1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39 
40 #include "qede.h"
41 
42 static char version[] =
43 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44 
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52 
53 static const struct qed_eth_ops *qed_ops;
54 
55 #define CHIP_NUM_57980S_40		0x1634
56 #define CHIP_NUM_57980S_10		0x1666
57 #define CHIP_NUM_57980S_MF		0x1636
58 #define CHIP_NUM_57980S_100		0x1644
59 #define CHIP_NUM_57980S_50		0x1654
60 #define CHIP_NUM_57980S_25		0x1656
61 #define CHIP_NUM_57980S_IOV		0x1664
62 
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
71 #endif
72 
73 enum qede_pci_private {
74 	QEDE_PRIVATE_PF,
75 	QEDE_PRIVATE_VF
76 };
77 
78 static const struct pci_device_id qede_pci_tbl[] = {
79 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 	{ 0 }
89 };
90 
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
92 
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
94 
95 #define TX_TIMEOUT		(5 * HZ)
96 
97 static void qede_remove(struct pci_dev *pdev);
98 static int qede_alloc_rx_buffer(struct qede_dev *edev,
99 				struct qede_rx_queue *rxq);
100 static void qede_link_update(void *dev, struct qed_link_output *link);
101 
102 #ifdef CONFIG_QED_SRIOV
103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
104 {
105 	struct qede_dev *edev = netdev_priv(ndev);
106 
107 	if (vlan > 4095) {
108 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
109 		return -EINVAL;
110 	}
111 
112 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
113 		   vlan, vf);
114 
115 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
116 }
117 
118 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
119 {
120 	struct qede_dev *edev = netdev_priv(ndev);
121 
122 	DP_VERBOSE(edev, QED_MSG_IOV,
123 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
124 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
125 
126 	if (!is_valid_ether_addr(mac)) {
127 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
128 		return -EINVAL;
129 	}
130 
131 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
132 }
133 
134 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
135 {
136 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
137 	struct qed_dev_info *qed_info = &edev->dev_info.common;
138 	int rc;
139 
140 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
141 
142 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
143 
144 	/* Enable/Disable Tx switching for PF */
145 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
146 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
147 		struct qed_update_vport_params params;
148 
149 		memset(&params, 0, sizeof(params));
150 		params.vport_id = 0;
151 		params.update_tx_switching_flg = 1;
152 		params.tx_switching_flg = num_vfs_param ? 1 : 0;
153 		edev->ops->vport_update(edev->cdev, &params);
154 	}
155 
156 	return rc;
157 }
158 #endif
159 
160 static struct pci_driver qede_pci_driver = {
161 	.name = "qede",
162 	.id_table = qede_pci_tbl,
163 	.probe = qede_probe,
164 	.remove = qede_remove,
165 #ifdef CONFIG_QED_SRIOV
166 	.sriov_configure = qede_sriov_configure,
167 #endif
168 };
169 
170 static void qede_force_mac(void *dev, u8 *mac)
171 {
172 	struct qede_dev *edev = dev;
173 
174 	ether_addr_copy(edev->ndev->dev_addr, mac);
175 	ether_addr_copy(edev->primary_mac, mac);
176 }
177 
178 static struct qed_eth_cb_ops qede_ll_ops = {
179 	{
180 		.link_update = qede_link_update,
181 	},
182 	.force_mac = qede_force_mac,
183 };
184 
185 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
186 			     void *ptr)
187 {
188 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
189 	struct ethtool_drvinfo drvinfo;
190 	struct qede_dev *edev;
191 
192 	/* Currently only support name change */
193 	if (event != NETDEV_CHANGENAME)
194 		goto done;
195 
196 	/* Check whether this is a qede device */
197 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
198 		goto done;
199 
200 	memset(&drvinfo, 0, sizeof(drvinfo));
201 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
202 	if (strcmp(drvinfo.driver, "qede"))
203 		goto done;
204 	edev = netdev_priv(ndev);
205 
206 	/* Notify qed of the name change */
207 	if (!edev->ops || !edev->ops->common)
208 		goto done;
209 	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
210 				  "qede");
211 
212 done:
213 	return NOTIFY_DONE;
214 }
215 
216 static struct notifier_block qede_netdev_notifier = {
217 	.notifier_call = qede_netdev_event,
218 };
219 
220 static
221 int __init qede_init(void)
222 {
223 	int ret;
224 
225 	pr_notice("qede_init: %s\n", version);
226 
227 	qed_ops = qed_get_eth_ops();
228 	if (!qed_ops) {
229 		pr_notice("Failed to get qed ethtool operations\n");
230 		return -EINVAL;
231 	}
232 
233 	/* Must register notifier before pci ops, since we might miss
234 	 * interface rename after pci probe and netdev registeration.
235 	 */
236 	ret = register_netdevice_notifier(&qede_netdev_notifier);
237 	if (ret) {
238 		pr_notice("Failed to register netdevice_notifier\n");
239 		qed_put_eth_ops();
240 		return -EINVAL;
241 	}
242 
243 	ret = pci_register_driver(&qede_pci_driver);
244 	if (ret) {
245 		pr_notice("Failed to register driver\n");
246 		unregister_netdevice_notifier(&qede_netdev_notifier);
247 		qed_put_eth_ops();
248 		return -EINVAL;
249 	}
250 
251 	return 0;
252 }
253 
254 static void __exit qede_cleanup(void)
255 {
256 	pr_notice("qede_cleanup called\n");
257 
258 	unregister_netdevice_notifier(&qede_netdev_notifier);
259 	pci_unregister_driver(&qede_pci_driver);
260 	qed_put_eth_ops();
261 }
262 
263 module_init(qede_init);
264 module_exit(qede_cleanup);
265 
266 /* -------------------------------------------------------------------------
267  * START OF FAST-PATH
268  * -------------------------------------------------------------------------
269  */
270 
271 /* Unmap the data and free skb */
272 static int qede_free_tx_pkt(struct qede_dev *edev,
273 			    struct qede_tx_queue *txq,
274 			    int *len)
275 {
276 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
277 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
278 	struct eth_tx_1st_bd *first_bd;
279 	struct eth_tx_bd *tx_data_bd;
280 	int bds_consumed = 0;
281 	int nbds;
282 	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
283 	int i, split_bd_len = 0;
284 
285 	if (unlikely(!skb)) {
286 		DP_ERR(edev,
287 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
288 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
289 		return -1;
290 	}
291 
292 	*len = skb->len;
293 
294 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
295 
296 	bds_consumed++;
297 
298 	nbds = first_bd->data.nbds;
299 
300 	if (data_split) {
301 		struct eth_tx_bd *split = (struct eth_tx_bd *)
302 			qed_chain_consume(&txq->tx_pbl);
303 		split_bd_len = BD_UNMAP_LEN(split);
304 		bds_consumed++;
305 	}
306 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
307 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
308 
309 	/* Unmap the data of the skb frags */
310 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
311 		tx_data_bd = (struct eth_tx_bd *)
312 			qed_chain_consume(&txq->tx_pbl);
313 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
314 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
315 	}
316 
317 	while (bds_consumed++ < nbds)
318 		qed_chain_consume(&txq->tx_pbl);
319 
320 	/* Free skb */
321 	dev_kfree_skb_any(skb);
322 	txq->sw_tx_ring[idx].skb = NULL;
323 	txq->sw_tx_ring[idx].flags = 0;
324 
325 	return 0;
326 }
327 
328 /* Unmap the data and free skb when mapping failed during start_xmit */
329 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
330 				    struct qede_tx_queue *txq,
331 				    struct eth_tx_1st_bd *first_bd,
332 				    int nbd,
333 				    bool data_split)
334 {
335 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
336 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
337 	struct eth_tx_bd *tx_data_bd;
338 	int i, split_bd_len = 0;
339 
340 	/* Return prod to its position before this skb was handled */
341 	qed_chain_set_prod(&txq->tx_pbl,
342 			   le16_to_cpu(txq->tx_db.data.bd_prod),
343 			   first_bd);
344 
345 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
346 
347 	if (data_split) {
348 		struct eth_tx_bd *split = (struct eth_tx_bd *)
349 					  qed_chain_produce(&txq->tx_pbl);
350 		split_bd_len = BD_UNMAP_LEN(split);
351 		nbd--;
352 	}
353 
354 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
355 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
356 
357 	/* Unmap the data of the skb frags */
358 	for (i = 0; i < nbd; i++) {
359 		tx_data_bd = (struct eth_tx_bd *)
360 			qed_chain_produce(&txq->tx_pbl);
361 		if (tx_data_bd->nbytes)
362 			dma_unmap_page(&edev->pdev->dev,
363 				       BD_UNMAP_ADDR(tx_data_bd),
364 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
365 	}
366 
367 	/* Return again prod to its position before this skb was handled */
368 	qed_chain_set_prod(&txq->tx_pbl,
369 			   le16_to_cpu(txq->tx_db.data.bd_prod),
370 			   first_bd);
371 
372 	/* Free skb */
373 	dev_kfree_skb_any(skb);
374 	txq->sw_tx_ring[idx].skb = NULL;
375 	txq->sw_tx_ring[idx].flags = 0;
376 }
377 
378 static u32 qede_xmit_type(struct qede_dev *edev,
379 			  struct sk_buff *skb,
380 			  int *ipv6_ext)
381 {
382 	u32 rc = XMIT_L4_CSUM;
383 	__be16 l3_proto;
384 
385 	if (skb->ip_summed != CHECKSUM_PARTIAL)
386 		return XMIT_PLAIN;
387 
388 	l3_proto = vlan_get_protocol(skb);
389 	if (l3_proto == htons(ETH_P_IPV6) &&
390 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
391 		*ipv6_ext = 1;
392 
393 	if (skb->encapsulation)
394 		rc |= XMIT_ENC;
395 
396 	if (skb_is_gso(skb))
397 		rc |= XMIT_LSO;
398 
399 	return rc;
400 }
401 
402 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
403 					 struct eth_tx_2nd_bd *second_bd,
404 					 struct eth_tx_3rd_bd *third_bd)
405 {
406 	u8 l4_proto;
407 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
408 
409 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
410 
411 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
412 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
413 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
414 
415 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
416 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
417 
418 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
419 		l4_proto = ipv6_hdr(skb)->nexthdr;
420 	else
421 		l4_proto = ip_hdr(skb)->protocol;
422 
423 	if (l4_proto == IPPROTO_UDP)
424 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
425 
426 	if (third_bd)
427 		third_bd->data.bitfields |=
428 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
429 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
430 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
431 
432 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
433 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
434 }
435 
436 static int map_frag_to_bd(struct qede_dev *edev,
437 			  skb_frag_t *frag,
438 			  struct eth_tx_bd *bd)
439 {
440 	dma_addr_t mapping;
441 
442 	/* Map skb non-linear frag data for DMA */
443 	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
444 				   skb_frag_size(frag),
445 				   DMA_TO_DEVICE);
446 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
447 		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
448 		return -ENOMEM;
449 	}
450 
451 	/* Setup the data pointer of the frag data */
452 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
453 
454 	return 0;
455 }
456 
457 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
458 {
459 	if (is_encap_pkt)
460 		return (skb_inner_transport_header(skb) +
461 			inner_tcp_hdrlen(skb) - skb->data);
462 	else
463 		return (skb_transport_header(skb) +
464 			tcp_hdrlen(skb) - skb->data);
465 }
466 
467 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
468 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
469 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
470 			     u8 xmit_type)
471 {
472 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
473 
474 	if (xmit_type & XMIT_LSO) {
475 		int hlen;
476 
477 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
478 
479 		/* linear payload would require its own BD */
480 		if (skb_headlen(skb) > hlen)
481 			allowed_frags--;
482 	}
483 
484 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
485 }
486 #endif
487 
488 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
489 {
490 	/* wmb makes sure that the BDs data is updated before updating the
491 	 * producer, otherwise FW may read old data from the BDs.
492 	 */
493 	wmb();
494 	barrier();
495 	writel(txq->tx_db.raw, txq->doorbell_addr);
496 
497 	/* mmiowb is needed to synchronize doorbell writes from more than one
498 	 * processor. It guarantees that the write arrives to the device before
499 	 * the queue lock is released and another start_xmit is called (possibly
500 	 * on another CPU). Without this barrier, the next doorbell can bypass
501 	 * this doorbell. This is applicable to IA64/Altix systems.
502 	 */
503 	mmiowb();
504 }
505 
506 /* Main transmit function */
507 static
508 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
509 			    struct net_device *ndev)
510 {
511 	struct qede_dev *edev = netdev_priv(ndev);
512 	struct netdev_queue *netdev_txq;
513 	struct qede_tx_queue *txq;
514 	struct eth_tx_1st_bd *first_bd;
515 	struct eth_tx_2nd_bd *second_bd = NULL;
516 	struct eth_tx_3rd_bd *third_bd = NULL;
517 	struct eth_tx_bd *tx_data_bd = NULL;
518 	u16 txq_index;
519 	u8 nbd = 0;
520 	dma_addr_t mapping;
521 	int rc, frag_idx = 0, ipv6_ext = 0;
522 	u8 xmit_type;
523 	u16 idx;
524 	u16 hlen;
525 	bool data_split = false;
526 
527 	/* Get tx-queue context and netdev index */
528 	txq_index = skb_get_queue_mapping(skb);
529 	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
530 	txq = QEDE_TX_QUEUE(edev, txq_index);
531 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
532 
533 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
534 			       (MAX_SKB_FRAGS + 1));
535 
536 	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
537 
538 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
539 	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
540 		if (skb_linearize(skb)) {
541 			DP_NOTICE(edev,
542 				  "SKB linearization failed - silently dropping this SKB\n");
543 			dev_kfree_skb_any(skb);
544 			return NETDEV_TX_OK;
545 		}
546 	}
547 #endif
548 
549 	/* Fill the entry in the SW ring and the BDs in the FW ring */
550 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
551 	txq->sw_tx_ring[idx].skb = skb;
552 	first_bd = (struct eth_tx_1st_bd *)
553 		   qed_chain_produce(&txq->tx_pbl);
554 	memset(first_bd, 0, sizeof(*first_bd));
555 	first_bd->data.bd_flags.bitfields =
556 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
557 
558 	/* Map skb linear data for DMA and set in the first BD */
559 	mapping = dma_map_single(&edev->pdev->dev, skb->data,
560 				 skb_headlen(skb), DMA_TO_DEVICE);
561 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
562 		DP_NOTICE(edev, "SKB mapping failed\n");
563 		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
564 		qede_update_tx_producer(txq);
565 		return NETDEV_TX_OK;
566 	}
567 	nbd++;
568 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
569 
570 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
571 	 * 3rd BDs.
572 	 */
573 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
574 		second_bd = (struct eth_tx_2nd_bd *)
575 			qed_chain_produce(&txq->tx_pbl);
576 		memset(second_bd, 0, sizeof(*second_bd));
577 
578 		nbd++;
579 		third_bd = (struct eth_tx_3rd_bd *)
580 			qed_chain_produce(&txq->tx_pbl);
581 		memset(third_bd, 0, sizeof(*third_bd));
582 
583 		nbd++;
584 		/* We need to fill in additional data in second_bd... */
585 		tx_data_bd = (struct eth_tx_bd *)second_bd;
586 	}
587 
588 	if (skb_vlan_tag_present(skb)) {
589 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
590 		first_bd->data.bd_flags.bitfields |=
591 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
592 	}
593 
594 	/* Fill the parsing flags & params according to the requested offload */
595 	if (xmit_type & XMIT_L4_CSUM) {
596 		/* We don't re-calculate IP checksum as it is already done by
597 		 * the upper stack
598 		 */
599 		first_bd->data.bd_flags.bitfields |=
600 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
601 
602 		if (xmit_type & XMIT_ENC) {
603 			first_bd->data.bd_flags.bitfields |=
604 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
605 			first_bd->data.bitfields |=
606 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
607 		}
608 
609 		/* If the packet is IPv6 with extension header, indicate that
610 		 * to FW and pass few params, since the device cracker doesn't
611 		 * support parsing IPv6 with extension header/s.
612 		 */
613 		if (unlikely(ipv6_ext))
614 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
615 	}
616 
617 	if (xmit_type & XMIT_LSO) {
618 		first_bd->data.bd_flags.bitfields |=
619 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
620 		third_bd->data.lso_mss =
621 			cpu_to_le16(skb_shinfo(skb)->gso_size);
622 
623 		if (unlikely(xmit_type & XMIT_ENC)) {
624 			first_bd->data.bd_flags.bitfields |=
625 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
626 			hlen = qede_get_skb_hlen(skb, true);
627 		} else {
628 			first_bd->data.bd_flags.bitfields |=
629 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
630 			hlen = qede_get_skb_hlen(skb, false);
631 		}
632 
633 		/* @@@TBD - if will not be removed need to check */
634 		third_bd->data.bitfields |=
635 			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
636 
637 		/* Make life easier for FW guys who can't deal with header and
638 		 * data on same BD. If we need to split, use the second bd...
639 		 */
640 		if (unlikely(skb_headlen(skb) > hlen)) {
641 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
642 				   "TSO split header size is %d (%x:%x)\n",
643 				   first_bd->nbytes, first_bd->addr.hi,
644 				   first_bd->addr.lo);
645 
646 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
647 					   le32_to_cpu(first_bd->addr.lo)) +
648 					   hlen;
649 
650 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
651 					      le16_to_cpu(first_bd->nbytes) -
652 					      hlen);
653 
654 			/* this marks the BD as one that has no
655 			 * individual mapping
656 			 */
657 			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
658 
659 			first_bd->nbytes = cpu_to_le16(hlen);
660 
661 			tx_data_bd = (struct eth_tx_bd *)third_bd;
662 			data_split = true;
663 		}
664 	} else {
665 		first_bd->data.bitfields |=
666 		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
667 		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
668 	}
669 
670 	/* Handle fragmented skb */
671 	/* special handle for frags inside 2nd and 3rd bds.. */
672 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
673 		rc = map_frag_to_bd(edev,
674 				    &skb_shinfo(skb)->frags[frag_idx],
675 				    tx_data_bd);
676 		if (rc) {
677 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
678 						data_split);
679 			qede_update_tx_producer(txq);
680 			return NETDEV_TX_OK;
681 		}
682 
683 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
684 			tx_data_bd = (struct eth_tx_bd *)third_bd;
685 		else
686 			tx_data_bd = NULL;
687 
688 		frag_idx++;
689 	}
690 
691 	/* map last frags into 4th, 5th .... */
692 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
693 		tx_data_bd = (struct eth_tx_bd *)
694 			     qed_chain_produce(&txq->tx_pbl);
695 
696 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
697 
698 		rc = map_frag_to_bd(edev,
699 				    &skb_shinfo(skb)->frags[frag_idx],
700 				    tx_data_bd);
701 		if (rc) {
702 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
703 						data_split);
704 			qede_update_tx_producer(txq);
705 			return NETDEV_TX_OK;
706 		}
707 	}
708 
709 	/* update the first BD with the actual num BDs */
710 	first_bd->data.nbds = nbd;
711 
712 	netdev_tx_sent_queue(netdev_txq, skb->len);
713 
714 	skb_tx_timestamp(skb);
715 
716 	/* Advance packet producer only before sending the packet since mapping
717 	 * of pages may fail.
718 	 */
719 	txq->sw_tx_prod++;
720 
721 	/* 'next page' entries are counted in the producer value */
722 	txq->tx_db.data.bd_prod =
723 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
724 
725 	if (!skb->xmit_more || netif_tx_queue_stopped(netdev_txq))
726 		qede_update_tx_producer(txq);
727 
728 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
729 		      < (MAX_SKB_FRAGS + 1))) {
730 		netif_tx_stop_queue(netdev_txq);
731 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
732 			   "Stop queue was called\n");
733 		/* paired memory barrier is in qede_tx_int(), we have to keep
734 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
735 		 * fp->bd_tx_cons
736 		 */
737 		smp_mb();
738 
739 		if (qed_chain_get_elem_left(&txq->tx_pbl)
740 		     >= (MAX_SKB_FRAGS + 1) &&
741 		    (edev->state == QEDE_STATE_OPEN)) {
742 			netif_tx_wake_queue(netdev_txq);
743 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
744 				   "Wake queue was called\n");
745 		}
746 	}
747 
748 	return NETDEV_TX_OK;
749 }
750 
751 int qede_txq_has_work(struct qede_tx_queue *txq)
752 {
753 	u16 hw_bd_cons;
754 
755 	/* Tell compiler that consumer and producer can change */
756 	barrier();
757 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
758 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
759 		return 0;
760 
761 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
762 }
763 
764 static int qede_tx_int(struct qede_dev *edev,
765 		       struct qede_tx_queue *txq)
766 {
767 	struct netdev_queue *netdev_txq;
768 	u16 hw_bd_cons;
769 	unsigned int pkts_compl = 0, bytes_compl = 0;
770 	int rc;
771 
772 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
773 
774 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
775 	barrier();
776 
777 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
778 		int len = 0;
779 
780 		rc = qede_free_tx_pkt(edev, txq, &len);
781 		if (rc) {
782 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
783 				  hw_bd_cons,
784 				  qed_chain_get_cons_idx(&txq->tx_pbl));
785 			break;
786 		}
787 
788 		bytes_compl += len;
789 		pkts_compl++;
790 		txq->sw_tx_cons++;
791 	}
792 
793 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
794 
795 	/* Need to make the tx_bd_cons update visible to start_xmit()
796 	 * before checking for netif_tx_queue_stopped().  Without the
797 	 * memory barrier, there is a small possibility that
798 	 * start_xmit() will miss it and cause the queue to be stopped
799 	 * forever.
800 	 * On the other hand we need an rmb() here to ensure the proper
801 	 * ordering of bit testing in the following
802 	 * netif_tx_queue_stopped(txq) call.
803 	 */
804 	smp_mb();
805 
806 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
807 		/* Taking tx_lock is needed to prevent reenabling the queue
808 		 * while it's empty. This could have happen if rx_action() gets
809 		 * suspended in qede_tx_int() after the condition before
810 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
811 		 *
812 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
813 		 * sends some packets consuming the whole queue again->
814 		 * stops the queue
815 		 */
816 
817 		__netif_tx_lock(netdev_txq, smp_processor_id());
818 
819 		if ((netif_tx_queue_stopped(netdev_txq)) &&
820 		    (edev->state == QEDE_STATE_OPEN) &&
821 		    (qed_chain_get_elem_left(&txq->tx_pbl)
822 		      >= (MAX_SKB_FRAGS + 1))) {
823 			netif_tx_wake_queue(netdev_txq);
824 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
825 				   "Wake queue was called\n");
826 		}
827 
828 		__netif_tx_unlock(netdev_txq);
829 	}
830 
831 	return 0;
832 }
833 
834 bool qede_has_rx_work(struct qede_rx_queue *rxq)
835 {
836 	u16 hw_comp_cons, sw_comp_cons;
837 
838 	/* Tell compiler that status block fields can change */
839 	barrier();
840 
841 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
842 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
843 
844 	return hw_comp_cons != sw_comp_cons;
845 }
846 
847 static bool qede_has_tx_work(struct qede_fastpath *fp)
848 {
849 	u8 tc;
850 
851 	for (tc = 0; tc < fp->edev->num_tc; tc++)
852 		if (qede_txq_has_work(&fp->txqs[tc]))
853 			return true;
854 	return false;
855 }
856 
857 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
858 {
859 	qed_chain_consume(&rxq->rx_bd_ring);
860 	rxq->sw_rx_cons++;
861 }
862 
863 /* This function reuses the buffer(from an offset) from
864  * consumer index to producer index in the bd ring
865  */
866 static inline void qede_reuse_page(struct qede_dev *edev,
867 				   struct qede_rx_queue *rxq,
868 				   struct sw_rx_data *curr_cons)
869 {
870 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
871 	struct sw_rx_data *curr_prod;
872 	dma_addr_t new_mapping;
873 
874 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
875 	*curr_prod = *curr_cons;
876 
877 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
878 
879 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
880 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
881 
882 	rxq->sw_rx_prod++;
883 	curr_cons->data = NULL;
884 }
885 
886 /* In case of allocation failures reuse buffers
887  * from consumer index to produce buffers for firmware
888  */
889 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
890 			     struct qede_dev *edev, u8 count)
891 {
892 	struct sw_rx_data *curr_cons;
893 
894 	for (; count > 0; count--) {
895 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
896 		qede_reuse_page(edev, rxq, curr_cons);
897 		qede_rx_bd_ring_consume(rxq);
898 	}
899 }
900 
901 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
902 					 struct qede_rx_queue *rxq,
903 					 struct sw_rx_data *curr_cons)
904 {
905 	/* Move to the next segment in the page */
906 	curr_cons->page_offset += rxq->rx_buf_seg_size;
907 
908 	if (curr_cons->page_offset == PAGE_SIZE) {
909 		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
910 			/* Since we failed to allocate new buffer
911 			 * current buffer can be used again.
912 			 */
913 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
914 
915 			return -ENOMEM;
916 		}
917 
918 		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
919 			       PAGE_SIZE, DMA_FROM_DEVICE);
920 	} else {
921 		/* Increment refcount of the page as we don't want
922 		 * network stack to take the ownership of the page
923 		 * which can be recycled multiple times by the driver.
924 		 */
925 		page_ref_inc(curr_cons->data);
926 		qede_reuse_page(edev, rxq, curr_cons);
927 	}
928 
929 	return 0;
930 }
931 
932 static inline void qede_update_rx_prod(struct qede_dev *edev,
933 				       struct qede_rx_queue *rxq)
934 {
935 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
936 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
937 	struct eth_rx_prod_data rx_prods = {0};
938 
939 	/* Update producers */
940 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
941 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
942 
943 	/* Make sure that the BD and SGE data is updated before updating the
944 	 * producers since FW might read the BD/SGE right after the producer
945 	 * is updated.
946 	 */
947 	wmb();
948 
949 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
950 			(u32 *)&rx_prods);
951 
952 	/* mmiowb is needed to synchronize doorbell writes from more than one
953 	 * processor. It guarantees that the write arrives to the device before
954 	 * the napi lock is released and another qede_poll is called (possibly
955 	 * on another CPU). Without this barrier, the next doorbell can bypass
956 	 * this doorbell. This is applicable to IA64/Altix systems.
957 	 */
958 	mmiowb();
959 }
960 
961 static u32 qede_get_rxhash(struct qede_dev *edev,
962 			   u8 bitfields,
963 			   __le32 rss_hash,
964 			   enum pkt_hash_types *rxhash_type)
965 {
966 	enum rss_hash_type htype;
967 
968 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
969 
970 	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
971 		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
972 				(htype == RSS_HASH_TYPE_IPV6)) ?
973 				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
974 		return le32_to_cpu(rss_hash);
975 	}
976 	*rxhash_type = PKT_HASH_TYPE_NONE;
977 	return 0;
978 }
979 
980 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
981 {
982 	skb_checksum_none_assert(skb);
983 
984 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
985 		skb->ip_summed = CHECKSUM_UNNECESSARY;
986 
987 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
988 		skb->csum_level = 1;
989 }
990 
991 static inline void qede_skb_receive(struct qede_dev *edev,
992 				    struct qede_fastpath *fp,
993 				    struct sk_buff *skb,
994 				    u16 vlan_tag)
995 {
996 	if (vlan_tag)
997 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
998 				       vlan_tag);
999 
1000 	napi_gro_receive(&fp->napi, skb);
1001 }
1002 
1003 static void qede_set_gro_params(struct qede_dev *edev,
1004 				struct sk_buff *skb,
1005 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
1006 {
1007 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1008 
1009 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1010 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1011 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1012 	else
1013 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1014 
1015 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1016 					cqe->header_len;
1017 }
1018 
1019 static int qede_fill_frag_skb(struct qede_dev *edev,
1020 			      struct qede_rx_queue *rxq,
1021 			      u8 tpa_agg_index,
1022 			      u16 len_on_bd)
1023 {
1024 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1025 							 NUM_RX_BDS_MAX];
1026 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1027 	struct sk_buff *skb = tpa_info->skb;
1028 
1029 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1030 		goto out;
1031 
1032 	/* Add one frag and update the appropriate fields in the skb */
1033 	skb_fill_page_desc(skb, tpa_info->frag_id++,
1034 			   current_bd->data, current_bd->page_offset,
1035 			   len_on_bd);
1036 
1037 	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1038 		/* Incr page ref count to reuse on allocation failure
1039 		 * so that it doesn't get freed while freeing SKB.
1040 		 */
1041 		page_ref_inc(current_bd->data);
1042 		goto out;
1043 	}
1044 
1045 	qed_chain_consume(&rxq->rx_bd_ring);
1046 	rxq->sw_rx_cons++;
1047 
1048 	skb->data_len += len_on_bd;
1049 	skb->truesize += rxq->rx_buf_seg_size;
1050 	skb->len += len_on_bd;
1051 
1052 	return 0;
1053 
1054 out:
1055 	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1056 	qede_recycle_rx_bd_ring(rxq, edev, 1);
1057 	return -ENOMEM;
1058 }
1059 
1060 static void qede_tpa_start(struct qede_dev *edev,
1061 			   struct qede_rx_queue *rxq,
1062 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
1063 {
1064 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1065 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1066 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1067 	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1068 	dma_addr_t mapping = tpa_info->replace_buf_mapping;
1069 	struct sw_rx_data *sw_rx_data_cons;
1070 	struct sw_rx_data *sw_rx_data_prod;
1071 	enum pkt_hash_types rxhash_type;
1072 	u32 rxhash;
1073 
1074 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1075 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1076 
1077 	/* Use pre-allocated replacement buffer - we can't release the agg.
1078 	 * start until its over and we don't want to risk allocation failing
1079 	 * here, so re-allocate when aggregation will be over.
1080 	 */
1081 	sw_rx_data_prod->mapping = replace_buf->mapping;
1082 
1083 	sw_rx_data_prod->data = replace_buf->data;
1084 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1085 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1086 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
1087 
1088 	rxq->sw_rx_prod++;
1089 
1090 	/* move partial skb from cons to pool (don't unmap yet)
1091 	 * save mapping, incase we drop the packet later on.
1092 	 */
1093 	tpa_info->start_buf = *sw_rx_data_cons;
1094 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1095 			   le32_to_cpu(rx_bd_cons->addr.lo));
1096 
1097 	tpa_info->start_buf_mapping = mapping;
1098 	rxq->sw_rx_cons++;
1099 
1100 	/* set tpa state to start only if we are able to allocate skb
1101 	 * for this aggregation, otherwise mark as error and aggregation will
1102 	 * be dropped
1103 	 */
1104 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
1105 					 le16_to_cpu(cqe->len_on_first_bd));
1106 	if (unlikely(!tpa_info->skb)) {
1107 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1108 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1109 		goto cons_buf;
1110 	}
1111 
1112 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1113 	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1114 
1115 	/* Start filling in the aggregation info */
1116 	tpa_info->frag_id = 0;
1117 	tpa_info->agg_state = QEDE_AGG_STATE_START;
1118 
1119 	rxhash = qede_get_rxhash(edev, cqe->bitfields,
1120 				 cqe->rss_hash, &rxhash_type);
1121 	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1122 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1123 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1124 		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1125 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1126 	else
1127 		tpa_info->vlan_tag = 0;
1128 
1129 	/* This is needed in order to enable forwarding support */
1130 	qede_set_gro_params(edev, tpa_info->skb, cqe);
1131 
1132 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1133 	if (likely(cqe->ext_bd_len_list[0]))
1134 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1135 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1136 
1137 	if (unlikely(cqe->ext_bd_len_list[1])) {
1138 		DP_ERR(edev,
1139 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1140 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1141 	}
1142 }
1143 
1144 #ifdef CONFIG_INET
1145 static void qede_gro_ip_csum(struct sk_buff *skb)
1146 {
1147 	const struct iphdr *iph = ip_hdr(skb);
1148 	struct tcphdr *th;
1149 
1150 	skb_set_transport_header(skb, sizeof(struct iphdr));
1151 	th = tcp_hdr(skb);
1152 
1153 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1154 				  iph->saddr, iph->daddr, 0);
1155 
1156 	tcp_gro_complete(skb);
1157 }
1158 
1159 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1160 {
1161 	struct ipv6hdr *iph = ipv6_hdr(skb);
1162 	struct tcphdr *th;
1163 
1164 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1165 	th = tcp_hdr(skb);
1166 
1167 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1168 				  &iph->saddr, &iph->daddr, 0);
1169 	tcp_gro_complete(skb);
1170 }
1171 #endif
1172 
1173 static void qede_gro_receive(struct qede_dev *edev,
1174 			     struct qede_fastpath *fp,
1175 			     struct sk_buff *skb,
1176 			     u16 vlan_tag)
1177 {
1178 	/* FW can send a single MTU sized packet from gro flow
1179 	 * due to aggregation timeout/last segment etc. which
1180 	 * is not expected to be a gro packet. If a skb has zero
1181 	 * frags then simply push it in the stack as non gso skb.
1182 	 */
1183 	if (unlikely(!skb->data_len)) {
1184 		skb_shinfo(skb)->gso_type = 0;
1185 		skb_shinfo(skb)->gso_size = 0;
1186 		goto send_skb;
1187 	}
1188 
1189 #ifdef CONFIG_INET
1190 	if (skb_shinfo(skb)->gso_size) {
1191 		skb_set_network_header(skb, 0);
1192 
1193 		switch (skb->protocol) {
1194 		case htons(ETH_P_IP):
1195 			qede_gro_ip_csum(skb);
1196 			break;
1197 		case htons(ETH_P_IPV6):
1198 			qede_gro_ipv6_csum(skb);
1199 			break;
1200 		default:
1201 			DP_ERR(edev,
1202 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1203 			       ntohs(skb->protocol));
1204 		}
1205 	}
1206 #endif
1207 
1208 send_skb:
1209 	skb_record_rx_queue(skb, fp->rss_id);
1210 	qede_skb_receive(edev, fp, skb, vlan_tag);
1211 }
1212 
1213 static inline void qede_tpa_cont(struct qede_dev *edev,
1214 				 struct qede_rx_queue *rxq,
1215 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1216 {
1217 	int i;
1218 
1219 	for (i = 0; cqe->len_list[i]; i++)
1220 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1221 				   le16_to_cpu(cqe->len_list[i]));
1222 
1223 	if (unlikely(i > 1))
1224 		DP_ERR(edev,
1225 		       "Strange - TPA cont with more than a single len_list entry\n");
1226 }
1227 
1228 static void qede_tpa_end(struct qede_dev *edev,
1229 			 struct qede_fastpath *fp,
1230 			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1231 {
1232 	struct qede_rx_queue *rxq = fp->rxq;
1233 	struct qede_agg_info *tpa_info;
1234 	struct sk_buff *skb;
1235 	int i;
1236 
1237 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1238 	skb = tpa_info->skb;
1239 
1240 	for (i = 0; cqe->len_list[i]; i++)
1241 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1242 				   le16_to_cpu(cqe->len_list[i]));
1243 	if (unlikely(i > 1))
1244 		DP_ERR(edev,
1245 		       "Strange - TPA emd with more than a single len_list entry\n");
1246 
1247 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1248 		goto err;
1249 
1250 	/* Sanity */
1251 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1252 		DP_ERR(edev,
1253 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1254 		       cqe->num_of_bds, tpa_info->frag_id);
1255 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1256 		DP_ERR(edev,
1257 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1258 		       le16_to_cpu(cqe->total_packet_len), skb->len);
1259 
1260 	memcpy(skb->data,
1261 	       page_address(tpa_info->start_buf.data) +
1262 		tpa_info->start_cqe.placement_offset +
1263 		tpa_info->start_buf.page_offset,
1264 	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1265 
1266 	/* Recycle [mapped] start buffer for the next replacement */
1267 	tpa_info->replace_buf = tpa_info->start_buf;
1268 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1269 
1270 	/* Finalize the SKB */
1271 	skb->protocol = eth_type_trans(skb, edev->ndev);
1272 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1273 
1274 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1275 	 * to skb_shinfo(skb)->gso_segs
1276 	 */
1277 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1278 
1279 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1280 
1281 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1282 
1283 	return;
1284 err:
1285 	/* The BD starting the aggregation is still mapped; Re-use it for
1286 	 * future aggregations [as replacement buffer]
1287 	 */
1288 	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1289 	       sizeof(struct sw_rx_data));
1290 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1291 	tpa_info->start_buf.data = NULL;
1292 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1293 	dev_kfree_skb_any(tpa_info->skb);
1294 	tpa_info->skb = NULL;
1295 }
1296 
1297 static bool qede_tunn_exist(u16 flag)
1298 {
1299 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1300 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1301 }
1302 
1303 static u8 qede_check_tunn_csum(u16 flag)
1304 {
1305 	u16 csum_flag = 0;
1306 	u8 tcsum = 0;
1307 
1308 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1309 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1310 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1311 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1312 
1313 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1314 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1315 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1316 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1317 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1318 	}
1319 
1320 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1321 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1322 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1323 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1324 
1325 	if (csum_flag & flag)
1326 		return QEDE_CSUM_ERROR;
1327 
1328 	return QEDE_CSUM_UNNECESSARY | tcsum;
1329 }
1330 
1331 static u8 qede_check_notunn_csum(u16 flag)
1332 {
1333 	u16 csum_flag = 0;
1334 	u8 csum = 0;
1335 
1336 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1337 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1338 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1339 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1340 		csum = QEDE_CSUM_UNNECESSARY;
1341 	}
1342 
1343 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1344 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1345 
1346 	if (csum_flag & flag)
1347 		return QEDE_CSUM_ERROR;
1348 
1349 	return csum;
1350 }
1351 
1352 static u8 qede_check_csum(u16 flag)
1353 {
1354 	if (!qede_tunn_exist(flag))
1355 		return qede_check_notunn_csum(flag);
1356 	else
1357 		return qede_check_tunn_csum(flag);
1358 }
1359 
1360 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1361 				      u16 flag)
1362 {
1363 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1364 
1365 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1366 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1367 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1368 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1369 		return true;
1370 
1371 	return false;
1372 }
1373 
1374 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1375 {
1376 	struct qede_dev *edev = fp->edev;
1377 	struct qede_rx_queue *rxq = fp->rxq;
1378 
1379 	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1380 	int rx_pkt = 0;
1381 	u8 csum_flag;
1382 
1383 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1384 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1385 
1386 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1387 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1388 	 * read before it is written by FW, then FW writes CQE and SB, and then
1389 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1390 	 */
1391 	rmb();
1392 
1393 	/* Loop to complete all indicated BDs */
1394 	while (sw_comp_cons != hw_comp_cons) {
1395 		struct eth_fast_path_rx_reg_cqe *fp_cqe;
1396 		enum pkt_hash_types rxhash_type;
1397 		enum eth_rx_cqe_type cqe_type;
1398 		struct sw_rx_data *sw_rx_data;
1399 		union eth_rx_cqe *cqe;
1400 		struct sk_buff *skb;
1401 		struct page *data;
1402 		__le16 flags;
1403 		u16 len, pad;
1404 		u32 rx_hash;
1405 
1406 		/* Get the CQE from the completion ring */
1407 		cqe = (union eth_rx_cqe *)
1408 			qed_chain_consume(&rxq->rx_comp_ring);
1409 		cqe_type = cqe->fast_path_regular.type;
1410 
1411 		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1412 			edev->ops->eth_cqe_completion(
1413 					edev->cdev, fp->rss_id,
1414 					(struct eth_slow_path_rx_cqe *)cqe);
1415 			goto next_cqe;
1416 		}
1417 
1418 		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1419 			switch (cqe_type) {
1420 			case ETH_RX_CQE_TYPE_TPA_START:
1421 				qede_tpa_start(edev, rxq,
1422 					       &cqe->fast_path_tpa_start);
1423 				goto next_cqe;
1424 			case ETH_RX_CQE_TYPE_TPA_CONT:
1425 				qede_tpa_cont(edev, rxq,
1426 					      &cqe->fast_path_tpa_cont);
1427 				goto next_cqe;
1428 			case ETH_RX_CQE_TYPE_TPA_END:
1429 				qede_tpa_end(edev, fp,
1430 					     &cqe->fast_path_tpa_end);
1431 				goto next_rx_only;
1432 			default:
1433 				break;
1434 			}
1435 		}
1436 
1437 		/* Get the data from the SW ring */
1438 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1439 		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1440 		data = sw_rx_data->data;
1441 
1442 		fp_cqe = &cqe->fast_path_regular;
1443 		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1444 		pad = fp_cqe->placement_offset;
1445 		flags = cqe->fast_path_regular.pars_flags.flags;
1446 
1447 		/* If this is an error packet then drop it */
1448 		parse_flag = le16_to_cpu(flags);
1449 
1450 		csum_flag = qede_check_csum(parse_flag);
1451 		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1452 			if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1453 						      parse_flag)) {
1454 				rxq->rx_ip_frags++;
1455 				goto alloc_skb;
1456 			}
1457 
1458 			DP_NOTICE(edev,
1459 				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1460 				  sw_comp_cons, parse_flag);
1461 			rxq->rx_hw_errors++;
1462 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1463 			goto next_cqe;
1464 		}
1465 
1466 alloc_skb:
1467 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1468 		if (unlikely(!skb)) {
1469 			DP_NOTICE(edev,
1470 				  "Build_skb failed, dropping incoming packet\n");
1471 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1472 			rxq->rx_alloc_errors++;
1473 			goto next_cqe;
1474 		}
1475 
1476 		/* Copy data into SKB */
1477 		if (len + pad <= edev->rx_copybreak) {
1478 			memcpy(skb_put(skb, len),
1479 			       page_address(data) + pad +
1480 				sw_rx_data->page_offset, len);
1481 			qede_reuse_page(edev, rxq, sw_rx_data);
1482 		} else {
1483 			struct skb_frag_struct *frag;
1484 			unsigned int pull_len;
1485 			unsigned char *va;
1486 
1487 			frag = &skb_shinfo(skb)->frags[0];
1488 
1489 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1490 					pad + sw_rx_data->page_offset,
1491 					len, rxq->rx_buf_seg_size);
1492 
1493 			va = skb_frag_address(frag);
1494 			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1495 
1496 			/* Align the pull_len to optimize memcpy */
1497 			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1498 
1499 			skb_frag_size_sub(frag, pull_len);
1500 			frag->page_offset += pull_len;
1501 			skb->data_len -= pull_len;
1502 			skb->tail += pull_len;
1503 
1504 			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1505 							    sw_rx_data))) {
1506 				DP_ERR(edev, "Failed to allocate rx buffer\n");
1507 				/* Incr page ref count to reuse on allocation
1508 				 * failure so that it doesn't get freed while
1509 				 * freeing SKB.
1510 				 */
1511 
1512 				page_ref_inc(sw_rx_data->data);
1513 				rxq->rx_alloc_errors++;
1514 				qede_recycle_rx_bd_ring(rxq, edev,
1515 							fp_cqe->bd_num);
1516 				dev_kfree_skb_any(skb);
1517 				goto next_cqe;
1518 			}
1519 		}
1520 
1521 		qede_rx_bd_ring_consume(rxq);
1522 
1523 		if (fp_cqe->bd_num != 1) {
1524 			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1525 			u8 num_frags;
1526 
1527 			pkt_len -= len;
1528 
1529 			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1530 			     num_frags--) {
1531 				u16 cur_size = pkt_len > rxq->rx_buf_size ?
1532 						rxq->rx_buf_size : pkt_len;
1533 				if (unlikely(!cur_size)) {
1534 					DP_ERR(edev,
1535 					       "Still got %d BDs for mapping jumbo, but length became 0\n",
1536 					       num_frags);
1537 					qede_recycle_rx_bd_ring(rxq, edev,
1538 								num_frags);
1539 					dev_kfree_skb_any(skb);
1540 					goto next_cqe;
1541 				}
1542 
1543 				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1544 					qede_recycle_rx_bd_ring(rxq, edev,
1545 								num_frags);
1546 					dev_kfree_skb_any(skb);
1547 					goto next_cqe;
1548 				}
1549 
1550 				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1551 				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1552 				qede_rx_bd_ring_consume(rxq);
1553 
1554 				dma_unmap_page(&edev->pdev->dev,
1555 					       sw_rx_data->mapping,
1556 					       PAGE_SIZE, DMA_FROM_DEVICE);
1557 
1558 				skb_fill_page_desc(skb,
1559 						   skb_shinfo(skb)->nr_frags++,
1560 						   sw_rx_data->data, 0,
1561 						   cur_size);
1562 
1563 				skb->truesize += PAGE_SIZE;
1564 				skb->data_len += cur_size;
1565 				skb->len += cur_size;
1566 				pkt_len -= cur_size;
1567 			}
1568 
1569 			if (unlikely(pkt_len))
1570 				DP_ERR(edev,
1571 				       "Mapped all BDs of jumbo, but still have %d bytes\n",
1572 				       pkt_len);
1573 		}
1574 
1575 		skb->protocol = eth_type_trans(skb, edev->ndev);
1576 
1577 		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1578 					  fp_cqe->rss_hash,
1579 					  &rxhash_type);
1580 
1581 		skb_set_hash(skb, rx_hash, rxhash_type);
1582 
1583 		qede_set_skb_csum(skb, csum_flag);
1584 
1585 		skb_record_rx_queue(skb, fp->rss_id);
1586 
1587 		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1588 next_rx_only:
1589 		rx_pkt++;
1590 
1591 next_cqe: /* don't consume bd rx buffer */
1592 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1593 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1594 		/* CR TPA - revisit how to handle budget in TPA perhaps
1595 		 * increase on "end"
1596 		 */
1597 		if (rx_pkt == budget)
1598 			break;
1599 	} /* repeat while sw_comp_cons != hw_comp_cons... */
1600 
1601 	/* Update producers */
1602 	qede_update_rx_prod(edev, rxq);
1603 
1604 	return rx_pkt;
1605 }
1606 
1607 static int qede_poll(struct napi_struct *napi, int budget)
1608 {
1609 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1610 						napi);
1611 	struct qede_dev *edev = fp->edev;
1612 	int rx_work_done = 0;
1613 	u8 tc;
1614 
1615 	for (tc = 0; tc < edev->num_tc; tc++)
1616 		if (qede_txq_has_work(&fp->txqs[tc]))
1617 			qede_tx_int(edev, &fp->txqs[tc]);
1618 
1619 	rx_work_done = qede_has_rx_work(fp->rxq) ?
1620 			qede_rx_int(fp, budget) : 0;
1621 	if (rx_work_done < budget) {
1622 		qed_sb_update_sb_idx(fp->sb_info);
1623 		/* *_has_*_work() reads the status block,
1624 		 * thus we need to ensure that status block indices
1625 		 * have been actually read (qed_sb_update_sb_idx)
1626 		 * prior to this check (*_has_*_work) so that
1627 		 * we won't write the "newer" value of the status block
1628 		 * to HW (if there was a DMA right after
1629 		 * qede_has_rx_work and if there is no rmb, the memory
1630 		 * reading (qed_sb_update_sb_idx) may be postponed
1631 		 * to right before *_ack_sb). In this case there
1632 		 * will never be another interrupt until there is
1633 		 * another update of the status block, while there
1634 		 * is still unhandled work.
1635 		 */
1636 		rmb();
1637 
1638 		/* Fall out from the NAPI loop if needed */
1639 		if (!(qede_has_rx_work(fp->rxq) ||
1640 		      qede_has_tx_work(fp))) {
1641 			napi_complete(napi);
1642 
1643 			/* Update and reenable interrupts */
1644 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1645 				   1 /*update*/);
1646 		} else {
1647 			rx_work_done = budget;
1648 		}
1649 	}
1650 
1651 	return rx_work_done;
1652 }
1653 
1654 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1655 {
1656 	struct qede_fastpath *fp = fp_cookie;
1657 
1658 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1659 
1660 	napi_schedule_irqoff(&fp->napi);
1661 	return IRQ_HANDLED;
1662 }
1663 
1664 /* -------------------------------------------------------------------------
1665  * END OF FAST-PATH
1666  * -------------------------------------------------------------------------
1667  */
1668 
1669 static int qede_open(struct net_device *ndev);
1670 static int qede_close(struct net_device *ndev);
1671 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1672 static void qede_set_rx_mode(struct net_device *ndev);
1673 static void qede_config_rx_mode(struct net_device *ndev);
1674 
1675 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1676 				 enum qed_filter_xcast_params_type opcode,
1677 				 unsigned char mac[ETH_ALEN])
1678 {
1679 	struct qed_filter_params filter_cmd;
1680 
1681 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1682 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1683 	filter_cmd.filter.ucast.type = opcode;
1684 	filter_cmd.filter.ucast.mac_valid = 1;
1685 	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1686 
1687 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1688 }
1689 
1690 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1691 				  enum qed_filter_xcast_params_type opcode,
1692 				  u16 vid)
1693 {
1694 	struct qed_filter_params filter_cmd;
1695 
1696 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1697 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1698 	filter_cmd.filter.ucast.type = opcode;
1699 	filter_cmd.filter.ucast.vlan_valid = 1;
1700 	filter_cmd.filter.ucast.vlan = vid;
1701 
1702 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1703 }
1704 
1705 void qede_fill_by_demand_stats(struct qede_dev *edev)
1706 {
1707 	struct qed_eth_stats stats;
1708 
1709 	edev->ops->get_vport_stats(edev->cdev, &stats);
1710 	edev->stats.no_buff_discards = stats.no_buff_discards;
1711 	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1712 	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1713 	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1714 	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1715 	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1716 	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1717 	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1718 	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1719 
1720 	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1721 	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1722 	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1723 	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1724 	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1725 	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1726 	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1727 	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1728 	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1729 	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1730 	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1731 	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1732 
1733 	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1734 	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1735 	edev->stats.rx_128_to_255_byte_packets =
1736 				stats.rx_128_to_255_byte_packets;
1737 	edev->stats.rx_256_to_511_byte_packets =
1738 				stats.rx_256_to_511_byte_packets;
1739 	edev->stats.rx_512_to_1023_byte_packets =
1740 				stats.rx_512_to_1023_byte_packets;
1741 	edev->stats.rx_1024_to_1518_byte_packets =
1742 				stats.rx_1024_to_1518_byte_packets;
1743 	edev->stats.rx_1519_to_1522_byte_packets =
1744 				stats.rx_1519_to_1522_byte_packets;
1745 	edev->stats.rx_1519_to_2047_byte_packets =
1746 				stats.rx_1519_to_2047_byte_packets;
1747 	edev->stats.rx_2048_to_4095_byte_packets =
1748 				stats.rx_2048_to_4095_byte_packets;
1749 	edev->stats.rx_4096_to_9216_byte_packets =
1750 				stats.rx_4096_to_9216_byte_packets;
1751 	edev->stats.rx_9217_to_16383_byte_packets =
1752 				stats.rx_9217_to_16383_byte_packets;
1753 	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1754 	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1755 	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1756 	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1757 	edev->stats.rx_align_errors = stats.rx_align_errors;
1758 	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1759 	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1760 	edev->stats.rx_jabbers = stats.rx_jabbers;
1761 	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1762 	edev->stats.rx_fragments = stats.rx_fragments;
1763 	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1764 	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1765 	edev->stats.tx_128_to_255_byte_packets =
1766 				stats.tx_128_to_255_byte_packets;
1767 	edev->stats.tx_256_to_511_byte_packets =
1768 				stats.tx_256_to_511_byte_packets;
1769 	edev->stats.tx_512_to_1023_byte_packets =
1770 				stats.tx_512_to_1023_byte_packets;
1771 	edev->stats.tx_1024_to_1518_byte_packets =
1772 				stats.tx_1024_to_1518_byte_packets;
1773 	edev->stats.tx_1519_to_2047_byte_packets =
1774 				stats.tx_1519_to_2047_byte_packets;
1775 	edev->stats.tx_2048_to_4095_byte_packets =
1776 				stats.tx_2048_to_4095_byte_packets;
1777 	edev->stats.tx_4096_to_9216_byte_packets =
1778 				stats.tx_4096_to_9216_byte_packets;
1779 	edev->stats.tx_9217_to_16383_byte_packets =
1780 				stats.tx_9217_to_16383_byte_packets;
1781 	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1782 	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1783 	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1784 	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1785 	edev->stats.brb_truncates = stats.brb_truncates;
1786 	edev->stats.brb_discards = stats.brb_discards;
1787 	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1788 }
1789 
1790 static struct rtnl_link_stats64 *qede_get_stats64(
1791 			    struct net_device *dev,
1792 			    struct rtnl_link_stats64 *stats)
1793 {
1794 	struct qede_dev *edev = netdev_priv(dev);
1795 
1796 	qede_fill_by_demand_stats(edev);
1797 
1798 	stats->rx_packets = edev->stats.rx_ucast_pkts +
1799 			    edev->stats.rx_mcast_pkts +
1800 			    edev->stats.rx_bcast_pkts;
1801 	stats->tx_packets = edev->stats.tx_ucast_pkts +
1802 			    edev->stats.tx_mcast_pkts +
1803 			    edev->stats.tx_bcast_pkts;
1804 
1805 	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1806 			  edev->stats.rx_mcast_bytes +
1807 			  edev->stats.rx_bcast_bytes;
1808 
1809 	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1810 			  edev->stats.tx_mcast_bytes +
1811 			  edev->stats.tx_bcast_bytes;
1812 
1813 	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1814 	stats->multicast = edev->stats.rx_mcast_pkts +
1815 			   edev->stats.rx_bcast_pkts;
1816 
1817 	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1818 
1819 	stats->collisions = edev->stats.tx_total_collisions;
1820 	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1821 	stats->rx_frame_errors = edev->stats.rx_align_errors;
1822 
1823 	return stats;
1824 }
1825 
1826 #ifdef CONFIG_QED_SRIOV
1827 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1828 			      struct ifla_vf_info *ivi)
1829 {
1830 	struct qede_dev *edev = netdev_priv(dev);
1831 
1832 	if (!edev->ops)
1833 		return -EINVAL;
1834 
1835 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1836 }
1837 
1838 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1839 			    int min_tx_rate, int max_tx_rate)
1840 {
1841 	struct qede_dev *edev = netdev_priv(dev);
1842 
1843 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1844 					max_tx_rate);
1845 }
1846 
1847 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1848 {
1849 	struct qede_dev *edev = netdev_priv(dev);
1850 
1851 	if (!edev->ops)
1852 		return -EINVAL;
1853 
1854 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1855 }
1856 
1857 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1858 				  int link_state)
1859 {
1860 	struct qede_dev *edev = netdev_priv(dev);
1861 
1862 	if (!edev->ops)
1863 		return -EINVAL;
1864 
1865 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1866 }
1867 #endif
1868 
1869 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1870 {
1871 	struct qed_update_vport_params params;
1872 	int rc;
1873 
1874 	/* Proceed only if action actually needs to be performed */
1875 	if (edev->accept_any_vlan == action)
1876 		return;
1877 
1878 	memset(&params, 0, sizeof(params));
1879 
1880 	params.vport_id = 0;
1881 	params.accept_any_vlan = action;
1882 	params.update_accept_any_vlan_flg = 1;
1883 
1884 	rc = edev->ops->vport_update(edev->cdev, &params);
1885 	if (rc) {
1886 		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1887 		       action ? "enable" : "disable");
1888 	} else {
1889 		DP_INFO(edev, "%s accept-any-vlan\n",
1890 			action ? "enabled" : "disabled");
1891 		edev->accept_any_vlan = action;
1892 	}
1893 }
1894 
1895 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1896 {
1897 	struct qede_dev *edev = netdev_priv(dev);
1898 	struct qede_vlan *vlan, *tmp;
1899 	int rc;
1900 
1901 	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1902 
1903 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1904 	if (!vlan) {
1905 		DP_INFO(edev, "Failed to allocate struct for vlan\n");
1906 		return -ENOMEM;
1907 	}
1908 	INIT_LIST_HEAD(&vlan->list);
1909 	vlan->vid = vid;
1910 	vlan->configured = false;
1911 
1912 	/* Verify vlan isn't already configured */
1913 	list_for_each_entry(tmp, &edev->vlan_list, list) {
1914 		if (tmp->vid == vlan->vid) {
1915 			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1916 				   "vlan already configured\n");
1917 			kfree(vlan);
1918 			return -EEXIST;
1919 		}
1920 	}
1921 
1922 	/* If interface is down, cache this VLAN ID and return */
1923 	if (edev->state != QEDE_STATE_OPEN) {
1924 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1925 			   "Interface is down, VLAN %d will be configured when interface is up\n",
1926 			   vid);
1927 		if (vid != 0)
1928 			edev->non_configured_vlans++;
1929 		list_add(&vlan->list, &edev->vlan_list);
1930 
1931 		return 0;
1932 	}
1933 
1934 	/* Check for the filter limit.
1935 	 * Note - vlan0 has a reserved filter and can be added without
1936 	 * worrying about quota
1937 	 */
1938 	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1939 	    (vlan->vid == 0)) {
1940 		rc = qede_set_ucast_rx_vlan(edev,
1941 					    QED_FILTER_XCAST_TYPE_ADD,
1942 					    vlan->vid);
1943 		if (rc) {
1944 			DP_ERR(edev, "Failed to configure VLAN %d\n",
1945 			       vlan->vid);
1946 			kfree(vlan);
1947 			return -EINVAL;
1948 		}
1949 		vlan->configured = true;
1950 
1951 		/* vlan0 filter isn't consuming out of our quota */
1952 		if (vlan->vid != 0)
1953 			edev->configured_vlans++;
1954 	} else {
1955 		/* Out of quota; Activate accept-any-VLAN mode */
1956 		if (!edev->non_configured_vlans)
1957 			qede_config_accept_any_vlan(edev, true);
1958 
1959 		edev->non_configured_vlans++;
1960 	}
1961 
1962 	list_add(&vlan->list, &edev->vlan_list);
1963 
1964 	return 0;
1965 }
1966 
1967 static void qede_del_vlan_from_list(struct qede_dev *edev,
1968 				    struct qede_vlan *vlan)
1969 {
1970 	/* vlan0 filter isn't consuming out of our quota */
1971 	if (vlan->vid != 0) {
1972 		if (vlan->configured)
1973 			edev->configured_vlans--;
1974 		else
1975 			edev->non_configured_vlans--;
1976 	}
1977 
1978 	list_del(&vlan->list);
1979 	kfree(vlan);
1980 }
1981 
1982 static int qede_configure_vlan_filters(struct qede_dev *edev)
1983 {
1984 	int rc = 0, real_rc = 0, accept_any_vlan = 0;
1985 	struct qed_dev_eth_info *dev_info;
1986 	struct qede_vlan *vlan = NULL;
1987 
1988 	if (list_empty(&edev->vlan_list))
1989 		return 0;
1990 
1991 	dev_info = &edev->dev_info;
1992 
1993 	/* Configure non-configured vlans */
1994 	list_for_each_entry(vlan, &edev->vlan_list, list) {
1995 		if (vlan->configured)
1996 			continue;
1997 
1998 		/* We have used all our credits, now enable accept_any_vlan */
1999 		if ((vlan->vid != 0) &&
2000 		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
2001 			accept_any_vlan = 1;
2002 			continue;
2003 		}
2004 
2005 		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2006 
2007 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2008 					    vlan->vid);
2009 		if (rc) {
2010 			DP_ERR(edev, "Failed to configure VLAN %u\n",
2011 			       vlan->vid);
2012 			real_rc = rc;
2013 			continue;
2014 		}
2015 
2016 		vlan->configured = true;
2017 		/* vlan0 filter doesn't consume our VLAN filter's quota */
2018 		if (vlan->vid != 0) {
2019 			edev->non_configured_vlans--;
2020 			edev->configured_vlans++;
2021 		}
2022 	}
2023 
2024 	/* enable accept_any_vlan mode if we have more VLANs than credits,
2025 	 * or remove accept_any_vlan mode if we've actually removed
2026 	 * a non-configured vlan, and all remaining vlans are truly configured.
2027 	 */
2028 
2029 	if (accept_any_vlan)
2030 		qede_config_accept_any_vlan(edev, true);
2031 	else if (!edev->non_configured_vlans)
2032 		qede_config_accept_any_vlan(edev, false);
2033 
2034 	return real_rc;
2035 }
2036 
2037 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2038 {
2039 	struct qede_dev *edev = netdev_priv(dev);
2040 	struct qede_vlan *vlan = NULL;
2041 	int rc;
2042 
2043 	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2044 
2045 	/* Find whether entry exists */
2046 	list_for_each_entry(vlan, &edev->vlan_list, list)
2047 		if (vlan->vid == vid)
2048 			break;
2049 
2050 	if (!vlan || (vlan->vid != vid)) {
2051 		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2052 			   "Vlan isn't configured\n");
2053 		return 0;
2054 	}
2055 
2056 	if (edev->state != QEDE_STATE_OPEN) {
2057 		/* As interface is already down, we don't have a VPORT
2058 		 * instance to remove vlan filter. So just update vlan list
2059 		 */
2060 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2061 			   "Interface is down, removing VLAN from list only\n");
2062 		qede_del_vlan_from_list(edev, vlan);
2063 		return 0;
2064 	}
2065 
2066 	/* Remove vlan */
2067 	rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2068 	if (rc) {
2069 		DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2070 		return -EINVAL;
2071 	}
2072 
2073 	qede_del_vlan_from_list(edev, vlan);
2074 
2075 	/* We have removed a VLAN - try to see if we can
2076 	 * configure non-configured VLAN from the list.
2077 	 */
2078 	rc = qede_configure_vlan_filters(edev);
2079 
2080 	return rc;
2081 }
2082 
2083 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2084 {
2085 	struct qede_vlan *vlan = NULL;
2086 
2087 	if (list_empty(&edev->vlan_list))
2088 		return;
2089 
2090 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2091 		if (!vlan->configured)
2092 			continue;
2093 
2094 		vlan->configured = false;
2095 
2096 		/* vlan0 filter isn't consuming out of our quota */
2097 		if (vlan->vid != 0) {
2098 			edev->non_configured_vlans++;
2099 			edev->configured_vlans--;
2100 		}
2101 
2102 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2103 			   "marked vlan %d as non-configured\n",
2104 			   vlan->vid);
2105 	}
2106 
2107 	edev->accept_any_vlan = false;
2108 }
2109 
2110 int qede_set_features(struct net_device *dev, netdev_features_t features)
2111 {
2112 	struct qede_dev *edev = netdev_priv(dev);
2113 	netdev_features_t changes = features ^ dev->features;
2114 	bool need_reload = false;
2115 
2116 	/* No action needed if hardware GRO is disabled during driver load */
2117 	if (changes & NETIF_F_GRO) {
2118 		if (dev->features & NETIF_F_GRO)
2119 			need_reload = !edev->gro_disable;
2120 		else
2121 			need_reload = edev->gro_disable;
2122 	}
2123 
2124 	if (need_reload && netif_running(edev->ndev)) {
2125 		dev->features = features;
2126 		qede_reload(edev, NULL, NULL);
2127 		return 1;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
2133 static void qede_udp_tunnel_add(struct net_device *dev,
2134 				struct udp_tunnel_info *ti)
2135 {
2136 	struct qede_dev *edev = netdev_priv(dev);
2137 	u16 t_port = ntohs(ti->port);
2138 
2139 	switch (ti->type) {
2140 	case UDP_TUNNEL_TYPE_VXLAN:
2141 		if (edev->vxlan_dst_port)
2142 			return;
2143 
2144 		edev->vxlan_dst_port = t_port;
2145 
2146 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d",
2147 			   t_port);
2148 
2149 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2150 		break;
2151 	case UDP_TUNNEL_TYPE_GENEVE:
2152 		if (edev->geneve_dst_port)
2153 			return;
2154 
2155 		edev->geneve_dst_port = t_port;
2156 
2157 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d",
2158 			   t_port);
2159 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2160 		break;
2161 	default:
2162 		return;
2163 	}
2164 
2165 	schedule_delayed_work(&edev->sp_task, 0);
2166 }
2167 
2168 static void qede_udp_tunnel_del(struct net_device *dev,
2169 				struct udp_tunnel_info *ti)
2170 {
2171 	struct qede_dev *edev = netdev_priv(dev);
2172 	u16 t_port = ntohs(ti->port);
2173 
2174 	switch (ti->type) {
2175 	case UDP_TUNNEL_TYPE_VXLAN:
2176 		if (t_port != edev->vxlan_dst_port)
2177 			return;
2178 
2179 		edev->vxlan_dst_port = 0;
2180 
2181 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d",
2182 			   t_port);
2183 
2184 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2185 		break;
2186 	case UDP_TUNNEL_TYPE_GENEVE:
2187 		if (t_port != edev->geneve_dst_port)
2188 			return;
2189 
2190 		edev->geneve_dst_port = 0;
2191 
2192 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d",
2193 			   t_port);
2194 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2195 		break;
2196 	default:
2197 		return;
2198 	}
2199 
2200 	schedule_delayed_work(&edev->sp_task, 0);
2201 }
2202 
2203 static const struct net_device_ops qede_netdev_ops = {
2204 	.ndo_open = qede_open,
2205 	.ndo_stop = qede_close,
2206 	.ndo_start_xmit = qede_start_xmit,
2207 	.ndo_set_rx_mode = qede_set_rx_mode,
2208 	.ndo_set_mac_address = qede_set_mac_addr,
2209 	.ndo_validate_addr = eth_validate_addr,
2210 	.ndo_change_mtu = qede_change_mtu,
2211 #ifdef CONFIG_QED_SRIOV
2212 	.ndo_set_vf_mac = qede_set_vf_mac,
2213 	.ndo_set_vf_vlan = qede_set_vf_vlan,
2214 #endif
2215 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2216 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2217 	.ndo_set_features = qede_set_features,
2218 	.ndo_get_stats64 = qede_get_stats64,
2219 #ifdef CONFIG_QED_SRIOV
2220 	.ndo_set_vf_link_state = qede_set_vf_link_state,
2221 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2222 	.ndo_get_vf_config = qede_get_vf_config,
2223 	.ndo_set_vf_rate = qede_set_vf_rate,
2224 #endif
2225 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
2226 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
2227 };
2228 
2229 /* -------------------------------------------------------------------------
2230  * START OF PROBE / REMOVE
2231  * -------------------------------------------------------------------------
2232  */
2233 
2234 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2235 					    struct pci_dev *pdev,
2236 					    struct qed_dev_eth_info *info,
2237 					    u32 dp_module,
2238 					    u8 dp_level)
2239 {
2240 	struct net_device *ndev;
2241 	struct qede_dev *edev;
2242 
2243 	ndev = alloc_etherdev_mqs(sizeof(*edev),
2244 				  info->num_queues,
2245 				  info->num_queues);
2246 	if (!ndev) {
2247 		pr_err("etherdev allocation failed\n");
2248 		return NULL;
2249 	}
2250 
2251 	edev = netdev_priv(ndev);
2252 	edev->ndev = ndev;
2253 	edev->cdev = cdev;
2254 	edev->pdev = pdev;
2255 	edev->dp_module = dp_module;
2256 	edev->dp_level = dp_level;
2257 	edev->ops = qed_ops;
2258 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2259 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2260 
2261 	SET_NETDEV_DEV(ndev, &pdev->dev);
2262 
2263 	memset(&edev->stats, 0, sizeof(edev->stats));
2264 	memcpy(&edev->dev_info, info, sizeof(*info));
2265 
2266 	edev->num_tc = edev->dev_info.num_tc;
2267 
2268 	INIT_LIST_HEAD(&edev->vlan_list);
2269 
2270 	return edev;
2271 }
2272 
2273 static void qede_init_ndev(struct qede_dev *edev)
2274 {
2275 	struct net_device *ndev = edev->ndev;
2276 	struct pci_dev *pdev = edev->pdev;
2277 	u32 hw_features;
2278 
2279 	pci_set_drvdata(pdev, ndev);
2280 
2281 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
2282 	ndev->base_addr = ndev->mem_start;
2283 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
2284 	ndev->irq = edev->dev_info.common.pci_irq;
2285 
2286 	ndev->watchdog_timeo = TX_TIMEOUT;
2287 
2288 	ndev->netdev_ops = &qede_netdev_ops;
2289 
2290 	qede_set_ethtool_ops(ndev);
2291 
2292 	/* user-changeble features */
2293 	hw_features = NETIF_F_GRO | NETIF_F_SG |
2294 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2295 		      NETIF_F_TSO | NETIF_F_TSO6;
2296 
2297 	/* Encap features*/
2298 	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2299 		       NETIF_F_TSO_ECN;
2300 	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2301 				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2302 				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2303 				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2304 
2305 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2306 			      NETIF_F_HIGHDMA;
2307 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2308 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2309 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2310 
2311 	ndev->hw_features = hw_features;
2312 
2313 	/* Set network device HW mac */
2314 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2315 }
2316 
2317 /* This function converts from 32b param to two params of level and module
2318  * Input 32b decoding:
2319  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2320  * 'happy' flow, e.g. memory allocation failed.
2321  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2322  * and provide important parameters.
2323  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2324  * module. VERBOSE prints are for tracking the specific flow in low level.
2325  *
2326  * Notice that the level should be that of the lowest required logs.
2327  */
2328 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2329 {
2330 	*p_dp_level = QED_LEVEL_NOTICE;
2331 	*p_dp_module = 0;
2332 
2333 	if (debug & QED_LOG_VERBOSE_MASK) {
2334 		*p_dp_level = QED_LEVEL_VERBOSE;
2335 		*p_dp_module = (debug & 0x3FFFFFFF);
2336 	} else if (debug & QED_LOG_INFO_MASK) {
2337 		*p_dp_level = QED_LEVEL_INFO;
2338 	} else if (debug & QED_LOG_NOTICE_MASK) {
2339 		*p_dp_level = QED_LEVEL_NOTICE;
2340 	}
2341 }
2342 
2343 static void qede_free_fp_array(struct qede_dev *edev)
2344 {
2345 	if (edev->fp_array) {
2346 		struct qede_fastpath *fp;
2347 		int i;
2348 
2349 		for_each_rss(i) {
2350 			fp = &edev->fp_array[i];
2351 
2352 			kfree(fp->sb_info);
2353 			kfree(fp->rxq);
2354 			kfree(fp->txqs);
2355 		}
2356 		kfree(edev->fp_array);
2357 	}
2358 	edev->num_rss = 0;
2359 }
2360 
2361 static int qede_alloc_fp_array(struct qede_dev *edev)
2362 {
2363 	struct qede_fastpath *fp;
2364 	int i;
2365 
2366 	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2367 				 sizeof(*edev->fp_array), GFP_KERNEL);
2368 	if (!edev->fp_array) {
2369 		DP_NOTICE(edev, "fp array allocation failed\n");
2370 		goto err;
2371 	}
2372 
2373 	for_each_rss(i) {
2374 		fp = &edev->fp_array[i];
2375 
2376 		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2377 		if (!fp->sb_info) {
2378 			DP_NOTICE(edev, "sb info struct allocation failed\n");
2379 			goto err;
2380 		}
2381 
2382 		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2383 		if (!fp->rxq) {
2384 			DP_NOTICE(edev, "RXQ struct allocation failed\n");
2385 			goto err;
2386 		}
2387 
2388 		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2389 		if (!fp->txqs) {
2390 			DP_NOTICE(edev, "TXQ array allocation failed\n");
2391 			goto err;
2392 		}
2393 	}
2394 
2395 	return 0;
2396 err:
2397 	qede_free_fp_array(edev);
2398 	return -ENOMEM;
2399 }
2400 
2401 static void qede_sp_task(struct work_struct *work)
2402 {
2403 	struct qede_dev *edev = container_of(work, struct qede_dev,
2404 					     sp_task.work);
2405 	struct qed_dev *cdev = edev->cdev;
2406 
2407 	mutex_lock(&edev->qede_lock);
2408 
2409 	if (edev->state == QEDE_STATE_OPEN) {
2410 		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2411 			qede_config_rx_mode(edev->ndev);
2412 	}
2413 
2414 	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2415 		struct qed_tunn_params tunn_params;
2416 
2417 		memset(&tunn_params, 0, sizeof(tunn_params));
2418 		tunn_params.update_vxlan_port = 1;
2419 		tunn_params.vxlan_port = edev->vxlan_dst_port;
2420 		qed_ops->tunn_config(cdev, &tunn_params);
2421 	}
2422 
2423 	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2424 		struct qed_tunn_params tunn_params;
2425 
2426 		memset(&tunn_params, 0, sizeof(tunn_params));
2427 		tunn_params.update_geneve_port = 1;
2428 		tunn_params.geneve_port = edev->geneve_dst_port;
2429 		qed_ops->tunn_config(cdev, &tunn_params);
2430 	}
2431 
2432 	mutex_unlock(&edev->qede_lock);
2433 }
2434 
2435 static void qede_update_pf_params(struct qed_dev *cdev)
2436 {
2437 	struct qed_pf_params pf_params;
2438 
2439 	/* 64 rx + 64 tx */
2440 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2441 	pf_params.eth_pf_params.num_cons = 128;
2442 	qed_ops->common->update_pf_params(cdev, &pf_params);
2443 }
2444 
2445 enum qede_probe_mode {
2446 	QEDE_PROBE_NORMAL,
2447 };
2448 
2449 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2450 			bool is_vf, enum qede_probe_mode mode)
2451 {
2452 	struct qed_probe_params probe_params;
2453 	struct qed_slowpath_params params;
2454 	struct qed_dev_eth_info dev_info;
2455 	struct qede_dev *edev;
2456 	struct qed_dev *cdev;
2457 	int rc;
2458 
2459 	if (unlikely(dp_level & QED_LEVEL_INFO))
2460 		pr_notice("Starting qede probe\n");
2461 
2462 	memset(&probe_params, 0, sizeof(probe_params));
2463 	probe_params.protocol = QED_PROTOCOL_ETH;
2464 	probe_params.dp_module = dp_module;
2465 	probe_params.dp_level = dp_level;
2466 	probe_params.is_vf = is_vf;
2467 	cdev = qed_ops->common->probe(pdev, &probe_params);
2468 	if (!cdev) {
2469 		rc = -ENODEV;
2470 		goto err0;
2471 	}
2472 
2473 	qede_update_pf_params(cdev);
2474 
2475 	/* Start the Slowpath-process */
2476 	memset(&params, 0, sizeof(struct qed_slowpath_params));
2477 	params.int_mode = QED_INT_MODE_MSIX;
2478 	params.drv_major = QEDE_MAJOR_VERSION;
2479 	params.drv_minor = QEDE_MINOR_VERSION;
2480 	params.drv_rev = QEDE_REVISION_VERSION;
2481 	params.drv_eng = QEDE_ENGINEERING_VERSION;
2482 	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2483 	rc = qed_ops->common->slowpath_start(cdev, &params);
2484 	if (rc) {
2485 		pr_notice("Cannot start slowpath\n");
2486 		goto err1;
2487 	}
2488 
2489 	/* Learn information crucial for qede to progress */
2490 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2491 	if (rc)
2492 		goto err2;
2493 
2494 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2495 				   dp_level);
2496 	if (!edev) {
2497 		rc = -ENOMEM;
2498 		goto err2;
2499 	}
2500 
2501 	if (is_vf)
2502 		edev->flags |= QEDE_FLAG_IS_VF;
2503 
2504 	qede_init_ndev(edev);
2505 
2506 	rc = register_netdev(edev->ndev);
2507 	if (rc) {
2508 		DP_NOTICE(edev, "Cannot register net-device\n");
2509 		goto err3;
2510 	}
2511 
2512 	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2513 
2514 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2515 
2516 #ifdef CONFIG_DCB
2517 	qede_set_dcbnl_ops(edev->ndev);
2518 #endif
2519 
2520 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2521 	mutex_init(&edev->qede_lock);
2522 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2523 
2524 	DP_INFO(edev, "Ending successfully qede probe\n");
2525 
2526 	return 0;
2527 
2528 err3:
2529 	free_netdev(edev->ndev);
2530 err2:
2531 	qed_ops->common->slowpath_stop(cdev);
2532 err1:
2533 	qed_ops->common->remove(cdev);
2534 err0:
2535 	return rc;
2536 }
2537 
2538 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2539 {
2540 	bool is_vf = false;
2541 	u32 dp_module = 0;
2542 	u8 dp_level = 0;
2543 
2544 	switch ((enum qede_pci_private)id->driver_data) {
2545 	case QEDE_PRIVATE_VF:
2546 		if (debug & QED_LOG_VERBOSE_MASK)
2547 			dev_err(&pdev->dev, "Probing a VF\n");
2548 		is_vf = true;
2549 		break;
2550 	default:
2551 		if (debug & QED_LOG_VERBOSE_MASK)
2552 			dev_err(&pdev->dev, "Probing a PF\n");
2553 	}
2554 
2555 	qede_config_debug(debug, &dp_module, &dp_level);
2556 
2557 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
2558 			    QEDE_PROBE_NORMAL);
2559 }
2560 
2561 enum qede_remove_mode {
2562 	QEDE_REMOVE_NORMAL,
2563 };
2564 
2565 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2566 {
2567 	struct net_device *ndev = pci_get_drvdata(pdev);
2568 	struct qede_dev *edev = netdev_priv(ndev);
2569 	struct qed_dev *cdev = edev->cdev;
2570 
2571 	DP_INFO(edev, "Starting qede_remove\n");
2572 
2573 	cancel_delayed_work_sync(&edev->sp_task);
2574 	unregister_netdev(ndev);
2575 
2576 	edev->ops->common->set_power_state(cdev, PCI_D0);
2577 
2578 	pci_set_drvdata(pdev, NULL);
2579 
2580 	free_netdev(ndev);
2581 
2582 	/* Use global ops since we've freed edev */
2583 	qed_ops->common->slowpath_stop(cdev);
2584 	qed_ops->common->remove(cdev);
2585 
2586 	pr_notice("Ending successfully qede_remove\n");
2587 }
2588 
2589 static void qede_remove(struct pci_dev *pdev)
2590 {
2591 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2592 }
2593 
2594 /* -------------------------------------------------------------------------
2595  * START OF LOAD / UNLOAD
2596  * -------------------------------------------------------------------------
2597  */
2598 
2599 static int qede_set_num_queues(struct qede_dev *edev)
2600 {
2601 	int rc;
2602 	u16 rss_num;
2603 
2604 	/* Setup queues according to possible resources*/
2605 	if (edev->req_rss)
2606 		rss_num = edev->req_rss;
2607 	else
2608 		rss_num = netif_get_num_default_rss_queues() *
2609 			  edev->dev_info.common.num_hwfns;
2610 
2611 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2612 
2613 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2614 	if (rc > 0) {
2615 		/* Managed to request interrupts for our queues */
2616 		edev->num_rss = rc;
2617 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2618 			QEDE_RSS_CNT(edev), rss_num);
2619 		rc = 0;
2620 	}
2621 	return rc;
2622 }
2623 
2624 static void qede_free_mem_sb(struct qede_dev *edev,
2625 			     struct qed_sb_info *sb_info)
2626 {
2627 	if (sb_info->sb_virt)
2628 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2629 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
2630 }
2631 
2632 /* This function allocates fast-path status block memory */
2633 static int qede_alloc_mem_sb(struct qede_dev *edev,
2634 			     struct qed_sb_info *sb_info,
2635 			     u16 sb_id)
2636 {
2637 	struct status_block *sb_virt;
2638 	dma_addr_t sb_phys;
2639 	int rc;
2640 
2641 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2642 				     sizeof(*sb_virt),
2643 				     &sb_phys, GFP_KERNEL);
2644 	if (!sb_virt) {
2645 		DP_ERR(edev, "Status block allocation failed\n");
2646 		return -ENOMEM;
2647 	}
2648 
2649 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2650 					sb_virt, sb_phys, sb_id,
2651 					QED_SB_TYPE_L2_QUEUE);
2652 	if (rc) {
2653 		DP_ERR(edev, "Status block initialization failed\n");
2654 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2655 				  sb_virt, sb_phys);
2656 		return rc;
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 static void qede_free_rx_buffers(struct qede_dev *edev,
2663 				 struct qede_rx_queue *rxq)
2664 {
2665 	u16 i;
2666 
2667 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2668 		struct sw_rx_data *rx_buf;
2669 		struct page *data;
2670 
2671 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2672 		data = rx_buf->data;
2673 
2674 		dma_unmap_page(&edev->pdev->dev,
2675 			       rx_buf->mapping,
2676 			       PAGE_SIZE, DMA_FROM_DEVICE);
2677 
2678 		rx_buf->data = NULL;
2679 		__free_page(data);
2680 	}
2681 }
2682 
2683 static void qede_free_sge_mem(struct qede_dev *edev,
2684 			      struct qede_rx_queue *rxq) {
2685 	int i;
2686 
2687 	if (edev->gro_disable)
2688 		return;
2689 
2690 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2691 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2692 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2693 
2694 		if (replace_buf->data) {
2695 			dma_unmap_page(&edev->pdev->dev,
2696 				       replace_buf->mapping,
2697 				       PAGE_SIZE, DMA_FROM_DEVICE);
2698 			__free_page(replace_buf->data);
2699 		}
2700 	}
2701 }
2702 
2703 static void qede_free_mem_rxq(struct qede_dev *edev,
2704 			      struct qede_rx_queue *rxq)
2705 {
2706 	qede_free_sge_mem(edev, rxq);
2707 
2708 	/* Free rx buffers */
2709 	qede_free_rx_buffers(edev, rxq);
2710 
2711 	/* Free the parallel SW ring */
2712 	kfree(rxq->sw_rx_ring);
2713 
2714 	/* Free the real RQ ring used by FW */
2715 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2716 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2717 }
2718 
2719 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2720 				struct qede_rx_queue *rxq)
2721 {
2722 	struct sw_rx_data *sw_rx_data;
2723 	struct eth_rx_bd *rx_bd;
2724 	dma_addr_t mapping;
2725 	struct page *data;
2726 	u16 rx_buf_size;
2727 
2728 	rx_buf_size = rxq->rx_buf_size;
2729 
2730 	data = alloc_pages(GFP_ATOMIC, 0);
2731 	if (unlikely(!data)) {
2732 		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2733 		return -ENOMEM;
2734 	}
2735 
2736 	/* Map the entire page as it would be used
2737 	 * for multiple RX buffer segment size mapping.
2738 	 */
2739 	mapping = dma_map_page(&edev->pdev->dev, data, 0,
2740 			       PAGE_SIZE, DMA_FROM_DEVICE);
2741 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2742 		__free_page(data);
2743 		DP_NOTICE(edev, "Failed to map Rx buffer\n");
2744 		return -ENOMEM;
2745 	}
2746 
2747 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2748 	sw_rx_data->page_offset = 0;
2749 	sw_rx_data->data = data;
2750 	sw_rx_data->mapping = mapping;
2751 
2752 	/* Advance PROD and get BD pointer */
2753 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2754 	WARN_ON(!rx_bd);
2755 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2756 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2757 
2758 	rxq->sw_rx_prod++;
2759 
2760 	return 0;
2761 }
2762 
2763 static int qede_alloc_sge_mem(struct qede_dev *edev,
2764 			      struct qede_rx_queue *rxq)
2765 {
2766 	dma_addr_t mapping;
2767 	int i;
2768 
2769 	if (edev->gro_disable)
2770 		return 0;
2771 
2772 	if (edev->ndev->mtu > PAGE_SIZE) {
2773 		edev->gro_disable = 1;
2774 		return 0;
2775 	}
2776 
2777 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2778 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2779 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2780 
2781 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2782 		if (unlikely(!replace_buf->data)) {
2783 			DP_NOTICE(edev,
2784 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
2785 			goto err;
2786 		}
2787 
2788 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2789 				       rxq->rx_buf_size, DMA_FROM_DEVICE);
2790 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2791 			DP_NOTICE(edev,
2792 				  "Failed to map TPA replacement buffer\n");
2793 			goto err;
2794 		}
2795 
2796 		replace_buf->mapping = mapping;
2797 		tpa_info->replace_buf.page_offset = 0;
2798 
2799 		tpa_info->replace_buf_mapping = mapping;
2800 		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2801 	}
2802 
2803 	return 0;
2804 err:
2805 	qede_free_sge_mem(edev, rxq);
2806 	edev->gro_disable = 1;
2807 	return -ENOMEM;
2808 }
2809 
2810 /* This function allocates all memory needed per Rx queue */
2811 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2812 			      struct qede_rx_queue *rxq)
2813 {
2814 	int i, rc, size;
2815 
2816 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
2817 
2818 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2819 			   edev->ndev->mtu;
2820 	if (rxq->rx_buf_size > PAGE_SIZE)
2821 		rxq->rx_buf_size = PAGE_SIZE;
2822 
2823 	/* Segment size to spilt a page in multiple equal parts */
2824 	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2825 
2826 	/* Allocate the parallel driver ring for Rx buffers */
2827 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2828 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2829 	if (!rxq->sw_rx_ring) {
2830 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
2831 		rc = -ENOMEM;
2832 		goto err;
2833 	}
2834 
2835 	/* Allocate FW Rx ring  */
2836 	rc = edev->ops->common->chain_alloc(edev->cdev,
2837 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2838 					    QED_CHAIN_MODE_NEXT_PTR,
2839 					    QED_CHAIN_CNT_TYPE_U16,
2840 					    RX_RING_SIZE,
2841 					    sizeof(struct eth_rx_bd),
2842 					    &rxq->rx_bd_ring);
2843 
2844 	if (rc)
2845 		goto err;
2846 
2847 	/* Allocate FW completion ring */
2848 	rc = edev->ops->common->chain_alloc(edev->cdev,
2849 					    QED_CHAIN_USE_TO_CONSUME,
2850 					    QED_CHAIN_MODE_PBL,
2851 					    QED_CHAIN_CNT_TYPE_U16,
2852 					    RX_RING_SIZE,
2853 					    sizeof(union eth_rx_cqe),
2854 					    &rxq->rx_comp_ring);
2855 	if (rc)
2856 		goto err;
2857 
2858 	/* Allocate buffers for the Rx ring */
2859 	for (i = 0; i < rxq->num_rx_buffers; i++) {
2860 		rc = qede_alloc_rx_buffer(edev, rxq);
2861 		if (rc) {
2862 			DP_ERR(edev,
2863 			       "Rx buffers allocation failed at index %d\n", i);
2864 			goto err;
2865 		}
2866 	}
2867 
2868 	rc = qede_alloc_sge_mem(edev, rxq);
2869 err:
2870 	return rc;
2871 }
2872 
2873 static void qede_free_mem_txq(struct qede_dev *edev,
2874 			      struct qede_tx_queue *txq)
2875 {
2876 	/* Free the parallel SW ring */
2877 	kfree(txq->sw_tx_ring);
2878 
2879 	/* Free the real RQ ring used by FW */
2880 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2881 }
2882 
2883 /* This function allocates all memory needed per Tx queue */
2884 static int qede_alloc_mem_txq(struct qede_dev *edev,
2885 			      struct qede_tx_queue *txq)
2886 {
2887 	int size, rc;
2888 	union eth_tx_bd_types *p_virt;
2889 
2890 	txq->num_tx_buffers = edev->q_num_tx_buffers;
2891 
2892 	/* Allocate the parallel driver ring for Tx buffers */
2893 	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2894 	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2895 	if (!txq->sw_tx_ring) {
2896 		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2897 		goto err;
2898 	}
2899 
2900 	rc = edev->ops->common->chain_alloc(edev->cdev,
2901 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2902 					    QED_CHAIN_MODE_PBL,
2903 					    QED_CHAIN_CNT_TYPE_U16,
2904 					    NUM_TX_BDS_MAX,
2905 					    sizeof(*p_virt), &txq->tx_pbl);
2906 	if (rc)
2907 		goto err;
2908 
2909 	return 0;
2910 
2911 err:
2912 	qede_free_mem_txq(edev, txq);
2913 	return -ENOMEM;
2914 }
2915 
2916 /* This function frees all memory of a single fp */
2917 static void qede_free_mem_fp(struct qede_dev *edev,
2918 			     struct qede_fastpath *fp)
2919 {
2920 	int tc;
2921 
2922 	qede_free_mem_sb(edev, fp->sb_info);
2923 
2924 	qede_free_mem_rxq(edev, fp->rxq);
2925 
2926 	for (tc = 0; tc < edev->num_tc; tc++)
2927 		qede_free_mem_txq(edev, &fp->txqs[tc]);
2928 }
2929 
2930 /* This function allocates all memory needed for a single fp (i.e. an entity
2931  * which contains status block, one rx queue and multiple per-TC tx queues.
2932  */
2933 static int qede_alloc_mem_fp(struct qede_dev *edev,
2934 			     struct qede_fastpath *fp)
2935 {
2936 	int rc, tc;
2937 
2938 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2939 	if (rc)
2940 		goto err;
2941 
2942 	rc = qede_alloc_mem_rxq(edev, fp->rxq);
2943 	if (rc)
2944 		goto err;
2945 
2946 	for (tc = 0; tc < edev->num_tc; tc++) {
2947 		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2948 		if (rc)
2949 			goto err;
2950 	}
2951 
2952 	return 0;
2953 err:
2954 	return rc;
2955 }
2956 
2957 static void qede_free_mem_load(struct qede_dev *edev)
2958 {
2959 	int i;
2960 
2961 	for_each_rss(i) {
2962 		struct qede_fastpath *fp = &edev->fp_array[i];
2963 
2964 		qede_free_mem_fp(edev, fp);
2965 	}
2966 }
2967 
2968 /* This function allocates all qede memory at NIC load. */
2969 static int qede_alloc_mem_load(struct qede_dev *edev)
2970 {
2971 	int rc = 0, rss_id;
2972 
2973 	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2974 		struct qede_fastpath *fp = &edev->fp_array[rss_id];
2975 
2976 		rc = qede_alloc_mem_fp(edev, fp);
2977 		if (rc) {
2978 			DP_ERR(edev,
2979 			       "Failed to allocate memory for fastpath - rss id = %d\n",
2980 			       rss_id);
2981 			qede_free_mem_load(edev);
2982 			return rc;
2983 		}
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2990 static void qede_init_fp(struct qede_dev *edev)
2991 {
2992 	int rss_id, txq_index, tc;
2993 	struct qede_fastpath *fp;
2994 
2995 	for_each_rss(rss_id) {
2996 		fp = &edev->fp_array[rss_id];
2997 
2998 		fp->edev = edev;
2999 		fp->rss_id = rss_id;
3000 
3001 		memset((void *)&fp->napi, 0, sizeof(fp->napi));
3002 
3003 		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3004 
3005 		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3006 		fp->rxq->rxq_id = rss_id;
3007 
3008 		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
3009 		for (tc = 0; tc < edev->num_tc; tc++) {
3010 			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
3011 			fp->txqs[tc].index = txq_index;
3012 		}
3013 
3014 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3015 			 edev->ndev->name, rss_id);
3016 	}
3017 
3018 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3019 }
3020 
3021 static int qede_set_real_num_queues(struct qede_dev *edev)
3022 {
3023 	int rc = 0;
3024 
3025 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3026 	if (rc) {
3027 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3028 		return rc;
3029 	}
3030 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3031 	if (rc) {
3032 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3033 		return rc;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static void qede_napi_disable_remove(struct qede_dev *edev)
3040 {
3041 	int i;
3042 
3043 	for_each_rss(i) {
3044 		napi_disable(&edev->fp_array[i].napi);
3045 
3046 		netif_napi_del(&edev->fp_array[i].napi);
3047 	}
3048 }
3049 
3050 static void qede_napi_add_enable(struct qede_dev *edev)
3051 {
3052 	int i;
3053 
3054 	/* Add NAPI objects */
3055 	for_each_rss(i) {
3056 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3057 			       qede_poll, NAPI_POLL_WEIGHT);
3058 		napi_enable(&edev->fp_array[i].napi);
3059 	}
3060 }
3061 
3062 static void qede_sync_free_irqs(struct qede_dev *edev)
3063 {
3064 	int i;
3065 
3066 	for (i = 0; i < edev->int_info.used_cnt; i++) {
3067 		if (edev->int_info.msix_cnt) {
3068 			synchronize_irq(edev->int_info.msix[i].vector);
3069 			free_irq(edev->int_info.msix[i].vector,
3070 				 &edev->fp_array[i]);
3071 		} else {
3072 			edev->ops->common->simd_handler_clean(edev->cdev, i);
3073 		}
3074 	}
3075 
3076 	edev->int_info.used_cnt = 0;
3077 }
3078 
3079 static int qede_req_msix_irqs(struct qede_dev *edev)
3080 {
3081 	int i, rc;
3082 
3083 	/* Sanitize number of interrupts == number of prepared RSS queues */
3084 	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3085 		DP_ERR(edev,
3086 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3087 		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3088 		return -EINVAL;
3089 	}
3090 
3091 	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3092 		rc = request_irq(edev->int_info.msix[i].vector,
3093 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
3094 				 &edev->fp_array[i]);
3095 		if (rc) {
3096 			DP_ERR(edev, "Request fp %d irq failed\n", i);
3097 			qede_sync_free_irqs(edev);
3098 			return rc;
3099 		}
3100 		DP_VERBOSE(edev, NETIF_MSG_INTR,
3101 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3102 			   edev->fp_array[i].name, i,
3103 			   &edev->fp_array[i]);
3104 		edev->int_info.used_cnt++;
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 static void qede_simd_fp_handler(void *cookie)
3111 {
3112 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3113 
3114 	napi_schedule_irqoff(&fp->napi);
3115 }
3116 
3117 static int qede_setup_irqs(struct qede_dev *edev)
3118 {
3119 	int i, rc = 0;
3120 
3121 	/* Learn Interrupt configuration */
3122 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3123 	if (rc)
3124 		return rc;
3125 
3126 	if (edev->int_info.msix_cnt) {
3127 		rc = qede_req_msix_irqs(edev);
3128 		if (rc)
3129 			return rc;
3130 		edev->ndev->irq = edev->int_info.msix[0].vector;
3131 	} else {
3132 		const struct qed_common_ops *ops;
3133 
3134 		/* qed should learn receive the RSS ids and callbacks */
3135 		ops = edev->ops->common;
3136 		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3137 			ops->simd_handler_config(edev->cdev,
3138 						 &edev->fp_array[i], i,
3139 						 qede_simd_fp_handler);
3140 		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3141 	}
3142 	return 0;
3143 }
3144 
3145 static int qede_drain_txq(struct qede_dev *edev,
3146 			  struct qede_tx_queue *txq,
3147 			  bool allow_drain)
3148 {
3149 	int rc, cnt = 1000;
3150 
3151 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
3152 		if (!cnt) {
3153 			if (allow_drain) {
3154 				DP_NOTICE(edev,
3155 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
3156 					  txq->index);
3157 				rc = edev->ops->common->drain(edev->cdev);
3158 				if (rc)
3159 					return rc;
3160 				return qede_drain_txq(edev, txq, false);
3161 			}
3162 			DP_NOTICE(edev,
3163 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3164 				  txq->index, txq->sw_tx_prod,
3165 				  txq->sw_tx_cons);
3166 			return -ENODEV;
3167 		}
3168 		cnt--;
3169 		usleep_range(1000, 2000);
3170 		barrier();
3171 	}
3172 
3173 	/* FW finished processing, wait for HW to transmit all tx packets */
3174 	usleep_range(1000, 2000);
3175 
3176 	return 0;
3177 }
3178 
3179 static int qede_stop_queues(struct qede_dev *edev)
3180 {
3181 	struct qed_update_vport_params vport_update_params;
3182 	struct qed_dev *cdev = edev->cdev;
3183 	int rc, tc, i;
3184 
3185 	/* Disable the vport */
3186 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3187 	vport_update_params.vport_id = 0;
3188 	vport_update_params.update_vport_active_flg = 1;
3189 	vport_update_params.vport_active_flg = 0;
3190 	vport_update_params.update_rss_flg = 0;
3191 
3192 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3193 	if (rc) {
3194 		DP_ERR(edev, "Failed to update vport\n");
3195 		return rc;
3196 	}
3197 
3198 	/* Flush Tx queues. If needed, request drain from MCP */
3199 	for_each_rss(i) {
3200 		struct qede_fastpath *fp = &edev->fp_array[i];
3201 
3202 		for (tc = 0; tc < edev->num_tc; tc++) {
3203 			struct qede_tx_queue *txq = &fp->txqs[tc];
3204 
3205 			rc = qede_drain_txq(edev, txq, true);
3206 			if (rc)
3207 				return rc;
3208 		}
3209 	}
3210 
3211 	/* Stop all Queues in reverse order*/
3212 	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3213 		struct qed_stop_rxq_params rx_params;
3214 
3215 		/* Stop the Tx Queue(s)*/
3216 		for (tc = 0; tc < edev->num_tc; tc++) {
3217 			struct qed_stop_txq_params tx_params;
3218 
3219 			tx_params.rss_id = i;
3220 			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3221 			rc = edev->ops->q_tx_stop(cdev, &tx_params);
3222 			if (rc) {
3223 				DP_ERR(edev, "Failed to stop TXQ #%d\n",
3224 				       tx_params.tx_queue_id);
3225 				return rc;
3226 			}
3227 		}
3228 
3229 		/* Stop the Rx Queue*/
3230 		memset(&rx_params, 0, sizeof(rx_params));
3231 		rx_params.rss_id = i;
3232 		rx_params.rx_queue_id = i;
3233 
3234 		rc = edev->ops->q_rx_stop(cdev, &rx_params);
3235 		if (rc) {
3236 			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3237 			return rc;
3238 		}
3239 	}
3240 
3241 	/* Stop the vport */
3242 	rc = edev->ops->vport_stop(cdev, 0);
3243 	if (rc)
3244 		DP_ERR(edev, "Failed to stop VPORT\n");
3245 
3246 	return rc;
3247 }
3248 
3249 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3250 {
3251 	int rc, tc, i;
3252 	int vlan_removal_en = 1;
3253 	struct qed_dev *cdev = edev->cdev;
3254 	struct qed_update_vport_params vport_update_params;
3255 	struct qed_queue_start_common_params q_params;
3256 	struct qed_dev_info *qed_info = &edev->dev_info.common;
3257 	struct qed_start_vport_params start = {0};
3258 	bool reset_rss_indir = false;
3259 
3260 	if (!edev->num_rss) {
3261 		DP_ERR(edev,
3262 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
3263 		return -EINVAL;
3264 	}
3265 
3266 	start.gro_enable = !edev->gro_disable;
3267 	start.mtu = edev->ndev->mtu;
3268 	start.vport_id = 0;
3269 	start.drop_ttl0 = true;
3270 	start.remove_inner_vlan = vlan_removal_en;
3271 
3272 	rc = edev->ops->vport_start(cdev, &start);
3273 
3274 	if (rc) {
3275 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3276 		return rc;
3277 	}
3278 
3279 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
3280 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3281 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3282 
3283 	for_each_rss(i) {
3284 		struct qede_fastpath *fp = &edev->fp_array[i];
3285 		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3286 
3287 		memset(&q_params, 0, sizeof(q_params));
3288 		q_params.rss_id = i;
3289 		q_params.queue_id = i;
3290 		q_params.vport_id = 0;
3291 		q_params.sb = fp->sb_info->igu_sb_id;
3292 		q_params.sb_idx = RX_PI;
3293 
3294 		rc = edev->ops->q_rx_start(cdev, &q_params,
3295 					   fp->rxq->rx_buf_size,
3296 					   fp->rxq->rx_bd_ring.p_phys_addr,
3297 					   phys_table,
3298 					   fp->rxq->rx_comp_ring.page_cnt,
3299 					   &fp->rxq->hw_rxq_prod_addr);
3300 		if (rc) {
3301 			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3302 			return rc;
3303 		}
3304 
3305 		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3306 
3307 		qede_update_rx_prod(edev, fp->rxq);
3308 
3309 		for (tc = 0; tc < edev->num_tc; tc++) {
3310 			struct qede_tx_queue *txq = &fp->txqs[tc];
3311 			int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3312 
3313 			memset(&q_params, 0, sizeof(q_params));
3314 			q_params.rss_id = i;
3315 			q_params.queue_id = txq_index;
3316 			q_params.vport_id = 0;
3317 			q_params.sb = fp->sb_info->igu_sb_id;
3318 			q_params.sb_idx = TX_PI(tc);
3319 
3320 			rc = edev->ops->q_tx_start(cdev, &q_params,
3321 						   txq->tx_pbl.pbl.p_phys_table,
3322 						   txq->tx_pbl.page_cnt,
3323 						   &txq->doorbell_addr);
3324 			if (rc) {
3325 				DP_ERR(edev, "Start TXQ #%d failed %d\n",
3326 				       txq_index, rc);
3327 				return rc;
3328 			}
3329 
3330 			txq->hw_cons_ptr =
3331 				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3332 			SET_FIELD(txq->tx_db.data.params,
3333 				  ETH_DB_DATA_DEST, DB_DEST_XCM);
3334 			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3335 				  DB_AGG_CMD_SET);
3336 			SET_FIELD(txq->tx_db.data.params,
3337 				  ETH_DB_DATA_AGG_VAL_SEL,
3338 				  DQ_XCM_ETH_TX_BD_PROD_CMD);
3339 
3340 			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3341 		}
3342 	}
3343 
3344 	/* Prepare and send the vport enable */
3345 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3346 	vport_update_params.vport_id = start.vport_id;
3347 	vport_update_params.update_vport_active_flg = 1;
3348 	vport_update_params.vport_active_flg = 1;
3349 
3350 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3351 	    qed_info->tx_switching) {
3352 		vport_update_params.update_tx_switching_flg = 1;
3353 		vport_update_params.tx_switching_flg = 1;
3354 	}
3355 
3356 	/* Fill struct with RSS params */
3357 	if (QEDE_RSS_CNT(edev) > 1) {
3358 		vport_update_params.update_rss_flg = 1;
3359 
3360 		/* Need to validate current RSS config uses valid entries */
3361 		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3362 			if (edev->rss_params.rss_ind_table[i] >=
3363 			    edev->num_rss) {
3364 				reset_rss_indir = true;
3365 				break;
3366 			}
3367 		}
3368 
3369 		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3370 		    reset_rss_indir) {
3371 			u16 val;
3372 
3373 			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3374 				u16 indir_val;
3375 
3376 				val = QEDE_RSS_CNT(edev);
3377 				indir_val = ethtool_rxfh_indir_default(i, val);
3378 				edev->rss_params.rss_ind_table[i] = indir_val;
3379 			}
3380 			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3381 		}
3382 
3383 		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3384 			netdev_rss_key_fill(edev->rss_params.rss_key,
3385 					    sizeof(edev->rss_params.rss_key));
3386 			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3387 		}
3388 
3389 		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3390 			edev->rss_params.rss_caps = QED_RSS_IPV4 |
3391 						    QED_RSS_IPV6 |
3392 						    QED_RSS_IPV4_TCP |
3393 						    QED_RSS_IPV6_TCP;
3394 			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3395 		}
3396 
3397 		memcpy(&vport_update_params.rss_params, &edev->rss_params,
3398 		       sizeof(vport_update_params.rss_params));
3399 	} else {
3400 		memset(&vport_update_params.rss_params, 0,
3401 		       sizeof(vport_update_params.rss_params));
3402 	}
3403 
3404 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3405 	if (rc) {
3406 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3407 		return rc;
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3414 				 enum qed_filter_xcast_params_type opcode,
3415 				 unsigned char *mac, int num_macs)
3416 {
3417 	struct qed_filter_params filter_cmd;
3418 	int i;
3419 
3420 	memset(&filter_cmd, 0, sizeof(filter_cmd));
3421 	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3422 	filter_cmd.filter.mcast.type = opcode;
3423 	filter_cmd.filter.mcast.num = num_macs;
3424 
3425 	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3426 		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3427 
3428 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3429 }
3430 
3431 enum qede_unload_mode {
3432 	QEDE_UNLOAD_NORMAL,
3433 };
3434 
3435 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3436 {
3437 	struct qed_link_params link_params;
3438 	int rc;
3439 
3440 	DP_INFO(edev, "Starting qede unload\n");
3441 
3442 	mutex_lock(&edev->qede_lock);
3443 	edev->state = QEDE_STATE_CLOSED;
3444 
3445 	/* Close OS Tx */
3446 	netif_tx_disable(edev->ndev);
3447 	netif_carrier_off(edev->ndev);
3448 
3449 	/* Reset the link */
3450 	memset(&link_params, 0, sizeof(link_params));
3451 	link_params.link_up = false;
3452 	edev->ops->common->set_link(edev->cdev, &link_params);
3453 	rc = qede_stop_queues(edev);
3454 	if (rc) {
3455 		qede_sync_free_irqs(edev);
3456 		goto out;
3457 	}
3458 
3459 	DP_INFO(edev, "Stopped Queues\n");
3460 
3461 	qede_vlan_mark_nonconfigured(edev);
3462 	edev->ops->fastpath_stop(edev->cdev);
3463 
3464 	/* Release the interrupts */
3465 	qede_sync_free_irqs(edev);
3466 	edev->ops->common->set_fp_int(edev->cdev, 0);
3467 
3468 	qede_napi_disable_remove(edev);
3469 
3470 	qede_free_mem_load(edev);
3471 	qede_free_fp_array(edev);
3472 
3473 out:
3474 	mutex_unlock(&edev->qede_lock);
3475 	DP_INFO(edev, "Ending qede unload\n");
3476 }
3477 
3478 enum qede_load_mode {
3479 	QEDE_LOAD_NORMAL,
3480 	QEDE_LOAD_RELOAD,
3481 };
3482 
3483 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3484 {
3485 	struct qed_link_params link_params;
3486 	struct qed_link_output link_output;
3487 	int rc;
3488 
3489 	DP_INFO(edev, "Starting qede load\n");
3490 
3491 	rc = qede_set_num_queues(edev);
3492 	if (rc)
3493 		goto err0;
3494 
3495 	rc = qede_alloc_fp_array(edev);
3496 	if (rc)
3497 		goto err0;
3498 
3499 	qede_init_fp(edev);
3500 
3501 	rc = qede_alloc_mem_load(edev);
3502 	if (rc)
3503 		goto err1;
3504 	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3505 		QEDE_RSS_CNT(edev), edev->num_tc);
3506 
3507 	rc = qede_set_real_num_queues(edev);
3508 	if (rc)
3509 		goto err2;
3510 
3511 	qede_napi_add_enable(edev);
3512 	DP_INFO(edev, "Napi added and enabled\n");
3513 
3514 	rc = qede_setup_irqs(edev);
3515 	if (rc)
3516 		goto err3;
3517 	DP_INFO(edev, "Setup IRQs succeeded\n");
3518 
3519 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3520 	if (rc)
3521 		goto err4;
3522 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3523 
3524 	/* Add primary mac and set Rx filters */
3525 	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3526 
3527 	mutex_lock(&edev->qede_lock);
3528 	edev->state = QEDE_STATE_OPEN;
3529 	mutex_unlock(&edev->qede_lock);
3530 
3531 	/* Program un-configured VLANs */
3532 	qede_configure_vlan_filters(edev);
3533 
3534 	/* Ask for link-up using current configuration */
3535 	memset(&link_params, 0, sizeof(link_params));
3536 	link_params.link_up = true;
3537 	edev->ops->common->set_link(edev->cdev, &link_params);
3538 
3539 	/* Query whether link is already-up */
3540 	memset(&link_output, 0, sizeof(link_output));
3541 	edev->ops->common->get_link(edev->cdev, &link_output);
3542 	qede_link_update(edev, &link_output);
3543 
3544 	DP_INFO(edev, "Ending successfully qede load\n");
3545 
3546 	return 0;
3547 
3548 err4:
3549 	qede_sync_free_irqs(edev);
3550 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3551 err3:
3552 	qede_napi_disable_remove(edev);
3553 err2:
3554 	qede_free_mem_load(edev);
3555 err1:
3556 	edev->ops->common->set_fp_int(edev->cdev, 0);
3557 	qede_free_fp_array(edev);
3558 	edev->num_rss = 0;
3559 err0:
3560 	return rc;
3561 }
3562 
3563 void qede_reload(struct qede_dev *edev,
3564 		 void (*func)(struct qede_dev *, union qede_reload_args *),
3565 		 union qede_reload_args *args)
3566 {
3567 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3568 	/* Call function handler to update parameters
3569 	 * needed for function load.
3570 	 */
3571 	if (func)
3572 		func(edev, args);
3573 
3574 	qede_load(edev, QEDE_LOAD_RELOAD);
3575 
3576 	mutex_lock(&edev->qede_lock);
3577 	qede_config_rx_mode(edev->ndev);
3578 	mutex_unlock(&edev->qede_lock);
3579 }
3580 
3581 /* called with rtnl_lock */
3582 static int qede_open(struct net_device *ndev)
3583 {
3584 	struct qede_dev *edev = netdev_priv(ndev);
3585 	int rc;
3586 
3587 	netif_carrier_off(ndev);
3588 
3589 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3590 
3591 	rc = qede_load(edev, QEDE_LOAD_NORMAL);
3592 
3593 	if (rc)
3594 		return rc;
3595 
3596 	udp_tunnel_get_rx_info(ndev);
3597 
3598 	return 0;
3599 }
3600 
3601 static int qede_close(struct net_device *ndev)
3602 {
3603 	struct qede_dev *edev = netdev_priv(ndev);
3604 
3605 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3606 
3607 	return 0;
3608 }
3609 
3610 static void qede_link_update(void *dev, struct qed_link_output *link)
3611 {
3612 	struct qede_dev *edev = dev;
3613 
3614 	if (!netif_running(edev->ndev)) {
3615 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3616 		return;
3617 	}
3618 
3619 	if (link->link_up) {
3620 		if (!netif_carrier_ok(edev->ndev)) {
3621 			DP_NOTICE(edev, "Link is up\n");
3622 			netif_tx_start_all_queues(edev->ndev);
3623 			netif_carrier_on(edev->ndev);
3624 		}
3625 	} else {
3626 		if (netif_carrier_ok(edev->ndev)) {
3627 			DP_NOTICE(edev, "Link is down\n");
3628 			netif_tx_disable(edev->ndev);
3629 			netif_carrier_off(edev->ndev);
3630 		}
3631 	}
3632 }
3633 
3634 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3635 {
3636 	struct qede_dev *edev = netdev_priv(ndev);
3637 	struct sockaddr *addr = p;
3638 	int rc;
3639 
3640 	ASSERT_RTNL(); /* @@@TBD To be removed */
3641 
3642 	DP_INFO(edev, "Set_mac_addr called\n");
3643 
3644 	if (!is_valid_ether_addr(addr->sa_data)) {
3645 		DP_NOTICE(edev, "The MAC address is not valid\n");
3646 		return -EFAULT;
3647 	}
3648 
3649 	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3650 		DP_NOTICE(edev, "qed prevents setting MAC\n");
3651 		return -EINVAL;
3652 	}
3653 
3654 	ether_addr_copy(ndev->dev_addr, addr->sa_data);
3655 
3656 	if (!netif_running(ndev))  {
3657 		DP_NOTICE(edev, "The device is currently down\n");
3658 		return 0;
3659 	}
3660 
3661 	/* Remove the previous primary mac */
3662 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3663 				   edev->primary_mac);
3664 	if (rc)
3665 		return rc;
3666 
3667 	/* Add MAC filter according to the new unicast HW MAC address */
3668 	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3669 	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3670 				      edev->primary_mac);
3671 }
3672 
3673 static int
3674 qede_configure_mcast_filtering(struct net_device *ndev,
3675 			       enum qed_filter_rx_mode_type *accept_flags)
3676 {
3677 	struct qede_dev *edev = netdev_priv(ndev);
3678 	unsigned char *mc_macs, *temp;
3679 	struct netdev_hw_addr *ha;
3680 	int rc = 0, mc_count;
3681 	size_t size;
3682 
3683 	size = 64 * ETH_ALEN;
3684 
3685 	mc_macs = kzalloc(size, GFP_KERNEL);
3686 	if (!mc_macs) {
3687 		DP_NOTICE(edev,
3688 			  "Failed to allocate memory for multicast MACs\n");
3689 		rc = -ENOMEM;
3690 		goto exit;
3691 	}
3692 
3693 	temp = mc_macs;
3694 
3695 	/* Remove all previously configured MAC filters */
3696 	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3697 				   mc_macs, 1);
3698 	if (rc)
3699 		goto exit;
3700 
3701 	netif_addr_lock_bh(ndev);
3702 
3703 	mc_count = netdev_mc_count(ndev);
3704 	if (mc_count < 64) {
3705 		netdev_for_each_mc_addr(ha, ndev) {
3706 			ether_addr_copy(temp, ha->addr);
3707 			temp += ETH_ALEN;
3708 		}
3709 	}
3710 
3711 	netif_addr_unlock_bh(ndev);
3712 
3713 	/* Check for all multicast @@@TBD resource allocation */
3714 	if ((ndev->flags & IFF_ALLMULTI) ||
3715 	    (mc_count > 64)) {
3716 		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3717 			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3718 	} else {
3719 		/* Add all multicast MAC filters */
3720 		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3721 					   mc_macs, mc_count);
3722 	}
3723 
3724 exit:
3725 	kfree(mc_macs);
3726 	return rc;
3727 }
3728 
3729 static void qede_set_rx_mode(struct net_device *ndev)
3730 {
3731 	struct qede_dev *edev = netdev_priv(ndev);
3732 
3733 	DP_INFO(edev, "qede_set_rx_mode called\n");
3734 
3735 	if (edev->state != QEDE_STATE_OPEN) {
3736 		DP_INFO(edev,
3737 			"qede_set_rx_mode called while interface is down\n");
3738 	} else {
3739 		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3740 		schedule_delayed_work(&edev->sp_task, 0);
3741 	}
3742 }
3743 
3744 /* Must be called with qede_lock held */
3745 static void qede_config_rx_mode(struct net_device *ndev)
3746 {
3747 	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3748 	struct qede_dev *edev = netdev_priv(ndev);
3749 	struct qed_filter_params rx_mode;
3750 	unsigned char *uc_macs, *temp;
3751 	struct netdev_hw_addr *ha;
3752 	int rc, uc_count;
3753 	size_t size;
3754 
3755 	netif_addr_lock_bh(ndev);
3756 
3757 	uc_count = netdev_uc_count(ndev);
3758 	size = uc_count * ETH_ALEN;
3759 
3760 	uc_macs = kzalloc(size, GFP_ATOMIC);
3761 	if (!uc_macs) {
3762 		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3763 		netif_addr_unlock_bh(ndev);
3764 		return;
3765 	}
3766 
3767 	temp = uc_macs;
3768 	netdev_for_each_uc_addr(ha, ndev) {
3769 		ether_addr_copy(temp, ha->addr);
3770 		temp += ETH_ALEN;
3771 	}
3772 
3773 	netif_addr_unlock_bh(ndev);
3774 
3775 	/* Configure the struct for the Rx mode */
3776 	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3777 	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3778 
3779 	/* Remove all previous unicast secondary macs and multicast macs
3780 	 * (configrue / leave the primary mac)
3781 	 */
3782 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3783 				   edev->primary_mac);
3784 	if (rc)
3785 		goto out;
3786 
3787 	/* Check for promiscuous */
3788 	if ((ndev->flags & IFF_PROMISC) ||
3789 	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3790 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3791 	} else {
3792 		/* Add MAC filters according to the unicast secondary macs */
3793 		int i;
3794 
3795 		temp = uc_macs;
3796 		for (i = 0; i < uc_count; i++) {
3797 			rc = qede_set_ucast_rx_mac(edev,
3798 						   QED_FILTER_XCAST_TYPE_ADD,
3799 						   temp);
3800 			if (rc)
3801 				goto out;
3802 
3803 			temp += ETH_ALEN;
3804 		}
3805 
3806 		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3807 		if (rc)
3808 			goto out;
3809 	}
3810 
3811 	/* take care of VLAN mode */
3812 	if (ndev->flags & IFF_PROMISC) {
3813 		qede_config_accept_any_vlan(edev, true);
3814 	} else if (!edev->non_configured_vlans) {
3815 		/* It's possible that accept_any_vlan mode is set due to a
3816 		 * previous setting of IFF_PROMISC. If vlan credits are
3817 		 * sufficient, disable accept_any_vlan.
3818 		 */
3819 		qede_config_accept_any_vlan(edev, false);
3820 	}
3821 
3822 	rx_mode.filter.accept_flags = accept_flags;
3823 	edev->ops->filter_config(edev->cdev, &rx_mode);
3824 out:
3825 	kfree(uc_macs);
3826 }
3827