev->ops->common;
1917 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1918 			ops->simd_handler_config(edev->cdev,
1919 						 &edev->fp_array[i], i,
1920 						 qede_simd_fp_handler);
1921 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1922 	}
1923 	return 0;
1924 }
1925 
1926 static int qede_drain_txq(struct qede_dev *edev,
1927 			  struct qede_tx_queue *txq, bool allow_drain)
1928 {
1929 	int rc, cnt = 1000;
1930 
1931 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1932 		if (!cnt) {
1933 			if (allow_drain) {
1934 				DP_NOTICE(edev,
1935 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1936 					  txq->index);
1937 				rc = edev->ops->common->drain(edev->cdev);
1938 				if (rc)
1939 					return rc;
1940 				return qede_drain_txq(edev, txq, false);
1941 			}
1942 			DP_NOTICE(edev,
1943 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1944 				  txq->index, txq->sw_tx_prod,
1945 				  txq->sw_tx_cons);
1946 			return -ENODEV;
1947 		}
1948 		cnt--;
1949 		usleep_range(1000, 2000);
1950 		barrier();
1951 	}
1952 
1953 	/* FW finished processing, wait for HW to transmit all tx packets */
1954 	usleep_range(1000, 2000);
1955 
1956 	return 0;
1957 }
1958 
1959 static int qede_stop_txq(struct qede_dev *edev,
1960 			 struct qede_tx_queue *txq, int rss_id)
1961 {
1962 	/* delete doorbell from doorbell recovery mechanism */
1963 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1964 					   &txq->tx_db);
1965 
1966 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1967 }
1968 
1969 static int qede_stop_queues(struct qede_dev *edev)
1970 {
1971 	struct qed_update_vport_params *vport_update_params;
1972 	struct qed_dev *cdev = edev->cdev;
1973 	struct qede_fastpath *fp;
1974 	int rc, i;
1975 
1976 	/* Disable the vport */
1977 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1978 	if (!vport_update_params)
1979 		return -ENOMEM;
1980 
1981 	vport_update_params->vport_id = 0;
1982 	vport_update_params->update_vport_active_flg = 1;
1983 	vport_update_params->vport_active_flg = 0;
1984 	vport_update_params->update_rss_flg = 0;
1985 
1986 	rc = edev->ops->vport_update(cdev, vport_update_params);
1987 	vfree(vport_update_params);
1988 
1989 	if (rc) {
1990 		DP_ERR(edev, "Failed to update vport\n");
1991 		return rc;
1992 	}
1993 
1994 	/* Flush Tx queues. If needed, request drain from MCP */
1995 	for_each_queue(i) {
1996 		fp = &edev->fp_array[i];
1997 
1998 		if (fp->type & QEDE_FASTPATH_TX) {
1999 			int cos;
2000 
2001 			for_each_cos_in_txq(edev, cos) {
2002 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2003 				if (rc)
2004 					return rc;
2005 			}
2006 		}
2007 
2008 		if (fp->type & QEDE_FASTPATH_XDP) {
2009 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2010 			if (rc)
2011 				return rc;
2012 		}
2013 	}
2014 
2015 	/* Stop all Queues in reverse order */
2016 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2017 		fp = &edev->fp_array[i];
2018 
2019 		/* Stop the Tx Queue(s) */
2020 		if (fp->type & QEDE_FASTPATH_TX) {
2021 			int cos;
2022 
2023 			for_each_cos_in_txq(edev, cos) {
2024 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2025 				if (rc)
2026 					return rc;
2027 			}
2028 		}
2029 
2030 		/* Stop the Rx Queue */
2031 		if (fp->type & QEDE_FASTPATH_RX) {
2032 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2033 			if (rc) {
2034 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2035 				return rc;
2036 			}
2037 		}
2038 
2039 		/* Stop the XDP forwarding queue */
2040 		if (fp->type & QEDE_FASTPATH_XDP) {
2041 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2042 			if (rc)
2043 				return rc;
2044 
2045 			bpf_prog_put(fp->rxq->xdp_prog);
2046 		}
2047 	}
2048 
2049 	/* Stop the vport */
2050 	rc = edev->ops->vport_stop(cdev, 0);
2051 	if (rc)
2052 		DP_ERR(edev, "Failed to stop VPORT\n");
2053 
2054 	return rc;
2055 }
2056 
2057 static int qede_start_txq(struct qede_dev *edev,
2058 			  struct qede_fastpath *fp,
2059 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2060 {
2061 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2062 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2063 	struct qed_queue_start_common_params params;
2064 	struct qed_txq_start_ret_params ret_params;
2065 	int rc;
2066 
2067 	memset(&params, 0, sizeof(params));
2068 	memset(&ret_params, 0, sizeof(ret_params));
2069 
2070 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2071 	 * We don't really care about its coalescing.
2072 	 */
2073 	if (txq->is_xdp)
2074 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2075 	else
2076 		params.queue_id = txq->index;
2077 
2078 	params.p_sb = fp->sb_info;
2079 	params.sb_idx = sb_idx;
2080 	params.tc = txq->cos;
2081 
2082 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2083 				   page_cnt, &ret_params);
2084 	if (rc) {
2085 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2086 		return rc;
2087 	}
2088 
2089 	txq->doorbell_addr = ret_params.p_doorbell;
2090 	txq->handle = ret_params.p_handle;
2091 
2092 	/* Determine the FW consumer address associated */
2093 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2094 
2095 	/* Prepare the doorbell parameters */
2096 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2097 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2098 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2099 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2100 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2101 
2102 	/* register doorbell with doorbell recovery mechanism */
2103 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2104 						&txq->tx_db, DB_REC_WIDTH_32B,
2105 						DB_REC_KERNEL);
2106 
2107 	return rc;
2108 }
2109 
2110 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2111 {
2112 	int vlan_removal_en = 1;
2113 	struct qed_dev *cdev = edev->cdev;
2114 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2115 	struct qed_update_vport_params *vport_update_params;
2116 	struct qed_queue_start_common_params q_params;
2117 	struct qed_start_vport_params start = {0};
2118 	int rc, i;
2119 
2120 	if (!edev->num_queues) {
2121 		DP_ERR(edev,
2122 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2123 		return -EINVAL;
2124 	}
2125 
2126 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2127 	if (!vport_update_params)
2128 		return -ENOMEM;
2129 
2130 	start.handle_ptp_pkts = !!(edev->ptp);
2131 	start.gro_enable = !edev->gro_disable;
2132 	start.mtu = edev->ndev->mtu;
2133 	start.vport_id = 0;
2134 	start.drop_ttl0 = true;
2135 	start.remove_inner_vlan = vlan_removal_en;
2136 	start.clear_stats = clear_stats;
2137 
2138 	rc = edev->ops->vport_start(cdev, &start);
2139 
2140 	if (rc) {
2141 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2142 		goto out;
2143 	}
2144 
2145 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2146 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2147 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2148 
2149 	for_each_queue(i) {
2150 		struct qede_fastpath *fp = &edev->fp_array[i];
2151 		dma_addr_t p_phys_table;
2152 		u32 page_cnt;
2153 
2154 		if (fp->type & QEDE_FASTPATH_RX) {
2155 			struct qed_rxq_start_ret_params ret_params;
2156 			struct qede_rx_queue *rxq = fp->rxq;
2157 			__le16 *val;
2158 
2159 			memset(&ret_params, 0, sizeof(ret_params));
2160 			memset(&q_params, 0, sizeof(q_params));
2161 			q_params.queue_id = rxq->rxq_id;
2162 			q_params.vport_id = 0;
2163 			q_params.p_sb = fp->sb_info;
2164 			q_params.sb_idx = RX_PI;
2165 
2166 			p_phys_table =
2167 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2168 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2169 
2170 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2171 						   rxq->rx_buf_size,
2172 						   rxq->rx_bd_ring.p_phys_addr,
2173 						   p_phys_table,
2174 						   page_cnt, &ret_params);
2175 			if (rc) {
2176 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2177 				       rc);
2178 				goto out;
2179 			}
2180 
2181 			/* Use the return parameters */
2182 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2183 			rxq->handle = ret_params.p_handle;
2184 
2185 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2186 			rxq->hw_cons_ptr = val;
2187 
2188 			qede_update_rx_prod(edev, rxq);
2189 		}
2190 
2191 		if (fp->type & QEDE_FASTPATH_XDP) {
2192 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2193 			if (rc)
2194 				goto out;
2195 
2196 			bpf_prog_add(edev->xdp_prog, 1);
2197 			fp->rxq->xdp_prog = edev->xdp_prog;
2198 		}
2199 
2200 		if (fp->type & QEDE_FASTPATH_TX) {
2201 			int cos;
2202 
2203 			for_each_cos_in_txq(edev, cos) {
2204 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2205 						    TX_PI(cos));
2206 				if (rc)
2207 					goto out;
2208 			}
2209 		}
2210 	}
2211 
2212 	/* Prepare and send the vport enable */
2213 	vport_update_params->vport_id = start.vport_id;
2214 	vport_update_params->update_vport_active_flg = 1;
2215 	vport_update_params->vport_active_flg = 1;
2216 
2217 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2218 	    qed_info->tx_switching) {
2219 		vport_update_params->update_tx_switching_flg = 1;
2220 		vport_update_params->tx_switching_flg = 1;
2221 	}
2222 
2223 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2224 			     &vport_update_params->update_rss_flg);
2225 
2226 	rc = edev->ops->vport_update(cdev, vport_update_params);
2227 	if (rc)
2228 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2229 
2230 out:
2231 	vfree(vport_update_params);
2232 	return rc;
2233 }
2234 
2235 enum qede_unload_mode {
2236 	QEDE_UNLOAD_NORMAL,
2237 	QEDE_UNLOAD_RECOVERY,
2238 };
2239 
2240 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2241 			bool is_locked)
2242 {
2243 	struct qed_link_params link_params;
2244 	int rc;
2245 
2246 	DP_INFO(edev, "Starting qede unload\n");
2247 
2248 	if (!is_locked)
2249 		__qede_lock(edev);
2250 
2251 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2252 
2253 	if (mode != QEDE_UNLOAD_RECOVERY)
2254 		edev->state = QEDE_STATE_CLOSED;
2255 
2256 	qede_rdma_dev_event_close(edev);
2257 
2258 	/* Close OS Tx */
2259 	netif_tx_disable(edev->ndev);
2260 	netif_carrier_off(edev->ndev);
2261 
2262 	if (mode != QEDE_UNLOAD_RECOVERY) {
2263 		/* Reset the link */
2264 		memset(&link_params, 0, sizeof(link_params));
2265 		link_params.link_up = false;
2266 		edev->ops->common->set_link(edev->cdev, &link_params);
2267 
2268 		rc = qede_stop_queues(edev);
2269 		if (rc) {
2270 			qede_sync_free_irqs(edev);
2271 			goto out;
2272 		}
2273 
2274 		DP_INFO(edev, "Stopped Queues\n");
2275 	}
2276 
2277 	qede_vlan_mark_nonconfigured(edev);
2278 	edev->ops->fastpath_stop(edev->cdev);
2279 
2280 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2281 		qede_poll_for_freeing_arfs_filters(edev);
2282 		qede_free_arfs(edev);
2283 	}
2284 
2285 	/* Release the interrupts */
2286 	qede_sync_free_irqs(edev);
2287 	edev->ops->common->set_fp_int(edev->cdev, 0);
2288 
2289 	qede_napi_disable_remove(edev);
2290 
2291 	if (mode == QEDE_UNLOAD_RECOVERY)
2292 		qede_empty_tx_queues(edev);
2293 
2294 	qede_free_mem_load(edev);
2295 	qede_free_fp_array(edev);
2296 
2297 out:
2298 	if (!is_locked)
2299 		__qede_unlock(edev);
2300 
2301 	if (mode != QEDE_UNLOAD_RECOVERY)
2302 		DP_NOTICE(edev, "Link is down\n");
2303 
2304 	edev->ptp_skip_txts = 0;
2305 
2306 	DP_INFO(edev, "Ending qede unload\n");
2307 }
2308 
2309 enum qede_load_mode {
2310 	QEDE_LOAD_NORMAL,
2311 	QEDE_LOAD_RELOAD,
2312 	QEDE_LOAD_RECOVERY,
2313 };
2314 
2315 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2316 		     bool is_locked)
2317 {
2318 	struct qed_link_params link_params;
2319 	u8 num_tc;
2320 	int rc;
2321 
2322 	DP_INFO(edev, "Starting qede load\n");
2323 
2324 	if (!is_locked)
2325 		__qede_lock(edev);
2326 
2327 	rc = qede_set_num_queues(edev);
2328 	if (rc)
2329 		goto out;
2330 
2331 	rc = qede_alloc_fp_array(edev);
2332 	if (rc)
2333 		goto out;
2334 
2335 	qede_init_fp(edev);
2336 
2337 	rc = qede_alloc_mem_load(edev);
2338 	if (rc)
2339 		goto err1;
2340 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2341 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2342 
2343 	rc = qede_set_real_num_queues(edev);
2344 	if (rc)
2345 		goto err2;
2346 
2347 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2348 		rc = qede_alloc_arfs(edev);
2349 		if (rc)
2350 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2351 	}
2352 
2353 	qede_napi_add_enable(edev);
2354 	DP_INFO(edev, "Napi added and enabled\n");
2355 
2356 	rc = qede_setup_irqs(edev);
2357 	if (rc)
2358 		goto err3;
2359 	DP_INFO(edev, "Setup IRQs succeeded\n");
2360 
2361 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2362 	if (rc)
2363 		goto err4;
2364 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2365 
2366 	num_tc = netdev_get_num_tc(edev->ndev);
2367 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2368 	qede_setup_tc(edev->ndev, num_tc);
2369 
2370 	/* Program un-configured VLANs */
2371 	qede_configure_vlan_filters(edev);
2372 
2373 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2374 
2375 	/* Ask for link-up using current configuration */
2376 	memset(&link_params, 0, sizeof(link_params));
2377 	link_params.link_up = true;
2378 	edev->ops->common->set_link(edev->cdev, &link_params);
2379 
2380 	edev->state = QEDE_STATE_OPEN;
2381 
2382 	DP_INFO(edev, "Ending successfully qede load\n");
2383 
2384 	goto out;
2385 err4:
2386 	qede_sync_free_irqs(edev);
2387 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2388 err3:
2389 	qede_napi_disable_remove(edev);
2390 err2:
2391 	qede_free_mem_load(edev);
2392 err1:
2393 	edev->ops->common->set_fp_int(edev->cdev, 0);
2394 	qede_free_fp_array(edev);
2395 	edev->num_queues = 0;
2396 	edev->fp_num_tx = 0;
2397 	edev->fp_num_rx = 0;
2398 out:
2399 	if (!is_locked)
2400 		__qede_unlock(edev);
2401 
2402 	return rc;
2403 }
2404 
2405 /* 'func' should be able to run between unload and reload assuming interface
2406  * is actually running, or afterwards in case it's currently DOWN.
2407  */
2408 void qede_reload(struct qede_dev *edev,
2409 		 struct qede_reload_args *args, bool is_locked)
2410 {
2411 	if (!is_locked)
2412 		__qede_lock(edev);
2413 
2414 	/* Since qede_lock is held, internal state wouldn't change even
2415 	 * if netdev state would start transitioning. Check whether current
2416 	 * internal configuration indicates device is up, then reload.
2417 	 */
2418 	if (edev->state == QEDE_STATE_OPEN) {
2419 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2420 		if (args)
2421 			args->func(edev, args);
2422 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2423 
2424 		/* Since no one is going to do it for us, re-configure */
2425 		qede_config_rx_mode(edev->ndev);
2426 	} else if (args) {
2427 		args->func(edev, args);
2428 	}
2429 
2430 	if (!is_locked)
2431 		__qede_unlock(edev);
2432 }
2433 
2434 /* called with rtnl_lock */
2435 static int qede_open(struct net_device *ndev)
2436 {
2437 	struct qede_dev *edev = netdev_priv(ndev);
2438 	int rc;
2439 
2440 	netif_carrier_off(ndev);
2441 
2442 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2443 
2444 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2445 	if (rc)
2446 		return rc;
2447 
2448 	udp_tunnel_get_rx_info(ndev);
2449 
2450 	edev->ops->common->update_drv_state(edev->cdev, true);
2451 
2452 	return 0;
2453 }
2454 
2455 static int qede_close(struct net_device *ndev)
2456 {
2457 	struct qede_dev *edev = netdev_priv(ndev);
2458 
2459 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2460 
2461 	edev->ops->common->update_drv_state(edev->cdev, false);
2462 
2463 	return 0;
2464 }
2465 
2466 static void qede_link_update(void *dev, struct qed_link_output *link)
2467 {
2468 	struct qede_dev *edev = dev;
2469 
2470 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2471 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2472 		return;
2473 	}
2474 
2475 	if (link->link_up) {
2476 		if (!netif_carrier_ok(edev->ndev)) {
2477 			DP_NOTICE(edev, "Link is up\n");
2478 			netif_tx_start_all_queues(edev->ndev);
2479 			netif_carrier_on(edev->ndev);
2480 			qede_rdma_dev_event_open(edev);
2481 		}
2482 	} else {
2483 		if (netif_carrier_ok(edev->ndev)) {
2484 			DP_NOTICE(edev, "Link is down\n");
2485 			netif_tx_disable(edev->ndev);
2486 			netif_carrier_off(edev->ndev);
2487 			qede_rdma_dev_event_close(edev);
2488 		}
2489 	}
2490 }
2491 
2492 static void qede_schedule_recovery_handler(void *dev)
2493 {
2494 	struct qede_dev *edev = dev;
2495 
2496 	if (edev->state == QEDE_STATE_RECOVERY) {
2497 		DP_NOTICE(edev,
2498 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2499 		return;
2500 	}
2501 
2502 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2503 	schedule_delayed_work(&edev->sp_task, 0);
2504 
2505 	DP_INFO(edev, "Scheduled a recovery handler\n");
2506 }
2507 
2508 static void qede_recovery_failed(struct qede_dev *edev)
2509 {
2510 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2511 
2512 	netif_device_detach(edev->ndev);
2513 
2514 	if (edev->cdev)
2515 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2516 }
2517 
2518 static void qede_recovery_handler(struct qede_dev *edev)
2519 {
2520 	u32 curr_state = edev->state;
2521 	int rc;
2522 
2523 	DP_NOTICE(edev, "Starting a recovery process\n");
2524 
2525 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2526 	 * before calling this function.
2527 	 */
2528 	edev->state = QEDE_STATE_RECOVERY;
2529 
2530 	edev->ops->common->recovery_prolog(edev->cdev);
2531 
2532 	if (curr_state == QEDE_STATE_OPEN)
2533 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2534 
2535 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2536 
2537 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2538 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2539 	if (rc) {
2540 		edev->cdev = NULL;
2541 		goto err;
2542 	}
2543 
2544 	if (curr_state == QEDE_STATE_OPEN) {
2545 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2546 		if (rc)
2547 			goto err;
2548 
2549 		qede_config_rx_mode(edev->ndev);
2550 		udp_tunnel_get_rx_info(edev->ndev);
2551 	}
2552 
2553 	edev->state = curr_state;
2554 
2555 	DP_NOTICE(edev, "Recovery handling is done\n");
2556 
2557 	return;
2558 
2559 err:
2560 	qede_recovery_failed(edev);
2561 }
2562 
2563 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2564 {
2565 	struct qed_dev *cdev = edev->cdev;
2566 
2567 	DP_NOTICE(edev,
2568 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2569 		  edev->err_flags);
2570 
2571 	/* Get a call trace of the flow that led to the error */
2572 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2573 
2574 	/* Prevent HW attentions from being reasserted */
2575 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2576 		edev->ops->common->attn_clr_enable(cdev, true);
2577 
2578 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2579 }
2580 
2581 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2582 {
2583 	struct qed_dev *cdev = edev->cdev;
2584 
2585 	DP_NOTICE(edev,
2586 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2587 		  edev->err_flags);
2588 
2589 	/* Trigger a recovery process.
2590 	 * This is placed in the sleep requiring section just to make
2591 	 * sure it is the last one, and that all the other operations
2592 	 * were completed.
2593 	 */
2594 	if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags))
2595 		edev->ops->common->recovery_process(cdev);
2596 
2597 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2598 
2599 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2600 }
2601 
2602 static void qede_set_hw_err_flags(struct qede_dev *edev,
2603 				  enum qed_hw_err_type err_type)
2604 {
2605 	unsigned long err_flags = 0;
2606 
2607 	switch (err_type) {
2608 	case QED_HW_ERR_DMAE_FAIL:
2609 		set_bit(QEDE_ERR_WARN, &err_flags);
2610 		fallthrough;
2611 	case QED_HW_ERR_MFW_RESP_FAIL:
2612 	case QED_HW_ERR_HW_ATTN:
2613 	case QED_HW_ERR_RAMROD_FAIL:
2614 	case QED_HW_ERR_FW_ASSERT:
2615 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2616 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2617 		break;
2618 
2619 	default:
2620 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2621 		break;
2622 	}
2623 
2624 	edev->err_flags |= err_flags;
2625 }
2626 
2627 static void qede_schedule_hw_err_handler(void *dev,
2628 					 enum qed_hw_err_type err_type)
2629 {
2630 	struct qede_dev *edev = dev;
2631 
2632 	/* Fan failure cannot be masked by handling of another HW error or by a
2633 	 * concurrent recovery process.
2634 	 */
2635 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2636 	     edev->state == QEDE_STATE_RECOVERY) &&
2637 	     err_type != QED_HW_ERR_FAN_FAIL) {
2638 		DP_INFO(edev,
2639 			"Avoid scheduling an error handling while another HW error is being handled\n");
2640 		return;
2641 	}
2642 
2643 	if (err_type >= QED_HW_ERR_LAST) {
2644 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2645 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2646 		return;
2647 	}
2648 
2649 	qede_set_hw_err_flags(edev, err_type);
2650 	qede_atomic_hw_err_handler(edev);
2651 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2652 	schedule_delayed_work(&edev->sp_task, 0);
2653 
2654 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2655 }
2656 
2657 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2658 {
2659 	struct netdev_queue *netdev_txq;
2660 
2661 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2662 	if (netif_xmit_stopped(netdev_txq))
2663 		return true;
2664 
2665 	return false;
2666 }
2667 
2668 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2669 {
2670 	struct qede_dev *edev = dev;
2671 	struct netdev_hw_addr *ha;
2672 	int i;
2673 
2674 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2675 		data->feat_flags |= QED_TLV_IP_CSUM;
2676 	if (edev->ndev->features & NETIF_F_TSO)
2677 		data->feat_flags |= QED_TLV_LSO;
2678 
2679 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2680 	memset(data->mac[1], 0, ETH_ALEN);
2681 	memset(data->mac[2], 0, ETH_ALEN);
2682 	/* Copy the first two UC macs */
2683 	netif_addr_lock_bh(edev->ndev);
2684 	i = 1;
2685 	netdev_for_each_uc_addr(ha, edev->ndev) {
2686 		ether_addr_copy(data->mac[i++], ha->addr);
2687 		if (i == QED_TLV_MAC_COUNT)
2688 			break;
2689 	}
2690 
2691 	netif_addr_unlock_bh(edev->ndev);
2692 }
2693 
2694 static void qede_get_eth_tlv_data(void *dev, void *data)
2695 {
2696 	struct qed_mfw_tlv_eth *etlv = data;
2697 	struct qede_dev *edev = dev;
2698 	struct qede_fastpath *fp;
2699 	int i;
2700 
2701 	etlv->lso_maxoff_size = 0XFFFF;
2702 	etlv->lso_maxoff_size_set = true;
2703 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2704 	etlv->lso_minseg_size_set = true;
2705 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2706 	etlv->prom_mode_set = true;
2707 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2708 	etlv->tx_descr_size_set = true;
2709 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2710 	etlv->rx_descr_size_set = true;
2711 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2712 	etlv->iov_offload_set = true;
2713 
2714 	/* Fill information regarding queues; Should be done under the qede
2715 	 * lock to guarantee those don't change beneath our feet.
2716 	 */
2717 	etlv->txqs_empty = true;
2718 	etlv->rxqs_empty = true;
2719 	etlv->num_txqs_full = 0;
2720 	etlv->num_rxqs_full = 0;
2721 
2722 	__qede_lock(edev);
2723 	for_each_queue(i) {
2724 		fp = &edev->fp_array[i];
2725 		if (fp->type & QEDE_FASTPATH_TX) {
2726 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2727 
2728 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2729 				etlv->txqs_empty = false;
2730 			if (qede_is_txq_full(edev, txq))
2731 				etlv->num_txqs_full++;
2732 		}
2733 		if (fp->type & QEDE_FASTPATH_RX) {
2734 			if (qede_has_rx_work(fp->rxq))
2735 				etlv->rxqs_empty = false;
2736 
2737 			/* This one is a bit tricky; Firmware might stop
2738 			 * placing packets if ring is not yet full.
2739 			 * Give an approximation.
2740 			 */
2741 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2742 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2743 			    RX_RING_SIZE - 100)
2744 				etlv->num_rxqs_full++;
2745 		}
2746 	}
2747 	__qede_unlock(edev);
2748 
2749 	etlv->txqs_empty_set = true;
2750 	etlv->rxqs_empty_set = true;
2751 	etlv->num_txqs_full_set = true;
2752 	etlv->num_rxqs_full_set = true;
2753 }
2754 
2755 /**
2756  * qede_io_error_detected - called when PCI error is detected
2757  * @pdev: Pointer to PCI device
2758  * @state: The current pci connection state
2759  *
2760  * This function is called after a PCI bus error affecting
2761  * this device has been detected.
2762  */
2763 static pci_ers_result_t
2764 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2765 {
2766 	struct net_device *dev = pci_get_drvdata(pdev);
2767 	struct qede_dev *edev = netdev_priv(dev);
2768 
2769 	if (!edev)
2770 		return PCI_ERS_RESULT_NONE;
2771 
2772 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2773 
2774 	__qede_lock(edev);
2775 	if (edev->state == QEDE_STATE_RECOVERY) {
2776 		DP_NOTICE(edev, "Device already in the recovery state\n");
2777 		__qede_unlock(edev);
2778 		return PCI_ERS_RESULT_NONE;
2779 	}
2780 
2781 	/* PF handles the recovery of its VFs */
2782 	if (IS_VF(edev)) {
2783 		DP_VERBOSE(edev, QED_MSG_IOV,
2784 			   "VF recovery is handled by its PF\n");
2785 		__qede_unlock(edev);
2786 		return PCI_ERS_RESULT_RECOVERED;
2787 	}
2788 
2789 	/* Close OS Tx */
2790 	netif_tx_disable(edev->ndev);
2791 	netif_carrier_off(edev->ndev);
2792 
2793 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2794 	schedule_delayed_work(&edev->sp_task, 0);
2795 
2796 	__qede_unlock(edev);
2797 
2798 	return PCI_ERS_RESULT_CAN_RECOVER;
2799 }
2800