1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/crash_dump.h> 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/device.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/skbuff.h> 14 #include <linux/errno.h> 15 #include <linux/list.h> 16 #include <linux/string.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <asm/byteorder.h> 20 #include <asm/param.h> 21 #include <linux/io.h> 22 #include <linux/netdev_features.h> 23 #include <linux/udp.h> 24 #include <linux/tcp.h> 25 #include <net/udp_tunnel.h> 26 #include <linux/ip.h> 27 #include <net/ipv6.h> 28 #include <net/tcp.h> 29 #include <linux/if_ether.h> 30 #include <linux/if_vlan.h> 31 #include <linux/pkt_sched.h> 32 #include <linux/ethtool.h> 33 #include <linux/in.h> 34 #include <linux/random.h> 35 #include <net/ip6_checksum.h> 36 #include <linux/bitops.h> 37 #include <linux/vmalloc.h> 38 #include "qede.h" 39 #include "qede_ptp.h" 40 41 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 42 MODULE_LICENSE("GPL"); 43 44 static uint debug; 45 module_param(debug, uint, 0); 46 MODULE_PARM_DESC(debug, " Default debug msglevel"); 47 48 static const struct qed_eth_ops *qed_ops; 49 50 #define CHIP_NUM_57980S_40 0x1634 51 #define CHIP_NUM_57980S_10 0x1666 52 #define CHIP_NUM_57980S_MF 0x1636 53 #define CHIP_NUM_57980S_100 0x1644 54 #define CHIP_NUM_57980S_50 0x1654 55 #define CHIP_NUM_57980S_25 0x1656 56 #define CHIP_NUM_57980S_IOV 0x1664 57 #define CHIP_NUM_AH 0x8070 58 #define CHIP_NUM_AH_IOV 0x8090 59 60 #ifndef PCI_DEVICE_ID_NX2_57980E 61 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 62 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 63 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 64 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 65 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 66 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 67 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 68 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 69 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 70 71 #endif 72 73 enum qede_pci_private { 74 QEDE_PRIVATE_PF, 75 QEDE_PRIVATE_VF 76 }; 77 78 static const struct pci_device_id qede_pci_tbl[] = { 79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 85 #ifdef CONFIG_QED_SRIOV 86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 87 #endif 88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 89 #ifdef CONFIG_QED_SRIOV 90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 91 #endif 92 { 0 } 93 }; 94 95 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 96 97 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 98 static pci_ers_result_t 99 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state); 100 101 #define TX_TIMEOUT (5 * HZ) 102 103 /* Utilize last protocol index for XDP */ 104 #define XDP_PI 11 105 106 static void qede_remove(struct pci_dev *pdev); 107 static void qede_shutdown(struct pci_dev *pdev); 108 static void qede_link_update(void *dev, struct qed_link_output *link); 109 static void qede_schedule_recovery_handler(void *dev); 110 static void qede_recovery_handler(struct qede_dev *edev); 111 static void qede_schedule_hw_err_handler(void *dev, 112 enum qed_hw_err_type err_type); 113 static void qede_get_eth_tlv_data(void *edev, void *data); 114 static void qede_get_generic_tlv_data(void *edev, 115 struct qed_generic_tlvs *data); 116 static void qede_generic_hw_err_handler(struct qede_dev *edev); 117 #ifdef CONFIG_QED_SRIOV 118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 119 __be16 vlan_proto) 120 { 121 struct qede_dev *edev = netdev_priv(ndev); 122 123 if (vlan > 4095) { 124 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 125 return -EINVAL; 126 } 127 128 if (vlan_proto != htons(ETH_P_8021Q)) 129 return -EPROTONOSUPPORT; 130 131 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 132 vlan, vf); 133 134 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 135 } 136 137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 138 { 139 struct qede_dev *edev = netdev_priv(ndev); 140 141 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx); 142 143 if (!is_valid_ether_addr(mac)) { 144 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 145 return -EINVAL; 146 } 147 148 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 149 } 150 151 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 152 { 153 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 154 struct qed_dev_info *qed_info = &edev->dev_info.common; 155 struct qed_update_vport_params *vport_params; 156 int rc; 157 158 vport_params = vzalloc(sizeof(*vport_params)); 159 if (!vport_params) 160 return -ENOMEM; 161 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 162 163 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 164 165 /* Enable/Disable Tx switching for PF */ 166 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 167 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 168 vport_params->vport_id = 0; 169 vport_params->update_tx_switching_flg = 1; 170 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 171 edev->ops->vport_update(edev->cdev, vport_params); 172 } 173 174 vfree(vport_params); 175 return rc; 176 } 177 #endif 178 179 static const struct pci_error_handlers qede_err_handler = { 180 .error_detected = qede_io_error_detected, 181 }; 182 183 static struct pci_driver qede_pci_driver = { 184 .name = "qede", 185 .id_table = qede_pci_tbl, 186 .probe = qede_probe, 187 .remove = qede_remove, 188 .shutdown = qede_shutdown, 189 #ifdef CONFIG_QED_SRIOV 190 .sriov_configure = qede_sriov_configure, 191 #endif 192 .err_handler = &qede_err_handler, 193 }; 194 195 static struct qed_eth_cb_ops qede_ll_ops = { 196 { 197 #ifdef CONFIG_RFS_ACCEL 198 .arfs_filter_op = qede_arfs_filter_op, 199 #endif 200 .link_update = qede_link_update, 201 .schedule_recovery_handler = qede_schedule_recovery_handler, 202 .schedule_hw_err_handler = qede_schedule_hw_err_handler, 203 .get_generic_tlv_data = qede_get_generic_tlv_data, 204 .get_protocol_tlv_data = qede_get_eth_tlv_data, 205 }, 206 .force_mac = qede_force_mac, 207 .ports_update = qede_udp_ports_update, 208 }; 209 210 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 211 void *ptr) 212 { 213 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 214 struct ethtool_drvinfo drvinfo; 215 struct qede_dev *edev; 216 217 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 218 goto done; 219 220 /* Check whether this is a qede device */ 221 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 222 goto done; 223 224 memset(&drvinfo, 0, sizeof(drvinfo)); 225 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 226 if (strcmp(drvinfo.driver, "qede")) 227 goto done; 228 edev = netdev_priv(ndev); 229 230 switch (event) { 231 case NETDEV_CHANGENAME: 232 /* Notify qed of the name change */ 233 if (!edev->ops || !edev->ops->common) 234 goto done; 235 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 236 break; 237 case NETDEV_CHANGEADDR: 238 edev = netdev_priv(ndev); 239 qede_rdma_event_changeaddr(edev); 240 break; 241 } 242 243 done: 244 return NOTIFY_DONE; 245 } 246 247 static struct notifier_block qede_netdev_notifier = { 248 .notifier_call = qede_netdev_event, 249 }; 250 251 static 252 int __init qede_init(void) 253 { 254 int ret; 255 256 pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n"); 257 258 qede_forced_speed_maps_init(); 259 260 qed_ops = qed_get_eth_ops(); 261 if (!qed_ops) { 262 pr_notice("Failed to get qed ethtool operations\n"); 263 return -EINVAL; 264 } 265 266 /* Must register notifier before pci ops, since we might miss 267 * interface rename after pci probe and netdev registration. 268 */ 269 ret = register_netdevice_notifier(&qede_netdev_notifier); 270 if (ret) { 271 pr_notice("Failed to register netdevice_notifier\n"); 272 qed_put_eth_ops(); 273 return -EINVAL; 274 } 275 276 ret = pci_register_driver(&qede_pci_driver); 277 if (ret) { 278 pr_notice("Failed to register driver\n"); 279 unregister_netdevice_notifier(&qede_netdev_notifier); 280 qed_put_eth_ops(); 281 return -EINVAL; 282 } 283 284 return 0; 285 } 286 287 static void __exit qede_cleanup(void) 288 { 289 if (debug & QED_LOG_INFO_MASK) 290 pr_info("qede_cleanup called\n"); 291 292 unregister_netdevice_notifier(&qede_netdev_notifier); 293 pci_unregister_driver(&qede_pci_driver); 294 qed_put_eth_ops(); 295 } 296 297 module_init(qede_init); 298 module_exit(qede_cleanup); 299 300 static int qede_open(struct net_device *ndev); 301 static int qede_close(struct net_device *ndev); 302 303 void qede_fill_by_demand_stats(struct qede_dev *edev) 304 { 305 struct qede_stats_common *p_common = &edev->stats.common; 306 struct qed_eth_stats stats; 307 308 edev->ops->get_vport_stats(edev->cdev, &stats); 309 310 spin_lock(&edev->stats_lock); 311 312 p_common->no_buff_discards = stats.common.no_buff_discards; 313 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 314 p_common->ttl0_discard = stats.common.ttl0_discard; 315 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 316 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 317 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 318 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 319 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 320 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 321 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 322 p_common->mac_filter_discards = stats.common.mac_filter_discards; 323 p_common->gft_filter_drop = stats.common.gft_filter_drop; 324 325 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 326 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 327 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 328 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 329 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 330 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 331 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 332 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 333 p_common->coalesced_events = stats.common.tpa_coalesced_events; 334 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 335 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 336 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 337 338 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 339 p_common->rx_65_to_127_byte_packets = 340 stats.common.rx_65_to_127_byte_packets; 341 p_common->rx_128_to_255_byte_packets = 342 stats.common.rx_128_to_255_byte_packets; 343 p_common->rx_256_to_511_byte_packets = 344 stats.common.rx_256_to_511_byte_packets; 345 p_common->rx_512_to_1023_byte_packets = 346 stats.common.rx_512_to_1023_byte_packets; 347 p_common->rx_1024_to_1518_byte_packets = 348 stats.common.rx_1024_to_1518_byte_packets; 349 p_common->rx_crc_errors = stats.common.rx_crc_errors; 350 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 351 p_common->rx_pause_frames = stats.common.rx_pause_frames; 352 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 353 p_common->rx_align_errors = stats.common.rx_align_errors; 354 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 355 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 356 p_common->rx_jabbers = stats.common.rx_jabbers; 357 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 358 p_common->rx_fragments = stats.common.rx_fragments; 359 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 360 p_common->tx_65_to_127_byte_packets = 361 stats.common.tx_65_to_127_byte_packets; 362 p_common->tx_128_to_255_byte_packets = 363 stats.common.tx_128_to_255_byte_packets; 364 p_common->tx_256_to_511_byte_packets = 365 stats.common.tx_256_to_511_byte_packets; 366 p_common->tx_512_to_1023_byte_packets = 367 stats.common.tx_512_to_1023_byte_packets; 368 p_common->tx_1024_to_1518_byte_packets = 369 stats.common.tx_1024_to_1518_byte_packets; 370 p_common->tx_pause_frames = stats.common.tx_pause_frames; 371 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 372 p_common->brb_truncates = stats.common.brb_truncates; 373 p_common->brb_discards = stats.common.brb_discards; 374 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 375 p_common->link_change_count = stats.common.link_change_count; 376 p_common->ptp_skip_txts = edev->ptp_skip_txts; 377 378 if (QEDE_IS_BB(edev)) { 379 struct qede_stats_bb *p_bb = &edev->stats.bb; 380 381 p_bb->rx_1519_to_1522_byte_packets = 382 stats.bb.rx_1519_to_1522_byte_packets; 383 p_bb->rx_1519_to_2047_byte_packets = 384 stats.bb.rx_1519_to_2047_byte_packets; 385 p_bb->rx_2048_to_4095_byte_packets = 386 stats.bb.rx_2048_to_4095_byte_packets; 387 p_bb->rx_4096_to_9216_byte_packets = 388 stats.bb.rx_4096_to_9216_byte_packets; 389 p_bb->rx_9217_to_16383_byte_packets = 390 stats.bb.rx_9217_to_16383_byte_packets; 391 p_bb->tx_1519_to_2047_byte_packets = 392 stats.bb.tx_1519_to_2047_byte_packets; 393 p_bb->tx_2048_to_4095_byte_packets = 394 stats.bb.tx_2048_to_4095_byte_packets; 395 p_bb->tx_4096_to_9216_byte_packets = 396 stats.bb.tx_4096_to_9216_byte_packets; 397 p_bb->tx_9217_to_16383_byte_packets = 398 stats.bb.tx_9217_to_16383_byte_packets; 399 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 400 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 401 } else { 402 struct qede_stats_ah *p_ah = &edev->stats.ah; 403 404 p_ah->rx_1519_to_max_byte_packets = 405 stats.ah.rx_1519_to_max_byte_packets; 406 p_ah->tx_1519_to_max_byte_packets = 407 stats.ah.tx_1519_to_max_byte_packets; 408 } 409 410 spin_unlock(&edev->stats_lock); 411 } 412 413 static void qede_get_stats64(struct net_device *dev, 414 struct rtnl_link_stats64 *stats) 415 { 416 struct qede_dev *edev = netdev_priv(dev); 417 struct qede_stats_common *p_common; 418 419 p_common = &edev->stats.common; 420 421 spin_lock(&edev->stats_lock); 422 423 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 424 p_common->rx_bcast_pkts; 425 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 426 p_common->tx_bcast_pkts; 427 428 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 429 p_common->rx_bcast_bytes; 430 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 431 p_common->tx_bcast_bytes; 432 433 stats->tx_errors = p_common->tx_err_drop_pkts; 434 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 435 436 stats->rx_fifo_errors = p_common->no_buff_discards; 437 438 if (QEDE_IS_BB(edev)) 439 stats->collisions = edev->stats.bb.tx_total_collisions; 440 stats->rx_crc_errors = p_common->rx_crc_errors; 441 stats->rx_frame_errors = p_common->rx_align_errors; 442 443 spin_unlock(&edev->stats_lock); 444 } 445 446 #ifdef CONFIG_QED_SRIOV 447 static int qede_get_vf_config(struct net_device *dev, int vfidx, 448 struct ifla_vf_info *ivi) 449 { 450 struct qede_dev *edev = netdev_priv(dev); 451 452 if (!edev->ops) 453 return -EINVAL; 454 455 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 456 } 457 458 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 459 int min_tx_rate, int max_tx_rate) 460 { 461 struct qede_dev *edev = netdev_priv(dev); 462 463 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 464 max_tx_rate); 465 } 466 467 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 468 { 469 struct qede_dev *edev = netdev_priv(dev); 470 471 if (!edev->ops) 472 return -EINVAL; 473 474 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 475 } 476 477 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 478 int link_state) 479 { 480 struct qede_dev *edev = netdev_priv(dev); 481 482 if (!edev->ops) 483 return -EINVAL; 484 485 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 486 } 487 488 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 489 { 490 struct qede_dev *edev = netdev_priv(dev); 491 492 if (!edev->ops) 493 return -EINVAL; 494 495 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 496 } 497 #endif 498 499 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 500 { 501 struct qede_dev *edev = netdev_priv(dev); 502 503 if (!netif_running(dev)) 504 return -EAGAIN; 505 506 switch (cmd) { 507 case SIOCSHWTSTAMP: 508 return qede_ptp_hw_ts(edev, ifr); 509 default: 510 DP_VERBOSE(edev, QED_MSG_DEBUG, 511 "default IOCTL cmd 0x%x\n", cmd); 512 return -EOPNOTSUPP; 513 } 514 515 return 0; 516 } 517 518 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp) 519 { 520 char *p_sb = (char *)fp->sb_info->sb_virt; 521 u32 sb_size, i; 522 523 sb_size = sizeof(struct status_block); 524 525 for (i = 0; i < sb_size; i += 8) 526 DP_NOTICE(edev, 527 "%02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX\n", 528 p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3], 529 p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]); 530 } 531 532 static void 533 qede_txq_fp_log_metadata(struct qede_dev *edev, 534 struct qede_fastpath *fp, struct qede_tx_queue *txq) 535 { 536 struct qed_chain *p_chain = &txq->tx_pbl; 537 538 /* Dump txq/fp/sb ids etc. other metadata */ 539 DP_NOTICE(edev, 540 "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n", 541 fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos, 542 p_chain, p_chain->capacity, p_chain->size, jiffies, HZ); 543 544 /* Dump all the relevant prod/cons indexes */ 545 DP_NOTICE(edev, 546 "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n", 547 le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons, 548 qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain)); 549 } 550 551 static void 552 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq) 553 { 554 struct qed_sb_info_dbg sb_dbg; 555 int rc; 556 557 /* sb info */ 558 qede_fp_sb_dump(edev, fp); 559 560 memset(&sb_dbg, 0, sizeof(sb_dbg)); 561 rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg); 562 563 DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n", 564 sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]); 565 566 /* report to mfw */ 567 edev->ops->common->mfw_report(edev->cdev, 568 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n", 569 txq->index, le16_to_cpu(*txq->hw_cons_ptr), 570 qed_chain_get_cons_idx(&txq->tx_pbl), 571 qed_chain_get_prod_idx(&txq->tx_pbl), jiffies); 572 if (!rc) 573 edev->ops->common->mfw_report(edev->cdev, 574 "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n", 575 txq->index, fp->sb_info->igu_sb_id, 576 sb_dbg.igu_prod, sb_dbg.igu_cons, 577 sb_dbg.pi[TX_PI(txq->cos)]); 578 } 579 580 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue) 581 { 582 struct qede_dev *edev = netdev_priv(dev); 583 int i; 584 585 netif_carrier_off(dev); 586 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue); 587 588 for_each_queue(i) { 589 struct qede_tx_queue *txq; 590 struct qede_fastpath *fp; 591 int cos; 592 593 fp = &edev->fp_array[i]; 594 if (!(fp->type & QEDE_FASTPATH_TX)) 595 continue; 596 597 for_each_cos_in_txq(edev, cos) { 598 txq = &fp->txq[cos]; 599 600 /* Dump basic metadata for all queues */ 601 qede_txq_fp_log_metadata(edev, fp, txq); 602 603 if (qed_chain_get_cons_idx(&txq->tx_pbl) != 604 qed_chain_get_prod_idx(&txq->tx_pbl)) 605 qede_tx_log_print(edev, fp, txq); 606 } 607 } 608 609 if (IS_VF(edev)) 610 return; 611 612 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 613 edev->state == QEDE_STATE_RECOVERY) { 614 DP_INFO(edev, 615 "Avoid handling a Tx timeout while another HW error is being handled\n"); 616 return; 617 } 618 619 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags); 620 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 621 schedule_delayed_work(&edev->sp_task, 0); 622 } 623 624 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 625 { 626 struct qede_dev *edev = netdev_priv(ndev); 627 int cos, count, offset; 628 629 if (num_tc > edev->dev_info.num_tc) 630 return -EINVAL; 631 632 netdev_reset_tc(ndev); 633 netdev_set_num_tc(ndev, num_tc); 634 635 for_each_cos_in_txq(edev, cos) { 636 count = QEDE_TSS_COUNT(edev); 637 offset = cos * QEDE_TSS_COUNT(edev); 638 netdev_set_tc_queue(ndev, cos, count, offset); 639 } 640 641 return 0; 642 } 643 644 static int 645 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f, 646 __be16 proto) 647 { 648 switch (f->command) { 649 case FLOW_CLS_REPLACE: 650 return qede_add_tc_flower_fltr(edev, proto, f); 651 case FLOW_CLS_DESTROY: 652 return qede_delete_flow_filter(edev, f->cookie); 653 default: 654 return -EOPNOTSUPP; 655 } 656 } 657 658 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 659 void *cb_priv) 660 { 661 struct flow_cls_offload *f; 662 struct qede_dev *edev = cb_priv; 663 664 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 665 return -EOPNOTSUPP; 666 667 switch (type) { 668 case TC_SETUP_CLSFLOWER: 669 f = type_data; 670 return qede_set_flower(edev, f, f->common.protocol); 671 default: 672 return -EOPNOTSUPP; 673 } 674 } 675 676 static LIST_HEAD(qede_block_cb_list); 677 678 static int 679 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 680 void *type_data) 681 { 682 struct qede_dev *edev = netdev_priv(dev); 683 struct tc_mqprio_qopt *mqprio; 684 685 switch (type) { 686 case TC_SETUP_BLOCK: 687 return flow_block_cb_setup_simple(type_data, 688 &qede_block_cb_list, 689 qede_setup_tc_block_cb, 690 edev, edev, true); 691 case TC_SETUP_QDISC_MQPRIO: 692 mqprio = type_data; 693 694 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 695 return qede_setup_tc(dev, mqprio->num_tc); 696 default: 697 return -EOPNOTSUPP; 698 } 699 } 700 701 static const struct net_device_ops qede_netdev_ops = { 702 .ndo_open = qede_open, 703 .ndo_stop = qede_close, 704 .ndo_start_xmit = qede_start_xmit, 705 .ndo_select_queue = qede_select_queue, 706 .ndo_set_rx_mode = qede_set_rx_mode, 707 .ndo_set_mac_address = qede_set_mac_addr, 708 .ndo_validate_addr = eth_validate_addr, 709 .ndo_change_mtu = qede_change_mtu, 710 .ndo_eth_ioctl = qede_ioctl, 711 .ndo_tx_timeout = qede_tx_timeout, 712 #ifdef CONFIG_QED_SRIOV 713 .ndo_set_vf_mac = qede_set_vf_mac, 714 .ndo_set_vf_vlan = qede_set_vf_vlan, 715 .ndo_set_vf_trust = qede_set_vf_trust, 716 #endif 717 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 718 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 719 .ndo_fix_features = qede_fix_features, 720 .ndo_set_features = qede_set_features, 721 .ndo_get_stats64 = qede_get_stats64, 722 #ifdef CONFIG_QED_SRIOV 723 .ndo_set_vf_link_state = qede_set_vf_link_state, 724 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 725 .ndo_get_vf_config = qede_get_vf_config, 726 .ndo_set_vf_rate = qede_set_vf_rate, 727 #endif 728 .ndo_features_check = qede_features_check, 729 .ndo_bpf = qede_xdp, 730 #ifdef CONFIG_RFS_ACCEL 731 .ndo_rx_flow_steer = qede_rx_flow_steer, 732 #endif 733 .ndo_xdp_xmit = qede_xdp_transmit, 734 .ndo_setup_tc = qede_setup_tc_offload, 735 }; 736 737 static const struct net_device_ops qede_netdev_vf_ops = { 738 .ndo_open = qede_open, 739 .ndo_stop = qede_close, 740 .ndo_start_xmit = qede_start_xmit, 741 .ndo_select_queue = qede_select_queue, 742 .ndo_set_rx_mode = qede_set_rx_mode, 743 .ndo_set_mac_address = qede_set_mac_addr, 744 .ndo_validate_addr = eth_validate_addr, 745 .ndo_change_mtu = qede_change_mtu, 746 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 747 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 748 .ndo_fix_features = qede_fix_features, 749 .ndo_set_features = qede_set_features, 750 .ndo_get_stats64 = qede_get_stats64, 751 .ndo_features_check = qede_features_check, 752 }; 753 754 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 755 .ndo_open = qede_open, 756 .ndo_stop = qede_close, 757 .ndo_start_xmit = qede_start_xmit, 758 .ndo_select_queue = qede_select_queue, 759 .ndo_set_rx_mode = qede_set_rx_mode, 760 .ndo_set_mac_address = qede_set_mac_addr, 761 .ndo_validate_addr = eth_validate_addr, 762 .ndo_change_mtu = qede_change_mtu, 763 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 764 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 765 .ndo_fix_features = qede_fix_features, 766 .ndo_set_features = qede_set_features, 767 .ndo_get_stats64 = qede_get_stats64, 768 .ndo_features_check = qede_features_check, 769 .ndo_bpf = qede_xdp, 770 .ndo_xdp_xmit = qede_xdp_transmit, 771 }; 772 773 /* ------------------------------------------------------------------------- 774 * START OF PROBE / REMOVE 775 * ------------------------------------------------------------------------- 776 */ 777 778 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 779 struct pci_dev *pdev, 780 struct qed_dev_eth_info *info, 781 u32 dp_module, u8 dp_level) 782 { 783 struct net_device *ndev; 784 struct qede_dev *edev; 785 786 ndev = alloc_etherdev_mqs(sizeof(*edev), 787 info->num_queues * info->num_tc, 788 info->num_queues); 789 if (!ndev) { 790 pr_err("etherdev allocation failed\n"); 791 return NULL; 792 } 793 794 edev = netdev_priv(ndev); 795 edev->ndev = ndev; 796 edev->cdev = cdev; 797 edev->pdev = pdev; 798 edev->dp_module = dp_module; 799 edev->dp_level = dp_level; 800 edev->ops = qed_ops; 801 802 if (is_kdump_kernel()) { 803 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN; 804 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN; 805 } else { 806 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 807 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 808 } 809 810 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 811 info->num_queues, info->num_queues); 812 813 SET_NETDEV_DEV(ndev, &pdev->dev); 814 815 memset(&edev->stats, 0, sizeof(edev->stats)); 816 memcpy(&edev->dev_info, info, sizeof(*info)); 817 818 /* As ethtool doesn't have the ability to show WoL behavior as 819 * 'default', if device supports it declare it's enabled. 820 */ 821 if (edev->dev_info.common.wol_support) 822 edev->wol_enabled = true; 823 824 INIT_LIST_HEAD(&edev->vlan_list); 825 826 return edev; 827 } 828 829 static void qede_init_ndev(struct qede_dev *edev) 830 { 831 struct net_device *ndev = edev->ndev; 832 struct pci_dev *pdev = edev->pdev; 833 bool udp_tunnel_enable = false; 834 netdev_features_t hw_features; 835 836 pci_set_drvdata(pdev, ndev); 837 838 ndev->mem_start = edev->dev_info.common.pci_mem_start; 839 ndev->base_addr = ndev->mem_start; 840 ndev->mem_end = edev->dev_info.common.pci_mem_end; 841 ndev->irq = edev->dev_info.common.pci_irq; 842 843 ndev->watchdog_timeo = TX_TIMEOUT; 844 845 if (IS_VF(edev)) { 846 if (edev->dev_info.xdp_supported) 847 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 848 else 849 ndev->netdev_ops = &qede_netdev_vf_ops; 850 } else { 851 ndev->netdev_ops = &qede_netdev_ops; 852 } 853 854 qede_set_ethtool_ops(ndev); 855 856 ndev->priv_flags |= IFF_UNICAST_FLT; 857 858 /* user-changeble features */ 859 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 860 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 861 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 862 863 if (edev->dev_info.common.b_arfs_capable) 864 hw_features |= NETIF_F_NTUPLE; 865 866 if (edev->dev_info.common.vxlan_enable || 867 edev->dev_info.common.geneve_enable) 868 udp_tunnel_enable = true; 869 870 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 871 hw_features |= NETIF_F_TSO_ECN; 872 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 873 NETIF_F_SG | NETIF_F_TSO | 874 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 875 NETIF_F_RXCSUM; 876 } 877 878 if (udp_tunnel_enable) { 879 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 880 NETIF_F_GSO_UDP_TUNNEL_CSUM); 881 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 882 NETIF_F_GSO_UDP_TUNNEL_CSUM); 883 884 qede_set_udp_tunnels(edev); 885 } 886 887 if (edev->dev_info.common.gre_enable) { 888 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 889 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 890 NETIF_F_GSO_GRE_CSUM); 891 } 892 893 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 894 NETIF_F_HIGHDMA; 895 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 896 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 897 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 898 899 ndev->hw_features = hw_features; 900 901 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 902 NETDEV_XDP_ACT_NDO_XMIT; 903 904 /* MTU range: 46 - 9600 */ 905 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 906 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 907 908 /* Set network device HW mac */ 909 eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac); 910 911 ndev->mtu = edev->dev_info.common.mtu; 912 } 913 914 /* This function converts from 32b param to two params of level and module 915 * Input 32b decoding: 916 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 917 * 'happy' flow, e.g. memory allocation failed. 918 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 919 * and provide important parameters. 920 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 921 * module. VERBOSE prints are for tracking the specific flow in low level. 922 * 923 * Notice that the level should be that of the lowest required logs. 924 */ 925 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 926 { 927 *p_dp_level = QED_LEVEL_NOTICE; 928 *p_dp_module = 0; 929 930 if (debug & QED_LOG_VERBOSE_MASK) { 931 *p_dp_level = QED_LEVEL_VERBOSE; 932 *p_dp_module = (debug & 0x3FFFFFFF); 933 } else if (debug & QED_LOG_INFO_MASK) { 934 *p_dp_level = QED_LEVEL_INFO; 935 } else if (debug & QED_LOG_NOTICE_MASK) { 936 *p_dp_level = QED_LEVEL_NOTICE; 937 } 938 } 939 940 static void qede_free_fp_array(struct qede_dev *edev) 941 { 942 if (edev->fp_array) { 943 struct qede_fastpath *fp; 944 int i; 945 946 for_each_queue(i) { 947 fp = &edev->fp_array[i]; 948 949 kfree(fp->sb_info); 950 /* Handle mem alloc failure case where qede_init_fp 951 * didn't register xdp_rxq_info yet. 952 * Implicit only (fp->type & QEDE_FASTPATH_RX) 953 */ 954 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 955 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 956 kfree(fp->rxq); 957 kfree(fp->xdp_tx); 958 kfree(fp->txq); 959 } 960 kfree(edev->fp_array); 961 } 962 963 edev->num_queues = 0; 964 edev->fp_num_tx = 0; 965 edev->fp_num_rx = 0; 966 } 967 968 static int qede_alloc_fp_array(struct qede_dev *edev) 969 { 970 u8 fp_combined, fp_rx = edev->fp_num_rx; 971 struct qede_fastpath *fp; 972 int i; 973 974 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 975 sizeof(*edev->fp_array), GFP_KERNEL); 976 if (!edev->fp_array) { 977 DP_NOTICE(edev, "fp array allocation failed\n"); 978 goto err; 979 } 980 981 if (!edev->coal_entry) { 982 edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev), 983 sizeof(*edev->coal_entry), 984 GFP_KERNEL); 985 if (!edev->coal_entry) { 986 DP_ERR(edev, "coalesce entry allocation failed\n"); 987 goto err; 988 } 989 } 990 991 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 992 993 /* Allocate the FP elements for Rx queues followed by combined and then 994 * the Tx. This ordering should be maintained so that the respective 995 * queues (Rx or Tx) will be together in the fastpath array and the 996 * associated ids will be sequential. 997 */ 998 for_each_queue(i) { 999 fp = &edev->fp_array[i]; 1000 1001 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 1002 if (!fp->sb_info) { 1003 DP_NOTICE(edev, "sb info struct allocation failed\n"); 1004 goto err; 1005 } 1006 1007 if (fp_rx) { 1008 fp->type = QEDE_FASTPATH_RX; 1009 fp_rx--; 1010 } else if (fp_combined) { 1011 fp->type = QEDE_FASTPATH_COMBINED; 1012 fp_combined--; 1013 } else { 1014 fp->type = QEDE_FASTPATH_TX; 1015 } 1016 1017 if (fp->type & QEDE_FASTPATH_TX) { 1018 fp->txq = kcalloc(edev->dev_info.num_tc, 1019 sizeof(*fp->txq), GFP_KERNEL); 1020 if (!fp->txq) 1021 goto err; 1022 } 1023 1024 if (fp->type & QEDE_FASTPATH_RX) { 1025 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 1026 if (!fp->rxq) 1027 goto err; 1028 1029 if (edev->xdp_prog) { 1030 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 1031 GFP_KERNEL); 1032 if (!fp->xdp_tx) 1033 goto err; 1034 fp->type |= QEDE_FASTPATH_XDP; 1035 } 1036 } 1037 } 1038 1039 return 0; 1040 err: 1041 qede_free_fp_array(edev); 1042 return -ENOMEM; 1043 } 1044 1045 /* The qede lock is used to protect driver state change and driver flows that 1046 * are not reentrant. 1047 */ 1048 void __qede_lock(struct qede_dev *edev) 1049 { 1050 mutex_lock(&edev->qede_lock); 1051 } 1052 1053 void __qede_unlock(struct qede_dev *edev) 1054 { 1055 mutex_unlock(&edev->qede_lock); 1056 } 1057 1058 /* This version of the lock should be used when acquiring the RTNL lock is also 1059 * needed in addition to the internal qede lock. 1060 */ 1061 static void qede_lock(struct qede_dev *edev) 1062 { 1063 rtnl_lock(); 1064 __qede_lock(edev); 1065 } 1066 1067 static void qede_unlock(struct qede_dev *edev) 1068 { 1069 __qede_unlock(edev); 1070 rtnl_unlock(); 1071 } 1072 1073 static void qede_periodic_task(struct work_struct *work) 1074 { 1075 struct qede_dev *edev = container_of(work, struct qede_dev, 1076 periodic_task.work); 1077 1078 qede_fill_by_demand_stats(edev); 1079 schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks); 1080 } 1081 1082 static void qede_init_periodic_task(struct qede_dev *edev) 1083 { 1084 INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task); 1085 spin_lock_init(&edev->stats_lock); 1086 edev->stats_coal_usecs = USEC_PER_SEC; 1087 edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC); 1088 } 1089 1090 static void qede_sp_task(struct work_struct *work) 1091 { 1092 struct qede_dev *edev = container_of(work, struct qede_dev, 1093 sp_task.work); 1094 1095 /* Disable execution of this deferred work once 1096 * qede removal is in progress, this stop any future 1097 * scheduling of sp_task. 1098 */ 1099 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags)) 1100 return; 1101 1102 /* The locking scheme depends on the specific flag: 1103 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 1104 * ensure that ongoing flows are ended and new ones are not started. 1105 * In other cases - only the internal qede lock should be acquired. 1106 */ 1107 1108 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 1109 cancel_delayed_work_sync(&edev->periodic_task); 1110 #ifdef CONFIG_QED_SRIOV 1111 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1112 * The recovery of the active VFs is currently not supported. 1113 */ 1114 if (pci_num_vf(edev->pdev)) 1115 qede_sriov_configure(edev->pdev, 0); 1116 #endif 1117 qede_lock(edev); 1118 qede_recovery_handler(edev); 1119 qede_unlock(edev); 1120 } 1121 1122 __qede_lock(edev); 1123 1124 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 1125 if (edev->state == QEDE_STATE_OPEN) 1126 qede_config_rx_mode(edev->ndev); 1127 1128 #ifdef CONFIG_RFS_ACCEL 1129 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 1130 if (edev->state == QEDE_STATE_OPEN) 1131 qede_process_arfs_filters(edev, false); 1132 } 1133 #endif 1134 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags)) 1135 qede_generic_hw_err_handler(edev); 1136 __qede_unlock(edev); 1137 1138 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) { 1139 #ifdef CONFIG_QED_SRIOV 1140 /* SRIOV must be disabled outside the lock to avoid a deadlock. 1141 * The recovery of the active VFs is currently not supported. 1142 */ 1143 if (pci_num_vf(edev->pdev)) 1144 qede_sriov_configure(edev->pdev, 0); 1145 #endif 1146 edev->ops->common->recovery_process(edev->cdev); 1147 } 1148 } 1149 1150 static void qede_update_pf_params(struct qed_dev *cdev) 1151 { 1152 struct qed_pf_params pf_params; 1153 u16 num_cons; 1154 1155 /* 64 rx + 64 tx + 64 XDP */ 1156 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1157 1158 /* 1 rx + 1 xdp + max tx cos */ 1159 num_cons = QED_MIN_L2_CONS; 1160 1161 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1162 1163 /* Same for VFs - make sure they'll have sufficient connections 1164 * to support XDP Tx queues. 1165 */ 1166 pf_params.eth_pf_params.num_vf_cons = 48; 1167 1168 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1169 qed_ops->common->update_pf_params(cdev, &pf_params); 1170 } 1171 1172 #define QEDE_FW_VER_STR_SIZE 80 1173 1174 static void qede_log_probe(struct qede_dev *edev) 1175 { 1176 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1177 u8 buf[QEDE_FW_VER_STR_SIZE]; 1178 size_t left_size; 1179 1180 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1181 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1182 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1183 p_dev_info->fw_eng, 1184 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1185 QED_MFW_VERSION_3_OFFSET, 1186 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1187 QED_MFW_VERSION_2_OFFSET, 1188 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1189 QED_MFW_VERSION_1_OFFSET, 1190 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1191 QED_MFW_VERSION_0_OFFSET); 1192 1193 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1194 if (p_dev_info->mbi_version && left_size) 1195 snprintf(buf + strlen(buf), left_size, 1196 " [MBI %d.%d.%d]", 1197 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1198 QED_MBI_VERSION_2_OFFSET, 1199 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1200 QED_MBI_VERSION_1_OFFSET, 1201 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1202 QED_MBI_VERSION_0_OFFSET); 1203 1204 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1205 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1206 buf, edev->ndev->name); 1207 } 1208 1209 enum qede_probe_mode { 1210 QEDE_PROBE_NORMAL, 1211 QEDE_PROBE_RECOVERY, 1212 }; 1213 1214 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1215 bool is_vf, enum qede_probe_mode mode) 1216 { 1217 struct qed_probe_params probe_params; 1218 struct qed_slowpath_params sp_params; 1219 struct qed_dev_eth_info dev_info; 1220 struct qede_dev *edev; 1221 struct qed_dev *cdev; 1222 int rc; 1223 1224 if (unlikely(dp_level & QED_LEVEL_INFO)) 1225 pr_notice("Starting qede probe\n"); 1226 1227 memset(&probe_params, 0, sizeof(probe_params)); 1228 probe_params.protocol = QED_PROTOCOL_ETH; 1229 probe_params.dp_module = dp_module; 1230 probe_params.dp_level = dp_level; 1231 probe_params.is_vf = is_vf; 1232 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1233 cdev = qed_ops->common->probe(pdev, &probe_params); 1234 if (!cdev) { 1235 rc = -ENODEV; 1236 goto err0; 1237 } 1238 1239 qede_update_pf_params(cdev); 1240 1241 /* Start the Slowpath-process */ 1242 memset(&sp_params, 0, sizeof(sp_params)); 1243 sp_params.int_mode = QED_INT_MODE_MSIX; 1244 strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1245 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1246 if (rc) { 1247 pr_notice("Cannot start slowpath\n"); 1248 goto err1; 1249 } 1250 1251 /* Learn information crucial for qede to progress */ 1252 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1253 if (rc) 1254 goto err2; 1255 1256 if (mode != QEDE_PROBE_RECOVERY) { 1257 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1258 dp_level); 1259 if (!edev) { 1260 rc = -ENOMEM; 1261 goto err2; 1262 } 1263 1264 edev->devlink = qed_ops->common->devlink_register(cdev); 1265 if (IS_ERR(edev->devlink)) { 1266 DP_NOTICE(edev, "Cannot register devlink\n"); 1267 rc = PTR_ERR(edev->devlink); 1268 edev->devlink = NULL; 1269 goto err3; 1270 } 1271 } else { 1272 struct net_device *ndev = pci_get_drvdata(pdev); 1273 struct qed_devlink *qdl; 1274 1275 edev = netdev_priv(ndev); 1276 qdl = devlink_priv(edev->devlink); 1277 qdl->cdev = cdev; 1278 edev->cdev = cdev; 1279 memset(&edev->stats, 0, sizeof(edev->stats)); 1280 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1281 } 1282 1283 if (is_vf) 1284 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1285 1286 qede_init_ndev(edev); 1287 1288 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1289 if (rc) 1290 goto err3; 1291 1292 if (mode != QEDE_PROBE_RECOVERY) { 1293 /* Prepare the lock prior to the registration of the netdev, 1294 * as once it's registered we might reach flows requiring it 1295 * [it's even possible to reach a flow needing it directly 1296 * from there, although it's unlikely]. 1297 */ 1298 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1299 mutex_init(&edev->qede_lock); 1300 qede_init_periodic_task(edev); 1301 1302 rc = register_netdev(edev->ndev); 1303 if (rc) { 1304 DP_NOTICE(edev, "Cannot register net-device\n"); 1305 goto err4; 1306 } 1307 } 1308 1309 edev->ops->common->set_name(cdev, edev->ndev->name); 1310 1311 /* PTP not supported on VFs */ 1312 if (!is_vf) 1313 qede_ptp_enable(edev); 1314 1315 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1316 1317 #ifdef CONFIG_DCB 1318 if (!IS_VF(edev)) 1319 qede_set_dcbnl_ops(edev->ndev); 1320 #endif 1321 1322 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1323 1324 qede_log_probe(edev); 1325 1326 /* retain user config (for example - after recovery) */ 1327 if (edev->stats_coal_usecs) 1328 schedule_delayed_work(&edev->periodic_task, 0); 1329 1330 return 0; 1331 1332 err4: 1333 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1334 err3: 1335 if (mode != QEDE_PROBE_RECOVERY) 1336 free_netdev(edev->ndev); 1337 else 1338 edev->cdev = NULL; 1339 err2: 1340 qed_ops->common->slowpath_stop(cdev); 1341 err1: 1342 qed_ops->common->remove(cdev); 1343 err0: 1344 return rc; 1345 } 1346 1347 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1348 { 1349 bool is_vf = false; 1350 u32 dp_module = 0; 1351 u8 dp_level = 0; 1352 1353 switch ((enum qede_pci_private)id->driver_data) { 1354 case QEDE_PRIVATE_VF: 1355 if (debug & QED_LOG_VERBOSE_MASK) 1356 dev_err(&pdev->dev, "Probing a VF\n"); 1357 is_vf = true; 1358 break; 1359 default: 1360 if (debug & QED_LOG_VERBOSE_MASK) 1361 dev_err(&pdev->dev, "Probing a PF\n"); 1362 } 1363 1364 qede_config_debug(debug, &dp_module, &dp_level); 1365 1366 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1367 QEDE_PROBE_NORMAL); 1368 } 1369 1370 enum qede_remove_mode { 1371 QEDE_REMOVE_NORMAL, 1372 QEDE_REMOVE_RECOVERY, 1373 }; 1374 1375 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1376 { 1377 struct net_device *ndev = pci_get_drvdata(pdev); 1378 struct qede_dev *edev; 1379 struct qed_dev *cdev; 1380 1381 if (!ndev) { 1382 dev_info(&pdev->dev, "Device has already been removed\n"); 1383 return; 1384 } 1385 1386 edev = netdev_priv(ndev); 1387 cdev = edev->cdev; 1388 1389 DP_INFO(edev, "Starting qede_remove\n"); 1390 1391 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1392 1393 if (mode != QEDE_REMOVE_RECOVERY) { 1394 set_bit(QEDE_SP_DISABLE, &edev->sp_flags); 1395 unregister_netdev(ndev); 1396 1397 cancel_delayed_work_sync(&edev->sp_task); 1398 cancel_delayed_work_sync(&edev->periodic_task); 1399 1400 edev->ops->common->set_power_state(cdev, PCI_D0); 1401 1402 pci_set_drvdata(pdev, NULL); 1403 } 1404 1405 qede_ptp_disable(edev); 1406 1407 /* Use global ops since we've freed edev */ 1408 qed_ops->common->slowpath_stop(cdev); 1409 if (system_state == SYSTEM_POWER_OFF) 1410 return; 1411 1412 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) { 1413 qed_ops->common->devlink_unregister(edev->devlink); 1414 edev->devlink = NULL; 1415 } 1416 qed_ops->common->remove(cdev); 1417 edev->cdev = NULL; 1418 1419 /* Since this can happen out-of-sync with other flows, 1420 * don't release the netdevice until after slowpath stop 1421 * has been called to guarantee various other contexts 1422 * [e.g., QED register callbacks] won't break anything when 1423 * accessing the netdevice. 1424 */ 1425 if (mode != QEDE_REMOVE_RECOVERY) { 1426 kfree(edev->coal_entry); 1427 free_netdev(ndev); 1428 } 1429 1430 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1431 } 1432 1433 static void qede_remove(struct pci_dev *pdev) 1434 { 1435 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1436 } 1437 1438 static void qede_shutdown(struct pci_dev *pdev) 1439 { 1440 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1441 } 1442 1443 /* ------------------------------------------------------------------------- 1444 * START OF LOAD / UNLOAD 1445 * ------------------------------------------------------------------------- 1446 */ 1447 1448 static int qede_set_num_queues(struct qede_dev *edev) 1449 { 1450 int rc; 1451 u16 rss_num; 1452 1453 /* Setup queues according to possible resources*/ 1454 if (edev->req_queues) 1455 rss_num = edev->req_queues; 1456 else 1457 rss_num = netif_get_num_default_rss_queues() * 1458 edev->dev_info.common.num_hwfns; 1459 1460 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1461 1462 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1463 if (rc > 0) { 1464 /* Managed to request interrupts for our queues */ 1465 edev->num_queues = rc; 1466 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1467 QEDE_QUEUE_CNT(edev), rss_num); 1468 rc = 0; 1469 } 1470 1471 edev->fp_num_tx = edev->req_num_tx; 1472 edev->fp_num_rx = edev->req_num_rx; 1473 1474 return rc; 1475 } 1476 1477 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1478 u16 sb_id) 1479 { 1480 if (sb_info->sb_virt) { 1481 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1482 QED_SB_TYPE_L2_QUEUE); 1483 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1484 (void *)sb_info->sb_virt, sb_info->sb_phys); 1485 memset(sb_info, 0, sizeof(*sb_info)); 1486 } 1487 } 1488 1489 /* This function allocates fast-path status block memory */ 1490 static int qede_alloc_mem_sb(struct qede_dev *edev, 1491 struct qed_sb_info *sb_info, u16 sb_id) 1492 { 1493 struct status_block *sb_virt; 1494 dma_addr_t sb_phys; 1495 int rc; 1496 1497 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1498 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1499 if (!sb_virt) { 1500 DP_ERR(edev, "Status block allocation failed\n"); 1501 return -ENOMEM; 1502 } 1503 1504 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1505 sb_virt, sb_phys, sb_id, 1506 QED_SB_TYPE_L2_QUEUE); 1507 if (rc) { 1508 DP_ERR(edev, "Status block initialization failed\n"); 1509 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1510 sb_virt, sb_phys); 1511 return rc; 1512 } 1513 1514 return 0; 1515 } 1516 1517 static void qede_free_rx_buffers(struct qede_dev *edev, 1518 struct qede_rx_queue *rxq) 1519 { 1520 u16 i; 1521 1522 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1523 struct sw_rx_data *rx_buf; 1524 struct page *data; 1525 1526 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1527 data = rx_buf->data; 1528 1529 dma_unmap_page(&edev->pdev->dev, 1530 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1531 1532 rx_buf->data = NULL; 1533 __free_page(data); 1534 } 1535 } 1536 1537 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1538 { 1539 /* Free rx buffers */ 1540 qede_free_rx_buffers(edev, rxq); 1541 1542 /* Free the parallel SW ring */ 1543 kfree(rxq->sw_rx_ring); 1544 1545 /* Free the real RQ ring used by FW */ 1546 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1547 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1548 } 1549 1550 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1551 { 1552 int i; 1553 1554 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1555 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1556 1557 tpa_info->state = QEDE_AGG_STATE_NONE; 1558 } 1559 } 1560 1561 /* This function allocates all memory needed per Rx queue */ 1562 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1563 { 1564 struct qed_chain_init_params params = { 1565 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1566 .num_elems = RX_RING_SIZE, 1567 }; 1568 struct qed_dev *cdev = edev->cdev; 1569 int i, rc, size; 1570 1571 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1572 1573 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1574 1575 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1576 size = rxq->rx_headroom + 1577 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1578 1579 /* Make sure that the headroom and payload fit in a single page */ 1580 if (rxq->rx_buf_size + size > PAGE_SIZE) 1581 rxq->rx_buf_size = PAGE_SIZE - size; 1582 1583 /* Segment size to split a page in multiple equal parts, 1584 * unless XDP is used in which case we'd use the entire page. 1585 */ 1586 if (!edev->xdp_prog) { 1587 size = size + rxq->rx_buf_size; 1588 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1589 } else { 1590 rxq->rx_buf_seg_size = PAGE_SIZE; 1591 edev->ndev->features &= ~NETIF_F_GRO_HW; 1592 } 1593 1594 /* Allocate the parallel driver ring for Rx buffers */ 1595 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1596 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1597 if (!rxq->sw_rx_ring) { 1598 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1599 rc = -ENOMEM; 1600 goto err; 1601 } 1602 1603 /* Allocate FW Rx ring */ 1604 params.mode = QED_CHAIN_MODE_NEXT_PTR; 1605 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE; 1606 params.elem_size = sizeof(struct eth_rx_bd); 1607 1608 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, ¶ms); 1609 if (rc) 1610 goto err; 1611 1612 /* Allocate FW completion ring */ 1613 params.mode = QED_CHAIN_MODE_PBL; 1614 params.intended_use = QED_CHAIN_USE_TO_CONSUME; 1615 params.elem_size = sizeof(union eth_rx_cqe); 1616 1617 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, ¶ms); 1618 if (rc) 1619 goto err; 1620 1621 /* Allocate buffers for the Rx ring */ 1622 rxq->filled_buffers = 0; 1623 for (i = 0; i < rxq->num_rx_buffers; i++) { 1624 rc = qede_alloc_rx_buffer(rxq, false); 1625 if (rc) { 1626 DP_ERR(edev, 1627 "Rx buffers allocation failed at index %d\n", i); 1628 goto err; 1629 } 1630 } 1631 1632 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1633 if (!edev->gro_disable) 1634 qede_set_tpa_param(rxq); 1635 err: 1636 return rc; 1637 } 1638 1639 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1640 { 1641 /* Free the parallel SW ring */ 1642 if (txq->is_xdp) 1643 kfree(txq->sw_tx_ring.xdp); 1644 else 1645 kfree(txq->sw_tx_ring.skbs); 1646 1647 /* Free the real RQ ring used by FW */ 1648 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1649 } 1650 1651 /* This function allocates all memory needed per Tx queue */ 1652 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1653 { 1654 struct qed_chain_init_params params = { 1655 .mode = QED_CHAIN_MODE_PBL, 1656 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1657 .cnt_type = QED_CHAIN_CNT_TYPE_U16, 1658 .num_elems = edev->q_num_tx_buffers, 1659 .elem_size = sizeof(union eth_tx_bd_types), 1660 }; 1661 int size, rc; 1662 1663 txq->num_tx_buffers = edev->q_num_tx_buffers; 1664 1665 /* Allocate the parallel driver ring for Tx buffers */ 1666 if (txq->is_xdp) { 1667 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1668 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1669 if (!txq->sw_tx_ring.xdp) 1670 goto err; 1671 } else { 1672 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1673 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1674 if (!txq->sw_tx_ring.skbs) 1675 goto err; 1676 } 1677 1678 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, ¶ms); 1679 if (rc) 1680 goto err; 1681 1682 return 0; 1683 1684 err: 1685 qede_free_mem_txq(edev, txq); 1686 return -ENOMEM; 1687 } 1688 1689 /* This function frees all memory of a single fp */ 1690 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1691 { 1692 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1693 1694 if (fp->type & QEDE_FASTPATH_RX) 1695 qede_free_mem_rxq(edev, fp->rxq); 1696 1697 if (fp->type & QEDE_FASTPATH_XDP) 1698 qede_free_mem_txq(edev, fp->xdp_tx); 1699 1700 if (fp->type & QEDE_FASTPATH_TX) { 1701 int cos; 1702 1703 for_each_cos_in_txq(edev, cos) 1704 qede_free_mem_txq(edev, &fp->txq[cos]); 1705 } 1706 } 1707 1708 /* This function allocates all memory needed for a single fp (i.e. an entity 1709 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1710 */ 1711 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1712 { 1713 int rc = 0; 1714 1715 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1716 if (rc) 1717 goto out; 1718 1719 if (fp->type & QEDE_FASTPATH_RX) { 1720 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1721 if (rc) 1722 goto out; 1723 } 1724 1725 if (fp->type & QEDE_FASTPATH_XDP) { 1726 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1727 if (rc) 1728 goto out; 1729 } 1730 1731 if (fp->type & QEDE_FASTPATH_TX) { 1732 int cos; 1733 1734 for_each_cos_in_txq(edev, cos) { 1735 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1736 if (rc) 1737 goto out; 1738 } 1739 } 1740 1741 out: 1742 return rc; 1743 } 1744 1745 static void qede_free_mem_load(struct qede_dev *edev) 1746 { 1747 int i; 1748 1749 for_each_queue(i) { 1750 struct qede_fastpath *fp = &edev->fp_array[i]; 1751 1752 qede_free_mem_fp(edev, fp); 1753 } 1754 } 1755 1756 /* This function allocates all qede memory at NIC load. */ 1757 static int qede_alloc_mem_load(struct qede_dev *edev) 1758 { 1759 int rc = 0, queue_id; 1760 1761 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1762 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1763 1764 rc = qede_alloc_mem_fp(edev, fp); 1765 if (rc) { 1766 DP_ERR(edev, 1767 "Failed to allocate memory for fastpath - rss id = %d\n", 1768 queue_id); 1769 qede_free_mem_load(edev); 1770 return rc; 1771 } 1772 } 1773 1774 return 0; 1775 } 1776 1777 static void qede_empty_tx_queue(struct qede_dev *edev, 1778 struct qede_tx_queue *txq) 1779 { 1780 unsigned int pkts_compl = 0, bytes_compl = 0; 1781 struct netdev_queue *netdev_txq; 1782 int rc, len = 0; 1783 1784 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1785 1786 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1787 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1788 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1789 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1790 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1791 qed_chain_get_prod_idx(&txq->tx_pbl)); 1792 1793 rc = qede_free_tx_pkt(edev, txq, &len); 1794 if (rc) { 1795 DP_NOTICE(edev, 1796 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1797 txq->index, 1798 qed_chain_get_cons_idx(&txq->tx_pbl), 1799 qed_chain_get_prod_idx(&txq->tx_pbl)); 1800 break; 1801 } 1802 1803 bytes_compl += len; 1804 pkts_compl++; 1805 txq->sw_tx_cons++; 1806 } 1807 1808 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1809 } 1810 1811 static void qede_empty_tx_queues(struct qede_dev *edev) 1812 { 1813 int i; 1814 1815 for_each_queue(i) 1816 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1817 int cos; 1818 1819 for_each_cos_in_txq(edev, cos) { 1820 struct qede_fastpath *fp; 1821 1822 fp = &edev->fp_array[i]; 1823 qede_empty_tx_queue(edev, 1824 &fp->txq[cos]); 1825 } 1826 } 1827 } 1828 1829 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1830 static void qede_init_fp(struct qede_dev *edev) 1831 { 1832 int queue_id, rxq_index = 0, txq_index = 0; 1833 struct qede_fastpath *fp; 1834 bool init_xdp = false; 1835 1836 for_each_queue(queue_id) { 1837 fp = &edev->fp_array[queue_id]; 1838 1839 fp->edev = edev; 1840 fp->id = queue_id; 1841 1842 if (fp->type & QEDE_FASTPATH_XDP) { 1843 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1844 rxq_index); 1845 fp->xdp_tx->is_xdp = 1; 1846 1847 spin_lock_init(&fp->xdp_tx->xdp_tx_lock); 1848 init_xdp = true; 1849 } 1850 1851 if (fp->type & QEDE_FASTPATH_RX) { 1852 fp->rxq->rxq_id = rxq_index++; 1853 1854 /* Determine how to map buffers for this queue */ 1855 if (fp->type & QEDE_FASTPATH_XDP) 1856 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1857 else 1858 fp->rxq->data_direction = DMA_FROM_DEVICE; 1859 fp->rxq->dev = &edev->pdev->dev; 1860 1861 /* Driver have no error path from here */ 1862 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1863 fp->rxq->rxq_id, 0) < 0); 1864 1865 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq, 1866 MEM_TYPE_PAGE_ORDER0, 1867 NULL)) { 1868 DP_NOTICE(edev, 1869 "Failed to register XDP memory model\n"); 1870 } 1871 } 1872 1873 if (fp->type & QEDE_FASTPATH_TX) { 1874 int cos; 1875 1876 for_each_cos_in_txq(edev, cos) { 1877 struct qede_tx_queue *txq = &fp->txq[cos]; 1878 u16 ndev_tx_id; 1879 1880 txq->cos = cos; 1881 txq->index = txq_index; 1882 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1883 txq->ndev_txq_id = ndev_tx_id; 1884 1885 if (edev->dev_info.is_legacy) 1886 txq->is_legacy = true; 1887 txq->dev = &edev->pdev->dev; 1888 } 1889 1890 txq_index++; 1891 } 1892 1893 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1894 edev->ndev->name, queue_id); 1895 } 1896 1897 if (init_xdp) { 1898 edev->total_xdp_queues = QEDE_RSS_COUNT(edev); 1899 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues); 1900 } 1901 } 1902 1903 static int qede_set_real_num_queues(struct qede_dev *edev) 1904 { 1905 int rc = 0; 1906 1907 rc = netif_set_real_num_tx_queues(edev->ndev, 1908 QEDE_TSS_COUNT(edev) * 1909 edev->dev_info.num_tc); 1910 if (rc) { 1911 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1912 return rc; 1913 } 1914 1915 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1916 if (rc) { 1917 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1918 return rc; 1919 } 1920 1921 return 0; 1922 } 1923 1924 static void qede_napi_disable_remove(struct qede_dev *edev) 1925 { 1926 int i; 1927 1928 for_each_queue(i) { 1929 napi_disable(&edev->fp_array[i].napi); 1930 1931 netif_napi_del(&edev->fp_array[i].napi); 1932 } 1933 } 1934 1935 static void qede_napi_add_enable(struct qede_dev *edev) 1936 { 1937 int i; 1938 1939 /* Add NAPI objects */ 1940 for_each_queue(i) { 1941 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll); 1942 napi_enable(&edev->fp_array[i].napi); 1943 } 1944 } 1945 1946 static void qede_sync_free_irqs(struct qede_dev *edev) 1947 { 1948 int i; 1949 1950 for (i = 0; i < edev->int_info.used_cnt; i++) { 1951 if (edev->int_info.msix_cnt) { 1952 free_irq(edev->int_info.msix[i].vector, 1953 &edev->fp_array[i]); 1954 } else { 1955 edev->ops->common->simd_handler_clean(edev->cdev, i); 1956 } 1957 } 1958 1959 edev->int_info.used_cnt = 0; 1960 edev->int_info.msix_cnt = 0; 1961 } 1962 1963 static int qede_req_msix_irqs(struct qede_dev *edev) 1964 { 1965 int i, rc; 1966 1967 /* Sanitize number of interrupts == number of prepared RSS queues */ 1968 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1969 DP_ERR(edev, 1970 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1971 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1972 return -EINVAL; 1973 } 1974 1975 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1976 #ifdef CONFIG_RFS_ACCEL 1977 struct qede_fastpath *fp = &edev->fp_array[i]; 1978 1979 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1980 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1981 edev->int_info.msix[i].vector); 1982 if (rc) { 1983 DP_ERR(edev, "Failed to add CPU rmap\n"); 1984 qede_free_arfs(edev); 1985 } 1986 } 1987 #endif 1988 rc = request_irq(edev->int_info.msix[i].vector, 1989 qede_msix_fp_int, 0, edev->fp_array[i].name, 1990 &edev->fp_array[i]); 1991 if (rc) { 1992 DP_ERR(edev, "Request fp %d irq failed\n", i); 1993 #ifdef CONFIG_RFS_ACCEL 1994 if (edev->ndev->rx_cpu_rmap) 1995 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 1996 1997 edev->ndev->rx_cpu_rmap = NULL; 1998 #endif 1999 qede_sync_free_irqs(edev); 2000 return rc; 2001 } 2002 DP_VERBOSE(edev, NETIF_MSG_INTR, 2003 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 2004 edev->fp_array[i].name, i, 2005 &edev->fp_array[i]); 2006 edev->int_info.used_cnt++; 2007 } 2008 2009 return 0; 2010 } 2011 2012 static void qede_simd_fp_handler(void *cookie) 2013 { 2014 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 2015 2016 napi_schedule_irqoff(&fp->napi); 2017 } 2018 2019 static int qede_setup_irqs(struct qede_dev *edev) 2020 { 2021 int i, rc = 0; 2022 2023 /* Learn Interrupt configuration */ 2024 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 2025 if (rc) 2026 return rc; 2027 2028 if (edev->int_info.msix_cnt) { 2029 rc = qede_req_msix_irqs(edev); 2030 if (rc) 2031 return rc; 2032 edev->ndev->irq = edev->int_info.msix[0].vector; 2033 } else { 2034 const struct qed_common_ops *ops; 2035 2036 /* qed should learn receive the RSS ids and callbacks */ 2037 ops = edev->ops->common; 2038 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 2039 ops->simd_handler_config(edev->cdev, 2040 &edev->fp_array[i], i, 2041 qede_simd_fp_handler); 2042 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 2043 } 2044 return 0; 2045 } 2046 2047 static int qede_drain_txq(struct qede_dev *edev, 2048 struct qede_tx_queue *txq, bool allow_drain) 2049 { 2050 int rc, cnt = 1000; 2051 2052 while (txq->sw_tx_cons != txq->sw_tx_prod) { 2053 if (!cnt) { 2054 if (allow_drain) { 2055 DP_NOTICE(edev, 2056 "Tx queue[%d] is stuck, requesting MCP to drain\n", 2057 txq->index); 2058 rc = edev->ops->common->drain(edev->cdev); 2059 if (rc) 2060 return rc; 2061 return qede_drain_txq(edev, txq, false); 2062 } 2063 DP_NOTICE(edev, 2064 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 2065 txq->index, txq->sw_tx_prod, 2066 txq->sw_tx_cons); 2067 return -ENODEV; 2068 } 2069 cnt--; 2070 usleep_range(1000, 2000); 2071 barrier(); 2072 } 2073 2074 /* FW finished processing, wait for HW to transmit all tx packets */ 2075 usleep_range(1000, 2000); 2076 2077 return 0; 2078 } 2079 2080 static int qede_stop_txq(struct qede_dev *edev, 2081 struct qede_tx_queue *txq, int rss_id) 2082 { 2083 /* delete doorbell from doorbell recovery mechanism */ 2084 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 2085 &txq->tx_db); 2086 2087 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 2088 } 2089 2090 static int qede_stop_queues(struct qede_dev *edev) 2091 { 2092 struct qed_update_vport_params *vport_update_params; 2093 struct qed_dev *cdev = edev->cdev; 2094 struct qede_fastpath *fp; 2095 int rc, i; 2096 2097 /* Disable the vport */ 2098 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2099 if (!vport_update_params) 2100 return -ENOMEM; 2101 2102 vport_update_params->vport_id = 0; 2103 vport_update_params->update_vport_active_flg = 1; 2104 vport_update_params->vport_active_flg = 0; 2105 vport_update_params->update_rss_flg = 0; 2106 2107 rc = edev->ops->vport_update(cdev, vport_update_params); 2108 vfree(vport_update_params); 2109 2110 if (rc) { 2111 DP_ERR(edev, "Failed to update vport\n"); 2112 return rc; 2113 } 2114 2115 /* Flush Tx queues. If needed, request drain from MCP */ 2116 for_each_queue(i) { 2117 fp = &edev->fp_array[i]; 2118 2119 if (fp->type & QEDE_FASTPATH_TX) { 2120 int cos; 2121 2122 for_each_cos_in_txq(edev, cos) { 2123 rc = qede_drain_txq(edev, &fp->txq[cos], true); 2124 if (rc) 2125 return rc; 2126 } 2127 } 2128 2129 if (fp->type & QEDE_FASTPATH_XDP) { 2130 rc = qede_drain_txq(edev, fp->xdp_tx, true); 2131 if (rc) 2132 return rc; 2133 } 2134 } 2135 2136 /* Stop all Queues in reverse order */ 2137 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 2138 fp = &edev->fp_array[i]; 2139 2140 /* Stop the Tx Queue(s) */ 2141 if (fp->type & QEDE_FASTPATH_TX) { 2142 int cos; 2143 2144 for_each_cos_in_txq(edev, cos) { 2145 rc = qede_stop_txq(edev, &fp->txq[cos], i); 2146 if (rc) 2147 return rc; 2148 } 2149 } 2150 2151 /* Stop the Rx Queue */ 2152 if (fp->type & QEDE_FASTPATH_RX) { 2153 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 2154 if (rc) { 2155 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2156 return rc; 2157 } 2158 } 2159 2160 /* Stop the XDP forwarding queue */ 2161 if (fp->type & QEDE_FASTPATH_XDP) { 2162 rc = qede_stop_txq(edev, fp->xdp_tx, i); 2163 if (rc) 2164 return rc; 2165 2166 bpf_prog_put(fp->rxq->xdp_prog); 2167 } 2168 } 2169 2170 /* Stop the vport */ 2171 rc = edev->ops->vport_stop(cdev, 0); 2172 if (rc) 2173 DP_ERR(edev, "Failed to stop VPORT\n"); 2174 2175 return rc; 2176 } 2177 2178 static int qede_start_txq(struct qede_dev *edev, 2179 struct qede_fastpath *fp, 2180 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 2181 { 2182 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 2183 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 2184 struct qed_queue_start_common_params params; 2185 struct qed_txq_start_ret_params ret_params; 2186 int rc; 2187 2188 memset(¶ms, 0, sizeof(params)); 2189 memset(&ret_params, 0, sizeof(ret_params)); 2190 2191 /* Let the XDP queue share the queue-zone with one of the regular txq. 2192 * We don't really care about its coalescing. 2193 */ 2194 if (txq->is_xdp) 2195 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 2196 else 2197 params.queue_id = txq->index; 2198 2199 params.p_sb = fp->sb_info; 2200 params.sb_idx = sb_idx; 2201 params.tc = txq->cos; 2202 2203 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 2204 page_cnt, &ret_params); 2205 if (rc) { 2206 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 2207 return rc; 2208 } 2209 2210 txq->doorbell_addr = ret_params.p_doorbell; 2211 txq->handle = ret_params.p_handle; 2212 2213 /* Determine the FW consumer address associated */ 2214 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2215 2216 /* Prepare the doorbell parameters */ 2217 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2218 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2219 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2220 DQ_XCM_ETH_TX_BD_PROD_CMD); 2221 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2222 2223 /* register doorbell with doorbell recovery mechanism */ 2224 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2225 &txq->tx_db, DB_REC_WIDTH_32B, 2226 DB_REC_KERNEL); 2227 2228 return rc; 2229 } 2230 2231 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2232 { 2233 int vlan_removal_en = 1; 2234 struct qed_dev *cdev = edev->cdev; 2235 struct qed_dev_info *qed_info = &edev->dev_info.common; 2236 struct qed_update_vport_params *vport_update_params; 2237 struct qed_queue_start_common_params q_params; 2238 struct qed_start_vport_params start = {0}; 2239 int rc, i; 2240 2241 if (!edev->num_queues) { 2242 DP_ERR(edev, 2243 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2244 return -EINVAL; 2245 } 2246 2247 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2248 if (!vport_update_params) 2249 return -ENOMEM; 2250 2251 start.handle_ptp_pkts = !!(edev->ptp); 2252 start.gro_enable = !edev->gro_disable; 2253 start.mtu = edev->ndev->mtu; 2254 start.vport_id = 0; 2255 start.drop_ttl0 = true; 2256 start.remove_inner_vlan = vlan_removal_en; 2257 start.clear_stats = clear_stats; 2258 2259 rc = edev->ops->vport_start(cdev, &start); 2260 2261 if (rc) { 2262 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2263 goto out; 2264 } 2265 2266 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2267 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2268 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2269 2270 for_each_queue(i) { 2271 struct qede_fastpath *fp = &edev->fp_array[i]; 2272 dma_addr_t p_phys_table; 2273 u32 page_cnt; 2274 2275 if (fp->type & QEDE_FASTPATH_RX) { 2276 struct qed_rxq_start_ret_params ret_params; 2277 struct qede_rx_queue *rxq = fp->rxq; 2278 __le16 *val; 2279 2280 memset(&ret_params, 0, sizeof(ret_params)); 2281 memset(&q_params, 0, sizeof(q_params)); 2282 q_params.queue_id = rxq->rxq_id; 2283 q_params.vport_id = 0; 2284 q_params.p_sb = fp->sb_info; 2285 q_params.sb_idx = RX_PI; 2286 2287 p_phys_table = 2288 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2289 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2290 2291 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2292 rxq->rx_buf_size, 2293 rxq->rx_bd_ring.p_phys_addr, 2294 p_phys_table, 2295 page_cnt, &ret_params); 2296 if (rc) { 2297 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2298 rc); 2299 goto out; 2300 } 2301 2302 /* Use the return parameters */ 2303 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2304 rxq->handle = ret_params.p_handle; 2305 2306 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2307 rxq->hw_cons_ptr = val; 2308 2309 qede_update_rx_prod(edev, rxq); 2310 } 2311 2312 if (fp->type & QEDE_FASTPATH_XDP) { 2313 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2314 if (rc) 2315 goto out; 2316 2317 bpf_prog_add(edev->xdp_prog, 1); 2318 fp->rxq->xdp_prog = edev->xdp_prog; 2319 } 2320 2321 if (fp->type & QEDE_FASTPATH_TX) { 2322 int cos; 2323 2324 for_each_cos_in_txq(edev, cos) { 2325 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2326 TX_PI(cos)); 2327 if (rc) 2328 goto out; 2329 } 2330 } 2331 } 2332 2333 /* Prepare and send the vport enable */ 2334 vport_update_params->vport_id = start.vport_id; 2335 vport_update_params->update_vport_active_flg = 1; 2336 vport_update_params->vport_active_flg = 1; 2337 2338 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2339 qed_info->tx_switching) { 2340 vport_update_params->update_tx_switching_flg = 1; 2341 vport_update_params->tx_switching_flg = 1; 2342 } 2343 2344 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2345 &vport_update_params->update_rss_flg); 2346 2347 rc = edev->ops->vport_update(cdev, vport_update_params); 2348 if (rc) 2349 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2350 2351 out: 2352 vfree(vport_update_params); 2353 return rc; 2354 } 2355 2356 enum qede_unload_mode { 2357 QEDE_UNLOAD_NORMAL, 2358 QEDE_UNLOAD_RECOVERY, 2359 }; 2360 2361 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2362 bool is_locked) 2363 { 2364 struct qed_link_params link_params; 2365 int rc; 2366 2367 DP_INFO(edev, "Starting qede unload\n"); 2368 2369 if (!is_locked) 2370 __qede_lock(edev); 2371 2372 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2373 2374 if (mode != QEDE_UNLOAD_RECOVERY) 2375 edev->state = QEDE_STATE_CLOSED; 2376 2377 qede_rdma_dev_event_close(edev); 2378 2379 /* Close OS Tx */ 2380 netif_tx_disable(edev->ndev); 2381 netif_carrier_off(edev->ndev); 2382 2383 if (mode != QEDE_UNLOAD_RECOVERY) { 2384 /* Reset the link */ 2385 memset(&link_params, 0, sizeof(link_params)); 2386 link_params.link_up = false; 2387 edev->ops->common->set_link(edev->cdev, &link_params); 2388 2389 rc = qede_stop_queues(edev); 2390 if (rc) { 2391 #ifdef CONFIG_RFS_ACCEL 2392 if (edev->dev_info.common.b_arfs_capable) { 2393 qede_poll_for_freeing_arfs_filters(edev); 2394 if (edev->ndev->rx_cpu_rmap) 2395 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); 2396 2397 edev->ndev->rx_cpu_rmap = NULL; 2398 } 2399 #endif 2400 qede_sync_free_irqs(edev); 2401 goto out; 2402 } 2403 2404 DP_INFO(edev, "Stopped Queues\n"); 2405 } 2406 2407 qede_vlan_mark_nonconfigured(edev); 2408 edev->ops->fastpath_stop(edev->cdev); 2409 2410 if (edev->dev_info.common.b_arfs_capable) { 2411 qede_poll_for_freeing_arfs_filters(edev); 2412 qede_free_arfs(edev); 2413 } 2414 2415 /* Release the interrupts */ 2416 qede_sync_free_irqs(edev); 2417 edev->ops->common->set_fp_int(edev->cdev, 0); 2418 2419 qede_napi_disable_remove(edev); 2420 2421 if (mode == QEDE_UNLOAD_RECOVERY) 2422 qede_empty_tx_queues(edev); 2423 2424 qede_free_mem_load(edev); 2425 qede_free_fp_array(edev); 2426 2427 out: 2428 if (!is_locked) 2429 __qede_unlock(edev); 2430 2431 if (mode != QEDE_UNLOAD_RECOVERY) 2432 DP_NOTICE(edev, "Link is down\n"); 2433 2434 edev->ptp_skip_txts = 0; 2435 2436 DP_INFO(edev, "Ending qede unload\n"); 2437 } 2438 2439 enum qede_load_mode { 2440 QEDE_LOAD_NORMAL, 2441 QEDE_LOAD_RELOAD, 2442 QEDE_LOAD_RECOVERY, 2443 }; 2444 2445 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2446 bool is_locked) 2447 { 2448 struct qed_link_params link_params; 2449 struct ethtool_coalesce coal = {}; 2450 u8 num_tc; 2451 int rc, i; 2452 2453 DP_INFO(edev, "Starting qede load\n"); 2454 2455 if (!is_locked) 2456 __qede_lock(edev); 2457 2458 rc = qede_set_num_queues(edev); 2459 if (rc) 2460 goto out; 2461 2462 rc = qede_alloc_fp_array(edev); 2463 if (rc) 2464 goto out; 2465 2466 qede_init_fp(edev); 2467 2468 rc = qede_alloc_mem_load(edev); 2469 if (rc) 2470 goto err1; 2471 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2472 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2473 2474 rc = qede_set_real_num_queues(edev); 2475 if (rc) 2476 goto err2; 2477 2478 if (qede_alloc_arfs(edev)) { 2479 edev->ndev->features &= ~NETIF_F_NTUPLE; 2480 edev->dev_info.common.b_arfs_capable = false; 2481 } 2482 2483 qede_napi_add_enable(edev); 2484 DP_INFO(edev, "Napi added and enabled\n"); 2485 2486 rc = qede_setup_irqs(edev); 2487 if (rc) 2488 goto err3; 2489 DP_INFO(edev, "Setup IRQs succeeded\n"); 2490 2491 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2492 if (rc) 2493 goto err4; 2494 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2495 2496 num_tc = netdev_get_num_tc(edev->ndev); 2497 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2498 qede_setup_tc(edev->ndev, num_tc); 2499 2500 /* Program un-configured VLANs */ 2501 qede_configure_vlan_filters(edev); 2502 2503 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2504 2505 /* Ask for link-up using current configuration */ 2506 memset(&link_params, 0, sizeof(link_params)); 2507 link_params.link_up = true; 2508 edev->ops->common->set_link(edev->cdev, &link_params); 2509 2510 edev->state = QEDE_STATE_OPEN; 2511 2512 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS; 2513 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS; 2514 2515 for_each_queue(i) { 2516 if (edev->coal_entry[i].isvalid) { 2517 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc; 2518 coal.tx_coalesce_usecs = edev->coal_entry[i].txc; 2519 } 2520 __qede_unlock(edev); 2521 qede_set_per_coalesce(edev->ndev, i, &coal); 2522 __qede_lock(edev); 2523 } 2524 DP_INFO(edev, "Ending successfully qede load\n"); 2525 2526 goto out; 2527 err4: 2528 qede_sync_free_irqs(edev); 2529 err3: 2530 qede_napi_disable_remove(edev); 2531 err2: 2532 qede_free_mem_load(edev); 2533 err1: 2534 edev->ops->common->set_fp_int(edev->cdev, 0); 2535 qede_free_fp_array(edev); 2536 edev->num_queues = 0; 2537 edev->fp_num_tx = 0; 2538 edev->fp_num_rx = 0; 2539 out: 2540 if (!is_locked) 2541 __qede_unlock(edev); 2542 2543 return rc; 2544 } 2545 2546 /* 'func' should be able to run between unload and reload assuming interface 2547 * is actually running, or afterwards in case it's currently DOWN. 2548 */ 2549 void qede_reload(struct qede_dev *edev, 2550 struct qede_reload_args *args, bool is_locked) 2551 { 2552 if (!is_locked) 2553 __qede_lock(edev); 2554 2555 /* Since qede_lock is held, internal state wouldn't change even 2556 * if netdev state would start transitioning. Check whether current 2557 * internal configuration indicates device is up, then reload. 2558 */ 2559 if (edev->state == QEDE_STATE_OPEN) { 2560 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2561 if (args) 2562 args->func(edev, args); 2563 qede_load(edev, QEDE_LOAD_RELOAD, true); 2564 2565 /* Since no one is going to do it for us, re-configure */ 2566 qede_config_rx_mode(edev->ndev); 2567 } else if (args) { 2568 args->func(edev, args); 2569 } 2570 2571 if (!is_locked) 2572 __qede_unlock(edev); 2573 } 2574 2575 /* called with rtnl_lock */ 2576 static int qede_open(struct net_device *ndev) 2577 { 2578 struct qede_dev *edev = netdev_priv(ndev); 2579 int rc; 2580 2581 netif_carrier_off(ndev); 2582 2583 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2584 2585 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2586 if (rc) 2587 return rc; 2588 2589 udp_tunnel_nic_reset_ntf(ndev); 2590 2591 edev->ops->common->update_drv_state(edev->cdev, true); 2592 2593 return 0; 2594 } 2595 2596 static int qede_close(struct net_device *ndev) 2597 { 2598 struct qede_dev *edev = netdev_priv(ndev); 2599 2600 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2601 2602 if (edev->cdev) 2603 edev->ops->common->update_drv_state(edev->cdev, false); 2604 2605 return 0; 2606 } 2607 2608 static void qede_link_update(void *dev, struct qed_link_output *link) 2609 { 2610 struct qede_dev *edev = dev; 2611 2612 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2613 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2614 return; 2615 } 2616 2617 if (link->link_up) { 2618 if (!netif_carrier_ok(edev->ndev)) { 2619 DP_NOTICE(edev, "Link is up\n"); 2620 netif_tx_start_all_queues(edev->ndev); 2621 netif_carrier_on(edev->ndev); 2622 qede_rdma_dev_event_open(edev); 2623 } 2624 } else { 2625 if (netif_carrier_ok(edev->ndev)) { 2626 DP_NOTICE(edev, "Link is down\n"); 2627 netif_tx_disable(edev->ndev); 2628 netif_carrier_off(edev->ndev); 2629 qede_rdma_dev_event_close(edev); 2630 } 2631 } 2632 } 2633 2634 static void qede_schedule_recovery_handler(void *dev) 2635 { 2636 struct qede_dev *edev = dev; 2637 2638 if (edev->state == QEDE_STATE_RECOVERY) { 2639 DP_NOTICE(edev, 2640 "Avoid scheduling a recovery handling since already in recovery state\n"); 2641 return; 2642 } 2643 2644 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2645 schedule_delayed_work(&edev->sp_task, 0); 2646 2647 DP_INFO(edev, "Scheduled a recovery handler\n"); 2648 } 2649 2650 static void qede_recovery_failed(struct qede_dev *edev) 2651 { 2652 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2653 2654 netif_device_detach(edev->ndev); 2655 2656 if (edev->cdev) 2657 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2658 } 2659 2660 static void qede_recovery_handler(struct qede_dev *edev) 2661 { 2662 u32 curr_state = edev->state; 2663 int rc; 2664 2665 DP_NOTICE(edev, "Starting a recovery process\n"); 2666 2667 /* No need to acquire first the qede_lock since is done by qede_sp_task 2668 * before calling this function. 2669 */ 2670 edev->state = QEDE_STATE_RECOVERY; 2671 2672 edev->ops->common->recovery_prolog(edev->cdev); 2673 2674 if (curr_state == QEDE_STATE_OPEN) 2675 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2676 2677 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2678 2679 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2680 IS_VF(edev), QEDE_PROBE_RECOVERY); 2681 if (rc) { 2682 edev->cdev = NULL; 2683 goto err; 2684 } 2685 2686 if (curr_state == QEDE_STATE_OPEN) { 2687 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2688 if (rc) 2689 goto err; 2690 2691 qede_config_rx_mode(edev->ndev); 2692 udp_tunnel_nic_reset_ntf(edev->ndev); 2693 } 2694 2695 edev->state = curr_state; 2696 2697 DP_NOTICE(edev, "Recovery handling is done\n"); 2698 2699 return; 2700 2701 err: 2702 qede_recovery_failed(edev); 2703 } 2704 2705 static void qede_atomic_hw_err_handler(struct qede_dev *edev) 2706 { 2707 struct qed_dev *cdev = edev->cdev; 2708 2709 DP_NOTICE(edev, 2710 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n", 2711 edev->err_flags); 2712 2713 /* Get a call trace of the flow that led to the error */ 2714 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags)); 2715 2716 /* Prevent HW attentions from being reasserted */ 2717 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags)) 2718 edev->ops->common->attn_clr_enable(cdev, true); 2719 2720 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n"); 2721 } 2722 2723 static void qede_generic_hw_err_handler(struct qede_dev *edev) 2724 { 2725 DP_NOTICE(edev, 2726 "Generic sleepable HW error handling started - err_flags 0x%lx\n", 2727 edev->err_flags); 2728 2729 if (edev->devlink) { 2730 DP_NOTICE(edev, "Reporting fatal error to devlink\n"); 2731 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type); 2732 } 2733 2734 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2735 2736 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n"); 2737 } 2738 2739 static void qede_set_hw_err_flags(struct qede_dev *edev, 2740 enum qed_hw_err_type err_type) 2741 { 2742 unsigned long err_flags = 0; 2743 2744 switch (err_type) { 2745 case QED_HW_ERR_DMAE_FAIL: 2746 set_bit(QEDE_ERR_WARN, &err_flags); 2747 fallthrough; 2748 case QED_HW_ERR_MFW_RESP_FAIL: 2749 case QED_HW_ERR_HW_ATTN: 2750 case QED_HW_ERR_RAMROD_FAIL: 2751 case QED_HW_ERR_FW_ASSERT: 2752 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags); 2753 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags); 2754 /* make this error as recoverable and start recovery*/ 2755 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags); 2756 break; 2757 2758 default: 2759 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type); 2760 break; 2761 } 2762 2763 edev->err_flags |= err_flags; 2764 } 2765 2766 static void qede_schedule_hw_err_handler(void *dev, 2767 enum qed_hw_err_type err_type) 2768 { 2769 struct qede_dev *edev = dev; 2770 2771 /* Fan failure cannot be masked by handling of another HW error or by a 2772 * concurrent recovery process. 2773 */ 2774 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) || 2775 edev->state == QEDE_STATE_RECOVERY) && 2776 err_type != QED_HW_ERR_FAN_FAIL) { 2777 DP_INFO(edev, 2778 "Avoid scheduling an error handling while another HW error is being handled\n"); 2779 return; 2780 } 2781 2782 if (err_type >= QED_HW_ERR_LAST) { 2783 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type); 2784 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags); 2785 return; 2786 } 2787 2788 edev->last_err_type = err_type; 2789 qede_set_hw_err_flags(edev, err_type); 2790 qede_atomic_hw_err_handler(edev); 2791 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags); 2792 schedule_delayed_work(&edev->sp_task, 0); 2793 2794 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type); 2795 } 2796 2797 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2798 { 2799 struct netdev_queue *netdev_txq; 2800 2801 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2802 if (netif_xmit_stopped(netdev_txq)) 2803 return true; 2804 2805 return false; 2806 } 2807 2808 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2809 { 2810 struct qede_dev *edev = dev; 2811 struct netdev_hw_addr *ha; 2812 int i; 2813 2814 if (edev->ndev->features & NETIF_F_IP_CSUM) 2815 data->feat_flags |= QED_TLV_IP_CSUM; 2816 if (edev->ndev->features & NETIF_F_TSO) 2817 data->feat_flags |= QED_TLV_LSO; 2818 2819 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2820 eth_zero_addr(data->mac[1]); 2821 eth_zero_addr(data->mac[2]); 2822 /* Copy the first two UC macs */ 2823 netif_addr_lock_bh(edev->ndev); 2824 i = 1; 2825 netdev_for_each_uc_addr(ha, edev->ndev) { 2826 ether_addr_copy(data->mac[i++], ha->addr); 2827 if (i == QED_TLV_MAC_COUNT) 2828 break; 2829 } 2830 2831 netif_addr_unlock_bh(edev->ndev); 2832 } 2833 2834 static void qede_get_eth_tlv_data(void *dev, void *data) 2835 { 2836 struct qed_mfw_tlv_eth *etlv = data; 2837 struct qede_dev *edev = dev; 2838 struct qede_fastpath *fp; 2839 int i; 2840 2841 etlv->lso_maxoff_size = 0XFFFF; 2842 etlv->lso_maxoff_size_set = true; 2843 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2844 etlv->lso_minseg_size_set = true; 2845 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2846 etlv->prom_mode_set = true; 2847 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2848 etlv->tx_descr_size_set = true; 2849 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2850 etlv->rx_descr_size_set = true; 2851 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2852 etlv->iov_offload_set = true; 2853 2854 /* Fill information regarding queues; Should be done under the qede 2855 * lock to guarantee those don't change beneath our feet. 2856 */ 2857 etlv->txqs_empty = true; 2858 etlv->rxqs_empty = true; 2859 etlv->num_txqs_full = 0; 2860 etlv->num_rxqs_full = 0; 2861 2862 __qede_lock(edev); 2863 for_each_queue(i) { 2864 fp = &edev->fp_array[i]; 2865 if (fp->type & QEDE_FASTPATH_TX) { 2866 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2867 2868 if (txq->sw_tx_cons != txq->sw_tx_prod) 2869 etlv->txqs_empty = false; 2870 if (qede_is_txq_full(edev, txq)) 2871 etlv->num_txqs_full++; 2872 } 2873 if (fp->type & QEDE_FASTPATH_RX) { 2874 if (qede_has_rx_work(fp->rxq)) 2875 etlv->rxqs_empty = false; 2876 2877 /* This one is a bit tricky; Firmware might stop 2878 * placing packets if ring is not yet full. 2879 * Give an approximation. 2880 */ 2881 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2882 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2883 RX_RING_SIZE - 100) 2884 etlv->num_rxqs_full++; 2885 } 2886 } 2887 __qede_unlock(edev); 2888 2889 etlv->txqs_empty_set = true; 2890 etlv->rxqs_empty_set = true; 2891 etlv->num_txqs_full_set = true; 2892 etlv->num_rxqs_full_set = true; 2893 } 2894 2895 /** 2896 * qede_io_error_detected(): Called when PCI error is detected 2897 * 2898 * @pdev: Pointer to PCI device 2899 * @state: The current pci connection state 2900 * 2901 *Return: pci_ers_result_t. 2902 * 2903 * This function is called after a PCI bus error affecting 2904 * this device has been detected. 2905 */ 2906 static pci_ers_result_t 2907 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 2908 { 2909 struct net_device *dev = pci_get_drvdata(pdev); 2910 struct qede_dev *edev = netdev_priv(dev); 2911 2912 if (!edev) 2913 return PCI_ERS_RESULT_NONE; 2914 2915 DP_NOTICE(edev, "IO error detected [%d]\n", state); 2916 2917 __qede_lock(edev); 2918 if (edev->state == QEDE_STATE_RECOVERY) { 2919 DP_NOTICE(edev, "Device already in the recovery state\n"); 2920 __qede_unlock(edev); 2921 return PCI_ERS_RESULT_NONE; 2922 } 2923 2924 /* PF handles the recovery of its VFs */ 2925 if (IS_VF(edev)) { 2926 DP_VERBOSE(edev, QED_MSG_IOV, 2927 "VF recovery is handled by its PF\n"); 2928 __qede_unlock(edev); 2929 return PCI_ERS_RESULT_RECOVERED; 2930 } 2931 2932 /* Close OS Tx */ 2933 netif_tx_disable(edev->ndev); 2934 netif_carrier_off(edev->ndev); 2935 2936 set_bit(QEDE_SP_AER, &edev->sp_flags); 2937 schedule_delayed_work(&edev->sp_task, 0); 2938 2939 __qede_unlock(edev); 2940 2941 return PCI_ERS_RESULT_CAN_RECOVER; 2942 } 2943