1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/crash_dump.h> 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/device.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/skbuff.h> 14 #include <linux/errno.h> 15 #include <linux/list.h> 16 #include <linux/string.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <asm/byteorder.h> 20 #include <asm/param.h> 21 #include <linux/io.h> 22 #include <linux/netdev_features.h> 23 #include <linux/udp.h> 24 #include <linux/tcp.h> 25 #include <net/udp_tunnel.h> 26 #include <linux/ip.h> 27 #include <net/ipv6.h> 28 #include <net/tcp.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_vlan.h> 31 #include <linux/pkt_sched.h> 32 #include <linux/ethtool.h> 33 #include <linux/in.h> 34 #include <linux/random.h> 35 #include <net/ip6_checksum.h> 36 #include <linux/bitops.h> 37 #include <linux/vmalloc.h> 38 #include <linux/aer.h> 39 #include "qede.h" 40 #include "qede_ptp.h" 41 42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 43 MODULE_LICENSE("GPL"); 44 45 static uint debug; 46 module_param(debug, uint, 0); 47 MODULE_PARM_DESC(debug, " Default debug msglevel"); 48 49 static const struct qed_eth_ops *qed_ops; 50 51 #define CHIP_NUM_57980S_40 0x1634 52 #define CHIP_NUM_57980S_10 0x1666 53 #define CHIP_NUM_57980S_MF 0x1636 54 #define CHIP_NUM_57980S_100 0x1644 55 #define CHIP_NUM_57980S_50 0x1654 56 #define CHIP_NUM_57980S_25 0x1656 57 #define CHIP_NUM_57980S_IOV 0x1664 58 #define CHIP_NUM_AH 0x8070 59 #define CHIP_NUM_AH_IOV 0x8090 60 61 #ifndef PCI_DEVICE_ID_NX2_57980E 62 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 63 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 64 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 65 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 66 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 67 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 68 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 69 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 70 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 71 72 #endif 73 74 enum qede_pci_private { 75 QEDE_PRIVATE_PF, 76 QEDE_PRIVATE_VF 77 }; 78 79 static const struct pci_device_id qede_pci_tbl[] = { 80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 85 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 86 #ifdef CONFIG_QED_SRIOV 87 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 88 #endif 89 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 90 #ifdef CONFIG_QED_SRIOV 91 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 92 #endif 93 { 0 } 94 }; 95 96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 97 98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 99 static pci_ers_result_t 100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 101 102 #define TX_TIMEOUT (5 * HZ) 103 104 /* Utilize last protocol index for XDP */ 105 #define XDP_PI 11 106 107 static void qede_remove(struct pci_dev *pdev); 108 static void qede_shutdown(struct pci_dev *pdev); 109 static void qede_link_update(void *dev, struct qed_link_output *link); 110 static void qede_schedule_recovery_handler(void *dev); 111 static void qede_recovery_handler(struct qede_dev *edev); 112 static void qede_schedule_hw_err_handler(void *dev, 113 enum qed_hw_err_type err_type); 114 static void qede_get_eth_tlv_data(void *edev, void *data); 115 static void qede_get_generic_tlv_data(void *edev, 116 struct qed_generic_tlvs *data); 117 static void qede_generic_hw_err_handler(struct qede_dev *edev); 118 #ifdef CONFIG_QED_SRIOV 119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 120 __be16 vlan_proto) 121 { 122 struct qede_dev *edev = netdev_priv(ndev); 123 124 if (vlan > 4095) { 125 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 126 return -EINVAL; 127 } 128 129 if (vlan_proto != htons(ETH_P_8021Q)) 130 return -EPROTONOSUPPORT; 131 132 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 133 vlan, vf); 134 135 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 136 } 137 138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 139 { 140 struct qede_dev *edev = netdev_priv(ndev); 141 142 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx); 143 144 if (!is_valid_ether_addr(mac)) { 145 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 146 return -EINVAL; 147 } 148 149 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 150 } 151 152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 153 { 154 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 155 struct qed_dev_info *qed_info = &edev->dev_info.common; 156 struct qed_update_vport_params *vport_params; 157 int rc; 158 159 vport_params = vzalloc(sizeof(*vport_params)); 160 if (!vport_params) 161 return -ENOMEM; 162 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 163 164 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 165 166 /* Enable/Disable Tx switching for PF */ 167 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 168 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 169 vport_params->vport_id = 0; 170 vport_params->update_tx_switching_flg = 1; 171 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 172 edev->ops->vport_update(edev->cdev, vport_params); 173 } 174 175 vfree(vport_params); 176 return rc; 177 } 178 #endif 179 180 static const struct pci_error_handlers qede_err_handler = { 181 .error_detected = qede_io_error_detected, 182 }; 183 184 static struct pci_driver qede_pci_driver = { 185 .name = "qede", 186 .id_table = qede_pci_tbl, 187 .probe = qede_probe, 188 .remove = qede_remove, 189 .shutdown = qede_shutdown, 190 #ifdef CONFIG_QED_SRIOV 191 .sriov_configure = qede_sriov_configure, 192 #endif 193 .err_handler = &qede_err_handler, 194 }; 195 196 static struct qed_eth_cb_ops qede_ll_ops = { 197 { 198 #ifdef CONFIG_RFS_ACCEL 199 .arfs_filter_op = qede_arfs_filter_op, 200 #endif 201 .link_update = qede_link_update, 202 .schedule_recovery_handler = qede_schedule_recovery_handler, 203 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 204 .get_generic_tlv_data = qede_get_generic_tlv_data, 205 .get_protocol_tlv_data = qede_get_eth_tlv_data, 206 }, 207 .force_mac = qede_force_mac, 208 .ports_update = qede_udp_ports_update, 209 }; 210 211 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 212 void *ptr) 213 { 214 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 215 struct ethtool_drvinfo drvinfo; 216 struct qede_dev *edev; 217 218 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 219 goto done; 220 221 /* Check whether this is a qede device */ 222 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 223 goto done; 224 225 memset(&drvinfo, 0, sizeof(drvinfo)); 226 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 227 if (strcmp(drvinfo.driver, "qede")) 228 goto done; 229 edev = netdev_priv(ndev); 230 231 switch (event) { 232 case NETDEV_CHANGENAME: 233 /* Notify qed of the name change */ 234 if (!edev->ops || !edev->ops->common) 235 goto done; 236 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 237 break; 238 case NETDEV_CHANGEADDR: 239 edev = netdev_priv(ndev); 240 qede_rdma_event_changeaddr(edev); 241 break; 242 } 243 244 done: 245 return NOTIFY_DONE; 246 } 247 248 static struct notifier_block qede_netdev_notifier = { 249 .notifier_call = qede_netdev_event, 250 }; 251 252 static 253 int __init qede_init(void) 254 { 255 int ret; 256 257 pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n"); 258 259 qede_forced_speed_maps_init(); 260 261 qed_ops = qed_get_eth_ops(); 262 if (!qed_ops) { 263 pr_notice("Failed to get qed ethtool operations\n"); 264 return -EINVAL; 265 } 266 267 /* Must register notifier before pci ops, since we might miss 268 * interface rename after pci probe and netdev registration. 269 */ 270 ret = register_netdevice_notifier(&qede_netdev_notifier); 271 if (ret) { 272 pr_notice("Failed to register netdevice_notifier\n"); 273 qed_put_eth_ops(); 274 return -EINVAL; 275 } 276 277 ret = pci_register_driver(&qede_pci_driver); 278 if (ret) { 279 pr_notice("Failed to register driver\n"); 280 unregister_netdevice_notifier(&qede_netdev_notifier); 281 qed_put_eth_ops(); 282 return -EINVAL; 283 } 284 285 return 0; 286 } 287 288 static void __exit qede_cleanup(void) 289 { 290 if (debug & QED_LOG_INFO_MASK) 291 pr_info("qede_cleanup called\n"); 292 293 unregister_netdevice_notifier(&qede_netdev_notifier); 294 pci_unregister_driver(&qede_pci_driver); 295 qed_put_eth_ops(); 296 } 297 298 module_init(qede_init); 299 module_exit(qede_cleanup); 300 301 static int qede_open(struct net_device *ndev); 302 static int qede_close(struct net_device *ndev); 303 304 void qede_fill_by_demand_stats(struct qede_dev *edev) 305 { 306 struct qede_stats_common *p_common = &edev->stats.common; 307 struct qed_eth_stats stats; 308 309 edev->ops->get_vport_stats(edev->cdev, &stats); 310 311 p_common->no_buff_discards = stats.common.no_buff_discards; 312 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 313 p_common->ttl0_discard = stats.common.ttl0_discard; 314 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 315 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 316 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 317 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 318 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 319 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 320 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 321 p_common->mac_filter_discards = stats.common.mac_filter_discards; 322 p_common->gft_filter_drop = stats.common.gft_filter_drop; 323 324 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 325 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 326 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 327 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 328 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 329 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 330 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 331 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 332 p_common->coalesced_events = stats.common.tpa_coalesced_events; 333 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 334 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 335 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 336 337 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 338 p_common->rx_65_to_127_byte_packets = 339 stats.common.rx_65_to_127_byte_packets; 340 p_common->rx_128_to_255_byte_packets = 341 stats.common.rx_128_to_255_byte_packets; 342 p_common->rx_256_to_511_byte_packets = 343 stats.common.rx_256_to_511_byte_packets; 344 p_common->rx_512_to_1023_byte_packets = 345 stats.common.rx_512_to_1023_byte_packets; 346 p_common->rx_1024_to_1518_byte_packets = 347 stats.common.rx_1024_to_1518_byte_packets; 348 p_common->rx_crc_errors = stats.common.rx_crc_errors; 349 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 350 p_common->rx_pause_frames = stats.common.rx_pause_frames; 351 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 352 p_common->rx_align_errors = stats.common.rx_align_errors; 353 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 354 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 355 p_common->rx_jabbers = stats.common.rx_jabbers; 356 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 357 p_common->rx_fragments = stats.common.rx_fragments; 358 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 359 p_common->tx_65_to_127_byte_packets = 360 stats.common.tx_65_to_127_byte_packets; 361 p_common->tx_128_to_255_byte_packets = 362 stats.common.tx_128_to_255_byte_packets; 363 p_common->tx_256_to_511_byte_packets = 364 stats.common.tx_256_to_511_byte_packets; 365 p_common->tx_512_to_1023_byte_packets = 366 stats.common.tx_512_to_1023_byte_packets; 367 p_common->tx_1024_to_1518_byte_packets = 368 stats.common.tx_1024_to_1518_byte_packets; 369 p_common->tx_pause_frames = stats.common.tx_pause_frames; 370 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 371 p_common->brb_truncates = stats.common.brb_truncates; 372 p_common->brb_discards = stats.common.brb_discards; 373 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 374 p_common->link_change_count = stats.common.link_change_count; 375 p_common->ptp_skip_txts = edev->ptp_skip_txts; 376 377 if (QEDE_IS_BB(edev)) { 378 struct qede_stats_bb *p_bb = &edev->stats.bb; 379 380 p_bb->rx_1519_to_1522_byte_packets = 381 stats.bb.rx_1519_to_1522_byte_packets; 382 p_bb->rx_1519_to_2047_byte_packets = 383 stats.bb.rx_1519_to_2047_byte_packets; 384 p_bb->rx_2048_to_4095_byte_packets = 385 stats.bb.rx_2048_to_4095_byte_packets; 386 p_bb->rx_4096_to_9216_byte_packets = 387 stats.bb.rx_4096_to_9216_byte_packets; 388 p_bb->rx_9217_to_16383_byte_packets = 389 stats.bb.rx_9217_to_16383_byte_packets; 390 p_bb->tx_1519_to_2047_byte_packets = 391 stats.bb.tx_1519_to_2047_byte_packets; 392 p_bb->tx_2048_to_4095_byte_packets = 393 stats.bb.tx_2048_to_4095_byte_packets; 394 p_bb->tx_4096_to_9216_byte_packets = 395 stats.bb.tx_4096_to_9216_byte_packets; 396 p_bb->tx_9217_to_16383_byte_packets = 397 stats.bb.tx_9217_to_16383_byte_packets; 398 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 399 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 400 } else { 401 struct qede_stats_ah *p_ah = &edev->stats.ah; 402 403 p_ah->rx_1519_to_max_byte_packets = 404 stats.ah.rx_1519_to_max_byte_packets; 405 p_ah->tx_1519_to_max_byte_packets = 406 stats.ah.tx_1519_to_max_byte_packets; 407 } 408 } 409 410 static void qede_get_stats64(struct net_device *dev, 411 struct rtnl_link_stats64 *stats) 412 { 413 struct qede_dev *edev = netdev_priv(dev); 414 struct qede_stats_common *p_common; 415 416 qede_fill_by_demand_stats(edev); 417 p_common = &edev->stats.common; 418 419 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 420 p_common->rx_bcast_pkts; 421 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 422 p_common->tx_bcast_pkts; 423 424 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 425 p_common->rx_bcast_bytes; 426 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 427 p_common->tx_bcast_bytes; 428 429 stats->tx_errors = p_common->tx_err_drop_pkts; 430 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 431 432 stats->rx_fifo_errors = p_common->no_buff_discards; 433 434 if (QEDE_IS_BB(edev)) 435 stats->collisions = edev->stats.bb.tx_total_collisions; 436 stats->rx_crc_errors = p_common->rx_crc_errors; 437 stats->rx_frame_errors = p_common->rx_align_errors; 438 } 439 440 #ifdef CONFIG_QED_SRIOV 441 static int qede_get_vf_config(struct net_device *dev, int vfidx, 442 struct ifla_vf_info *ivi) 443 { 444 struct qede_dev *edev = netdev_priv(dev); 445 446 if (!edev->ops) 447 return -EINVAL; 448 449 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 450 } 451 452 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 453 int min_tx_rate, int max_tx_rate) 454 { 455 struct qede_dev *edev = netdev_priv(dev); 456 457 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 458 max_tx_rate); 459 } 460 461 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 462 { 463 struct qede_dev *edev = netdev_priv(dev); 464 465 if (!edev->ops) 466 return -EINVAL; 467 468 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 469 } 470 471 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 472 int link_state) 473 { 474 struct qede_dev *edev = netdev_priv(dev); 475 476 if (!edev->ops) 477 return -EINVAL; 478 479 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 480 } 481 482 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 483 { 484 struct qede_dev *edev = netdev_priv(dev); 485 486 if (!edev->ops) 487 return -EINVAL; 488 489 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 490 } 491 #endif 492 493 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 494 { 495 struct qede_dev *edev = netdev_priv(dev); 496 497 if (!netif_running(dev)) 498 return -EAGAIN; 499 500 switch (cmd) { 501 case SIOCSHWTSTAMP: 502 return qede_ptp_hw_ts(edev, ifr); 503 default: 504 DP_VERBOSE(edev, QED_MSG_DEBUG, 505 "default IOCTL cmd 0x%x\n", cmd); 506 return -EOPNOTSUPP; 507 } 508 509 return 0; 510 } 511 512 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp) 513 { 514 char *p_sb = (char *)fp->sb_info->sb_virt; 515 u32 sb_size, i; 516 517 sb_size = sizeof(struct status_block); 518 519 for (i = 0; i < sb_size; i += 8) 520 DP_NOTICE(edev, 521 "%02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX\n", 522 p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3], 523 p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]); 524 } 525 526 static void 527 qede_txq_fp_log_metadata(struct qede_dev *edev, 528 struct qede_fastpath *fp, struct qede_tx_queue *txq) 529 { 530 struct qed_chain *p_chain = &txq->tx_pbl; 531 532 /* Dump txq/fp/sb ids etc. other metadata */ 533 DP_NOTICE(edev, 534 "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n", 535 fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos, 536 p_chain, p_chain->capacity, p_chain->size, jiffies, HZ); 537 538 /* Dump all the relevant prod/cons indexes */ 539 DP_NOTICE(edev, 540 "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n", 541 le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons, 542 qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain)); 543 } 544 545 static void 546 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq) 547 { 548 struct qed_sb_info_dbg sb_dbg; 549 int rc; 550 551 /* sb info */ 552 qede_fp_sb_dump(edev, fp); 553 554 memset(&sb_dbg, 0, sizeof(sb_dbg)); 555 rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg); 556 557 DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n", 558 sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]); 559 560 /* report to mfw */ 561 edev->ops->common->mfw_report(edev->cdev, 562 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 563 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 564 qed_chain_get_cons_idx(&txq->tx_pbl), 565 qed_chain_get_prod_idx(&txq->tx_pbl), jiffies); 566 if (!rc) 567 edev->ops->common->mfw_report(edev->cdev, 568 "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n", 569 txq->index, fp->sb_info->igu_sb_id, 570 sb_dbg.igu_prod, sb_dbg.igu_cons, 571 sb_dbg.pi[TX_PI(txq->cos)]); 572 } 573 574 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 575 { 576 struct qede_dev *edev = netdev_priv(dev); 577 int i; 578 579 netif_carrier_off(dev); 580 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 581 582 for_each_queue(i) { 583 struct qede_tx_queue *txq; 584 struct qede_fastpath *fp; 585 int cos; 586 587 fp = &edev->fp_array[i]; 588 if (!(fp->type & QEDE_FASTPATH_TX)) 589 continue; 590 591 for_each_cos_in_txq(edev, cos) { 592 txq = &fp->txq[cos]; 593 594 /* Dump basic metadata for all queues */ 595 qede_txq_fp_log_metadata(edev, fp, txq); 596 597 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 598 qed_chain_get_prod_idx(&txq->tx_pbl)) 599 qede_tx_log_print(edev, fp, txq); 600 } 601 } 602 603 if (IS_VF(edev)) 604 return; 605 606 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 607 edev->state == QEDE_STATE_RECOVERY) { 608 DP_INFO(edev, 609 "Avoid handling a Tx timeout while another HW error is being handled\n"); 610 return; 611 } 612 613 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 614 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 615 schedule_delayed_work(&edev->sp_task, 0); 616 } 617 618 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 619 { 620 struct qede_dev *edev = netdev_priv(ndev); 621 int cos, count, offset; 622 623 if (num_tc > edev->dev_info.num_tc) 624 return -EINVAL; 625 626 netdev_reset_tc(ndev); 627 netdev_set_num_tc(ndev, num_tc); 628 629 for_each_cos_in_txq(edev, cos) { 630 count = QEDE_TSS_COUNT(edev); 631 offset = cos * QEDE_TSS_COUNT(edev); 632 netdev_set_tc_queue(ndev, cos, count, offset); 633 } 634 635 return 0; 636 } 637 638 static int 639 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 640 __be16 proto) 641 { 642 switch (f->command) { 643 case FLOW_CLS_REPLACE: 644 return qede_add_tc_flower_fltr(edev, proto, f); 645 case FLOW_CLS_DESTROY: 646 return qede_delete_flow_filter(edev, f->cookie); 647 default: 648 return -EOPNOTSUPP; 649 } 650 } 651 652 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 653 void *cb_priv) 654 { 655 struct flow_cls_offload *f; 656 struct qede_dev *edev = cb_priv; 657 658 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 659 return -EOPNOTSUPP; 660 661 switch (type) { 662 case TC_SETUP_CLSFLOWER: 663 f = type_data; 664 return qede_set_flower(edev, f, f->common.protocol); 665 default: 666 return -EOPNOTSUPP; 667 } 668 } 669 670 static LIST_HEAD(qede_block_cb_list); 671 672 static int 673 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 674 void *type_data) 675 { 676 struct qede_dev *edev = netdev_priv(dev); 677 struct tc_mqprio_qopt *mqprio; 678 679 switch (type) { 680 case TC_SETUP_BLOCK: 681 return flow_block_cb_setup_simple(type_data, 682 &qede_block_cb_list, 683 qede_setup_tc_block_cb, 684 edev, edev, true); 685 case TC_SETUP_QDISC_MQPRIO: 686 mqprio = type_data; 687 688 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 689 return qede_setup_tc(dev, mqprio->num_tc); 690 default: 691 return -EOPNOTSUPP; 692 } 693 } 694 695 static const struct net_device_ops qede_netdev_ops = { 696 .ndo_open = qede_open, 697 .ndo_stop = qede_close, 698 .ndo_start_xmit = qede_start_xmit, 699 .ndo_select_queue = qede_select_queue, 700 .ndo_set_rx_mode = qede_set_rx_mode, 701 .ndo_set_mac_address = qede_set_mac_addr, 702 .ndo_validate_addr = eth_validate_addr, 703 .ndo_change_mtu = qede_change_mtu, 704 .ndo_eth_ioctl = qede_ioctl, 705 .ndo_tx_timeout = qede_tx_timeout, 706 #ifdef CONFIG_QED_SRIOV 707 .ndo_set_vf_mac = qede_set_vf_mac, 708 .ndo_set_vf_vlan = qede_set_vf_vlan, 709 .ndo_set_vf_trust = qede_set_vf_trust, 710 #endif 711 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 712 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 713 .ndo_fix_features = qede_fix_features, 714 .ndo_set_features = qede_set_features, 715 .ndo_get_stats64 = qede_get_stats64, 716 #ifdef CONFIG_QED_SRIOV 717 .ndo_set_vf_link_state = qede_set_vf_link_state, 718 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 719 .ndo_get_vf_config = qede_get_vf_config, 720 .ndo_set_vf_rate = qede_set_vf_rate, 721 #endif 722 .ndo_features_check = qede_features_check, 723 .ndo_bpf = qede_xdp, 724 #ifdef CONFIG_RFS_ACCEL 725 .ndo_rx_flow_steer = qede_rx_flow_steer, 726 #endif 727 .ndo_xdp_xmit = qede_xdp_transmit, 728 .ndo_setup_tc = qede_setup_tc_offload, 729 }; 730 731 static const struct net_device_ops qede_netdev_vf_ops = { 732 .ndo_open = qede_open, 733 .ndo_stop = qede_close, 734 .ndo_start_xmit = qede_start_xmit, 735 .ndo_select_queue = qede_select_queue, 736 .ndo_set_rx_mode = qede_set_rx_mode, 737 .ndo_set_mac_address = qede_set_mac_addr, 738 .ndo_validate_addr = eth_validate_addr, 739 .ndo_change_mtu = qede_change_mtu, 740 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 741 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 742 .ndo_fix_features = qede_fix_features, 743 .ndo_set_features = qede_set_features, 744 .ndo_get_stats64 = qede_get_stats64, 745 .ndo_features_check = qede_features_check, 746 }; 747 748 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 749 .ndo_open = qede_open, 750 .ndo_stop = qede_close, 751 .ndo_start_xmit = qede_start_xmit, 752 .ndo_select_queue = qede_select_queue, 753 .ndo_set_rx_mode = qede_set_rx_mode, 754 .ndo_set_mac_address = qede_set_mac_addr, 755 .ndo_validate_addr = eth_validate_addr, 756 .ndo_change_mtu = qede_change_mtu, 757 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 758 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 759 .ndo_fix_features = qede_fix_features, 760 .ndo_set_features = qede_set_features, 761 .ndo_get_stats64 = qede_get_stats64, 762 .ndo_features_check = qede_features_check, 763 .ndo_bpf = qede_xdp, 764 .ndo_xdp_xmit = qede_xdp_transmit, 765 }; 766 767 /* ------------------------------------------------------------------------- 768 * START OF PROBE / REMOVE 769 * ------------------------------------------------------------------------- 770 */ 771 772 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 773 struct pci_dev *pdev, 774 struct qed_dev_eth_info *info, 775 u32 dp_module, u8 dp_level) 776 { 777 struct net_device *ndev; 778 struct qede_dev *edev; 779 780 ndev = alloc_etherdev_mqs(sizeof(*edev), 781 info->num_queues * info->num_tc, 782 info->num_queues); 783 if (!ndev) { 784 pr_err("etherdev allocation failed\n"); 785 return NULL; 786 } 787 788 edev = netdev_priv(ndev); 789 edev->ndev = ndev; 790 edev->cdev = cdev; 791 edev->pdev = pdev; 792 edev->dp_module = dp_module; 793 edev->dp_level = dp_level; 794 edev->ops = qed_ops; 795 796 if (is_kdump_kernel()) { 797 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 798 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 799 } else { 800 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 801 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 802 } 803 804 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 805 info->num_queues, info->num_queues); 806 807 SET_NETDEV_DEV(ndev, &pdev->dev); 808 809 memset(&edev->stats, 0, sizeof(edev->stats)); 810 memcpy(&edev->dev_info, info, sizeof(*info)); 811 812 /* As ethtool doesn't have the ability to show WoL behavior as 813 * 'default', if device supports it declare it's enabled. 814 */ 815 if (edev->dev_info.common.wol_support) 816 edev->wol_enabled = true; 817 818 INIT_LIST_HEAD(&edev->vlan_list); 819 820 return edev; 821 } 822 823 static void qede_init_ndev(struct qede_dev *edev) 824 { 825 struct net_device *ndev = edev->ndev; 826 struct pci_dev *pdev = edev->pdev; 827 bool udp_tunnel_enable = false; 828 netdev_features_t hw_features; 829 830 pci_set_drvdata(pdev, ndev); 831 832 ndev->mem_start = edev->dev_info.common.pci_mem_start; 833 ndev->base_addr = ndev->mem_start; 834 ndev->mem_end = edev->dev_info.common.pci_mem_end; 835 ndev->irq = edev->dev_info.common.pci_irq; 836 837 ndev->watchdog_timeo = TX_TIMEOUT; 838 839 if (IS_VF(edev)) { 840 if (edev->dev_info.xdp_supported) 841 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 842 else 843 ndev->netdev_ops = &qede_netdev_vf_ops; 844 } else { 845 ndev->netdev_ops = &qede_netdev_ops; 846 } 847 848 qede_set_ethtool_ops(ndev); 849 850 ndev->priv_flags |= IFF_UNICAST_FLT; 851 852 /* user-changeble features */ 853 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 854 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 855 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 856 857 if (edev->dev_info.common.b_arfs_capable) 858 hw_features |= NETIF_F_NTUPLE; 859 860 if (edev->dev_info.common.vxlan_enable || 861 edev->dev_info.common.geneve_enable) 862 udp_tunnel_enable = true; 863 864 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 865 hw_features |= NETIF_F_TSO_ECN; 866 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 867 NETIF_F_SG | NETIF_F_TSO | 868 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 869 NETIF_F_RXCSUM; 870 } 871 872 if (udp_tunnel_enable) { 873 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 874 NETIF_F_GSO_UDP_TUNNEL_CSUM); 875 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 876 NETIF_F_GSO_UDP_TUNNEL_CSUM); 877 878 qede_set_udp_tunnels(edev); 879 } 880 881 if (edev->dev_info.common.gre_enable) { 882 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 883 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 884 NETIF_F_GSO_GRE_CSUM); 885 } 886 887 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 888 NETIF_F_HIGHDMA; 889 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 890 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 891 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 892 893 ndev->hw_features = hw_features; 894 895 /* MTU range: 46 - 9600 */ 896 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 897 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 898 899 /* Set network device HW mac */ 900 eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac); 901 902 ndev->mtu = edev->dev_info.common.mtu; 903 } 904 905 /* This function converts from 32b param to two params of level and module 906 * Input 32b decoding: 907 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 908 * 'happy' flow, e.g. memory allocation failed. 909 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 910 * and provide important parameters. 911 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 912 * module. VERBOSE prints are for tracking the specific flow in low level. 913 * 914 * Notice that the level should be that of the lowest required logs. 915 */ 916 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 917 { 918 *p_dp_level = QED_LEVEL_NOTICE; 919 *p_dp_module = 0; 920 921 if (debug & QED_LOG_VERBOSE_MASK) { 922 *p_dp_level = QED_LEVEL_VERBOSE; 923 *p_dp_module = (debug & 0x3FFFFFFF); 924 } else if (debug & QED_LOG_INFO_MASK) { 925 *p_dp_level = QED_LEVEL_INFO; 926 } else if (debug & QED_LOG_NOTICE_MASK) { 927 *p_dp_level = QED_LEVEL_NOTICE; 928 } 929 } 930 931 static void qede_free_fp_array(struct qede_dev *edev) 932 { 933 if (edev->fp_array) { 934 struct qede_fastpath *fp; 935 int i; 936 937 for_each_queue(i) { 938 fp = &edev->fp_array[i]; 939 940 kfree(fp->sb_info); 941 /* Handle mem alloc failure case where qede_init_fp 942 * didn't register xdp_rxq_info yet. 943 * Implicit only (fp->type & QEDE_FASTPATH_RX) 944 */ 945 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 946 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 947 kfree(fp->rxq); 948 kfree(fp->xdp_tx); 949 kfree(fp->txq); 950 } 951 kfree(edev->fp_array); 952 } 953 954 edev->num_queues = 0; 955 edev->fp_num_tx = 0; 956 edev->fp_num_rx = 0; 957 } 958 959 static int qede_alloc_fp_array(struct qede_dev *edev) 960 { 961 u8 fp_combined, fp_rx = edev->fp_num_rx; 962 struct qede_fastpath *fp; 963 void *mem; 964 int i; 965 966 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 967 sizeof(*edev->fp_array), GFP_KERNEL); 968 if (!edev->fp_array) { 969 DP_NOTICE(edev, "fp array allocation failed\n"); 970 goto err; 971 } 972 973 mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) * 974 sizeof(*edev->coal_entry), GFP_KERNEL); 975 if (!mem) { 976 DP_ERR(edev, "coalesce entry allocation failed\n"); 977 kfree(edev->coal_entry); 978 goto err; 979 } 980 edev->coal_entry = mem; 981 982 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 983 984 /* Allocate the FP elements for Rx queues followed by combined and then 985 * the Tx. This ordering should be maintained so that the respective 986 * queues (Rx or Tx) will be together in the fastpath array and the 987 * associated ids will be sequential. 988 */ 989 for_each_queue(i) { 990 fp = &edev->fp_array[i]; 991 992 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 993 if (!fp->sb_info) { 994 DP_NOTICE(edev, "sb info struct allocation failed\n"); 995 goto err; 996 } 997 998 if (fp_rx) { 999 fp->type = QEDE_FASTPATH_RX; 1000 fp_rx--; 1001 } else if (fp_combined) { 1002 fp->type = QEDE_FASTPATH_COMBINED; 1003 fp_combined--; 1004 } else { 1005 fp->type = QEDE_FASTPATH_TX; 1006 } 1007 1008 if (fp->type & QEDE_FASTPATH_TX) { 1009 fp->txq = kcalloc(edev->dev_info.num_tc, 1010 sizeof(*fp->txq), GFP_KERNEL); 1011 if (!fp->txq) 1012 goto err; 1013 } 1014 1015 if (fp->type & QEDE_FASTPATH_RX) { 1016 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 1017 if (!fp->rxq) 1018 goto err; 1019 1020 if (edev->xdp_prog) { 1021 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 1022 GFP_KERNEL); 1023 if (!fp->xdp_tx) 1024 goto err; 1025 fp->type |= QEDE_FASTPATH_XDP; 1026 } 1027 } 1028 } 1029 1030 return 0; 1031 err: 1032 qede_free_fp_array(edev); 1033 return -ENOMEM; 1034 } 1035 1036 /* The qede lock is used to protect driver state change and driver flows that 1037 * are not reentrant. 1038 */ 1039 void __qede_lock(struct qede_dev *edev) 1040 { 1041 mutex_lock(&edev->qede_lock); 1042 } 1043 1044 void __qede_unlock(struct qede_dev *edev) 1045 { 1046 mutex_unlock(&edev->qede_lock); 1047 } 1048 1049 /* This version of the lock should be used when acquiring the RTNL lock is also 1050 * needed in addition to the internal qede lock. 1051 */ 1052 static void qede_lock(struct qede_dev *edev) 1053 { 1054 rtnl_lock(); 1055 __qede_lock(edev); 1056 } 1057 1058 static void qede_unlock(struct qede_dev *edev) 1059 { 1060 __qede_unlock(edev); 1061 rtnl_unlock(); 1062 } 1063 1064 static void qede_sp_task(struct work_struct *work) 1065 { 1066 struct qede_dev *edev = container_of(work, struct qede_dev, 1067 sp_task.work); 1068 1069 /* Disable execution of this deferred work once 1070 * qede removal is in progress, this stop any future 1071 * scheduling of sp_task. 1072 */ 1073 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags)) 1074 return; 1075 1076 /* The locking scheme depends on the specific flag: 1077 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1078 * ensure that ongoing flows are ended and new ones are not started. 1079 * In other cases - only the internal qede lock should be acquired. 1080 */ 1081 1082 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1083 #ifdef CONFIG_QED_SRIOV 1084 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1085 * The recovery of the active VFs is currently not supported. 1086 */ 1087 if (pci_num_vf(edev->pdev)) 1088 qede_sriov_configure(edev->pdev, 0); 1089 #endif 1090 qede_lock(edev); 1091 qede_recovery_handler(edev); 1092 qede_unlock(edev); 1093 } 1094 1095 __qede_lock(edev); 1096 1097 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1098 if (edev->state == QEDE_STATE_OPEN) 1099 qede_config_rx_mode(edev->ndev); 1100 1101 #ifdef CONFIG_RFS_ACCEL 1102 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1103 if (edev->state == QEDE_STATE_OPEN) 1104 qede_process_arfs_filters(edev, false); 1105 } 1106 #endif 1107 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1108 qede_generic_hw_err_handler(edev); 1109 __qede_unlock(edev); 1110 1111 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1112 #ifdef CONFIG_QED_SRIOV 1113 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1114 * The recovery of the active VFs is currently not supported. 1115 */ 1116 if (pci_num_vf(edev->pdev)) 1117 qede_sriov_configure(edev->pdev, 0); 1118 #endif 1119 edev->ops->common->recovery_process(edev->cdev); 1120 } 1121 } 1122 1123 static void qede_update_pf_params(struct qed_dev *cdev) 1124 { 1125 struct qed_pf_params pf_params; 1126 u16 num_cons; 1127 1128 /* 64 rx + 64 tx + 64 XDP */ 1129 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1130 1131 /* 1 rx + 1 xdp + max tx cos */ 1132 num_cons = QED_MIN_L2_CONS; 1133 1134 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1135 1136 /* Same for VFs - make sure they'll have sufficient connections 1137 * to support XDP Tx queues. 1138 */ 1139 pf_params.eth_pf_params.num_vf_cons = 48; 1140 1141 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1142 qed_ops->common->update_pf_params(cdev, &pf_params); 1143 } 1144 1145 #define QEDE_FW_VER_STR_SIZE 80 1146 1147 static void qede_log_probe(struct qede_dev *edev) 1148 { 1149 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1150 u8 buf[QEDE_FW_VER_STR_SIZE]; 1151 size_t left_size; 1152 1153 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1154 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1155 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1156 p_dev_info->fw_eng, 1157 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1158 QED_MFW_VERSION_3_OFFSET, 1159 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1160 QED_MFW_VERSION_2_OFFSET, 1161 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1162 QED_MFW_VERSION_1_OFFSET, 1163 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1164 QED_MFW_VERSION_0_OFFSET); 1165 1166 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1167 if (p_dev_info->mbi_version && left_size) 1168 snprintf(buf + strlen(buf), left_size, 1169 " [MBI %d.%d.%d]", 1170 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1171 QED_MBI_VERSION_2_OFFSET, 1172 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1173 QED_MBI_VERSION_1_OFFSET, 1174 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1175 QED_MBI_VERSION_0_OFFSET); 1176 1177 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1178 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1179 buf, edev->ndev->name); 1180 } 1181 1182 enum qede_probe_mode { 1183 QEDE_PROBE_NORMAL, 1184 QEDE_PROBE_RECOVERY, 1185 }; 1186 1187 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1188 bool is_vf, enum qede_probe_mode mode) 1189 { 1190 struct qed_probe_params probe_params; 1191 struct qed_slowpath_params sp_params; 1192 struct qed_dev_eth_info dev_info; 1193 struct qede_dev *edev; 1194 struct qed_dev *cdev; 1195 int rc; 1196 1197 if (unlikely(dp_level & QED_LEVEL_INFO)) 1198 pr_notice("Starting qede probe\n"); 1199 1200 memset(&probe_params, 0, sizeof(probe_params)); 1201 probe_params.protocol = QED_PROTOCOL_ETH; 1202 probe_params.dp_module = dp_module; 1203 probe_params.dp_level = dp_level; 1204 probe_params.is_vf = is_vf; 1205 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1206 cdev = qed_ops->common->probe(pdev, &probe_params); 1207 if (!cdev) { 1208 rc = -ENODEV; 1209 goto err0; 1210 } 1211 1212 qede_update_pf_params(cdev); 1213 1214 /* Start the Slowpath-process */ 1215 memset(&sp_params, 0, sizeof(sp_params)); 1216 sp_params.int_mode = QED_INT_MODE_MSIX; 1217 strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1218 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1219 if (rc) { 1220 pr_notice("Cannot start slowpath\n"); 1221 goto err1; 1222 } 1223 1224 /* Learn information crucial for qede to progress */ 1225 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1226 if (rc) 1227 goto err2; 1228 1229 if (mode != QEDE_PROBE_RECOVERY) { 1230 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1231 dp_level); 1232 if (!edev) { 1233 rc = -ENOMEM; 1234 goto err2; 1235 } 1236 1237 edev->devlink = qed_ops->common->devlink_register(cdev); 1238 if (IS_ERR(edev->devlink)) { 1239 DP_NOTICE(edev, "Cannot register devlink\n"); 1240 rc = PTR_ERR(edev->devlink); 1241 edev->devlink = NULL; 1242 goto err3; 1243 } 1244 } else { 1245 struct net_device *ndev = pci_get_drvdata(pdev); 1246 struct qed_devlink *qdl; 1247 1248 edev = netdev_priv(ndev); 1249 qdl = devlink_priv(edev->devlink); 1250 qdl->cdev = cdev; 1251 edev->cdev = cdev; 1252 memset(&edev->stats, 0, sizeof(edev->stats)); 1253 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1254 } 1255 1256 if (is_vf) 1257 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1258 1259 qede_init_ndev(edev); 1260 1261 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1262 if (rc) 1263 goto err3; 1264 1265 if (mode != QEDE_PROBE_RECOVERY) { 1266 /* Prepare the lock prior to the registration of the netdev, 1267 * as once it's registered we might reach flows requiring it 1268 * [it's even possible to reach a flow needing it directly 1269 * from there, although it's unlikely]. 1270 */ 1271 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1272 mutex_init(&edev->qede_lock); 1273 1274 rc = register_netdev(edev->ndev); 1275 if (rc) { 1276 DP_NOTICE(edev, "Cannot register net-device\n"); 1277 goto err4; 1278 } 1279 } 1280 1281 edev->ops->common->set_name(cdev, edev->ndev->name); 1282 1283 /* PTP not supported on VFs */ 1284 if (!is_vf) 1285 qede_ptp_enable(edev); 1286 1287 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1288 1289 #ifdef CONFIG_DCB 1290 if (!IS_VF(edev)) 1291 qede_set_dcbnl_ops(edev->ndev); 1292 #endif 1293 1294 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1295 1296 qede_log_probe(edev); 1297 return 0; 1298 1299 err4: 1300 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1301 err3: 1302 if (mode != QEDE_PROBE_RECOVERY) 1303 free_netdev(edev->ndev); 1304 else 1305 edev->cdev = NULL; 1306 err2: 1307 qed_ops->common->slowpath_stop(cdev); 1308 err1: 1309 qed_ops->common->remove(cdev); 1310 err0: 1311 return rc; 1312 } 1313 1314 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1315 { 1316 bool is_vf = false; 1317 u32 dp_module = 0; 1318 u8 dp_level = 0; 1319 1320 switch ((enum qede_pci_private)id->driver_data) { 1321 case QEDE_PRIVATE_VF: 1322 if (debug & QED_LOG_VERBOSE_MASK) 1323 dev_err(&pdev->dev, "Probing a VF\n"); 1324 is_vf = true; 1325 break; 1326 default: 1327 if (debug & QED_LOG_VERBOSE_MASK) 1328 dev_err(&pdev->dev, "Probing a PF\n"); 1329 } 1330 1331 qede_config_debug(debug, &dp_module, &dp_level); 1332 1333 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1334 QEDE_PROBE_NORMAL); 1335 } 1336 1337 enum qede_remove_mode { 1338 QEDE_REMOVE_NORMAL, 1339 QEDE_REMOVE_RECOVERY, 1340 }; 1341 1342 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1343 { 1344 struct net_device *ndev = pci_get_drvdata(pdev); 1345 struct qede_dev *edev; 1346 struct qed_dev *cdev; 1347 1348 if (!ndev) { 1349 dev_info(&pdev->dev, "Device has already been removed\n"); 1350 return; 1351 } 1352 1353 edev = netdev_priv(ndev); 1354 cdev = edev->cdev; 1355 1356 DP_INFO(edev, "Starting qede_remove\n"); 1357 1358 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1359 1360 if (mode != QEDE_REMOVE_RECOVERY) { 1361 set_bit(QEDE_SP_DISABLE, &edev->sp_flags); 1362 unregister_netdev(ndev); 1363 1364 cancel_delayed_work_sync(&edev->sp_task); 1365 1366 edev->ops->common->set_power_state(cdev, PCI_D0); 1367 1368 pci_set_drvdata(pdev, NULL); 1369 } 1370 1371 qede_ptp_disable(edev); 1372 1373 /* Use global ops since we've freed edev */ 1374 qed_ops->common->slowpath_stop(cdev); 1375 if (system_state == SYSTEM_POWER_OFF) 1376 return; 1377 1378 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) { 1379 qed_ops->common->devlink_unregister(edev->devlink); 1380 edev->devlink = NULL; 1381 } 1382 qed_ops->common->remove(cdev); 1383 edev->cdev = NULL; 1384 1385 /* Since this can happen out-of-sync with other flows, 1386 * don't release the netdevice until after slowpath stop 1387 * has been called to guarantee various other contexts 1388 * [e.g., QED register callbacks] won't break anything when 1389 * accessing the netdevice. 1390 */ 1391 if (mode != QEDE_REMOVE_RECOVERY) { 1392 kfree(edev->coal_entry); 1393 free_netdev(ndev); 1394 } 1395 1396 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1397 } 1398 1399 static void qede_remove(struct pci_dev *pdev) 1400 { 1401 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1402 } 1403 1404 static void qede_shutdown(struct pci_dev *pdev) 1405 { 1406 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1407 } 1408 1409 /* ------------------------------------------------------------------------- 1410 * START OF LOAD / UNLOAD 1411 * ------------------------------------------------------------------------- 1412 */ 1413 1414 static int qede_set_num_queues(struct qede_dev *edev) 1415 { 1416 int rc; 1417 u16 rss_num; 1418 1419 /* Setup queues according to possible resources*/ 1420 if (edev->req_queues) 1421 rss_num = edev->req_queues; 1422 else 1423 rss_num = netif_get_num_default_rss_queues() * 1424 edev->dev_info.common.num_hwfns; 1425 1426 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1427 1428 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1429 if (rc > 0) { 1430 /* Managed to request interrupts for our queues */ 1431 edev->num_queues = rc; 1432 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1433 QEDE_QUEUE_CNT(edev), rss_num); 1434 rc = 0; 1435 } 1436 1437 edev->fp_num_tx = edev->req_num_tx; 1438 edev->fp_num_rx = edev->req_num_rx; 1439 1440 return rc; 1441 } 1442 1443 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1444 u16 sb_id) 1445 { 1446 if (sb_info->sb_virt) { 1447 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1448 QED_SB_TYPE_L2_QUEUE); 1449 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1450 (void *)sb_info->sb_virt, sb_info->sb_phys); 1451 memset(sb_info, 0, sizeof(*sb_info)); 1452 } 1453 } 1454 1455 /* This function allocates fast-path status block memory */ 1456 static int qede_alloc_mem_sb(struct qede_dev *edev, 1457 struct qed_sb_info *sb_info, u16 sb_id) 1458 { 1459 struct status_block *sb_virt; 1460 dma_addr_t sb_phys; 1461 int rc; 1462 1463 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1464 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1465 if (!sb_virt) { 1466 DP_ERR(edev, "Status block allocation failed\n"); 1467 return -ENOMEM; 1468 } 1469 1470 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1471 sb_virt, sb_phys, sb_id, 1472 QED_SB_TYPE_L2_QUEUE); 1473 if (rc) { 1474 DP_ERR(edev, "Status block initialization failed\n"); 1475 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1476 sb_virt, sb_phys); 1477 return rc; 1478 } 1479 1480 return 0; 1481 } 1482 1483 static void qede_free_rx_buffers(struct qede_dev *edev, 1484 struct qede_rx_queue *rxq) 1485 { 1486 u16 i; 1487 1488 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1489 struct sw_rx_data *rx_buf; 1490 struct page *data; 1491 1492 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1493 data = rx_buf->data; 1494 1495 dma_unmap_page(&edev->pdev->dev, 1496 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1497 1498 rx_buf->data = NULL; 1499 __free_page(data); 1500 } 1501 } 1502 1503 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1504 { 1505 /* Free rx buffers */ 1506 qede_free_rx_buffers(edev, rxq); 1507 1508 /* Free the parallel SW ring */ 1509 kfree(rxq->sw_rx_ring); 1510 1511 /* Free the real RQ ring used by FW */ 1512 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1513 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1514 } 1515 1516 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1517 { 1518 int i; 1519 1520 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1521 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1522 1523 tpa_info->state = QEDE_AGG_STATE_NONE; 1524 } 1525 } 1526 1527 /* This function allocates all memory needed per Rx queue */ 1528 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1529 { 1530 struct qed_chain_init_params params = { 1531 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1532 .num_elems = RX_RING_SIZE, 1533 }; 1534 struct qed_dev *cdev = edev->cdev; 1535 int i, rc, size; 1536 1537 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1538 1539 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1540 1541 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1542 size = rxq->rx_headroom + 1543 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1544 1545 /* Make sure that the headroom and payload fit in a single page */ 1546 if (rxq->rx_buf_size + size > PAGE_SIZE) 1547 rxq->rx_buf_size = PAGE_SIZE - size; 1548 1549 /* Segment size to split a page in multiple equal parts, 1550 * unless XDP is used in which case we'd use the entire page. 1551 */ 1552 if (!edev->xdp_prog) { 1553 size = size + rxq->rx_buf_size; 1554 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1555 } else { 1556 rxq->rx_buf_seg_size = PAGE_SIZE; 1557 edev->ndev->features &= ~NETIF_F_GRO_HW; 1558 } 1559 1560 /* Allocate the parallel driver ring for Rx buffers */ 1561 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1562 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1563 if (!rxq->sw_rx_ring) { 1564 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1565 rc = -ENOMEM; 1566 goto err; 1567 } 1568 1569 /* Allocate FW Rx ring */ 1570 params.mode = QED_CHAIN_MODE_NEXT_PTR; 1571 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE; 1572 params.elem_size = sizeof(struct eth_rx_bd); 1573 1574 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms); 1575 if (rc) 1576 goto err; 1577 1578 /* Allocate FW completion ring */ 1579 params.mode = QED_CHAIN_MODE_PBL; 1580 params.intended_use = QED_CHAIN_USE_TO_CONSUME; 1581 params.elem_size = sizeof(union eth_rx_cqe); 1582 1583 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms); 1584 if (rc) 1585 goto err; 1586 1587 /* Allocate buffers for the Rx ring */ 1588 rxq->filled_buffers = 0; 1589 for (i = 0; i < rxq->num_rx_buffers; i++) { 1590 rc = qede_alloc_rx_buffer(rxq, false); 1591 if (rc) { 1592 DP_ERR(edev, 1593 "Rx buffers allocation failed at index %d\n", i); 1594 goto err; 1595 } 1596 } 1597 1598 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1599 if (!edev->gro_disable) 1600 qede_set_tpa_param(rxq); 1601 err: 1602 return rc; 1603 } 1604 1605 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1606 { 1607 /* Free the parallel SW ring */ 1608 if (txq->is_xdp) 1609 kfree(txq->sw_tx_ring.xdp); 1610 else 1611 kfree(txq->sw_tx_ring.skbs); 1612 1613 /* Free the real RQ ring used by FW */ 1614 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1615 } 1616 1617 /* This function allocates all memory needed per Tx queue */ 1618 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1619 { 1620 struct qed_chain_init_params params = { 1621 .mode = QED_CHAIN_MODE_PBL, 1622 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1623 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1624 .num_elems = edev->q_num_tx_buffers, 1625 .elem_size = sizeof(union eth_tx_bd_types), 1626 }; 1627 int size, rc; 1628 1629 txq->num_tx_buffers = edev->q_num_tx_buffers; 1630 1631 /* Allocate the parallel driver ring for Tx buffers */ 1632 if (txq->is_xdp) { 1633 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1634 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1635 if (!txq->sw_tx_ring.xdp) 1636 goto err; 1637 } else { 1638 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1639 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1640 if (!txq->sw_tx_ring.skbs) 1641 goto err; 1642 } 1643 1644 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms); 1645 if (rc) 1646 goto err; 1647 1648 return 0; 1649 1650 err: 1651 qede_free_mem_txq(edev, txq); 1652 return -ENOMEM; 1653 } 1654 1655 /* This function frees all memory of a single fp */ 1656 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1657 { 1658 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1659 1660 if (fp->type & QEDE_FASTPATH_RX) 1661 qede_free_mem_rxq(edev, fp->rxq); 1662 1663 if (fp->type & QEDE_FASTPATH_XDP) 1664 qede_free_mem_txq(edev, fp->xdp_tx); 1665 1666 if (fp->type & QEDE_FASTPATH_TX) { 1667 int cos; 1668 1669 for_each_cos_in_txq(edev, cos) 1670 qede_free_mem_txq(edev, &fp->txq[cos]); 1671 } 1672 } 1673 1674 /* This function allocates all memory needed for a single fp (i.e. an entity 1675 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1676 */ 1677 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1678 { 1679 int rc = 0; 1680 1681 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1682 if (rc) 1683 goto out; 1684 1685 if (fp->type & QEDE_FASTPATH_RX) { 1686 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1687 if (rc) 1688 goto out; 1689 } 1690 1691 if (fp->type & QEDE_FASTPATH_XDP) { 1692 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1693 if (rc) 1694 goto out; 1695 } 1696 1697 if (fp->type & QEDE_FASTPATH_TX) { 1698 int cos; 1699 1700 for_each_cos_in_txq(edev, cos) { 1701 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1702 if (rc) 1703 goto out; 1704 } 1705 } 1706 1707 out: 1708 return rc; 1709 } 1710 1711 static void qede_free_mem_load(struct qede_dev *edev) 1712 { 1713 int i; 1714 1715 for_each_queue(i) { 1716 struct qede_fastpath *fp = &edev->fp_array[i]; 1717 1718 qede_free_mem_fp(edev, fp); 1719 } 1720 } 1721 1722 /* This function allocates all qede memory at NIC load. */ 1723 static int qede_alloc_mem_load(struct qede_dev *edev) 1724 { 1725 int rc = 0, queue_id; 1726 1727 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1728 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1729 1730 rc = qede_alloc_mem_fp(edev, fp); 1731 if (rc) { 1732 DP_ERR(edev, 1733 "Failed to allocate memory for fastpath - rss id = %d\n", 1734 queue_id); 1735 qede_free_mem_load(edev); 1736 return rc; 1737 } 1738 } 1739 1740 return 0; 1741 } 1742 1743 static void qede_empty_tx_queue(struct qede_dev *edev, 1744 struct qede_tx_queue *txq) 1745 { 1746 unsigned int pkts_compl = 0, bytes_compl = 0; 1747 struct netdev_queue *netdev_txq; 1748 int rc, len = 0; 1749 1750 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1751 1752 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1753 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1754 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1755 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1756 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1757 qed_chain_get_prod_idx(&txq->tx_pbl)); 1758 1759 rc = qede_free_tx_pkt(edev, txq, &len); 1760 if (rc) { 1761 DP_NOTICE(edev, 1762 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1763 txq->index, 1764 qed_chain_get_cons_idx(&txq->tx_pbl), 1765 qed_chain_get_prod_idx(&txq->tx_pbl)); 1766 break; 1767 } 1768 1769 bytes_compl += len; 1770 pkts_compl++; 1771 txq->sw_tx_cons++; 1772 } 1773 1774 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1775 } 1776 1777 static void qede_empty_tx_queues(struct qede_dev *edev) 1778 { 1779 int i; 1780 1781 for_each_queue(i) 1782 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1783 int cos; 1784 1785 for_each_cos_in_txq(edev, cos) { 1786 struct qede_fastpath *fp; 1787 1788 fp = &edev->fp_array[i]; 1789 qede_empty_tx_queue(edev, 1790 &fp->txq[cos]); 1791 } 1792 } 1793 } 1794 1795 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1796 static void qede_init_fp(struct qede_dev *edev) 1797 { 1798 int queue_id, rxq_index = 0, txq_index = 0; 1799 struct qede_fastpath *fp; 1800 bool init_xdp = false; 1801 1802 for_each_queue(queue_id) { 1803 fp = &edev->fp_array[queue_id]; 1804 1805 fp->edev = edev; 1806 fp->id = queue_id; 1807 1808 if (fp->type & QEDE_FASTPATH_XDP) { 1809 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1810 rxq_index); 1811 fp->xdp_tx->is_xdp = 1; 1812 1813 spin_lock_init(&fp->xdp_tx->xdp_tx_lock); 1814 init_xdp = true; 1815 } 1816 1817 if (fp->type & QEDE_FASTPATH_RX) { 1818 fp->rxq->rxq_id = rxq_index++; 1819 1820 /* Determine how to map buffers for this queue */ 1821 if (fp->type & QEDE_FASTPATH_XDP) 1822 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1823 else 1824 fp->rxq->data_direction = DMA_FROM_DEVICE; 1825 fp->rxq->dev = &edev->pdev->dev; 1826 1827 /* Driver have no error path from here */ 1828 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1829 fp->rxq->rxq_id, 0) < 0); 1830 1831 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq, 1832 MEM_TYPE_PAGE_ORDER0, 1833 NULL)) { 1834 DP_NOTICE(edev, 1835 "Failed to register XDP memory model\n"); 1836 } 1837 } 1838 1839 if (fp->type & QEDE_FASTPATH_TX) { 1840 int cos; 1841 1842 for_each_cos_in_txq(edev, cos) { 1843 struct qede_tx_queue *txq = &fp->txq[cos]; 1844 u16 ndev_tx_id; 1845 1846 txq->cos = cos; 1847 txq->index = txq_index; 1848 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1849 txq->ndev_txq_id = ndev_tx_id; 1850 1851 if (edev->dev_info.is_legacy) 1852 txq->is_legacy = true; 1853 txq->dev = &edev->pdev->dev; 1854 } 1855 1856 txq_index++; 1857 } 1858 1859 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1860 edev->ndev->name, queue_id); 1861 } 1862 1863 if (init_xdp) { 1864 edev->total_xdp_queues = QEDE_RSS_COUNT(edev); 1865 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues); 1866 } 1867 } 1868 1869 static int qede_set_real_num_queues(struct qede_dev *edev) 1870 { 1871 int rc = 0; 1872 1873 rc = netif_set_real_num_tx_queues(edev->ndev, 1874 QEDE_TSS_COUNT(edev) * 1875 edev->dev_info.num_tc); 1876 if (rc) { 1877 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1878 return rc; 1879 } 1880 1881 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1882 if (rc) { 1883 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1884 return rc; 1885 } 1886 1887 return 0; 1888 } 1889 1890 static void qede_napi_disable_remove(struct qede_dev *edev) 1891 { 1892 int i; 1893 1894 for_each_queue(i) { 1895 napi_disable(&edev->fp_array[i].napi); 1896 1897 netif_napi_del(&edev->fp_array[i].napi); 1898 } 1899 } 1900 1901 static void qede_napi_add_enable(struct qede_dev *edev) 1902 { 1903 int i; 1904 1905 /* Add NAPI objects */ 1906 for_each_queue(i) { 1907 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll); 1908 napi_enable(&edev->fp_array[i].napi); 1909 } 1910 } 1911 1912 static void qede_sync_free_irqs(struct qede_dev *edev) 1913 { 1914 int i; 1915 1916 for (i = 0; i < edev->int_info.used_cnt; i++) { 1917 if (edev->int_info.msix_cnt) { 1918 free_irq(edev->int_info.msix[i].vector, 1919 &edev->fp_array[i]); 1920 } else { 1921 edev->ops->common->simd_handler_clean(edev->cdev, i); 1922 } 1923 } 1924 1925 edev->int_info.used_cnt = 0; 1926 edev->int_info.msix_cnt = 0; 1927 } 1928 1929 static int qede_req_msix_irqs(struct qede_dev *edev) 1930 { 1931 int i, rc; 1932 1933 /* Sanitize number of interrupts == number of prepared RSS queues */ 1934 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1935 DP_ERR(edev, 1936 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1937 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1938 return -EINVAL; 1939 } 1940 1941 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1942 #ifdef CONFIG_RFS_ACCEL 1943 struct qede_fastpath *fp = &edev->fp_array[i]; 1944 1945 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1946 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1947 edev->int_info.msix[i].vector); 1948 if (rc) { 1949 DP_ERR(edev, "Failed to add CPU rmap\n"); 1950 qede_free_arfs(edev); 1951 } 1952 } 1953 #endif 1954 rc = request_irq(edev->int_info.msix[i].vector, 1955 qede_msix_fp_int, 0, edev->fp_array[i].name, 1956 &edev->fp_array[i]); 1957 if (rc) { 1958 DP_ERR(edev, "Request fp %d irq failed\n", i); 1959 #ifdef CONFIG_RFS_ACCEL 1960 if (edev->ndev->rx_cpu_rmap) 1961 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 1962 1963 edev->ndev->rx_cpu_rmap = NULL; 1964 #endif 1965 qede_sync_free_irqs(edev); 1966 return rc; 1967 } 1968 DP_VERBOSE(edev, NETIF_MSG_INTR, 1969 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1970 edev->fp_array[i].name, i, 1971 &edev->fp_array[i]); 1972 edev->int_info.used_cnt++; 1973 } 1974 1975 return 0; 1976 } 1977 1978 static void qede_simd_fp_handler(void *cookie) 1979 { 1980 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1981 1982 napi_schedule_irqoff(&fp->napi); 1983 } 1984 1985 static int qede_setup_irqs(struct qede_dev *edev) 1986 { 1987 int i, rc = 0; 1988 1989 /* Learn Interrupt configuration */ 1990 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1991 if (rc) 1992 return rc; 1993 1994 if (edev->int_info.msix_cnt) { 1995 rc = qede_req_msix_irqs(edev); 1996 if (rc) 1997 return rc; 1998 edev->ndev->irq = edev->int_info.msix[0].vector; 1999 } else { 2000 const struct qed_common_ops *ops; 2001 2002 /* qed should learn receive the RSS ids and callbacks */ 2003 ops = edev->ops->common; 2004 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 2005 ops->simd_handler_config(edev->cdev, 2006 &edev->fp_array[i], i, 2007 qede_simd_fp_handler); 2008 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 2009 } 2010 return 0; 2011 } 2012 2013 static int qede_drain_txq(struct qede_dev *edev, 2014 struct qede_tx_queue *txq, bool allow_drain) 2015 { 2016 int rc, cnt = 1000; 2017 2018 while (txq->sw_tx_cons != txq->sw_tx_prod) { 2019 if (!cnt) { 2020 if (allow_drain) { 2021 DP_NOTICE(edev, 2022 "Tx queue[%d] is stuck, requesting MCP to drain\n", 2023 txq->index); 2024 rc = edev->ops->common->drain(edev->cdev); 2025 if (rc) 2026 return rc; 2027 return qede_drain_txq(edev, txq, false); 2028 } 2029 DP_NOTICE(edev, 2030 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 2031 txq->index, txq->sw_tx_prod, 2032 txq->sw_tx_cons); 2033 return -ENODEV; 2034 } 2035 cnt--; 2036 usleep_range(1000, 2000); 2037 barrier(); 2038 } 2039 2040 /* FW finished processing, wait for HW to transmit all tx packets */ 2041 usleep_range(1000, 2000); 2042 2043 return 0; 2044 } 2045 2046 static int qede_stop_txq(struct qede_dev *edev, 2047 struct qede_tx_queue *txq, int rss_id) 2048 { 2049 /* delete doorbell from doorbell recovery mechanism */ 2050 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 2051 &txq->tx_db); 2052 2053 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 2054 } 2055 2056 static int qede_stop_queues(struct qede_dev *edev) 2057 { 2058 struct qed_update_vport_params *vport_update_params; 2059 struct qed_dev *cdev = edev->cdev; 2060 struct qede_fastpath *fp; 2061 int rc, i; 2062 2063 /* Disable the vport */ 2064 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2065 if (!vport_update_params) 2066 return -ENOMEM; 2067 2068 vport_update_params->vport_id = 0; 2069 vport_update_params->update_vport_active_flg = 1; 2070 vport_update_params->vport_active_flg = 0; 2071 vport_update_params->update_rss_flg = 0; 2072 2073 rc = edev->ops->vport_update(cdev, vport_update_params); 2074 vfree(vport_update_params); 2075 2076 if (rc) { 2077 DP_ERR(edev, "Failed to update vport\n"); 2078 return rc; 2079 } 2080 2081 /* Flush Tx queues. If needed, request drain from MCP */ 2082 for_each_queue(i) { 2083 fp = &edev->fp_array[i]; 2084 2085 if (fp->type & QEDE_FASTPATH_TX) { 2086 int cos; 2087 2088 for_each_cos_in_txq(edev, cos) { 2089 rc = qede_drain_txq(edev, &fp->txq[cos], true); 2090 if (rc) 2091 return rc; 2092 } 2093 } 2094 2095 if (fp->type & QEDE_FASTPATH_XDP) { 2096 rc = qede_drain_txq(edev, fp->xdp_tx, true); 2097 if (rc) 2098 return rc; 2099 } 2100 } 2101 2102 /* Stop all Queues in reverse order */ 2103 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 2104 fp = &edev->fp_array[i]; 2105 2106 /* Stop the Tx Queue(s) */ 2107 if (fp->type & QEDE_FASTPATH_TX) { 2108 int cos; 2109 2110 for_each_cos_in_txq(edev, cos) { 2111 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2112 if (rc) 2113 return rc; 2114 } 2115 } 2116 2117 /* Stop the Rx Queue */ 2118 if (fp->type & QEDE_FASTPATH_RX) { 2119 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2120 if (rc) { 2121 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2122 return rc; 2123 } 2124 } 2125 2126 /* Stop the XDP forwarding queue */ 2127 if (fp->type & QEDE_FASTPATH_XDP) { 2128 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2129 if (rc) 2130 return rc; 2131 2132 bpf_prog_put(fp->rxq->xdp_prog); 2133 } 2134 } 2135 2136 /* Stop the vport */ 2137 rc = edev->ops->vport_stop(cdev, 0); 2138 if (rc) 2139 DP_ERR(edev, "Failed to stop VPORT\n"); 2140 2141 return rc; 2142 } 2143 2144 static int qede_start_txq(struct qede_dev *edev, 2145 struct qede_fastpath *fp, 2146 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2147 { 2148 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2149 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2150 struct qed_queue_start_common_params params; 2151 struct qed_txq_start_ret_params ret_params; 2152 int rc; 2153 2154 memset(¶ms, 0, sizeof(params)); 2155 memset(&ret_params, 0, sizeof(ret_params)); 2156 2157 /* Let the XDP queue share the queue-zone with one of the regular txq. 2158 * We don't really care about its coalescing. 2159 */ 2160 if (txq->is_xdp) 2161 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2162 else 2163 params.queue_id = txq->index; 2164 2165 params.p_sb = fp->sb_info; 2166 params.sb_idx = sb_idx; 2167 params.tc = txq->cos; 2168 2169 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2170 page_cnt, &ret_params); 2171 if (rc) { 2172 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2173 return rc; 2174 } 2175 2176 txq->doorbell_addr = ret_params.p_doorbell; 2177 txq->handle = ret_params.p_handle; 2178 2179 /* Determine the FW consumer address associated */ 2180 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2181 2182 /* Prepare the doorbell parameters */ 2183 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2184 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2185 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2186 DQ_XCM_ETH_TX_BD_PROD_CMD); 2187 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2188 2189 /* register doorbell with doorbell recovery mechanism */ 2190 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2191 &txq->tx_db, DB_REC_WIDTH_32B, 2192 DB_REC_KERNEL); 2193 2194 return rc; 2195 } 2196 2197 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2198 { 2199 int vlan_removal_en = 1; 2200 struct qed_dev *cdev = edev->cdev; 2201 struct qed_dev_info *qed_info = &edev->dev_info.common; 2202 struct qed_update_vport_params *vport_update_params; 2203 struct qed_queue_start_common_params q_params; 2204 struct qed_start_vport_params start = {0}; 2205 int rc, i; 2206 2207 if (!edev->num_queues) { 2208 DP_ERR(edev, 2209 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2210 return -EINVAL; 2211 } 2212 2213 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2214 if (!vport_update_params) 2215 return -ENOMEM; 2216 2217 start.handle_ptp_pkts = !!(edev->ptp); 2218 start.gro_enable = !edev->gro_disable; 2219 start.mtu = edev->ndev->mtu; 2220 start.vport_id = 0; 2221 start.drop_ttl0 = true; 2222 start.remove_inner_vlan = vlan_removal_en; 2223 start.clear_stats = clear_stats; 2224 2225 rc = edev->ops->vport_start(cdev, &start); 2226 2227 if (rc) { 2228 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2229 goto out; 2230 } 2231 2232 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2233 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2234 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2235 2236 for_each_queue(i) { 2237 struct qede_fastpath *fp = &edev->fp_array[i]; 2238 dma_addr_t p_phys_table; 2239 u32 page_cnt; 2240 2241 if (fp->type & QEDE_FASTPATH_RX) { 2242 struct qed_rxq_start_ret_params ret_params; 2243 struct qede_rx_queue *rxq = fp->rxq; 2244 __le16 *val; 2245 2246 memset(&ret_params, 0, sizeof(ret_params)); 2247 memset(&q_params, 0, sizeof(q_params)); 2248 q_params.queue_id = rxq->rxq_id; 2249 q_params.vport_id = 0; 2250 q_params.p_sb = fp->sb_info; 2251 q_params.sb_idx = RX_PI; 2252 2253 p_phys_table = 2254 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2255 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2256 2257 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2258 rxq->rx_buf_size, 2259 rxq->rx_bd_ring.p_phys_addr, 2260 p_phys_table, 2261 page_cnt, &ret_params); 2262 if (rc) { 2263 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2264 rc); 2265 goto out; 2266 } 2267 2268 /* Use the return parameters */ 2269 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2270 rxq->handle = ret_params.p_handle; 2271 2272 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2273 rxq->hw_cons_ptr = val; 2274 2275 qede_update_rx_prod(edev, rxq); 2276 } 2277 2278 if (fp->type & QEDE_FASTPATH_XDP) { 2279 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2280 if (rc) 2281 goto out; 2282 2283 bpf_prog_add(edev->xdp_prog, 1); 2284 fp->rxq->xdp_prog = edev->xdp_prog; 2285 } 2286 2287 if (fp->type & QEDE_FASTPATH_TX) { 2288 int cos; 2289 2290 for_each_cos_in_txq(edev, cos) { 2291 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2292 TX_PI(cos)); 2293 if (rc) 2294 goto out; 2295 } 2296 } 2297 } 2298 2299 /* Prepare and send the vport enable */ 2300 vport_update_params->vport_id = start.vport_id; 2301 vport_update_params->update_vport_active_flg = 1; 2302 vport_update_params->vport_active_flg = 1; 2303 2304 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2305 qed_info->tx_switching) { 2306 vport_update_params->update_tx_switching_flg = 1; 2307 vport_update_params->tx_switching_flg = 1; 2308 } 2309 2310 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2311 &vport_update_params->update_rss_flg); 2312 2313 rc = edev->ops->vport_update(cdev, vport_update_params); 2314 if (rc) 2315 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2316 2317 out: 2318 vfree(vport_update_params); 2319 return rc; 2320 } 2321 2322 enum qede_unload_mode { 2323 QEDE_UNLOAD_NORMAL, 2324 QEDE_UNLOAD_RECOVERY, 2325 }; 2326 2327 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2328 bool is_locked) 2329 { 2330 struct qed_link_params link_params; 2331 int rc; 2332 2333 DP_INFO(edev, "Starting qede unload\n"); 2334 2335 if (!is_locked) 2336 __qede_lock(edev); 2337 2338 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2339 2340 if (mode != QEDE_UNLOAD_RECOVERY) 2341 edev->state = QEDE_STATE_CLOSED; 2342 2343 qede_rdma_dev_event_close(edev); 2344 2345 /* Close OS Tx */ 2346 netif_tx_disable(edev->ndev); 2347 netif_carrier_off(edev->ndev); 2348 2349 if (mode != QEDE_UNLOAD_RECOVERY) { 2350 /* Reset the link */ 2351 memset(&link_params, 0, sizeof(link_params)); 2352 link_params.link_up = false; 2353 edev->ops->common->set_link(edev->cdev, &link_params); 2354 2355 rc = qede_stop_queues(edev); 2356 if (rc) { 2357 #ifdef CONFIG_RFS_ACCEL 2358 if (edev->dev_info.common.b_arfs_capable) { 2359 qede_poll_for_freeing_arfs_filters(edev); 2360 if (edev->ndev->rx_cpu_rmap) 2361 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 2362 2363 edev->ndev->rx_cpu_rmap = NULL; 2364 } 2365 #endif 2366 qede_sync_free_irqs(edev); 2367 goto out; 2368 } 2369 2370 DP_INFO(edev, "Stopped Queues\n"); 2371 } 2372 2373 qede_vlan_mark_nonconfigured(edev); 2374 edev->ops->fastpath_stop(edev->cdev); 2375 2376 if (edev->dev_info.common.b_arfs_capable) { 2377 qede_poll_for_freeing_arfs_filters(edev); 2378 qede_free_arfs(edev); 2379 } 2380 2381 /* Release the interrupts */ 2382 qede_sync_free_irqs(edev); 2383 edev->ops->common->set_fp_int(edev->cdev, 0); 2384 2385 qede_napi_disable_remove(edev); 2386 2387 if (mode == QEDE_UNLOAD_RECOVERY) 2388 qede_empty_tx_queues(edev); 2389 2390 qede_free_mem_load(edev); 2391 qede_free_fp_array(edev); 2392 2393 out: 2394 if (!is_locked) 2395 __qede_unlock(edev); 2396 2397 if (mode != QEDE_UNLOAD_RECOVERY) 2398 DP_NOTICE(edev, "Link is down\n"); 2399 2400 edev->ptp_skip_txts = 0; 2401 2402 DP_INFO(edev, "Ending qede unload\n"); 2403 } 2404 2405 enum qede_load_mode { 2406 QEDE_LOAD_NORMAL, 2407 QEDE_LOAD_RELOAD, 2408 QEDE_LOAD_RECOVERY, 2409 }; 2410 2411 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2412 bool is_locked) 2413 { 2414 struct qed_link_params link_params; 2415 struct ethtool_coalesce coal = {}; 2416 u8 num_tc; 2417 int rc, i; 2418 2419 DP_INFO(edev, "Starting qede load\n"); 2420 2421 if (!is_locked) 2422 __qede_lock(edev); 2423 2424 rc = qede_set_num_queues(edev); 2425 if (rc) 2426 goto out; 2427 2428 rc = qede_alloc_fp_array(edev); 2429 if (rc) 2430 goto out; 2431 2432 qede_init_fp(edev); 2433 2434 rc = qede_alloc_mem_load(edev); 2435 if (rc) 2436 goto err1; 2437 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2438 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2439 2440 rc = qede_set_real_num_queues(edev); 2441 if (rc) 2442 goto err2; 2443 2444 if (qede_alloc_arfs(edev)) { 2445 edev->ndev->features &= ~NETIF_F_NTUPLE; 2446 edev->dev_info.common.b_arfs_capable = false; 2447 } 2448 2449 qede_napi_add_enable(edev); 2450 DP_INFO(edev, "Napi added and enabled\n"); 2451 2452 rc = qede_setup_irqs(edev); 2453 if (rc) 2454 goto err3; 2455 DP_INFO(edev, "Setup IRQs succeeded\n"); 2456 2457 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2458 if (rc) 2459 goto err4; 2460 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2461 2462 num_tc = netdev_get_num_tc(edev->ndev); 2463 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2464 qede_setup_tc(edev->ndev, num_tc); 2465 2466 /* Program un-configured VLANs */ 2467 qede_configure_vlan_filters(edev); 2468 2469 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2470 2471 /* Ask for link-up using current configuration */ 2472 memset(&link_params, 0, sizeof(link_params)); 2473 link_params.link_up = true; 2474 edev->ops->common->set_link(edev->cdev, &link_params); 2475 2476 edev->state = QEDE_STATE_OPEN; 2477 2478 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS; 2479 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS; 2480 2481 for_each_queue(i) { 2482 if (edev->coal_entry[i].isvalid) { 2483 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc; 2484 coal.tx_coalesce_usecs = edev->coal_entry[i].txc; 2485 } 2486 __qede_unlock(edev); 2487 qede_set_per_coalesce(edev->ndev, i, &coal); 2488 __qede_lock(edev); 2489 } 2490 DP_INFO(edev, "Ending successfully qede load\n"); 2491 2492 goto out; 2493 err4: 2494 qede_sync_free_irqs(edev); 2495 err3: 2496 qede_napi_disable_remove(edev); 2497 err2: 2498 qede_free_mem_load(edev); 2499 err1: 2500 edev->ops->common->set_fp_int(edev->cdev, 0); 2501 qede_free_fp_array(edev); 2502 edev->num_queues = 0; 2503 edev->fp_num_tx = 0; 2504 edev->fp_num_rx = 0; 2505 out: 2506 if (!is_locked) 2507 __qede_unlock(edev); 2508 2509 return rc; 2510 } 2511 2512 /* 'func' should be able to run between unload and reload assuming interface 2513 * is actually running, or afterwards in case it's currently DOWN. 2514 */ 2515 void qede_reload(struct qede_dev *edev, 2516 struct qede_reload_args *args, bool is_locked) 2517 { 2518 if (!is_locked) 2519 __qede_lock(edev); 2520 2521 /* Since qede_lock is held, internal state wouldn't change even 2522 * if netdev state would start transitioning. Check whether current 2523 * internal configuration indicates device is up, then reload. 2524 */ 2525 if (edev->state == QEDE_STATE_OPEN) { 2526 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2527 if (args) 2528 args->func(edev, args); 2529 qede_load(edev, QEDE_LOAD_RELOAD, true); 2530 2531 /* Since no one is going to do it for us, re-configure */ 2532 qede_config_rx_mode(edev->ndev); 2533 } else if (args) { 2534 args->func(edev, args); 2535 } 2536 2537 if (!is_locked) 2538 __qede_unlock(edev); 2539 } 2540 2541 /* called with rtnl_lock */ 2542 static int qede_open(struct net_device *ndev) 2543 { 2544 struct qede_dev *edev = netdev_priv(ndev); 2545 int rc; 2546 2547 netif_carrier_off(ndev); 2548 2549 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2550 2551 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2552 if (rc) 2553 return rc; 2554 2555 udp_tunnel_nic_reset_ntf(ndev); 2556 2557 edev->ops->common->update_drv_state(edev->cdev, true); 2558 2559 return 0; 2560 } 2561 2562 static int qede_close(struct net_device *ndev) 2563 { 2564 struct qede_dev *edev = netdev_priv(ndev); 2565 2566 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2567 2568 if (edev->cdev) 2569 edev->ops->common->update_drv_state(edev->cdev, false); 2570 2571 return 0; 2572 } 2573 2574 static void qede_link_update(void *dev, struct qed_link_output *link) 2575 { 2576 struct qede_dev *edev = dev; 2577 2578 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2579 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2580 return; 2581 } 2582 2583 if (link->link_up) { 2584 if (!netif_carrier_ok(edev->ndev)) { 2585 DP_NOTICE(edev, "Link is up\n"); 2586 netif_tx_start_all_queues(edev->ndev); 2587 netif_carrier_on(edev->ndev); 2588 qede_rdma_dev_event_open(edev); 2589 } 2590 } else { 2591 if (netif_carrier_ok(edev->ndev)) { 2592 DP_NOTICE(edev, "Link is down\n"); 2593 netif_tx_disable(edev->ndev); 2594 netif_carrier_off(edev->ndev); 2595 qede_rdma_dev_event_close(edev); 2596 } 2597 } 2598 } 2599 2600 static void qede_schedule_recovery_handler(void *dev) 2601 { 2602 struct qede_dev *edev = dev; 2603 2604 if (edev->state == QEDE_STATE_RECOVERY) { 2605 DP_NOTICE(edev, 2606 "Avoid scheduling a recovery handling since already in recovery state\n"); 2607 return; 2608 } 2609 2610 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2611 schedule_delayed_work(&edev->sp_task, 0); 2612 2613 DP_INFO(edev, "Scheduled a recovery handler\n"); 2614 } 2615 2616 static void qede_recovery_failed(struct qede_dev *edev) 2617 { 2618 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2619 2620 netif_device_detach(edev->ndev); 2621 2622 if (edev->cdev) 2623 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2624 } 2625 2626 static void qede_recovery_handler(struct qede_dev *edev) 2627 { 2628 u32 curr_state = edev->state; 2629 int rc; 2630 2631 DP_NOTICE(edev, "Starting a recovery process\n"); 2632 2633 /* No need to acquire first the qede_lock since is done by qede_sp_task 2634 * before calling this function. 2635 */ 2636 edev->state = QEDE_STATE_RECOVERY; 2637 2638 edev->ops->common->recovery_prolog(edev->cdev); 2639 2640 if (curr_state == QEDE_STATE_OPEN) 2641 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2642 2643 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2644 2645 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2646 IS_VF(edev), QEDE_PROBE_RECOVERY); 2647 if (rc) { 2648 edev->cdev = NULL; 2649 goto err; 2650 } 2651 2652 if (curr_state == QEDE_STATE_OPEN) { 2653 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2654 if (rc) 2655 goto err; 2656 2657 qede_config_rx_mode(edev->ndev); 2658 udp_tunnel_nic_reset_ntf(edev->ndev); 2659 } 2660 2661 edev->state = curr_state; 2662 2663 DP_NOTICE(edev, "Recovery handling is done\n"); 2664 2665 return; 2666 2667 err: 2668 qede_recovery_failed(edev); 2669 } 2670 2671 static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2672 { 2673 struct qed_dev *cdev = edev->cdev; 2674 2675 DP_NOTICE(edev, 2676 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2677 edev->err_flags); 2678 2679 /* Get a call trace of the flow that led to the error */ 2680 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2681 2682 /* Prevent HW attentions from being reasserted */ 2683 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2684 edev->ops->common->attn_clr_enable(cdev, true); 2685 2686 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2687 } 2688 2689 static void qede_generic_hw_err_handler(struct qede_dev *edev) 2690 { 2691 DP_NOTICE(edev, 2692 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2693 edev->err_flags); 2694 2695 if (edev->devlink) { 2696 DP_NOTICE(edev, "Reporting fatal error to devlink\n"); 2697 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type); 2698 } 2699 2700 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2701 2702 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2703 } 2704 2705 static void qede_set_hw_err_flags(struct qede_dev *edev, 2706 enum qed_hw_err_type err_type) 2707 { 2708 unsigned long err_flags = 0; 2709 2710 switch (err_type) { 2711 case QED_HW_ERR_DMAE_FAIL: 2712 set_bit(QEDE_ERR_WARN, &err_flags); 2713 fallthrough; 2714 case QED_HW_ERR_MFW_RESP_FAIL: 2715 case QED_HW_ERR_HW_ATTN: 2716 case QED_HW_ERR_RAMROD_FAIL: 2717 case QED_HW_ERR_FW_ASSERT: 2718 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2719 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2720 /* make this error as recoverable and start recovery*/ 2721 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags); 2722 break; 2723 2724 default: 2725 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2726 break; 2727 } 2728 2729 edev->err_flags |= err_flags; 2730 } 2731 2732 static void qede_schedule_hw_err_handler(void *dev, 2733 enum qed_hw_err_type err_type) 2734 { 2735 struct qede_dev *edev = dev; 2736 2737 /* Fan failure cannot be masked by handling of another HW error or by a 2738 * concurrent recovery process. 2739 */ 2740 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2741 edev->state == QEDE_STATE_RECOVERY) && 2742 err_type != QED_HW_ERR_FAN_FAIL) { 2743 DP_INFO(edev, 2744 "Avoid scheduling an error handling while another HW error is being handled\n"); 2745 return; 2746 } 2747 2748 if (err_type >= QED_HW_ERR_LAST) { 2749 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2750 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2751 return; 2752 } 2753 2754 edev->last_err_type = err_type; 2755 qede_set_hw_err_flags(edev, err_type); 2756 qede_atomic_hw_err_handler(edev); 2757 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2758 schedule_delayed_work(&edev->sp_task, 0); 2759 2760 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2761 } 2762 2763 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2764 { 2765 struct netdev_queue *netdev_txq; 2766 2767 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2768 if (netif_xmit_stopped(netdev_txq)) 2769 return true; 2770 2771 return false; 2772 } 2773 2774 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2775 { 2776 struct qede_dev *edev = dev; 2777 struct netdev_hw_addr *ha; 2778 int i; 2779 2780 if (edev->ndev->features & NETIF_F_IP_CSUM) 2781 data->feat_flags |= QED_TLV_IP_CSUM; 2782 if (edev->ndev->features & NETIF_F_TSO) 2783 data->feat_flags |= QED_TLV_LSO; 2784 2785 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2786 eth_zero_addr(data->mac[1]); 2787 eth_zero_addr(data->mac[2]); 2788 /* Copy the first two UC macs */ 2789 netif_addr_lock_bh(edev->ndev); 2790 i = 1; 2791 netdev_for_each_uc_addr(ha, edev->ndev) { 2792 ether_addr_copy(data->mac[i++], ha->addr); 2793 if (i == QED_TLV_MAC_COUNT) 2794 break; 2795 } 2796 2797 netif_addr_unlock_bh(edev->ndev); 2798 } 2799 2800 static void qede_get_eth_tlv_data(void *dev, void *data) 2801 { 2802 struct qed_mfw_tlv_eth *etlv = data; 2803 struct qede_dev *edev = dev; 2804 struct qede_fastpath *fp; 2805 int i; 2806 2807 etlv->lso_maxoff_size = 0XFFFF; 2808 etlv->lso_maxoff_size_set = true; 2809 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2810 etlv->lso_minseg_size_set = true; 2811 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2812 etlv->prom_mode_set = true; 2813 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2814 etlv->tx_descr_size_set = true; 2815 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2816 etlv->rx_descr_size_set = true; 2817 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2818 etlv->iov_offload_set = true; 2819 2820 /* Fill information regarding queues; Should be done under the qede 2821 * lock to guarantee those don't change beneath our feet. 2822 */ 2823 etlv->txqs_empty = true; 2824 etlv->rxqs_empty = true; 2825 etlv->num_txqs_full = 0; 2826 etlv->num_rxqs_full = 0; 2827 2828 __qede_lock(edev); 2829 for_each_queue(i) { 2830 fp = &edev->fp_array[i]; 2831 if (fp->type & QEDE_FASTPATH_TX) { 2832 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2833 2834 if (txq->sw_tx_cons != txq->sw_tx_prod) 2835 etlv->txqs_empty = false; 2836 if (qede_is_txq_full(edev, txq)) 2837 etlv->num_txqs_full++; 2838 } 2839 if (fp->type & QEDE_FASTPATH_RX) { 2840 if (qede_has_rx_work(fp->rxq)) 2841 etlv->rxqs_empty = false; 2842 2843 /* This one is a bit tricky; Firmware might stop 2844 * placing packets if ring is not yet full. 2845 * Give an approximation. 2846 */ 2847 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2848 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2849 RX_RING_SIZE - 100) 2850 etlv->num_rxqs_full++; 2851 } 2852 } 2853 __qede_unlock(edev); 2854 2855 etlv->txqs_empty_set = true; 2856 etlv->rxqs_empty_set = true; 2857 etlv->num_txqs_full_set = true; 2858 etlv->num_rxqs_full_set = true; 2859 } 2860 2861 /** 2862 * qede_io_error_detected(): Called when PCI error is detected 2863 * 2864 * @pdev: Pointer to PCI device 2865 * @state: The current pci connection state 2866 * 2867 *Return: pci_ers_result_t. 2868 * 2869 * This function is called after a PCI bus error affecting 2870 * this device has been detected. 2871 */ 2872 static pci_ers_result_t 2873 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2874 { 2875 struct net_device *dev = pci_get_drvdata(pdev); 2876 struct qede_dev *edev = netdev_priv(dev); 2877 2878 if (!edev) 2879 return PCI_ERS_RESULT_NONE; 2880 2881 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2882 2883 __qede_lock(edev); 2884 if (edev->state == QEDE_STATE_RECOVERY) { 2885 DP_NOTICE(edev, "Device already in the recovery state\n"); 2886 __qede_unlock(edev); 2887 return PCI_ERS_RESULT_NONE; 2888 } 2889 2890 /* PF handles the recovery of its VFs */ 2891 if (IS_VF(edev)) { 2892 DP_VERBOSE(edev, QED_MSG_IOV, 2893 "VF recovery is handled by its PF\n"); 2894 __qede_unlock(edev); 2895 return PCI_ERS_RESULT_RECOVERED; 2896 } 2897 2898 /* Close OS Tx */ 2899 netif_tx_disable(edev->ndev); 2900 netif_carrier_off(edev->ndev); 2901 2902 set_bit(QEDE_SP_AER, &edev->sp_flags); 2903 schedule_delayed_work(&edev->sp_task, 0); 2904 2905 __qede_unlock(edev); 2906 2907 return PCI_ERS_RESULT_CAN_RECOVER; 2908 } 2909