1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41 
42 static char version[] =
43 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44 
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52 
53 static const struct qed_eth_ops *qed_ops;
54 
55 #define CHIP_NUM_57980S_40		0x1634
56 #define CHIP_NUM_57980S_10		0x1666
57 #define CHIP_NUM_57980S_MF		0x1636
58 #define CHIP_NUM_57980S_100		0x1644
59 #define CHIP_NUM_57980S_50		0x1654
60 #define CHIP_NUM_57980S_25		0x1656
61 #define CHIP_NUM_57980S_IOV		0x1664
62 #define CHIP_NUM_AH			0x8070
63 #define CHIP_NUM_AH_IOV			0x8090
64 
65 #ifndef PCI_DEVICE_ID_NX2_57980E
66 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
67 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
68 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
69 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
70 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
71 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
72 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
73 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
74 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
75 
76 #endif
77 
78 enum qede_pci_private {
79 	QEDE_PRIVATE_PF,
80 	QEDE_PRIVATE_VF
81 };
82 
83 static const struct pci_device_id qede_pci_tbl[] = {
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
92 #endif
93 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
94 #ifdef CONFIG_QED_SRIOV
95 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
96 #endif
97 	{ 0 }
98 };
99 
100 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
101 
102 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
103 static pci_ers_result_t
104 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
105 
106 #define TX_TIMEOUT		(5 * HZ)
107 
108 /* Utilize last protocol index for XDP */
109 #define XDP_PI	11
110 
111 static void qede_remove(struct pci_dev *pdev);
112 static void qede_shutdown(struct pci_dev *pdev);
113 static void qede_link_update(void *dev, struct qed_link_output *link);
114 static void qede_schedule_recovery_handler(void *dev);
115 static void qede_recovery_handler(struct qede_dev *edev);
116 static void qede_schedule_hw_err_handler(void *dev,
117 					 enum qed_hw_err_type err_type);
118 static void qede_get_eth_tlv_data(void *edev, void *data);
119 static void qede_get_generic_tlv_data(void *edev,
120 				      struct qed_generic_tlvs *data);
121 static void qede_generic_hw_err_handler(struct qede_dev *edev);
122 #ifdef CONFIG_QED_SRIOV
123 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
124 			    __be16 vlan_proto)
125 {
126 	struct qede_dev *edev = netdev_priv(ndev);
127 
128 	if (vlan > 4095) {
129 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
130 		return -EINVAL;
131 	}
132 
133 	if (vlan_proto != htons(ETH_P_8021Q))
134 		return -EPROTONOSUPPORT;
135 
136 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
137 		   vlan, vf);
138 
139 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
140 }
141 
142 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
143 {
144 	struct qede_dev *edev = netdev_priv(ndev);
145 
146 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
147 
148 	if (!is_valid_ether_addr(mac)) {
149 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
150 		return -EINVAL;
151 	}
152 
153 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
154 }
155 
156 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
157 {
158 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
159 	struct qed_dev_info *qed_info = &edev->dev_info.common;
160 	struct qed_update_vport_params *vport_params;
161 	int rc;
162 
163 	vport_params = vzalloc(sizeof(*vport_params));
164 	if (!vport_params)
165 		return -ENOMEM;
166 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
167 
168 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
169 
170 	/* Enable/Disable Tx switching for PF */
171 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
172 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
173 		vport_params->vport_id = 0;
174 		vport_params->update_tx_switching_flg = 1;
175 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
176 		edev->ops->vport_update(edev->cdev, vport_params);
177 	}
178 
179 	vfree(vport_params);
180 	return rc;
181 }
182 #endif
183 
184 static const struct pci_error_handlers qede_err_handler = {
185 	.error_detected = qede_io_error_detected,
186 };
187 
188 static struct pci_driver qede_pci_driver = {
189 	.name = "qede",
190 	.id_table = qede_pci_tbl,
191 	.probe = qede_probe,
192 	.remove = qede_remove,
193 	.shutdown = qede_shutdown,
194 #ifdef CONFIG_QED_SRIOV
195 	.sriov_configure = qede_sriov_configure,
196 #endif
197 	.err_handler = &qede_err_handler,
198 };
199 
200 static struct qed_eth_cb_ops qede_ll_ops = {
201 	{
202 #ifdef CONFIG_RFS_ACCEL
203 		.arfs_filter_op = qede_arfs_filter_op,
204 #endif
205 		.link_update = qede_link_update,
206 		.schedule_recovery_handler = qede_schedule_recovery_handler,
207 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
208 		.get_generic_tlv_data = qede_get_generic_tlv_data,
209 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
210 	},
211 	.force_mac = qede_force_mac,
212 	.ports_update = qede_udp_ports_update,
213 };
214 
215 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
216 			     void *ptr)
217 {
218 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
219 	struct ethtool_drvinfo drvinfo;
220 	struct qede_dev *edev;
221 
222 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
223 		goto done;
224 
225 	/* Check whether this is a qede device */
226 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
227 		goto done;
228 
229 	memset(&drvinfo, 0, sizeof(drvinfo));
230 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
231 	if (strcmp(drvinfo.driver, "qede"))
232 		goto done;
233 	edev = netdev_priv(ndev);
234 
235 	switch (event) {
236 	case NETDEV_CHANGENAME:
237 		/* Notify qed of the name change */
238 		if (!edev->ops || !edev->ops->common)
239 			goto done;
240 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
241 		break;
242 	case NETDEV_CHANGEADDR:
243 		edev = netdev_priv(ndev);
244 		qede_rdma_event_changeaddr(edev);
245 		break;
246 	}
247 
248 done:
249 	return NOTIFY_DONE;
250 }
251 
252 static struct notifier_block qede_netdev_notifier = {
253 	.notifier_call = qede_netdev_event,
254 };
255 
256 static
257 int __init qede_init(void)
258 {
259 	int ret;
260 
261 	pr_info("qede_init: %s\n", version);
262 
263 	qede_forced_speed_maps_init();
264 
265 	qed_ops = qed_get_eth_ops();
266 	if (!qed_ops) {
267 		pr_notice("Failed to get qed ethtool operations\n");
268 		return -EINVAL;
269 	}
270 
271 	/* Must register notifier before pci ops, since we might miss
272 	 * interface rename after pci probe and netdev registration.
273 	 */
274 	ret = register_netdevice_notifier(&qede_netdev_notifier);
275 	if (ret) {
276 		pr_notice("Failed to register netdevice_notifier\n");
277 		qed_put_eth_ops();
278 		return -EINVAL;
279 	}
280 
281 	ret = pci_register_driver(&qede_pci_driver);
282 	if (ret) {
283 		pr_notice("Failed to register driver\n");
284 		unregister_netdevice_notifier(&qede_netdev_notifier);
285 		qed_put_eth_ops();
286 		return -EINVAL;
287 	}
288 
289 	return 0;
290 }
291 
292 static void __exit qede_cleanup(void)
293 {
294 	if (debug & QED_LOG_INFO_MASK)
295 		pr_info("qede_cleanup called\n");
296 
297 	unregister_netdevice_notifier(&qede_netdev_notifier);
298 	pci_unregister_driver(&qede_pci_driver);
299 	qed_put_eth_ops();
300 }
301 
302 module_init(qede_init);
303 module_exit(qede_cleanup);
304 
305 static int qede_open(struct net_device *ndev);
306 static int qede_close(struct net_device *ndev);
307 
308 void qede_fill_by_demand_stats(struct qede_dev *edev)
309 {
310 	struct qede_stats_common *p_common = &edev->stats.common;
311 	struct qed_eth_stats stats;
312 
313 	edev->ops->get_vport_stats(edev->cdev, &stats);
314 
315 	p_common->no_buff_discards = stats.common.no_buff_discards;
316 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
317 	p_common->ttl0_discard = stats.common.ttl0_discard;
318 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
319 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
320 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
321 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
322 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
323 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
324 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
325 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
326 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
327 
328 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
329 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
330 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
331 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
332 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
333 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
334 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
335 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
336 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
337 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
338 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
339 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
340 
341 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
342 	p_common->rx_65_to_127_byte_packets =
343 	    stats.common.rx_65_to_127_byte_packets;
344 	p_common->rx_128_to_255_byte_packets =
345 	    stats.common.rx_128_to_255_byte_packets;
346 	p_common->rx_256_to_511_byte_packets =
347 	    stats.common.rx_256_to_511_byte_packets;
348 	p_common->rx_512_to_1023_byte_packets =
349 	    stats.common.rx_512_to_1023_byte_packets;
350 	p_common->rx_1024_to_1518_byte_packets =
351 	    stats.common.rx_1024_to_1518_byte_packets;
352 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
353 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
354 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
355 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
356 	p_common->rx_align_errors = stats.common.rx_align_errors;
357 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
358 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
359 	p_common->rx_jabbers = stats.common.rx_jabbers;
360 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
361 	p_common->rx_fragments = stats.common.rx_fragments;
362 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
363 	p_common->tx_65_to_127_byte_packets =
364 	    stats.common.tx_65_to_127_byte_packets;
365 	p_common->tx_128_to_255_byte_packets =
366 	    stats.common.tx_128_to_255_byte_packets;
367 	p_common->tx_256_to_511_byte_packets =
368 	    stats.common.tx_256_to_511_byte_packets;
369 	p_common->tx_512_to_1023_byte_packets =
370 	    stats.common.tx_512_to_1023_byte_packets;
371 	p_common->tx_1024_to_1518_byte_packets =
372 	    stats.common.tx_1024_to_1518_byte_packets;
373 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
374 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
375 	p_common->brb_truncates = stats.common.brb_truncates;
376 	p_common->brb_discards = stats.common.brb_discards;
377 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
378 	p_common->link_change_count = stats.common.link_change_count;
379 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
380 
381 	if (QEDE_IS_BB(edev)) {
382 		struct qede_stats_bb *p_bb = &edev->stats.bb;
383 
384 		p_bb->rx_1519_to_1522_byte_packets =
385 		    stats.bb.rx_1519_to_1522_byte_packets;
386 		p_bb->rx_1519_to_2047_byte_packets =
387 		    stats.bb.rx_1519_to_2047_byte_packets;
388 		p_bb->rx_2048_to_4095_byte_packets =
389 		    stats.bb.rx_2048_to_4095_byte_packets;
390 		p_bb->rx_4096_to_9216_byte_packets =
391 		    stats.bb.rx_4096_to_9216_byte_packets;
392 		p_bb->rx_9217_to_16383_byte_packets =
393 		    stats.bb.rx_9217_to_16383_byte_packets;
394 		p_bb->tx_1519_to_2047_byte_packets =
395 		    stats.bb.tx_1519_to_2047_byte_packets;
396 		p_bb->tx_2048_to_4095_byte_packets =
397 		    stats.bb.tx_2048_to_4095_byte_packets;
398 		p_bb->tx_4096_to_9216_byte_packets =
399 		    stats.bb.tx_4096_to_9216_byte_packets;
400 		p_bb->tx_9217_to_16383_byte_packets =
401 		    stats.bb.tx_9217_to_16383_byte_packets;
402 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
403 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
404 	} else {
405 		struct qede_stats_ah *p_ah = &edev->stats.ah;
406 
407 		p_ah->rx_1519_to_max_byte_packets =
408 		    stats.ah.rx_1519_to_max_byte_packets;
409 		p_ah->tx_1519_to_max_byte_packets =
410 		    stats.ah.tx_1519_to_max_byte_packets;
411 	}
412 }
413 
414 static void qede_get_stats64(struct net_device *dev,
415 			     struct rtnl_link_stats64 *stats)
416 {
417 	struct qede_dev *edev = netdev_priv(dev);
418 	struct qede_stats_common *p_common;
419 
420 	qede_fill_by_demand_stats(edev);
421 	p_common = &edev->stats.common;
422 
423 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
424 			    p_common->rx_bcast_pkts;
425 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
426 			    p_common->tx_bcast_pkts;
427 
428 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
429 			  p_common->rx_bcast_bytes;
430 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
431 			  p_common->tx_bcast_bytes;
432 
433 	stats->tx_errors = p_common->tx_err_drop_pkts;
434 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
435 
436 	stats->rx_fifo_errors = p_common->no_buff_discards;
437 
438 	if (QEDE_IS_BB(edev))
439 		stats->collisions = edev->stats.bb.tx_total_collisions;
440 	stats->rx_crc_errors = p_common->rx_crc_errors;
441 	stats->rx_frame_errors = p_common->rx_align_errors;
442 }
443 
444 #ifdef CONFIG_QED_SRIOV
445 static int qede_get_vf_config(struct net_device *dev, int vfidx,
446 			      struct ifla_vf_info *ivi)
447 {
448 	struct qede_dev *edev = netdev_priv(dev);
449 
450 	if (!edev->ops)
451 		return -EINVAL;
452 
453 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
454 }
455 
456 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
457 			    int min_tx_rate, int max_tx_rate)
458 {
459 	struct qede_dev *edev = netdev_priv(dev);
460 
461 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
462 					max_tx_rate);
463 }
464 
465 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
466 {
467 	struct qede_dev *edev = netdev_priv(dev);
468 
469 	if (!edev->ops)
470 		return -EINVAL;
471 
472 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
473 }
474 
475 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
476 				  int link_state)
477 {
478 	struct qede_dev *edev = netdev_priv(dev);
479 
480 	if (!edev->ops)
481 		return -EINVAL;
482 
483 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
484 }
485 
486 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
487 {
488 	struct qede_dev *edev = netdev_priv(dev);
489 
490 	if (!edev->ops)
491 		return -EINVAL;
492 
493 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
494 }
495 #endif
496 
497 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
498 {
499 	struct qede_dev *edev = netdev_priv(dev);
500 
501 	if (!netif_running(dev))
502 		return -EAGAIN;
503 
504 	switch (cmd) {
505 	case SIOCSHWTSTAMP:
506 		return qede_ptp_hw_ts(edev, ifr);
507 	default:
508 		DP_VERBOSE(edev, QED_MSG_DEBUG,
509 			   "default IOCTL cmd 0x%x\n", cmd);
510 		return -EOPNOTSUPP;
511 	}
512 
513 	return 0;
514 }
515 
516 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
517 {
518 	DP_NOTICE(edev,
519 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
520 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
521 		  qed_chain_get_cons_idx(&txq->tx_pbl),
522 		  qed_chain_get_prod_idx(&txq->tx_pbl),
523 		  jiffies);
524 }
525 
526 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
527 {
528 	struct qede_dev *edev = netdev_priv(dev);
529 	struct qede_tx_queue *txq;
530 	int cos;
531 
532 	netif_carrier_off(dev);
533 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
534 
535 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
536 		return;
537 
538 	for_each_cos_in_txq(edev, cos) {
539 		txq = &edev->fp_array[txqueue].txq[cos];
540 
541 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
542 		    qed_chain_get_prod_idx(&txq->tx_pbl))
543 			qede_tx_log_print(edev, txq);
544 	}
545 
546 	if (IS_VF(edev))
547 		return;
548 
549 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
550 	    edev->state == QEDE_STATE_RECOVERY) {
551 		DP_INFO(edev,
552 			"Avoid handling a Tx timeout while another HW error is being handled\n");
553 		return;
554 	}
555 
556 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
557 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
558 	schedule_delayed_work(&edev->sp_task, 0);
559 }
560 
561 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
562 {
563 	struct qede_dev *edev = netdev_priv(ndev);
564 	int cos, count, offset;
565 
566 	if (num_tc > edev->dev_info.num_tc)
567 		return -EINVAL;
568 
569 	netdev_reset_tc(ndev);
570 	netdev_set_num_tc(ndev, num_tc);
571 
572 	for_each_cos_in_txq(edev, cos) {
573 		count = QEDE_TSS_COUNT(edev);
574 		offset = cos * QEDE_TSS_COUNT(edev);
575 		netdev_set_tc_queue(ndev, cos, count, offset);
576 	}
577 
578 	return 0;
579 }
580 
581 static int
582 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
583 		__be16 proto)
584 {
585 	switch (f->command) {
586 	case FLOW_CLS_REPLACE:
587 		return qede_add_tc_flower_fltr(edev, proto, f);
588 	case FLOW_CLS_DESTROY:
589 		return qede_delete_flow_filter(edev, f->cookie);
590 	default:
591 		return -EOPNOTSUPP;
592 	}
593 }
594 
595 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
596 				  void *cb_priv)
597 {
598 	struct flow_cls_offload *f;
599 	struct qede_dev *edev = cb_priv;
600 
601 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
602 		return -EOPNOTSUPP;
603 
604 	switch (type) {
605 	case TC_SETUP_CLSFLOWER:
606 		f = type_data;
607 		return qede_set_flower(edev, f, f->common.protocol);
608 	default:
609 		return -EOPNOTSUPP;
610 	}
611 }
612 
613 static LIST_HEAD(qede_block_cb_list);
614 
615 static int
616 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
617 		      void *type_data)
618 {
619 	struct qede_dev *edev = netdev_priv(dev);
620 	struct tc_mqprio_qopt *mqprio;
621 
622 	switch (type) {
623 	case TC_SETUP_BLOCK:
624 		return flow_block_cb_setup_simple(type_data,
625 						  &qede_block_cb_list,
626 						  qede_setup_tc_block_cb,
627 						  edev, edev, true);
628 	case TC_SETUP_QDISC_MQPRIO:
629 		mqprio = type_data;
630 
631 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
632 		return qede_setup_tc(dev, mqprio->num_tc);
633 	default:
634 		return -EOPNOTSUPP;
635 	}
636 }
637 
638 static const struct net_device_ops qede_netdev_ops = {
639 	.ndo_open		= qede_open,
640 	.ndo_stop		= qede_close,
641 	.ndo_start_xmit		= qede_start_xmit,
642 	.ndo_select_queue	= qede_select_queue,
643 	.ndo_set_rx_mode	= qede_set_rx_mode,
644 	.ndo_set_mac_address	= qede_set_mac_addr,
645 	.ndo_validate_addr	= eth_validate_addr,
646 	.ndo_change_mtu		= qede_change_mtu,
647 	.ndo_do_ioctl		= qede_ioctl,
648 	.ndo_tx_timeout		= qede_tx_timeout,
649 #ifdef CONFIG_QED_SRIOV
650 	.ndo_set_vf_mac		= qede_set_vf_mac,
651 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
652 	.ndo_set_vf_trust	= qede_set_vf_trust,
653 #endif
654 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
655 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
656 	.ndo_fix_features	= qede_fix_features,
657 	.ndo_set_features	= qede_set_features,
658 	.ndo_get_stats64	= qede_get_stats64,
659 #ifdef CONFIG_QED_SRIOV
660 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
661 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
662 	.ndo_get_vf_config	= qede_get_vf_config,
663 	.ndo_set_vf_rate	= qede_set_vf_rate,
664 #endif
665 	.ndo_features_check	= qede_features_check,
666 	.ndo_bpf		= qede_xdp,
667 #ifdef CONFIG_RFS_ACCEL
668 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
669 #endif
670 	.ndo_xdp_xmit		= qede_xdp_transmit,
671 	.ndo_setup_tc		= qede_setup_tc_offload,
672 };
673 
674 static const struct net_device_ops qede_netdev_vf_ops = {
675 	.ndo_open		= qede_open,
676 	.ndo_stop		= qede_close,
677 	.ndo_start_xmit		= qede_start_xmit,
678 	.ndo_select_queue	= qede_select_queue,
679 	.ndo_set_rx_mode	= qede_set_rx_mode,
680 	.ndo_set_mac_address	= qede_set_mac_addr,
681 	.ndo_validate_addr	= eth_validate_addr,
682 	.ndo_change_mtu		= qede_change_mtu,
683 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
684 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
685 	.ndo_fix_features	= qede_fix_features,
686 	.ndo_set_features	= qede_set_features,
687 	.ndo_get_stats64	= qede_get_stats64,
688 	.ndo_features_check	= qede_features_check,
689 };
690 
691 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
692 	.ndo_open		= qede_open,
693 	.ndo_stop		= qede_close,
694 	.ndo_start_xmit		= qede_start_xmit,
695 	.ndo_select_queue	= qede_select_queue,
696 	.ndo_set_rx_mode	= qede_set_rx_mode,
697 	.ndo_set_mac_address	= qede_set_mac_addr,
698 	.ndo_validate_addr	= eth_validate_addr,
699 	.ndo_change_mtu		= qede_change_mtu,
700 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
701 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
702 	.ndo_fix_features	= qede_fix_features,
703 	.ndo_set_features	= qede_set_features,
704 	.ndo_get_stats64	= qede_get_stats64,
705 	.ndo_features_check	= qede_features_check,
706 	.ndo_bpf		= qede_xdp,
707 	.ndo_xdp_xmit		= qede_xdp_transmit,
708 };
709 
710 /* -------------------------------------------------------------------------
711  * START OF PROBE / REMOVE
712  * -------------------------------------------------------------------------
713  */
714 
715 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
716 					    struct pci_dev *pdev,
717 					    struct qed_dev_eth_info *info,
718 					    u32 dp_module, u8 dp_level)
719 {
720 	struct net_device *ndev;
721 	struct qede_dev *edev;
722 
723 	ndev = alloc_etherdev_mqs(sizeof(*edev),
724 				  info->num_queues * info->num_tc,
725 				  info->num_queues);
726 	if (!ndev) {
727 		pr_err("etherdev allocation failed\n");
728 		return NULL;
729 	}
730 
731 	edev = netdev_priv(ndev);
732 	edev->ndev = ndev;
733 	edev->cdev = cdev;
734 	edev->pdev = pdev;
735 	edev->dp_module = dp_module;
736 	edev->dp_level = dp_level;
737 	edev->ops = qed_ops;
738 
739 	if (is_kdump_kernel()) {
740 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
741 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
742 	} else {
743 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
744 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
745 	}
746 
747 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
748 		info->num_queues, info->num_queues);
749 
750 	SET_NETDEV_DEV(ndev, &pdev->dev);
751 
752 	memset(&edev->stats, 0, sizeof(edev->stats));
753 	memcpy(&edev->dev_info, info, sizeof(*info));
754 
755 	/* As ethtool doesn't have the ability to show WoL behavior as
756 	 * 'default', if device supports it declare it's enabled.
757 	 */
758 	if (edev->dev_info.common.wol_support)
759 		edev->wol_enabled = true;
760 
761 	INIT_LIST_HEAD(&edev->vlan_list);
762 
763 	return edev;
764 }
765 
766 static void qede_init_ndev(struct qede_dev *edev)
767 {
768 	struct net_device *ndev = edev->ndev;
769 	struct pci_dev *pdev = edev->pdev;
770 	bool udp_tunnel_enable = false;
771 	netdev_features_t hw_features;
772 
773 	pci_set_drvdata(pdev, ndev);
774 
775 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
776 	ndev->base_addr = ndev->mem_start;
777 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
778 	ndev->irq = edev->dev_info.common.pci_irq;
779 
780 	ndev->watchdog_timeo = TX_TIMEOUT;
781 
782 	if (IS_VF(edev)) {
783 		if (edev->dev_info.xdp_supported)
784 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
785 		else
786 			ndev->netdev_ops = &qede_netdev_vf_ops;
787 	} else {
788 		ndev->netdev_ops = &qede_netdev_ops;
789 	}
790 
791 	qede_set_ethtool_ops(ndev);
792 
793 	ndev->priv_flags |= IFF_UNICAST_FLT;
794 
795 	/* user-changeble features */
796 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
797 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
798 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
799 
800 	if (edev->dev_info.common.b_arfs_capable)
801 		hw_features |= NETIF_F_NTUPLE;
802 
803 	if (edev->dev_info.common.vxlan_enable ||
804 	    edev->dev_info.common.geneve_enable)
805 		udp_tunnel_enable = true;
806 
807 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
808 		hw_features |= NETIF_F_TSO_ECN;
809 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
810 					NETIF_F_SG | NETIF_F_TSO |
811 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
812 					NETIF_F_RXCSUM;
813 	}
814 
815 	if (udp_tunnel_enable) {
816 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
817 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
818 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
819 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
820 
821 		qede_set_udp_tunnels(edev);
822 	}
823 
824 	if (edev->dev_info.common.gre_enable) {
825 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
826 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
827 					  NETIF_F_GSO_GRE_CSUM);
828 	}
829 
830 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
831 			      NETIF_F_HIGHDMA;
832 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
833 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
834 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
835 
836 	ndev->hw_features = hw_features;
837 
838 	/* MTU range: 46 - 9600 */
839 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
840 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
841 
842 	/* Set network device HW mac */
843 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
844 
845 	ndev->mtu = edev->dev_info.common.mtu;
846 }
847 
848 /* This function converts from 32b param to two params of level and module
849  * Input 32b decoding:
850  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
851  * 'happy' flow, e.g. memory allocation failed.
852  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
853  * and provide important parameters.
854  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
855  * module. VERBOSE prints are for tracking the specific flow in low level.
856  *
857  * Notice that the level should be that of the lowest required logs.
858  */
859 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
860 {
861 	*p_dp_level = QED_LEVEL_NOTICE;
862 	*p_dp_module = 0;
863 
864 	if (debug & QED_LOG_VERBOSE_MASK) {
865 		*p_dp_level = QED_LEVEL_VERBOSE;
866 		*p_dp_module = (debug & 0x3FFFFFFF);
867 	} else if (debug & QED_LOG_INFO_MASK) {
868 		*p_dp_level = QED_LEVEL_INFO;
869 	} else if (debug & QED_LOG_NOTICE_MASK) {
870 		*p_dp_level = QED_LEVEL_NOTICE;
871 	}
872 }
873 
874 static void qede_free_fp_array(struct qede_dev *edev)
875 {
876 	if (edev->fp_array) {
877 		struct qede_fastpath *fp;
878 		int i;
879 
880 		for_each_queue(i) {
881 			fp = &edev->fp_array[i];
882 
883 			kfree(fp->sb_info);
884 			/* Handle mem alloc failure case where qede_init_fp
885 			 * didn't register xdp_rxq_info yet.
886 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
887 			 */
888 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
889 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
890 			kfree(fp->rxq);
891 			kfree(fp->xdp_tx);
892 			kfree(fp->txq);
893 		}
894 		kfree(edev->fp_array);
895 	}
896 
897 	edev->num_queues = 0;
898 	edev->fp_num_tx = 0;
899 	edev->fp_num_rx = 0;
900 }
901 
902 static int qede_alloc_fp_array(struct qede_dev *edev)
903 {
904 	u8 fp_combined, fp_rx = edev->fp_num_rx;
905 	struct qede_fastpath *fp;
906 	void *mem;
907 	int i;
908 
909 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
910 				 sizeof(*edev->fp_array), GFP_KERNEL);
911 	if (!edev->fp_array) {
912 		DP_NOTICE(edev, "fp array allocation failed\n");
913 		goto err;
914 	}
915 
916 	mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
917 		       sizeof(*edev->coal_entry), GFP_KERNEL);
918 	if (!mem) {
919 		DP_ERR(edev, "coalesce entry allocation failed\n");
920 		kfree(edev->coal_entry);
921 		goto err;
922 	}
923 	edev->coal_entry = mem;
924 
925 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
926 
927 	/* Allocate the FP elements for Rx queues followed by combined and then
928 	 * the Tx. This ordering should be maintained so that the respective
929 	 * queues (Rx or Tx) will be together in the fastpath array and the
930 	 * associated ids will be sequential.
931 	 */
932 	for_each_queue(i) {
933 		fp = &edev->fp_array[i];
934 
935 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
936 		if (!fp->sb_info) {
937 			DP_NOTICE(edev, "sb info struct allocation failed\n");
938 			goto err;
939 		}
940 
941 		if (fp_rx) {
942 			fp->type = QEDE_FASTPATH_RX;
943 			fp_rx--;
944 		} else if (fp_combined) {
945 			fp->type = QEDE_FASTPATH_COMBINED;
946 			fp_combined--;
947 		} else {
948 			fp->type = QEDE_FASTPATH_TX;
949 		}
950 
951 		if (fp->type & QEDE_FASTPATH_TX) {
952 			fp->txq = kcalloc(edev->dev_info.num_tc,
953 					  sizeof(*fp->txq), GFP_KERNEL);
954 			if (!fp->txq)
955 				goto err;
956 		}
957 
958 		if (fp->type & QEDE_FASTPATH_RX) {
959 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
960 			if (!fp->rxq)
961 				goto err;
962 
963 			if (edev->xdp_prog) {
964 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
965 						     GFP_KERNEL);
966 				if (!fp->xdp_tx)
967 					goto err;
968 				fp->type |= QEDE_FASTPATH_XDP;
969 			}
970 		}
971 	}
972 
973 	return 0;
974 err:
975 	qede_free_fp_array(edev);
976 	return -ENOMEM;
977 }
978 
979 /* The qede lock is used to protect driver state change and driver flows that
980  * are not reentrant.
981  */
982 void __qede_lock(struct qede_dev *edev)
983 {
984 	mutex_lock(&edev->qede_lock);
985 }
986 
987 void __qede_unlock(struct qede_dev *edev)
988 {
989 	mutex_unlock(&edev->qede_lock);
990 }
991 
992 /* This version of the lock should be used when acquiring the RTNL lock is also
993  * needed in addition to the internal qede lock.
994  */
995 static void qede_lock(struct qede_dev *edev)
996 {
997 	rtnl_lock();
998 	__qede_lock(edev);
999 }
1000 
1001 static void qede_unlock(struct qede_dev *edev)
1002 {
1003 	__qede_unlock(edev);
1004 	rtnl_unlock();
1005 }
1006 
1007 static void qede_sp_task(struct work_struct *work)
1008 {
1009 	struct qede_dev *edev = container_of(work, struct qede_dev,
1010 					     sp_task.work);
1011 
1012 	/* Disable execution of this deferred work once
1013 	 * qede removal is in progress, this stop any future
1014 	 * scheduling of sp_task.
1015 	 */
1016 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1017 		return;
1018 
1019 	/* The locking scheme depends on the specific flag:
1020 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1021 	 * ensure that ongoing flows are ended and new ones are not started.
1022 	 * In other cases - only the internal qede lock should be acquired.
1023 	 */
1024 
1025 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1026 #ifdef CONFIG_QED_SRIOV
1027 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1028 		 * The recovery of the active VFs is currently not supported.
1029 		 */
1030 		if (pci_num_vf(edev->pdev))
1031 			qede_sriov_configure(edev->pdev, 0);
1032 #endif
1033 		qede_lock(edev);
1034 		qede_recovery_handler(edev);
1035 		qede_unlock(edev);
1036 	}
1037 
1038 	__qede_lock(edev);
1039 
1040 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1041 		if (edev->state == QEDE_STATE_OPEN)
1042 			qede_config_rx_mode(edev->ndev);
1043 
1044 #ifdef CONFIG_RFS_ACCEL
1045 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1046 		if (edev->state == QEDE_STATE_OPEN)
1047 			qede_process_arfs_filters(edev, false);
1048 	}
1049 #endif
1050 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1051 		qede_generic_hw_err_handler(edev);
1052 	__qede_unlock(edev);
1053 
1054 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1055 #ifdef CONFIG_QED_SRIOV
1056 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1057 		 * The recovery of the active VFs is currently not supported.
1058 		 */
1059 		if (pci_num_vf(edev->pdev))
1060 			qede_sriov_configure(edev->pdev, 0);
1061 #endif
1062 		edev->ops->common->recovery_process(edev->cdev);
1063 	}
1064 }
1065 
1066 static void qede_update_pf_params(struct qed_dev *cdev)
1067 {
1068 	struct qed_pf_params pf_params;
1069 	u16 num_cons;
1070 
1071 	/* 64 rx + 64 tx + 64 XDP */
1072 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1073 
1074 	/* 1 rx + 1 xdp + max tx cos */
1075 	num_cons = QED_MIN_L2_CONS;
1076 
1077 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1078 
1079 	/* Same for VFs - make sure they'll have sufficient connections
1080 	 * to support XDP Tx queues.
1081 	 */
1082 	pf_params.eth_pf_params.num_vf_cons = 48;
1083 
1084 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1085 	qed_ops->common->update_pf_params(cdev, &pf_params);
1086 }
1087 
1088 #define QEDE_FW_VER_STR_SIZE	80
1089 
1090 static void qede_log_probe(struct qede_dev *edev)
1091 {
1092 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1093 	u8 buf[QEDE_FW_VER_STR_SIZE];
1094 	size_t left_size;
1095 
1096 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1097 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1098 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1099 		 p_dev_info->fw_eng,
1100 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1101 		 QED_MFW_VERSION_3_OFFSET,
1102 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1103 		 QED_MFW_VERSION_2_OFFSET,
1104 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1105 		 QED_MFW_VERSION_1_OFFSET,
1106 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1107 		 QED_MFW_VERSION_0_OFFSET);
1108 
1109 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1110 	if (p_dev_info->mbi_version && left_size)
1111 		snprintf(buf + strlen(buf), left_size,
1112 			 " [MBI %d.%d.%d]",
1113 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1114 			 QED_MBI_VERSION_2_OFFSET,
1115 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1116 			 QED_MBI_VERSION_1_OFFSET,
1117 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1118 			 QED_MBI_VERSION_0_OFFSET);
1119 
1120 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1121 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1122 		buf, edev->ndev->name);
1123 }
1124 
1125 enum qede_probe_mode {
1126 	QEDE_PROBE_NORMAL,
1127 	QEDE_PROBE_RECOVERY,
1128 };
1129 
1130 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1131 			bool is_vf, enum qede_probe_mode mode)
1132 {
1133 	struct qed_probe_params probe_params;
1134 	struct qed_slowpath_params sp_params;
1135 	struct qed_dev_eth_info dev_info;
1136 	struct qede_dev *edev;
1137 	struct qed_dev *cdev;
1138 	int rc;
1139 
1140 	if (unlikely(dp_level & QED_LEVEL_INFO))
1141 		pr_notice("Starting qede probe\n");
1142 
1143 	memset(&probe_params, 0, sizeof(probe_params));
1144 	probe_params.protocol = QED_PROTOCOL_ETH;
1145 	probe_params.dp_module = dp_module;
1146 	probe_params.dp_level = dp_level;
1147 	probe_params.is_vf = is_vf;
1148 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1149 	cdev = qed_ops->common->probe(pdev, &probe_params);
1150 	if (!cdev) {
1151 		rc = -ENODEV;
1152 		goto err0;
1153 	}
1154 
1155 	qede_update_pf_params(cdev);
1156 
1157 	/* Start the Slowpath-process */
1158 	memset(&sp_params, 0, sizeof(sp_params));
1159 	sp_params.int_mode = QED_INT_MODE_MSIX;
1160 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1161 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1162 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1163 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1164 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1165 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1166 	if (rc) {
1167 		pr_notice("Cannot start slowpath\n");
1168 		goto err1;
1169 	}
1170 
1171 	/* Learn information crucial for qede to progress */
1172 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1173 	if (rc)
1174 		goto err2;
1175 
1176 	if (mode != QEDE_PROBE_RECOVERY) {
1177 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1178 					   dp_level);
1179 		if (!edev) {
1180 			rc = -ENOMEM;
1181 			goto err2;
1182 		}
1183 
1184 		edev->devlink = qed_ops->common->devlink_register(cdev);
1185 		if (IS_ERR(edev->devlink)) {
1186 			DP_NOTICE(edev, "Cannot register devlink\n");
1187 			edev->devlink = NULL;
1188 			/* Go on, we can live without devlink */
1189 		}
1190 	} else {
1191 		struct net_device *ndev = pci_get_drvdata(pdev);
1192 
1193 		edev = netdev_priv(ndev);
1194 
1195 		if (edev->devlink) {
1196 			struct qed_devlink *qdl = devlink_priv(edev->devlink);
1197 
1198 			qdl->cdev = cdev;
1199 		}
1200 		edev->cdev = cdev;
1201 		memset(&edev->stats, 0, sizeof(edev->stats));
1202 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1203 	}
1204 
1205 	if (is_vf)
1206 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1207 
1208 	qede_init_ndev(edev);
1209 
1210 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1211 	if (rc)
1212 		goto err3;
1213 
1214 	if (mode != QEDE_PROBE_RECOVERY) {
1215 		/* Prepare the lock prior to the registration of the netdev,
1216 		 * as once it's registered we might reach flows requiring it
1217 		 * [it's even possible to reach a flow needing it directly
1218 		 * from there, although it's unlikely].
1219 		 */
1220 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1221 		mutex_init(&edev->qede_lock);
1222 
1223 		rc = register_netdev(edev->ndev);
1224 		if (rc) {
1225 			DP_NOTICE(edev, "Cannot register net-device\n");
1226 			goto err4;
1227 		}
1228 	}
1229 
1230 	edev->ops->common->set_name(cdev, edev->ndev->name);
1231 
1232 	/* PTP not supported on VFs */
1233 	if (!is_vf)
1234 		qede_ptp_enable(edev);
1235 
1236 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1237 
1238 #ifdef CONFIG_DCB
1239 	if (!IS_VF(edev))
1240 		qede_set_dcbnl_ops(edev->ndev);
1241 #endif
1242 
1243 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1244 
1245 	qede_log_probe(edev);
1246 	return 0;
1247 
1248 err4:
1249 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1250 err3:
1251 	if (mode != QEDE_PROBE_RECOVERY)
1252 		free_netdev(edev->ndev);
1253 	else
1254 		edev->cdev = NULL;
1255 err2:
1256 	qed_ops->common->slowpath_stop(cdev);
1257 err1:
1258 	qed_ops->common->remove(cdev);
1259 err0:
1260 	return rc;
1261 }
1262 
1263 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1264 {
1265 	bool is_vf = false;
1266 	u32 dp_module = 0;
1267 	u8 dp_level = 0;
1268 
1269 	switch ((enum qede_pci_private)id->driver_data) {
1270 	case QEDE_PRIVATE_VF:
1271 		if (debug & QED_LOG_VERBOSE_MASK)
1272 			dev_err(&pdev->dev, "Probing a VF\n");
1273 		is_vf = true;
1274 		break;
1275 	default:
1276 		if (debug & QED_LOG_VERBOSE_MASK)
1277 			dev_err(&pdev->dev, "Probing a PF\n");
1278 	}
1279 
1280 	qede_config_debug(debug, &dp_module, &dp_level);
1281 
1282 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1283 			    QEDE_PROBE_NORMAL);
1284 }
1285 
1286 enum qede_remove_mode {
1287 	QEDE_REMOVE_NORMAL,
1288 	QEDE_REMOVE_RECOVERY,
1289 };
1290 
1291 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1292 {
1293 	struct net_device *ndev = pci_get_drvdata(pdev);
1294 	struct qede_dev *edev;
1295 	struct qed_dev *cdev;
1296 
1297 	if (!ndev) {
1298 		dev_info(&pdev->dev, "Device has already been removed\n");
1299 		return;
1300 	}
1301 
1302 	edev = netdev_priv(ndev);
1303 	cdev = edev->cdev;
1304 
1305 	DP_INFO(edev, "Starting qede_remove\n");
1306 
1307 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1308 
1309 	if (mode != QEDE_REMOVE_RECOVERY) {
1310 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1311 		unregister_netdev(ndev);
1312 
1313 		cancel_delayed_work_sync(&edev->sp_task);
1314 
1315 		edev->ops->common->set_power_state(cdev, PCI_D0);
1316 
1317 		pci_set_drvdata(pdev, NULL);
1318 	}
1319 
1320 	qede_ptp_disable(edev);
1321 
1322 	/* Use global ops since we've freed edev */
1323 	qed_ops->common->slowpath_stop(cdev);
1324 	if (system_state == SYSTEM_POWER_OFF)
1325 		return;
1326 
1327 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1328 		qed_ops->common->devlink_unregister(edev->devlink);
1329 		edev->devlink = NULL;
1330 	}
1331 	qed_ops->common->remove(cdev);
1332 	edev->cdev = NULL;
1333 
1334 	/* Since this can happen out-of-sync with other flows,
1335 	 * don't release the netdevice until after slowpath stop
1336 	 * has been called to guarantee various other contexts
1337 	 * [e.g., QED register callbacks] won't break anything when
1338 	 * accessing the netdevice.
1339 	 */
1340 	if (mode != QEDE_REMOVE_RECOVERY) {
1341 		kfree(edev->coal_entry);
1342 		free_netdev(ndev);
1343 	}
1344 
1345 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1346 }
1347 
1348 static void qede_remove(struct pci_dev *pdev)
1349 {
1350 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1351 }
1352 
1353 static void qede_shutdown(struct pci_dev *pdev)
1354 {
1355 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1356 }
1357 
1358 /* -------------------------------------------------------------------------
1359  * START OF LOAD / UNLOAD
1360  * -------------------------------------------------------------------------
1361  */
1362 
1363 static int qede_set_num_queues(struct qede_dev *edev)
1364 {
1365 	int rc;
1366 	u16 rss_num;
1367 
1368 	/* Setup queues according to possible resources*/
1369 	if (edev->req_queues)
1370 		rss_num = edev->req_queues;
1371 	else
1372 		rss_num = netif_get_num_default_rss_queues() *
1373 			  edev->dev_info.common.num_hwfns;
1374 
1375 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1376 
1377 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1378 	if (rc > 0) {
1379 		/* Managed to request interrupts for our queues */
1380 		edev->num_queues = rc;
1381 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1382 			QEDE_QUEUE_CNT(edev), rss_num);
1383 		rc = 0;
1384 	}
1385 
1386 	edev->fp_num_tx = edev->req_num_tx;
1387 	edev->fp_num_rx = edev->req_num_rx;
1388 
1389 	return rc;
1390 }
1391 
1392 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1393 			     u16 sb_id)
1394 {
1395 	if (sb_info->sb_virt) {
1396 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1397 					      QED_SB_TYPE_L2_QUEUE);
1398 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1399 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1400 		memset(sb_info, 0, sizeof(*sb_info));
1401 	}
1402 }
1403 
1404 /* This function allocates fast-path status block memory */
1405 static int qede_alloc_mem_sb(struct qede_dev *edev,
1406 			     struct qed_sb_info *sb_info, u16 sb_id)
1407 {
1408 	struct status_block_e4 *sb_virt;
1409 	dma_addr_t sb_phys;
1410 	int rc;
1411 
1412 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1413 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1414 	if (!sb_virt) {
1415 		DP_ERR(edev, "Status block allocation failed\n");
1416 		return -ENOMEM;
1417 	}
1418 
1419 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1420 					sb_virt, sb_phys, sb_id,
1421 					QED_SB_TYPE_L2_QUEUE);
1422 	if (rc) {
1423 		DP_ERR(edev, "Status block initialization failed\n");
1424 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1425 				  sb_virt, sb_phys);
1426 		return rc;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 static void qede_free_rx_buffers(struct qede_dev *edev,
1433 				 struct qede_rx_queue *rxq)
1434 {
1435 	u16 i;
1436 
1437 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1438 		struct sw_rx_data *rx_buf;
1439 		struct page *data;
1440 
1441 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1442 		data = rx_buf->data;
1443 
1444 		dma_unmap_page(&edev->pdev->dev,
1445 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1446 
1447 		rx_buf->data = NULL;
1448 		__free_page(data);
1449 	}
1450 }
1451 
1452 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1453 {
1454 	/* Free rx buffers */
1455 	qede_free_rx_buffers(edev, rxq);
1456 
1457 	/* Free the parallel SW ring */
1458 	kfree(rxq->sw_rx_ring);
1459 
1460 	/* Free the real RQ ring used by FW */
1461 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1462 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1463 }
1464 
1465 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1466 {
1467 	int i;
1468 
1469 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1470 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1471 
1472 		tpa_info->state = QEDE_AGG_STATE_NONE;
1473 	}
1474 }
1475 
1476 /* This function allocates all memory needed per Rx queue */
1477 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1478 {
1479 	struct qed_chain_init_params params = {
1480 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1481 		.num_elems	= RX_RING_SIZE,
1482 	};
1483 	struct qed_dev *cdev = edev->cdev;
1484 	int i, rc, size;
1485 
1486 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1487 
1488 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1489 
1490 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1491 	size = rxq->rx_headroom +
1492 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1493 
1494 	/* Make sure that the headroom and  payload fit in a single page */
1495 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1496 		rxq->rx_buf_size = PAGE_SIZE - size;
1497 
1498 	/* Segment size to split a page in multiple equal parts,
1499 	 * unless XDP is used in which case we'd use the entire page.
1500 	 */
1501 	if (!edev->xdp_prog) {
1502 		size = size + rxq->rx_buf_size;
1503 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1504 	} else {
1505 		rxq->rx_buf_seg_size = PAGE_SIZE;
1506 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1507 	}
1508 
1509 	/* Allocate the parallel driver ring for Rx buffers */
1510 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1511 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1512 	if (!rxq->sw_rx_ring) {
1513 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1514 		rc = -ENOMEM;
1515 		goto err;
1516 	}
1517 
1518 	/* Allocate FW Rx ring  */
1519 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1520 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1521 	params.elem_size = sizeof(struct eth_rx_bd);
1522 
1523 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1524 	if (rc)
1525 		goto err;
1526 
1527 	/* Allocate FW completion ring */
1528 	params.mode = QED_CHAIN_MODE_PBL;
1529 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1530 	params.elem_size = sizeof(union eth_rx_cqe);
1531 
1532 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1533 	if (rc)
1534 		goto err;
1535 
1536 	/* Allocate buffers for the Rx ring */
1537 	rxq->filled_buffers = 0;
1538 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1539 		rc = qede_alloc_rx_buffer(rxq, false);
1540 		if (rc) {
1541 			DP_ERR(edev,
1542 			       "Rx buffers allocation failed at index %d\n", i);
1543 			goto err;
1544 		}
1545 	}
1546 
1547 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1548 	if (!edev->gro_disable)
1549 		qede_set_tpa_param(rxq);
1550 err:
1551 	return rc;
1552 }
1553 
1554 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1555 {
1556 	/* Free the parallel SW ring */
1557 	if (txq->is_xdp)
1558 		kfree(txq->sw_tx_ring.xdp);
1559 	else
1560 		kfree(txq->sw_tx_ring.skbs);
1561 
1562 	/* Free the real RQ ring used by FW */
1563 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1564 }
1565 
1566 /* This function allocates all memory needed per Tx queue */
1567 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1568 {
1569 	struct qed_chain_init_params params = {
1570 		.mode		= QED_CHAIN_MODE_PBL,
1571 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1572 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1573 		.num_elems	= edev->q_num_tx_buffers,
1574 		.elem_size	= sizeof(union eth_tx_bd_types),
1575 	};
1576 	int size, rc;
1577 
1578 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1579 
1580 	/* Allocate the parallel driver ring for Tx buffers */
1581 	if (txq->is_xdp) {
1582 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1583 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1584 		if (!txq->sw_tx_ring.xdp)
1585 			goto err;
1586 	} else {
1587 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1588 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1589 		if (!txq->sw_tx_ring.skbs)
1590 			goto err;
1591 	}
1592 
1593 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1594 	if (rc)
1595 		goto err;
1596 
1597 	return 0;
1598 
1599 err:
1600 	qede_free_mem_txq(edev, txq);
1601 	return -ENOMEM;
1602 }
1603 
1604 /* This function frees all memory of a single fp */
1605 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1606 {
1607 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1608 
1609 	if (fp->type & QEDE_FASTPATH_RX)
1610 		qede_free_mem_rxq(edev, fp->rxq);
1611 
1612 	if (fp->type & QEDE_FASTPATH_XDP)
1613 		qede_free_mem_txq(edev, fp->xdp_tx);
1614 
1615 	if (fp->type & QEDE_FASTPATH_TX) {
1616 		int cos;
1617 
1618 		for_each_cos_in_txq(edev, cos)
1619 			qede_free_mem_txq(edev, &fp->txq[cos]);
1620 	}
1621 }
1622 
1623 /* This function allocates all memory needed for a single fp (i.e. an entity
1624  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1625  */
1626 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1627 {
1628 	int rc = 0;
1629 
1630 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1631 	if (rc)
1632 		goto out;
1633 
1634 	if (fp->type & QEDE_FASTPATH_RX) {
1635 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1636 		if (rc)
1637 			goto out;
1638 	}
1639 
1640 	if (fp->type & QEDE_FASTPATH_XDP) {
1641 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1642 		if (rc)
1643 			goto out;
1644 	}
1645 
1646 	if (fp->type & QEDE_FASTPATH_TX) {
1647 		int cos;
1648 
1649 		for_each_cos_in_txq(edev, cos) {
1650 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1651 			if (rc)
1652 				goto out;
1653 		}
1654 	}
1655 
1656 out:
1657 	return rc;
1658 }
1659 
1660 static void qede_free_mem_load(struct qede_dev *edev)
1661 {
1662 	int i;
1663 
1664 	for_each_queue(i) {
1665 		struct qede_fastpath *fp = &edev->fp_array[i];
1666 
1667 		qede_free_mem_fp(edev, fp);
1668 	}
1669 }
1670 
1671 /* This function allocates all qede memory at NIC load. */
1672 static int qede_alloc_mem_load(struct qede_dev *edev)
1673 {
1674 	int rc = 0, queue_id;
1675 
1676 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1677 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1678 
1679 		rc = qede_alloc_mem_fp(edev, fp);
1680 		if (rc) {
1681 			DP_ERR(edev,
1682 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1683 			       queue_id);
1684 			qede_free_mem_load(edev);
1685 			return rc;
1686 		}
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 static void qede_empty_tx_queue(struct qede_dev *edev,
1693 				struct qede_tx_queue *txq)
1694 {
1695 	unsigned int pkts_compl = 0, bytes_compl = 0;
1696 	struct netdev_queue *netdev_txq;
1697 	int rc, len = 0;
1698 
1699 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1700 
1701 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1702 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1703 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1704 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1705 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1706 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1707 
1708 		rc = qede_free_tx_pkt(edev, txq, &len);
1709 		if (rc) {
1710 			DP_NOTICE(edev,
1711 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1712 				  txq->index,
1713 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1714 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1715 			break;
1716 		}
1717 
1718 		bytes_compl += len;
1719 		pkts_compl++;
1720 		txq->sw_tx_cons++;
1721 	}
1722 
1723 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1724 }
1725 
1726 static void qede_empty_tx_queues(struct qede_dev *edev)
1727 {
1728 	int i;
1729 
1730 	for_each_queue(i)
1731 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1732 			int cos;
1733 
1734 			for_each_cos_in_txq(edev, cos) {
1735 				struct qede_fastpath *fp;
1736 
1737 				fp = &edev->fp_array[i];
1738 				qede_empty_tx_queue(edev,
1739 						    &fp->txq[cos]);
1740 			}
1741 		}
1742 }
1743 
1744 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1745 static void qede_init_fp(struct qede_dev *edev)
1746 {
1747 	int queue_id, rxq_index = 0, txq_index = 0;
1748 	struct qede_fastpath *fp;
1749 	bool init_xdp = false;
1750 
1751 	for_each_queue(queue_id) {
1752 		fp = &edev->fp_array[queue_id];
1753 
1754 		fp->edev = edev;
1755 		fp->id = queue_id;
1756 
1757 		if (fp->type & QEDE_FASTPATH_XDP) {
1758 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1759 								rxq_index);
1760 			fp->xdp_tx->is_xdp = 1;
1761 
1762 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1763 			init_xdp = true;
1764 		}
1765 
1766 		if (fp->type & QEDE_FASTPATH_RX) {
1767 			fp->rxq->rxq_id = rxq_index++;
1768 
1769 			/* Determine how to map buffers for this queue */
1770 			if (fp->type & QEDE_FASTPATH_XDP)
1771 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1772 			else
1773 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1774 			fp->rxq->dev = &edev->pdev->dev;
1775 
1776 			/* Driver have no error path from here */
1777 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1778 						 fp->rxq->rxq_id, 0) < 0);
1779 
1780 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1781 						       MEM_TYPE_PAGE_ORDER0,
1782 						       NULL)) {
1783 				DP_NOTICE(edev,
1784 					  "Failed to register XDP memory model\n");
1785 			}
1786 		}
1787 
1788 		if (fp->type & QEDE_FASTPATH_TX) {
1789 			int cos;
1790 
1791 			for_each_cos_in_txq(edev, cos) {
1792 				struct qede_tx_queue *txq = &fp->txq[cos];
1793 				u16 ndev_tx_id;
1794 
1795 				txq->cos = cos;
1796 				txq->index = txq_index;
1797 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1798 				txq->ndev_txq_id = ndev_tx_id;
1799 
1800 				if (edev->dev_info.is_legacy)
1801 					txq->is_legacy = true;
1802 				txq->dev = &edev->pdev->dev;
1803 			}
1804 
1805 			txq_index++;
1806 		}
1807 
1808 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1809 			 edev->ndev->name, queue_id);
1810 	}
1811 
1812 	if (init_xdp) {
1813 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1814 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1815 	}
1816 }
1817 
1818 static int qede_set_real_num_queues(struct qede_dev *edev)
1819 {
1820 	int rc = 0;
1821 
1822 	rc = netif_set_real_num_tx_queues(edev->ndev,
1823 					  QEDE_TSS_COUNT(edev) *
1824 					  edev->dev_info.num_tc);
1825 	if (rc) {
1826 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1827 		return rc;
1828 	}
1829 
1830 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1831 	if (rc) {
1832 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1833 		return rc;
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 static void qede_napi_disable_remove(struct qede_dev *edev)
1840 {
1841 	int i;
1842 
1843 	for_each_queue(i) {
1844 		napi_disable(&edev->fp_array[i].napi);
1845 
1846 		netif_napi_del(&edev->fp_array[i].napi);
1847 	}
1848 }
1849 
1850 static void qede_napi_add_enable(struct qede_dev *edev)
1851 {
1852 	int i;
1853 
1854 	/* Add NAPI objects */
1855 	for_each_queue(i) {
1856 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1857 			       qede_poll, NAPI_POLL_WEIGHT);
1858 		napi_enable(&edev->fp_array[i].napi);
1859 	}
1860 }
1861 
1862 static void qede_sync_free_irqs(struct qede_dev *edev)
1863 {
1864 	int i;
1865 
1866 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1867 		if (edev->int_info.msix_cnt) {
1868 			synchronize_irq(edev->int_info.msix[i].vector);
1869 			free_irq(edev->int_info.msix[i].vector,
1870 				 &edev->fp_array[i]);
1871 		} else {
1872 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1873 		}
1874 	}
1875 
1876 	edev->int_info.used_cnt = 0;
1877 	edev->int_info.msix_cnt = 0;
1878 }
1879 
1880 static int qede_req_msix_irqs(struct qede_dev *edev)
1881 {
1882 	int i, rc;
1883 
1884 	/* Sanitize number of interrupts == number of prepared RSS queues */
1885 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1886 		DP_ERR(edev,
1887 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1888 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1889 		return -EINVAL;
1890 	}
1891 
1892 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1893 #ifdef CONFIG_RFS_ACCEL
1894 		struct qede_fastpath *fp = &edev->fp_array[i];
1895 
1896 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1897 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1898 					      edev->int_info.msix[i].vector);
1899 			if (rc) {
1900 				DP_ERR(edev, "Failed to add CPU rmap\n");
1901 				qede_free_arfs(edev);
1902 			}
1903 		}
1904 #endif
1905 		rc = request_irq(edev->int_info.msix[i].vector,
1906 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1907 				 &edev->fp_array[i]);
1908 		if (rc) {
1909 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1910 			qede_sync_free_irqs(edev);
1911 			return rc;
1912 		}
1913 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1914 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1915 			   edev->fp_array[i].name, i,
1916 			   &edev->fp_array[i]);
1917 		edev->int_info.used_cnt++;
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 static void qede_simd_fp_handler(void *cookie)
1924 {
1925 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1926 
1927 	napi_schedule_irqoff(&fp->napi);
1928 }
1929 
1930 static int qede_setup_irqs(struct qede_dev *edev)
1931 {
1932 	int i, rc = 0;
1933 
1934 	/* Learn Interrupt configuration */
1935 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1936 	if (rc)
1937 		return rc;
1938 
1939 	if (edev->int_info.msix_cnt) {
1940 		rc = qede_req_msix_irqs(edev);
1941 		if (rc)
1942 			return rc;
1943 		edev->ndev->irq = edev->int_info.msix[0].vector;
1944 	} else {
1945 		const struct qed_common_ops *ops;
1946 
1947 		/* qed should learn receive the RSS ids and callbacks */
1948 		ops = edev->ops->common;
1949 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1950 			ops->simd_handler_config(edev->cdev,
1951 						 &edev->fp_array[i], i,
1952 						 qede_simd_fp_handler);
1953 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1954 	}
1955 	return 0;
1956 }
1957 
1958 static int qede_drain_txq(struct qede_dev *edev,
1959 			  struct qede_tx_queue *txq, bool allow_drain)
1960 {
1961 	int rc, cnt = 1000;
1962 
1963 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1964 		if (!cnt) {
1965 			if (allow_drain) {
1966 				DP_NOTICE(edev,
1967 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1968 					  txq->index);
1969 				rc = edev->ops->common->drain(edev->cdev);
1970 				if (rc)
1971 					return rc;
1972 				return qede_drain_txq(edev, txq, false);
1973 			}
1974 			DP_NOTICE(edev,
1975 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1976 				  txq->index, txq->sw_tx_prod,
1977 				  txq->sw_tx_cons);
1978 			return -ENODEV;
1979 		}
1980 		cnt--;
1981 		usleep_range(1000, 2000);
1982 		barrier();
1983 	}
1984 
1985 	/* FW finished processing, wait for HW to transmit all tx packets */
1986 	usleep_range(1000, 2000);
1987 
1988 	return 0;
1989 }
1990 
1991 static int qede_stop_txq(struct qede_dev *edev,
1992 			 struct qede_tx_queue *txq, int rss_id)
1993 {
1994 	/* delete doorbell from doorbell recovery mechanism */
1995 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1996 					   &txq->tx_db);
1997 
1998 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1999 }
2000 
2001 static int qede_stop_queues(struct qede_dev *edev)
2002 {
2003 	struct qed_update_vport_params *vport_update_params;
2004 	struct qed_dev *cdev = edev->cdev;
2005 	struct qede_fastpath *fp;
2006 	int rc, i;
2007 
2008 	/* Disable the vport */
2009 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2010 	if (!vport_update_params)
2011 		return -ENOMEM;
2012 
2013 	vport_update_params->vport_id = 0;
2014 	vport_update_params->update_vport_active_flg = 1;
2015 	vport_update_params->vport_active_flg = 0;
2016 	vport_update_params->update_rss_flg = 0;
2017 
2018 	rc = edev->ops->vport_update(cdev, vport_update_params);
2019 	vfree(vport_update_params);
2020 
2021 	if (rc) {
2022 		DP_ERR(edev, "Failed to update vport\n");
2023 		return rc;
2024 	}
2025 
2026 	/* Flush Tx queues. If needed, request drain from MCP */
2027 	for_each_queue(i) {
2028 		fp = &edev->fp_array[i];
2029 
2030 		if (fp->type & QEDE_FASTPATH_TX) {
2031 			int cos;
2032 
2033 			for_each_cos_in_txq(edev, cos) {
2034 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2035 				if (rc)
2036 					return rc;
2037 			}
2038 		}
2039 
2040 		if (fp->type & QEDE_FASTPATH_XDP) {
2041 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2042 			if (rc)
2043 				return rc;
2044 		}
2045 	}
2046 
2047 	/* Stop all Queues in reverse order */
2048 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2049 		fp = &edev->fp_array[i];
2050 
2051 		/* Stop the Tx Queue(s) */
2052 		if (fp->type & QEDE_FASTPATH_TX) {
2053 			int cos;
2054 
2055 			for_each_cos_in_txq(edev, cos) {
2056 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2057 				if (rc)
2058 					return rc;
2059 			}
2060 		}
2061 
2062 		/* Stop the Rx Queue */
2063 		if (fp->type & QEDE_FASTPATH_RX) {
2064 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2065 			if (rc) {
2066 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2067 				return rc;
2068 			}
2069 		}
2070 
2071 		/* Stop the XDP forwarding queue */
2072 		if (fp->type & QEDE_FASTPATH_XDP) {
2073 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2074 			if (rc)
2075 				return rc;
2076 
2077 			bpf_prog_put(fp->rxq->xdp_prog);
2078 		}
2079 	}
2080 
2081 	/* Stop the vport */
2082 	rc = edev->ops->vport_stop(cdev, 0);
2083 	if (rc)
2084 		DP_ERR(edev, "Failed to stop VPORT\n");
2085 
2086 	return rc;
2087 }
2088 
2089 static int qede_start_txq(struct qede_dev *edev,
2090 			  struct qede_fastpath *fp,
2091 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2092 {
2093 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2094 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2095 	struct qed_queue_start_common_params params;
2096 	struct qed_txq_start_ret_params ret_params;
2097 	int rc;
2098 
2099 	memset(&params, 0, sizeof(params));
2100 	memset(&ret_params, 0, sizeof(ret_params));
2101 
2102 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2103 	 * We don't really care about its coalescing.
2104 	 */
2105 	if (txq->is_xdp)
2106 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2107 	else
2108 		params.queue_id = txq->index;
2109 
2110 	params.p_sb = fp->sb_info;
2111 	params.sb_idx = sb_idx;
2112 	params.tc = txq->cos;
2113 
2114 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2115 				   page_cnt, &ret_params);
2116 	if (rc) {
2117 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2118 		return rc;
2119 	}
2120 
2121 	txq->doorbell_addr = ret_params.p_doorbell;
2122 	txq->handle = ret_params.p_handle;
2123 
2124 	/* Determine the FW consumer address associated */
2125 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2126 
2127 	/* Prepare the doorbell parameters */
2128 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2129 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2130 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2131 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2132 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2133 
2134 	/* register doorbell with doorbell recovery mechanism */
2135 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2136 						&txq->tx_db, DB_REC_WIDTH_32B,
2137 						DB_REC_KERNEL);
2138 
2139 	return rc;
2140 }
2141 
2142 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2143 {
2144 	int vlan_removal_en = 1;
2145 	struct qed_dev *cdev = edev->cdev;
2146 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2147 	struct qed_update_vport_params *vport_update_params;
2148 	struct qed_queue_start_common_params q_params;
2149 	struct qed_start_vport_params start = {0};
2150 	int rc, i;
2151 
2152 	if (!edev->num_queues) {
2153 		DP_ERR(edev,
2154 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2155 		return -EINVAL;
2156 	}
2157 
2158 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2159 	if (!vport_update_params)
2160 		return -ENOMEM;
2161 
2162 	start.handle_ptp_pkts = !!(edev->ptp);
2163 	start.gro_enable = !edev->gro_disable;
2164 	start.mtu = edev->ndev->mtu;
2165 	start.vport_id = 0;
2166 	start.drop_ttl0 = true;
2167 	start.remove_inner_vlan = vlan_removal_en;
2168 	start.clear_stats = clear_stats;
2169 
2170 	rc = edev->ops->vport_start(cdev, &start);
2171 
2172 	if (rc) {
2173 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2174 		goto out;
2175 	}
2176 
2177 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2178 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2179 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2180 
2181 	for_each_queue(i) {
2182 		struct qede_fastpath *fp = &edev->fp_array[i];
2183 		dma_addr_t p_phys_table;
2184 		u32 page_cnt;
2185 
2186 		if (fp->type & QEDE_FASTPATH_RX) {
2187 			struct qed_rxq_start_ret_params ret_params;
2188 			struct qede_rx_queue *rxq = fp->rxq;
2189 			__le16 *val;
2190 
2191 			memset(&ret_params, 0, sizeof(ret_params));
2192 			memset(&q_params, 0, sizeof(q_params));
2193 			q_params.queue_id = rxq->rxq_id;
2194 			q_params.vport_id = 0;
2195 			q_params.p_sb = fp->sb_info;
2196 			q_params.sb_idx = RX_PI;
2197 
2198 			p_phys_table =
2199 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2200 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2201 
2202 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2203 						   rxq->rx_buf_size,
2204 						   rxq->rx_bd_ring.p_phys_addr,
2205 						   p_phys_table,
2206 						   page_cnt, &ret_params);
2207 			if (rc) {
2208 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2209 				       rc);
2210 				goto out;
2211 			}
2212 
2213 			/* Use the return parameters */
2214 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2215 			rxq->handle = ret_params.p_handle;
2216 
2217 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2218 			rxq->hw_cons_ptr = val;
2219 
2220 			qede_update_rx_prod(edev, rxq);
2221 		}
2222 
2223 		if (fp->type & QEDE_FASTPATH_XDP) {
2224 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2225 			if (rc)
2226 				goto out;
2227 
2228 			bpf_prog_add(edev->xdp_prog, 1);
2229 			fp->rxq->xdp_prog = edev->xdp_prog;
2230 		}
2231 
2232 		if (fp->type & QEDE_FASTPATH_TX) {
2233 			int cos;
2234 
2235 			for_each_cos_in_txq(edev, cos) {
2236 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2237 						    TX_PI(cos));
2238 				if (rc)
2239 					goto out;
2240 			}
2241 		}
2242 	}
2243 
2244 	/* Prepare and send the vport enable */
2245 	vport_update_params->vport_id = start.vport_id;
2246 	vport_update_params->update_vport_active_flg = 1;
2247 	vport_update_params->vport_active_flg = 1;
2248 
2249 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2250 	    qed_info->tx_switching) {
2251 		vport_update_params->update_tx_switching_flg = 1;
2252 		vport_update_params->tx_switching_flg = 1;
2253 	}
2254 
2255 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2256 			     &vport_update_params->update_rss_flg);
2257 
2258 	rc = edev->ops->vport_update(cdev, vport_update_params);
2259 	if (rc)
2260 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2261 
2262 out:
2263 	vfree(vport_update_params);
2264 	return rc;
2265 }
2266 
2267 enum qede_unload_mode {
2268 	QEDE_UNLOAD_NORMAL,
2269 	QEDE_UNLOAD_RECOVERY,
2270 };
2271 
2272 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2273 			bool is_locked)
2274 {
2275 	struct qed_link_params link_params;
2276 	int rc;
2277 
2278 	DP_INFO(edev, "Starting qede unload\n");
2279 
2280 	if (!is_locked)
2281 		__qede_lock(edev);
2282 
2283 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2284 
2285 	if (mode != QEDE_UNLOAD_RECOVERY)
2286 		edev->state = QEDE_STATE_CLOSED;
2287 
2288 	qede_rdma_dev_event_close(edev);
2289 
2290 	/* Close OS Tx */
2291 	netif_tx_disable(edev->ndev);
2292 	netif_carrier_off(edev->ndev);
2293 
2294 	if (mode != QEDE_UNLOAD_RECOVERY) {
2295 		/* Reset the link */
2296 		memset(&link_params, 0, sizeof(link_params));
2297 		link_params.link_up = false;
2298 		edev->ops->common->set_link(edev->cdev, &link_params);
2299 
2300 		rc = qede_stop_queues(edev);
2301 		if (rc) {
2302 			qede_sync_free_irqs(edev);
2303 			goto out;
2304 		}
2305 
2306 		DP_INFO(edev, "Stopped Queues\n");
2307 	}
2308 
2309 	qede_vlan_mark_nonconfigured(edev);
2310 	edev->ops->fastpath_stop(edev->cdev);
2311 
2312 	if (edev->dev_info.common.b_arfs_capable) {
2313 		qede_poll_for_freeing_arfs_filters(edev);
2314 		qede_free_arfs(edev);
2315 	}
2316 
2317 	/* Release the interrupts */
2318 	qede_sync_free_irqs(edev);
2319 	edev->ops->common->set_fp_int(edev->cdev, 0);
2320 
2321 	qede_napi_disable_remove(edev);
2322 
2323 	if (mode == QEDE_UNLOAD_RECOVERY)
2324 		qede_empty_tx_queues(edev);
2325 
2326 	qede_free_mem_load(edev);
2327 	qede_free_fp_array(edev);
2328 
2329 out:
2330 	if (!is_locked)
2331 		__qede_unlock(edev);
2332 
2333 	if (mode != QEDE_UNLOAD_RECOVERY)
2334 		DP_NOTICE(edev, "Link is down\n");
2335 
2336 	edev->ptp_skip_txts = 0;
2337 
2338 	DP_INFO(edev, "Ending qede unload\n");
2339 }
2340 
2341 enum qede_load_mode {
2342 	QEDE_LOAD_NORMAL,
2343 	QEDE_LOAD_RELOAD,
2344 	QEDE_LOAD_RECOVERY,
2345 };
2346 
2347 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2348 		     bool is_locked)
2349 {
2350 	struct qed_link_params link_params;
2351 	struct ethtool_coalesce coal = {};
2352 	u8 num_tc;
2353 	int rc, i;
2354 
2355 	DP_INFO(edev, "Starting qede load\n");
2356 
2357 	if (!is_locked)
2358 		__qede_lock(edev);
2359 
2360 	rc = qede_set_num_queues(edev);
2361 	if (rc)
2362 		goto out;
2363 
2364 	rc = qede_alloc_fp_array(edev);
2365 	if (rc)
2366 		goto out;
2367 
2368 	qede_init_fp(edev);
2369 
2370 	rc = qede_alloc_mem_load(edev);
2371 	if (rc)
2372 		goto err1;
2373 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2374 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2375 
2376 	rc = qede_set_real_num_queues(edev);
2377 	if (rc)
2378 		goto err2;
2379 
2380 	if (qede_alloc_arfs(edev)) {
2381 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2382 		edev->dev_info.common.b_arfs_capable = false;
2383 	}
2384 
2385 	qede_napi_add_enable(edev);
2386 	DP_INFO(edev, "Napi added and enabled\n");
2387 
2388 	rc = qede_setup_irqs(edev);
2389 	if (rc)
2390 		goto err3;
2391 	DP_INFO(edev, "Setup IRQs succeeded\n");
2392 
2393 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2394 	if (rc)
2395 		goto err4;
2396 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2397 
2398 	num_tc = netdev_get_num_tc(edev->ndev);
2399 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2400 	qede_setup_tc(edev->ndev, num_tc);
2401 
2402 	/* Program un-configured VLANs */
2403 	qede_configure_vlan_filters(edev);
2404 
2405 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2406 
2407 	/* Ask for link-up using current configuration */
2408 	memset(&link_params, 0, sizeof(link_params));
2409 	link_params.link_up = true;
2410 	edev->ops->common->set_link(edev->cdev, &link_params);
2411 
2412 	edev->state = QEDE_STATE_OPEN;
2413 
2414 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2415 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2416 
2417 	for_each_queue(i) {
2418 		if (edev->coal_entry[i].isvalid) {
2419 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2420 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2421 		}
2422 		__qede_unlock(edev);
2423 		qede_set_per_coalesce(edev->ndev, i, &coal);
2424 		__qede_lock(edev);
2425 	}
2426 	DP_INFO(edev, "Ending successfully qede load\n");
2427 
2428 	goto out;
2429 err4:
2430 	qede_sync_free_irqs(edev);
2431 err3:
2432 	qede_napi_disable_remove(edev);
2433 err2:
2434 	qede_free_mem_load(edev);
2435 err1:
2436 	edev->ops->common->set_fp_int(edev->cdev, 0);
2437 	qede_free_fp_array(edev);
2438 	edev->num_queues = 0;
2439 	edev->fp_num_tx = 0;
2440 	edev->fp_num_rx = 0;
2441 out:
2442 	if (!is_locked)
2443 		__qede_unlock(edev);
2444 
2445 	return rc;
2446 }
2447 
2448 /* 'func' should be able to run between unload and reload assuming interface
2449  * is actually running, or afterwards in case it's currently DOWN.
2450  */
2451 void qede_reload(struct qede_dev *edev,
2452 		 struct qede_reload_args *args, bool is_locked)
2453 {
2454 	if (!is_locked)
2455 		__qede_lock(edev);
2456 
2457 	/* Since qede_lock is held, internal state wouldn't change even
2458 	 * if netdev state would start transitioning. Check whether current
2459 	 * internal configuration indicates device is up, then reload.
2460 	 */
2461 	if (edev->state == QEDE_STATE_OPEN) {
2462 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2463 		if (args)
2464 			args->func(edev, args);
2465 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2466 
2467 		/* Since no one is going to do it for us, re-configure */
2468 		qede_config_rx_mode(edev->ndev);
2469 	} else if (args) {
2470 		args->func(edev, args);
2471 	}
2472 
2473 	if (!is_locked)
2474 		__qede_unlock(edev);
2475 }
2476 
2477 /* called with rtnl_lock */
2478 static int qede_open(struct net_device *ndev)
2479 {
2480 	struct qede_dev *edev = netdev_priv(ndev);
2481 	int rc;
2482 
2483 	netif_carrier_off(ndev);
2484 
2485 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2486 
2487 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2488 	if (rc)
2489 		return rc;
2490 
2491 	udp_tunnel_nic_reset_ntf(ndev);
2492 
2493 	edev->ops->common->update_drv_state(edev->cdev, true);
2494 
2495 	return 0;
2496 }
2497 
2498 static int qede_close(struct net_device *ndev)
2499 {
2500 	struct qede_dev *edev = netdev_priv(ndev);
2501 
2502 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2503 
2504 	if (edev->cdev)
2505 		edev->ops->common->update_drv_state(edev->cdev, false);
2506 
2507 	return 0;
2508 }
2509 
2510 static void qede_link_update(void *dev, struct qed_link_output *link)
2511 {
2512 	struct qede_dev *edev = dev;
2513 
2514 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2515 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2516 		return;
2517 	}
2518 
2519 	if (link->link_up) {
2520 		if (!netif_carrier_ok(edev->ndev)) {
2521 			DP_NOTICE(edev, "Link is up\n");
2522 			netif_tx_start_all_queues(edev->ndev);
2523 			netif_carrier_on(edev->ndev);
2524 			qede_rdma_dev_event_open(edev);
2525 		}
2526 	} else {
2527 		if (netif_carrier_ok(edev->ndev)) {
2528 			DP_NOTICE(edev, "Link is down\n");
2529 			netif_tx_disable(edev->ndev);
2530 			netif_carrier_off(edev->ndev);
2531 			qede_rdma_dev_event_close(edev);
2532 		}
2533 	}
2534 }
2535 
2536 static void qede_schedule_recovery_handler(void *dev)
2537 {
2538 	struct qede_dev *edev = dev;
2539 
2540 	if (edev->state == QEDE_STATE_RECOVERY) {
2541 		DP_NOTICE(edev,
2542 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2543 		return;
2544 	}
2545 
2546 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2547 	schedule_delayed_work(&edev->sp_task, 0);
2548 
2549 	DP_INFO(edev, "Scheduled a recovery handler\n");
2550 }
2551 
2552 static void qede_recovery_failed(struct qede_dev *edev)
2553 {
2554 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2555 
2556 	netif_device_detach(edev->ndev);
2557 
2558 	if (edev->cdev)
2559 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2560 }
2561 
2562 static void qede_recovery_handler(struct qede_dev *edev)
2563 {
2564 	u32 curr_state = edev->state;
2565 	int rc;
2566 
2567 	DP_NOTICE(edev, "Starting a recovery process\n");
2568 
2569 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2570 	 * before calling this function.
2571 	 */
2572 	edev->state = QEDE_STATE_RECOVERY;
2573 
2574 	edev->ops->common->recovery_prolog(edev->cdev);
2575 
2576 	if (curr_state == QEDE_STATE_OPEN)
2577 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2578 
2579 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2580 
2581 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2582 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2583 	if (rc) {
2584 		edev->cdev = NULL;
2585 		goto err;
2586 	}
2587 
2588 	if (curr_state == QEDE_STATE_OPEN) {
2589 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2590 		if (rc)
2591 			goto err;
2592 
2593 		qede_config_rx_mode(edev->ndev);
2594 		udp_tunnel_nic_reset_ntf(edev->ndev);
2595 	}
2596 
2597 	edev->state = curr_state;
2598 
2599 	DP_NOTICE(edev, "Recovery handling is done\n");
2600 
2601 	return;
2602 
2603 err:
2604 	qede_recovery_failed(edev);
2605 }
2606 
2607 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2608 {
2609 	struct qed_dev *cdev = edev->cdev;
2610 
2611 	DP_NOTICE(edev,
2612 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2613 		  edev->err_flags);
2614 
2615 	/* Get a call trace of the flow that led to the error */
2616 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2617 
2618 	/* Prevent HW attentions from being reasserted */
2619 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2620 		edev->ops->common->attn_clr_enable(cdev, true);
2621 
2622 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2623 }
2624 
2625 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2626 {
2627 	DP_NOTICE(edev,
2628 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2629 		  edev->err_flags);
2630 
2631 	if (edev->devlink)
2632 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2633 
2634 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2635 
2636 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2637 }
2638 
2639 static void qede_set_hw_err_flags(struct qede_dev *edev,
2640 				  enum qed_hw_err_type err_type)
2641 {
2642 	unsigned long err_flags = 0;
2643 
2644 	switch (err_type) {
2645 	case QED_HW_ERR_DMAE_FAIL:
2646 		set_bit(QEDE_ERR_WARN, &err_flags);
2647 		fallthrough;
2648 	case QED_HW_ERR_MFW_RESP_FAIL:
2649 	case QED_HW_ERR_HW_ATTN:
2650 	case QED_HW_ERR_RAMROD_FAIL:
2651 	case QED_HW_ERR_FW_ASSERT:
2652 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2653 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2654 		break;
2655 
2656 	default:
2657 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2658 		break;
2659 	}
2660 
2661 	edev->err_flags |= err_flags;
2662 }
2663 
2664 static void qede_schedule_hw_err_handler(void *dev,
2665 					 enum qed_hw_err_type err_type)
2666 {
2667 	struct qede_dev *edev = dev;
2668 
2669 	/* Fan failure cannot be masked by handling of another HW error or by a
2670 	 * concurrent recovery process.
2671 	 */
2672 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2673 	     edev->state == QEDE_STATE_RECOVERY) &&
2674 	     err_type != QED_HW_ERR_FAN_FAIL) {
2675 		DP_INFO(edev,
2676 			"Avoid scheduling an error handling while another HW error is being handled\n");
2677 		return;
2678 	}
2679 
2680 	if (err_type >= QED_HW_ERR_LAST) {
2681 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2682 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2683 		return;
2684 	}
2685 
2686 	edev->last_err_type = err_type;
2687 	qede_set_hw_err_flags(edev, err_type);
2688 	qede_atomic_hw_err_handler(edev);
2689 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2690 	schedule_delayed_work(&edev->sp_task, 0);
2691 
2692 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2693 }
2694 
2695 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2696 {
2697 	struct netdev_queue *netdev_txq;
2698 
2699 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2700 	if (netif_xmit_stopped(netdev_txq))
2701 		return true;
2702 
2703 	return false;
2704 }
2705 
2706 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2707 {
2708 	struct qede_dev *edev = dev;
2709 	struct netdev_hw_addr *ha;
2710 	int i;
2711 
2712 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2713 		data->feat_flags |= QED_TLV_IP_CSUM;
2714 	if (edev->ndev->features & NETIF_F_TSO)
2715 		data->feat_flags |= QED_TLV_LSO;
2716 
2717 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2718 	eth_zero_addr(data->mac[1]);
2719 	eth_zero_addr(data->mac[2]);
2720 	/* Copy the first two UC macs */
2721 	netif_addr_lock_bh(edev->ndev);
2722 	i = 1;
2723 	netdev_for_each_uc_addr(ha, edev->ndev) {
2724 		ether_addr_copy(data->mac[i++], ha->addr);
2725 		if (i == QED_TLV_MAC_COUNT)
2726 			break;
2727 	}
2728 
2729 	netif_addr_unlock_bh(edev->ndev);
2730 }
2731 
2732 static void qede_get_eth_tlv_data(void *dev, void *data)
2733 {
2734 	struct qed_mfw_tlv_eth *etlv = data;
2735 	struct qede_dev *edev = dev;
2736 	struct qede_fastpath *fp;
2737 	int i;
2738 
2739 	etlv->lso_maxoff_size = 0XFFFF;
2740 	etlv->lso_maxoff_size_set = true;
2741 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2742 	etlv->lso_minseg_size_set = true;
2743 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2744 	etlv->prom_mode_set = true;
2745 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2746 	etlv->tx_descr_size_set = true;
2747 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2748 	etlv->rx_descr_size_set = true;
2749 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2750 	etlv->iov_offload_set = true;
2751 
2752 	/* Fill information regarding queues; Should be done under the qede
2753 	 * lock to guarantee those don't change beneath our feet.
2754 	 */
2755 	etlv->txqs_empty = true;
2756 	etlv->rxqs_empty = true;
2757 	etlv->num_txqs_full = 0;
2758 	etlv->num_rxqs_full = 0;
2759 
2760 	__qede_lock(edev);
2761 	for_each_queue(i) {
2762 		fp = &edev->fp_array[i];
2763 		if (fp->type & QEDE_FASTPATH_TX) {
2764 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2765 
2766 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2767 				etlv->txqs_empty = false;
2768 			if (qede_is_txq_full(edev, txq))
2769 				etlv->num_txqs_full++;
2770 		}
2771 		if (fp->type & QEDE_FASTPATH_RX) {
2772 			if (qede_has_rx_work(fp->rxq))
2773 				etlv->rxqs_empty = false;
2774 
2775 			/* This one is a bit tricky; Firmware might stop
2776 			 * placing packets if ring is not yet full.
2777 			 * Give an approximation.
2778 			 */
2779 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2780 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2781 			    RX_RING_SIZE - 100)
2782 				etlv->num_rxqs_full++;
2783 		}
2784 	}
2785 	__qede_unlock(edev);
2786 
2787 	etlv->txqs_empty_set = true;
2788 	etlv->rxqs_empty_set = true;
2789 	etlv->num_txqs_full_set = true;
2790 	etlv->num_rxqs_full_set = true;
2791 }
2792 
2793 /**
2794  * qede_io_error_detected - called when PCI error is detected
2795  * @pdev: Pointer to PCI device
2796  * @state: The current pci connection state
2797  *
2798  * This function is called after a PCI bus error affecting
2799  * this device has been detected.
2800  */
2801 static pci_ers_result_t
2802 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2803 {
2804 	struct net_device *dev = pci_get_drvdata(pdev);
2805 	struct qede_dev *edev = netdev_priv(dev);
2806 
2807 	if (!edev)
2808 		return PCI_ERS_RESULT_NONE;
2809 
2810 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2811 
2812 	__qede_lock(edev);
2813 	if (edev->state == QEDE_STATE_RECOVERY) {
2814 		DP_NOTICE(edev, "Device already in the recovery state\n");
2815 		__qede_unlock(edev);
2816 		return PCI_ERS_RESULT_NONE;
2817 	}
2818 
2819 	/* PF handles the recovery of its VFs */
2820 	if (IS_VF(edev)) {
2821 		DP_VERBOSE(edev, QED_MSG_IOV,
2822 			   "VF recovery is handled by its PF\n");
2823 		__qede_unlock(edev);
2824 		return PCI_ERS_RESULT_RECOVERED;
2825 	}
2826 
2827 	/* Close OS Tx */
2828 	netif_tx_disable(edev->ndev);
2829 	netif_carrier_off(edev->ndev);
2830 
2831 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2832 	schedule_delayed_work(&edev->sp_task, 0);
2833 
2834 	__qede_unlock(edev);
2835 
2836 	return PCI_ERS_RESULT_CAN_RECOVER;
2837 }
2838