1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/udp_tunnel.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39 #include <linux/qed/qede_roce.h>
40 #include "qede.h"
41 
42 static char version[] =
43 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44 
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52 
53 static const struct qed_eth_ops *qed_ops;
54 
55 #define CHIP_NUM_57980S_40		0x1634
56 #define CHIP_NUM_57980S_10		0x1666
57 #define CHIP_NUM_57980S_MF		0x1636
58 #define CHIP_NUM_57980S_100		0x1644
59 #define CHIP_NUM_57980S_50		0x1654
60 #define CHIP_NUM_57980S_25		0x1656
61 #define CHIP_NUM_57980S_IOV		0x1664
62 
63 #ifndef PCI_DEVICE_ID_NX2_57980E
64 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
65 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
66 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
67 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
68 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
69 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
70 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
71 #endif
72 
73 enum qede_pci_private {
74 	QEDE_PRIVATE_PF,
75 	QEDE_PRIVATE_VF
76 };
77 
78 static const struct pci_device_id qede_pci_tbl[] = {
79 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 	{ 0 }
89 };
90 
91 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
92 
93 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
94 
95 #define TX_TIMEOUT		(5 * HZ)
96 
97 static void qede_remove(struct pci_dev *pdev);
98 static int qede_alloc_rx_buffer(struct qede_dev *edev,
99 				struct qede_rx_queue *rxq);
100 static void qede_link_update(void *dev, struct qed_link_output *link);
101 
102 #ifdef CONFIG_QED_SRIOV
103 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
104 			    __be16 vlan_proto)
105 {
106 	struct qede_dev *edev = netdev_priv(ndev);
107 
108 	if (vlan > 4095) {
109 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
110 		return -EINVAL;
111 	}
112 
113 	if (vlan_proto != htons(ETH_P_8021Q))
114 		return -EPROTONOSUPPORT;
115 
116 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
117 		   vlan, vf);
118 
119 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
120 }
121 
122 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
123 {
124 	struct qede_dev *edev = netdev_priv(ndev);
125 
126 	DP_VERBOSE(edev, QED_MSG_IOV,
127 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
128 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
129 
130 	if (!is_valid_ether_addr(mac)) {
131 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
132 		return -EINVAL;
133 	}
134 
135 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
136 }
137 
138 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
139 {
140 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
141 	struct qed_dev_info *qed_info = &edev->dev_info.common;
142 	int rc;
143 
144 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
145 
146 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
147 
148 	/* Enable/Disable Tx switching for PF */
149 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
150 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
151 		struct qed_update_vport_params params;
152 
153 		memset(&params, 0, sizeof(params));
154 		params.vport_id = 0;
155 		params.update_tx_switching_flg = 1;
156 		params.tx_switching_flg = num_vfs_param ? 1 : 0;
157 		edev->ops->vport_update(edev->cdev, &params);
158 	}
159 
160 	return rc;
161 }
162 #endif
163 
164 static struct pci_driver qede_pci_driver = {
165 	.name = "qede",
166 	.id_table = qede_pci_tbl,
167 	.probe = qede_probe,
168 	.remove = qede_remove,
169 #ifdef CONFIG_QED_SRIOV
170 	.sriov_configure = qede_sriov_configure,
171 #endif
172 };
173 
174 static void qede_force_mac(void *dev, u8 *mac)
175 {
176 	struct qede_dev *edev = dev;
177 
178 	ether_addr_copy(edev->ndev->dev_addr, mac);
179 	ether_addr_copy(edev->primary_mac, mac);
180 }
181 
182 static struct qed_eth_cb_ops qede_ll_ops = {
183 	{
184 		.link_update = qede_link_update,
185 	},
186 	.force_mac = qede_force_mac,
187 };
188 
189 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
190 			     void *ptr)
191 {
192 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
193 	struct ethtool_drvinfo drvinfo;
194 	struct qede_dev *edev;
195 
196 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
197 		goto done;
198 
199 	/* Check whether this is a qede device */
200 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
201 		goto done;
202 
203 	memset(&drvinfo, 0, sizeof(drvinfo));
204 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
205 	if (strcmp(drvinfo.driver, "qede"))
206 		goto done;
207 	edev = netdev_priv(ndev);
208 
209 	switch (event) {
210 	case NETDEV_CHANGENAME:
211 		/* Notify qed of the name change */
212 		if (!edev->ops || !edev->ops->common)
213 			goto done;
214 		edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede");
215 		break;
216 	case NETDEV_CHANGEADDR:
217 		edev = netdev_priv(ndev);
218 		qede_roce_event_changeaddr(edev);
219 		break;
220 	}
221 
222 done:
223 	return NOTIFY_DONE;
224 }
225 
226 static struct notifier_block qede_netdev_notifier = {
227 	.notifier_call = qede_netdev_event,
228 };
229 
230 static
231 int __init qede_init(void)
232 {
233 	int ret;
234 
235 	pr_info("qede_init: %s\n", version);
236 
237 	qed_ops = qed_get_eth_ops();
238 	if (!qed_ops) {
239 		pr_notice("Failed to get qed ethtool operations\n");
240 		return -EINVAL;
241 	}
242 
243 	/* Must register notifier before pci ops, since we might miss
244 	 * interface rename after pci probe and netdev registeration.
245 	 */
246 	ret = register_netdevice_notifier(&qede_netdev_notifier);
247 	if (ret) {
248 		pr_notice("Failed to register netdevice_notifier\n");
249 		qed_put_eth_ops();
250 		return -EINVAL;
251 	}
252 
253 	ret = pci_register_driver(&qede_pci_driver);
254 	if (ret) {
255 		pr_notice("Failed to register driver\n");
256 		unregister_netdevice_notifier(&qede_netdev_notifier);
257 		qed_put_eth_ops();
258 		return -EINVAL;
259 	}
260 
261 	return 0;
262 }
263 
264 static void __exit qede_cleanup(void)
265 {
266 	if (debug & QED_LOG_INFO_MASK)
267 		pr_info("qede_cleanup called\n");
268 
269 	unregister_netdevice_notifier(&qede_netdev_notifier);
270 	pci_unregister_driver(&qede_pci_driver);
271 	qed_put_eth_ops();
272 }
273 
274 module_init(qede_init);
275 module_exit(qede_cleanup);
276 
277 /* -------------------------------------------------------------------------
278  * START OF FAST-PATH
279  * -------------------------------------------------------------------------
280  */
281 
282 /* Unmap the data and free skb */
283 static int qede_free_tx_pkt(struct qede_dev *edev,
284 			    struct qede_tx_queue *txq, int *len)
285 {
286 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
287 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
288 	struct eth_tx_1st_bd *first_bd;
289 	struct eth_tx_bd *tx_data_bd;
290 	int bds_consumed = 0;
291 	int nbds;
292 	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
293 	int i, split_bd_len = 0;
294 
295 	if (unlikely(!skb)) {
296 		DP_ERR(edev,
297 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
298 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
299 		return -1;
300 	}
301 
302 	*len = skb->len;
303 
304 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
305 
306 	bds_consumed++;
307 
308 	nbds = first_bd->data.nbds;
309 
310 	if (data_split) {
311 		struct eth_tx_bd *split = (struct eth_tx_bd *)
312 			qed_chain_consume(&txq->tx_pbl);
313 		split_bd_len = BD_UNMAP_LEN(split);
314 		bds_consumed++;
315 	}
316 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
317 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
318 
319 	/* Unmap the data of the skb frags */
320 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
321 		tx_data_bd = (struct eth_tx_bd *)
322 			qed_chain_consume(&txq->tx_pbl);
323 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
324 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
325 	}
326 
327 	while (bds_consumed++ < nbds)
328 		qed_chain_consume(&txq->tx_pbl);
329 
330 	/* Free skb */
331 	dev_kfree_skb_any(skb);
332 	txq->sw_tx_ring[idx].skb = NULL;
333 	txq->sw_tx_ring[idx].flags = 0;
334 
335 	return 0;
336 }
337 
338 /* Unmap the data and free skb when mapping failed during start_xmit */
339 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
340 				    struct qede_tx_queue *txq,
341 				    struct eth_tx_1st_bd *first_bd,
342 				    int nbd, bool data_split)
343 {
344 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
345 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
346 	struct eth_tx_bd *tx_data_bd;
347 	int i, split_bd_len = 0;
348 
349 	/* Return prod to its position before this skb was handled */
350 	qed_chain_set_prod(&txq->tx_pbl,
351 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
352 
353 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
354 
355 	if (data_split) {
356 		struct eth_tx_bd *split = (struct eth_tx_bd *)
357 					  qed_chain_produce(&txq->tx_pbl);
358 		split_bd_len = BD_UNMAP_LEN(split);
359 		nbd--;
360 	}
361 
362 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
363 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
364 
365 	/* Unmap the data of the skb frags */
366 	for (i = 0; i < nbd; i++) {
367 		tx_data_bd = (struct eth_tx_bd *)
368 			qed_chain_produce(&txq->tx_pbl);
369 		if (tx_data_bd->nbytes)
370 			dma_unmap_page(&edev->pdev->dev,
371 				       BD_UNMAP_ADDR(tx_data_bd),
372 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
373 	}
374 
375 	/* Return again prod to its position before this skb was handled */
376 	qed_chain_set_prod(&txq->tx_pbl,
377 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
378 
379 	/* Free skb */
380 	dev_kfree_skb_any(skb);
381 	txq->sw_tx_ring[idx].skb = NULL;
382 	txq->sw_tx_ring[idx].flags = 0;
383 }
384 
385 static u32 qede_xmit_type(struct qede_dev *edev,
386 			  struct sk_buff *skb, int *ipv6_ext)
387 {
388 	u32 rc = XMIT_L4_CSUM;
389 	__be16 l3_proto;
390 
391 	if (skb->ip_summed != CHECKSUM_PARTIAL)
392 		return XMIT_PLAIN;
393 
394 	l3_proto = vlan_get_protocol(skb);
395 	if (l3_proto == htons(ETH_P_IPV6) &&
396 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
397 		*ipv6_ext = 1;
398 
399 	if (skb->encapsulation)
400 		rc |= XMIT_ENC;
401 
402 	if (skb_is_gso(skb))
403 		rc |= XMIT_LSO;
404 
405 	return rc;
406 }
407 
408 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
409 					 struct eth_tx_2nd_bd *second_bd,
410 					 struct eth_tx_3rd_bd *third_bd)
411 {
412 	u8 l4_proto;
413 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
414 
415 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
416 
417 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
418 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
419 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
420 
421 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
422 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
423 
424 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
425 		l4_proto = ipv6_hdr(skb)->nexthdr;
426 	else
427 		l4_proto = ip_hdr(skb)->protocol;
428 
429 	if (l4_proto == IPPROTO_UDP)
430 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
431 
432 	if (third_bd)
433 		third_bd->data.bitfields |=
434 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
435 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
436 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
437 
438 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
439 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
440 }
441 
442 static int map_frag_to_bd(struct qede_dev *edev,
443 			  skb_frag_t *frag, struct eth_tx_bd *bd)
444 {
445 	dma_addr_t mapping;
446 
447 	/* Map skb non-linear frag data for DMA */
448 	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
449 				   skb_frag_size(frag), DMA_TO_DEVICE);
450 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
451 		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
452 		return -ENOMEM;
453 	}
454 
455 	/* Setup the data pointer of the frag data */
456 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
457 
458 	return 0;
459 }
460 
461 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
462 {
463 	if (is_encap_pkt)
464 		return (skb_inner_transport_header(skb) +
465 			inner_tcp_hdrlen(skb) - skb->data);
466 	else
467 		return (skb_transport_header(skb) +
468 			tcp_hdrlen(skb) - skb->data);
469 }
470 
471 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
472 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
473 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
474 			     u8 xmit_type)
475 {
476 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
477 
478 	if (xmit_type & XMIT_LSO) {
479 		int hlen;
480 
481 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
482 
483 		/* linear payload would require its own BD */
484 		if (skb_headlen(skb) > hlen)
485 			allowed_frags--;
486 	}
487 
488 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
489 }
490 #endif
491 
492 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
493 {
494 	/* wmb makes sure that the BDs data is updated before updating the
495 	 * producer, otherwise FW may read old data from the BDs.
496 	 */
497 	wmb();
498 	barrier();
499 	writel(txq->tx_db.raw, txq->doorbell_addr);
500 
501 	/* mmiowb is needed to synchronize doorbell writes from more than one
502 	 * processor. It guarantees that the write arrives to the device before
503 	 * the queue lock is released and another start_xmit is called (possibly
504 	 * on another CPU). Without this barrier, the next doorbell can bypass
505 	 * this doorbell. This is applicable to IA64/Altix systems.
506 	 */
507 	mmiowb();
508 }
509 
510 /* Main transmit function */
511 static netdev_tx_t qede_start_xmit(struct sk_buff *skb,
512 				   struct net_device *ndev)
513 {
514 	struct qede_dev *edev = netdev_priv(ndev);
515 	struct netdev_queue *netdev_txq;
516 	struct qede_tx_queue *txq;
517 	struct eth_tx_1st_bd *first_bd;
518 	struct eth_tx_2nd_bd *second_bd = NULL;
519 	struct eth_tx_3rd_bd *third_bd = NULL;
520 	struct eth_tx_bd *tx_data_bd = NULL;
521 	u16 txq_index;
522 	u8 nbd = 0;
523 	dma_addr_t mapping;
524 	int rc, frag_idx = 0, ipv6_ext = 0;
525 	u8 xmit_type;
526 	u16 idx;
527 	u16 hlen;
528 	bool data_split = false;
529 
530 	/* Get tx-queue context and netdev index */
531 	txq_index = skb_get_queue_mapping(skb);
532 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
533 	txq = QEDE_TX_QUEUE(edev, txq_index);
534 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
535 
536 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
537 
538 	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
539 
540 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
541 	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
542 		if (skb_linearize(skb)) {
543 			DP_NOTICE(edev,
544 				  "SKB linearization failed - silently dropping this SKB\n");
545 			dev_kfree_skb_any(skb);
546 			return NETDEV_TX_OK;
547 		}
548 	}
549 #endif
550 
551 	/* Fill the entry in the SW ring and the BDs in the FW ring */
552 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
553 	txq->sw_tx_ring[idx].skb = skb;
554 	first_bd = (struct eth_tx_1st_bd *)
555 		   qed_chain_produce(&txq->tx_pbl);
556 	memset(first_bd, 0, sizeof(*first_bd));
557 	first_bd->data.bd_flags.bitfields =
558 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
559 
560 	/* Map skb linear data for DMA and set in the first BD */
561 	mapping = dma_map_single(&edev->pdev->dev, skb->data,
562 				 skb_headlen(skb), DMA_TO_DEVICE);
563 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
564 		DP_NOTICE(edev, "SKB mapping failed\n");
565 		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
566 		qede_update_tx_producer(txq);
567 		return NETDEV_TX_OK;
568 	}
569 	nbd++;
570 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
571 
572 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
573 	 * 3rd BDs.
574 	 */
575 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
576 		second_bd = (struct eth_tx_2nd_bd *)
577 			qed_chain_produce(&txq->tx_pbl);
578 		memset(second_bd, 0, sizeof(*second_bd));
579 
580 		nbd++;
581 		third_bd = (struct eth_tx_3rd_bd *)
582 			qed_chain_produce(&txq->tx_pbl);
583 		memset(third_bd, 0, sizeof(*third_bd));
584 
585 		nbd++;
586 		/* We need to fill in additional data in second_bd... */
587 		tx_data_bd = (struct eth_tx_bd *)second_bd;
588 	}
589 
590 	if (skb_vlan_tag_present(skb)) {
591 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
592 		first_bd->data.bd_flags.bitfields |=
593 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
594 	}
595 
596 	/* Fill the parsing flags & params according to the requested offload */
597 	if (xmit_type & XMIT_L4_CSUM) {
598 		/* We don't re-calculate IP checksum as it is already done by
599 		 * the upper stack
600 		 */
601 		first_bd->data.bd_flags.bitfields |=
602 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
603 
604 		if (xmit_type & XMIT_ENC) {
605 			first_bd->data.bd_flags.bitfields |=
606 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
607 			first_bd->data.bitfields |=
608 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
609 		}
610 
611 		/* Legacy FW had flipped behavior in regard to this bit -
612 		 * I.e., needed to set to prevent FW from touching encapsulated
613 		 * packets when it didn't need to.
614 		 */
615 		if (unlikely(txq->is_legacy))
616 			first_bd->data.bitfields ^=
617 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
618 
619 		/* If the packet is IPv6 with extension header, indicate that
620 		 * to FW and pass few params, since the device cracker doesn't
621 		 * support parsing IPv6 with extension header/s.
622 		 */
623 		if (unlikely(ipv6_ext))
624 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
625 	}
626 
627 	if (xmit_type & XMIT_LSO) {
628 		first_bd->data.bd_flags.bitfields |=
629 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
630 		third_bd->data.lso_mss =
631 			cpu_to_le16(skb_shinfo(skb)->gso_size);
632 
633 		if (unlikely(xmit_type & XMIT_ENC)) {
634 			first_bd->data.bd_flags.bitfields |=
635 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
636 			hlen = qede_get_skb_hlen(skb, true);
637 		} else {
638 			first_bd->data.bd_flags.bitfields |=
639 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
640 			hlen = qede_get_skb_hlen(skb, false);
641 		}
642 
643 		/* @@@TBD - if will not be removed need to check */
644 		third_bd->data.bitfields |=
645 			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
646 
647 		/* Make life easier for FW guys who can't deal with header and
648 		 * data on same BD. If we need to split, use the second bd...
649 		 */
650 		if (unlikely(skb_headlen(skb) > hlen)) {
651 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
652 				   "TSO split header size is %d (%x:%x)\n",
653 				   first_bd->nbytes, first_bd->addr.hi,
654 				   first_bd->addr.lo);
655 
656 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
657 					   le32_to_cpu(first_bd->addr.lo)) +
658 					   hlen;
659 
660 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
661 					      le16_to_cpu(first_bd->nbytes) -
662 					      hlen);
663 
664 			/* this marks the BD as one that has no
665 			 * individual mapping
666 			 */
667 			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
668 
669 			first_bd->nbytes = cpu_to_le16(hlen);
670 
671 			tx_data_bd = (struct eth_tx_bd *)third_bd;
672 			data_split = true;
673 		}
674 	} else {
675 		first_bd->data.bitfields |=
676 		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
677 		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
678 	}
679 
680 	/* Handle fragmented skb */
681 	/* special handle for frags inside 2nd and 3rd bds.. */
682 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
683 		rc = map_frag_to_bd(edev,
684 				    &skb_shinfo(skb)->frags[frag_idx],
685 				    tx_data_bd);
686 		if (rc) {
687 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
688 						data_split);
689 			qede_update_tx_producer(txq);
690 			return NETDEV_TX_OK;
691 		}
692 
693 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
694 			tx_data_bd = (struct eth_tx_bd *)third_bd;
695 		else
696 			tx_data_bd = NULL;
697 
698 		frag_idx++;
699 	}
700 
701 	/* map last frags into 4th, 5th .... */
702 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
703 		tx_data_bd = (struct eth_tx_bd *)
704 			     qed_chain_produce(&txq->tx_pbl);
705 
706 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
707 
708 		rc = map_frag_to_bd(edev,
709 				    &skb_shinfo(skb)->frags[frag_idx],
710 				    tx_data_bd);
711 		if (rc) {
712 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
713 						data_split);
714 			qede_update_tx_producer(txq);
715 			return NETDEV_TX_OK;
716 		}
717 	}
718 
719 	/* update the first BD with the actual num BDs */
720 	first_bd->data.nbds = nbd;
721 
722 	netdev_tx_sent_queue(netdev_txq, skb->len);
723 
724 	skb_tx_timestamp(skb);
725 
726 	/* Advance packet producer only before sending the packet since mapping
727 	 * of pages may fail.
728 	 */
729 	txq->sw_tx_prod++;
730 
731 	/* 'next page' entries are counted in the producer value */
732 	txq->tx_db.data.bd_prod =
733 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
734 
735 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
736 		qede_update_tx_producer(txq);
737 
738 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
739 		      < (MAX_SKB_FRAGS + 1))) {
740 		if (skb->xmit_more)
741 			qede_update_tx_producer(txq);
742 
743 		netif_tx_stop_queue(netdev_txq);
744 		txq->stopped_cnt++;
745 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
746 			   "Stop queue was called\n");
747 		/* paired memory barrier is in qede_tx_int(), we have to keep
748 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
749 		 * fp->bd_tx_cons
750 		 */
751 		smp_mb();
752 
753 		if (qed_chain_get_elem_left(&txq->tx_pbl)
754 		     >= (MAX_SKB_FRAGS + 1) &&
755 		    (edev->state == QEDE_STATE_OPEN)) {
756 			netif_tx_wake_queue(netdev_txq);
757 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
758 				   "Wake queue was called\n");
759 		}
760 	}
761 
762 	return NETDEV_TX_OK;
763 }
764 
765 int qede_txq_has_work(struct qede_tx_queue *txq)
766 {
767 	u16 hw_bd_cons;
768 
769 	/* Tell compiler that consumer and producer can change */
770 	barrier();
771 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
772 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
773 		return 0;
774 
775 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
776 }
777 
778 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
779 {
780 	struct netdev_queue *netdev_txq;
781 	u16 hw_bd_cons;
782 	unsigned int pkts_compl = 0, bytes_compl = 0;
783 	int rc;
784 
785 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
786 
787 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
788 	barrier();
789 
790 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
791 		int len = 0;
792 
793 		rc = qede_free_tx_pkt(edev, txq, &len);
794 		if (rc) {
795 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
796 				  hw_bd_cons,
797 				  qed_chain_get_cons_idx(&txq->tx_pbl));
798 			break;
799 		}
800 
801 		bytes_compl += len;
802 		pkts_compl++;
803 		txq->sw_tx_cons++;
804 		txq->xmit_pkts++;
805 	}
806 
807 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
808 
809 	/* Need to make the tx_bd_cons update visible to start_xmit()
810 	 * before checking for netif_tx_queue_stopped().  Without the
811 	 * memory barrier, there is a small possibility that
812 	 * start_xmit() will miss it and cause the queue to be stopped
813 	 * forever.
814 	 * On the other hand we need an rmb() here to ensure the proper
815 	 * ordering of bit testing in the following
816 	 * netif_tx_queue_stopped(txq) call.
817 	 */
818 	smp_mb();
819 
820 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
821 		/* Taking tx_lock is needed to prevent reenabling the queue
822 		 * while it's empty. This could have happen if rx_action() gets
823 		 * suspended in qede_tx_int() after the condition before
824 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
825 		 *
826 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
827 		 * sends some packets consuming the whole queue again->
828 		 * stops the queue
829 		 */
830 
831 		__netif_tx_lock(netdev_txq, smp_processor_id());
832 
833 		if ((netif_tx_queue_stopped(netdev_txq)) &&
834 		    (edev->state == QEDE_STATE_OPEN) &&
835 		    (qed_chain_get_elem_left(&txq->tx_pbl)
836 		      >= (MAX_SKB_FRAGS + 1))) {
837 			netif_tx_wake_queue(netdev_txq);
838 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
839 				   "Wake queue was called\n");
840 		}
841 
842 		__netif_tx_unlock(netdev_txq);
843 	}
844 
845 	return 0;
846 }
847 
848 bool qede_has_rx_work(struct qede_rx_queue *rxq)
849 {
850 	u16 hw_comp_cons, sw_comp_cons;
851 
852 	/* Tell compiler that status block fields can change */
853 	barrier();
854 
855 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
856 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
857 
858 	return hw_comp_cons != sw_comp_cons;
859 }
860 
861 static bool qede_has_tx_work(struct qede_fastpath *fp)
862 {
863 	u8 tc;
864 
865 	for (tc = 0; tc < fp->edev->num_tc; tc++)
866 		if (qede_txq_has_work(&fp->txqs[tc]))
867 			return true;
868 	return false;
869 }
870 
871 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
872 {
873 	qed_chain_consume(&rxq->rx_bd_ring);
874 	rxq->sw_rx_cons++;
875 }
876 
877 /* This function reuses the buffer(from an offset) from
878  * consumer index to producer index in the bd ring
879  */
880 static inline void qede_reuse_page(struct qede_dev *edev,
881 				   struct qede_rx_queue *rxq,
882 				   struct sw_rx_data *curr_cons)
883 {
884 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
885 	struct sw_rx_data *curr_prod;
886 	dma_addr_t new_mapping;
887 
888 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
889 	*curr_prod = *curr_cons;
890 
891 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
892 
893 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
894 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
895 
896 	rxq->sw_rx_prod++;
897 	curr_cons->data = NULL;
898 }
899 
900 /* In case of allocation failures reuse buffers
901  * from consumer index to produce buffers for firmware
902  */
903 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
904 			     struct qede_dev *edev, u8 count)
905 {
906 	struct sw_rx_data *curr_cons;
907 
908 	for (; count > 0; count--) {
909 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
910 		qede_reuse_page(edev, rxq, curr_cons);
911 		qede_rx_bd_ring_consume(rxq);
912 	}
913 }
914 
915 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
916 					 struct qede_rx_queue *rxq,
917 					 struct sw_rx_data *curr_cons)
918 {
919 	/* Move to the next segment in the page */
920 	curr_cons->page_offset += rxq->rx_buf_seg_size;
921 
922 	if (curr_cons->page_offset == PAGE_SIZE) {
923 		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
924 			/* Since we failed to allocate new buffer
925 			 * current buffer can be used again.
926 			 */
927 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
928 
929 			return -ENOMEM;
930 		}
931 
932 		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
933 			       PAGE_SIZE, DMA_FROM_DEVICE);
934 	} else {
935 		/* Increment refcount of the page as we don't want
936 		 * network stack to take the ownership of the page
937 		 * which can be recycled multiple times by the driver.
938 		 */
939 		page_ref_inc(curr_cons->data);
940 		qede_reuse_page(edev, rxq, curr_cons);
941 	}
942 
943 	return 0;
944 }
945 
946 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
947 {
948 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
949 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
950 	struct eth_rx_prod_data rx_prods = {0};
951 
952 	/* Update producers */
953 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
954 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
955 
956 	/* Make sure that the BD and SGE data is updated before updating the
957 	 * producers since FW might read the BD/SGE right after the producer
958 	 * is updated.
959 	 */
960 	wmb();
961 
962 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
963 			(u32 *)&rx_prods);
964 
965 	/* mmiowb is needed to synchronize doorbell writes from more than one
966 	 * processor. It guarantees that the write arrives to the device before
967 	 * the napi lock is released and another qede_poll is called (possibly
968 	 * on another CPU). Without this barrier, the next doorbell can bypass
969 	 * this doorbell. This is applicable to IA64/Altix systems.
970 	 */
971 	mmiowb();
972 }
973 
974 static u32 qede_get_rxhash(struct qede_dev *edev,
975 			   u8 bitfields,
976 			   __le32 rss_hash, enum pkt_hash_types *rxhash_type)
977 {
978 	enum rss_hash_type htype;
979 
980 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
981 
982 	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
983 		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
984 				(htype == RSS_HASH_TYPE_IPV6)) ?
985 				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
986 		return le32_to_cpu(rss_hash);
987 	}
988 	*rxhash_type = PKT_HASH_TYPE_NONE;
989 	return 0;
990 }
991 
992 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
993 {
994 	skb_checksum_none_assert(skb);
995 
996 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
997 		skb->ip_summed = CHECKSUM_UNNECESSARY;
998 
999 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
1000 		skb->csum_level = 1;
1001 }
1002 
1003 static inline void qede_skb_receive(struct qede_dev *edev,
1004 				    struct qede_fastpath *fp,
1005 				    struct sk_buff *skb, u16 vlan_tag)
1006 {
1007 	if (vlan_tag)
1008 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1009 
1010 	napi_gro_receive(&fp->napi, skb);
1011 }
1012 
1013 static void qede_set_gro_params(struct qede_dev *edev,
1014 				struct sk_buff *skb,
1015 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
1016 {
1017 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1018 
1019 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1020 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1021 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1022 	else
1023 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1024 
1025 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1026 					cqe->header_len;
1027 }
1028 
1029 static int qede_fill_frag_skb(struct qede_dev *edev,
1030 			      struct qede_rx_queue *rxq,
1031 			      u8 tpa_agg_index, u16 len_on_bd)
1032 {
1033 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1034 							 NUM_RX_BDS_MAX];
1035 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1036 	struct sk_buff *skb = tpa_info->skb;
1037 
1038 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1039 		goto out;
1040 
1041 	/* Add one frag and update the appropriate fields in the skb */
1042 	skb_fill_page_desc(skb, tpa_info->frag_id++,
1043 			   current_bd->data, current_bd->page_offset,
1044 			   len_on_bd);
1045 
1046 	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1047 		/* Incr page ref count to reuse on allocation failure
1048 		 * so that it doesn't get freed while freeing SKB.
1049 		 */
1050 		page_ref_inc(current_bd->data);
1051 		goto out;
1052 	}
1053 
1054 	qed_chain_consume(&rxq->rx_bd_ring);
1055 	rxq->sw_rx_cons++;
1056 
1057 	skb->data_len += len_on_bd;
1058 	skb->truesize += rxq->rx_buf_seg_size;
1059 	skb->len += len_on_bd;
1060 
1061 	return 0;
1062 
1063 out:
1064 	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1065 	qede_recycle_rx_bd_ring(rxq, edev, 1);
1066 	return -ENOMEM;
1067 }
1068 
1069 static void qede_tpa_start(struct qede_dev *edev,
1070 			   struct qede_rx_queue *rxq,
1071 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
1072 {
1073 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1074 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1075 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1076 	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1077 	dma_addr_t mapping = tpa_info->replace_buf_mapping;
1078 	struct sw_rx_data *sw_rx_data_cons;
1079 	struct sw_rx_data *sw_rx_data_prod;
1080 	enum pkt_hash_types rxhash_type;
1081 	u32 rxhash;
1082 
1083 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1084 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1085 
1086 	/* Use pre-allocated replacement buffer - we can't release the agg.
1087 	 * start until its over and we don't want to risk allocation failing
1088 	 * here, so re-allocate when aggregation will be over.
1089 	 */
1090 	sw_rx_data_prod->mapping = replace_buf->mapping;
1091 
1092 	sw_rx_data_prod->data = replace_buf->data;
1093 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1094 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1095 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
1096 
1097 	rxq->sw_rx_prod++;
1098 
1099 	/* move partial skb from cons to pool (don't unmap yet)
1100 	 * save mapping, incase we drop the packet later on.
1101 	 */
1102 	tpa_info->start_buf = *sw_rx_data_cons;
1103 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1104 			   le32_to_cpu(rx_bd_cons->addr.lo));
1105 
1106 	tpa_info->start_buf_mapping = mapping;
1107 	rxq->sw_rx_cons++;
1108 
1109 	/* set tpa state to start only if we are able to allocate skb
1110 	 * for this aggregation, otherwise mark as error and aggregation will
1111 	 * be dropped
1112 	 */
1113 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
1114 					 le16_to_cpu(cqe->len_on_first_bd));
1115 	if (unlikely(!tpa_info->skb)) {
1116 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1117 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1118 		goto cons_buf;
1119 	}
1120 
1121 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1122 	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1123 
1124 	/* Start filling in the aggregation info */
1125 	tpa_info->frag_id = 0;
1126 	tpa_info->agg_state = QEDE_AGG_STATE_START;
1127 
1128 	rxhash = qede_get_rxhash(edev, cqe->bitfields,
1129 				 cqe->rss_hash, &rxhash_type);
1130 	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1131 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1132 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1133 		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1134 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1135 	else
1136 		tpa_info->vlan_tag = 0;
1137 
1138 	/* This is needed in order to enable forwarding support */
1139 	qede_set_gro_params(edev, tpa_info->skb, cqe);
1140 
1141 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1142 	if (likely(cqe->ext_bd_len_list[0]))
1143 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1144 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1145 
1146 	if (unlikely(cqe->ext_bd_len_list[1])) {
1147 		DP_ERR(edev,
1148 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1149 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1150 	}
1151 }
1152 
1153 #ifdef CONFIG_INET
1154 static void qede_gro_ip_csum(struct sk_buff *skb)
1155 {
1156 	const struct iphdr *iph = ip_hdr(skb);
1157 	struct tcphdr *th;
1158 
1159 	skb_set_transport_header(skb, sizeof(struct iphdr));
1160 	th = tcp_hdr(skb);
1161 
1162 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1163 				  iph->saddr, iph->daddr, 0);
1164 
1165 	tcp_gro_complete(skb);
1166 }
1167 
1168 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1169 {
1170 	struct ipv6hdr *iph = ipv6_hdr(skb);
1171 	struct tcphdr *th;
1172 
1173 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1174 	th = tcp_hdr(skb);
1175 
1176 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1177 				  &iph->saddr, &iph->daddr, 0);
1178 	tcp_gro_complete(skb);
1179 }
1180 #endif
1181 
1182 static void qede_gro_receive(struct qede_dev *edev,
1183 			     struct qede_fastpath *fp,
1184 			     struct sk_buff *skb,
1185 			     u16 vlan_tag)
1186 {
1187 	/* FW can send a single MTU sized packet from gro flow
1188 	 * due to aggregation timeout/last segment etc. which
1189 	 * is not expected to be a gro packet. If a skb has zero
1190 	 * frags then simply push it in the stack as non gso skb.
1191 	 */
1192 	if (unlikely(!skb->data_len)) {
1193 		skb_shinfo(skb)->gso_type = 0;
1194 		skb_shinfo(skb)->gso_size = 0;
1195 		goto send_skb;
1196 	}
1197 
1198 #ifdef CONFIG_INET
1199 	if (skb_shinfo(skb)->gso_size) {
1200 		skb_set_network_header(skb, 0);
1201 
1202 		switch (skb->protocol) {
1203 		case htons(ETH_P_IP):
1204 			qede_gro_ip_csum(skb);
1205 			break;
1206 		case htons(ETH_P_IPV6):
1207 			qede_gro_ipv6_csum(skb);
1208 			break;
1209 		default:
1210 			DP_ERR(edev,
1211 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1212 			       ntohs(skb->protocol));
1213 		}
1214 	}
1215 #endif
1216 
1217 send_skb:
1218 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
1219 	qede_skb_receive(edev, fp, skb, vlan_tag);
1220 }
1221 
1222 static inline void qede_tpa_cont(struct qede_dev *edev,
1223 				 struct qede_rx_queue *rxq,
1224 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1225 {
1226 	int i;
1227 
1228 	for (i = 0; cqe->len_list[i]; i++)
1229 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1230 				   le16_to_cpu(cqe->len_list[i]));
1231 
1232 	if (unlikely(i > 1))
1233 		DP_ERR(edev,
1234 		       "Strange - TPA cont with more than a single len_list entry\n");
1235 }
1236 
1237 static void qede_tpa_end(struct qede_dev *edev,
1238 			 struct qede_fastpath *fp,
1239 			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1240 {
1241 	struct qede_rx_queue *rxq = fp->rxq;
1242 	struct qede_agg_info *tpa_info;
1243 	struct sk_buff *skb;
1244 	int i;
1245 
1246 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1247 	skb = tpa_info->skb;
1248 
1249 	for (i = 0; cqe->len_list[i]; i++)
1250 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1251 				   le16_to_cpu(cqe->len_list[i]));
1252 	if (unlikely(i > 1))
1253 		DP_ERR(edev,
1254 		       "Strange - TPA emd with more than a single len_list entry\n");
1255 
1256 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1257 		goto err;
1258 
1259 	/* Sanity */
1260 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1261 		DP_ERR(edev,
1262 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1263 		       cqe->num_of_bds, tpa_info->frag_id);
1264 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1265 		DP_ERR(edev,
1266 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1267 		       le16_to_cpu(cqe->total_packet_len), skb->len);
1268 
1269 	memcpy(skb->data,
1270 	       page_address(tpa_info->start_buf.data) +
1271 		tpa_info->start_cqe.placement_offset +
1272 		tpa_info->start_buf.page_offset,
1273 	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1274 
1275 	/* Recycle [mapped] start buffer for the next replacement */
1276 	tpa_info->replace_buf = tpa_info->start_buf;
1277 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1278 
1279 	/* Finalize the SKB */
1280 	skb->protocol = eth_type_trans(skb, edev->ndev);
1281 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1282 
1283 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1284 	 * to skb_shinfo(skb)->gso_segs
1285 	 */
1286 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1287 
1288 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1289 
1290 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1291 
1292 	return;
1293 err:
1294 	/* The BD starting the aggregation is still mapped; Re-use it for
1295 	 * future aggregations [as replacement buffer]
1296 	 */
1297 	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1298 	       sizeof(struct sw_rx_data));
1299 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1300 	tpa_info->start_buf.data = NULL;
1301 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1302 	dev_kfree_skb_any(tpa_info->skb);
1303 	tpa_info->skb = NULL;
1304 }
1305 
1306 static bool qede_tunn_exist(u16 flag)
1307 {
1308 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1309 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1310 }
1311 
1312 static u8 qede_check_tunn_csum(u16 flag)
1313 {
1314 	u16 csum_flag = 0;
1315 	u8 tcsum = 0;
1316 
1317 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1318 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1319 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1320 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1321 
1322 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1323 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1324 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1325 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1326 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1327 	}
1328 
1329 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1330 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1331 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1332 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1333 
1334 	if (csum_flag & flag)
1335 		return QEDE_CSUM_ERROR;
1336 
1337 	return QEDE_CSUM_UNNECESSARY | tcsum;
1338 }
1339 
1340 static u8 qede_check_notunn_csum(u16 flag)
1341 {
1342 	u16 csum_flag = 0;
1343 	u8 csum = 0;
1344 
1345 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1346 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1347 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1348 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1349 		csum = QEDE_CSUM_UNNECESSARY;
1350 	}
1351 
1352 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1353 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1354 
1355 	if (csum_flag & flag)
1356 		return QEDE_CSUM_ERROR;
1357 
1358 	return csum;
1359 }
1360 
1361 static u8 qede_check_csum(u16 flag)
1362 {
1363 	if (!qede_tunn_exist(flag))
1364 		return qede_check_notunn_csum(flag);
1365 	else
1366 		return qede_check_tunn_csum(flag);
1367 }
1368 
1369 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1370 				      u16 flag)
1371 {
1372 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1373 
1374 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1375 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1376 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1377 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1378 		return true;
1379 
1380 	return false;
1381 }
1382 
1383 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1384 {
1385 	struct qede_dev *edev = fp->edev;
1386 	struct qede_rx_queue *rxq = fp->rxq;
1387 
1388 	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1389 	int rx_pkt = 0;
1390 	u8 csum_flag;
1391 
1392 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1393 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1394 
1395 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1396 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1397 	 * read before it is written by FW, then FW writes CQE and SB, and then
1398 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1399 	 */
1400 	rmb();
1401 
1402 	/* Loop to complete all indicated BDs */
1403 	while (sw_comp_cons != hw_comp_cons) {
1404 		struct eth_fast_path_rx_reg_cqe *fp_cqe;
1405 		enum pkt_hash_types rxhash_type;
1406 		enum eth_rx_cqe_type cqe_type;
1407 		struct sw_rx_data *sw_rx_data;
1408 		union eth_rx_cqe *cqe;
1409 		struct sk_buff *skb;
1410 		struct page *data;
1411 		__le16 flags;
1412 		u16 len, pad;
1413 		u32 rx_hash;
1414 
1415 		/* Get the CQE from the completion ring */
1416 		cqe = (union eth_rx_cqe *)
1417 			qed_chain_consume(&rxq->rx_comp_ring);
1418 		cqe_type = cqe->fast_path_regular.type;
1419 
1420 		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1421 			edev->ops->eth_cqe_completion(
1422 					edev->cdev, fp->id,
1423 					(struct eth_slow_path_rx_cqe *)cqe);
1424 			goto next_cqe;
1425 		}
1426 
1427 		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1428 			switch (cqe_type) {
1429 			case ETH_RX_CQE_TYPE_TPA_START:
1430 				qede_tpa_start(edev, rxq,
1431 					       &cqe->fast_path_tpa_start);
1432 				goto next_cqe;
1433 			case ETH_RX_CQE_TYPE_TPA_CONT:
1434 				qede_tpa_cont(edev, rxq,
1435 					      &cqe->fast_path_tpa_cont);
1436 				goto next_cqe;
1437 			case ETH_RX_CQE_TYPE_TPA_END:
1438 				qede_tpa_end(edev, fp,
1439 					     &cqe->fast_path_tpa_end);
1440 				goto next_rx_only;
1441 			default:
1442 				break;
1443 			}
1444 		}
1445 
1446 		/* Get the data from the SW ring */
1447 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1448 		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1449 		data = sw_rx_data->data;
1450 
1451 		fp_cqe = &cqe->fast_path_regular;
1452 		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1453 		pad = fp_cqe->placement_offset;
1454 		flags = cqe->fast_path_regular.pars_flags.flags;
1455 
1456 		/* If this is an error packet then drop it */
1457 		parse_flag = le16_to_cpu(flags);
1458 
1459 		csum_flag = qede_check_csum(parse_flag);
1460 		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1461 			if (qede_pkt_is_ip_fragmented(&cqe->fast_path_regular,
1462 						      parse_flag)) {
1463 				rxq->rx_ip_frags++;
1464 				goto alloc_skb;
1465 			}
1466 
1467 			DP_NOTICE(edev,
1468 				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1469 				  sw_comp_cons, parse_flag);
1470 			rxq->rx_hw_errors++;
1471 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1472 			goto next_cqe;
1473 		}
1474 
1475 alloc_skb:
1476 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1477 		if (unlikely(!skb)) {
1478 			DP_NOTICE(edev,
1479 				  "skb allocation failed, dropping incoming packet\n");
1480 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1481 			rxq->rx_alloc_errors++;
1482 			goto next_cqe;
1483 		}
1484 
1485 		/* Copy data into SKB */
1486 		if (len + pad <= edev->rx_copybreak) {
1487 			memcpy(skb_put(skb, len),
1488 			       page_address(data) + pad +
1489 				sw_rx_data->page_offset, len);
1490 			qede_reuse_page(edev, rxq, sw_rx_data);
1491 		} else {
1492 			struct skb_frag_struct *frag;
1493 			unsigned int pull_len;
1494 			unsigned char *va;
1495 
1496 			frag = &skb_shinfo(skb)->frags[0];
1497 
1498 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1499 					pad + sw_rx_data->page_offset,
1500 					len, rxq->rx_buf_seg_size);
1501 
1502 			va = skb_frag_address(frag);
1503 			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1504 
1505 			/* Align the pull_len to optimize memcpy */
1506 			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1507 
1508 			skb_frag_size_sub(frag, pull_len);
1509 			frag->page_offset += pull_len;
1510 			skb->data_len -= pull_len;
1511 			skb->tail += pull_len;
1512 
1513 			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1514 							    sw_rx_data))) {
1515 				DP_ERR(edev, "Failed to allocate rx buffer\n");
1516 				/* Incr page ref count to reuse on allocation
1517 				 * failure so that it doesn't get freed while
1518 				 * freeing SKB.
1519 				 */
1520 
1521 				page_ref_inc(sw_rx_data->data);
1522 				rxq->rx_alloc_errors++;
1523 				qede_recycle_rx_bd_ring(rxq, edev,
1524 							fp_cqe->bd_num);
1525 				dev_kfree_skb_any(skb);
1526 				goto next_cqe;
1527 			}
1528 		}
1529 
1530 		qede_rx_bd_ring_consume(rxq);
1531 
1532 		if (fp_cqe->bd_num != 1) {
1533 			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1534 			u8 num_frags;
1535 
1536 			pkt_len -= len;
1537 
1538 			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1539 			     num_frags--) {
1540 				u16 cur_size = pkt_len > rxq->rx_buf_size ?
1541 						rxq->rx_buf_size : pkt_len;
1542 				if (unlikely(!cur_size)) {
1543 					DP_ERR(edev,
1544 					       "Still got %d BDs for mapping jumbo, but length became 0\n",
1545 					       num_frags);
1546 					qede_recycle_rx_bd_ring(rxq, edev,
1547 								num_frags);
1548 					dev_kfree_skb_any(skb);
1549 					goto next_cqe;
1550 				}
1551 
1552 				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1553 					qede_recycle_rx_bd_ring(rxq, edev,
1554 								num_frags);
1555 					dev_kfree_skb_any(skb);
1556 					goto next_cqe;
1557 				}
1558 
1559 				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1560 				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1561 				qede_rx_bd_ring_consume(rxq);
1562 
1563 				dma_unmap_page(&edev->pdev->dev,
1564 					       sw_rx_data->mapping,
1565 					       PAGE_SIZE, DMA_FROM_DEVICE);
1566 
1567 				skb_fill_page_desc(skb,
1568 						   skb_shinfo(skb)->nr_frags++,
1569 						   sw_rx_data->data, 0,
1570 						   cur_size);
1571 
1572 				skb->truesize += PAGE_SIZE;
1573 				skb->data_len += cur_size;
1574 				skb->len += cur_size;
1575 				pkt_len -= cur_size;
1576 			}
1577 
1578 			if (unlikely(pkt_len))
1579 				DP_ERR(edev,
1580 				       "Mapped all BDs of jumbo, but still have %d bytes\n",
1581 				       pkt_len);
1582 		}
1583 
1584 		skb->protocol = eth_type_trans(skb, edev->ndev);
1585 
1586 		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1587 					  fp_cqe->rss_hash, &rxhash_type);
1588 
1589 		skb_set_hash(skb, rx_hash, rxhash_type);
1590 
1591 		qede_set_skb_csum(skb, csum_flag);
1592 
1593 		skb_record_rx_queue(skb, fp->rxq->rxq_id);
1594 
1595 		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1596 next_rx_only:
1597 		rx_pkt++;
1598 
1599 next_cqe: /* don't consume bd rx buffer */
1600 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1601 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1602 		/* CR TPA - revisit how to handle budget in TPA perhaps
1603 		 * increase on "end"
1604 		 */
1605 		if (rx_pkt == budget)
1606 			break;
1607 	} /* repeat while sw_comp_cons != hw_comp_cons... */
1608 
1609 	/* Update producers */
1610 	qede_update_rx_prod(edev, rxq);
1611 
1612 	rxq->rcv_pkts += rx_pkt;
1613 
1614 	return rx_pkt;
1615 }
1616 
1617 static int qede_poll(struct napi_struct *napi, int budget)
1618 {
1619 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1620 						napi);
1621 	struct qede_dev *edev = fp->edev;
1622 	int rx_work_done = 0;
1623 	u8 tc;
1624 
1625 	for (tc = 0; tc < edev->num_tc; tc++)
1626 		if (likely(fp->type & QEDE_FASTPATH_TX) &&
1627 		    qede_txq_has_work(&fp->txqs[tc]))
1628 			qede_tx_int(edev, &fp->txqs[tc]);
1629 
1630 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1631 			qede_has_rx_work(fp->rxq)) ?
1632 			qede_rx_int(fp, budget) : 0;
1633 	if (rx_work_done < budget) {
1634 		qed_sb_update_sb_idx(fp->sb_info);
1635 		/* *_has_*_work() reads the status block,
1636 		 * thus we need to ensure that status block indices
1637 		 * have been actually read (qed_sb_update_sb_idx)
1638 		 * prior to this check (*_has_*_work) so that
1639 		 * we won't write the "newer" value of the status block
1640 		 * to HW (if there was a DMA right after
1641 		 * qede_has_rx_work and if there is no rmb, the memory
1642 		 * reading (qed_sb_update_sb_idx) may be postponed
1643 		 * to right before *_ack_sb). In this case there
1644 		 * will never be another interrupt until there is
1645 		 * another update of the status block, while there
1646 		 * is still unhandled work.
1647 		 */
1648 		rmb();
1649 
1650 		/* Fall out from the NAPI loop if needed */
1651 		if (!((likely(fp->type & QEDE_FASTPATH_RX) &&
1652 		       qede_has_rx_work(fp->rxq)) ||
1653 		      (likely(fp->type & QEDE_FASTPATH_TX) &&
1654 		       qede_has_tx_work(fp)))) {
1655 			napi_complete(napi);
1656 
1657 			/* Update and reenable interrupts */
1658 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1659 				   1 /*update*/);
1660 		} else {
1661 			rx_work_done = budget;
1662 		}
1663 	}
1664 
1665 	return rx_work_done;
1666 }
1667 
1668 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1669 {
1670 	struct qede_fastpath *fp = fp_cookie;
1671 
1672 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1673 
1674 	napi_schedule_irqoff(&fp->napi);
1675 	return IRQ_HANDLED;
1676 }
1677 
1678 /* -------------------------------------------------------------------------
1679  * END OF FAST-PATH
1680  * -------------------------------------------------------------------------
1681  */
1682 
1683 static int qede_open(struct net_device *ndev);
1684 static int qede_close(struct net_device *ndev);
1685 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1686 static void qede_set_rx_mode(struct net_device *ndev);
1687 static void qede_config_rx_mode(struct net_device *ndev);
1688 
1689 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1690 				 enum qed_filter_xcast_params_type opcode,
1691 				 unsigned char mac[ETH_ALEN])
1692 {
1693 	struct qed_filter_params filter_cmd;
1694 
1695 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1696 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1697 	filter_cmd.filter.ucast.type = opcode;
1698 	filter_cmd.filter.ucast.mac_valid = 1;
1699 	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1700 
1701 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1702 }
1703 
1704 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1705 				  enum qed_filter_xcast_params_type opcode,
1706 				  u16 vid)
1707 {
1708 	struct qed_filter_params filter_cmd;
1709 
1710 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1711 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1712 	filter_cmd.filter.ucast.type = opcode;
1713 	filter_cmd.filter.ucast.vlan_valid = 1;
1714 	filter_cmd.filter.ucast.vlan = vid;
1715 
1716 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1717 }
1718 
1719 void qede_fill_by_demand_stats(struct qede_dev *edev)
1720 {
1721 	struct qed_eth_stats stats;
1722 
1723 	edev->ops->get_vport_stats(edev->cdev, &stats);
1724 	edev->stats.no_buff_discards = stats.no_buff_discards;
1725 	edev->stats.packet_too_big_discard = stats.packet_too_big_discard;
1726 	edev->stats.ttl0_discard = stats.ttl0_discard;
1727 	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1728 	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1729 	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1730 	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1731 	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1732 	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1733 	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1734 	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1735 
1736 	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1737 	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1738 	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1739 	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1740 	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1741 	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1742 	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1743 	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1744 	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1745 	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1746 	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1747 	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1748 
1749 	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1750 	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1751 	edev->stats.rx_128_to_255_byte_packets =
1752 				stats.rx_128_to_255_byte_packets;
1753 	edev->stats.rx_256_to_511_byte_packets =
1754 				stats.rx_256_to_511_byte_packets;
1755 	edev->stats.rx_512_to_1023_byte_packets =
1756 				stats.rx_512_to_1023_byte_packets;
1757 	edev->stats.rx_1024_to_1518_byte_packets =
1758 				stats.rx_1024_to_1518_byte_packets;
1759 	edev->stats.rx_1519_to_1522_byte_packets =
1760 				stats.rx_1519_to_1522_byte_packets;
1761 	edev->stats.rx_1519_to_2047_byte_packets =
1762 				stats.rx_1519_to_2047_byte_packets;
1763 	edev->stats.rx_2048_to_4095_byte_packets =
1764 				stats.rx_2048_to_4095_byte_packets;
1765 	edev->stats.rx_4096_to_9216_byte_packets =
1766 				stats.rx_4096_to_9216_byte_packets;
1767 	edev->stats.rx_9217_to_16383_byte_packets =
1768 				stats.rx_9217_to_16383_byte_packets;
1769 	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1770 	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1771 	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1772 	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1773 	edev->stats.rx_align_errors = stats.rx_align_errors;
1774 	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1775 	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1776 	edev->stats.rx_jabbers = stats.rx_jabbers;
1777 	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1778 	edev->stats.rx_fragments = stats.rx_fragments;
1779 	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1780 	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1781 	edev->stats.tx_128_to_255_byte_packets =
1782 				stats.tx_128_to_255_byte_packets;
1783 	edev->stats.tx_256_to_511_byte_packets =
1784 				stats.tx_256_to_511_byte_packets;
1785 	edev->stats.tx_512_to_1023_byte_packets =
1786 				stats.tx_512_to_1023_byte_packets;
1787 	edev->stats.tx_1024_to_1518_byte_packets =
1788 				stats.tx_1024_to_1518_byte_packets;
1789 	edev->stats.tx_1519_to_2047_byte_packets =
1790 				stats.tx_1519_to_2047_byte_packets;
1791 	edev->stats.tx_2048_to_4095_byte_packets =
1792 				stats.tx_2048_to_4095_byte_packets;
1793 	edev->stats.tx_4096_to_9216_byte_packets =
1794 				stats.tx_4096_to_9216_byte_packets;
1795 	edev->stats.tx_9217_to_16383_byte_packets =
1796 				stats.tx_9217_to_16383_byte_packets;
1797 	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1798 	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1799 	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1800 	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1801 	edev->stats.brb_truncates = stats.brb_truncates;
1802 	edev->stats.brb_discards = stats.brb_discards;
1803 	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1804 }
1805 
1806 static
1807 struct rtnl_link_stats64 *qede_get_stats64(struct net_device *dev,
1808 					   struct rtnl_link_stats64 *stats)
1809 {
1810 	struct qede_dev *edev = netdev_priv(dev);
1811 
1812 	qede_fill_by_demand_stats(edev);
1813 
1814 	stats->rx_packets = edev->stats.rx_ucast_pkts +
1815 			    edev->stats.rx_mcast_pkts +
1816 			    edev->stats.rx_bcast_pkts;
1817 	stats->tx_packets = edev->stats.tx_ucast_pkts +
1818 			    edev->stats.tx_mcast_pkts +
1819 			    edev->stats.tx_bcast_pkts;
1820 
1821 	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1822 			  edev->stats.rx_mcast_bytes +
1823 			  edev->stats.rx_bcast_bytes;
1824 
1825 	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1826 			  edev->stats.tx_mcast_bytes +
1827 			  edev->stats.tx_bcast_bytes;
1828 
1829 	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1830 	stats->multicast = edev->stats.rx_mcast_pkts +
1831 			   edev->stats.rx_bcast_pkts;
1832 
1833 	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1834 
1835 	stats->collisions = edev->stats.tx_total_collisions;
1836 	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1837 	stats->rx_frame_errors = edev->stats.rx_align_errors;
1838 
1839 	return stats;
1840 }
1841 
1842 #ifdef CONFIG_QED_SRIOV
1843 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1844 			      struct ifla_vf_info *ivi)
1845 {
1846 	struct qede_dev *edev = netdev_priv(dev);
1847 
1848 	if (!edev->ops)
1849 		return -EINVAL;
1850 
1851 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1852 }
1853 
1854 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1855 			    int min_tx_rate, int max_tx_rate)
1856 {
1857 	struct qede_dev *edev = netdev_priv(dev);
1858 
1859 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1860 					max_tx_rate);
1861 }
1862 
1863 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1864 {
1865 	struct qede_dev *edev = netdev_priv(dev);
1866 
1867 	if (!edev->ops)
1868 		return -EINVAL;
1869 
1870 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1871 }
1872 
1873 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1874 				  int link_state)
1875 {
1876 	struct qede_dev *edev = netdev_priv(dev);
1877 
1878 	if (!edev->ops)
1879 		return -EINVAL;
1880 
1881 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1882 }
1883 #endif
1884 
1885 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1886 {
1887 	struct qed_update_vport_params params;
1888 	int rc;
1889 
1890 	/* Proceed only if action actually needs to be performed */
1891 	if (edev->accept_any_vlan == action)
1892 		return;
1893 
1894 	memset(&params, 0, sizeof(params));
1895 
1896 	params.vport_id = 0;
1897 	params.accept_any_vlan = action;
1898 	params.update_accept_any_vlan_flg = 1;
1899 
1900 	rc = edev->ops->vport_update(edev->cdev, &params);
1901 	if (rc) {
1902 		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1903 		       action ? "enable" : "disable");
1904 	} else {
1905 		DP_INFO(edev, "%s accept-any-vlan\n",
1906 			action ? "enabled" : "disabled");
1907 		edev->accept_any_vlan = action;
1908 	}
1909 }
1910 
1911 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1912 {
1913 	struct qede_dev *edev = netdev_priv(dev);
1914 	struct qede_vlan *vlan, *tmp;
1915 	int rc;
1916 
1917 	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1918 
1919 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1920 	if (!vlan) {
1921 		DP_INFO(edev, "Failed to allocate struct for vlan\n");
1922 		return -ENOMEM;
1923 	}
1924 	INIT_LIST_HEAD(&vlan->list);
1925 	vlan->vid = vid;
1926 	vlan->configured = false;
1927 
1928 	/* Verify vlan isn't already configured */
1929 	list_for_each_entry(tmp, &edev->vlan_list, list) {
1930 		if (tmp->vid == vlan->vid) {
1931 			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1932 				   "vlan already configured\n");
1933 			kfree(vlan);
1934 			return -EEXIST;
1935 		}
1936 	}
1937 
1938 	/* If interface is down, cache this VLAN ID and return */
1939 	if (edev->state != QEDE_STATE_OPEN) {
1940 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1941 			   "Interface is down, VLAN %d will be configured when interface is up\n",
1942 			   vid);
1943 		if (vid != 0)
1944 			edev->non_configured_vlans++;
1945 		list_add(&vlan->list, &edev->vlan_list);
1946 
1947 		return 0;
1948 	}
1949 
1950 	/* Check for the filter limit.
1951 	 * Note - vlan0 has a reserved filter and can be added without
1952 	 * worrying about quota
1953 	 */
1954 	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1955 	    (vlan->vid == 0)) {
1956 		rc = qede_set_ucast_rx_vlan(edev,
1957 					    QED_FILTER_XCAST_TYPE_ADD,
1958 					    vlan->vid);
1959 		if (rc) {
1960 			DP_ERR(edev, "Failed to configure VLAN %d\n",
1961 			       vlan->vid);
1962 			kfree(vlan);
1963 			return -EINVAL;
1964 		}
1965 		vlan->configured = true;
1966 
1967 		/* vlan0 filter isn't consuming out of our quota */
1968 		if (vlan->vid != 0)
1969 			edev->configured_vlans++;
1970 	} else {
1971 		/* Out of quota; Activate accept-any-VLAN mode */
1972 		if (!edev->non_configured_vlans)
1973 			qede_config_accept_any_vlan(edev, true);
1974 
1975 		edev->non_configured_vlans++;
1976 	}
1977 
1978 	list_add(&vlan->list, &edev->vlan_list);
1979 
1980 	return 0;
1981 }
1982 
1983 static void qede_del_vlan_from_list(struct qede_dev *edev,
1984 				    struct qede_vlan *vlan)
1985 {
1986 	/* vlan0 filter isn't consuming out of our quota */
1987 	if (vlan->vid != 0) {
1988 		if (vlan->configured)
1989 			edev->configured_vlans--;
1990 		else
1991 			edev->non_configured_vlans--;
1992 	}
1993 
1994 	list_del(&vlan->list);
1995 	kfree(vlan);
1996 }
1997 
1998 static int qede_configure_vlan_filters(struct qede_dev *edev)
1999 {
2000 	int rc = 0, real_rc = 0, accept_any_vlan = 0;
2001 	struct qed_dev_eth_info *dev_info;
2002 	struct qede_vlan *vlan = NULL;
2003 
2004 	if (list_empty(&edev->vlan_list))
2005 		return 0;
2006 
2007 	dev_info = &edev->dev_info;
2008 
2009 	/* Configure non-configured vlans */
2010 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2011 		if (vlan->configured)
2012 			continue;
2013 
2014 		/* We have used all our credits, now enable accept_any_vlan */
2015 		if ((vlan->vid != 0) &&
2016 		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
2017 			accept_any_vlan = 1;
2018 			continue;
2019 		}
2020 
2021 		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
2022 
2023 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
2024 					    vlan->vid);
2025 		if (rc) {
2026 			DP_ERR(edev, "Failed to configure VLAN %u\n",
2027 			       vlan->vid);
2028 			real_rc = rc;
2029 			continue;
2030 		}
2031 
2032 		vlan->configured = true;
2033 		/* vlan0 filter doesn't consume our VLAN filter's quota */
2034 		if (vlan->vid != 0) {
2035 			edev->non_configured_vlans--;
2036 			edev->configured_vlans++;
2037 		}
2038 	}
2039 
2040 	/* enable accept_any_vlan mode if we have more VLANs than credits,
2041 	 * or remove accept_any_vlan mode if we've actually removed
2042 	 * a non-configured vlan, and all remaining vlans are truly configured.
2043 	 */
2044 
2045 	if (accept_any_vlan)
2046 		qede_config_accept_any_vlan(edev, true);
2047 	else if (!edev->non_configured_vlans)
2048 		qede_config_accept_any_vlan(edev, false);
2049 
2050 	return real_rc;
2051 }
2052 
2053 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2054 {
2055 	struct qede_dev *edev = netdev_priv(dev);
2056 	struct qede_vlan *vlan = NULL;
2057 	int rc;
2058 
2059 	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2060 
2061 	/* Find whether entry exists */
2062 	list_for_each_entry(vlan, &edev->vlan_list, list)
2063 		if (vlan->vid == vid)
2064 			break;
2065 
2066 	if (!vlan || (vlan->vid != vid)) {
2067 		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2068 			   "Vlan isn't configured\n");
2069 		return 0;
2070 	}
2071 
2072 	if (edev->state != QEDE_STATE_OPEN) {
2073 		/* As interface is already down, we don't have a VPORT
2074 		 * instance to remove vlan filter. So just update vlan list
2075 		 */
2076 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2077 			   "Interface is down, removing VLAN from list only\n");
2078 		qede_del_vlan_from_list(edev, vlan);
2079 		return 0;
2080 	}
2081 
2082 	/* Remove vlan */
2083 	if (vlan->configured) {
2084 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
2085 					    vid);
2086 		if (rc) {
2087 			DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2088 			return -EINVAL;
2089 		}
2090 	}
2091 
2092 	qede_del_vlan_from_list(edev, vlan);
2093 
2094 	/* We have removed a VLAN - try to see if we can
2095 	 * configure non-configured VLAN from the list.
2096 	 */
2097 	rc = qede_configure_vlan_filters(edev);
2098 
2099 	return rc;
2100 }
2101 
2102 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2103 {
2104 	struct qede_vlan *vlan = NULL;
2105 
2106 	if (list_empty(&edev->vlan_list))
2107 		return;
2108 
2109 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2110 		if (!vlan->configured)
2111 			continue;
2112 
2113 		vlan->configured = false;
2114 
2115 		/* vlan0 filter isn't consuming out of our quota */
2116 		if (vlan->vid != 0) {
2117 			edev->non_configured_vlans++;
2118 			edev->configured_vlans--;
2119 		}
2120 
2121 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2122 			   "marked vlan %d as non-configured\n", vlan->vid);
2123 	}
2124 
2125 	edev->accept_any_vlan = false;
2126 }
2127 
2128 static int qede_set_features(struct net_device *dev, netdev_features_t features)
2129 {
2130 	struct qede_dev *edev = netdev_priv(dev);
2131 	netdev_features_t changes = features ^ dev->features;
2132 	bool need_reload = false;
2133 
2134 	/* No action needed if hardware GRO is disabled during driver load */
2135 	if (changes & NETIF_F_GRO) {
2136 		if (dev->features & NETIF_F_GRO)
2137 			need_reload = !edev->gro_disable;
2138 		else
2139 			need_reload = edev->gro_disable;
2140 	}
2141 
2142 	if (need_reload && netif_running(edev->ndev)) {
2143 		dev->features = features;
2144 		qede_reload(edev, NULL, NULL);
2145 		return 1;
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 static void qede_udp_tunnel_add(struct net_device *dev,
2152 				struct udp_tunnel_info *ti)
2153 {
2154 	struct qede_dev *edev = netdev_priv(dev);
2155 	u16 t_port = ntohs(ti->port);
2156 
2157 	switch (ti->type) {
2158 	case UDP_TUNNEL_TYPE_VXLAN:
2159 		if (edev->vxlan_dst_port)
2160 			return;
2161 
2162 		edev->vxlan_dst_port = t_port;
2163 
2164 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n",
2165 			   t_port);
2166 
2167 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2168 		break;
2169 	case UDP_TUNNEL_TYPE_GENEVE:
2170 		if (edev->geneve_dst_port)
2171 			return;
2172 
2173 		edev->geneve_dst_port = t_port;
2174 
2175 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n",
2176 			   t_port);
2177 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2178 		break;
2179 	default:
2180 		return;
2181 	}
2182 
2183 	schedule_delayed_work(&edev->sp_task, 0);
2184 }
2185 
2186 static void qede_udp_tunnel_del(struct net_device *dev,
2187 				struct udp_tunnel_info *ti)
2188 {
2189 	struct qede_dev *edev = netdev_priv(dev);
2190 	u16 t_port = ntohs(ti->port);
2191 
2192 	switch (ti->type) {
2193 	case UDP_TUNNEL_TYPE_VXLAN:
2194 		if (t_port != edev->vxlan_dst_port)
2195 			return;
2196 
2197 		edev->vxlan_dst_port = 0;
2198 
2199 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n",
2200 			   t_port);
2201 
2202 		set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2203 		break;
2204 	case UDP_TUNNEL_TYPE_GENEVE:
2205 		if (t_port != edev->geneve_dst_port)
2206 			return;
2207 
2208 		edev->geneve_dst_port = 0;
2209 
2210 		DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n",
2211 			   t_port);
2212 		set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2213 		break;
2214 	default:
2215 		return;
2216 	}
2217 
2218 	schedule_delayed_work(&edev->sp_task, 0);
2219 }
2220 
2221 static const struct net_device_ops qede_netdev_ops = {
2222 	.ndo_open = qede_open,
2223 	.ndo_stop = qede_close,
2224 	.ndo_start_xmit = qede_start_xmit,
2225 	.ndo_set_rx_mode = qede_set_rx_mode,
2226 	.ndo_set_mac_address = qede_set_mac_addr,
2227 	.ndo_validate_addr = eth_validate_addr,
2228 	.ndo_change_mtu = qede_change_mtu,
2229 #ifdef CONFIG_QED_SRIOV
2230 	.ndo_set_vf_mac = qede_set_vf_mac,
2231 	.ndo_set_vf_vlan = qede_set_vf_vlan,
2232 #endif
2233 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2234 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2235 	.ndo_set_features = qede_set_features,
2236 	.ndo_get_stats64 = qede_get_stats64,
2237 #ifdef CONFIG_QED_SRIOV
2238 	.ndo_set_vf_link_state = qede_set_vf_link_state,
2239 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2240 	.ndo_get_vf_config = qede_get_vf_config,
2241 	.ndo_set_vf_rate = qede_set_vf_rate,
2242 #endif
2243 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
2244 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
2245 };
2246 
2247 /* -------------------------------------------------------------------------
2248  * START OF PROBE / REMOVE
2249  * -------------------------------------------------------------------------
2250  */
2251 
2252 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2253 					    struct pci_dev *pdev,
2254 					    struct qed_dev_eth_info *info,
2255 					    u32 dp_module, u8 dp_level)
2256 {
2257 	struct net_device *ndev;
2258 	struct qede_dev *edev;
2259 
2260 	ndev = alloc_etherdev_mqs(sizeof(*edev),
2261 				  info->num_queues, info->num_queues);
2262 	if (!ndev) {
2263 		pr_err("etherdev allocation failed\n");
2264 		return NULL;
2265 	}
2266 
2267 	edev = netdev_priv(ndev);
2268 	edev->ndev = ndev;
2269 	edev->cdev = cdev;
2270 	edev->pdev = pdev;
2271 	edev->dp_module = dp_module;
2272 	edev->dp_level = dp_level;
2273 	edev->ops = qed_ops;
2274 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2275 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2276 
2277 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
2278 		info->num_queues, info->num_queues);
2279 
2280 	SET_NETDEV_DEV(ndev, &pdev->dev);
2281 
2282 	memset(&edev->stats, 0, sizeof(edev->stats));
2283 	memcpy(&edev->dev_info, info, sizeof(*info));
2284 
2285 	edev->num_tc = edev->dev_info.num_tc;
2286 
2287 	INIT_LIST_HEAD(&edev->vlan_list);
2288 
2289 	return edev;
2290 }
2291 
2292 static void qede_init_ndev(struct qede_dev *edev)
2293 {
2294 	struct net_device *ndev = edev->ndev;
2295 	struct pci_dev *pdev = edev->pdev;
2296 	u32 hw_features;
2297 
2298 	pci_set_drvdata(pdev, ndev);
2299 
2300 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
2301 	ndev->base_addr = ndev->mem_start;
2302 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
2303 	ndev->irq = edev->dev_info.common.pci_irq;
2304 
2305 	ndev->watchdog_timeo = TX_TIMEOUT;
2306 
2307 	ndev->netdev_ops = &qede_netdev_ops;
2308 
2309 	qede_set_ethtool_ops(ndev);
2310 
2311 	/* user-changeble features */
2312 	hw_features = NETIF_F_GRO | NETIF_F_SG |
2313 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2314 		      NETIF_F_TSO | NETIF_F_TSO6;
2315 
2316 	/* Encap features*/
2317 	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2318 		       NETIF_F_TSO_ECN;
2319 	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2320 				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2321 				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2322 				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2323 
2324 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2325 			      NETIF_F_HIGHDMA;
2326 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2327 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2328 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2329 
2330 	ndev->hw_features = hw_features;
2331 
2332 	/* Set network device HW mac */
2333 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2334 }
2335 
2336 /* This function converts from 32b param to two params of level and module
2337  * Input 32b decoding:
2338  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2339  * 'happy' flow, e.g. memory allocation failed.
2340  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2341  * and provide important parameters.
2342  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2343  * module. VERBOSE prints are for tracking the specific flow in low level.
2344  *
2345  * Notice that the level should be that of the lowest required logs.
2346  */
2347 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2348 {
2349 	*p_dp_level = QED_LEVEL_NOTICE;
2350 	*p_dp_module = 0;
2351 
2352 	if (debug & QED_LOG_VERBOSE_MASK) {
2353 		*p_dp_level = QED_LEVEL_VERBOSE;
2354 		*p_dp_module = (debug & 0x3FFFFFFF);
2355 	} else if (debug & QED_LOG_INFO_MASK) {
2356 		*p_dp_level = QED_LEVEL_INFO;
2357 	} else if (debug & QED_LOG_NOTICE_MASK) {
2358 		*p_dp_level = QED_LEVEL_NOTICE;
2359 	}
2360 }
2361 
2362 static void qede_free_fp_array(struct qede_dev *edev)
2363 {
2364 	if (edev->fp_array) {
2365 		struct qede_fastpath *fp;
2366 		int i;
2367 
2368 		for_each_queue(i) {
2369 			fp = &edev->fp_array[i];
2370 
2371 			kfree(fp->sb_info);
2372 			kfree(fp->rxq);
2373 			kfree(fp->txqs);
2374 		}
2375 		kfree(edev->fp_array);
2376 	}
2377 
2378 	edev->num_queues = 0;
2379 	edev->fp_num_tx = 0;
2380 	edev->fp_num_rx = 0;
2381 }
2382 
2383 static int qede_alloc_fp_array(struct qede_dev *edev)
2384 {
2385 	u8 fp_combined, fp_rx = edev->fp_num_rx;
2386 	struct qede_fastpath *fp;
2387 	int i;
2388 
2389 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
2390 				 sizeof(*edev->fp_array), GFP_KERNEL);
2391 	if (!edev->fp_array) {
2392 		DP_NOTICE(edev, "fp array allocation failed\n");
2393 		goto err;
2394 	}
2395 
2396 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
2397 
2398 	/* Allocate the FP elements for Rx queues followed by combined and then
2399 	 * the Tx. This ordering should be maintained so that the respective
2400 	 * queues (Rx or Tx) will be together in the fastpath array and the
2401 	 * associated ids will be sequential.
2402 	 */
2403 	for_each_queue(i) {
2404 		fp = &edev->fp_array[i];
2405 
2406 		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2407 		if (!fp->sb_info) {
2408 			DP_NOTICE(edev, "sb info struct allocation failed\n");
2409 			goto err;
2410 		}
2411 
2412 		if (fp_rx) {
2413 			fp->type = QEDE_FASTPATH_RX;
2414 			fp_rx--;
2415 		} else if (fp_combined) {
2416 			fp->type = QEDE_FASTPATH_COMBINED;
2417 			fp_combined--;
2418 		} else {
2419 			fp->type = QEDE_FASTPATH_TX;
2420 		}
2421 
2422 		if (fp->type & QEDE_FASTPATH_TX) {
2423 			fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs),
2424 					   GFP_KERNEL);
2425 			if (!fp->txqs) {
2426 				DP_NOTICE(edev,
2427 					  "TXQ array allocation failed\n");
2428 				goto err;
2429 			}
2430 		}
2431 
2432 		if (fp->type & QEDE_FASTPATH_RX) {
2433 			fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2434 			if (!fp->rxq) {
2435 				DP_NOTICE(edev,
2436 					  "RXQ struct allocation failed\n");
2437 				goto err;
2438 			}
2439 		}
2440 	}
2441 
2442 	return 0;
2443 err:
2444 	qede_free_fp_array(edev);
2445 	return -ENOMEM;
2446 }
2447 
2448 static void qede_sp_task(struct work_struct *work)
2449 {
2450 	struct qede_dev *edev = container_of(work, struct qede_dev,
2451 					     sp_task.work);
2452 	struct qed_dev *cdev = edev->cdev;
2453 
2454 	mutex_lock(&edev->qede_lock);
2455 
2456 	if (edev->state == QEDE_STATE_OPEN) {
2457 		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2458 			qede_config_rx_mode(edev->ndev);
2459 	}
2460 
2461 	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2462 		struct qed_tunn_params tunn_params;
2463 
2464 		memset(&tunn_params, 0, sizeof(tunn_params));
2465 		tunn_params.update_vxlan_port = 1;
2466 		tunn_params.vxlan_port = edev->vxlan_dst_port;
2467 		qed_ops->tunn_config(cdev, &tunn_params);
2468 	}
2469 
2470 	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2471 		struct qed_tunn_params tunn_params;
2472 
2473 		memset(&tunn_params, 0, sizeof(tunn_params));
2474 		tunn_params.update_geneve_port = 1;
2475 		tunn_params.geneve_port = edev->geneve_dst_port;
2476 		qed_ops->tunn_config(cdev, &tunn_params);
2477 	}
2478 
2479 	mutex_unlock(&edev->qede_lock);
2480 }
2481 
2482 static void qede_update_pf_params(struct qed_dev *cdev)
2483 {
2484 	struct qed_pf_params pf_params;
2485 
2486 	/* 64 rx + 64 tx */
2487 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2488 	pf_params.eth_pf_params.num_cons = 128;
2489 	qed_ops->common->update_pf_params(cdev, &pf_params);
2490 }
2491 
2492 enum qede_probe_mode {
2493 	QEDE_PROBE_NORMAL,
2494 };
2495 
2496 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2497 			bool is_vf, enum qede_probe_mode mode)
2498 {
2499 	struct qed_probe_params probe_params;
2500 	struct qed_slowpath_params sp_params;
2501 	struct qed_dev_eth_info dev_info;
2502 	struct qede_dev *edev;
2503 	struct qed_dev *cdev;
2504 	int rc;
2505 
2506 	if (unlikely(dp_level & QED_LEVEL_INFO))
2507 		pr_notice("Starting qede probe\n");
2508 
2509 	memset(&probe_params, 0, sizeof(probe_params));
2510 	probe_params.protocol = QED_PROTOCOL_ETH;
2511 	probe_params.dp_module = dp_module;
2512 	probe_params.dp_level = dp_level;
2513 	probe_params.is_vf = is_vf;
2514 	cdev = qed_ops->common->probe(pdev, &probe_params);
2515 	if (!cdev) {
2516 		rc = -ENODEV;
2517 		goto err0;
2518 	}
2519 
2520 	qede_update_pf_params(cdev);
2521 
2522 	/* Start the Slowpath-process */
2523 	memset(&sp_params, 0, sizeof(sp_params));
2524 	sp_params.int_mode = QED_INT_MODE_MSIX;
2525 	sp_params.drv_major = QEDE_MAJOR_VERSION;
2526 	sp_params.drv_minor = QEDE_MINOR_VERSION;
2527 	sp_params.drv_rev = QEDE_REVISION_VERSION;
2528 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
2529 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2530 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
2531 	if (rc) {
2532 		pr_notice("Cannot start slowpath\n");
2533 		goto err1;
2534 	}
2535 
2536 	/* Learn information crucial for qede to progress */
2537 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2538 	if (rc)
2539 		goto err2;
2540 
2541 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2542 				   dp_level);
2543 	if (!edev) {
2544 		rc = -ENOMEM;
2545 		goto err2;
2546 	}
2547 
2548 	if (is_vf)
2549 		edev->flags |= QEDE_FLAG_IS_VF;
2550 
2551 	qede_init_ndev(edev);
2552 
2553 	rc = qede_roce_dev_add(edev);
2554 	if (rc)
2555 		goto err3;
2556 
2557 	rc = register_netdev(edev->ndev);
2558 	if (rc) {
2559 		DP_NOTICE(edev, "Cannot register net-device\n");
2560 		goto err4;
2561 	}
2562 
2563 	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2564 
2565 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2566 
2567 #ifdef CONFIG_DCB
2568 	if (!IS_VF(edev))
2569 		qede_set_dcbnl_ops(edev->ndev);
2570 #endif
2571 
2572 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2573 	mutex_init(&edev->qede_lock);
2574 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
2575 
2576 	DP_INFO(edev, "Ending successfully qede probe\n");
2577 
2578 	return 0;
2579 
2580 err4:
2581 	qede_roce_dev_remove(edev);
2582 err3:
2583 	free_netdev(edev->ndev);
2584 err2:
2585 	qed_ops->common->slowpath_stop(cdev);
2586 err1:
2587 	qed_ops->common->remove(cdev);
2588 err0:
2589 	return rc;
2590 }
2591 
2592 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2593 {
2594 	bool is_vf = false;
2595 	u32 dp_module = 0;
2596 	u8 dp_level = 0;
2597 
2598 	switch ((enum qede_pci_private)id->driver_data) {
2599 	case QEDE_PRIVATE_VF:
2600 		if (debug & QED_LOG_VERBOSE_MASK)
2601 			dev_err(&pdev->dev, "Probing a VF\n");
2602 		is_vf = true;
2603 		break;
2604 	default:
2605 		if (debug & QED_LOG_VERBOSE_MASK)
2606 			dev_err(&pdev->dev, "Probing a PF\n");
2607 	}
2608 
2609 	qede_config_debug(debug, &dp_module, &dp_level);
2610 
2611 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
2612 			    QEDE_PROBE_NORMAL);
2613 }
2614 
2615 enum qede_remove_mode {
2616 	QEDE_REMOVE_NORMAL,
2617 };
2618 
2619 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2620 {
2621 	struct net_device *ndev = pci_get_drvdata(pdev);
2622 	struct qede_dev *edev = netdev_priv(ndev);
2623 	struct qed_dev *cdev = edev->cdev;
2624 
2625 	DP_INFO(edev, "Starting qede_remove\n");
2626 
2627 	cancel_delayed_work_sync(&edev->sp_task);
2628 
2629 	unregister_netdev(ndev);
2630 
2631 	qede_roce_dev_remove(edev);
2632 
2633 	edev->ops->common->set_power_state(cdev, PCI_D0);
2634 
2635 	pci_set_drvdata(pdev, NULL);
2636 
2637 	free_netdev(ndev);
2638 
2639 	/* Use global ops since we've freed edev */
2640 	qed_ops->common->slowpath_stop(cdev);
2641 	qed_ops->common->remove(cdev);
2642 
2643 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
2644 }
2645 
2646 static void qede_remove(struct pci_dev *pdev)
2647 {
2648 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2649 }
2650 
2651 /* -------------------------------------------------------------------------
2652  * START OF LOAD / UNLOAD
2653  * -------------------------------------------------------------------------
2654  */
2655 
2656 static int qede_set_num_queues(struct qede_dev *edev)
2657 {
2658 	int rc;
2659 	u16 rss_num;
2660 
2661 	/* Setup queues according to possible resources*/
2662 	if (edev->req_queues)
2663 		rss_num = edev->req_queues;
2664 	else
2665 		rss_num = netif_get_num_default_rss_queues() *
2666 			  edev->dev_info.common.num_hwfns;
2667 
2668 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2669 
2670 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2671 	if (rc > 0) {
2672 		/* Managed to request interrupts for our queues */
2673 		edev->num_queues = rc;
2674 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2675 			QEDE_QUEUE_CNT(edev), rss_num);
2676 		rc = 0;
2677 	}
2678 
2679 	edev->fp_num_tx = edev->req_num_tx;
2680 	edev->fp_num_rx = edev->req_num_rx;
2681 
2682 	return rc;
2683 }
2684 
2685 static void qede_free_mem_sb(struct qede_dev *edev,
2686 			     struct qed_sb_info *sb_info)
2687 {
2688 	if (sb_info->sb_virt)
2689 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2690 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
2691 }
2692 
2693 /* This function allocates fast-path status block memory */
2694 static int qede_alloc_mem_sb(struct qede_dev *edev,
2695 			     struct qed_sb_info *sb_info, u16 sb_id)
2696 {
2697 	struct status_block *sb_virt;
2698 	dma_addr_t sb_phys;
2699 	int rc;
2700 
2701 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2702 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
2703 	if (!sb_virt) {
2704 		DP_ERR(edev, "Status block allocation failed\n");
2705 		return -ENOMEM;
2706 	}
2707 
2708 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2709 					sb_virt, sb_phys, sb_id,
2710 					QED_SB_TYPE_L2_QUEUE);
2711 	if (rc) {
2712 		DP_ERR(edev, "Status block initialization failed\n");
2713 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2714 				  sb_virt, sb_phys);
2715 		return rc;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 static void qede_free_rx_buffers(struct qede_dev *edev,
2722 				 struct qede_rx_queue *rxq)
2723 {
2724 	u16 i;
2725 
2726 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2727 		struct sw_rx_data *rx_buf;
2728 		struct page *data;
2729 
2730 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2731 		data = rx_buf->data;
2732 
2733 		dma_unmap_page(&edev->pdev->dev,
2734 			       rx_buf->mapping, PAGE_SIZE, DMA_FROM_DEVICE);
2735 
2736 		rx_buf->data = NULL;
2737 		__free_page(data);
2738 	}
2739 }
2740 
2741 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2742 {
2743 	int i;
2744 
2745 	if (edev->gro_disable)
2746 		return;
2747 
2748 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2749 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2750 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2751 
2752 		if (replace_buf->data) {
2753 			dma_unmap_page(&edev->pdev->dev,
2754 				       replace_buf->mapping,
2755 				       PAGE_SIZE, DMA_FROM_DEVICE);
2756 			__free_page(replace_buf->data);
2757 		}
2758 	}
2759 }
2760 
2761 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2762 {
2763 	qede_free_sge_mem(edev, rxq);
2764 
2765 	/* Free rx buffers */
2766 	qede_free_rx_buffers(edev, rxq);
2767 
2768 	/* Free the parallel SW ring */
2769 	kfree(rxq->sw_rx_ring);
2770 
2771 	/* Free the real RQ ring used by FW */
2772 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2773 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2774 }
2775 
2776 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2777 				struct qede_rx_queue *rxq)
2778 {
2779 	struct sw_rx_data *sw_rx_data;
2780 	struct eth_rx_bd *rx_bd;
2781 	dma_addr_t mapping;
2782 	struct page *data;
2783 
2784 	data = alloc_pages(GFP_ATOMIC, 0);
2785 	if (unlikely(!data)) {
2786 		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2787 		return -ENOMEM;
2788 	}
2789 
2790 	/* Map the entire page as it would be used
2791 	 * for multiple RX buffer segment size mapping.
2792 	 */
2793 	mapping = dma_map_page(&edev->pdev->dev, data, 0,
2794 			       PAGE_SIZE, DMA_FROM_DEVICE);
2795 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2796 		__free_page(data);
2797 		DP_NOTICE(edev, "Failed to map Rx buffer\n");
2798 		return -ENOMEM;
2799 	}
2800 
2801 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2802 	sw_rx_data->page_offset = 0;
2803 	sw_rx_data->data = data;
2804 	sw_rx_data->mapping = mapping;
2805 
2806 	/* Advance PROD and get BD pointer */
2807 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2808 	WARN_ON(!rx_bd);
2809 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2810 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2811 
2812 	rxq->sw_rx_prod++;
2813 
2814 	return 0;
2815 }
2816 
2817 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq)
2818 {
2819 	dma_addr_t mapping;
2820 	int i;
2821 
2822 	if (edev->gro_disable)
2823 		return 0;
2824 
2825 	if (edev->ndev->mtu > PAGE_SIZE) {
2826 		edev->gro_disable = 1;
2827 		return 0;
2828 	}
2829 
2830 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2831 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2832 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2833 
2834 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2835 		if (unlikely(!replace_buf->data)) {
2836 			DP_NOTICE(edev,
2837 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
2838 			goto err;
2839 		}
2840 
2841 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2842 				       rxq->rx_buf_size, DMA_FROM_DEVICE);
2843 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2844 			DP_NOTICE(edev,
2845 				  "Failed to map TPA replacement buffer\n");
2846 			goto err;
2847 		}
2848 
2849 		replace_buf->mapping = mapping;
2850 		tpa_info->replace_buf.page_offset = 0;
2851 
2852 		tpa_info->replace_buf_mapping = mapping;
2853 		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2854 	}
2855 
2856 	return 0;
2857 err:
2858 	qede_free_sge_mem(edev, rxq);
2859 	edev->gro_disable = 1;
2860 	return -ENOMEM;
2861 }
2862 
2863 /* This function allocates all memory needed per Rx queue */
2864 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
2865 {
2866 	int i, rc, size;
2867 
2868 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
2869 
2870 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
2871 
2872 	if (rxq->rx_buf_size > PAGE_SIZE)
2873 		rxq->rx_buf_size = PAGE_SIZE;
2874 
2875 	/* Segment size to spilt a page in multiple equal parts */
2876 	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2877 
2878 	/* Allocate the parallel driver ring for Rx buffers */
2879 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2880 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2881 	if (!rxq->sw_rx_ring) {
2882 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
2883 		rc = -ENOMEM;
2884 		goto err;
2885 	}
2886 
2887 	/* Allocate FW Rx ring  */
2888 	rc = edev->ops->common->chain_alloc(edev->cdev,
2889 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2890 					    QED_CHAIN_MODE_NEXT_PTR,
2891 					    QED_CHAIN_CNT_TYPE_U16,
2892 					    RX_RING_SIZE,
2893 					    sizeof(struct eth_rx_bd),
2894 					    &rxq->rx_bd_ring);
2895 
2896 	if (rc)
2897 		goto err;
2898 
2899 	/* Allocate FW completion ring */
2900 	rc = edev->ops->common->chain_alloc(edev->cdev,
2901 					    QED_CHAIN_USE_TO_CONSUME,
2902 					    QED_CHAIN_MODE_PBL,
2903 					    QED_CHAIN_CNT_TYPE_U16,
2904 					    RX_RING_SIZE,
2905 					    sizeof(union eth_rx_cqe),
2906 					    &rxq->rx_comp_ring);
2907 	if (rc)
2908 		goto err;
2909 
2910 	/* Allocate buffers for the Rx ring */
2911 	for (i = 0; i < rxq->num_rx_buffers; i++) {
2912 		rc = qede_alloc_rx_buffer(edev, rxq);
2913 		if (rc) {
2914 			DP_ERR(edev,
2915 			       "Rx buffers allocation failed at index %d\n", i);
2916 			goto err;
2917 		}
2918 	}
2919 
2920 	rc = qede_alloc_sge_mem(edev, rxq);
2921 err:
2922 	return rc;
2923 }
2924 
2925 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2926 {
2927 	/* Free the parallel SW ring */
2928 	kfree(txq->sw_tx_ring);
2929 
2930 	/* Free the real RQ ring used by FW */
2931 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2932 }
2933 
2934 /* This function allocates all memory needed per Tx queue */
2935 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
2936 {
2937 	int size, rc;
2938 	union eth_tx_bd_types *p_virt;
2939 
2940 	txq->num_tx_buffers = edev->q_num_tx_buffers;
2941 
2942 	/* Allocate the parallel driver ring for Tx buffers */
2943 	size = sizeof(*txq->sw_tx_ring) * TX_RING_SIZE;
2944 	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2945 	if (!txq->sw_tx_ring) {
2946 		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2947 		goto err;
2948 	}
2949 
2950 	rc = edev->ops->common->chain_alloc(edev->cdev,
2951 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2952 					    QED_CHAIN_MODE_PBL,
2953 					    QED_CHAIN_CNT_TYPE_U16,
2954 					    TX_RING_SIZE,
2955 					    sizeof(*p_virt), &txq->tx_pbl);
2956 	if (rc)
2957 		goto err;
2958 
2959 	return 0;
2960 
2961 err:
2962 	qede_free_mem_txq(edev, txq);
2963 	return -ENOMEM;
2964 }
2965 
2966 /* This function frees all memory of a single fp */
2967 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2968 {
2969 	int tc;
2970 
2971 	qede_free_mem_sb(edev, fp->sb_info);
2972 
2973 	if (fp->type & QEDE_FASTPATH_RX)
2974 		qede_free_mem_rxq(edev, fp->rxq);
2975 
2976 	if (fp->type & QEDE_FASTPATH_TX)
2977 		for (tc = 0; tc < edev->num_tc; tc++)
2978 			qede_free_mem_txq(edev, &fp->txqs[tc]);
2979 }
2980 
2981 /* This function allocates all memory needed for a single fp (i.e. an entity
2982  * which contains status block, one rx queue and/or multiple per-TC tx queues.
2983  */
2984 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
2985 {
2986 	int rc, tc;
2987 
2988 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
2989 	if (rc)
2990 		goto err;
2991 
2992 	if (fp->type & QEDE_FASTPATH_RX) {
2993 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
2994 		if (rc)
2995 			goto err;
2996 	}
2997 
2998 	if (fp->type & QEDE_FASTPATH_TX) {
2999 		for (tc = 0; tc < edev->num_tc; tc++) {
3000 			rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
3001 			if (rc)
3002 				goto err;
3003 		}
3004 	}
3005 
3006 	return 0;
3007 err:
3008 	return rc;
3009 }
3010 
3011 static void qede_free_mem_load(struct qede_dev *edev)
3012 {
3013 	int i;
3014 
3015 	for_each_queue(i) {
3016 		struct qede_fastpath *fp = &edev->fp_array[i];
3017 
3018 		qede_free_mem_fp(edev, fp);
3019 	}
3020 }
3021 
3022 /* This function allocates all qede memory at NIC load. */
3023 static int qede_alloc_mem_load(struct qede_dev *edev)
3024 {
3025 	int rc = 0, queue_id;
3026 
3027 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
3028 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
3029 
3030 		rc = qede_alloc_mem_fp(edev, fp);
3031 		if (rc) {
3032 			DP_ERR(edev,
3033 			       "Failed to allocate memory for fastpath - rss id = %d\n",
3034 			       queue_id);
3035 			qede_free_mem_load(edev);
3036 			return rc;
3037 		}
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
3044 static void qede_init_fp(struct qede_dev *edev)
3045 {
3046 	int queue_id, rxq_index = 0, txq_index = 0, tc;
3047 	struct qede_fastpath *fp;
3048 
3049 	for_each_queue(queue_id) {
3050 		fp = &edev->fp_array[queue_id];
3051 
3052 		fp->edev = edev;
3053 		fp->id = queue_id;
3054 
3055 		memset((void *)&fp->napi, 0, sizeof(fp->napi));
3056 
3057 		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
3058 
3059 		if (fp->type & QEDE_FASTPATH_RX) {
3060 			memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
3061 			fp->rxq->rxq_id = rxq_index++;
3062 		}
3063 
3064 		if (fp->type & QEDE_FASTPATH_TX) {
3065 			memset((void *)fp->txqs, 0,
3066 			       (edev->num_tc * sizeof(*fp->txqs)));
3067 			for (tc = 0; tc < edev->num_tc; tc++) {
3068 				fp->txqs[tc].index = txq_index +
3069 				    tc * QEDE_TSS_COUNT(edev);
3070 				if (edev->dev_info.is_legacy)
3071 					fp->txqs[tc].is_legacy = true;
3072 			}
3073 			txq_index++;
3074 		}
3075 
3076 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
3077 			 edev->ndev->name, queue_id);
3078 	}
3079 
3080 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3081 }
3082 
3083 static int qede_set_real_num_queues(struct qede_dev *edev)
3084 {
3085 	int rc = 0;
3086 
3087 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev));
3088 	if (rc) {
3089 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3090 		return rc;
3091 	}
3092 
3093 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
3094 	if (rc) {
3095 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3096 		return rc;
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 static void qede_napi_disable_remove(struct qede_dev *edev)
3103 {
3104 	int i;
3105 
3106 	for_each_queue(i) {
3107 		napi_disable(&edev->fp_array[i].napi);
3108 
3109 		netif_napi_del(&edev->fp_array[i].napi);
3110 	}
3111 }
3112 
3113 static void qede_napi_add_enable(struct qede_dev *edev)
3114 {
3115 	int i;
3116 
3117 	/* Add NAPI objects */
3118 	for_each_queue(i) {
3119 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3120 			       qede_poll, NAPI_POLL_WEIGHT);
3121 		napi_enable(&edev->fp_array[i].napi);
3122 	}
3123 }
3124 
3125 static void qede_sync_free_irqs(struct qede_dev *edev)
3126 {
3127 	int i;
3128 
3129 	for (i = 0; i < edev->int_info.used_cnt; i++) {
3130 		if (edev->int_info.msix_cnt) {
3131 			synchronize_irq(edev->int_info.msix[i].vector);
3132 			free_irq(edev->int_info.msix[i].vector,
3133 				 &edev->fp_array[i]);
3134 		} else {
3135 			edev->ops->common->simd_handler_clean(edev->cdev, i);
3136 		}
3137 	}
3138 
3139 	edev->int_info.used_cnt = 0;
3140 }
3141 
3142 static int qede_req_msix_irqs(struct qede_dev *edev)
3143 {
3144 	int i, rc;
3145 
3146 	/* Sanitize number of interrupts == number of prepared RSS queues */
3147 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
3148 		DP_ERR(edev,
3149 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3150 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
3151 		return -EINVAL;
3152 	}
3153 
3154 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
3155 		rc = request_irq(edev->int_info.msix[i].vector,
3156 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
3157 				 &edev->fp_array[i]);
3158 		if (rc) {
3159 			DP_ERR(edev, "Request fp %d irq failed\n", i);
3160 			qede_sync_free_irqs(edev);
3161 			return rc;
3162 		}
3163 		DP_VERBOSE(edev, NETIF_MSG_INTR,
3164 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3165 			   edev->fp_array[i].name, i,
3166 			   &edev->fp_array[i]);
3167 		edev->int_info.used_cnt++;
3168 	}
3169 
3170 	return 0;
3171 }
3172 
3173 static void qede_simd_fp_handler(void *cookie)
3174 {
3175 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3176 
3177 	napi_schedule_irqoff(&fp->napi);
3178 }
3179 
3180 static int qede_setup_irqs(struct qede_dev *edev)
3181 {
3182 	int i, rc = 0;
3183 
3184 	/* Learn Interrupt configuration */
3185 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3186 	if (rc)
3187 		return rc;
3188 
3189 	if (edev->int_info.msix_cnt) {
3190 		rc = qede_req_msix_irqs(edev);
3191 		if (rc)
3192 			return rc;
3193 		edev->ndev->irq = edev->int_info.msix[0].vector;
3194 	} else {
3195 		const struct qed_common_ops *ops;
3196 
3197 		/* qed should learn receive the RSS ids and callbacks */
3198 		ops = edev->ops->common;
3199 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
3200 			ops->simd_handler_config(edev->cdev,
3201 						 &edev->fp_array[i], i,
3202 						 qede_simd_fp_handler);
3203 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
3204 	}
3205 	return 0;
3206 }
3207 
3208 static int qede_drain_txq(struct qede_dev *edev,
3209 			  struct qede_tx_queue *txq, bool allow_drain)
3210 {
3211 	int rc, cnt = 1000;
3212 
3213 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
3214 		if (!cnt) {
3215 			if (allow_drain) {
3216 				DP_NOTICE(edev,
3217 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
3218 					  txq->index);
3219 				rc = edev->ops->common->drain(edev->cdev);
3220 				if (rc)
3221 					return rc;
3222 				return qede_drain_txq(edev, txq, false);
3223 			}
3224 			DP_NOTICE(edev,
3225 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3226 				  txq->index, txq->sw_tx_prod,
3227 				  txq->sw_tx_cons);
3228 			return -ENODEV;
3229 		}
3230 		cnt--;
3231 		usleep_range(1000, 2000);
3232 		barrier();
3233 	}
3234 
3235 	/* FW finished processing, wait for HW to transmit all tx packets */
3236 	usleep_range(1000, 2000);
3237 
3238 	return 0;
3239 }
3240 
3241 static int qede_stop_queues(struct qede_dev *edev)
3242 {
3243 	struct qed_update_vport_params vport_update_params;
3244 	struct qed_dev *cdev = edev->cdev;
3245 	int rc, tc, i;
3246 
3247 	/* Disable the vport */
3248 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3249 	vport_update_params.vport_id = 0;
3250 	vport_update_params.update_vport_active_flg = 1;
3251 	vport_update_params.vport_active_flg = 0;
3252 	vport_update_params.update_rss_flg = 0;
3253 
3254 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3255 	if (rc) {
3256 		DP_ERR(edev, "Failed to update vport\n");
3257 		return rc;
3258 	}
3259 
3260 	/* Flush Tx queues. If needed, request drain from MCP */
3261 	for_each_queue(i) {
3262 		struct qede_fastpath *fp = &edev->fp_array[i];
3263 
3264 		if (fp->type & QEDE_FASTPATH_TX) {
3265 			for (tc = 0; tc < edev->num_tc; tc++) {
3266 				struct qede_tx_queue *txq = &fp->txqs[tc];
3267 
3268 				rc = qede_drain_txq(edev, txq, true);
3269 				if (rc)
3270 					return rc;
3271 			}
3272 		}
3273 	}
3274 
3275 	/* Stop all Queues in reverse order */
3276 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
3277 		struct qed_stop_rxq_params rx_params;
3278 
3279 		/* Stop the Tx Queue(s) */
3280 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
3281 			for (tc = 0; tc < edev->num_tc; tc++) {
3282 				struct qed_stop_txq_params tx_params;
3283 				u8 val;
3284 
3285 				tx_params.rss_id = i;
3286 				val = edev->fp_array[i].txqs[tc].index;
3287 				tx_params.tx_queue_id = val;
3288 				rc = edev->ops->q_tx_stop(cdev, &tx_params);
3289 				if (rc) {
3290 					DP_ERR(edev, "Failed to stop TXQ #%d\n",
3291 					       tx_params.tx_queue_id);
3292 					return rc;
3293 				}
3294 			}
3295 		}
3296 
3297 		/* Stop the Rx Queue */
3298 		if (edev->fp_array[i].type & QEDE_FASTPATH_RX) {
3299 			memset(&rx_params, 0, sizeof(rx_params));
3300 			rx_params.rss_id = i;
3301 			rx_params.rx_queue_id = edev->fp_array[i].rxq->rxq_id;
3302 
3303 			rc = edev->ops->q_rx_stop(cdev, &rx_params);
3304 			if (rc) {
3305 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3306 				return rc;
3307 			}
3308 		}
3309 	}
3310 
3311 	/* Stop the vport */
3312 	rc = edev->ops->vport_stop(cdev, 0);
3313 	if (rc)
3314 		DP_ERR(edev, "Failed to stop VPORT\n");
3315 
3316 	return rc;
3317 }
3318 
3319 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
3320 {
3321 	int rc, tc, i;
3322 	int vlan_removal_en = 1;
3323 	struct qed_dev *cdev = edev->cdev;
3324 	struct qed_update_vport_params vport_update_params;
3325 	struct qed_queue_start_common_params q_params;
3326 	struct qed_dev_info *qed_info = &edev->dev_info.common;
3327 	struct qed_start_vport_params start = {0};
3328 	bool reset_rss_indir = false;
3329 
3330 	if (!edev->num_queues) {
3331 		DP_ERR(edev,
3332 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
3333 		return -EINVAL;
3334 	}
3335 
3336 	start.gro_enable = !edev->gro_disable;
3337 	start.mtu = edev->ndev->mtu;
3338 	start.vport_id = 0;
3339 	start.drop_ttl0 = true;
3340 	start.remove_inner_vlan = vlan_removal_en;
3341 	start.clear_stats = clear_stats;
3342 
3343 	rc = edev->ops->vport_start(cdev, &start);
3344 
3345 	if (rc) {
3346 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3347 		return rc;
3348 	}
3349 
3350 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
3351 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3352 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3353 
3354 	for_each_queue(i) {
3355 		struct qede_fastpath *fp = &edev->fp_array[i];
3356 		dma_addr_t p_phys_table;
3357 		u32 page_cnt;
3358 
3359 		if (fp->type & QEDE_FASTPATH_RX) {
3360 			struct qede_rx_queue *rxq = fp->rxq;
3361 			__le16 *val;
3362 
3363 			memset(&q_params, 0, sizeof(q_params));
3364 			q_params.rss_id = i;
3365 			q_params.queue_id = rxq->rxq_id;
3366 			q_params.vport_id = 0;
3367 			q_params.sb = fp->sb_info->igu_sb_id;
3368 			q_params.sb_idx = RX_PI;
3369 
3370 			p_phys_table =
3371 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
3372 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
3373 
3374 			rc = edev->ops->q_rx_start(cdev, &q_params,
3375 						   rxq->rx_buf_size,
3376 						   rxq->rx_bd_ring.p_phys_addr,
3377 						   p_phys_table,
3378 						   page_cnt,
3379 						   &rxq->hw_rxq_prod_addr);
3380 			if (rc) {
3381 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
3382 				       rc);
3383 				return rc;
3384 			}
3385 
3386 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
3387 			rxq->hw_cons_ptr = val;
3388 
3389 			qede_update_rx_prod(edev, rxq);
3390 		}
3391 
3392 		if (!(fp->type & QEDE_FASTPATH_TX))
3393 			continue;
3394 
3395 		for (tc = 0; tc < edev->num_tc; tc++) {
3396 			struct qede_tx_queue *txq = &fp->txqs[tc];
3397 
3398 			p_phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
3399 			page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
3400 
3401 			memset(&q_params, 0, sizeof(q_params));
3402 			q_params.rss_id = i;
3403 			q_params.queue_id = txq->index;
3404 			q_params.vport_id = 0;
3405 			q_params.sb = fp->sb_info->igu_sb_id;
3406 			q_params.sb_idx = TX_PI(tc);
3407 
3408 			rc = edev->ops->q_tx_start(cdev, &q_params,
3409 						   p_phys_table, page_cnt,
3410 						   &txq->doorbell_addr);
3411 			if (rc) {
3412 				DP_ERR(edev, "Start TXQ #%d failed %d\n",
3413 				       txq->index, rc);
3414 				return rc;
3415 			}
3416 
3417 			txq->hw_cons_ptr =
3418 				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3419 			SET_FIELD(txq->tx_db.data.params,
3420 				  ETH_DB_DATA_DEST, DB_DEST_XCM);
3421 			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3422 				  DB_AGG_CMD_SET);
3423 			SET_FIELD(txq->tx_db.data.params,
3424 				  ETH_DB_DATA_AGG_VAL_SEL,
3425 				  DQ_XCM_ETH_TX_BD_PROD_CMD);
3426 
3427 			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3428 		}
3429 	}
3430 
3431 	/* Prepare and send the vport enable */
3432 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3433 	vport_update_params.vport_id = start.vport_id;
3434 	vport_update_params.update_vport_active_flg = 1;
3435 	vport_update_params.vport_active_flg = 1;
3436 
3437 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3438 	    qed_info->tx_switching) {
3439 		vport_update_params.update_tx_switching_flg = 1;
3440 		vport_update_params.tx_switching_flg = 1;
3441 	}
3442 
3443 	/* Fill struct with RSS params */
3444 	if (QEDE_RSS_COUNT(edev) > 1) {
3445 		vport_update_params.update_rss_flg = 1;
3446 
3447 		/* Need to validate current RSS config uses valid entries */
3448 		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3449 			if (edev->rss_params.rss_ind_table[i] >=
3450 			    QEDE_RSS_COUNT(edev)) {
3451 				reset_rss_indir = true;
3452 				break;
3453 			}
3454 		}
3455 
3456 		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3457 		    reset_rss_indir) {
3458 			u16 val;
3459 
3460 			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3461 				u16 indir_val;
3462 
3463 				val = QEDE_RSS_COUNT(edev);
3464 				indir_val = ethtool_rxfh_indir_default(i, val);
3465 				edev->rss_params.rss_ind_table[i] = indir_val;
3466 			}
3467 			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3468 		}
3469 
3470 		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3471 			netdev_rss_key_fill(edev->rss_params.rss_key,
3472 					    sizeof(edev->rss_params.rss_key));
3473 			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3474 		}
3475 
3476 		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3477 			edev->rss_params.rss_caps = QED_RSS_IPV4 |
3478 						    QED_RSS_IPV6 |
3479 						    QED_RSS_IPV4_TCP |
3480 						    QED_RSS_IPV6_TCP;
3481 			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3482 		}
3483 
3484 		memcpy(&vport_update_params.rss_params, &edev->rss_params,
3485 		       sizeof(vport_update_params.rss_params));
3486 	} else {
3487 		memset(&vport_update_params.rss_params, 0,
3488 		       sizeof(vport_update_params.rss_params));
3489 	}
3490 
3491 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3492 	if (rc) {
3493 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3494 		return rc;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3501 				 enum qed_filter_xcast_params_type opcode,
3502 				 unsigned char *mac, int num_macs)
3503 {
3504 	struct qed_filter_params filter_cmd;
3505 	int i;
3506 
3507 	memset(&filter_cmd, 0, sizeof(filter_cmd));
3508 	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3509 	filter_cmd.filter.mcast.type = opcode;
3510 	filter_cmd.filter.mcast.num = num_macs;
3511 
3512 	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3513 		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3514 
3515 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3516 }
3517 
3518 enum qede_unload_mode {
3519 	QEDE_UNLOAD_NORMAL,
3520 };
3521 
3522 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3523 {
3524 	struct qed_link_params link_params;
3525 	int rc;
3526 
3527 	DP_INFO(edev, "Starting qede unload\n");
3528 
3529 	qede_roce_dev_event_close(edev);
3530 	mutex_lock(&edev->qede_lock);
3531 	edev->state = QEDE_STATE_CLOSED;
3532 
3533 	/* Close OS Tx */
3534 	netif_tx_disable(edev->ndev);
3535 	netif_carrier_off(edev->ndev);
3536 
3537 	/* Reset the link */
3538 	memset(&link_params, 0, sizeof(link_params));
3539 	link_params.link_up = false;
3540 	edev->ops->common->set_link(edev->cdev, &link_params);
3541 	rc = qede_stop_queues(edev);
3542 	if (rc) {
3543 		qede_sync_free_irqs(edev);
3544 		goto out;
3545 	}
3546 
3547 	DP_INFO(edev, "Stopped Queues\n");
3548 
3549 	qede_vlan_mark_nonconfigured(edev);
3550 	edev->ops->fastpath_stop(edev->cdev);
3551 
3552 	/* Release the interrupts */
3553 	qede_sync_free_irqs(edev);
3554 	edev->ops->common->set_fp_int(edev->cdev, 0);
3555 
3556 	qede_napi_disable_remove(edev);
3557 
3558 	qede_free_mem_load(edev);
3559 	qede_free_fp_array(edev);
3560 
3561 out:
3562 	mutex_unlock(&edev->qede_lock);
3563 	DP_INFO(edev, "Ending qede unload\n");
3564 }
3565 
3566 enum qede_load_mode {
3567 	QEDE_LOAD_NORMAL,
3568 	QEDE_LOAD_RELOAD,
3569 };
3570 
3571 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3572 {
3573 	struct qed_link_params link_params;
3574 	struct qed_link_output link_output;
3575 	int rc;
3576 
3577 	DP_INFO(edev, "Starting qede load\n");
3578 
3579 	rc = qede_set_num_queues(edev);
3580 	if (rc)
3581 		goto err0;
3582 
3583 	rc = qede_alloc_fp_array(edev);
3584 	if (rc)
3585 		goto err0;
3586 
3587 	qede_init_fp(edev);
3588 
3589 	rc = qede_alloc_mem_load(edev);
3590 	if (rc)
3591 		goto err1;
3592 	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3593 		QEDE_QUEUE_CNT(edev), edev->num_tc);
3594 
3595 	rc = qede_set_real_num_queues(edev);
3596 	if (rc)
3597 		goto err2;
3598 
3599 	qede_napi_add_enable(edev);
3600 	DP_INFO(edev, "Napi added and enabled\n");
3601 
3602 	rc = qede_setup_irqs(edev);
3603 	if (rc)
3604 		goto err3;
3605 	DP_INFO(edev, "Setup IRQs succeeded\n");
3606 
3607 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
3608 	if (rc)
3609 		goto err4;
3610 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3611 
3612 	/* Add primary mac and set Rx filters */
3613 	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3614 
3615 	mutex_lock(&edev->qede_lock);
3616 	edev->state = QEDE_STATE_OPEN;
3617 	mutex_unlock(&edev->qede_lock);
3618 
3619 	/* Program un-configured VLANs */
3620 	qede_configure_vlan_filters(edev);
3621 
3622 	/* Ask for link-up using current configuration */
3623 	memset(&link_params, 0, sizeof(link_params));
3624 	link_params.link_up = true;
3625 	edev->ops->common->set_link(edev->cdev, &link_params);
3626 
3627 	/* Query whether link is already-up */
3628 	memset(&link_output, 0, sizeof(link_output));
3629 	edev->ops->common->get_link(edev->cdev, &link_output);
3630 	qede_roce_dev_event_open(edev);
3631 	qede_link_update(edev, &link_output);
3632 
3633 	DP_INFO(edev, "Ending successfully qede load\n");
3634 
3635 	return 0;
3636 
3637 err4:
3638 	qede_sync_free_irqs(edev);
3639 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3640 err3:
3641 	qede_napi_disable_remove(edev);
3642 err2:
3643 	qede_free_mem_load(edev);
3644 err1:
3645 	edev->ops->common->set_fp_int(edev->cdev, 0);
3646 	qede_free_fp_array(edev);
3647 	edev->num_queues = 0;
3648 	edev->fp_num_tx = 0;
3649 	edev->fp_num_rx = 0;
3650 err0:
3651 	return rc;
3652 }
3653 
3654 void qede_reload(struct qede_dev *edev,
3655 		 void (*func)(struct qede_dev *, union qede_reload_args *),
3656 		 union qede_reload_args *args)
3657 {
3658 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3659 	/* Call function handler to update parameters
3660 	 * needed for function load.
3661 	 */
3662 	if (func)
3663 		func(edev, args);
3664 
3665 	qede_load(edev, QEDE_LOAD_RELOAD);
3666 
3667 	mutex_lock(&edev->qede_lock);
3668 	qede_config_rx_mode(edev->ndev);
3669 	mutex_unlock(&edev->qede_lock);
3670 }
3671 
3672 /* called with rtnl_lock */
3673 static int qede_open(struct net_device *ndev)
3674 {
3675 	struct qede_dev *edev = netdev_priv(ndev);
3676 	int rc;
3677 
3678 	netif_carrier_off(ndev);
3679 
3680 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3681 
3682 	rc = qede_load(edev, QEDE_LOAD_NORMAL);
3683 
3684 	if (rc)
3685 		return rc;
3686 
3687 	udp_tunnel_get_rx_info(ndev);
3688 
3689 	return 0;
3690 }
3691 
3692 static int qede_close(struct net_device *ndev)
3693 {
3694 	struct qede_dev *edev = netdev_priv(ndev);
3695 
3696 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3697 
3698 	return 0;
3699 }
3700 
3701 static void qede_link_update(void *dev, struct qed_link_output *link)
3702 {
3703 	struct qede_dev *edev = dev;
3704 
3705 	if (!netif_running(edev->ndev)) {
3706 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3707 		return;
3708 	}
3709 
3710 	if (link->link_up) {
3711 		if (!netif_carrier_ok(edev->ndev)) {
3712 			DP_NOTICE(edev, "Link is up\n");
3713 			netif_tx_start_all_queues(edev->ndev);
3714 			netif_carrier_on(edev->ndev);
3715 		}
3716 	} else {
3717 		if (netif_carrier_ok(edev->ndev)) {
3718 			DP_NOTICE(edev, "Link is down\n");
3719 			netif_tx_disable(edev->ndev);
3720 			netif_carrier_off(edev->ndev);
3721 		}
3722 	}
3723 }
3724 
3725 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3726 {
3727 	struct qede_dev *edev = netdev_priv(ndev);
3728 	struct sockaddr *addr = p;
3729 	int rc;
3730 
3731 	ASSERT_RTNL(); /* @@@TBD To be removed */
3732 
3733 	DP_INFO(edev, "Set_mac_addr called\n");
3734 
3735 	if (!is_valid_ether_addr(addr->sa_data)) {
3736 		DP_NOTICE(edev, "The MAC address is not valid\n");
3737 		return -EFAULT;
3738 	}
3739 
3740 	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3741 		DP_NOTICE(edev, "qed prevents setting MAC\n");
3742 		return -EINVAL;
3743 	}
3744 
3745 	ether_addr_copy(ndev->dev_addr, addr->sa_data);
3746 
3747 	if (!netif_running(ndev))  {
3748 		DP_NOTICE(edev, "The device is currently down\n");
3749 		return 0;
3750 	}
3751 
3752 	/* Remove the previous primary mac */
3753 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3754 				   edev->primary_mac);
3755 	if (rc)
3756 		return rc;
3757 
3758 	/* Add MAC filter according to the new unicast HW MAC address */
3759 	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3760 	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3761 				      edev->primary_mac);
3762 }
3763 
3764 static int
3765 qede_configure_mcast_filtering(struct net_device *ndev,
3766 			       enum qed_filter_rx_mode_type *accept_flags)
3767 {
3768 	struct qede_dev *edev = netdev_priv(ndev);
3769 	unsigned char *mc_macs, *temp;
3770 	struct netdev_hw_addr *ha;
3771 	int rc = 0, mc_count;
3772 	size_t size;
3773 
3774 	size = 64 * ETH_ALEN;
3775 
3776 	mc_macs = kzalloc(size, GFP_KERNEL);
3777 	if (!mc_macs) {
3778 		DP_NOTICE(edev,
3779 			  "Failed to allocate memory for multicast MACs\n");
3780 		rc = -ENOMEM;
3781 		goto exit;
3782 	}
3783 
3784 	temp = mc_macs;
3785 
3786 	/* Remove all previously configured MAC filters */
3787 	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3788 				   mc_macs, 1);
3789 	if (rc)
3790 		goto exit;
3791 
3792 	netif_addr_lock_bh(ndev);
3793 
3794 	mc_count = netdev_mc_count(ndev);
3795 	if (mc_count < 64) {
3796 		netdev_for_each_mc_addr(ha, ndev) {
3797 			ether_addr_copy(temp, ha->addr);
3798 			temp += ETH_ALEN;
3799 		}
3800 	}
3801 
3802 	netif_addr_unlock_bh(ndev);
3803 
3804 	/* Check for all multicast @@@TBD resource allocation */
3805 	if ((ndev->flags & IFF_ALLMULTI) ||
3806 	    (mc_count > 64)) {
3807 		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3808 			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3809 	} else {
3810 		/* Add all multicast MAC filters */
3811 		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3812 					   mc_macs, mc_count);
3813 	}
3814 
3815 exit:
3816 	kfree(mc_macs);
3817 	return rc;
3818 }
3819 
3820 static void qede_set_rx_mode(struct net_device *ndev)
3821 {
3822 	struct qede_dev *edev = netdev_priv(ndev);
3823 
3824 	DP_INFO(edev, "qede_set_rx_mode called\n");
3825 
3826 	if (edev->state != QEDE_STATE_OPEN) {
3827 		DP_INFO(edev,
3828 			"qede_set_rx_mode called while interface is down\n");
3829 	} else {
3830 		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3831 		schedule_delayed_work(&edev->sp_task, 0);
3832 	}
3833 }
3834 
3835 /* Must be called with qede_lock held */
3836 static void qede_config_rx_mode(struct net_device *ndev)
3837 {
3838 	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3839 	struct qede_dev *edev = netdev_priv(ndev);
3840 	struct qed_filter_params rx_mode;
3841 	unsigned char *uc_macs, *temp;
3842 	struct netdev_hw_addr *ha;
3843 	int rc, uc_count;
3844 	size_t size;
3845 
3846 	netif_addr_lock_bh(ndev);
3847 
3848 	uc_count = netdev_uc_count(ndev);
3849 	size = uc_count * ETH_ALEN;
3850 
3851 	uc_macs = kzalloc(size, GFP_ATOMIC);
3852 	if (!uc_macs) {
3853 		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3854 		netif_addr_unlock_bh(ndev);
3855 		return;
3856 	}
3857 
3858 	temp = uc_macs;
3859 	netdev_for_each_uc_addr(ha, ndev) {
3860 		ether_addr_copy(temp, ha->addr);
3861 		temp += ETH_ALEN;
3862 	}
3863 
3864 	netif_addr_unlock_bh(ndev);
3865 
3866 	/* Configure the struct for the Rx mode */
3867 	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3868 	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3869 
3870 	/* Remove all previous unicast secondary macs and multicast macs
3871 	 * (configrue / leave the primary mac)
3872 	 */
3873 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3874 				   edev->primary_mac);
3875 	if (rc)
3876 		goto out;
3877 
3878 	/* Check for promiscuous */
3879 	if ((ndev->flags & IFF_PROMISC) ||
3880 	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3881 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3882 	} else {
3883 		/* Add MAC filters according to the unicast secondary macs */
3884 		int i;
3885 
3886 		temp = uc_macs;
3887 		for (i = 0; i < uc_count; i++) {
3888 			rc = qede_set_ucast_rx_mac(edev,
3889 						   QED_FILTER_XCAST_TYPE_ADD,
3890 						   temp);
3891 			if (rc)
3892 				goto out;
3893 
3894 			temp += ETH_ALEN;
3895 		}
3896 
3897 		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3898 		if (rc)
3899 			goto out;
3900 	}
3901 
3902 	/* take care of VLAN mode */
3903 	if (ndev->flags & IFF_PROMISC) {
3904 		qede_config_accept_any_vlan(edev, true);
3905 	} else if (!edev->non_configured_vlans) {
3906 		/* It's possible that accept_any_vlan mode is set due to a
3907 		 * previous setting of IFF_PROMISC. If vlan credits are
3908 		 * sufficient, disable accept_any_vlan.
3909 		 */
3910 		qede_config_accept_any_vlan(edev, false);
3911 	}
3912 
3913 	rx_mode.filter.accept_flags = accept_flags;
3914 	edev->ops->filter_config(edev->cdev, &rx_mode);
3915 out:
3916 	kfree(uc_macs);
3917 }
3918