1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/version.h>
11 #include <linux/device.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/skbuff.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/string.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <asm/byteorder.h>
21 #include <asm/param.h>
22 #include <linux/io.h>
23 #include <linux/netdev_features.h>
24 #include <linux/udp.h>
25 #include <linux/tcp.h>
26 #include <net/udp_tunnel.h>
27 #include <linux/ip.h>
28 #include <net/ipv6.h>
29 #include <net/tcp.h>
30 #include <linux/if_ether.h>
31 #include <linux/if_vlan.h>
32 #include <linux/pkt_sched.h>
33 #include <linux/ethtool.h>
34 #include <linux/in.h>
35 #include <linux/random.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/bitops.h>
38 #include <linux/vmalloc.h>
39 #include <linux/aer.h>
40 #include "qede.h"
41 #include "qede_ptp.h"
42 
43 static char version[] =
44 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
45 
46 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
47 MODULE_LICENSE("GPL");
48 MODULE_VERSION(DRV_MODULE_VERSION);
49 
50 static uint debug;
51 module_param(debug, uint, 0);
52 MODULE_PARM_DESC(debug, " Default debug msglevel");
53 
54 static const struct qed_eth_ops *qed_ops;
55 
56 #define CHIP_NUM_57980S_40		0x1634
57 #define CHIP_NUM_57980S_10		0x1666
58 #define CHIP_NUM_57980S_MF		0x1636
59 #define CHIP_NUM_57980S_100		0x1644
60 #define CHIP_NUM_57980S_50		0x1654
61 #define CHIP_NUM_57980S_25		0x1656
62 #define CHIP_NUM_57980S_IOV		0x1664
63 #define CHIP_NUM_AH			0x8070
64 #define CHIP_NUM_AH_IOV			0x8090
65 
66 #ifndef PCI_DEVICE_ID_NX2_57980E
67 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
68 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
69 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
70 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
71 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
72 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
73 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
74 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
75 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
76 
77 #endif
78 
79 enum qede_pci_private {
80 	QEDE_PRIVATE_PF,
81 	QEDE_PRIVATE_VF
82 };
83 
84 static const struct pci_device_id qede_pci_tbl[] = {
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
91 #ifdef CONFIG_QED_SRIOV
92 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
93 #endif
94 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
95 #ifdef CONFIG_QED_SRIOV
96 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
97 #endif
98 	{ 0 }
99 };
100 
101 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
102 
103 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
104 static pci_ers_result_t
105 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
106 
107 #define TX_TIMEOUT		(5 * HZ)
108 
109 /* Utilize last protocol index for XDP */
110 #define XDP_PI	11
111 
112 static void qede_remove(struct pci_dev *pdev);
113 static void qede_shutdown(struct pci_dev *pdev);
114 static void qede_link_update(void *dev, struct qed_link_output *link);
115 static void qede_schedule_recovery_handler(void *dev);
116 static void qede_recovery_handler(struct qede_dev *edev);
117 static void qede_schedule_hw_err_handler(void *dev,
118 					 enum qed_hw_err_type err_type);
119 static void qede_get_eth_tlv_data(void *edev, void *data);
120 static void qede_get_generic_tlv_data(void *edev,
121 				      struct qed_generic_tlvs *data);
122 static void qede_generic_hw_err_handler(struct qede_dev *edev);
123 #ifdef CONFIG_QED_SRIOV
124 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
125 			    __be16 vlan_proto)
126 {
127 	struct qede_dev *edev = netdev_priv(ndev);
128 
129 	if (vlan > 4095) {
130 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
131 		return -EINVAL;
132 	}
133 
134 	if (vlan_proto != htons(ETH_P_8021Q))
135 		return -EPROTONOSUPPORT;
136 
137 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
138 		   vlan, vf);
139 
140 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
141 }
142 
143 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
144 {
145 	struct qede_dev *edev = netdev_priv(ndev);
146 
147 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
148 
149 	if (!is_valid_ether_addr(mac)) {
150 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
151 		return -EINVAL;
152 	}
153 
154 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
155 }
156 
157 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
158 {
159 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
160 	struct qed_dev_info *qed_info = &edev->dev_info.common;
161 	struct qed_update_vport_params *vport_params;
162 	int rc;
163 
164 	vport_params = vzalloc(sizeof(*vport_params));
165 	if (!vport_params)
166 		return -ENOMEM;
167 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
168 
169 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
170 
171 	/* Enable/Disable Tx switching for PF */
172 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
173 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
174 		vport_params->vport_id = 0;
175 		vport_params->update_tx_switching_flg = 1;
176 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
177 		edev->ops->vport_update(edev->cdev, vport_params);
178 	}
179 
180 	vfree(vport_params);
181 	return rc;
182 }
183 #endif
184 
185 static const struct pci_error_handlers qede_err_handler = {
186 	.error_detected = qede_io_error_detected,
187 };
188 
189 static struct pci_driver qede_pci_driver = {
190 	.name = "qede",
191 	.id_table = qede_pci_tbl,
192 	.probe = qede_probe,
193 	.remove = qede_remove,
194 	.shutdown = qede_shutdown,
195 #ifdef CONFIG_QED_SRIOV
196 	.sriov_configure = qede_sriov_configure,
197 #endif
198 	.err_handler = &qede_err_handler,
199 };
200 
201 static struct qed_eth_cb_ops qede_ll_ops = {
202 	{
203 #ifdef CONFIG_RFS_ACCEL
204 		.arfs_filter_op = qede_arfs_filter_op,
205 #endif
206 		.link_update = qede_link_update,
207 		.schedule_recovery_handler = qede_schedule_recovery_handler,
208 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
209 		.get_generic_tlv_data = qede_get_generic_tlv_data,
210 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
211 	},
212 	.force_mac = qede_force_mac,
213 	.ports_update = qede_udp_ports_update,
214 };
215 
216 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
217 			     void *ptr)
218 {
219 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
220 	struct ethtool_drvinfo drvinfo;
221 	struct qede_dev *edev;
222 
223 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
224 		goto done;
225 
226 	/* Check whether this is a qede device */
227 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
228 		goto done;
229 
230 	memset(&drvinfo, 0, sizeof(drvinfo));
231 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
232 	if (strcmp(drvinfo.driver, "qede"))
233 		goto done;
234 	edev = netdev_priv(ndev);
235 
236 	switch (event) {
237 	case NETDEV_CHANGENAME:
238 		/* Notify qed of the name change */
239 		if (!edev->ops || !edev->ops->common)
240 			goto done;
241 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
242 		break;
243 	case NETDEV_CHANGEADDR:
244 		edev = netdev_priv(ndev);
245 		qede_rdma_event_changeaddr(edev);
246 		break;
247 	}
248 
249 done:
250 	return NOTIFY_DONE;
251 }
252 
253 static struct notifier_block qede_netdev_notifier = {
254 	.notifier_call = qede_netdev_event,
255 };
256 
257 static
258 int __init qede_init(void)
259 {
260 	int ret;
261 
262 	pr_info("qede_init: %s\n", version);
263 
264 	qede_forced_speed_maps_init();
265 
266 	qed_ops = qed_get_eth_ops();
267 	if (!qed_ops) {
268 		pr_notice("Failed to get qed ethtool operations\n");
269 		return -EINVAL;
270 	}
271 
272 	/* Must register notifier before pci ops, since we might miss
273 	 * interface rename after pci probe and netdev registration.
274 	 */
275 	ret = register_netdevice_notifier(&qede_netdev_notifier);
276 	if (ret) {
277 		pr_notice("Failed to register netdevice_notifier\n");
278 		qed_put_eth_ops();
279 		return -EINVAL;
280 	}
281 
282 	ret = pci_register_driver(&qede_pci_driver);
283 	if (ret) {
284 		pr_notice("Failed to register driver\n");
285 		unregister_netdevice_notifier(&qede_netdev_notifier);
286 		qed_put_eth_ops();
287 		return -EINVAL;
288 	}
289 
290 	return 0;
291 }
292 
293 static void __exit qede_cleanup(void)
294 {
295 	if (debug & QED_LOG_INFO_MASK)
296 		pr_info("qede_cleanup called\n");
297 
298 	unregister_netdevice_notifier(&qede_netdev_notifier);
299 	pci_unregister_driver(&qede_pci_driver);
300 	qed_put_eth_ops();
301 }
302 
303 module_init(qede_init);
304 module_exit(qede_cleanup);
305 
306 static int qede_open(struct net_device *ndev);
307 static int qede_close(struct net_device *ndev);
308 
309 void qede_fill_by_demand_stats(struct qede_dev *edev)
310 {
311 	struct qede_stats_common *p_common = &edev->stats.common;
312 	struct qed_eth_stats stats;
313 
314 	edev->ops->get_vport_stats(edev->cdev, &stats);
315 
316 	p_common->no_buff_discards = stats.common.no_buff_discards;
317 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
318 	p_common->ttl0_discard = stats.common.ttl0_discard;
319 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
320 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
321 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
322 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
323 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
324 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
325 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
326 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
327 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
328 
329 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
330 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
331 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
332 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
333 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
334 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
335 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
336 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
337 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
338 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
339 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
340 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
341 
342 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
343 	p_common->rx_65_to_127_byte_packets =
344 	    stats.common.rx_65_to_127_byte_packets;
345 	p_common->rx_128_to_255_byte_packets =
346 	    stats.common.rx_128_to_255_byte_packets;
347 	p_common->rx_256_to_511_byte_packets =
348 	    stats.common.rx_256_to_511_byte_packets;
349 	p_common->rx_512_to_1023_byte_packets =
350 	    stats.common.rx_512_to_1023_byte_packets;
351 	p_common->rx_1024_to_1518_byte_packets =
352 	    stats.common.rx_1024_to_1518_byte_packets;
353 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
354 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
355 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
356 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
357 	p_common->rx_align_errors = stats.common.rx_align_errors;
358 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
359 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
360 	p_common->rx_jabbers = stats.common.rx_jabbers;
361 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
362 	p_common->rx_fragments = stats.common.rx_fragments;
363 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
364 	p_common->tx_65_to_127_byte_packets =
365 	    stats.common.tx_65_to_127_byte_packets;
366 	p_common->tx_128_to_255_byte_packets =
367 	    stats.common.tx_128_to_255_byte_packets;
368 	p_common->tx_256_to_511_byte_packets =
369 	    stats.common.tx_256_to_511_byte_packets;
370 	p_common->tx_512_to_1023_byte_packets =
371 	    stats.common.tx_512_to_1023_byte_packets;
372 	p_common->tx_1024_to_1518_byte_packets =
373 	    stats.common.tx_1024_to_1518_byte_packets;
374 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
375 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
376 	p_common->brb_truncates = stats.common.brb_truncates;
377 	p_common->brb_discards = stats.common.brb_discards;
378 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
379 	p_common->link_change_count = stats.common.link_change_count;
380 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
381 
382 	if (QEDE_IS_BB(edev)) {
383 		struct qede_stats_bb *p_bb = &edev->stats.bb;
384 
385 		p_bb->rx_1519_to_1522_byte_packets =
386 		    stats.bb.rx_1519_to_1522_byte_packets;
387 		p_bb->rx_1519_to_2047_byte_packets =
388 		    stats.bb.rx_1519_to_2047_byte_packets;
389 		p_bb->rx_2048_to_4095_byte_packets =
390 		    stats.bb.rx_2048_to_4095_byte_packets;
391 		p_bb->rx_4096_to_9216_byte_packets =
392 		    stats.bb.rx_4096_to_9216_byte_packets;
393 		p_bb->rx_9217_to_16383_byte_packets =
394 		    stats.bb.rx_9217_to_16383_byte_packets;
395 		p_bb->tx_1519_to_2047_byte_packets =
396 		    stats.bb.tx_1519_to_2047_byte_packets;
397 		p_bb->tx_2048_to_4095_byte_packets =
398 		    stats.bb.tx_2048_to_4095_byte_packets;
399 		p_bb->tx_4096_to_9216_byte_packets =
400 		    stats.bb.tx_4096_to_9216_byte_packets;
401 		p_bb->tx_9217_to_16383_byte_packets =
402 		    stats.bb.tx_9217_to_16383_byte_packets;
403 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
404 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
405 	} else {
406 		struct qede_stats_ah *p_ah = &edev->stats.ah;
407 
408 		p_ah->rx_1519_to_max_byte_packets =
409 		    stats.ah.rx_1519_to_max_byte_packets;
410 		p_ah->tx_1519_to_max_byte_packets =
411 		    stats.ah.tx_1519_to_max_byte_packets;
412 	}
413 }
414 
415 static void qede_get_stats64(struct net_device *dev,
416 			     struct rtnl_link_stats64 *stats)
417 {
418 	struct qede_dev *edev = netdev_priv(dev);
419 	struct qede_stats_common *p_common;
420 
421 	qede_fill_by_demand_stats(edev);
422 	p_common = &edev->stats.common;
423 
424 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
425 			    p_common->rx_bcast_pkts;
426 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
427 			    p_common->tx_bcast_pkts;
428 
429 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
430 			  p_common->rx_bcast_bytes;
431 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
432 			  p_common->tx_bcast_bytes;
433 
434 	stats->tx_errors = p_common->tx_err_drop_pkts;
435 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
436 
437 	stats->rx_fifo_errors = p_common->no_buff_discards;
438 
439 	if (QEDE_IS_BB(edev))
440 		stats->collisions = edev->stats.bb.tx_total_collisions;
441 	stats->rx_crc_errors = p_common->rx_crc_errors;
442 	stats->rx_frame_errors = p_common->rx_align_errors;
443 }
444 
445 #ifdef CONFIG_QED_SRIOV
446 static int qede_get_vf_config(struct net_device *dev, int vfidx,
447 			      struct ifla_vf_info *ivi)
448 {
449 	struct qede_dev *edev = netdev_priv(dev);
450 
451 	if (!edev->ops)
452 		return -EINVAL;
453 
454 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
455 }
456 
457 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
458 			    int min_tx_rate, int max_tx_rate)
459 {
460 	struct qede_dev *edev = netdev_priv(dev);
461 
462 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
463 					max_tx_rate);
464 }
465 
466 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
467 {
468 	struct qede_dev *edev = netdev_priv(dev);
469 
470 	if (!edev->ops)
471 		return -EINVAL;
472 
473 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
474 }
475 
476 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
477 				  int link_state)
478 {
479 	struct qede_dev *edev = netdev_priv(dev);
480 
481 	if (!edev->ops)
482 		return -EINVAL;
483 
484 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
485 }
486 
487 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
488 {
489 	struct qede_dev *edev = netdev_priv(dev);
490 
491 	if (!edev->ops)
492 		return -EINVAL;
493 
494 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
495 }
496 #endif
497 
498 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
499 {
500 	struct qede_dev *edev = netdev_priv(dev);
501 
502 	if (!netif_running(dev))
503 		return -EAGAIN;
504 
505 	switch (cmd) {
506 	case SIOCSHWTSTAMP:
507 		return qede_ptp_hw_ts(edev, ifr);
508 	default:
509 		DP_VERBOSE(edev, QED_MSG_DEBUG,
510 			   "default IOCTL cmd 0x%x\n", cmd);
511 		return -EOPNOTSUPP;
512 	}
513 
514 	return 0;
515 }
516 
517 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
518 {
519 	DP_NOTICE(edev,
520 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
521 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
522 		  qed_chain_get_cons_idx(&txq->tx_pbl),
523 		  qed_chain_get_prod_idx(&txq->tx_pbl),
524 		  jiffies);
525 }
526 
527 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
528 {
529 	struct qede_dev *edev = netdev_priv(dev);
530 	struct qede_tx_queue *txq;
531 	int cos;
532 
533 	netif_carrier_off(dev);
534 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
535 
536 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
537 		return;
538 
539 	for_each_cos_in_txq(edev, cos) {
540 		txq = &edev->fp_array[txqueue].txq[cos];
541 
542 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
543 		    qed_chain_get_prod_idx(&txq->tx_pbl))
544 			qede_tx_log_print(edev, txq);
545 	}
546 
547 	if (IS_VF(edev))
548 		return;
549 
550 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
551 	    edev->state == QEDE_STATE_RECOVERY) {
552 		DP_INFO(edev,
553 			"Avoid handling a Tx timeout while another HW error is being handled\n");
554 		return;
555 	}
556 
557 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
558 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
559 	schedule_delayed_work(&edev->sp_task, 0);
560 }
561 
562 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
563 {
564 	struct qede_dev *edev = netdev_priv(ndev);
565 	int cos, count, offset;
566 
567 	if (num_tc > edev->dev_info.num_tc)
568 		return -EINVAL;
569 
570 	netdev_reset_tc(ndev);
571 	netdev_set_num_tc(ndev, num_tc);
572 
573 	for_each_cos_in_txq(edev, cos) {
574 		count = QEDE_TSS_COUNT(edev);
575 		offset = cos * QEDE_TSS_COUNT(edev);
576 		netdev_set_tc_queue(ndev, cos, count, offset);
577 	}
578 
579 	return 0;
580 }
581 
582 static int
583 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
584 		__be16 proto)
585 {
586 	switch (f->command) {
587 	case FLOW_CLS_REPLACE:
588 		return qede_add_tc_flower_fltr(edev, proto, f);
589 	case FLOW_CLS_DESTROY:
590 		return qede_delete_flow_filter(edev, f->cookie);
591 	default:
592 		return -EOPNOTSUPP;
593 	}
594 }
595 
596 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
597 				  void *cb_priv)
598 {
599 	struct flow_cls_offload *f;
600 	struct qede_dev *edev = cb_priv;
601 
602 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
603 		return -EOPNOTSUPP;
604 
605 	switch (type) {
606 	case TC_SETUP_CLSFLOWER:
607 		f = type_data;
608 		return qede_set_flower(edev, f, f->common.protocol);
609 	default:
610 		return -EOPNOTSUPP;
611 	}
612 }
613 
614 static LIST_HEAD(qede_block_cb_list);
615 
616 static int
617 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
618 		      void *type_data)
619 {
620 	struct qede_dev *edev = netdev_priv(dev);
621 	struct tc_mqprio_qopt *mqprio;
622 
623 	switch (type) {
624 	case TC_SETUP_BLOCK:
625 		return flow_block_cb_setup_simple(type_data,
626 						  &qede_block_cb_list,
627 						  qede_setup_tc_block_cb,
628 						  edev, edev, true);
629 	case TC_SETUP_QDISC_MQPRIO:
630 		mqprio = type_data;
631 
632 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
633 		return qede_setup_tc(dev, mqprio->num_tc);
634 	default:
635 		return -EOPNOTSUPP;
636 	}
637 }
638 
639 static const struct net_device_ops qede_netdev_ops = {
640 	.ndo_open		= qede_open,
641 	.ndo_stop		= qede_close,
642 	.ndo_start_xmit		= qede_start_xmit,
643 	.ndo_select_queue	= qede_select_queue,
644 	.ndo_set_rx_mode	= qede_set_rx_mode,
645 	.ndo_set_mac_address	= qede_set_mac_addr,
646 	.ndo_validate_addr	= eth_validate_addr,
647 	.ndo_change_mtu		= qede_change_mtu,
648 	.ndo_do_ioctl		= qede_ioctl,
649 	.ndo_tx_timeout		= qede_tx_timeout,
650 #ifdef CONFIG_QED_SRIOV
651 	.ndo_set_vf_mac		= qede_set_vf_mac,
652 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
653 	.ndo_set_vf_trust	= qede_set_vf_trust,
654 #endif
655 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
656 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
657 	.ndo_fix_features	= qede_fix_features,
658 	.ndo_set_features	= qede_set_features,
659 	.ndo_get_stats64	= qede_get_stats64,
660 #ifdef CONFIG_QED_SRIOV
661 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
662 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
663 	.ndo_get_vf_config	= qede_get_vf_config,
664 	.ndo_set_vf_rate	= qede_set_vf_rate,
665 #endif
666 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
667 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
668 	.ndo_features_check	= qede_features_check,
669 	.ndo_bpf		= qede_xdp,
670 #ifdef CONFIG_RFS_ACCEL
671 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
672 #endif
673 	.ndo_xdp_xmit		= qede_xdp_transmit,
674 	.ndo_setup_tc		= qede_setup_tc_offload,
675 };
676 
677 static const struct net_device_ops qede_netdev_vf_ops = {
678 	.ndo_open		= qede_open,
679 	.ndo_stop		= qede_close,
680 	.ndo_start_xmit		= qede_start_xmit,
681 	.ndo_select_queue	= qede_select_queue,
682 	.ndo_set_rx_mode	= qede_set_rx_mode,
683 	.ndo_set_mac_address	= qede_set_mac_addr,
684 	.ndo_validate_addr	= eth_validate_addr,
685 	.ndo_change_mtu		= qede_change_mtu,
686 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
687 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
688 	.ndo_fix_features	= qede_fix_features,
689 	.ndo_set_features	= qede_set_features,
690 	.ndo_get_stats64	= qede_get_stats64,
691 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
692 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
693 	.ndo_features_check	= qede_features_check,
694 };
695 
696 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
697 	.ndo_open		= qede_open,
698 	.ndo_stop		= qede_close,
699 	.ndo_start_xmit		= qede_start_xmit,
700 	.ndo_select_queue	= qede_select_queue,
701 	.ndo_set_rx_mode	= qede_set_rx_mode,
702 	.ndo_set_mac_address	= qede_set_mac_addr,
703 	.ndo_validate_addr	= eth_validate_addr,
704 	.ndo_change_mtu		= qede_change_mtu,
705 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
706 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
707 	.ndo_fix_features	= qede_fix_features,
708 	.ndo_set_features	= qede_set_features,
709 	.ndo_get_stats64	= qede_get_stats64,
710 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
711 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
712 	.ndo_features_check	= qede_features_check,
713 	.ndo_bpf		= qede_xdp,
714 	.ndo_xdp_xmit		= qede_xdp_transmit,
715 };
716 
717 /* -------------------------------------------------------------------------
718  * START OF PROBE / REMOVE
719  * -------------------------------------------------------------------------
720  */
721 
722 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
723 					    struct pci_dev *pdev,
724 					    struct qed_dev_eth_info *info,
725 					    u32 dp_module, u8 dp_level)
726 {
727 	struct net_device *ndev;
728 	struct qede_dev *edev;
729 
730 	ndev = alloc_etherdev_mqs(sizeof(*edev),
731 				  info->num_queues * info->num_tc,
732 				  info->num_queues);
733 	if (!ndev) {
734 		pr_err("etherdev allocation failed\n");
735 		return NULL;
736 	}
737 
738 	edev = netdev_priv(ndev);
739 	edev->ndev = ndev;
740 	edev->cdev = cdev;
741 	edev->pdev = pdev;
742 	edev->dp_module = dp_module;
743 	edev->dp_level = dp_level;
744 	edev->ops = qed_ops;
745 
746 	if (is_kdump_kernel()) {
747 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
748 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
749 	} else {
750 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
751 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
752 	}
753 
754 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
755 		info->num_queues, info->num_queues);
756 
757 	SET_NETDEV_DEV(ndev, &pdev->dev);
758 
759 	memset(&edev->stats, 0, sizeof(edev->stats));
760 	memcpy(&edev->dev_info, info, sizeof(*info));
761 
762 	/* As ethtool doesn't have the ability to show WoL behavior as
763 	 * 'default', if device supports it declare it's enabled.
764 	 */
765 	if (edev->dev_info.common.wol_support)
766 		edev->wol_enabled = true;
767 
768 	INIT_LIST_HEAD(&edev->vlan_list);
769 
770 	return edev;
771 }
772 
773 static void qede_init_ndev(struct qede_dev *edev)
774 {
775 	struct net_device *ndev = edev->ndev;
776 	struct pci_dev *pdev = edev->pdev;
777 	bool udp_tunnel_enable = false;
778 	netdev_features_t hw_features;
779 
780 	pci_set_drvdata(pdev, ndev);
781 
782 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
783 	ndev->base_addr = ndev->mem_start;
784 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
785 	ndev->irq = edev->dev_info.common.pci_irq;
786 
787 	ndev->watchdog_timeo = TX_TIMEOUT;
788 
789 	if (IS_VF(edev)) {
790 		if (edev->dev_info.xdp_supported)
791 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
792 		else
793 			ndev->netdev_ops = &qede_netdev_vf_ops;
794 	} else {
795 		ndev->netdev_ops = &qede_netdev_ops;
796 	}
797 
798 	qede_set_ethtool_ops(ndev);
799 
800 	ndev->priv_flags |= IFF_UNICAST_FLT;
801 
802 	/* user-changeble features */
803 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
804 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
805 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
806 
807 	if (edev->dev_info.common.b_arfs_capable)
808 		hw_features |= NETIF_F_NTUPLE;
809 
810 	if (edev->dev_info.common.vxlan_enable ||
811 	    edev->dev_info.common.geneve_enable)
812 		udp_tunnel_enable = true;
813 
814 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
815 		hw_features |= NETIF_F_TSO_ECN;
816 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
817 					NETIF_F_SG | NETIF_F_TSO |
818 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
819 					NETIF_F_RXCSUM;
820 	}
821 
822 	if (udp_tunnel_enable) {
823 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
824 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
825 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
826 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
827 
828 		qede_set_udp_tunnels(edev);
829 	}
830 
831 	if (edev->dev_info.common.gre_enable) {
832 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
833 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
834 					  NETIF_F_GSO_GRE_CSUM);
835 	}
836 
837 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
838 			      NETIF_F_HIGHDMA;
839 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
840 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
841 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
842 
843 	ndev->hw_features = hw_features;
844 
845 	/* MTU range: 46 - 9600 */
846 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
847 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
848 
849 	/* Set network device HW mac */
850 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
851 
852 	ndev->mtu = edev->dev_info.common.mtu;
853 }
854 
855 /* This function converts from 32b param to two params of level and module
856  * Input 32b decoding:
857  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
858  * 'happy' flow, e.g. memory allocation failed.
859  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
860  * and provide important parameters.
861  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
862  * module. VERBOSE prints are for tracking the specific flow in low level.
863  *
864  * Notice that the level should be that of the lowest required logs.
865  */
866 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
867 {
868 	*p_dp_level = QED_LEVEL_NOTICE;
869 	*p_dp_module = 0;
870 
871 	if (debug & QED_LOG_VERBOSE_MASK) {
872 		*p_dp_level = QED_LEVEL_VERBOSE;
873 		*p_dp_module = (debug & 0x3FFFFFFF);
874 	} else if (debug & QED_LOG_INFO_MASK) {
875 		*p_dp_level = QED_LEVEL_INFO;
876 	} else if (debug & QED_LOG_NOTICE_MASK) {
877 		*p_dp_level = QED_LEVEL_NOTICE;
878 	}
879 }
880 
881 static void qede_free_fp_array(struct qede_dev *edev)
882 {
883 	if (edev->fp_array) {
884 		struct qede_fastpath *fp;
885 		int i;
886 
887 		for_each_queue(i) {
888 			fp = &edev->fp_array[i];
889 
890 			kfree(fp->sb_info);
891 			/* Handle mem alloc failure case where qede_init_fp
892 			 * didn't register xdp_rxq_info yet.
893 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
894 			 */
895 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
896 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
897 			kfree(fp->rxq);
898 			kfree(fp->xdp_tx);
899 			kfree(fp->txq);
900 		}
901 		kfree(edev->fp_array);
902 	}
903 
904 	edev->num_queues = 0;
905 	edev->fp_num_tx = 0;
906 	edev->fp_num_rx = 0;
907 }
908 
909 static int qede_alloc_fp_array(struct qede_dev *edev)
910 {
911 	u8 fp_combined, fp_rx = edev->fp_num_rx;
912 	struct qede_fastpath *fp;
913 	int i;
914 
915 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
916 				 sizeof(*edev->fp_array), GFP_KERNEL);
917 	if (!edev->fp_array) {
918 		DP_NOTICE(edev, "fp array allocation failed\n");
919 		goto err;
920 	}
921 
922 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
923 
924 	/* Allocate the FP elements for Rx queues followed by combined and then
925 	 * the Tx. This ordering should be maintained so that the respective
926 	 * queues (Rx or Tx) will be together in the fastpath array and the
927 	 * associated ids will be sequential.
928 	 */
929 	for_each_queue(i) {
930 		fp = &edev->fp_array[i];
931 
932 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
933 		if (!fp->sb_info) {
934 			DP_NOTICE(edev, "sb info struct allocation failed\n");
935 			goto err;
936 		}
937 
938 		if (fp_rx) {
939 			fp->type = QEDE_FASTPATH_RX;
940 			fp_rx--;
941 		} else if (fp_combined) {
942 			fp->type = QEDE_FASTPATH_COMBINED;
943 			fp_combined--;
944 		} else {
945 			fp->type = QEDE_FASTPATH_TX;
946 		}
947 
948 		if (fp->type & QEDE_FASTPATH_TX) {
949 			fp->txq = kcalloc(edev->dev_info.num_tc,
950 					  sizeof(*fp->txq), GFP_KERNEL);
951 			if (!fp->txq)
952 				goto err;
953 		}
954 
955 		if (fp->type & QEDE_FASTPATH_RX) {
956 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
957 			if (!fp->rxq)
958 				goto err;
959 
960 			if (edev->xdp_prog) {
961 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
962 						     GFP_KERNEL);
963 				if (!fp->xdp_tx)
964 					goto err;
965 				fp->type |= QEDE_FASTPATH_XDP;
966 			}
967 		}
968 	}
969 
970 	return 0;
971 err:
972 	qede_free_fp_array(edev);
973 	return -ENOMEM;
974 }
975 
976 /* The qede lock is used to protect driver state change and driver flows that
977  * are not reentrant.
978  */
979 void __qede_lock(struct qede_dev *edev)
980 {
981 	mutex_lock(&edev->qede_lock);
982 }
983 
984 void __qede_unlock(struct qede_dev *edev)
985 {
986 	mutex_unlock(&edev->qede_lock);
987 }
988 
989 /* This version of the lock should be used when acquiring the RTNL lock is also
990  * needed in addition to the internal qede lock.
991  */
992 static void qede_lock(struct qede_dev *edev)
993 {
994 	rtnl_lock();
995 	__qede_lock(edev);
996 }
997 
998 static void qede_unlock(struct qede_dev *edev)
999 {
1000 	__qede_unlock(edev);
1001 	rtnl_unlock();
1002 }
1003 
1004 static void qede_sp_task(struct work_struct *work)
1005 {
1006 	struct qede_dev *edev = container_of(work, struct qede_dev,
1007 					     sp_task.work);
1008 
1009 	/* The locking scheme depends on the specific flag:
1010 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1011 	 * ensure that ongoing flows are ended and new ones are not started.
1012 	 * In other cases - only the internal qede lock should be acquired.
1013 	 */
1014 
1015 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1016 #ifdef CONFIG_QED_SRIOV
1017 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1018 		 * The recovery of the active VFs is currently not supported.
1019 		 */
1020 		if (pci_num_vf(edev->pdev))
1021 			qede_sriov_configure(edev->pdev, 0);
1022 #endif
1023 		qede_lock(edev);
1024 		qede_recovery_handler(edev);
1025 		qede_unlock(edev);
1026 	}
1027 
1028 	__qede_lock(edev);
1029 
1030 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1031 		if (edev->state == QEDE_STATE_OPEN)
1032 			qede_config_rx_mode(edev->ndev);
1033 
1034 #ifdef CONFIG_RFS_ACCEL
1035 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1036 		if (edev->state == QEDE_STATE_OPEN)
1037 			qede_process_arfs_filters(edev, false);
1038 	}
1039 #endif
1040 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1041 		qede_generic_hw_err_handler(edev);
1042 	__qede_unlock(edev);
1043 
1044 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1045 #ifdef CONFIG_QED_SRIOV
1046 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1047 		 * The recovery of the active VFs is currently not supported.
1048 		 */
1049 		if (pci_num_vf(edev->pdev))
1050 			qede_sriov_configure(edev->pdev, 0);
1051 #endif
1052 		edev->ops->common->recovery_process(edev->cdev);
1053 	}
1054 }
1055 
1056 static void qede_update_pf_params(struct qed_dev *cdev)
1057 {
1058 	struct qed_pf_params pf_params;
1059 	u16 num_cons;
1060 
1061 	/* 64 rx + 64 tx + 64 XDP */
1062 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1063 
1064 	/* 1 rx + 1 xdp + max tx cos */
1065 	num_cons = QED_MIN_L2_CONS;
1066 
1067 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1068 
1069 	/* Same for VFs - make sure they'll have sufficient connections
1070 	 * to support XDP Tx queues.
1071 	 */
1072 	pf_params.eth_pf_params.num_vf_cons = 48;
1073 
1074 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1075 	qed_ops->common->update_pf_params(cdev, &pf_params);
1076 }
1077 
1078 #define QEDE_FW_VER_STR_SIZE	80
1079 
1080 static void qede_log_probe(struct qede_dev *edev)
1081 {
1082 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1083 	u8 buf[QEDE_FW_VER_STR_SIZE];
1084 	size_t left_size;
1085 
1086 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1087 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1088 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1089 		 p_dev_info->fw_eng,
1090 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1091 		 QED_MFW_VERSION_3_OFFSET,
1092 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1093 		 QED_MFW_VERSION_2_OFFSET,
1094 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1095 		 QED_MFW_VERSION_1_OFFSET,
1096 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1097 		 QED_MFW_VERSION_0_OFFSET);
1098 
1099 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1100 	if (p_dev_info->mbi_version && left_size)
1101 		snprintf(buf + strlen(buf), left_size,
1102 			 " [MBI %d.%d.%d]",
1103 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1104 			 QED_MBI_VERSION_2_OFFSET,
1105 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1106 			 QED_MBI_VERSION_1_OFFSET,
1107 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1108 			 QED_MBI_VERSION_0_OFFSET);
1109 
1110 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1111 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1112 		buf, edev->ndev->name);
1113 }
1114 
1115 enum qede_probe_mode {
1116 	QEDE_PROBE_NORMAL,
1117 	QEDE_PROBE_RECOVERY,
1118 };
1119 
1120 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1121 			bool is_vf, enum qede_probe_mode mode)
1122 {
1123 	struct qed_probe_params probe_params;
1124 	struct qed_slowpath_params sp_params;
1125 	struct qed_dev_eth_info dev_info;
1126 	struct qede_dev *edev;
1127 	struct qed_dev *cdev;
1128 	int rc;
1129 
1130 	if (unlikely(dp_level & QED_LEVEL_INFO))
1131 		pr_notice("Starting qede probe\n");
1132 
1133 	memset(&probe_params, 0, sizeof(probe_params));
1134 	probe_params.protocol = QED_PROTOCOL_ETH;
1135 	probe_params.dp_module = dp_module;
1136 	probe_params.dp_level = dp_level;
1137 	probe_params.is_vf = is_vf;
1138 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1139 	cdev = qed_ops->common->probe(pdev, &probe_params);
1140 	if (!cdev) {
1141 		rc = -ENODEV;
1142 		goto err0;
1143 	}
1144 
1145 	qede_update_pf_params(cdev);
1146 
1147 	/* Start the Slowpath-process */
1148 	memset(&sp_params, 0, sizeof(sp_params));
1149 	sp_params.int_mode = QED_INT_MODE_MSIX;
1150 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1151 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1152 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1153 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1154 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1155 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1156 	if (rc) {
1157 		pr_notice("Cannot start slowpath\n");
1158 		goto err1;
1159 	}
1160 
1161 	/* Learn information crucial for qede to progress */
1162 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1163 	if (rc)
1164 		goto err2;
1165 
1166 	if (mode != QEDE_PROBE_RECOVERY) {
1167 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1168 					   dp_level);
1169 		if (!edev) {
1170 			rc = -ENOMEM;
1171 			goto err2;
1172 		}
1173 
1174 		edev->devlink = qed_ops->common->devlink_register(cdev);
1175 		if (IS_ERR(edev->devlink)) {
1176 			DP_NOTICE(edev, "Cannot register devlink\n");
1177 			edev->devlink = NULL;
1178 			/* Go on, we can live without devlink */
1179 		}
1180 	} else {
1181 		struct net_device *ndev = pci_get_drvdata(pdev);
1182 
1183 		edev = netdev_priv(ndev);
1184 
1185 		if (edev->devlink) {
1186 			struct qed_devlink *qdl = devlink_priv(edev->devlink);
1187 
1188 			qdl->cdev = cdev;
1189 		}
1190 		edev->cdev = cdev;
1191 		memset(&edev->stats, 0, sizeof(edev->stats));
1192 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1193 	}
1194 
1195 	if (is_vf)
1196 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1197 
1198 	qede_init_ndev(edev);
1199 
1200 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1201 	if (rc)
1202 		goto err3;
1203 
1204 	if (mode != QEDE_PROBE_RECOVERY) {
1205 		/* Prepare the lock prior to the registration of the netdev,
1206 		 * as once it's registered we might reach flows requiring it
1207 		 * [it's even possible to reach a flow needing it directly
1208 		 * from there, although it's unlikely].
1209 		 */
1210 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1211 		mutex_init(&edev->qede_lock);
1212 
1213 		rc = register_netdev(edev->ndev);
1214 		if (rc) {
1215 			DP_NOTICE(edev, "Cannot register net-device\n");
1216 			goto err4;
1217 		}
1218 	}
1219 
1220 	edev->ops->common->set_name(cdev, edev->ndev->name);
1221 
1222 	/* PTP not supported on VFs */
1223 	if (!is_vf)
1224 		qede_ptp_enable(edev);
1225 
1226 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1227 
1228 #ifdef CONFIG_DCB
1229 	if (!IS_VF(edev))
1230 		qede_set_dcbnl_ops(edev->ndev);
1231 #endif
1232 
1233 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1234 
1235 	qede_log_probe(edev);
1236 	return 0;
1237 
1238 err4:
1239 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1240 err3:
1241 	if (mode != QEDE_PROBE_RECOVERY)
1242 		free_netdev(edev->ndev);
1243 	else
1244 		edev->cdev = NULL;
1245 err2:
1246 	qed_ops->common->slowpath_stop(cdev);
1247 err1:
1248 	qed_ops->common->remove(cdev);
1249 err0:
1250 	return rc;
1251 }
1252 
1253 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1254 {
1255 	bool is_vf = false;
1256 	u32 dp_module = 0;
1257 	u8 dp_level = 0;
1258 
1259 	switch ((enum qede_pci_private)id->driver_data) {
1260 	case QEDE_PRIVATE_VF:
1261 		if (debug & QED_LOG_VERBOSE_MASK)
1262 			dev_err(&pdev->dev, "Probing a VF\n");
1263 		is_vf = true;
1264 		break;
1265 	default:
1266 		if (debug & QED_LOG_VERBOSE_MASK)
1267 			dev_err(&pdev->dev, "Probing a PF\n");
1268 	}
1269 
1270 	qede_config_debug(debug, &dp_module, &dp_level);
1271 
1272 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1273 			    QEDE_PROBE_NORMAL);
1274 }
1275 
1276 enum qede_remove_mode {
1277 	QEDE_REMOVE_NORMAL,
1278 	QEDE_REMOVE_RECOVERY,
1279 };
1280 
1281 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1282 {
1283 	struct net_device *ndev = pci_get_drvdata(pdev);
1284 	struct qede_dev *edev;
1285 	struct qed_dev *cdev;
1286 
1287 	if (!ndev) {
1288 		dev_info(&pdev->dev, "Device has already been removed\n");
1289 		return;
1290 	}
1291 
1292 	edev = netdev_priv(ndev);
1293 	cdev = edev->cdev;
1294 
1295 	DP_INFO(edev, "Starting qede_remove\n");
1296 
1297 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1298 
1299 	if (mode != QEDE_REMOVE_RECOVERY) {
1300 		unregister_netdev(ndev);
1301 
1302 		cancel_delayed_work_sync(&edev->sp_task);
1303 
1304 		edev->ops->common->set_power_state(cdev, PCI_D0);
1305 
1306 		pci_set_drvdata(pdev, NULL);
1307 	}
1308 
1309 	qede_ptp_disable(edev);
1310 
1311 	/* Use global ops since we've freed edev */
1312 	qed_ops->common->slowpath_stop(cdev);
1313 	if (system_state == SYSTEM_POWER_OFF)
1314 		return;
1315 
1316 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1317 		qed_ops->common->devlink_unregister(edev->devlink);
1318 		edev->devlink = NULL;
1319 	}
1320 	qed_ops->common->remove(cdev);
1321 	edev->cdev = NULL;
1322 
1323 	/* Since this can happen out-of-sync with other flows,
1324 	 * don't release the netdevice until after slowpath stop
1325 	 * has been called to guarantee various other contexts
1326 	 * [e.g., QED register callbacks] won't break anything when
1327 	 * accessing the netdevice.
1328 	 */
1329 	if (mode != QEDE_REMOVE_RECOVERY)
1330 		free_netdev(ndev);
1331 
1332 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1333 }
1334 
1335 static void qede_remove(struct pci_dev *pdev)
1336 {
1337 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1338 }
1339 
1340 static void qede_shutdown(struct pci_dev *pdev)
1341 {
1342 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1343 }
1344 
1345 /* -------------------------------------------------------------------------
1346  * START OF LOAD / UNLOAD
1347  * -------------------------------------------------------------------------
1348  */
1349 
1350 static int qede_set_num_queues(struct qede_dev *edev)
1351 {
1352 	int rc;
1353 	u16 rss_num;
1354 
1355 	/* Setup queues according to possible resources*/
1356 	if (edev->req_queues)
1357 		rss_num = edev->req_queues;
1358 	else
1359 		rss_num = netif_get_num_default_rss_queues() *
1360 			  edev->dev_info.common.num_hwfns;
1361 
1362 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1363 
1364 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1365 	if (rc > 0) {
1366 		/* Managed to request interrupts for our queues */
1367 		edev->num_queues = rc;
1368 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1369 			QEDE_QUEUE_CNT(edev), rss_num);
1370 		rc = 0;
1371 	}
1372 
1373 	edev->fp_num_tx = edev->req_num_tx;
1374 	edev->fp_num_rx = edev->req_num_rx;
1375 
1376 	return rc;
1377 }
1378 
1379 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1380 			     u16 sb_id)
1381 {
1382 	if (sb_info->sb_virt) {
1383 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1384 					      QED_SB_TYPE_L2_QUEUE);
1385 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1386 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1387 		memset(sb_info, 0, sizeof(*sb_info));
1388 	}
1389 }
1390 
1391 /* This function allocates fast-path status block memory */
1392 static int qede_alloc_mem_sb(struct qede_dev *edev,
1393 			     struct qed_sb_info *sb_info, u16 sb_id)
1394 {
1395 	struct status_block_e4 *sb_virt;
1396 	dma_addr_t sb_phys;
1397 	int rc;
1398 
1399 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1400 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1401 	if (!sb_virt) {
1402 		DP_ERR(edev, "Status block allocation failed\n");
1403 		return -ENOMEM;
1404 	}
1405 
1406 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1407 					sb_virt, sb_phys, sb_id,
1408 					QED_SB_TYPE_L2_QUEUE);
1409 	if (rc) {
1410 		DP_ERR(edev, "Status block initialization failed\n");
1411 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1412 				  sb_virt, sb_phys);
1413 		return rc;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static void qede_free_rx_buffers(struct qede_dev *edev,
1420 				 struct qede_rx_queue *rxq)
1421 {
1422 	u16 i;
1423 
1424 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1425 		struct sw_rx_data *rx_buf;
1426 		struct page *data;
1427 
1428 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1429 		data = rx_buf->data;
1430 
1431 		dma_unmap_page(&edev->pdev->dev,
1432 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1433 
1434 		rx_buf->data = NULL;
1435 		__free_page(data);
1436 	}
1437 }
1438 
1439 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1440 {
1441 	/* Free rx buffers */
1442 	qede_free_rx_buffers(edev, rxq);
1443 
1444 	/* Free the parallel SW ring */
1445 	kfree(rxq->sw_rx_ring);
1446 
1447 	/* Free the real RQ ring used by FW */
1448 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1449 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1450 }
1451 
1452 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1453 {
1454 	int i;
1455 
1456 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1457 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1458 
1459 		tpa_info->state = QEDE_AGG_STATE_NONE;
1460 	}
1461 }
1462 
1463 /* This function allocates all memory needed per Rx queue */
1464 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1465 {
1466 	struct qed_chain_init_params params = {
1467 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1468 		.num_elems	= RX_RING_SIZE,
1469 	};
1470 	struct qed_dev *cdev = edev->cdev;
1471 	int i, rc, size;
1472 
1473 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1474 
1475 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1476 
1477 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1478 	size = rxq->rx_headroom +
1479 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1480 
1481 	/* Make sure that the headroom and  payload fit in a single page */
1482 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1483 		rxq->rx_buf_size = PAGE_SIZE - size;
1484 
1485 	/* Segment size to split a page in multiple equal parts,
1486 	 * unless XDP is used in which case we'd use the entire page.
1487 	 */
1488 	if (!edev->xdp_prog) {
1489 		size = size + rxq->rx_buf_size;
1490 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1491 	} else {
1492 		rxq->rx_buf_seg_size = PAGE_SIZE;
1493 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1494 	}
1495 
1496 	/* Allocate the parallel driver ring for Rx buffers */
1497 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1498 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1499 	if (!rxq->sw_rx_ring) {
1500 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1501 		rc = -ENOMEM;
1502 		goto err;
1503 	}
1504 
1505 	/* Allocate FW Rx ring  */
1506 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1507 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1508 	params.elem_size = sizeof(struct eth_rx_bd);
1509 
1510 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1511 	if (rc)
1512 		goto err;
1513 
1514 	/* Allocate FW completion ring */
1515 	params.mode = QED_CHAIN_MODE_PBL;
1516 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1517 	params.elem_size = sizeof(union eth_rx_cqe);
1518 
1519 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1520 	if (rc)
1521 		goto err;
1522 
1523 	/* Allocate buffers for the Rx ring */
1524 	rxq->filled_buffers = 0;
1525 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1526 		rc = qede_alloc_rx_buffer(rxq, false);
1527 		if (rc) {
1528 			DP_ERR(edev,
1529 			       "Rx buffers allocation failed at index %d\n", i);
1530 			goto err;
1531 		}
1532 	}
1533 
1534 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1535 	if (!edev->gro_disable)
1536 		qede_set_tpa_param(rxq);
1537 err:
1538 	return rc;
1539 }
1540 
1541 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1542 {
1543 	/* Free the parallel SW ring */
1544 	if (txq->is_xdp)
1545 		kfree(txq->sw_tx_ring.xdp);
1546 	else
1547 		kfree(txq->sw_tx_ring.skbs);
1548 
1549 	/* Free the real RQ ring used by FW */
1550 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1551 }
1552 
1553 /* This function allocates all memory needed per Tx queue */
1554 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1555 {
1556 	struct qed_chain_init_params params = {
1557 		.mode		= QED_CHAIN_MODE_PBL,
1558 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1559 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1560 		.num_elems	= edev->q_num_tx_buffers,
1561 		.elem_size	= sizeof(union eth_tx_bd_types),
1562 	};
1563 	int size, rc;
1564 
1565 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1566 
1567 	/* Allocate the parallel driver ring for Tx buffers */
1568 	if (txq->is_xdp) {
1569 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1570 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1571 		if (!txq->sw_tx_ring.xdp)
1572 			goto err;
1573 	} else {
1574 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1575 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1576 		if (!txq->sw_tx_ring.skbs)
1577 			goto err;
1578 	}
1579 
1580 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1581 	if (rc)
1582 		goto err;
1583 
1584 	return 0;
1585 
1586 err:
1587 	qede_free_mem_txq(edev, txq);
1588 	return -ENOMEM;
1589 }
1590 
1591 /* This function frees all memory of a single fp */
1592 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1593 {
1594 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1595 
1596 	if (fp->type & QEDE_FASTPATH_RX)
1597 		qede_free_mem_rxq(edev, fp->rxq);
1598 
1599 	if (fp->type & QEDE_FASTPATH_XDP)
1600 		qede_free_mem_txq(edev, fp->xdp_tx);
1601 
1602 	if (fp->type & QEDE_FASTPATH_TX) {
1603 		int cos;
1604 
1605 		for_each_cos_in_txq(edev, cos)
1606 			qede_free_mem_txq(edev, &fp->txq[cos]);
1607 	}
1608 }
1609 
1610 /* This function allocates all memory needed for a single fp (i.e. an entity
1611  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1612  */
1613 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1614 {
1615 	int rc = 0;
1616 
1617 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1618 	if (rc)
1619 		goto out;
1620 
1621 	if (fp->type & QEDE_FASTPATH_RX) {
1622 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1623 		if (rc)
1624 			goto out;
1625 	}
1626 
1627 	if (fp->type & QEDE_FASTPATH_XDP) {
1628 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1629 		if (rc)
1630 			goto out;
1631 	}
1632 
1633 	if (fp->type & QEDE_FASTPATH_TX) {
1634 		int cos;
1635 
1636 		for_each_cos_in_txq(edev, cos) {
1637 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1638 			if (rc)
1639 				goto out;
1640 		}
1641 	}
1642 
1643 out:
1644 	return rc;
1645 }
1646 
1647 static void qede_free_mem_load(struct qede_dev *edev)
1648 {
1649 	int i;
1650 
1651 	for_each_queue(i) {
1652 		struct qede_fastpath *fp = &edev->fp_array[i];
1653 
1654 		qede_free_mem_fp(edev, fp);
1655 	}
1656 }
1657 
1658 /* This function allocates all qede memory at NIC load. */
1659 static int qede_alloc_mem_load(struct qede_dev *edev)
1660 {
1661 	int rc = 0, queue_id;
1662 
1663 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1664 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1665 
1666 		rc = qede_alloc_mem_fp(edev, fp);
1667 		if (rc) {
1668 			DP_ERR(edev,
1669 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1670 			       queue_id);
1671 			qede_free_mem_load(edev);
1672 			return rc;
1673 		}
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 static void qede_empty_tx_queue(struct qede_dev *edev,
1680 				struct qede_tx_queue *txq)
1681 {
1682 	unsigned int pkts_compl = 0, bytes_compl = 0;
1683 	struct netdev_queue *netdev_txq;
1684 	int rc, len = 0;
1685 
1686 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1687 
1688 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1689 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1690 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1691 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1692 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1693 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1694 
1695 		rc = qede_free_tx_pkt(edev, txq, &len);
1696 		if (rc) {
1697 			DP_NOTICE(edev,
1698 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1699 				  txq->index,
1700 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1701 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1702 			break;
1703 		}
1704 
1705 		bytes_compl += len;
1706 		pkts_compl++;
1707 		txq->sw_tx_cons++;
1708 	}
1709 
1710 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1711 }
1712 
1713 static void qede_empty_tx_queues(struct qede_dev *edev)
1714 {
1715 	int i;
1716 
1717 	for_each_queue(i)
1718 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1719 			int cos;
1720 
1721 			for_each_cos_in_txq(edev, cos) {
1722 				struct qede_fastpath *fp;
1723 
1724 				fp = &edev->fp_array[i];
1725 				qede_empty_tx_queue(edev,
1726 						    &fp->txq[cos]);
1727 			}
1728 		}
1729 }
1730 
1731 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1732 static void qede_init_fp(struct qede_dev *edev)
1733 {
1734 	int queue_id, rxq_index = 0, txq_index = 0;
1735 	struct qede_fastpath *fp;
1736 	bool init_xdp = false;
1737 
1738 	for_each_queue(queue_id) {
1739 		fp = &edev->fp_array[queue_id];
1740 
1741 		fp->edev = edev;
1742 		fp->id = queue_id;
1743 
1744 		if (fp->type & QEDE_FASTPATH_XDP) {
1745 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1746 								rxq_index);
1747 			fp->xdp_tx->is_xdp = 1;
1748 
1749 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1750 			init_xdp = true;
1751 		}
1752 
1753 		if (fp->type & QEDE_FASTPATH_RX) {
1754 			fp->rxq->rxq_id = rxq_index++;
1755 
1756 			/* Determine how to map buffers for this queue */
1757 			if (fp->type & QEDE_FASTPATH_XDP)
1758 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1759 			else
1760 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1761 			fp->rxq->dev = &edev->pdev->dev;
1762 
1763 			/* Driver have no error path from here */
1764 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1765 						 fp->rxq->rxq_id, 0) < 0);
1766 
1767 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1768 						       MEM_TYPE_PAGE_ORDER0,
1769 						       NULL)) {
1770 				DP_NOTICE(edev,
1771 					  "Failed to register XDP memory model\n");
1772 			}
1773 		}
1774 
1775 		if (fp->type & QEDE_FASTPATH_TX) {
1776 			int cos;
1777 
1778 			for_each_cos_in_txq(edev, cos) {
1779 				struct qede_tx_queue *txq = &fp->txq[cos];
1780 				u16 ndev_tx_id;
1781 
1782 				txq->cos = cos;
1783 				txq->index = txq_index;
1784 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1785 				txq->ndev_txq_id = ndev_tx_id;
1786 
1787 				if (edev->dev_info.is_legacy)
1788 					txq->is_legacy = true;
1789 				txq->dev = &edev->pdev->dev;
1790 			}
1791 
1792 			txq_index++;
1793 		}
1794 
1795 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1796 			 edev->ndev->name, queue_id);
1797 	}
1798 
1799 	if (init_xdp) {
1800 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1801 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1802 	}
1803 }
1804 
1805 static int qede_set_real_num_queues(struct qede_dev *edev)
1806 {
1807 	int rc = 0;
1808 
1809 	rc = netif_set_real_num_tx_queues(edev->ndev,
1810 					  QEDE_TSS_COUNT(edev) *
1811 					  edev->dev_info.num_tc);
1812 	if (rc) {
1813 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1814 		return rc;
1815 	}
1816 
1817 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1818 	if (rc) {
1819 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1820 		return rc;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 static void qede_napi_disable_remove(struct qede_dev *edev)
1827 {
1828 	int i;
1829 
1830 	for_each_queue(i) {
1831 		napi_disable(&edev->fp_array[i].napi);
1832 
1833 		netif_napi_del(&edev->fp_array[i].napi);
1834 	}
1835 }
1836 
1837 static void qede_napi_add_enable(struct qede_dev *edev)
1838 {
1839 	int i;
1840 
1841 	/* Add NAPI objects */
1842 	for_each_queue(i) {
1843 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1844 			       qede_poll, NAPI_POLL_WEIGHT);
1845 		napi_enable(&edev->fp_array[i].napi);
1846 	}
1847 }
1848 
1849 static void qede_sync_free_irqs(struct qede_dev *edev)
1850 {
1851 	int i;
1852 
1853 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1854 		if (edev->int_info.msix_cnt) {
1855 			synchronize_irq(edev->int_info.msix[i].vector);
1856 			free_irq(edev->int_info.msix[i].vector,
1857 				 &edev->fp_array[i]);
1858 		} else {
1859 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1860 		}
1861 	}
1862 
1863 	edev->int_info.used_cnt = 0;
1864 }
1865 
1866 static int qede_req_msix_irqs(struct qede_dev *edev)
1867 {
1868 	int i, rc;
1869 
1870 	/* Sanitize number of interrupts == number of prepared RSS queues */
1871 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1872 		DP_ERR(edev,
1873 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1874 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1875 		return -EINVAL;
1876 	}
1877 
1878 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1879 #ifdef CONFIG_RFS_ACCEL
1880 		struct qede_fastpath *fp = &edev->fp_array[i];
1881 
1882 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1883 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1884 					      edev->int_info.msix[i].vector);
1885 			if (rc) {
1886 				DP_ERR(edev, "Failed to add CPU rmap\n");
1887 				qede_free_arfs(edev);
1888 			}
1889 		}
1890 #endif
1891 		rc = request_irq(edev->int_info.msix[i].vector,
1892 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1893 				 &edev->fp_array[i]);
1894 		if (rc) {
1895 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1896 			qede_sync_free_irqs(edev);
1897 			return rc;
1898 		}
1899 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1900 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1901 			   edev->fp_array[i].name, i,
1902 			   &edev->fp_array[i]);
1903 		edev->int_info.used_cnt++;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static void qede_simd_fp_handler(void *cookie)
1910 {
1911 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1912 
1913 	napi_schedule_irqoff(&fp->napi);
1914 }
1915 
1916 static int qede_setup_irqs(struct qede_dev *edev)
1917 {
1918 	int i, rc = 0;
1919 
1920 	/* Learn Interrupt configuration */
1921 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1922 	if (rc)
1923 		return rc;
1924 
1925 	if (edev->int_info.msix_cnt) {
1926 		rc = qede_req_msix_irqs(edev);
1927 		if (rc)
1928 			return rc;
1929 		edev->ndev->irq = edev->int_info.msix[0].vector;
1930 	} else {
1931 		const struct qed_common_ops *ops;
1932 
1933 		/* qed should learn receive the RSS ids and callbacks */
1934 		ops = edev->ops->common;
1935 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1936 			ops->simd_handler_config(edev->cdev,
1937 						 &edev->fp_array[i], i,
1938 						 qede_simd_fp_handler);
1939 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1940 	}
1941 	return 0;
1942 }
1943 
1944 static int qede_drain_txq(struct qede_dev *edev,
1945 			  struct qede_tx_queue *txq, bool allow_drain)
1946 {
1947 	int rc, cnt = 1000;
1948 
1949 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1950 		if (!cnt) {
1951 			if (allow_drain) {
1952 				DP_NOTICE(edev,
1953 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1954 					  txq->index);
1955 				rc = edev->ops->common->drain(edev->cdev);
1956 				if (rc)
1957 					return rc;
1958 				return qede_drain_txq(edev, txq, false);
1959 			}
1960 			DP_NOTICE(edev,
1961 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1962 				  txq->index, txq->sw_tx_prod,
1963 				  txq->sw_tx_cons);
1964 			return -ENODEV;
1965 		}
1966 		cnt--;
1967 		usleep_range(1000, 2000);
1968 		barrier();
1969 	}
1970 
1971 	/* FW finished processing, wait for HW to transmit all tx packets */
1972 	usleep_range(1000, 2000);
1973 
1974 	return 0;
1975 }
1976 
1977 static int qede_stop_txq(struct qede_dev *edev,
1978 			 struct qede_tx_queue *txq, int rss_id)
1979 {
1980 	/* delete doorbell from doorbell recovery mechanism */
1981 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1982 					   &txq->tx_db);
1983 
1984 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1985 }
1986 
1987 static int qede_stop_queues(struct qede_dev *edev)
1988 {
1989 	struct qed_update_vport_params *vport_update_params;
1990 	struct qed_dev *cdev = edev->cdev;
1991 	struct qede_fastpath *fp;
1992 	int rc, i;
1993 
1994 	/* Disable the vport */
1995 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1996 	if (!vport_update_params)
1997 		return -ENOMEM;
1998 
1999 	vport_update_params->vport_id = 0;
2000 	vport_update_params->update_vport_active_flg = 1;
2001 	vport_update_params->vport_active_flg = 0;
2002 	vport_update_params->update_rss_flg = 0;
2003 
2004 	rc = edev->ops->vport_update(cdev, vport_update_params);
2005 	vfree(vport_update_params);
2006 
2007 	if (rc) {
2008 		DP_ERR(edev, "Failed to update vport\n");
2009 		return rc;
2010 	}
2011 
2012 	/* Flush Tx queues. If needed, request drain from MCP */
2013 	for_each_queue(i) {
2014 		fp = &edev->fp_array[i];
2015 
2016 		if (fp->type & QEDE_FASTPATH_TX) {
2017 			int cos;
2018 
2019 			for_each_cos_in_txq(edev, cos) {
2020 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2021 				if (rc)
2022 					return rc;
2023 			}
2024 		}
2025 
2026 		if (fp->type & QEDE_FASTPATH_XDP) {
2027 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2028 			if (rc)
2029 				return rc;
2030 		}
2031 	}
2032 
2033 	/* Stop all Queues in reverse order */
2034 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2035 		fp = &edev->fp_array[i];
2036 
2037 		/* Stop the Tx Queue(s) */
2038 		if (fp->type & QEDE_FASTPATH_TX) {
2039 			int cos;
2040 
2041 			for_each_cos_in_txq(edev, cos) {
2042 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2043 				if (rc)
2044 					return rc;
2045 			}
2046 		}
2047 
2048 		/* Stop the Rx Queue */
2049 		if (fp->type & QEDE_FASTPATH_RX) {
2050 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2051 			if (rc) {
2052 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2053 				return rc;
2054 			}
2055 		}
2056 
2057 		/* Stop the XDP forwarding queue */
2058 		if (fp->type & QEDE_FASTPATH_XDP) {
2059 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2060 			if (rc)
2061 				return rc;
2062 
2063 			bpf_prog_put(fp->rxq->xdp_prog);
2064 		}
2065 	}
2066 
2067 	/* Stop the vport */
2068 	rc = edev->ops->vport_stop(cdev, 0);
2069 	if (rc)
2070 		DP_ERR(edev, "Failed to stop VPORT\n");
2071 
2072 	return rc;
2073 }
2074 
2075 static int qede_start_txq(struct qede_dev *edev,
2076 			  struct qede_fastpath *fp,
2077 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2078 {
2079 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2080 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2081 	struct qed_queue_start_common_params params;
2082 	struct qed_txq_start_ret_params ret_params;
2083 	int rc;
2084 
2085 	memset(&params, 0, sizeof(params));
2086 	memset(&ret_params, 0, sizeof(ret_params));
2087 
2088 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2089 	 * We don't really care about its coalescing.
2090 	 */
2091 	if (txq->is_xdp)
2092 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2093 	else
2094 		params.queue_id = txq->index;
2095 
2096 	params.p_sb = fp->sb_info;
2097 	params.sb_idx = sb_idx;
2098 	params.tc = txq->cos;
2099 
2100 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2101 				   page_cnt, &ret_params);
2102 	if (rc) {
2103 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2104 		return rc;
2105 	}
2106 
2107 	txq->doorbell_addr = ret_params.p_doorbell;
2108 	txq->handle = ret_params.p_handle;
2109 
2110 	/* Determine the FW consumer address associated */
2111 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2112 
2113 	/* Prepare the doorbell parameters */
2114 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2115 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2116 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2117 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2118 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2119 
2120 	/* register doorbell with doorbell recovery mechanism */
2121 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2122 						&txq->tx_db, DB_REC_WIDTH_32B,
2123 						DB_REC_KERNEL);
2124 
2125 	return rc;
2126 }
2127 
2128 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2129 {
2130 	int vlan_removal_en = 1;
2131 	struct qed_dev *cdev = edev->cdev;
2132 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2133 	struct qed_update_vport_params *vport_update_params;
2134 	struct qed_queue_start_common_params q_params;
2135 	struct qed_start_vport_params start = {0};
2136 	int rc, i;
2137 
2138 	if (!edev->num_queues) {
2139 		DP_ERR(edev,
2140 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2141 		return -EINVAL;
2142 	}
2143 
2144 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2145 	if (!vport_update_params)
2146 		return -ENOMEM;
2147 
2148 	start.handle_ptp_pkts = !!(edev->ptp);
2149 	start.gro_enable = !edev->gro_disable;
2150 	start.mtu = edev->ndev->mtu;
2151 	start.vport_id = 0;
2152 	start.drop_ttl0 = true;
2153 	start.remove_inner_vlan = vlan_removal_en;
2154 	start.clear_stats = clear_stats;
2155 
2156 	rc = edev->ops->vport_start(cdev, &start);
2157 
2158 	if (rc) {
2159 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2160 		goto out;
2161 	}
2162 
2163 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2164 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2165 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2166 
2167 	for_each_queue(i) {
2168 		struct qede_fastpath *fp = &edev->fp_array[i];
2169 		dma_addr_t p_phys_table;
2170 		u32 page_cnt;
2171 
2172 		if (fp->type & QEDE_FASTPATH_RX) {
2173 			struct qed_rxq_start_ret_params ret_params;
2174 			struct qede_rx_queue *rxq = fp->rxq;
2175 			__le16 *val;
2176 
2177 			memset(&ret_params, 0, sizeof(ret_params));
2178 			memset(&q_params, 0, sizeof(q_params));
2179 			q_params.queue_id = rxq->rxq_id;
2180 			q_params.vport_id = 0;
2181 			q_params.p_sb = fp->sb_info;
2182 			q_params.sb_idx = RX_PI;
2183 
2184 			p_phys_table =
2185 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2186 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2187 
2188 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2189 						   rxq->rx_buf_size,
2190 						   rxq->rx_bd_ring.p_phys_addr,
2191 						   p_phys_table,
2192 						   page_cnt, &ret_params);
2193 			if (rc) {
2194 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2195 				       rc);
2196 				goto out;
2197 			}
2198 
2199 			/* Use the return parameters */
2200 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2201 			rxq->handle = ret_params.p_handle;
2202 
2203 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2204 			rxq->hw_cons_ptr = val;
2205 
2206 			qede_update_rx_prod(edev, rxq);
2207 		}
2208 
2209 		if (fp->type & QEDE_FASTPATH_XDP) {
2210 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2211 			if (rc)
2212 				goto out;
2213 
2214 			bpf_prog_add(edev->xdp_prog, 1);
2215 			fp->rxq->xdp_prog = edev->xdp_prog;
2216 		}
2217 
2218 		if (fp->type & QEDE_FASTPATH_TX) {
2219 			int cos;
2220 
2221 			for_each_cos_in_txq(edev, cos) {
2222 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2223 						    TX_PI(cos));
2224 				if (rc)
2225 					goto out;
2226 			}
2227 		}
2228 	}
2229 
2230 	/* Prepare and send the vport enable */
2231 	vport_update_params->vport_id = start.vport_id;
2232 	vport_update_params->update_vport_active_flg = 1;
2233 	vport_update_params->vport_active_flg = 1;
2234 
2235 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2236 	    qed_info->tx_switching) {
2237 		vport_update_params->update_tx_switching_flg = 1;
2238 		vport_update_params->tx_switching_flg = 1;
2239 	}
2240 
2241 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2242 			     &vport_update_params->update_rss_flg);
2243 
2244 	rc = edev->ops->vport_update(cdev, vport_update_params);
2245 	if (rc)
2246 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2247 
2248 out:
2249 	vfree(vport_update_params);
2250 	return rc;
2251 }
2252 
2253 enum qede_unload_mode {
2254 	QEDE_UNLOAD_NORMAL,
2255 	QEDE_UNLOAD_RECOVERY,
2256 };
2257 
2258 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2259 			bool is_locked)
2260 {
2261 	struct qed_link_params link_params;
2262 	int rc;
2263 
2264 	DP_INFO(edev, "Starting qede unload\n");
2265 
2266 	if (!is_locked)
2267 		__qede_lock(edev);
2268 
2269 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2270 
2271 	if (mode != QEDE_UNLOAD_RECOVERY)
2272 		edev->state = QEDE_STATE_CLOSED;
2273 
2274 	qede_rdma_dev_event_close(edev);
2275 
2276 	/* Close OS Tx */
2277 	netif_tx_disable(edev->ndev);
2278 	netif_carrier_off(edev->ndev);
2279 
2280 	if (mode != QEDE_UNLOAD_RECOVERY) {
2281 		/* Reset the link */
2282 		memset(&link_params, 0, sizeof(link_params));
2283 		link_params.link_up = false;
2284 		edev->ops->common->set_link(edev->cdev, &link_params);
2285 
2286 		rc = qede_stop_queues(edev);
2287 		if (rc) {
2288 			qede_sync_free_irqs(edev);
2289 			goto out;
2290 		}
2291 
2292 		DP_INFO(edev, "Stopped Queues\n");
2293 	}
2294 
2295 	qede_vlan_mark_nonconfigured(edev);
2296 	edev->ops->fastpath_stop(edev->cdev);
2297 
2298 	if (edev->dev_info.common.b_arfs_capable) {
2299 		qede_poll_for_freeing_arfs_filters(edev);
2300 		qede_free_arfs(edev);
2301 	}
2302 
2303 	/* Release the interrupts */
2304 	qede_sync_free_irqs(edev);
2305 	edev->ops->common->set_fp_int(edev->cdev, 0);
2306 
2307 	qede_napi_disable_remove(edev);
2308 
2309 	if (mode == QEDE_UNLOAD_RECOVERY)
2310 		qede_empty_tx_queues(edev);
2311 
2312 	qede_free_mem_load(edev);
2313 	qede_free_fp_array(edev);
2314 
2315 out:
2316 	if (!is_locked)
2317 		__qede_unlock(edev);
2318 
2319 	if (mode != QEDE_UNLOAD_RECOVERY)
2320 		DP_NOTICE(edev, "Link is down\n");
2321 
2322 	edev->ptp_skip_txts = 0;
2323 
2324 	DP_INFO(edev, "Ending qede unload\n");
2325 }
2326 
2327 enum qede_load_mode {
2328 	QEDE_LOAD_NORMAL,
2329 	QEDE_LOAD_RELOAD,
2330 	QEDE_LOAD_RECOVERY,
2331 };
2332 
2333 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2334 		     bool is_locked)
2335 {
2336 	struct qed_link_params link_params;
2337 	u8 num_tc;
2338 	int rc;
2339 
2340 	DP_INFO(edev, "Starting qede load\n");
2341 
2342 	if (!is_locked)
2343 		__qede_lock(edev);
2344 
2345 	rc = qede_set_num_queues(edev);
2346 	if (rc)
2347 		goto out;
2348 
2349 	rc = qede_alloc_fp_array(edev);
2350 	if (rc)
2351 		goto out;
2352 
2353 	qede_init_fp(edev);
2354 
2355 	rc = qede_alloc_mem_load(edev);
2356 	if (rc)
2357 		goto err1;
2358 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2359 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2360 
2361 	rc = qede_set_real_num_queues(edev);
2362 	if (rc)
2363 		goto err2;
2364 
2365 	if (qede_alloc_arfs(edev)) {
2366 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2367 		edev->dev_info.common.b_arfs_capable = false;
2368 	}
2369 
2370 	qede_napi_add_enable(edev);
2371 	DP_INFO(edev, "Napi added and enabled\n");
2372 
2373 	rc = qede_setup_irqs(edev);
2374 	if (rc)
2375 		goto err3;
2376 	DP_INFO(edev, "Setup IRQs succeeded\n");
2377 
2378 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2379 	if (rc)
2380 		goto err4;
2381 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2382 
2383 	num_tc = netdev_get_num_tc(edev->ndev);
2384 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2385 	qede_setup_tc(edev->ndev, num_tc);
2386 
2387 	/* Program un-configured VLANs */
2388 	qede_configure_vlan_filters(edev);
2389 
2390 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2391 
2392 	/* Ask for link-up using current configuration */
2393 	memset(&link_params, 0, sizeof(link_params));
2394 	link_params.link_up = true;
2395 	edev->ops->common->set_link(edev->cdev, &link_params);
2396 
2397 	edev->state = QEDE_STATE_OPEN;
2398 
2399 	DP_INFO(edev, "Ending successfully qede load\n");
2400 
2401 	goto out;
2402 err4:
2403 	qede_sync_free_irqs(edev);
2404 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2405 err3:
2406 	qede_napi_disable_remove(edev);
2407 err2:
2408 	qede_free_mem_load(edev);
2409 err1:
2410 	edev->ops->common->set_fp_int(edev->cdev, 0);
2411 	qede_free_fp_array(edev);
2412 	edev->num_queues = 0;
2413 	edev->fp_num_tx = 0;
2414 	edev->fp_num_rx = 0;
2415 out:
2416 	if (!is_locked)
2417 		__qede_unlock(edev);
2418 
2419 	return rc;
2420 }
2421 
2422 /* 'func' should be able to run between unload and reload assuming interface
2423  * is actually running, or afterwards in case it's currently DOWN.
2424  */
2425 void qede_reload(struct qede_dev *edev,
2426 		 struct qede_reload_args *args, bool is_locked)
2427 {
2428 	if (!is_locked)
2429 		__qede_lock(edev);
2430 
2431 	/* Since qede_lock is held, internal state wouldn't change even
2432 	 * if netdev state would start transitioning. Check whether current
2433 	 * internal configuration indicates device is up, then reload.
2434 	 */
2435 	if (edev->state == QEDE_STATE_OPEN) {
2436 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2437 		if (args)
2438 			args->func(edev, args);
2439 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2440 
2441 		/* Since no one is going to do it for us, re-configure */
2442 		qede_config_rx_mode(edev->ndev);
2443 	} else if (args) {
2444 		args->func(edev, args);
2445 	}
2446 
2447 	if (!is_locked)
2448 		__qede_unlock(edev);
2449 }
2450 
2451 /* called with rtnl_lock */
2452 static int qede_open(struct net_device *ndev)
2453 {
2454 	struct qede_dev *edev = netdev_priv(ndev);
2455 	int rc;
2456 
2457 	netif_carrier_off(ndev);
2458 
2459 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2460 
2461 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2462 	if (rc)
2463 		return rc;
2464 
2465 	udp_tunnel_nic_reset_ntf(ndev);
2466 
2467 	edev->ops->common->update_drv_state(edev->cdev, true);
2468 
2469 	return 0;
2470 }
2471 
2472 static int qede_close(struct net_device *ndev)
2473 {
2474 	struct qede_dev *edev = netdev_priv(ndev);
2475 
2476 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2477 
2478 	if (edev->cdev)
2479 		edev->ops->common->update_drv_state(edev->cdev, false);
2480 
2481 	return 0;
2482 }
2483 
2484 static void qede_link_update(void *dev, struct qed_link_output *link)
2485 {
2486 	struct qede_dev *edev = dev;
2487 
2488 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2489 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2490 		return;
2491 	}
2492 
2493 	if (link->link_up) {
2494 		if (!netif_carrier_ok(edev->ndev)) {
2495 			DP_NOTICE(edev, "Link is up\n");
2496 			netif_tx_start_all_queues(edev->ndev);
2497 			netif_carrier_on(edev->ndev);
2498 			qede_rdma_dev_event_open(edev);
2499 		}
2500 	} else {
2501 		if (netif_carrier_ok(edev->ndev)) {
2502 			DP_NOTICE(edev, "Link is down\n");
2503 			netif_tx_disable(edev->ndev);
2504 			netif_carrier_off(edev->ndev);
2505 			qede_rdma_dev_event_close(edev);
2506 		}
2507 	}
2508 }
2509 
2510 static void qede_schedule_recovery_handler(void *dev)
2511 {
2512 	struct qede_dev *edev = dev;
2513 
2514 	if (edev->state == QEDE_STATE_RECOVERY) {
2515 		DP_NOTICE(edev,
2516 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2517 		return;
2518 	}
2519 
2520 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2521 	schedule_delayed_work(&edev->sp_task, 0);
2522 
2523 	DP_INFO(edev, "Scheduled a recovery handler\n");
2524 }
2525 
2526 static void qede_recovery_failed(struct qede_dev *edev)
2527 {
2528 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2529 
2530 	netif_device_detach(edev->ndev);
2531 
2532 	if (edev->cdev)
2533 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2534 }
2535 
2536 static void qede_recovery_handler(struct qede_dev *edev)
2537 {
2538 	u32 curr_state = edev->state;
2539 	int rc;
2540 
2541 	DP_NOTICE(edev, "Starting a recovery process\n");
2542 
2543 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2544 	 * before calling this function.
2545 	 */
2546 	edev->state = QEDE_STATE_RECOVERY;
2547 
2548 	edev->ops->common->recovery_prolog(edev->cdev);
2549 
2550 	if (curr_state == QEDE_STATE_OPEN)
2551 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2552 
2553 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2554 
2555 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2556 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2557 	if (rc) {
2558 		edev->cdev = NULL;
2559 		goto err;
2560 	}
2561 
2562 	if (curr_state == QEDE_STATE_OPEN) {
2563 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2564 		if (rc)
2565 			goto err;
2566 
2567 		qede_config_rx_mode(edev->ndev);
2568 		udp_tunnel_nic_reset_ntf(edev->ndev);
2569 	}
2570 
2571 	edev->state = curr_state;
2572 
2573 	DP_NOTICE(edev, "Recovery handling is done\n");
2574 
2575 	return;
2576 
2577 err:
2578 	qede_recovery_failed(edev);
2579 }
2580 
2581 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2582 {
2583 	struct qed_dev *cdev = edev->cdev;
2584 
2585 	DP_NOTICE(edev,
2586 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2587 		  edev->err_flags);
2588 
2589 	/* Get a call trace of the flow that led to the error */
2590 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2591 
2592 	/* Prevent HW attentions from being reasserted */
2593 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2594 		edev->ops->common->attn_clr_enable(cdev, true);
2595 
2596 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2597 }
2598 
2599 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2600 {
2601 	DP_NOTICE(edev,
2602 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2603 		  edev->err_flags);
2604 
2605 	if (edev->devlink)
2606 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2607 
2608 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2609 
2610 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2611 }
2612 
2613 static void qede_set_hw_err_flags(struct qede_dev *edev,
2614 				  enum qed_hw_err_type err_type)
2615 {
2616 	unsigned long err_flags = 0;
2617 
2618 	switch (err_type) {
2619 	case QED_HW_ERR_DMAE_FAIL:
2620 		set_bit(QEDE_ERR_WARN, &err_flags);
2621 		fallthrough;
2622 	case QED_HW_ERR_MFW_RESP_FAIL:
2623 	case QED_HW_ERR_HW_ATTN:
2624 	case QED_HW_ERR_RAMROD_FAIL:
2625 	case QED_HW_ERR_FW_ASSERT:
2626 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2627 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2628 		break;
2629 
2630 	default:
2631 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2632 		break;
2633 	}
2634 
2635 	edev->err_flags |= err_flags;
2636 }
2637 
2638 static void qede_schedule_hw_err_handler(void *dev,
2639 					 enum qed_hw_err_type err_type)
2640 {
2641 	struct qede_dev *edev = dev;
2642 
2643 	/* Fan failure cannot be masked by handling of another HW error or by a
2644 	 * concurrent recovery process.
2645 	 */
2646 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2647 	     edev->state == QEDE_STATE_RECOVERY) &&
2648 	     err_type != QED_HW_ERR_FAN_FAIL) {
2649 		DP_INFO(edev,
2650 			"Avoid scheduling an error handling while another HW error is being handled\n");
2651 		return;
2652 	}
2653 
2654 	if (err_type >= QED_HW_ERR_LAST) {
2655 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2656 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2657 		return;
2658 	}
2659 
2660 	edev->last_err_type = err_type;
2661 	qede_set_hw_err_flags(edev, err_type);
2662 	qede_atomic_hw_err_handler(edev);
2663 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2664 	schedule_delayed_work(&edev->sp_task, 0);
2665 
2666 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2667 }
2668 
2669 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2670 {
2671 	struct netdev_queue *netdev_txq;
2672 
2673 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2674 	if (netif_xmit_stopped(netdev_txq))
2675 		return true;
2676 
2677 	return false;
2678 }
2679 
2680 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2681 {
2682 	struct qede_dev *edev = dev;
2683 	struct netdev_hw_addr *ha;
2684 	int i;
2685 
2686 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2687 		data->feat_flags |= QED_TLV_IP_CSUM;
2688 	if (edev->ndev->features & NETIF_F_TSO)
2689 		data->feat_flags |= QED_TLV_LSO;
2690 
2691 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2692 	eth_zero_addr(data->mac[1]);
2693 	eth_zero_addr(data->mac[2]);
2694 	/* Copy the first two UC macs */
2695 	netif_addr_lock_bh(edev->ndev);
2696 	i = 1;
2697 	netdev_for_each_uc_addr(ha, edev->ndev) {
2698 		ether_addr_copy(data->mac[i++], ha->addr);
2699 		if (i == QED_TLV_MAC_COUNT)
2700 			break;
2701 	}
2702 
2703 	netif_addr_unlock_bh(edev->ndev);
2704 }
2705 
2706 static void qede_get_eth_tlv_data(void *dev, void *data)
2707 {
2708 	struct qed_mfw_tlv_eth *etlv = data;
2709 	struct qede_dev *edev = dev;
2710 	struct qede_fastpath *fp;
2711 	int i;
2712 
2713 	etlv->lso_maxoff_size = 0XFFFF;
2714 	etlv->lso_maxoff_size_set = true;
2715 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2716 	etlv->lso_minseg_size_set = true;
2717 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2718 	etlv->prom_mode_set = true;
2719 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2720 	etlv->tx_descr_size_set = true;
2721 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2722 	etlv->rx_descr_size_set = true;
2723 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2724 	etlv->iov_offload_set = true;
2725 
2726 	/* Fill information regarding queues; Should be done under the qede
2727 	 * lock to guarantee those don't change beneath our feet.
2728 	 */
2729 	etlv->txqs_empty = true;
2730 	etlv->rxqs_empty = true;
2731 	etlv->num_txqs_full = 0;
2732 	etlv->num_rxqs_full = 0;
2733 
2734 	__qede_lock(edev);
2735 	for_each_queue(i) {
2736 		fp = &edev->fp_array[i];
2737 		if (fp->type & QEDE_FASTPATH_TX) {
2738 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2739 
2740 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2741 				etlv->txqs_empty = false;
2742 			if (qede_is_txq_full(edev, txq))
2743 				etlv->num_txqs_full++;
2744 		}
2745 		if (fp->type & QEDE_FASTPATH_RX) {
2746 			if (qede_has_rx_work(fp->rxq))
2747 				etlv->rxqs_empty = false;
2748 
2749 			/* This one is a bit tricky; Firmware might stop
2750 			 * placing packets if ring is not yet full.
2751 			 * Give an approximation.
2752 			 */
2753 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2754 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2755 			    RX_RING_SIZE - 100)
2756 				etlv->num_rxqs_full++;
2757 		}
2758 	}
2759 	__qede_unlock(edev);
2760 
2761 	etlv->txqs_empty_set = true;
2762 	etlv->rxqs_empty_set = true;
2763 	etlv->num_txqs_full_set = true;
2764 	etlv->num_rxqs_full_set = true;
2765 }
2766 
2767 /**
2768  * qede_io_error_detected - called when PCI error is detected
2769  * @pdev: Pointer to PCI device
2770  * @state: The current pci connection state
2771  *
2772  * This function is called after a PCI bus error affecting
2773  * this device has been detected.
2774  */
2775 static pci_ers_result_t
2776 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2777 {
2778 	struct net_device *dev = pci_get_drvdata(pdev);
2779 	struct qede_dev *edev = netdev_priv(dev);
2780 
2781 	if (!edev)
2782 		return PCI_ERS_RESULT_NONE;
2783 
2784 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2785 
2786 	__qede_lock(edev);
2787 	if (edev->state == QEDE_STATE_RECOVERY) {
2788 		DP_NOTICE(edev, "Device already in the recovery state\n");
2789 		__qede_unlock(edev);
2790 		return PCI_ERS_RESULT_NONE;
2791 	}
2792 
2793 	/* PF handles the recovery of its VFs */
2794 	if (IS_VF(edev)) {
2795 		DP_VERBOSE(edev, QED_MSG_IOV,
2796 			   "VF recovery is handled by its PF\n");
2797 		__qede_unlock(edev);
2798 		return PCI_ERS_RESULT_RECOVERED;
2799 	}
2800 
2801 	/* Close OS Tx */
2802 	netif_tx_disable(edev->ndev);
2803 	netif_carrier_off(edev->ndev);
2804 
2805 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2806 	schedule_delayed_work(&edev->sp_task, 0);
2807 
2808 	__qede_unlock(edev);
2809 
2810 	return PCI_ERS_RESULT_CAN_RECOVER;
2811 }
2812