1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/crash_dump.h> 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/device.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/skbuff.h> 14 #include <linux/errno.h> 15 #include <linux/list.h> 16 #include <linux/string.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <asm/byteorder.h> 20 #include <asm/param.h> 21 #include <linux/io.h> 22 #include <linux/netdev_features.h> 23 #include <linux/udp.h> 24 #include <linux/tcp.h> 25 #include <net/udp_tunnel.h> 26 #include <linux/ip.h> 27 #include <net/ipv6.h> 28 #include <net/tcp.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_vlan.h> 31 #include <linux/pkt_sched.h> 32 #include <linux/ethtool.h> 33 #include <linux/in.h> 34 #include <linux/random.h> 35 #include <net/ip6_checksum.h> 36 #include <linux/bitops.h> 37 #include <linux/vmalloc.h> 38 #include <linux/aer.h> 39 #include "qede.h" 40 #include "qede_ptp.h" 41 42 static char version[] = 43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 44 45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 static uint debug; 50 module_param(debug, uint, 0); 51 MODULE_PARM_DESC(debug, " Default debug msglevel"); 52 53 static const struct qed_eth_ops *qed_ops; 54 55 #define CHIP_NUM_57980S_40 0x1634 56 #define CHIP_NUM_57980S_10 0x1666 57 #define CHIP_NUM_57980S_MF 0x1636 58 #define CHIP_NUM_57980S_100 0x1644 59 #define CHIP_NUM_57980S_50 0x1654 60 #define CHIP_NUM_57980S_25 0x1656 61 #define CHIP_NUM_57980S_IOV 0x1664 62 #define CHIP_NUM_AH 0x8070 63 #define CHIP_NUM_AH_IOV 0x8090 64 65 #ifndef PCI_DEVICE_ID_NX2_57980E 66 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 67 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 68 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 69 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 70 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 71 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 72 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 73 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 74 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 75 76 #endif 77 78 enum qede_pci_private { 79 QEDE_PRIVATE_PF, 80 QEDE_PRIVATE_VF 81 }; 82 83 static const struct pci_device_id qede_pci_tbl[] = { 84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 85 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 87 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 89 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 90 #ifdef CONFIG_QED_SRIOV 91 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 92 #endif 93 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 94 #ifdef CONFIG_QED_SRIOV 95 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 96 #endif 97 { 0 } 98 }; 99 100 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 101 102 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 103 static pci_ers_result_t 104 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 105 106 #define TX_TIMEOUT (5 * HZ) 107 108 /* Utilize last protocol index for XDP */ 109 #define XDP_PI 11 110 111 static void qede_remove(struct pci_dev *pdev); 112 static void qede_shutdown(struct pci_dev *pdev); 113 static void qede_link_update(void *dev, struct qed_link_output *link); 114 static void qede_schedule_recovery_handler(void *dev); 115 static void qede_recovery_handler(struct qede_dev *edev); 116 static void qede_schedule_hw_err_handler(void *dev, 117 enum qed_hw_err_type err_type); 118 static void qede_get_eth_tlv_data(void *edev, void *data); 119 static void qede_get_generic_tlv_data(void *edev, 120 struct qed_generic_tlvs *data); 121 static void qede_generic_hw_err_handler(struct qede_dev *edev); 122 #ifdef CONFIG_QED_SRIOV 123 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 124 __be16 vlan_proto) 125 { 126 struct qede_dev *edev = netdev_priv(ndev); 127 128 if (vlan > 4095) { 129 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 130 return -EINVAL; 131 } 132 133 if (vlan_proto != htons(ETH_P_8021Q)) 134 return -EPROTONOSUPPORT; 135 136 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 137 vlan, vf); 138 139 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 140 } 141 142 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 143 { 144 struct qede_dev *edev = netdev_priv(ndev); 145 146 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx); 147 148 if (!is_valid_ether_addr(mac)) { 149 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 150 return -EINVAL; 151 } 152 153 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 154 } 155 156 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 157 { 158 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 159 struct qed_dev_info *qed_info = &edev->dev_info.common; 160 struct qed_update_vport_params *vport_params; 161 int rc; 162 163 vport_params = vzalloc(sizeof(*vport_params)); 164 if (!vport_params) 165 return -ENOMEM; 166 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 167 168 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 169 170 /* Enable/Disable Tx switching for PF */ 171 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 172 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 173 vport_params->vport_id = 0; 174 vport_params->update_tx_switching_flg = 1; 175 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 176 edev->ops->vport_update(edev->cdev, vport_params); 177 } 178 179 vfree(vport_params); 180 return rc; 181 } 182 #endif 183 184 static const struct pci_error_handlers qede_err_handler = { 185 .error_detected = qede_io_error_detected, 186 }; 187 188 static struct pci_driver qede_pci_driver = { 189 .name = "qede", 190 .id_table = qede_pci_tbl, 191 .probe = qede_probe, 192 .remove = qede_remove, 193 .shutdown = qede_shutdown, 194 #ifdef CONFIG_QED_SRIOV 195 .sriov_configure = qede_sriov_configure, 196 #endif 197 .err_handler = &qede_err_handler, 198 }; 199 200 static struct qed_eth_cb_ops qede_ll_ops = { 201 { 202 #ifdef CONFIG_RFS_ACCEL 203 .arfs_filter_op = qede_arfs_filter_op, 204 #endif 205 .link_update = qede_link_update, 206 .schedule_recovery_handler = qede_schedule_recovery_handler, 207 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 208 .get_generic_tlv_data = qede_get_generic_tlv_data, 209 .get_protocol_tlv_data = qede_get_eth_tlv_data, 210 }, 211 .force_mac = qede_force_mac, 212 .ports_update = qede_udp_ports_update, 213 }; 214 215 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 216 void *ptr) 217 { 218 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 219 struct ethtool_drvinfo drvinfo; 220 struct qede_dev *edev; 221 222 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 223 goto done; 224 225 /* Check whether this is a qede device */ 226 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 227 goto done; 228 229 memset(&drvinfo, 0, sizeof(drvinfo)); 230 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 231 if (strcmp(drvinfo.driver, "qede")) 232 goto done; 233 edev = netdev_priv(ndev); 234 235 switch (event) { 236 case NETDEV_CHANGENAME: 237 /* Notify qed of the name change */ 238 if (!edev->ops || !edev->ops->common) 239 goto done; 240 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 241 break; 242 case NETDEV_CHANGEADDR: 243 edev = netdev_priv(ndev); 244 qede_rdma_event_changeaddr(edev); 245 break; 246 } 247 248 done: 249 return NOTIFY_DONE; 250 } 251 252 static struct notifier_block qede_netdev_notifier = { 253 .notifier_call = qede_netdev_event, 254 }; 255 256 static 257 int __init qede_init(void) 258 { 259 int ret; 260 261 pr_info("qede_init: %s\n", version); 262 263 qede_forced_speed_maps_init(); 264 265 qed_ops = qed_get_eth_ops(); 266 if (!qed_ops) { 267 pr_notice("Failed to get qed ethtool operations\n"); 268 return -EINVAL; 269 } 270 271 /* Must register notifier before pci ops, since we might miss 272 * interface rename after pci probe and netdev registration. 273 */ 274 ret = register_netdevice_notifier(&qede_netdev_notifier); 275 if (ret) { 276 pr_notice("Failed to register netdevice_notifier\n"); 277 qed_put_eth_ops(); 278 return -EINVAL; 279 } 280 281 ret = pci_register_driver(&qede_pci_driver); 282 if (ret) { 283 pr_notice("Failed to register driver\n"); 284 unregister_netdevice_notifier(&qede_netdev_notifier); 285 qed_put_eth_ops(); 286 return -EINVAL; 287 } 288 289 return 0; 290 } 291 292 static void __exit qede_cleanup(void) 293 { 294 if (debug & QED_LOG_INFO_MASK) 295 pr_info("qede_cleanup called\n"); 296 297 unregister_netdevice_notifier(&qede_netdev_notifier); 298 pci_unregister_driver(&qede_pci_driver); 299 qed_put_eth_ops(); 300 } 301 302 module_init(qede_init); 303 module_exit(qede_cleanup); 304 305 static int qede_open(struct net_device *ndev); 306 static int qede_close(struct net_device *ndev); 307 308 void qede_fill_by_demand_stats(struct qede_dev *edev) 309 { 310 struct qede_stats_common *p_common = &edev->stats.common; 311 struct qed_eth_stats stats; 312 313 edev->ops->get_vport_stats(edev->cdev, &stats); 314 315 p_common->no_buff_discards = stats.common.no_buff_discards; 316 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 317 p_common->ttl0_discard = stats.common.ttl0_discard; 318 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 319 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 320 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 321 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 322 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 323 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 324 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 325 p_common->mac_filter_discards = stats.common.mac_filter_discards; 326 p_common->gft_filter_drop = stats.common.gft_filter_drop; 327 328 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 329 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 330 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 331 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 332 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 333 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 334 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 335 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 336 p_common->coalesced_events = stats.common.tpa_coalesced_events; 337 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 338 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 339 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 340 341 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 342 p_common->rx_65_to_127_byte_packets = 343 stats.common.rx_65_to_127_byte_packets; 344 p_common->rx_128_to_255_byte_packets = 345 stats.common.rx_128_to_255_byte_packets; 346 p_common->rx_256_to_511_byte_packets = 347 stats.common.rx_256_to_511_byte_packets; 348 p_common->rx_512_to_1023_byte_packets = 349 stats.common.rx_512_to_1023_byte_packets; 350 p_common->rx_1024_to_1518_byte_packets = 351 stats.common.rx_1024_to_1518_byte_packets; 352 p_common->rx_crc_errors = stats.common.rx_crc_errors; 353 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 354 p_common->rx_pause_frames = stats.common.rx_pause_frames; 355 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 356 p_common->rx_align_errors = stats.common.rx_align_errors; 357 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 358 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 359 p_common->rx_jabbers = stats.common.rx_jabbers; 360 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 361 p_common->rx_fragments = stats.common.rx_fragments; 362 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 363 p_common->tx_65_to_127_byte_packets = 364 stats.common.tx_65_to_127_byte_packets; 365 p_common->tx_128_to_255_byte_packets = 366 stats.common.tx_128_to_255_byte_packets; 367 p_common->tx_256_to_511_byte_packets = 368 stats.common.tx_256_to_511_byte_packets; 369 p_common->tx_512_to_1023_byte_packets = 370 stats.common.tx_512_to_1023_byte_packets; 371 p_common->tx_1024_to_1518_byte_packets = 372 stats.common.tx_1024_to_1518_byte_packets; 373 p_common->tx_pause_frames = stats.common.tx_pause_frames; 374 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 375 p_common->brb_truncates = stats.common.brb_truncates; 376 p_common->brb_discards = stats.common.brb_discards; 377 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 378 p_common->link_change_count = stats.common.link_change_count; 379 p_common->ptp_skip_txts = edev->ptp_skip_txts; 380 381 if (QEDE_IS_BB(edev)) { 382 struct qede_stats_bb *p_bb = &edev->stats.bb; 383 384 p_bb->rx_1519_to_1522_byte_packets = 385 stats.bb.rx_1519_to_1522_byte_packets; 386 p_bb->rx_1519_to_2047_byte_packets = 387 stats.bb.rx_1519_to_2047_byte_packets; 388 p_bb->rx_2048_to_4095_byte_packets = 389 stats.bb.rx_2048_to_4095_byte_packets; 390 p_bb->rx_4096_to_9216_byte_packets = 391 stats.bb.rx_4096_to_9216_byte_packets; 392 p_bb->rx_9217_to_16383_byte_packets = 393 stats.bb.rx_9217_to_16383_byte_packets; 394 p_bb->tx_1519_to_2047_byte_packets = 395 stats.bb.tx_1519_to_2047_byte_packets; 396 p_bb->tx_2048_to_4095_byte_packets = 397 stats.bb.tx_2048_to_4095_byte_packets; 398 p_bb->tx_4096_to_9216_byte_packets = 399 stats.bb.tx_4096_to_9216_byte_packets; 400 p_bb->tx_9217_to_16383_byte_packets = 401 stats.bb.tx_9217_to_16383_byte_packets; 402 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 403 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 404 } else { 405 struct qede_stats_ah *p_ah = &edev->stats.ah; 406 407 p_ah->rx_1519_to_max_byte_packets = 408 stats.ah.rx_1519_to_max_byte_packets; 409 p_ah->tx_1519_to_max_byte_packets = 410 stats.ah.tx_1519_to_max_byte_packets; 411 } 412 } 413 414 static void qede_get_stats64(struct net_device *dev, 415 struct rtnl_link_stats64 *stats) 416 { 417 struct qede_dev *edev = netdev_priv(dev); 418 struct qede_stats_common *p_common; 419 420 qede_fill_by_demand_stats(edev); 421 p_common = &edev->stats.common; 422 423 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 424 p_common->rx_bcast_pkts; 425 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 426 p_common->tx_bcast_pkts; 427 428 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 429 p_common->rx_bcast_bytes; 430 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 431 p_common->tx_bcast_bytes; 432 433 stats->tx_errors = p_common->tx_err_drop_pkts; 434 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 435 436 stats->rx_fifo_errors = p_common->no_buff_discards; 437 438 if (QEDE_IS_BB(edev)) 439 stats->collisions = edev->stats.bb.tx_total_collisions; 440 stats->rx_crc_errors = p_common->rx_crc_errors; 441 stats->rx_frame_errors = p_common->rx_align_errors; 442 } 443 444 #ifdef CONFIG_QED_SRIOV 445 static int qede_get_vf_config(struct net_device *dev, int vfidx, 446 struct ifla_vf_info *ivi) 447 { 448 struct qede_dev *edev = netdev_priv(dev); 449 450 if (!edev->ops) 451 return -EINVAL; 452 453 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 454 } 455 456 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 457 int min_tx_rate, int max_tx_rate) 458 { 459 struct qede_dev *edev = netdev_priv(dev); 460 461 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 462 max_tx_rate); 463 } 464 465 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 466 { 467 struct qede_dev *edev = netdev_priv(dev); 468 469 if (!edev->ops) 470 return -EINVAL; 471 472 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 473 } 474 475 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 476 int link_state) 477 { 478 struct qede_dev *edev = netdev_priv(dev); 479 480 if (!edev->ops) 481 return -EINVAL; 482 483 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 484 } 485 486 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 487 { 488 struct qede_dev *edev = netdev_priv(dev); 489 490 if (!edev->ops) 491 return -EINVAL; 492 493 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 494 } 495 #endif 496 497 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 498 { 499 struct qede_dev *edev = netdev_priv(dev); 500 501 if (!netif_running(dev)) 502 return -EAGAIN; 503 504 switch (cmd) { 505 case SIOCSHWTSTAMP: 506 return qede_ptp_hw_ts(edev, ifr); 507 default: 508 DP_VERBOSE(edev, QED_MSG_DEBUG, 509 "default IOCTL cmd 0x%x\n", cmd); 510 return -EOPNOTSUPP; 511 } 512 513 return 0; 514 } 515 516 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq) 517 { 518 DP_NOTICE(edev, 519 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 520 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 521 qed_chain_get_cons_idx(&txq->tx_pbl), 522 qed_chain_get_prod_idx(&txq->tx_pbl), 523 jiffies); 524 } 525 526 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 527 { 528 struct qede_dev *edev = netdev_priv(dev); 529 struct qede_tx_queue *txq; 530 int cos; 531 532 netif_carrier_off(dev); 533 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 534 535 if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX)) 536 return; 537 538 for_each_cos_in_txq(edev, cos) { 539 txq = &edev->fp_array[txqueue].txq[cos]; 540 541 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 542 qed_chain_get_prod_idx(&txq->tx_pbl)) 543 qede_tx_log_print(edev, txq); 544 } 545 546 if (IS_VF(edev)) 547 return; 548 549 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 550 edev->state == QEDE_STATE_RECOVERY) { 551 DP_INFO(edev, 552 "Avoid handling a Tx timeout while another HW error is being handled\n"); 553 return; 554 } 555 556 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 557 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 558 schedule_delayed_work(&edev->sp_task, 0); 559 } 560 561 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 562 { 563 struct qede_dev *edev = netdev_priv(ndev); 564 int cos, count, offset; 565 566 if (num_tc > edev->dev_info.num_tc) 567 return -EINVAL; 568 569 netdev_reset_tc(ndev); 570 netdev_set_num_tc(ndev, num_tc); 571 572 for_each_cos_in_txq(edev, cos) { 573 count = QEDE_TSS_COUNT(edev); 574 offset = cos * QEDE_TSS_COUNT(edev); 575 netdev_set_tc_queue(ndev, cos, count, offset); 576 } 577 578 return 0; 579 } 580 581 static int 582 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 583 __be16 proto) 584 { 585 switch (f->command) { 586 case FLOW_CLS_REPLACE: 587 return qede_add_tc_flower_fltr(edev, proto, f); 588 case FLOW_CLS_DESTROY: 589 return qede_delete_flow_filter(edev, f->cookie); 590 default: 591 return -EOPNOTSUPP; 592 } 593 } 594 595 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 596 void *cb_priv) 597 { 598 struct flow_cls_offload *f; 599 struct qede_dev *edev = cb_priv; 600 601 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 602 return -EOPNOTSUPP; 603 604 switch (type) { 605 case TC_SETUP_CLSFLOWER: 606 f = type_data; 607 return qede_set_flower(edev, f, f->common.protocol); 608 default: 609 return -EOPNOTSUPP; 610 } 611 } 612 613 static LIST_HEAD(qede_block_cb_list); 614 615 static int 616 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 617 void *type_data) 618 { 619 struct qede_dev *edev = netdev_priv(dev); 620 struct tc_mqprio_qopt *mqprio; 621 622 switch (type) { 623 case TC_SETUP_BLOCK: 624 return flow_block_cb_setup_simple(type_data, 625 &qede_block_cb_list, 626 qede_setup_tc_block_cb, 627 edev, edev, true); 628 case TC_SETUP_QDISC_MQPRIO: 629 mqprio = type_data; 630 631 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 632 return qede_setup_tc(dev, mqprio->num_tc); 633 default: 634 return -EOPNOTSUPP; 635 } 636 } 637 638 static const struct net_device_ops qede_netdev_ops = { 639 .ndo_open = qede_open, 640 .ndo_stop = qede_close, 641 .ndo_start_xmit = qede_start_xmit, 642 .ndo_select_queue = qede_select_queue, 643 .ndo_set_rx_mode = qede_set_rx_mode, 644 .ndo_set_mac_address = qede_set_mac_addr, 645 .ndo_validate_addr = eth_validate_addr, 646 .ndo_change_mtu = qede_change_mtu, 647 .ndo_do_ioctl = qede_ioctl, 648 .ndo_tx_timeout = qede_tx_timeout, 649 #ifdef CONFIG_QED_SRIOV 650 .ndo_set_vf_mac = qede_set_vf_mac, 651 .ndo_set_vf_vlan = qede_set_vf_vlan, 652 .ndo_set_vf_trust = qede_set_vf_trust, 653 #endif 654 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 655 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 656 .ndo_fix_features = qede_fix_features, 657 .ndo_set_features = qede_set_features, 658 .ndo_get_stats64 = qede_get_stats64, 659 #ifdef CONFIG_QED_SRIOV 660 .ndo_set_vf_link_state = qede_set_vf_link_state, 661 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 662 .ndo_get_vf_config = qede_get_vf_config, 663 .ndo_set_vf_rate = qede_set_vf_rate, 664 #endif 665 .ndo_features_check = qede_features_check, 666 .ndo_bpf = qede_xdp, 667 #ifdef CONFIG_RFS_ACCEL 668 .ndo_rx_flow_steer = qede_rx_flow_steer, 669 #endif 670 .ndo_xdp_xmit = qede_xdp_transmit, 671 .ndo_setup_tc = qede_setup_tc_offload, 672 }; 673 674 static const struct net_device_ops qede_netdev_vf_ops = { 675 .ndo_open = qede_open, 676 .ndo_stop = qede_close, 677 .ndo_start_xmit = qede_start_xmit, 678 .ndo_select_queue = qede_select_queue, 679 .ndo_set_rx_mode = qede_set_rx_mode, 680 .ndo_set_mac_address = qede_set_mac_addr, 681 .ndo_validate_addr = eth_validate_addr, 682 .ndo_change_mtu = qede_change_mtu, 683 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 684 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 685 .ndo_fix_features = qede_fix_features, 686 .ndo_set_features = qede_set_features, 687 .ndo_get_stats64 = qede_get_stats64, 688 .ndo_features_check = qede_features_check, 689 }; 690 691 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 692 .ndo_open = qede_open, 693 .ndo_stop = qede_close, 694 .ndo_start_xmit = qede_start_xmit, 695 .ndo_select_queue = qede_select_queue, 696 .ndo_set_rx_mode = qede_set_rx_mode, 697 .ndo_set_mac_address = qede_set_mac_addr, 698 .ndo_validate_addr = eth_validate_addr, 699 .ndo_change_mtu = qede_change_mtu, 700 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 701 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 702 .ndo_fix_features = qede_fix_features, 703 .ndo_set_features = qede_set_features, 704 .ndo_get_stats64 = qede_get_stats64, 705 .ndo_features_check = qede_features_check, 706 .ndo_bpf = qede_xdp, 707 .ndo_xdp_xmit = qede_xdp_transmit, 708 }; 709 710 /* ------------------------------------------------------------------------- 711 * START OF PROBE / REMOVE 712 * ------------------------------------------------------------------------- 713 */ 714 715 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 716 struct pci_dev *pdev, 717 struct qed_dev_eth_info *info, 718 u32 dp_module, u8 dp_level) 719 { 720 struct net_device *ndev; 721 struct qede_dev *edev; 722 723 ndev = alloc_etherdev_mqs(sizeof(*edev), 724 info->num_queues * info->num_tc, 725 info->num_queues); 726 if (!ndev) { 727 pr_err("etherdev allocation failed\n"); 728 return NULL; 729 } 730 731 edev = netdev_priv(ndev); 732 edev->ndev = ndev; 733 edev->cdev = cdev; 734 edev->pdev = pdev; 735 edev->dp_module = dp_module; 736 edev->dp_level = dp_level; 737 edev->ops = qed_ops; 738 739 if (is_kdump_kernel()) { 740 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 741 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 742 } else { 743 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 744 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 745 } 746 747 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 748 info->num_queues, info->num_queues); 749 750 SET_NETDEV_DEV(ndev, &pdev->dev); 751 752 memset(&edev->stats, 0, sizeof(edev->stats)); 753 memcpy(&edev->dev_info, info, sizeof(*info)); 754 755 /* As ethtool doesn't have the ability to show WoL behavior as 756 * 'default', if device supports it declare it's enabled. 757 */ 758 if (edev->dev_info.common.wol_support) 759 edev->wol_enabled = true; 760 761 INIT_LIST_HEAD(&edev->vlan_list); 762 763 return edev; 764 } 765 766 static void qede_init_ndev(struct qede_dev *edev) 767 { 768 struct net_device *ndev = edev->ndev; 769 struct pci_dev *pdev = edev->pdev; 770 bool udp_tunnel_enable = false; 771 netdev_features_t hw_features; 772 773 pci_set_drvdata(pdev, ndev); 774 775 ndev->mem_start = edev->dev_info.common.pci_mem_start; 776 ndev->base_addr = ndev->mem_start; 777 ndev->mem_end = edev->dev_info.common.pci_mem_end; 778 ndev->irq = edev->dev_info.common.pci_irq; 779 780 ndev->watchdog_timeo = TX_TIMEOUT; 781 782 if (IS_VF(edev)) { 783 if (edev->dev_info.xdp_supported) 784 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 785 else 786 ndev->netdev_ops = &qede_netdev_vf_ops; 787 } else { 788 ndev->netdev_ops = &qede_netdev_ops; 789 } 790 791 qede_set_ethtool_ops(ndev); 792 793 ndev->priv_flags |= IFF_UNICAST_FLT; 794 795 /* user-changeble features */ 796 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 797 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 798 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 799 800 if (edev->dev_info.common.b_arfs_capable) 801 hw_features |= NETIF_F_NTUPLE; 802 803 if (edev->dev_info.common.vxlan_enable || 804 edev->dev_info.common.geneve_enable) 805 udp_tunnel_enable = true; 806 807 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 808 hw_features |= NETIF_F_TSO_ECN; 809 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 810 NETIF_F_SG | NETIF_F_TSO | 811 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 812 NETIF_F_RXCSUM; 813 } 814 815 if (udp_tunnel_enable) { 816 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 817 NETIF_F_GSO_UDP_TUNNEL_CSUM); 818 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 819 NETIF_F_GSO_UDP_TUNNEL_CSUM); 820 821 qede_set_udp_tunnels(edev); 822 } 823 824 if (edev->dev_info.common.gre_enable) { 825 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 826 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 827 NETIF_F_GSO_GRE_CSUM); 828 } 829 830 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 831 NETIF_F_HIGHDMA; 832 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 833 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 834 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 835 836 ndev->hw_features = hw_features; 837 838 /* MTU range: 46 - 9600 */ 839 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 840 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 841 842 /* Set network device HW mac */ 843 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 844 845 ndev->mtu = edev->dev_info.common.mtu; 846 } 847 848 /* This function converts from 32b param to two params of level and module 849 * Input 32b decoding: 850 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 851 * 'happy' flow, e.g. memory allocation failed. 852 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 853 * and provide important parameters. 854 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 855 * module. VERBOSE prints are for tracking the specific flow in low level. 856 * 857 * Notice that the level should be that of the lowest required logs. 858 */ 859 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 860 { 861 *p_dp_level = QED_LEVEL_NOTICE; 862 *p_dp_module = 0; 863 864 if (debug & QED_LOG_VERBOSE_MASK) { 865 *p_dp_level = QED_LEVEL_VERBOSE; 866 *p_dp_module = (debug & 0x3FFFFFFF); 867 } else if (debug & QED_LOG_INFO_MASK) { 868 *p_dp_level = QED_LEVEL_INFO; 869 } else if (debug & QED_LOG_NOTICE_MASK) { 870 *p_dp_level = QED_LEVEL_NOTICE; 871 } 872 } 873 874 static void qede_free_fp_array(struct qede_dev *edev) 875 { 876 if (edev->fp_array) { 877 struct qede_fastpath *fp; 878 int i; 879 880 for_each_queue(i) { 881 fp = &edev->fp_array[i]; 882 883 kfree(fp->sb_info); 884 /* Handle mem alloc failure case where qede_init_fp 885 * didn't register xdp_rxq_info yet. 886 * Implicit only (fp->type & QEDE_FASTPATH_RX) 887 */ 888 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 889 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 890 kfree(fp->rxq); 891 kfree(fp->xdp_tx); 892 kfree(fp->txq); 893 } 894 kfree(edev->fp_array); 895 } 896 897 edev->num_queues = 0; 898 edev->fp_num_tx = 0; 899 edev->fp_num_rx = 0; 900 } 901 902 static int qede_alloc_fp_array(struct qede_dev *edev) 903 { 904 u8 fp_combined, fp_rx = edev->fp_num_rx; 905 struct qede_fastpath *fp; 906 void *mem; 907 int i; 908 909 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 910 sizeof(*edev->fp_array), GFP_KERNEL); 911 if (!edev->fp_array) { 912 DP_NOTICE(edev, "fp array allocation failed\n"); 913 goto err; 914 } 915 916 mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) * 917 sizeof(*edev->coal_entry), GFP_KERNEL); 918 if (!mem) { 919 DP_ERR(edev, "coalesce entry allocation failed\n"); 920 kfree(edev->coal_entry); 921 goto err; 922 } 923 edev->coal_entry = mem; 924 925 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 926 927 /* Allocate the FP elements for Rx queues followed by combined and then 928 * the Tx. This ordering should be maintained so that the respective 929 * queues (Rx or Tx) will be together in the fastpath array and the 930 * associated ids will be sequential. 931 */ 932 for_each_queue(i) { 933 fp = &edev->fp_array[i]; 934 935 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 936 if (!fp->sb_info) { 937 DP_NOTICE(edev, "sb info struct allocation failed\n"); 938 goto err; 939 } 940 941 if (fp_rx) { 942 fp->type = QEDE_FASTPATH_RX; 943 fp_rx--; 944 } else if (fp_combined) { 945 fp->type = QEDE_FASTPATH_COMBINED; 946 fp_combined--; 947 } else { 948 fp->type = QEDE_FASTPATH_TX; 949 } 950 951 if (fp->type & QEDE_FASTPATH_TX) { 952 fp->txq = kcalloc(edev->dev_info.num_tc, 953 sizeof(*fp->txq), GFP_KERNEL); 954 if (!fp->txq) 955 goto err; 956 } 957 958 if (fp->type & QEDE_FASTPATH_RX) { 959 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 960 if (!fp->rxq) 961 goto err; 962 963 if (edev->xdp_prog) { 964 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 965 GFP_KERNEL); 966 if (!fp->xdp_tx) 967 goto err; 968 fp->type |= QEDE_FASTPATH_XDP; 969 } 970 } 971 } 972 973 return 0; 974 err: 975 qede_free_fp_array(edev); 976 return -ENOMEM; 977 } 978 979 /* The qede lock is used to protect driver state change and driver flows that 980 * are not reentrant. 981 */ 982 void __qede_lock(struct qede_dev *edev) 983 { 984 mutex_lock(&edev->qede_lock); 985 } 986 987 void __qede_unlock(struct qede_dev *edev) 988 { 989 mutex_unlock(&edev->qede_lock); 990 } 991 992 /* This version of the lock should be used when acquiring the RTNL lock is also 993 * needed in addition to the internal qede lock. 994 */ 995 static void qede_lock(struct qede_dev *edev) 996 { 997 rtnl_lock(); 998 __qede_lock(edev); 999 } 1000 1001 static void qede_unlock(struct qede_dev *edev) 1002 { 1003 __qede_unlock(edev); 1004 rtnl_unlock(); 1005 } 1006 1007 static void qede_sp_task(struct work_struct *work) 1008 { 1009 struct qede_dev *edev = container_of(work, struct qede_dev, 1010 sp_task.work); 1011 1012 /* Disable execution of this deferred work once 1013 * qede removal is in progress, this stop any future 1014 * scheduling of sp_task. 1015 */ 1016 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags)) 1017 return; 1018 1019 /* The locking scheme depends on the specific flag: 1020 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1021 * ensure that ongoing flows are ended and new ones are not started. 1022 * In other cases - only the internal qede lock should be acquired. 1023 */ 1024 1025 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1026 #ifdef CONFIG_QED_SRIOV 1027 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1028 * The recovery of the active VFs is currently not supported. 1029 */ 1030 if (pci_num_vf(edev->pdev)) 1031 qede_sriov_configure(edev->pdev, 0); 1032 #endif 1033 qede_lock(edev); 1034 qede_recovery_handler(edev); 1035 qede_unlock(edev); 1036 } 1037 1038 __qede_lock(edev); 1039 1040 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1041 if (edev->state == QEDE_STATE_OPEN) 1042 qede_config_rx_mode(edev->ndev); 1043 1044 #ifdef CONFIG_RFS_ACCEL 1045 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1046 if (edev->state == QEDE_STATE_OPEN) 1047 qede_process_arfs_filters(edev, false); 1048 } 1049 #endif 1050 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1051 qede_generic_hw_err_handler(edev); 1052 __qede_unlock(edev); 1053 1054 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1055 #ifdef CONFIG_QED_SRIOV 1056 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1057 * The recovery of the active VFs is currently not supported. 1058 */ 1059 if (pci_num_vf(edev->pdev)) 1060 qede_sriov_configure(edev->pdev, 0); 1061 #endif 1062 edev->ops->common->recovery_process(edev->cdev); 1063 } 1064 } 1065 1066 static void qede_update_pf_params(struct qed_dev *cdev) 1067 { 1068 struct qed_pf_params pf_params; 1069 u16 num_cons; 1070 1071 /* 64 rx + 64 tx + 64 XDP */ 1072 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1073 1074 /* 1 rx + 1 xdp + max tx cos */ 1075 num_cons = QED_MIN_L2_CONS; 1076 1077 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1078 1079 /* Same for VFs - make sure they'll have sufficient connections 1080 * to support XDP Tx queues. 1081 */ 1082 pf_params.eth_pf_params.num_vf_cons = 48; 1083 1084 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1085 qed_ops->common->update_pf_params(cdev, &pf_params); 1086 } 1087 1088 #define QEDE_FW_VER_STR_SIZE 80 1089 1090 static void qede_log_probe(struct qede_dev *edev) 1091 { 1092 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1093 u8 buf[QEDE_FW_VER_STR_SIZE]; 1094 size_t left_size; 1095 1096 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1097 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1098 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1099 p_dev_info->fw_eng, 1100 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1101 QED_MFW_VERSION_3_OFFSET, 1102 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1103 QED_MFW_VERSION_2_OFFSET, 1104 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1105 QED_MFW_VERSION_1_OFFSET, 1106 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1107 QED_MFW_VERSION_0_OFFSET); 1108 1109 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1110 if (p_dev_info->mbi_version && left_size) 1111 snprintf(buf + strlen(buf), left_size, 1112 " [MBI %d.%d.%d]", 1113 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1114 QED_MBI_VERSION_2_OFFSET, 1115 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1116 QED_MBI_VERSION_1_OFFSET, 1117 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1118 QED_MBI_VERSION_0_OFFSET); 1119 1120 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1121 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1122 buf, edev->ndev->name); 1123 } 1124 1125 enum qede_probe_mode { 1126 QEDE_PROBE_NORMAL, 1127 QEDE_PROBE_RECOVERY, 1128 }; 1129 1130 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1131 bool is_vf, enum qede_probe_mode mode) 1132 { 1133 struct qed_probe_params probe_params; 1134 struct qed_slowpath_params sp_params; 1135 struct qed_dev_eth_info dev_info; 1136 struct qede_dev *edev; 1137 struct qed_dev *cdev; 1138 int rc; 1139 1140 if (unlikely(dp_level & QED_LEVEL_INFO)) 1141 pr_notice("Starting qede probe\n"); 1142 1143 memset(&probe_params, 0, sizeof(probe_params)); 1144 probe_params.protocol = QED_PROTOCOL_ETH; 1145 probe_params.dp_module = dp_module; 1146 probe_params.dp_level = dp_level; 1147 probe_params.is_vf = is_vf; 1148 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1149 cdev = qed_ops->common->probe(pdev, &probe_params); 1150 if (!cdev) { 1151 rc = -ENODEV; 1152 goto err0; 1153 } 1154 1155 qede_update_pf_params(cdev); 1156 1157 /* Start the Slowpath-process */ 1158 memset(&sp_params, 0, sizeof(sp_params)); 1159 sp_params.int_mode = QED_INT_MODE_MSIX; 1160 sp_params.drv_major = QEDE_MAJOR_VERSION; 1161 sp_params.drv_minor = QEDE_MINOR_VERSION; 1162 sp_params.drv_rev = QEDE_REVISION_VERSION; 1163 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1164 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1165 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1166 if (rc) { 1167 pr_notice("Cannot start slowpath\n"); 1168 goto err1; 1169 } 1170 1171 /* Learn information crucial for qede to progress */ 1172 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1173 if (rc) 1174 goto err2; 1175 1176 if (mode != QEDE_PROBE_RECOVERY) { 1177 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1178 dp_level); 1179 if (!edev) { 1180 rc = -ENOMEM; 1181 goto err2; 1182 } 1183 1184 edev->devlink = qed_ops->common->devlink_register(cdev); 1185 if (IS_ERR(edev->devlink)) { 1186 DP_NOTICE(edev, "Cannot register devlink\n"); 1187 edev->devlink = NULL; 1188 /* Go on, we can live without devlink */ 1189 } 1190 } else { 1191 struct net_device *ndev = pci_get_drvdata(pdev); 1192 1193 edev = netdev_priv(ndev); 1194 1195 if (edev->devlink) { 1196 struct qed_devlink *qdl = devlink_priv(edev->devlink); 1197 1198 qdl->cdev = cdev; 1199 } 1200 edev->cdev = cdev; 1201 memset(&edev->stats, 0, sizeof(edev->stats)); 1202 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1203 } 1204 1205 if (is_vf) 1206 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1207 1208 qede_init_ndev(edev); 1209 1210 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1211 if (rc) 1212 goto err3; 1213 1214 if (mode != QEDE_PROBE_RECOVERY) { 1215 /* Prepare the lock prior to the registration of the netdev, 1216 * as once it's registered we might reach flows requiring it 1217 * [it's even possible to reach a flow needing it directly 1218 * from there, although it's unlikely]. 1219 */ 1220 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1221 mutex_init(&edev->qede_lock); 1222 1223 rc = register_netdev(edev->ndev); 1224 if (rc) { 1225 DP_NOTICE(edev, "Cannot register net-device\n"); 1226 goto err4; 1227 } 1228 } 1229 1230 edev->ops->common->set_name(cdev, edev->ndev->name); 1231 1232 /* PTP not supported on VFs */ 1233 if (!is_vf) 1234 qede_ptp_enable(edev); 1235 1236 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1237 1238 #ifdef CONFIG_DCB 1239 if (!IS_VF(edev)) 1240 qede_set_dcbnl_ops(edev->ndev); 1241 #endif 1242 1243 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1244 1245 qede_log_probe(edev); 1246 return 0; 1247 1248 err4: 1249 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1250 err3: 1251 if (mode != QEDE_PROBE_RECOVERY) 1252 free_netdev(edev->ndev); 1253 else 1254 edev->cdev = NULL; 1255 err2: 1256 qed_ops->common->slowpath_stop(cdev); 1257 err1: 1258 qed_ops->common->remove(cdev); 1259 err0: 1260 return rc; 1261 } 1262 1263 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1264 { 1265 bool is_vf = false; 1266 u32 dp_module = 0; 1267 u8 dp_level = 0; 1268 1269 switch ((enum qede_pci_private)id->driver_data) { 1270 case QEDE_PRIVATE_VF: 1271 if (debug & QED_LOG_VERBOSE_MASK) 1272 dev_err(&pdev->dev, "Probing a VF\n"); 1273 is_vf = true; 1274 break; 1275 default: 1276 if (debug & QED_LOG_VERBOSE_MASK) 1277 dev_err(&pdev->dev, "Probing a PF\n"); 1278 } 1279 1280 qede_config_debug(debug, &dp_module, &dp_level); 1281 1282 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1283 QEDE_PROBE_NORMAL); 1284 } 1285 1286 enum qede_remove_mode { 1287 QEDE_REMOVE_NORMAL, 1288 QEDE_REMOVE_RECOVERY, 1289 }; 1290 1291 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1292 { 1293 struct net_device *ndev = pci_get_drvdata(pdev); 1294 struct qede_dev *edev; 1295 struct qed_dev *cdev; 1296 1297 if (!ndev) { 1298 dev_info(&pdev->dev, "Device has already been removed\n"); 1299 return; 1300 } 1301 1302 edev = netdev_priv(ndev); 1303 cdev = edev->cdev; 1304 1305 DP_INFO(edev, "Starting qede_remove\n"); 1306 1307 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1308 1309 if (mode != QEDE_REMOVE_RECOVERY) { 1310 set_bit(QEDE_SP_DISABLE, &edev->sp_flags); 1311 unregister_netdev(ndev); 1312 1313 cancel_delayed_work_sync(&edev->sp_task); 1314 1315 edev->ops->common->set_power_state(cdev, PCI_D0); 1316 1317 pci_set_drvdata(pdev, NULL); 1318 } 1319 1320 qede_ptp_disable(edev); 1321 1322 /* Use global ops since we've freed edev */ 1323 qed_ops->common->slowpath_stop(cdev); 1324 if (system_state == SYSTEM_POWER_OFF) 1325 return; 1326 1327 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) { 1328 qed_ops->common->devlink_unregister(edev->devlink); 1329 edev->devlink = NULL; 1330 } 1331 qed_ops->common->remove(cdev); 1332 edev->cdev = NULL; 1333 1334 /* Since this can happen out-of-sync with other flows, 1335 * don't release the netdevice until after slowpath stop 1336 * has been called to guarantee various other contexts 1337 * [e.g., QED register callbacks] won't break anything when 1338 * accessing the netdevice. 1339 */ 1340 if (mode != QEDE_REMOVE_RECOVERY) { 1341 kfree(edev->coal_entry); 1342 free_netdev(ndev); 1343 } 1344 1345 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1346 } 1347 1348 static void qede_remove(struct pci_dev *pdev) 1349 { 1350 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1351 } 1352 1353 static void qede_shutdown(struct pci_dev *pdev) 1354 { 1355 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1356 } 1357 1358 /* ------------------------------------------------------------------------- 1359 * START OF LOAD / UNLOAD 1360 * ------------------------------------------------------------------------- 1361 */ 1362 1363 static int qede_set_num_queues(struct qede_dev *edev) 1364 { 1365 int rc; 1366 u16 rss_num; 1367 1368 /* Setup queues according to possible resources*/ 1369 if (edev->req_queues) 1370 rss_num = edev->req_queues; 1371 else 1372 rss_num = netif_get_num_default_rss_queues() * 1373 edev->dev_info.common.num_hwfns; 1374 1375 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1376 1377 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1378 if (rc > 0) { 1379 /* Managed to request interrupts for our queues */ 1380 edev->num_queues = rc; 1381 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1382 QEDE_QUEUE_CNT(edev), rss_num); 1383 rc = 0; 1384 } 1385 1386 edev->fp_num_tx = edev->req_num_tx; 1387 edev->fp_num_rx = edev->req_num_rx; 1388 1389 return rc; 1390 } 1391 1392 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1393 u16 sb_id) 1394 { 1395 if (sb_info->sb_virt) { 1396 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1397 QED_SB_TYPE_L2_QUEUE); 1398 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1399 (void *)sb_info->sb_virt, sb_info->sb_phys); 1400 memset(sb_info, 0, sizeof(*sb_info)); 1401 } 1402 } 1403 1404 /* This function allocates fast-path status block memory */ 1405 static int qede_alloc_mem_sb(struct qede_dev *edev, 1406 struct qed_sb_info *sb_info, u16 sb_id) 1407 { 1408 struct status_block_e4 *sb_virt; 1409 dma_addr_t sb_phys; 1410 int rc; 1411 1412 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1413 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1414 if (!sb_virt) { 1415 DP_ERR(edev, "Status block allocation failed\n"); 1416 return -ENOMEM; 1417 } 1418 1419 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1420 sb_virt, sb_phys, sb_id, 1421 QED_SB_TYPE_L2_QUEUE); 1422 if (rc) { 1423 DP_ERR(edev, "Status block initialization failed\n"); 1424 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1425 sb_virt, sb_phys); 1426 return rc; 1427 } 1428 1429 return 0; 1430 } 1431 1432 static void qede_free_rx_buffers(struct qede_dev *edev, 1433 struct qede_rx_queue *rxq) 1434 { 1435 u16 i; 1436 1437 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1438 struct sw_rx_data *rx_buf; 1439 struct page *data; 1440 1441 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1442 data = rx_buf->data; 1443 1444 dma_unmap_page(&edev->pdev->dev, 1445 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1446 1447 rx_buf->data = NULL; 1448 __free_page(data); 1449 } 1450 } 1451 1452 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1453 { 1454 /* Free rx buffers */ 1455 qede_free_rx_buffers(edev, rxq); 1456 1457 /* Free the parallel SW ring */ 1458 kfree(rxq->sw_rx_ring); 1459 1460 /* Free the real RQ ring used by FW */ 1461 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1462 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1463 } 1464 1465 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1466 { 1467 int i; 1468 1469 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1470 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1471 1472 tpa_info->state = QEDE_AGG_STATE_NONE; 1473 } 1474 } 1475 1476 /* This function allocates all memory needed per Rx queue */ 1477 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1478 { 1479 struct qed_chain_init_params params = { 1480 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1481 .num_elems = RX_RING_SIZE, 1482 }; 1483 struct qed_dev *cdev = edev->cdev; 1484 int i, rc, size; 1485 1486 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1487 1488 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1489 1490 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1491 size = rxq->rx_headroom + 1492 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1493 1494 /* Make sure that the headroom and payload fit in a single page */ 1495 if (rxq->rx_buf_size + size > PAGE_SIZE) 1496 rxq->rx_buf_size = PAGE_SIZE - size; 1497 1498 /* Segment size to split a page in multiple equal parts, 1499 * unless XDP is used in which case we'd use the entire page. 1500 */ 1501 if (!edev->xdp_prog) { 1502 size = size + rxq->rx_buf_size; 1503 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1504 } else { 1505 rxq->rx_buf_seg_size = PAGE_SIZE; 1506 edev->ndev->features &= ~NETIF_F_GRO_HW; 1507 } 1508 1509 /* Allocate the parallel driver ring for Rx buffers */ 1510 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1511 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1512 if (!rxq->sw_rx_ring) { 1513 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1514 rc = -ENOMEM; 1515 goto err; 1516 } 1517 1518 /* Allocate FW Rx ring */ 1519 params.mode = QED_CHAIN_MODE_NEXT_PTR; 1520 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE; 1521 params.elem_size = sizeof(struct eth_rx_bd); 1522 1523 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms); 1524 if (rc) 1525 goto err; 1526 1527 /* Allocate FW completion ring */ 1528 params.mode = QED_CHAIN_MODE_PBL; 1529 params.intended_use = QED_CHAIN_USE_TO_CONSUME; 1530 params.elem_size = sizeof(union eth_rx_cqe); 1531 1532 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms); 1533 if (rc) 1534 goto err; 1535 1536 /* Allocate buffers for the Rx ring */ 1537 rxq->filled_buffers = 0; 1538 for (i = 0; i < rxq->num_rx_buffers; i++) { 1539 rc = qede_alloc_rx_buffer(rxq, false); 1540 if (rc) { 1541 DP_ERR(edev, 1542 "Rx buffers allocation failed at index %d\n", i); 1543 goto err; 1544 } 1545 } 1546 1547 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1548 if (!edev->gro_disable) 1549 qede_set_tpa_param(rxq); 1550 err: 1551 return rc; 1552 } 1553 1554 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1555 { 1556 /* Free the parallel SW ring */ 1557 if (txq->is_xdp) 1558 kfree(txq->sw_tx_ring.xdp); 1559 else 1560 kfree(txq->sw_tx_ring.skbs); 1561 1562 /* Free the real RQ ring used by FW */ 1563 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1564 } 1565 1566 /* This function allocates all memory needed per Tx queue */ 1567 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1568 { 1569 struct qed_chain_init_params params = { 1570 .mode = QED_CHAIN_MODE_PBL, 1571 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1572 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1573 .num_elems = edev->q_num_tx_buffers, 1574 .elem_size = sizeof(union eth_tx_bd_types), 1575 }; 1576 int size, rc; 1577 1578 txq->num_tx_buffers = edev->q_num_tx_buffers; 1579 1580 /* Allocate the parallel driver ring for Tx buffers */ 1581 if (txq->is_xdp) { 1582 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1583 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1584 if (!txq->sw_tx_ring.xdp) 1585 goto err; 1586 } else { 1587 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1588 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1589 if (!txq->sw_tx_ring.skbs) 1590 goto err; 1591 } 1592 1593 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms); 1594 if (rc) 1595 goto err; 1596 1597 return 0; 1598 1599 err: 1600 qede_free_mem_txq(edev, txq); 1601 return -ENOMEM; 1602 } 1603 1604 /* This function frees all memory of a single fp */ 1605 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1606 { 1607 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1608 1609 if (fp->type & QEDE_FASTPATH_RX) 1610 qede_free_mem_rxq(edev, fp->rxq); 1611 1612 if (fp->type & QEDE_FASTPATH_XDP) 1613 qede_free_mem_txq(edev, fp->xdp_tx); 1614 1615 if (fp->type & QEDE_FASTPATH_TX) { 1616 int cos; 1617 1618 for_each_cos_in_txq(edev, cos) 1619 qede_free_mem_txq(edev, &fp->txq[cos]); 1620 } 1621 } 1622 1623 /* This function allocates all memory needed for a single fp (i.e. an entity 1624 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1625 */ 1626 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1627 { 1628 int rc = 0; 1629 1630 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1631 if (rc) 1632 goto out; 1633 1634 if (fp->type & QEDE_FASTPATH_RX) { 1635 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1636 if (rc) 1637 goto out; 1638 } 1639 1640 if (fp->type & QEDE_FASTPATH_XDP) { 1641 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1642 if (rc) 1643 goto out; 1644 } 1645 1646 if (fp->type & QEDE_FASTPATH_TX) { 1647 int cos; 1648 1649 for_each_cos_in_txq(edev, cos) { 1650 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1651 if (rc) 1652 goto out; 1653 } 1654 } 1655 1656 out: 1657 return rc; 1658 } 1659 1660 static void qede_free_mem_load(struct qede_dev *edev) 1661 { 1662 int i; 1663 1664 for_each_queue(i) { 1665 struct qede_fastpath *fp = &edev->fp_array[i]; 1666 1667 qede_free_mem_fp(edev, fp); 1668 } 1669 } 1670 1671 /* This function allocates all qede memory at NIC load. */ 1672 static int qede_alloc_mem_load(struct qede_dev *edev) 1673 { 1674 int rc = 0, queue_id; 1675 1676 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1677 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1678 1679 rc = qede_alloc_mem_fp(edev, fp); 1680 if (rc) { 1681 DP_ERR(edev, 1682 "Failed to allocate memory for fastpath - rss id = %d\n", 1683 queue_id); 1684 qede_free_mem_load(edev); 1685 return rc; 1686 } 1687 } 1688 1689 return 0; 1690 } 1691 1692 static void qede_empty_tx_queue(struct qede_dev *edev, 1693 struct qede_tx_queue *txq) 1694 { 1695 unsigned int pkts_compl = 0, bytes_compl = 0; 1696 struct netdev_queue *netdev_txq; 1697 int rc, len = 0; 1698 1699 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1700 1701 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1702 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1703 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1704 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1705 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1706 qed_chain_get_prod_idx(&txq->tx_pbl)); 1707 1708 rc = qede_free_tx_pkt(edev, txq, &len); 1709 if (rc) { 1710 DP_NOTICE(edev, 1711 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1712 txq->index, 1713 qed_chain_get_cons_idx(&txq->tx_pbl), 1714 qed_chain_get_prod_idx(&txq->tx_pbl)); 1715 break; 1716 } 1717 1718 bytes_compl += len; 1719 pkts_compl++; 1720 txq->sw_tx_cons++; 1721 } 1722 1723 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1724 } 1725 1726 static void qede_empty_tx_queues(struct qede_dev *edev) 1727 { 1728 int i; 1729 1730 for_each_queue(i) 1731 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1732 int cos; 1733 1734 for_each_cos_in_txq(edev, cos) { 1735 struct qede_fastpath *fp; 1736 1737 fp = &edev->fp_array[i]; 1738 qede_empty_tx_queue(edev, 1739 &fp->txq[cos]); 1740 } 1741 } 1742 } 1743 1744 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1745 static void qede_init_fp(struct qede_dev *edev) 1746 { 1747 int queue_id, rxq_index = 0, txq_index = 0; 1748 struct qede_fastpath *fp; 1749 bool init_xdp = false; 1750 1751 for_each_queue(queue_id) { 1752 fp = &edev->fp_array[queue_id]; 1753 1754 fp->edev = edev; 1755 fp->id = queue_id; 1756 1757 if (fp->type & QEDE_FASTPATH_XDP) { 1758 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1759 rxq_index); 1760 fp->xdp_tx->is_xdp = 1; 1761 1762 spin_lock_init(&fp->xdp_tx->xdp_tx_lock); 1763 init_xdp = true; 1764 } 1765 1766 if (fp->type & QEDE_FASTPATH_RX) { 1767 fp->rxq->rxq_id = rxq_index++; 1768 1769 /* Determine how to map buffers for this queue */ 1770 if (fp->type & QEDE_FASTPATH_XDP) 1771 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1772 else 1773 fp->rxq->data_direction = DMA_FROM_DEVICE; 1774 fp->rxq->dev = &edev->pdev->dev; 1775 1776 /* Driver have no error path from here */ 1777 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1778 fp->rxq->rxq_id, 0) < 0); 1779 1780 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq, 1781 MEM_TYPE_PAGE_ORDER0, 1782 NULL)) { 1783 DP_NOTICE(edev, 1784 "Failed to register XDP memory model\n"); 1785 } 1786 } 1787 1788 if (fp->type & QEDE_FASTPATH_TX) { 1789 int cos; 1790 1791 for_each_cos_in_txq(edev, cos) { 1792 struct qede_tx_queue *txq = &fp->txq[cos]; 1793 u16 ndev_tx_id; 1794 1795 txq->cos = cos; 1796 txq->index = txq_index; 1797 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1798 txq->ndev_txq_id = ndev_tx_id; 1799 1800 if (edev->dev_info.is_legacy) 1801 txq->is_legacy = true; 1802 txq->dev = &edev->pdev->dev; 1803 } 1804 1805 txq_index++; 1806 } 1807 1808 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1809 edev->ndev->name, queue_id); 1810 } 1811 1812 if (init_xdp) { 1813 edev->total_xdp_queues = QEDE_RSS_COUNT(edev); 1814 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues); 1815 } 1816 } 1817 1818 static int qede_set_real_num_queues(struct qede_dev *edev) 1819 { 1820 int rc = 0; 1821 1822 rc = netif_set_real_num_tx_queues(edev->ndev, 1823 QEDE_TSS_COUNT(edev) * 1824 edev->dev_info.num_tc); 1825 if (rc) { 1826 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1827 return rc; 1828 } 1829 1830 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1831 if (rc) { 1832 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1833 return rc; 1834 } 1835 1836 return 0; 1837 } 1838 1839 static void qede_napi_disable_remove(struct qede_dev *edev) 1840 { 1841 int i; 1842 1843 for_each_queue(i) { 1844 napi_disable(&edev->fp_array[i].napi); 1845 1846 netif_napi_del(&edev->fp_array[i].napi); 1847 } 1848 } 1849 1850 static void qede_napi_add_enable(struct qede_dev *edev) 1851 { 1852 int i; 1853 1854 /* Add NAPI objects */ 1855 for_each_queue(i) { 1856 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1857 qede_poll, NAPI_POLL_WEIGHT); 1858 napi_enable(&edev->fp_array[i].napi); 1859 } 1860 } 1861 1862 static void qede_sync_free_irqs(struct qede_dev *edev) 1863 { 1864 int i; 1865 1866 for (i = 0; i < edev->int_info.used_cnt; i++) { 1867 if (edev->int_info.msix_cnt) { 1868 synchronize_irq(edev->int_info.msix[i].vector); 1869 free_irq(edev->int_info.msix[i].vector, 1870 &edev->fp_array[i]); 1871 } else { 1872 edev->ops->common->simd_handler_clean(edev->cdev, i); 1873 } 1874 } 1875 1876 edev->int_info.used_cnt = 0; 1877 edev->int_info.msix_cnt = 0; 1878 } 1879 1880 static int qede_req_msix_irqs(struct qede_dev *edev) 1881 { 1882 int i, rc; 1883 1884 /* Sanitize number of interrupts == number of prepared RSS queues */ 1885 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1886 DP_ERR(edev, 1887 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1888 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1889 return -EINVAL; 1890 } 1891 1892 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1893 #ifdef CONFIG_RFS_ACCEL 1894 struct qede_fastpath *fp = &edev->fp_array[i]; 1895 1896 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1897 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1898 edev->int_info.msix[i].vector); 1899 if (rc) { 1900 DP_ERR(edev, "Failed to add CPU rmap\n"); 1901 qede_free_arfs(edev); 1902 } 1903 } 1904 #endif 1905 rc = request_irq(edev->int_info.msix[i].vector, 1906 qede_msix_fp_int, 0, edev->fp_array[i].name, 1907 &edev->fp_array[i]); 1908 if (rc) { 1909 DP_ERR(edev, "Request fp %d irq failed\n", i); 1910 qede_sync_free_irqs(edev); 1911 return rc; 1912 } 1913 DP_VERBOSE(edev, NETIF_MSG_INTR, 1914 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1915 edev->fp_array[i].name, i, 1916 &edev->fp_array[i]); 1917 edev->int_info.used_cnt++; 1918 } 1919 1920 return 0; 1921 } 1922 1923 static void qede_simd_fp_handler(void *cookie) 1924 { 1925 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1926 1927 napi_schedule_irqoff(&fp->napi); 1928 } 1929 1930 static int qede_setup_irqs(struct qede_dev *edev) 1931 { 1932 int i, rc = 0; 1933 1934 /* Learn Interrupt configuration */ 1935 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1936 if (rc) 1937 return rc; 1938 1939 if (edev->int_info.msix_cnt) { 1940 rc = qede_req_msix_irqs(edev); 1941 if (rc) 1942 return rc; 1943 edev->ndev->irq = edev->int_info.msix[0].vector; 1944 } else { 1945 const struct qed_common_ops *ops; 1946 1947 /* qed should learn receive the RSS ids and callbacks */ 1948 ops = edev->ops->common; 1949 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1950 ops->simd_handler_config(edev->cdev, 1951 &edev->fp_array[i], i, 1952 qede_simd_fp_handler); 1953 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1954 } 1955 return 0; 1956 } 1957 1958 static int qede_drain_txq(struct qede_dev *edev, 1959 struct qede_tx_queue *txq, bool allow_drain) 1960 { 1961 int rc, cnt = 1000; 1962 1963 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1964 if (!cnt) { 1965 if (allow_drain) { 1966 DP_NOTICE(edev, 1967 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1968 txq->index); 1969 rc = edev->ops->common->drain(edev->cdev); 1970 if (rc) 1971 return rc; 1972 return qede_drain_txq(edev, txq, false); 1973 } 1974 DP_NOTICE(edev, 1975 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1976 txq->index, txq->sw_tx_prod, 1977 txq->sw_tx_cons); 1978 return -ENODEV; 1979 } 1980 cnt--; 1981 usleep_range(1000, 2000); 1982 barrier(); 1983 } 1984 1985 /* FW finished processing, wait for HW to transmit all tx packets */ 1986 usleep_range(1000, 2000); 1987 1988 return 0; 1989 } 1990 1991 static int qede_stop_txq(struct qede_dev *edev, 1992 struct qede_tx_queue *txq, int rss_id) 1993 { 1994 /* delete doorbell from doorbell recovery mechanism */ 1995 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1996 &txq->tx_db); 1997 1998 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1999 } 2000 2001 static int qede_stop_queues(struct qede_dev *edev) 2002 { 2003 struct qed_update_vport_params *vport_update_params; 2004 struct qed_dev *cdev = edev->cdev; 2005 struct qede_fastpath *fp; 2006 int rc, i; 2007 2008 /* Disable the vport */ 2009 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2010 if (!vport_update_params) 2011 return -ENOMEM; 2012 2013 vport_update_params->vport_id = 0; 2014 vport_update_params->update_vport_active_flg = 1; 2015 vport_update_params->vport_active_flg = 0; 2016 vport_update_params->update_rss_flg = 0; 2017 2018 rc = edev->ops->vport_update(cdev, vport_update_params); 2019 vfree(vport_update_params); 2020 2021 if (rc) { 2022 DP_ERR(edev, "Failed to update vport\n"); 2023 return rc; 2024 } 2025 2026 /* Flush Tx queues. If needed, request drain from MCP */ 2027 for_each_queue(i) { 2028 fp = &edev->fp_array[i]; 2029 2030 if (fp->type & QEDE_FASTPATH_TX) { 2031 int cos; 2032 2033 for_each_cos_in_txq(edev, cos) { 2034 rc = qede_drain_txq(edev, &fp->txq[cos], true); 2035 if (rc) 2036 return rc; 2037 } 2038 } 2039 2040 if (fp->type & QEDE_FASTPATH_XDP) { 2041 rc = qede_drain_txq(edev, fp->xdp_tx, true); 2042 if (rc) 2043 return rc; 2044 } 2045 } 2046 2047 /* Stop all Queues in reverse order */ 2048 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 2049 fp = &edev->fp_array[i]; 2050 2051 /* Stop the Tx Queue(s) */ 2052 if (fp->type & QEDE_FASTPATH_TX) { 2053 int cos; 2054 2055 for_each_cos_in_txq(edev, cos) { 2056 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2057 if (rc) 2058 return rc; 2059 } 2060 } 2061 2062 /* Stop the Rx Queue */ 2063 if (fp->type & QEDE_FASTPATH_RX) { 2064 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2065 if (rc) { 2066 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2067 return rc; 2068 } 2069 } 2070 2071 /* Stop the XDP forwarding queue */ 2072 if (fp->type & QEDE_FASTPATH_XDP) { 2073 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2074 if (rc) 2075 return rc; 2076 2077 bpf_prog_put(fp->rxq->xdp_prog); 2078 } 2079 } 2080 2081 /* Stop the vport */ 2082 rc = edev->ops->vport_stop(cdev, 0); 2083 if (rc) 2084 DP_ERR(edev, "Failed to stop VPORT\n"); 2085 2086 return rc; 2087 } 2088 2089 static int qede_start_txq(struct qede_dev *edev, 2090 struct qede_fastpath *fp, 2091 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2092 { 2093 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2094 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2095 struct qed_queue_start_common_params params; 2096 struct qed_txq_start_ret_params ret_params; 2097 int rc; 2098 2099 memset(¶ms, 0, sizeof(params)); 2100 memset(&ret_params, 0, sizeof(ret_params)); 2101 2102 /* Let the XDP queue share the queue-zone with one of the regular txq. 2103 * We don't really care about its coalescing. 2104 */ 2105 if (txq->is_xdp) 2106 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2107 else 2108 params.queue_id = txq->index; 2109 2110 params.p_sb = fp->sb_info; 2111 params.sb_idx = sb_idx; 2112 params.tc = txq->cos; 2113 2114 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2115 page_cnt, &ret_params); 2116 if (rc) { 2117 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2118 return rc; 2119 } 2120 2121 txq->doorbell_addr = ret_params.p_doorbell; 2122 txq->handle = ret_params.p_handle; 2123 2124 /* Determine the FW consumer address associated */ 2125 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2126 2127 /* Prepare the doorbell parameters */ 2128 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2129 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2130 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2131 DQ_XCM_ETH_TX_BD_PROD_CMD); 2132 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2133 2134 /* register doorbell with doorbell recovery mechanism */ 2135 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2136 &txq->tx_db, DB_REC_WIDTH_32B, 2137 DB_REC_KERNEL); 2138 2139 return rc; 2140 } 2141 2142 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2143 { 2144 int vlan_removal_en = 1; 2145 struct qed_dev *cdev = edev->cdev; 2146 struct qed_dev_info *qed_info = &edev->dev_info.common; 2147 struct qed_update_vport_params *vport_update_params; 2148 struct qed_queue_start_common_params q_params; 2149 struct qed_start_vport_params start = {0}; 2150 int rc, i; 2151 2152 if (!edev->num_queues) { 2153 DP_ERR(edev, 2154 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2155 return -EINVAL; 2156 } 2157 2158 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2159 if (!vport_update_params) 2160 return -ENOMEM; 2161 2162 start.handle_ptp_pkts = !!(edev->ptp); 2163 start.gro_enable = !edev->gro_disable; 2164 start.mtu = edev->ndev->mtu; 2165 start.vport_id = 0; 2166 start.drop_ttl0 = true; 2167 start.remove_inner_vlan = vlan_removal_en; 2168 start.clear_stats = clear_stats; 2169 2170 rc = edev->ops->vport_start(cdev, &start); 2171 2172 if (rc) { 2173 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2174 goto out; 2175 } 2176 2177 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2178 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2179 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2180 2181 for_each_queue(i) { 2182 struct qede_fastpath *fp = &edev->fp_array[i]; 2183 dma_addr_t p_phys_table; 2184 u32 page_cnt; 2185 2186 if (fp->type & QEDE_FASTPATH_RX) { 2187 struct qed_rxq_start_ret_params ret_params; 2188 struct qede_rx_queue *rxq = fp->rxq; 2189 __le16 *val; 2190 2191 memset(&ret_params, 0, sizeof(ret_params)); 2192 memset(&q_params, 0, sizeof(q_params)); 2193 q_params.queue_id = rxq->rxq_id; 2194 q_params.vport_id = 0; 2195 q_params.p_sb = fp->sb_info; 2196 q_params.sb_idx = RX_PI; 2197 2198 p_phys_table = 2199 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2200 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2201 2202 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2203 rxq->rx_buf_size, 2204 rxq->rx_bd_ring.p_phys_addr, 2205 p_phys_table, 2206 page_cnt, &ret_params); 2207 if (rc) { 2208 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2209 rc); 2210 goto out; 2211 } 2212 2213 /* Use the return parameters */ 2214 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2215 rxq->handle = ret_params.p_handle; 2216 2217 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2218 rxq->hw_cons_ptr = val; 2219 2220 qede_update_rx_prod(edev, rxq); 2221 } 2222 2223 if (fp->type & QEDE_FASTPATH_XDP) { 2224 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2225 if (rc) 2226 goto out; 2227 2228 bpf_prog_add(edev->xdp_prog, 1); 2229 fp->rxq->xdp_prog = edev->xdp_prog; 2230 } 2231 2232 if (fp->type & QEDE_FASTPATH_TX) { 2233 int cos; 2234 2235 for_each_cos_in_txq(edev, cos) { 2236 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2237 TX_PI(cos)); 2238 if (rc) 2239 goto out; 2240 } 2241 } 2242 } 2243 2244 /* Prepare and send the vport enable */ 2245 vport_update_params->vport_id = start.vport_id; 2246 vport_update_params->update_vport_active_flg = 1; 2247 vport_update_params->vport_active_flg = 1; 2248 2249 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2250 qed_info->tx_switching) { 2251 vport_update_params->update_tx_switching_flg = 1; 2252 vport_update_params->tx_switching_flg = 1; 2253 } 2254 2255 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2256 &vport_update_params->update_rss_flg); 2257 2258 rc = edev->ops->vport_update(cdev, vport_update_params); 2259 if (rc) 2260 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2261 2262 out: 2263 vfree(vport_update_params); 2264 return rc; 2265 } 2266 2267 enum qede_unload_mode { 2268 QEDE_UNLOAD_NORMAL, 2269 QEDE_UNLOAD_RECOVERY, 2270 }; 2271 2272 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2273 bool is_locked) 2274 { 2275 struct qed_link_params link_params; 2276 int rc; 2277 2278 DP_INFO(edev, "Starting qede unload\n"); 2279 2280 if (!is_locked) 2281 __qede_lock(edev); 2282 2283 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2284 2285 if (mode != QEDE_UNLOAD_RECOVERY) 2286 edev->state = QEDE_STATE_CLOSED; 2287 2288 qede_rdma_dev_event_close(edev); 2289 2290 /* Close OS Tx */ 2291 netif_tx_disable(edev->ndev); 2292 netif_carrier_off(edev->ndev); 2293 2294 if (mode != QEDE_UNLOAD_RECOVERY) { 2295 /* Reset the link */ 2296 memset(&link_params, 0, sizeof(link_params)); 2297 link_params.link_up = false; 2298 edev->ops->common->set_link(edev->cdev, &link_params); 2299 2300 rc = qede_stop_queues(edev); 2301 if (rc) { 2302 qede_sync_free_irqs(edev); 2303 goto out; 2304 } 2305 2306 DP_INFO(edev, "Stopped Queues\n"); 2307 } 2308 2309 qede_vlan_mark_nonconfigured(edev); 2310 edev->ops->fastpath_stop(edev->cdev); 2311 2312 if (edev->dev_info.common.b_arfs_capable) { 2313 qede_poll_for_freeing_arfs_filters(edev); 2314 qede_free_arfs(edev); 2315 } 2316 2317 /* Release the interrupts */ 2318 qede_sync_free_irqs(edev); 2319 edev->ops->common->set_fp_int(edev->cdev, 0); 2320 2321 qede_napi_disable_remove(edev); 2322 2323 if (mode == QEDE_UNLOAD_RECOVERY) 2324 qede_empty_tx_queues(edev); 2325 2326 qede_free_mem_load(edev); 2327 qede_free_fp_array(edev); 2328 2329 out: 2330 if (!is_locked) 2331 __qede_unlock(edev); 2332 2333 if (mode != QEDE_UNLOAD_RECOVERY) 2334 DP_NOTICE(edev, "Link is down\n"); 2335 2336 edev->ptp_skip_txts = 0; 2337 2338 DP_INFO(edev, "Ending qede unload\n"); 2339 } 2340 2341 enum qede_load_mode { 2342 QEDE_LOAD_NORMAL, 2343 QEDE_LOAD_RELOAD, 2344 QEDE_LOAD_RECOVERY, 2345 }; 2346 2347 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2348 bool is_locked) 2349 { 2350 struct qed_link_params link_params; 2351 struct ethtool_coalesce coal = {}; 2352 u8 num_tc; 2353 int rc, i; 2354 2355 DP_INFO(edev, "Starting qede load\n"); 2356 2357 if (!is_locked) 2358 __qede_lock(edev); 2359 2360 rc = qede_set_num_queues(edev); 2361 if (rc) 2362 goto out; 2363 2364 rc = qede_alloc_fp_array(edev); 2365 if (rc) 2366 goto out; 2367 2368 qede_init_fp(edev); 2369 2370 rc = qede_alloc_mem_load(edev); 2371 if (rc) 2372 goto err1; 2373 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2374 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2375 2376 rc = qede_set_real_num_queues(edev); 2377 if (rc) 2378 goto err2; 2379 2380 if (qede_alloc_arfs(edev)) { 2381 edev->ndev->features &= ~NETIF_F_NTUPLE; 2382 edev->dev_info.common.b_arfs_capable = false; 2383 } 2384 2385 qede_napi_add_enable(edev); 2386 DP_INFO(edev, "Napi added and enabled\n"); 2387 2388 rc = qede_setup_irqs(edev); 2389 if (rc) 2390 goto err3; 2391 DP_INFO(edev, "Setup IRQs succeeded\n"); 2392 2393 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2394 if (rc) 2395 goto err4; 2396 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2397 2398 num_tc = netdev_get_num_tc(edev->ndev); 2399 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2400 qede_setup_tc(edev->ndev, num_tc); 2401 2402 /* Program un-configured VLANs */ 2403 qede_configure_vlan_filters(edev); 2404 2405 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2406 2407 /* Ask for link-up using current configuration */ 2408 memset(&link_params, 0, sizeof(link_params)); 2409 link_params.link_up = true; 2410 edev->ops->common->set_link(edev->cdev, &link_params); 2411 2412 edev->state = QEDE_STATE_OPEN; 2413 2414 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS; 2415 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS; 2416 2417 for_each_queue(i) { 2418 if (edev->coal_entry[i].isvalid) { 2419 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc; 2420 coal.tx_coalesce_usecs = edev->coal_entry[i].txc; 2421 } 2422 __qede_unlock(edev); 2423 qede_set_per_coalesce(edev->ndev, i, &coal); 2424 __qede_lock(edev); 2425 } 2426 DP_INFO(edev, "Ending successfully qede load\n"); 2427 2428 goto out; 2429 err4: 2430 qede_sync_free_irqs(edev); 2431 err3: 2432 qede_napi_disable_remove(edev); 2433 err2: 2434 qede_free_mem_load(edev); 2435 err1: 2436 edev->ops->common->set_fp_int(edev->cdev, 0); 2437 qede_free_fp_array(edev); 2438 edev->num_queues = 0; 2439 edev->fp_num_tx = 0; 2440 edev->fp_num_rx = 0; 2441 out: 2442 if (!is_locked) 2443 __qede_unlock(edev); 2444 2445 return rc; 2446 } 2447 2448 /* 'func' should be able to run between unload and reload assuming interface 2449 * is actually running, or afterwards in case it's currently DOWN. 2450 */ 2451 void qede_reload(struct qede_dev *edev, 2452 struct qede_reload_args *args, bool is_locked) 2453 { 2454 if (!is_locked) 2455 __qede_lock(edev); 2456 2457 /* Since qede_lock is held, internal state wouldn't change even 2458 * if netdev state would start transitioning. Check whether current 2459 * internal configuration indicates device is up, then reload. 2460 */ 2461 if (edev->state == QEDE_STATE_OPEN) { 2462 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2463 if (args) 2464 args->func(edev, args); 2465 qede_load(edev, QEDE_LOAD_RELOAD, true); 2466 2467 /* Since no one is going to do it for us, re-configure */ 2468 qede_config_rx_mode(edev->ndev); 2469 } else if (args) { 2470 args->func(edev, args); 2471 } 2472 2473 if (!is_locked) 2474 __qede_unlock(edev); 2475 } 2476 2477 /* called with rtnl_lock */ 2478 static int qede_open(struct net_device *ndev) 2479 { 2480 struct qede_dev *edev = netdev_priv(ndev); 2481 int rc; 2482 2483 netif_carrier_off(ndev); 2484 2485 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2486 2487 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2488 if (rc) 2489 return rc; 2490 2491 udp_tunnel_nic_reset_ntf(ndev); 2492 2493 edev->ops->common->update_drv_state(edev->cdev, true); 2494 2495 return 0; 2496 } 2497 2498 static int qede_close(struct net_device *ndev) 2499 { 2500 struct qede_dev *edev = netdev_priv(ndev); 2501 2502 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2503 2504 if (edev->cdev) 2505 edev->ops->common->update_drv_state(edev->cdev, false); 2506 2507 return 0; 2508 } 2509 2510 static void qede_link_update(void *dev, struct qed_link_output *link) 2511 { 2512 struct qede_dev *edev = dev; 2513 2514 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2515 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2516 return; 2517 } 2518 2519 if (link->link_up) { 2520 if (!netif_carrier_ok(edev->ndev)) { 2521 DP_NOTICE(edev, "Link is up\n"); 2522 netif_tx_start_all_queues(edev->ndev); 2523 netif_carrier_on(edev->ndev); 2524 qede_rdma_dev_event_open(edev); 2525 } 2526 } else { 2527 if (netif_carrier_ok(edev->ndev)) { 2528 DP_NOTICE(edev, "Link is down\n"); 2529 netif_tx_disable(edev->ndev); 2530 netif_carrier_off(edev->ndev); 2531 qede_rdma_dev_event_close(edev); 2532 } 2533 } 2534 } 2535 2536 static void qede_schedule_recovery_handler(void *dev) 2537 { 2538 struct qede_dev *edev = dev; 2539 2540 if (edev->state == QEDE_STATE_RECOVERY) { 2541 DP_NOTICE(edev, 2542 "Avoid scheduling a recovery handling since already in recovery state\n"); 2543 return; 2544 } 2545 2546 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2547 schedule_delayed_work(&edev->sp_task, 0); 2548 2549 DP_INFO(edev, "Scheduled a recovery handler\n"); 2550 } 2551 2552 static void qede_recovery_failed(struct qede_dev *edev) 2553 { 2554 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2555 2556 netif_device_detach(edev->ndev); 2557 2558 if (edev->cdev) 2559 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2560 } 2561 2562 static void qede_recovery_handler(struct qede_dev *edev) 2563 { 2564 u32 curr_state = edev->state; 2565 int rc; 2566 2567 DP_NOTICE(edev, "Starting a recovery process\n"); 2568 2569 /* No need to acquire first the qede_lock since is done by qede_sp_task 2570 * before calling this function. 2571 */ 2572 edev->state = QEDE_STATE_RECOVERY; 2573 2574 edev->ops->common->recovery_prolog(edev->cdev); 2575 2576 if (curr_state == QEDE_STATE_OPEN) 2577 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2578 2579 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2580 2581 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2582 IS_VF(edev), QEDE_PROBE_RECOVERY); 2583 if (rc) { 2584 edev->cdev = NULL; 2585 goto err; 2586 } 2587 2588 if (curr_state == QEDE_STATE_OPEN) { 2589 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2590 if (rc) 2591 goto err; 2592 2593 qede_config_rx_mode(edev->ndev); 2594 udp_tunnel_nic_reset_ntf(edev->ndev); 2595 } 2596 2597 edev->state = curr_state; 2598 2599 DP_NOTICE(edev, "Recovery handling is done\n"); 2600 2601 return; 2602 2603 err: 2604 qede_recovery_failed(edev); 2605 } 2606 2607 static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2608 { 2609 struct qed_dev *cdev = edev->cdev; 2610 2611 DP_NOTICE(edev, 2612 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2613 edev->err_flags); 2614 2615 /* Get a call trace of the flow that led to the error */ 2616 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2617 2618 /* Prevent HW attentions from being reasserted */ 2619 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2620 edev->ops->common->attn_clr_enable(cdev, true); 2621 2622 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2623 } 2624 2625 static void qede_generic_hw_err_handler(struct qede_dev *edev) 2626 { 2627 DP_NOTICE(edev, 2628 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2629 edev->err_flags); 2630 2631 if (edev->devlink) 2632 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type); 2633 2634 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2635 2636 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2637 } 2638 2639 static void qede_set_hw_err_flags(struct qede_dev *edev, 2640 enum qed_hw_err_type err_type) 2641 { 2642 unsigned long err_flags = 0; 2643 2644 switch (err_type) { 2645 case QED_HW_ERR_DMAE_FAIL: 2646 set_bit(QEDE_ERR_WARN, &err_flags); 2647 fallthrough; 2648 case QED_HW_ERR_MFW_RESP_FAIL: 2649 case QED_HW_ERR_HW_ATTN: 2650 case QED_HW_ERR_RAMROD_FAIL: 2651 case QED_HW_ERR_FW_ASSERT: 2652 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2653 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2654 break; 2655 2656 default: 2657 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2658 break; 2659 } 2660 2661 edev->err_flags |= err_flags; 2662 } 2663 2664 static void qede_schedule_hw_err_handler(void *dev, 2665 enum qed_hw_err_type err_type) 2666 { 2667 struct qede_dev *edev = dev; 2668 2669 /* Fan failure cannot be masked by handling of another HW error or by a 2670 * concurrent recovery process. 2671 */ 2672 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2673 edev->state == QEDE_STATE_RECOVERY) && 2674 err_type != QED_HW_ERR_FAN_FAIL) { 2675 DP_INFO(edev, 2676 "Avoid scheduling an error handling while another HW error is being handled\n"); 2677 return; 2678 } 2679 2680 if (err_type >= QED_HW_ERR_LAST) { 2681 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2682 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2683 return; 2684 } 2685 2686 edev->last_err_type = err_type; 2687 qede_set_hw_err_flags(edev, err_type); 2688 qede_atomic_hw_err_handler(edev); 2689 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2690 schedule_delayed_work(&edev->sp_task, 0); 2691 2692 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2693 } 2694 2695 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2696 { 2697 struct netdev_queue *netdev_txq; 2698 2699 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2700 if (netif_xmit_stopped(netdev_txq)) 2701 return true; 2702 2703 return false; 2704 } 2705 2706 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2707 { 2708 struct qede_dev *edev = dev; 2709 struct netdev_hw_addr *ha; 2710 int i; 2711 2712 if (edev->ndev->features & NETIF_F_IP_CSUM) 2713 data->feat_flags |= QED_TLV_IP_CSUM; 2714 if (edev->ndev->features & NETIF_F_TSO) 2715 data->feat_flags |= QED_TLV_LSO; 2716 2717 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2718 eth_zero_addr(data->mac[1]); 2719 eth_zero_addr(data->mac[2]); 2720 /* Copy the first two UC macs */ 2721 netif_addr_lock_bh(edev->ndev); 2722 i = 1; 2723 netdev_for_each_uc_addr(ha, edev->ndev) { 2724 ether_addr_copy(data->mac[i++], ha->addr); 2725 if (i == QED_TLV_MAC_COUNT) 2726 break; 2727 } 2728 2729 netif_addr_unlock_bh(edev->ndev); 2730 } 2731 2732 static void qede_get_eth_tlv_data(void *dev, void *data) 2733 { 2734 struct qed_mfw_tlv_eth *etlv = data; 2735 struct qede_dev *edev = dev; 2736 struct qede_fastpath *fp; 2737 int i; 2738 2739 etlv->lso_maxoff_size = 0XFFFF; 2740 etlv->lso_maxoff_size_set = true; 2741 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2742 etlv->lso_minseg_size_set = true; 2743 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2744 etlv->prom_mode_set = true; 2745 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2746 etlv->tx_descr_size_set = true; 2747 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2748 etlv->rx_descr_size_set = true; 2749 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2750 etlv->iov_offload_set = true; 2751 2752 /* Fill information regarding queues; Should be done under the qede 2753 * lock to guarantee those don't change beneath our feet. 2754 */ 2755 etlv->txqs_empty = true; 2756 etlv->rxqs_empty = true; 2757 etlv->num_txqs_full = 0; 2758 etlv->num_rxqs_full = 0; 2759 2760 __qede_lock(edev); 2761 for_each_queue(i) { 2762 fp = &edev->fp_array[i]; 2763 if (fp->type & QEDE_FASTPATH_TX) { 2764 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2765 2766 if (txq->sw_tx_cons != txq->sw_tx_prod) 2767 etlv->txqs_empty = false; 2768 if (qede_is_txq_full(edev, txq)) 2769 etlv->num_txqs_full++; 2770 } 2771 if (fp->type & QEDE_FASTPATH_RX) { 2772 if (qede_has_rx_work(fp->rxq)) 2773 etlv->rxqs_empty = false; 2774 2775 /* This one is a bit tricky; Firmware might stop 2776 * placing packets if ring is not yet full. 2777 * Give an approximation. 2778 */ 2779 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2780 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2781 RX_RING_SIZE - 100) 2782 etlv->num_rxqs_full++; 2783 } 2784 } 2785 __qede_unlock(edev); 2786 2787 etlv->txqs_empty_set = true; 2788 etlv->rxqs_empty_set = true; 2789 etlv->num_txqs_full_set = true; 2790 etlv->num_rxqs_full_set = true; 2791 } 2792 2793 /** 2794 * qede_io_error_detected - called when PCI error is detected 2795 * @pdev: Pointer to PCI device 2796 * @state: The current pci connection state 2797 * 2798 * This function is called after a PCI bus error affecting 2799 * this device has been detected. 2800 */ 2801 static pci_ers_result_t 2802 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2803 { 2804 struct net_device *dev = pci_get_drvdata(pdev); 2805 struct qede_dev *edev = netdev_priv(dev); 2806 2807 if (!edev) 2808 return PCI_ERS_RESULT_NONE; 2809 2810 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2811 2812 __qede_lock(edev); 2813 if (edev->state == QEDE_STATE_RECOVERY) { 2814 DP_NOTICE(edev, "Device already in the recovery state\n"); 2815 __qede_unlock(edev); 2816 return PCI_ERS_RESULT_NONE; 2817 } 2818 2819 /* PF handles the recovery of its VFs */ 2820 if (IS_VF(edev)) { 2821 DP_VERBOSE(edev, QED_MSG_IOV, 2822 "VF recovery is handled by its PF\n"); 2823 __qede_unlock(edev); 2824 return PCI_ERS_RESULT_RECOVERED; 2825 } 2826 2827 /* Close OS Tx */ 2828 netif_tx_disable(edev->ndev); 2829 netif_carrier_off(edev->ndev); 2830 2831 set_bit(QEDE_SP_AER, &edev->sp_flags); 2832 schedule_delayed_work(&edev->sp_task, 0); 2833 2834 __qede_unlock(edev); 2835 2836 return PCI_ERS_RESULT_CAN_RECOVER; 2837 } 2838