1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/crash_dump.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/version.h>
36 #include <linux/device.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/errno.h>
41 #include <linux/list.h>
42 #include <linux/string.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/interrupt.h>
45 #include <asm/byteorder.h>
46 #include <asm/param.h>
47 #include <linux/io.h>
48 #include <linux/netdev_features.h>
49 #include <linux/udp.h>
50 #include <linux/tcp.h>
51 #include <net/udp_tunnel.h>
52 #include <linux/ip.h>
53 #include <net/ipv6.h>
54 #include <net/tcp.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_vlan.h>
57 #include <linux/pkt_sched.h>
58 #include <linux/ethtool.h>
59 #include <linux/in.h>
60 #include <linux/random.h>
61 #include <net/ip6_checksum.h>
62 #include <linux/bitops.h>
63 #include <linux/vmalloc.h>
64 #include <linux/aer.h>
65 #include "qede.h"
66 #include "qede_ptp.h"
67 
68 static char version[] =
69 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
70 
71 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74 
75 static uint debug;
76 module_param(debug, uint, 0);
77 MODULE_PARM_DESC(debug, " Default debug msglevel");
78 
79 static const struct qed_eth_ops *qed_ops;
80 
81 #define CHIP_NUM_57980S_40		0x1634
82 #define CHIP_NUM_57980S_10		0x1666
83 #define CHIP_NUM_57980S_MF		0x1636
84 #define CHIP_NUM_57980S_100		0x1644
85 #define CHIP_NUM_57980S_50		0x1654
86 #define CHIP_NUM_57980S_25		0x1656
87 #define CHIP_NUM_57980S_IOV		0x1664
88 #define CHIP_NUM_AH			0x8070
89 #define CHIP_NUM_AH_IOV			0x8090
90 
91 #ifndef PCI_DEVICE_ID_NX2_57980E
92 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
93 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
94 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
95 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
96 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
97 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
98 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
99 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
100 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
101 
102 #endif
103 
104 enum qede_pci_private {
105 	QEDE_PRIVATE_PF,
106 	QEDE_PRIVATE_VF
107 };
108 
109 static const struct pci_device_id qede_pci_tbl[] = {
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
114 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
116 #ifdef CONFIG_QED_SRIOV
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
118 #endif
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
120 #ifdef CONFIG_QED_SRIOV
121 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
122 #endif
123 	{ 0 }
124 };
125 
126 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
127 
128 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
129 static pci_ers_result_t
130 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
131 
132 #define TX_TIMEOUT		(5 * HZ)
133 
134 /* Utilize last protocol index for XDP */
135 #define XDP_PI	11
136 
137 static void qede_remove(struct pci_dev *pdev);
138 static void qede_shutdown(struct pci_dev *pdev);
139 static void qede_link_update(void *dev, struct qed_link_output *link);
140 static void qede_schedule_recovery_handler(void *dev);
141 static void qede_recovery_handler(struct qede_dev *edev);
142 static void qede_schedule_hw_err_handler(void *dev,
143 					 enum qed_hw_err_type err_type);
144 static void qede_get_eth_tlv_data(void *edev, void *data);
145 static void qede_get_generic_tlv_data(void *edev,
146 				      struct qed_generic_tlvs *data);
147 static void qede_generic_hw_err_handler(struct qede_dev *edev);
148 #ifdef CONFIG_QED_SRIOV
149 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
150 			    __be16 vlan_proto)
151 {
152 	struct qede_dev *edev = netdev_priv(ndev);
153 
154 	if (vlan > 4095) {
155 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
156 		return -EINVAL;
157 	}
158 
159 	if (vlan_proto != htons(ETH_P_8021Q))
160 		return -EPROTONOSUPPORT;
161 
162 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
163 		   vlan, vf);
164 
165 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
166 }
167 
168 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
169 {
170 	struct qede_dev *edev = netdev_priv(ndev);
171 
172 	DP_VERBOSE(edev, QED_MSG_IOV,
173 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
174 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
175 
176 	if (!is_valid_ether_addr(mac)) {
177 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
178 		return -EINVAL;
179 	}
180 
181 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
182 }
183 
184 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
185 {
186 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
187 	struct qed_dev_info *qed_info = &edev->dev_info.common;
188 	struct qed_update_vport_params *vport_params;
189 	int rc;
190 
191 	vport_params = vzalloc(sizeof(*vport_params));
192 	if (!vport_params)
193 		return -ENOMEM;
194 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
195 
196 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
197 
198 	/* Enable/Disable Tx switching for PF */
199 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
200 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
201 		vport_params->vport_id = 0;
202 		vport_params->update_tx_switching_flg = 1;
203 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
204 		edev->ops->vport_update(edev->cdev, vport_params);
205 	}
206 
207 	vfree(vport_params);
208 	return rc;
209 }
210 #endif
211 
212 static const struct pci_error_handlers qede_err_handler = {
213 	.error_detected = qede_io_error_detected,
214 };
215 
216 static struct pci_driver qede_pci_driver = {
217 	.name = "qede",
218 	.id_table = qede_pci_tbl,
219 	.probe = qede_probe,
220 	.remove = qede_remove,
221 	.shutdown = qede_shutdown,
222 #ifdef CONFIG_QED_SRIOV
223 	.sriov_configure = qede_sriov_configure,
224 #endif
225 	.err_handler = &qede_err_handler,
226 };
227 
228 static struct qed_eth_cb_ops qede_ll_ops = {
229 	{
230 #ifdef CONFIG_RFS_ACCEL
231 		.arfs_filter_op = qede_arfs_filter_op,
232 #endif
233 		.link_update = qede_link_update,
234 		.schedule_recovery_handler = qede_schedule_recovery_handler,
235 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
236 		.get_generic_tlv_data = qede_get_generic_tlv_data,
237 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
238 	},
239 	.force_mac = qede_force_mac,
240 	.ports_update = qede_udp_ports_update,
241 };
242 
243 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
244 			     void *ptr)
245 {
246 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
247 	struct ethtool_drvinfo drvinfo;
248 	struct qede_dev *edev;
249 
250 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
251 		goto done;
252 
253 	/* Check whether this is a qede device */
254 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
255 		goto done;
256 
257 	memset(&drvinfo, 0, sizeof(drvinfo));
258 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
259 	if (strcmp(drvinfo.driver, "qede"))
260 		goto done;
261 	edev = netdev_priv(ndev);
262 
263 	switch (event) {
264 	case NETDEV_CHANGENAME:
265 		/* Notify qed of the name change */
266 		if (!edev->ops || !edev->ops->common)
267 			goto done;
268 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
269 		break;
270 	case NETDEV_CHANGEADDR:
271 		edev = netdev_priv(ndev);
272 		qede_rdma_event_changeaddr(edev);
273 		break;
274 	}
275 
276 done:
277 	return NOTIFY_DONE;
278 }
279 
280 static struct notifier_block qede_netdev_notifier = {
281 	.notifier_call = qede_netdev_event,
282 };
283 
284 static
285 int __init qede_init(void)
286 {
287 	int ret;
288 
289 	pr_info("qede_init: %s\n", version);
290 
291 	qed_ops = qed_get_eth_ops();
292 	if (!qed_ops) {
293 		pr_notice("Failed to get qed ethtool operations\n");
294 		return -EINVAL;
295 	}
296 
297 	/* Must register notifier before pci ops, since we might miss
298 	 * interface rename after pci probe and netdev registration.
299 	 */
300 	ret = register_netdevice_notifier(&qede_netdev_notifier);
301 	if (ret) {
302 		pr_notice("Failed to register netdevice_notifier\n");
303 		qed_put_eth_ops();
304 		return -EINVAL;
305 	}
306 
307 	ret = pci_register_driver(&qede_pci_driver);
308 	if (ret) {
309 		pr_notice("Failed to register driver\n");
310 		unregister_netdevice_notifier(&qede_netdev_notifier);
311 		qed_put_eth_ops();
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void __exit qede_cleanup(void)
319 {
320 	if (debug & QED_LOG_INFO_MASK)
321 		pr_info("qede_cleanup called\n");
322 
323 	unregister_netdevice_notifier(&qede_netdev_notifier);
324 	pci_unregister_driver(&qede_pci_driver);
325 	qed_put_eth_ops();
326 }
327 
328 module_init(qede_init);
329 module_exit(qede_cleanup);
330 
331 static int qede_open(struct net_device *ndev);
332 static int qede_close(struct net_device *ndev);
333 
334 void qede_fill_by_demand_stats(struct qede_dev *edev)
335 {
336 	struct qede_stats_common *p_common = &edev->stats.common;
337 	struct qed_eth_stats stats;
338 
339 	edev->ops->get_vport_stats(edev->cdev, &stats);
340 
341 	p_common->no_buff_discards = stats.common.no_buff_discards;
342 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
343 	p_common->ttl0_discard = stats.common.ttl0_discard;
344 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
345 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
346 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
347 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
348 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
349 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
350 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
351 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
352 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
353 
354 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
355 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
356 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
357 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
358 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
359 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
360 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
361 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
362 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
363 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
364 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
365 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
366 
367 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
368 	p_common->rx_65_to_127_byte_packets =
369 	    stats.common.rx_65_to_127_byte_packets;
370 	p_common->rx_128_to_255_byte_packets =
371 	    stats.common.rx_128_to_255_byte_packets;
372 	p_common->rx_256_to_511_byte_packets =
373 	    stats.common.rx_256_to_511_byte_packets;
374 	p_common->rx_512_to_1023_byte_packets =
375 	    stats.common.rx_512_to_1023_byte_packets;
376 	p_common->rx_1024_to_1518_byte_packets =
377 	    stats.common.rx_1024_to_1518_byte_packets;
378 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
379 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
380 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
381 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
382 	p_common->rx_align_errors = stats.common.rx_align_errors;
383 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
384 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
385 	p_common->rx_jabbers = stats.common.rx_jabbers;
386 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
387 	p_common->rx_fragments = stats.common.rx_fragments;
388 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
389 	p_common->tx_65_to_127_byte_packets =
390 	    stats.common.tx_65_to_127_byte_packets;
391 	p_common->tx_128_to_255_byte_packets =
392 	    stats.common.tx_128_to_255_byte_packets;
393 	p_common->tx_256_to_511_byte_packets =
394 	    stats.common.tx_256_to_511_byte_packets;
395 	p_common->tx_512_to_1023_byte_packets =
396 	    stats.common.tx_512_to_1023_byte_packets;
397 	p_common->tx_1024_to_1518_byte_packets =
398 	    stats.common.tx_1024_to_1518_byte_packets;
399 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
400 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
401 	p_common->brb_truncates = stats.common.brb_truncates;
402 	p_common->brb_discards = stats.common.brb_discards;
403 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
404 	p_common->link_change_count = stats.common.link_change_count;
405 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
406 
407 	if (QEDE_IS_BB(edev)) {
408 		struct qede_stats_bb *p_bb = &edev->stats.bb;
409 
410 		p_bb->rx_1519_to_1522_byte_packets =
411 		    stats.bb.rx_1519_to_1522_byte_packets;
412 		p_bb->rx_1519_to_2047_byte_packets =
413 		    stats.bb.rx_1519_to_2047_byte_packets;
414 		p_bb->rx_2048_to_4095_byte_packets =
415 		    stats.bb.rx_2048_to_4095_byte_packets;
416 		p_bb->rx_4096_to_9216_byte_packets =
417 		    stats.bb.rx_4096_to_9216_byte_packets;
418 		p_bb->rx_9217_to_16383_byte_packets =
419 		    stats.bb.rx_9217_to_16383_byte_packets;
420 		p_bb->tx_1519_to_2047_byte_packets =
421 		    stats.bb.tx_1519_to_2047_byte_packets;
422 		p_bb->tx_2048_to_4095_byte_packets =
423 		    stats.bb.tx_2048_to_4095_byte_packets;
424 		p_bb->tx_4096_to_9216_byte_packets =
425 		    stats.bb.tx_4096_to_9216_byte_packets;
426 		p_bb->tx_9217_to_16383_byte_packets =
427 		    stats.bb.tx_9217_to_16383_byte_packets;
428 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
429 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
430 	} else {
431 		struct qede_stats_ah *p_ah = &edev->stats.ah;
432 
433 		p_ah->rx_1519_to_max_byte_packets =
434 		    stats.ah.rx_1519_to_max_byte_packets;
435 		p_ah->tx_1519_to_max_byte_packets =
436 		    stats.ah.tx_1519_to_max_byte_packets;
437 	}
438 }
439 
440 static void qede_get_stats64(struct net_device *dev,
441 			     struct rtnl_link_stats64 *stats)
442 {
443 	struct qede_dev *edev = netdev_priv(dev);
444 	struct qede_stats_common *p_common;
445 
446 	qede_fill_by_demand_stats(edev);
447 	p_common = &edev->stats.common;
448 
449 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
450 			    p_common->rx_bcast_pkts;
451 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
452 			    p_common->tx_bcast_pkts;
453 
454 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
455 			  p_common->rx_bcast_bytes;
456 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
457 			  p_common->tx_bcast_bytes;
458 
459 	stats->tx_errors = p_common->tx_err_drop_pkts;
460 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
461 
462 	stats->rx_fifo_errors = p_common->no_buff_discards;
463 
464 	if (QEDE_IS_BB(edev))
465 		stats->collisions = edev->stats.bb.tx_total_collisions;
466 	stats->rx_crc_errors = p_common->rx_crc_errors;
467 	stats->rx_frame_errors = p_common->rx_align_errors;
468 }
469 
470 #ifdef CONFIG_QED_SRIOV
471 static int qede_get_vf_config(struct net_device *dev, int vfidx,
472 			      struct ifla_vf_info *ivi)
473 {
474 	struct qede_dev *edev = netdev_priv(dev);
475 
476 	if (!edev->ops)
477 		return -EINVAL;
478 
479 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
480 }
481 
482 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
483 			    int min_tx_rate, int max_tx_rate)
484 {
485 	struct qede_dev *edev = netdev_priv(dev);
486 
487 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
488 					max_tx_rate);
489 }
490 
491 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
492 {
493 	struct qede_dev *edev = netdev_priv(dev);
494 
495 	if (!edev->ops)
496 		return -EINVAL;
497 
498 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
499 }
500 
501 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
502 				  int link_state)
503 {
504 	struct qede_dev *edev = netdev_priv(dev);
505 
506 	if (!edev->ops)
507 		return -EINVAL;
508 
509 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
510 }
511 
512 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
513 {
514 	struct qede_dev *edev = netdev_priv(dev);
515 
516 	if (!edev->ops)
517 		return -EINVAL;
518 
519 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
520 }
521 #endif
522 
523 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
524 {
525 	struct qede_dev *edev = netdev_priv(dev);
526 
527 	if (!netif_running(dev))
528 		return -EAGAIN;
529 
530 	switch (cmd) {
531 	case SIOCSHWTSTAMP:
532 		return qede_ptp_hw_ts(edev, ifr);
533 	default:
534 		DP_VERBOSE(edev, QED_MSG_DEBUG,
535 			   "default IOCTL cmd 0x%x\n", cmd);
536 		return -EOPNOTSUPP;
537 	}
538 
539 	return 0;
540 }
541 
542 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
543 {
544 	DP_NOTICE(edev,
545 		  "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
546 		  txq->index, le16_to_cpu(*txq->hw_cons_ptr),
547 		  qed_chain_get_cons_idx(&txq->tx_pbl),
548 		  qed_chain_get_prod_idx(&txq->tx_pbl),
549 		  jiffies);
550 }
551 
552 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
553 {
554 	struct qede_dev *edev = netdev_priv(dev);
555 	struct qede_tx_queue *txq;
556 	int cos;
557 
558 	netif_carrier_off(dev);
559 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
560 
561 	if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
562 		return;
563 
564 	for_each_cos_in_txq(edev, cos) {
565 		txq = &edev->fp_array[txqueue].txq[cos];
566 
567 		if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
568 		    qed_chain_get_prod_idx(&txq->tx_pbl))
569 			qede_tx_log_print(edev, txq);
570 	}
571 
572 	if (IS_VF(edev))
573 		return;
574 
575 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
576 	    edev->state == QEDE_STATE_RECOVERY) {
577 		DP_INFO(edev,
578 			"Avoid handling a Tx timeout while another HW error is being handled\n");
579 		return;
580 	}
581 
582 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
583 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
584 	schedule_delayed_work(&edev->sp_task, 0);
585 }
586 
587 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
588 {
589 	struct qede_dev *edev = netdev_priv(ndev);
590 	int cos, count, offset;
591 
592 	if (num_tc > edev->dev_info.num_tc)
593 		return -EINVAL;
594 
595 	netdev_reset_tc(ndev);
596 	netdev_set_num_tc(ndev, num_tc);
597 
598 	for_each_cos_in_txq(edev, cos) {
599 		count = QEDE_TSS_COUNT(edev);
600 		offset = cos * QEDE_TSS_COUNT(edev);
601 		netdev_set_tc_queue(ndev, cos, count, offset);
602 	}
603 
604 	return 0;
605 }
606 
607 static int
608 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
609 		__be16 proto)
610 {
611 	switch (f->command) {
612 	case FLOW_CLS_REPLACE:
613 		return qede_add_tc_flower_fltr(edev, proto, f);
614 	case FLOW_CLS_DESTROY:
615 		return qede_delete_flow_filter(edev, f->cookie);
616 	default:
617 		return -EOPNOTSUPP;
618 	}
619 }
620 
621 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
622 				  void *cb_priv)
623 {
624 	struct flow_cls_offload *f;
625 	struct qede_dev *edev = cb_priv;
626 
627 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
628 		return -EOPNOTSUPP;
629 
630 	switch (type) {
631 	case TC_SETUP_CLSFLOWER:
632 		f = type_data;
633 		return qede_set_flower(edev, f, f->common.protocol);
634 	default:
635 		return -EOPNOTSUPP;
636 	}
637 }
638 
639 static LIST_HEAD(qede_block_cb_list);
640 
641 static int
642 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
643 		      void *type_data)
644 {
645 	struct qede_dev *edev = netdev_priv(dev);
646 	struct tc_mqprio_qopt *mqprio;
647 
648 	switch (type) {
649 	case TC_SETUP_BLOCK:
650 		return flow_block_cb_setup_simple(type_data,
651 						  &qede_block_cb_list,
652 						  qede_setup_tc_block_cb,
653 						  edev, edev, true);
654 	case TC_SETUP_QDISC_MQPRIO:
655 		mqprio = type_data;
656 
657 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
658 		return qede_setup_tc(dev, mqprio->num_tc);
659 	default:
660 		return -EOPNOTSUPP;
661 	}
662 }
663 
664 static const struct net_device_ops qede_netdev_ops = {
665 	.ndo_open = qede_open,
666 	.ndo_stop = qede_close,
667 	.ndo_start_xmit = qede_start_xmit,
668 	.ndo_select_queue = qede_select_queue,
669 	.ndo_set_rx_mode = qede_set_rx_mode,
670 	.ndo_set_mac_address = qede_set_mac_addr,
671 	.ndo_validate_addr = eth_validate_addr,
672 	.ndo_change_mtu = qede_change_mtu,
673 	.ndo_do_ioctl = qede_ioctl,
674 	.ndo_tx_timeout = qede_tx_timeout,
675 #ifdef CONFIG_QED_SRIOV
676 	.ndo_set_vf_mac = qede_set_vf_mac,
677 	.ndo_set_vf_vlan = qede_set_vf_vlan,
678 	.ndo_set_vf_trust = qede_set_vf_trust,
679 #endif
680 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
681 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
682 	.ndo_fix_features = qede_fix_features,
683 	.ndo_set_features = qede_set_features,
684 	.ndo_get_stats64 = qede_get_stats64,
685 #ifdef CONFIG_QED_SRIOV
686 	.ndo_set_vf_link_state = qede_set_vf_link_state,
687 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
688 	.ndo_get_vf_config = qede_get_vf_config,
689 	.ndo_set_vf_rate = qede_set_vf_rate,
690 #endif
691 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
692 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
693 	.ndo_features_check = qede_features_check,
694 	.ndo_bpf = qede_xdp,
695 #ifdef CONFIG_RFS_ACCEL
696 	.ndo_rx_flow_steer = qede_rx_flow_steer,
697 #endif
698 	.ndo_setup_tc = qede_setup_tc_offload,
699 };
700 
701 static const struct net_device_ops qede_netdev_vf_ops = {
702 	.ndo_open = qede_open,
703 	.ndo_stop = qede_close,
704 	.ndo_start_xmit = qede_start_xmit,
705 	.ndo_select_queue = qede_select_queue,
706 	.ndo_set_rx_mode = qede_set_rx_mode,
707 	.ndo_set_mac_address = qede_set_mac_addr,
708 	.ndo_validate_addr = eth_validate_addr,
709 	.ndo_change_mtu = qede_change_mtu,
710 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
711 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
712 	.ndo_fix_features = qede_fix_features,
713 	.ndo_set_features = qede_set_features,
714 	.ndo_get_stats64 = qede_get_stats64,
715 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
716 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
717 	.ndo_features_check = qede_features_check,
718 };
719 
720 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
721 	.ndo_open = qede_open,
722 	.ndo_stop = qede_close,
723 	.ndo_start_xmit = qede_start_xmit,
724 	.ndo_select_queue = qede_select_queue,
725 	.ndo_set_rx_mode = qede_set_rx_mode,
726 	.ndo_set_mac_address = qede_set_mac_addr,
727 	.ndo_validate_addr = eth_validate_addr,
728 	.ndo_change_mtu = qede_change_mtu,
729 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
730 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
731 	.ndo_fix_features = qede_fix_features,
732 	.ndo_set_features = qede_set_features,
733 	.ndo_get_stats64 = qede_get_stats64,
734 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
735 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
736 	.ndo_features_check = qede_features_check,
737 	.ndo_bpf = qede_xdp,
738 };
739 
740 /* -------------------------------------------------------------------------
741  * START OF PROBE / REMOVE
742  * -------------------------------------------------------------------------
743  */
744 
745 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
746 					    struct pci_dev *pdev,
747 					    struct qed_dev_eth_info *info,
748 					    u32 dp_module, u8 dp_level)
749 {
750 	struct net_device *ndev;
751 	struct qede_dev *edev;
752 
753 	ndev = alloc_etherdev_mqs(sizeof(*edev),
754 				  info->num_queues * info->num_tc,
755 				  info->num_queues);
756 	if (!ndev) {
757 		pr_err("etherdev allocation failed\n");
758 		return NULL;
759 	}
760 
761 	edev = netdev_priv(ndev);
762 	edev->ndev = ndev;
763 	edev->cdev = cdev;
764 	edev->pdev = pdev;
765 	edev->dp_module = dp_module;
766 	edev->dp_level = dp_level;
767 	edev->ops = qed_ops;
768 
769 	if (is_kdump_kernel()) {
770 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
771 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
772 	} else {
773 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
774 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
775 	}
776 
777 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
778 		info->num_queues, info->num_queues);
779 
780 	SET_NETDEV_DEV(ndev, &pdev->dev);
781 
782 	memset(&edev->stats, 0, sizeof(edev->stats));
783 	memcpy(&edev->dev_info, info, sizeof(*info));
784 
785 	/* As ethtool doesn't have the ability to show WoL behavior as
786 	 * 'default', if device supports it declare it's enabled.
787 	 */
788 	if (edev->dev_info.common.wol_support)
789 		edev->wol_enabled = true;
790 
791 	INIT_LIST_HEAD(&edev->vlan_list);
792 
793 	return edev;
794 }
795 
796 static void qede_init_ndev(struct qede_dev *edev)
797 {
798 	struct net_device *ndev = edev->ndev;
799 	struct pci_dev *pdev = edev->pdev;
800 	bool udp_tunnel_enable = false;
801 	netdev_features_t hw_features;
802 
803 	pci_set_drvdata(pdev, ndev);
804 
805 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
806 	ndev->base_addr = ndev->mem_start;
807 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
808 	ndev->irq = edev->dev_info.common.pci_irq;
809 
810 	ndev->watchdog_timeo = TX_TIMEOUT;
811 
812 	if (IS_VF(edev)) {
813 		if (edev->dev_info.xdp_supported)
814 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
815 		else
816 			ndev->netdev_ops = &qede_netdev_vf_ops;
817 	} else {
818 		ndev->netdev_ops = &qede_netdev_ops;
819 	}
820 
821 	qede_set_ethtool_ops(ndev);
822 
823 	ndev->priv_flags |= IFF_UNICAST_FLT;
824 
825 	/* user-changeble features */
826 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
827 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
828 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
829 
830 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
831 		hw_features |= NETIF_F_NTUPLE;
832 
833 	if (edev->dev_info.common.vxlan_enable ||
834 	    edev->dev_info.common.geneve_enable)
835 		udp_tunnel_enable = true;
836 
837 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
838 		hw_features |= NETIF_F_TSO_ECN;
839 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
840 					NETIF_F_SG | NETIF_F_TSO |
841 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
842 					NETIF_F_RXCSUM;
843 	}
844 
845 	if (udp_tunnel_enable) {
846 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
847 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
848 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
849 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
850 	}
851 
852 	if (edev->dev_info.common.gre_enable) {
853 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
854 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
855 					  NETIF_F_GSO_GRE_CSUM);
856 	}
857 
858 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
859 			      NETIF_F_HIGHDMA;
860 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
861 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
862 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
863 
864 	ndev->hw_features = hw_features;
865 
866 	/* MTU range: 46 - 9600 */
867 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
868 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
869 
870 	/* Set network device HW mac */
871 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
872 
873 	ndev->mtu = edev->dev_info.common.mtu;
874 }
875 
876 /* This function converts from 32b param to two params of level and module
877  * Input 32b decoding:
878  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
879  * 'happy' flow, e.g. memory allocation failed.
880  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
881  * and provide important parameters.
882  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
883  * module. VERBOSE prints are for tracking the specific flow in low level.
884  *
885  * Notice that the level should be that of the lowest required logs.
886  */
887 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
888 {
889 	*p_dp_level = QED_LEVEL_NOTICE;
890 	*p_dp_module = 0;
891 
892 	if (debug & QED_LOG_VERBOSE_MASK) {
893 		*p_dp_level = QED_LEVEL_VERBOSE;
894 		*p_dp_module = (debug & 0x3FFFFFFF);
895 	} else if (debug & QED_LOG_INFO_MASK) {
896 		*p_dp_level = QED_LEVEL_INFO;
897 	} else if (debug & QED_LOG_NOTICE_MASK) {
898 		*p_dp_level = QED_LEVEL_NOTICE;
899 	}
900 }
901 
902 static void qede_free_fp_array(struct qede_dev *edev)
903 {
904 	if (edev->fp_array) {
905 		struct qede_fastpath *fp;
906 		int i;
907 
908 		for_each_queue(i) {
909 			fp = &edev->fp_array[i];
910 
911 			kfree(fp->sb_info);
912 			/* Handle mem alloc failure case where qede_init_fp
913 			 * didn't register xdp_rxq_info yet.
914 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
915 			 */
916 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
917 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
918 			kfree(fp->rxq);
919 			kfree(fp->xdp_tx);
920 			kfree(fp->txq);
921 		}
922 		kfree(edev->fp_array);
923 	}
924 
925 	edev->num_queues = 0;
926 	edev->fp_num_tx = 0;
927 	edev->fp_num_rx = 0;
928 }
929 
930 static int qede_alloc_fp_array(struct qede_dev *edev)
931 {
932 	u8 fp_combined, fp_rx = edev->fp_num_rx;
933 	struct qede_fastpath *fp;
934 	int i;
935 
936 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
937 				 sizeof(*edev->fp_array), GFP_KERNEL);
938 	if (!edev->fp_array) {
939 		DP_NOTICE(edev, "fp array allocation failed\n");
940 		goto err;
941 	}
942 
943 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
944 
945 	/* Allocate the FP elements for Rx queues followed by combined and then
946 	 * the Tx. This ordering should be maintained so that the respective
947 	 * queues (Rx or Tx) will be together in the fastpath array and the
948 	 * associated ids will be sequential.
949 	 */
950 	for_each_queue(i) {
951 		fp = &edev->fp_array[i];
952 
953 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
954 		if (!fp->sb_info) {
955 			DP_NOTICE(edev, "sb info struct allocation failed\n");
956 			goto err;
957 		}
958 
959 		if (fp_rx) {
960 			fp->type = QEDE_FASTPATH_RX;
961 			fp_rx--;
962 		} else if (fp_combined) {
963 			fp->type = QEDE_FASTPATH_COMBINED;
964 			fp_combined--;
965 		} else {
966 			fp->type = QEDE_FASTPATH_TX;
967 		}
968 
969 		if (fp->type & QEDE_FASTPATH_TX) {
970 			fp->txq = kcalloc(edev->dev_info.num_tc,
971 					  sizeof(*fp->txq), GFP_KERNEL);
972 			if (!fp->txq)
973 				goto err;
974 		}
975 
976 		if (fp->type & QEDE_FASTPATH_RX) {
977 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
978 			if (!fp->rxq)
979 				goto err;
980 
981 			if (edev->xdp_prog) {
982 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
983 						     GFP_KERNEL);
984 				if (!fp->xdp_tx)
985 					goto err;
986 				fp->type |= QEDE_FASTPATH_XDP;
987 			}
988 		}
989 	}
990 
991 	return 0;
992 err:
993 	qede_free_fp_array(edev);
994 	return -ENOMEM;
995 }
996 
997 /* The qede lock is used to protect driver state change and driver flows that
998  * are not reentrant.
999  */
1000 void __qede_lock(struct qede_dev *edev)
1001 {
1002 	mutex_lock(&edev->qede_lock);
1003 }
1004 
1005 void __qede_unlock(struct qede_dev *edev)
1006 {
1007 	mutex_unlock(&edev->qede_lock);
1008 }
1009 
1010 /* This version of the lock should be used when acquiring the RTNL lock is also
1011  * needed in addition to the internal qede lock.
1012  */
1013 static void qede_lock(struct qede_dev *edev)
1014 {
1015 	rtnl_lock();
1016 	__qede_lock(edev);
1017 }
1018 
1019 static void qede_unlock(struct qede_dev *edev)
1020 {
1021 	__qede_unlock(edev);
1022 	rtnl_unlock();
1023 }
1024 
1025 static void qede_sp_task(struct work_struct *work)
1026 {
1027 	struct qede_dev *edev = container_of(work, struct qede_dev,
1028 					     sp_task.work);
1029 
1030 	/* The locking scheme depends on the specific flag:
1031 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1032 	 * ensure that ongoing flows are ended and new ones are not started.
1033 	 * In other cases - only the internal qede lock should be acquired.
1034 	 */
1035 
1036 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1037 #ifdef CONFIG_QED_SRIOV
1038 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1039 		 * The recovery of the active VFs is currently not supported.
1040 		 */
1041 		if (pci_num_vf(edev->pdev))
1042 			qede_sriov_configure(edev->pdev, 0);
1043 #endif
1044 		qede_lock(edev);
1045 		qede_recovery_handler(edev);
1046 		qede_unlock(edev);
1047 	}
1048 
1049 	__qede_lock(edev);
1050 
1051 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1052 		if (edev->state == QEDE_STATE_OPEN)
1053 			qede_config_rx_mode(edev->ndev);
1054 
1055 #ifdef CONFIG_RFS_ACCEL
1056 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1057 		if (edev->state == QEDE_STATE_OPEN)
1058 			qede_process_arfs_filters(edev, false);
1059 	}
1060 #endif
1061 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1062 		qede_generic_hw_err_handler(edev);
1063 	__qede_unlock(edev);
1064 
1065 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1066 #ifdef CONFIG_QED_SRIOV
1067 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1068 		 * The recovery of the active VFs is currently not supported.
1069 		 */
1070 		if (pci_num_vf(edev->pdev))
1071 			qede_sriov_configure(edev->pdev, 0);
1072 #endif
1073 		edev->ops->common->recovery_process(edev->cdev);
1074 	}
1075 }
1076 
1077 static void qede_update_pf_params(struct qed_dev *cdev)
1078 {
1079 	struct qed_pf_params pf_params;
1080 	u16 num_cons;
1081 
1082 	/* 64 rx + 64 tx + 64 XDP */
1083 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1084 
1085 	/* 1 rx + 1 xdp + max tx cos */
1086 	num_cons = QED_MIN_L2_CONS;
1087 
1088 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1089 
1090 	/* Same for VFs - make sure they'll have sufficient connections
1091 	 * to support XDP Tx queues.
1092 	 */
1093 	pf_params.eth_pf_params.num_vf_cons = 48;
1094 
1095 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1096 	qed_ops->common->update_pf_params(cdev, &pf_params);
1097 }
1098 
1099 #define QEDE_FW_VER_STR_SIZE	80
1100 
1101 static void qede_log_probe(struct qede_dev *edev)
1102 {
1103 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1104 	u8 buf[QEDE_FW_VER_STR_SIZE];
1105 	size_t left_size;
1106 
1107 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1108 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1109 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1110 		 p_dev_info->fw_eng,
1111 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1112 		 QED_MFW_VERSION_3_OFFSET,
1113 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1114 		 QED_MFW_VERSION_2_OFFSET,
1115 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1116 		 QED_MFW_VERSION_1_OFFSET,
1117 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1118 		 QED_MFW_VERSION_0_OFFSET);
1119 
1120 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1121 	if (p_dev_info->mbi_version && left_size)
1122 		snprintf(buf + strlen(buf), left_size,
1123 			 " [MBI %d.%d.%d]",
1124 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1125 			 QED_MBI_VERSION_2_OFFSET,
1126 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1127 			 QED_MBI_VERSION_1_OFFSET,
1128 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1129 			 QED_MBI_VERSION_0_OFFSET);
1130 
1131 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1132 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1133 		buf, edev->ndev->name);
1134 }
1135 
1136 enum qede_probe_mode {
1137 	QEDE_PROBE_NORMAL,
1138 	QEDE_PROBE_RECOVERY,
1139 };
1140 
1141 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1142 			bool is_vf, enum qede_probe_mode mode)
1143 {
1144 	struct qed_probe_params probe_params;
1145 	struct qed_slowpath_params sp_params;
1146 	struct qed_dev_eth_info dev_info;
1147 	struct qede_dev *edev;
1148 	struct qed_dev *cdev;
1149 	int rc;
1150 
1151 	if (unlikely(dp_level & QED_LEVEL_INFO))
1152 		pr_notice("Starting qede probe\n");
1153 
1154 	memset(&probe_params, 0, sizeof(probe_params));
1155 	probe_params.protocol = QED_PROTOCOL_ETH;
1156 	probe_params.dp_module = dp_module;
1157 	probe_params.dp_level = dp_level;
1158 	probe_params.is_vf = is_vf;
1159 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1160 	cdev = qed_ops->common->probe(pdev, &probe_params);
1161 	if (!cdev) {
1162 		rc = -ENODEV;
1163 		goto err0;
1164 	}
1165 
1166 	qede_update_pf_params(cdev);
1167 
1168 	/* Start the Slowpath-process */
1169 	memset(&sp_params, 0, sizeof(sp_params));
1170 	sp_params.int_mode = QED_INT_MODE_MSIX;
1171 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1172 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1173 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1174 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1175 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1176 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1177 	if (rc) {
1178 		pr_notice("Cannot start slowpath\n");
1179 		goto err1;
1180 	}
1181 
1182 	/* Learn information crucial for qede to progress */
1183 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1184 	if (rc)
1185 		goto err2;
1186 
1187 	if (mode != QEDE_PROBE_RECOVERY) {
1188 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1189 					   dp_level);
1190 		if (!edev) {
1191 			rc = -ENOMEM;
1192 			goto err2;
1193 		}
1194 	} else {
1195 		struct net_device *ndev = pci_get_drvdata(pdev);
1196 
1197 		edev = netdev_priv(ndev);
1198 		edev->cdev = cdev;
1199 		memset(&edev->stats, 0, sizeof(edev->stats));
1200 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1201 	}
1202 
1203 	if (is_vf)
1204 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1205 
1206 	qede_init_ndev(edev);
1207 
1208 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1209 	if (rc)
1210 		goto err3;
1211 
1212 	if (mode != QEDE_PROBE_RECOVERY) {
1213 		/* Prepare the lock prior to the registration of the netdev,
1214 		 * as once it's registered we might reach flows requiring it
1215 		 * [it's even possible to reach a flow needing it directly
1216 		 * from there, although it's unlikely].
1217 		 */
1218 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1219 		mutex_init(&edev->qede_lock);
1220 
1221 		rc = register_netdev(edev->ndev);
1222 		if (rc) {
1223 			DP_NOTICE(edev, "Cannot register net-device\n");
1224 			goto err4;
1225 		}
1226 	}
1227 
1228 	edev->ops->common->set_name(cdev, edev->ndev->name);
1229 
1230 	/* PTP not supported on VFs */
1231 	if (!is_vf)
1232 		qede_ptp_enable(edev);
1233 
1234 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1235 
1236 #ifdef CONFIG_DCB
1237 	if (!IS_VF(edev))
1238 		qede_set_dcbnl_ops(edev->ndev);
1239 #endif
1240 
1241 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1242 
1243 	qede_log_probe(edev);
1244 	return 0;
1245 
1246 err4:
1247 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1248 err3:
1249 	free_netdev(edev->ndev);
1250 err2:
1251 	qed_ops->common->slowpath_stop(cdev);
1252 err1:
1253 	qed_ops->common->remove(cdev);
1254 err0:
1255 	return rc;
1256 }
1257 
1258 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1259 {
1260 	bool is_vf = false;
1261 	u32 dp_module = 0;
1262 	u8 dp_level = 0;
1263 
1264 	switch ((enum qede_pci_private)id->driver_data) {
1265 	case QEDE_PRIVATE_VF:
1266 		if (debug & QED_LOG_VERBOSE_MASK)
1267 			dev_err(&pdev->dev, "Probing a VF\n");
1268 		is_vf = true;
1269 		break;
1270 	default:
1271 		if (debug & QED_LOG_VERBOSE_MASK)
1272 			dev_err(&pdev->dev, "Probing a PF\n");
1273 	}
1274 
1275 	qede_config_debug(debug, &dp_module, &dp_level);
1276 
1277 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1278 			    QEDE_PROBE_NORMAL);
1279 }
1280 
1281 enum qede_remove_mode {
1282 	QEDE_REMOVE_NORMAL,
1283 	QEDE_REMOVE_RECOVERY,
1284 };
1285 
1286 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1287 {
1288 	struct net_device *ndev = pci_get_drvdata(pdev);
1289 	struct qede_dev *edev;
1290 	struct qed_dev *cdev;
1291 
1292 	if (!ndev) {
1293 		dev_info(&pdev->dev, "Device has already been removed\n");
1294 		return;
1295 	}
1296 
1297 	edev = netdev_priv(ndev);
1298 	cdev = edev->cdev;
1299 
1300 	DP_INFO(edev, "Starting qede_remove\n");
1301 
1302 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1303 
1304 	if (mode != QEDE_REMOVE_RECOVERY) {
1305 		unregister_netdev(ndev);
1306 
1307 		cancel_delayed_work_sync(&edev->sp_task);
1308 
1309 		edev->ops->common->set_power_state(cdev, PCI_D0);
1310 
1311 		pci_set_drvdata(pdev, NULL);
1312 	}
1313 
1314 	qede_ptp_disable(edev);
1315 
1316 	/* Use global ops since we've freed edev */
1317 	qed_ops->common->slowpath_stop(cdev);
1318 	if (system_state == SYSTEM_POWER_OFF)
1319 		return;
1320 	qed_ops->common->remove(cdev);
1321 	edev->cdev = NULL;
1322 
1323 	/* Since this can happen out-of-sync with other flows,
1324 	 * don't release the netdevice until after slowpath stop
1325 	 * has been called to guarantee various other contexts
1326 	 * [e.g., QED register callbacks] won't break anything when
1327 	 * accessing the netdevice.
1328 	 */
1329 	if (mode != QEDE_REMOVE_RECOVERY)
1330 		free_netdev(ndev);
1331 
1332 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1333 }
1334 
1335 static void qede_remove(struct pci_dev *pdev)
1336 {
1337 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1338 }
1339 
1340 static void qede_shutdown(struct pci_dev *pdev)
1341 {
1342 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1343 }
1344 
1345 /* -------------------------------------------------------------------------
1346  * START OF LOAD / UNLOAD
1347  * -------------------------------------------------------------------------
1348  */
1349 
1350 static int qede_set_num_queues(struct qede_dev *edev)
1351 {
1352 	int rc;
1353 	u16 rss_num;
1354 
1355 	/* Setup queues according to possible resources*/
1356 	if (edev->req_queues)
1357 		rss_num = edev->req_queues;
1358 	else
1359 		rss_num = netif_get_num_default_rss_queues() *
1360 			  edev->dev_info.common.num_hwfns;
1361 
1362 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1363 
1364 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1365 	if (rc > 0) {
1366 		/* Managed to request interrupts for our queues */
1367 		edev->num_queues = rc;
1368 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1369 			QEDE_QUEUE_CNT(edev), rss_num);
1370 		rc = 0;
1371 	}
1372 
1373 	edev->fp_num_tx = edev->req_num_tx;
1374 	edev->fp_num_rx = edev->req_num_rx;
1375 
1376 	return rc;
1377 }
1378 
1379 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1380 			     u16 sb_id)
1381 {
1382 	if (sb_info->sb_virt) {
1383 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1384 					      QED_SB_TYPE_L2_QUEUE);
1385 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1386 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1387 		memset(sb_info, 0, sizeof(*sb_info));
1388 	}
1389 }
1390 
1391 /* This function allocates fast-path status block memory */
1392 static int qede_alloc_mem_sb(struct qede_dev *edev,
1393 			     struct qed_sb_info *sb_info, u16 sb_id)
1394 {
1395 	struct status_block_e4 *sb_virt;
1396 	dma_addr_t sb_phys;
1397 	int rc;
1398 
1399 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1400 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1401 	if (!sb_virt) {
1402 		DP_ERR(edev, "Status block allocation failed\n");
1403 		return -ENOMEM;
1404 	}
1405 
1406 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1407 					sb_virt, sb_phys, sb_id,
1408 					QED_SB_TYPE_L2_QUEUE);
1409 	if (rc) {
1410 		DP_ERR(edev, "Status block initialization failed\n");
1411 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1412 				  sb_virt, sb_phys);
1413 		return rc;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static void qede_free_rx_buffers(struct qede_dev *edev,
1420 				 struct qede_rx_queue *rxq)
1421 {
1422 	u16 i;
1423 
1424 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1425 		struct sw_rx_data *rx_buf;
1426 		struct page *data;
1427 
1428 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1429 		data = rx_buf->data;
1430 
1431 		dma_unmap_page(&edev->pdev->dev,
1432 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1433 
1434 		rx_buf->data = NULL;
1435 		__free_page(data);
1436 	}
1437 }
1438 
1439 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1440 {
1441 	/* Free rx buffers */
1442 	qede_free_rx_buffers(edev, rxq);
1443 
1444 	/* Free the parallel SW ring */
1445 	kfree(rxq->sw_rx_ring);
1446 
1447 	/* Free the real RQ ring used by FW */
1448 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1449 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1450 }
1451 
1452 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1453 {
1454 	int i;
1455 
1456 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1457 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1458 
1459 		tpa_info->state = QEDE_AGG_STATE_NONE;
1460 	}
1461 }
1462 
1463 /* This function allocates all memory needed per Rx queue */
1464 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1465 {
1466 	int i, rc, size;
1467 
1468 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1469 
1470 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1471 
1472 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1473 	size = rxq->rx_headroom +
1474 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1475 
1476 	/* Make sure that the headroom and  payload fit in a single page */
1477 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1478 		rxq->rx_buf_size = PAGE_SIZE - size;
1479 
1480 	/* Segment size to split a page in multiple equal parts,
1481 	 * unless XDP is used in which case we'd use the entire page.
1482 	 */
1483 	if (!edev->xdp_prog) {
1484 		size = size + rxq->rx_buf_size;
1485 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1486 	} else {
1487 		rxq->rx_buf_seg_size = PAGE_SIZE;
1488 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1489 	}
1490 
1491 	/* Allocate the parallel driver ring for Rx buffers */
1492 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1493 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1494 	if (!rxq->sw_rx_ring) {
1495 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1496 		rc = -ENOMEM;
1497 		goto err;
1498 	}
1499 
1500 	/* Allocate FW Rx ring  */
1501 	rc = edev->ops->common->chain_alloc(edev->cdev,
1502 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1503 					    QED_CHAIN_MODE_NEXT_PTR,
1504 					    QED_CHAIN_CNT_TYPE_U16,
1505 					    RX_RING_SIZE,
1506 					    sizeof(struct eth_rx_bd),
1507 					    &rxq->rx_bd_ring, NULL);
1508 	if (rc)
1509 		goto err;
1510 
1511 	/* Allocate FW completion ring */
1512 	rc = edev->ops->common->chain_alloc(edev->cdev,
1513 					    QED_CHAIN_USE_TO_CONSUME,
1514 					    QED_CHAIN_MODE_PBL,
1515 					    QED_CHAIN_CNT_TYPE_U16,
1516 					    RX_RING_SIZE,
1517 					    sizeof(union eth_rx_cqe),
1518 					    &rxq->rx_comp_ring, NULL);
1519 	if (rc)
1520 		goto err;
1521 
1522 	/* Allocate buffers for the Rx ring */
1523 	rxq->filled_buffers = 0;
1524 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1525 		rc = qede_alloc_rx_buffer(rxq, false);
1526 		if (rc) {
1527 			DP_ERR(edev,
1528 			       "Rx buffers allocation failed at index %d\n", i);
1529 			goto err;
1530 		}
1531 	}
1532 
1533 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1534 	if (!edev->gro_disable)
1535 		qede_set_tpa_param(rxq);
1536 err:
1537 	return rc;
1538 }
1539 
1540 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1541 {
1542 	/* Free the parallel SW ring */
1543 	if (txq->is_xdp)
1544 		kfree(txq->sw_tx_ring.xdp);
1545 	else
1546 		kfree(txq->sw_tx_ring.skbs);
1547 
1548 	/* Free the real RQ ring used by FW */
1549 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1550 }
1551 
1552 /* This function allocates all memory needed per Tx queue */
1553 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1554 {
1555 	union eth_tx_bd_types *p_virt;
1556 	int size, rc;
1557 
1558 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1559 
1560 	/* Allocate the parallel driver ring for Tx buffers */
1561 	if (txq->is_xdp) {
1562 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1563 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1564 		if (!txq->sw_tx_ring.xdp)
1565 			goto err;
1566 	} else {
1567 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1568 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1569 		if (!txq->sw_tx_ring.skbs)
1570 			goto err;
1571 	}
1572 
1573 	rc = edev->ops->common->chain_alloc(edev->cdev,
1574 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1575 					    QED_CHAIN_MODE_PBL,
1576 					    QED_CHAIN_CNT_TYPE_U16,
1577 					    txq->num_tx_buffers,
1578 					    sizeof(*p_virt),
1579 					    &txq->tx_pbl, NULL);
1580 	if (rc)
1581 		goto err;
1582 
1583 	return 0;
1584 
1585 err:
1586 	qede_free_mem_txq(edev, txq);
1587 	return -ENOMEM;
1588 }
1589 
1590 /* This function frees all memory of a single fp */
1591 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1592 {
1593 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1594 
1595 	if (fp->type & QEDE_FASTPATH_RX)
1596 		qede_free_mem_rxq(edev, fp->rxq);
1597 
1598 	if (fp->type & QEDE_FASTPATH_XDP)
1599 		qede_free_mem_txq(edev, fp->xdp_tx);
1600 
1601 	if (fp->type & QEDE_FASTPATH_TX) {
1602 		int cos;
1603 
1604 		for_each_cos_in_txq(edev, cos)
1605 			qede_free_mem_txq(edev, &fp->txq[cos]);
1606 	}
1607 }
1608 
1609 /* This function allocates all memory needed for a single fp (i.e. an entity
1610  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1611  */
1612 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1613 {
1614 	int rc = 0;
1615 
1616 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1617 	if (rc)
1618 		goto out;
1619 
1620 	if (fp->type & QEDE_FASTPATH_RX) {
1621 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1622 		if (rc)
1623 			goto out;
1624 	}
1625 
1626 	if (fp->type & QEDE_FASTPATH_XDP) {
1627 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1628 		if (rc)
1629 			goto out;
1630 	}
1631 
1632 	if (fp->type & QEDE_FASTPATH_TX) {
1633 		int cos;
1634 
1635 		for_each_cos_in_txq(edev, cos) {
1636 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1637 			if (rc)
1638 				goto out;
1639 		}
1640 	}
1641 
1642 out:
1643 	return rc;
1644 }
1645 
1646 static void qede_free_mem_load(struct qede_dev *edev)
1647 {
1648 	int i;
1649 
1650 	for_each_queue(i) {
1651 		struct qede_fastpath *fp = &edev->fp_array[i];
1652 
1653 		qede_free_mem_fp(edev, fp);
1654 	}
1655 }
1656 
1657 /* This function allocates all qede memory at NIC load. */
1658 static int qede_alloc_mem_load(struct qede_dev *edev)
1659 {
1660 	int rc = 0, queue_id;
1661 
1662 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1663 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1664 
1665 		rc = qede_alloc_mem_fp(edev, fp);
1666 		if (rc) {
1667 			DP_ERR(edev,
1668 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1669 			       queue_id);
1670 			qede_free_mem_load(edev);
1671 			return rc;
1672 		}
1673 	}
1674 
1675 	return 0;
1676 }
1677 
1678 static void qede_empty_tx_queue(struct qede_dev *edev,
1679 				struct qede_tx_queue *txq)
1680 {
1681 	unsigned int pkts_compl = 0, bytes_compl = 0;
1682 	struct netdev_queue *netdev_txq;
1683 	int rc, len = 0;
1684 
1685 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1686 
1687 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1688 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1689 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1690 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1691 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1692 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1693 
1694 		rc = qede_free_tx_pkt(edev, txq, &len);
1695 		if (rc) {
1696 			DP_NOTICE(edev,
1697 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1698 				  txq->index,
1699 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1700 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1701 			break;
1702 		}
1703 
1704 		bytes_compl += len;
1705 		pkts_compl++;
1706 		txq->sw_tx_cons++;
1707 	}
1708 
1709 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1710 }
1711 
1712 static void qede_empty_tx_queues(struct qede_dev *edev)
1713 {
1714 	int i;
1715 
1716 	for_each_queue(i)
1717 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1718 			int cos;
1719 
1720 			for_each_cos_in_txq(edev, cos) {
1721 				struct qede_fastpath *fp;
1722 
1723 				fp = &edev->fp_array[i];
1724 				qede_empty_tx_queue(edev,
1725 						    &fp->txq[cos]);
1726 			}
1727 		}
1728 }
1729 
1730 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1731 static void qede_init_fp(struct qede_dev *edev)
1732 {
1733 	int queue_id, rxq_index = 0, txq_index = 0;
1734 	struct qede_fastpath *fp;
1735 
1736 	for_each_queue(queue_id) {
1737 		fp = &edev->fp_array[queue_id];
1738 
1739 		fp->edev = edev;
1740 		fp->id = queue_id;
1741 
1742 		if (fp->type & QEDE_FASTPATH_XDP) {
1743 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1744 								rxq_index);
1745 			fp->xdp_tx->is_xdp = 1;
1746 		}
1747 
1748 		if (fp->type & QEDE_FASTPATH_RX) {
1749 			fp->rxq->rxq_id = rxq_index++;
1750 
1751 			/* Determine how to map buffers for this queue */
1752 			if (fp->type & QEDE_FASTPATH_XDP)
1753 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1754 			else
1755 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1756 			fp->rxq->dev = &edev->pdev->dev;
1757 
1758 			/* Driver have no error path from here */
1759 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1760 						 fp->rxq->rxq_id) < 0);
1761 		}
1762 
1763 		if (fp->type & QEDE_FASTPATH_TX) {
1764 			int cos;
1765 
1766 			for_each_cos_in_txq(edev, cos) {
1767 				struct qede_tx_queue *txq = &fp->txq[cos];
1768 				u16 ndev_tx_id;
1769 
1770 				txq->cos = cos;
1771 				txq->index = txq_index;
1772 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1773 				txq->ndev_txq_id = ndev_tx_id;
1774 
1775 				if (edev->dev_info.is_legacy)
1776 					txq->is_legacy = true;
1777 				txq->dev = &edev->pdev->dev;
1778 			}
1779 
1780 			txq_index++;
1781 		}
1782 
1783 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1784 			 edev->ndev->name, queue_id);
1785 	}
1786 }
1787 
1788 static int qede_set_real_num_queues(struct qede_dev *edev)
1789 {
1790 	int rc = 0;
1791 
1792 	rc = netif_set_real_num_tx_queues(edev->ndev,
1793 					  QEDE_TSS_COUNT(edev) *
1794 					  edev->dev_info.num_tc);
1795 	if (rc) {
1796 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1797 		return rc;
1798 	}
1799 
1800 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1801 	if (rc) {
1802 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1803 		return rc;
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 static void qede_napi_disable_remove(struct qede_dev *edev)
1810 {
1811 	int i;
1812 
1813 	for_each_queue(i) {
1814 		napi_disable(&edev->fp_array[i].napi);
1815 
1816 		netif_napi_del(&edev->fp_array[i].napi);
1817 	}
1818 }
1819 
1820 static void qede_napi_add_enable(struct qede_dev *edev)
1821 {
1822 	int i;
1823 
1824 	/* Add NAPI objects */
1825 	for_each_queue(i) {
1826 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1827 			       qede_poll, NAPI_POLL_WEIGHT);
1828 		napi_enable(&edev->fp_array[i].napi);
1829 	}
1830 }
1831 
1832 static void qede_sync_free_irqs(struct qede_dev *edev)
1833 {
1834 	int i;
1835 
1836 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1837 		if (edev->int_info.msix_cnt) {
1838 			synchronize_irq(edev->int_info.msix[i].vector);
1839 			free_irq(edev->int_info.msix[i].vector,
1840 				 &edev->fp_array[i]);
1841 		} else {
1842 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1843 		}
1844 	}
1845 
1846 	edev->int_info.used_cnt = 0;
1847 }
1848 
1849 static int qede_req_msix_irqs(struct qede_dev *edev)
1850 {
1851 	int i, rc;
1852 
1853 	/* Sanitize number of interrupts == number of prepared RSS queues */
1854 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1855 		DP_ERR(edev,
1856 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1857 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1858 		return -EINVAL;
1859 	}
1860 
1861 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1862 #ifdef CONFIG_RFS_ACCEL
1863 		struct qede_fastpath *fp = &edev->fp_array[i];
1864 
1865 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1866 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1867 					      edev->int_info.msix[i].vector);
1868 			if (rc) {
1869 				DP_ERR(edev, "Failed to add CPU rmap\n");
1870 				qede_free_arfs(edev);
1871 			}
1872 		}
1873 #endif
1874 		rc = request_irq(edev->int_info.msix[i].vector,
1875 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1876 				 &edev->fp_array[i]);
1877 		if (rc) {
1878 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1879 			qede_sync_free_irqs(edev);
1880 			return rc;
1881 		}
1882 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1883 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1884 			   edev->fp_array[i].name, i,
1885 			   &edev->fp_array[i]);
1886 		edev->int_info.used_cnt++;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static void qede_simd_fp_handler(void *cookie)
1893 {
1894 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1895 
1896 	napi_schedule_irqoff(&fp->napi);
1897 }
1898 
1899 static int qede_setup_irqs(struct qede_dev *edev)
1900 {
1901 	int i, rc = 0;
1902 
1903 	/* Learn Interrupt configuration */
1904 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1905 	if (rc)
1906 		return rc;
1907 
1908 	if (edev->int_info.msix_cnt) {
1909 		rc = qede_req_msix_irqs(edev);
1910 		if (rc)
1911 			return rc;
1912 		edev->ndev->irq = edev->int_info.msix[0].vector;
1913 	} else {
1914 		const struct qed_common_ops *ops;
1915 
1916 		/* qed should learn receive the RSS ids and callbacks */
1917 		ops = edev->ops->common;
1918 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1919 			ops->simd_handler_config(edev->cdev,
1920 						 &edev->fp_array[i], i,
1921 						 qede_simd_fp_handler);
1922 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1923 	}
1924 	return 0;
1925 }
1926 
1927 static int qede_drain_txq(struct qede_dev *edev,
1928 			  struct qede_tx_queue *txq, bool allow_drain)
1929 {
1930 	int rc, cnt = 1000;
1931 
1932 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1933 		if (!cnt) {
1934 			if (allow_drain) {
1935 				DP_NOTICE(edev,
1936 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1937 					  txq->index);
1938 				rc = edev->ops->common->drain(edev->cdev);
1939 				if (rc)
1940 					return rc;
1941 				return qede_drain_txq(edev, txq, false);
1942 			}
1943 			DP_NOTICE(edev,
1944 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1945 				  txq->index, txq->sw_tx_prod,
1946 				  txq->sw_tx_cons);
1947 			return -ENODEV;
1948 		}
1949 		cnt--;
1950 		usleep_range(1000, 2000);
1951 		barrier();
1952 	}
1953 
1954 	/* FW finished processing, wait for HW to transmit all tx packets */
1955 	usleep_range(1000, 2000);
1956 
1957 	return 0;
1958 }
1959 
1960 static int qede_stop_txq(struct qede_dev *edev,
1961 			 struct qede_tx_queue *txq, int rss_id)
1962 {
1963 	/* delete doorbell from doorbell recovery mechanism */
1964 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1965 					   &txq->tx_db);
1966 
1967 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1968 }
1969 
1970 static int qede_stop_queues(struct qede_dev *edev)
1971 {
1972 	struct qed_update_vport_params *vport_update_params;
1973 	struct qed_dev *cdev = edev->cdev;
1974 	struct qede_fastpath *fp;
1975 	int rc, i;
1976 
1977 	/* Disable the vport */
1978 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1979 	if (!vport_update_params)
1980 		return -ENOMEM;
1981 
1982 	vport_update_params->vport_id = 0;
1983 	vport_update_params->update_vport_active_flg = 1;
1984 	vport_update_params->vport_active_flg = 0;
1985 	vport_update_params->update_rss_flg = 0;
1986 
1987 	rc = edev->ops->vport_update(cdev, vport_update_params);
1988 	vfree(vport_update_params);
1989 
1990 	if (rc) {
1991 		DP_ERR(edev, "Failed to update vport\n");
1992 		return rc;
1993 	}
1994 
1995 	/* Flush Tx queues. If needed, request drain from MCP */
1996 	for_each_queue(i) {
1997 		fp = &edev->fp_array[i];
1998 
1999 		if (fp->type & QEDE_FASTPATH_TX) {
2000 			int cos;
2001 
2002 			for_each_cos_in_txq(edev, cos) {
2003 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2004 				if (rc)
2005 					return rc;
2006 			}
2007 		}
2008 
2009 		if (fp->type & QEDE_FASTPATH_XDP) {
2010 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2011 			if (rc)
2012 				return rc;
2013 		}
2014 	}
2015 
2016 	/* Stop all Queues in reverse order */
2017 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2018 		fp = &edev->fp_array[i];
2019 
2020 		/* Stop the Tx Queue(s) */
2021 		if (fp->type & QEDE_FASTPATH_TX) {
2022 			int cos;
2023 
2024 			for_each_cos_in_txq(edev, cos) {
2025 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2026 				if (rc)
2027 					return rc;
2028 			}
2029 		}
2030 
2031 		/* Stop the Rx Queue */
2032 		if (fp->type & QEDE_FASTPATH_RX) {
2033 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2034 			if (rc) {
2035 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2036 				return rc;
2037 			}
2038 		}
2039 
2040 		/* Stop the XDP forwarding queue */
2041 		if (fp->type & QEDE_FASTPATH_XDP) {
2042 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2043 			if (rc)
2044 				return rc;
2045 
2046 			bpf_prog_put(fp->rxq->xdp_prog);
2047 		}
2048 	}
2049 
2050 	/* Stop the vport */
2051 	rc = edev->ops->vport_stop(cdev, 0);
2052 	if (rc)
2053 		DP_ERR(edev, "Failed to stop VPORT\n");
2054 
2055 	return rc;
2056 }
2057 
2058 static int qede_start_txq(struct qede_dev *edev,
2059 			  struct qede_fastpath *fp,
2060 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2061 {
2062 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2063 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2064 	struct qed_queue_start_common_params params;
2065 	struct qed_txq_start_ret_params ret_params;
2066 	int rc;
2067 
2068 	memset(&params, 0, sizeof(params));
2069 	memset(&ret_params, 0, sizeof(ret_params));
2070 
2071 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2072 	 * We don't really care about its coalescing.
2073 	 */
2074 	if (txq->is_xdp)
2075 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2076 	else
2077 		params.queue_id = txq->index;
2078 
2079 	params.p_sb = fp->sb_info;
2080 	params.sb_idx = sb_idx;
2081 	params.tc = txq->cos;
2082 
2083 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2084 				   page_cnt, &ret_params);
2085 	if (rc) {
2086 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2087 		return rc;
2088 	}
2089 
2090 	txq->doorbell_addr = ret_params.p_doorbell;
2091 	txq->handle = ret_params.p_handle;
2092 
2093 	/* Determine the FW consumer address associated */
2094 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2095 
2096 	/* Prepare the doorbell parameters */
2097 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2098 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2099 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2100 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2101 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2102 
2103 	/* register doorbell with doorbell recovery mechanism */
2104 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2105 						&txq->tx_db, DB_REC_WIDTH_32B,
2106 						DB_REC_KERNEL);
2107 
2108 	return rc;
2109 }
2110 
2111 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2112 {
2113 	int vlan_removal_en = 1;
2114 	struct qed_dev *cdev = edev->cdev;
2115 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2116 	struct qed_update_vport_params *vport_update_params;
2117 	struct qed_queue_start_common_params q_params;
2118 	struct qed_start_vport_params start = {0};
2119 	int rc, i;
2120 
2121 	if (!edev->num_queues) {
2122 		DP_ERR(edev,
2123 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2124 		return -EINVAL;
2125 	}
2126 
2127 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2128 	if (!vport_update_params)
2129 		return -ENOMEM;
2130 
2131 	start.handle_ptp_pkts = !!(edev->ptp);
2132 	start.gro_enable = !edev->gro_disable;
2133 	start.mtu = edev->ndev->mtu;
2134 	start.vport_id = 0;
2135 	start.drop_ttl0 = true;
2136 	start.remove_inner_vlan = vlan_removal_en;
2137 	start.clear_stats = clear_stats;
2138 
2139 	rc = edev->ops->vport_start(cdev, &start);
2140 
2141 	if (rc) {
2142 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2143 		goto out;
2144 	}
2145 
2146 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2147 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2148 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2149 
2150 	for_each_queue(i) {
2151 		struct qede_fastpath *fp = &edev->fp_array[i];
2152 		dma_addr_t p_phys_table;
2153 		u32 page_cnt;
2154 
2155 		if (fp->type & QEDE_FASTPATH_RX) {
2156 			struct qed_rxq_start_ret_params ret_params;
2157 			struct qede_rx_queue *rxq = fp->rxq;
2158 			__le16 *val;
2159 
2160 			memset(&ret_params, 0, sizeof(ret_params));
2161 			memset(&q_params, 0, sizeof(q_params));
2162 			q_params.queue_id = rxq->rxq_id;
2163 			q_params.vport_id = 0;
2164 			q_params.p_sb = fp->sb_info;
2165 			q_params.sb_idx = RX_PI;
2166 
2167 			p_phys_table =
2168 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2169 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2170 
2171 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2172 						   rxq->rx_buf_size,
2173 						   rxq->rx_bd_ring.p_phys_addr,
2174 						   p_phys_table,
2175 						   page_cnt, &ret_params);
2176 			if (rc) {
2177 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2178 				       rc);
2179 				goto out;
2180 			}
2181 
2182 			/* Use the return parameters */
2183 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2184 			rxq->handle = ret_params.p_handle;
2185 
2186 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2187 			rxq->hw_cons_ptr = val;
2188 
2189 			qede_update_rx_prod(edev, rxq);
2190 		}
2191 
2192 		if (fp->type & QEDE_FASTPATH_XDP) {
2193 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2194 			if (rc)
2195 				goto out;
2196 
2197 			bpf_prog_add(edev->xdp_prog, 1);
2198 			fp->rxq->xdp_prog = edev->xdp_prog;
2199 		}
2200 
2201 		if (fp->type & QEDE_FASTPATH_TX) {
2202 			int cos;
2203 
2204 			for_each_cos_in_txq(edev, cos) {
2205 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2206 						    TX_PI(cos));
2207 				if (rc)
2208 					goto out;
2209 			}
2210 		}
2211 	}
2212 
2213 	/* Prepare and send the vport enable */
2214 	vport_update_params->vport_id = start.vport_id;
2215 	vport_update_params->update_vport_active_flg = 1;
2216 	vport_update_params->vport_active_flg = 1;
2217 
2218 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2219 	    qed_info->tx_switching) {
2220 		vport_update_params->update_tx_switching_flg = 1;
2221 		vport_update_params->tx_switching_flg = 1;
2222 	}
2223 
2224 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2225 			     &vport_update_params->update_rss_flg);
2226 
2227 	rc = edev->ops->vport_update(cdev, vport_update_params);
2228 	if (rc)
2229 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2230 
2231 out:
2232 	vfree(vport_update_params);
2233 	return rc;
2234 }
2235 
2236 enum qede_unload_mode {
2237 	QEDE_UNLOAD_NORMAL,
2238 	QEDE_UNLOAD_RECOVERY,
2239 };
2240 
2241 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2242 			bool is_locked)
2243 {
2244 	struct qed_link_params link_params;
2245 	int rc;
2246 
2247 	DP_INFO(edev, "Starting qede unload\n");
2248 
2249 	if (!is_locked)
2250 		__qede_lock(edev);
2251 
2252 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2253 
2254 	if (mode != QEDE_UNLOAD_RECOVERY)
2255 		edev->state = QEDE_STATE_CLOSED;
2256 
2257 	qede_rdma_dev_event_close(edev);
2258 
2259 	/* Close OS Tx */
2260 	netif_tx_disable(edev->ndev);
2261 	netif_carrier_off(edev->ndev);
2262 
2263 	if (mode != QEDE_UNLOAD_RECOVERY) {
2264 		/* Reset the link */
2265 		memset(&link_params, 0, sizeof(link_params));
2266 		link_params.link_up = false;
2267 		edev->ops->common->set_link(edev->cdev, &link_params);
2268 
2269 		rc = qede_stop_queues(edev);
2270 		if (rc) {
2271 			qede_sync_free_irqs(edev);
2272 			goto out;
2273 		}
2274 
2275 		DP_INFO(edev, "Stopped Queues\n");
2276 	}
2277 
2278 	qede_vlan_mark_nonconfigured(edev);
2279 	edev->ops->fastpath_stop(edev->cdev);
2280 
2281 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2282 		qede_poll_for_freeing_arfs_filters(edev);
2283 		qede_free_arfs(edev);
2284 	}
2285 
2286 	/* Release the interrupts */
2287 	qede_sync_free_irqs(edev);
2288 	edev->ops->common->set_fp_int(edev->cdev, 0);
2289 
2290 	qede_napi_disable_remove(edev);
2291 
2292 	if (mode == QEDE_UNLOAD_RECOVERY)
2293 		qede_empty_tx_queues(edev);
2294 
2295 	qede_free_mem_load(edev);
2296 	qede_free_fp_array(edev);
2297 
2298 out:
2299 	if (!is_locked)
2300 		__qede_unlock(edev);
2301 
2302 	if (mode != QEDE_UNLOAD_RECOVERY)
2303 		DP_NOTICE(edev, "Link is down\n");
2304 
2305 	edev->ptp_skip_txts = 0;
2306 
2307 	DP_INFO(edev, "Ending qede unload\n");
2308 }
2309 
2310 enum qede_load_mode {
2311 	QEDE_LOAD_NORMAL,
2312 	QEDE_LOAD_RELOAD,
2313 	QEDE_LOAD_RECOVERY,
2314 };
2315 
2316 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2317 		     bool is_locked)
2318 {
2319 	struct qed_link_params link_params;
2320 	u8 num_tc;
2321 	int rc;
2322 
2323 	DP_INFO(edev, "Starting qede load\n");
2324 
2325 	if (!is_locked)
2326 		__qede_lock(edev);
2327 
2328 	rc = qede_set_num_queues(edev);
2329 	if (rc)
2330 		goto out;
2331 
2332 	rc = qede_alloc_fp_array(edev);
2333 	if (rc)
2334 		goto out;
2335 
2336 	qede_init_fp(edev);
2337 
2338 	rc = qede_alloc_mem_load(edev);
2339 	if (rc)
2340 		goto err1;
2341 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2342 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2343 
2344 	rc = qede_set_real_num_queues(edev);
2345 	if (rc)
2346 		goto err2;
2347 
2348 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2349 		rc = qede_alloc_arfs(edev);
2350 		if (rc)
2351 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2352 	}
2353 
2354 	qede_napi_add_enable(edev);
2355 	DP_INFO(edev, "Napi added and enabled\n");
2356 
2357 	rc = qede_setup_irqs(edev);
2358 	if (rc)
2359 		goto err3;
2360 	DP_INFO(edev, "Setup IRQs succeeded\n");
2361 
2362 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2363 	if (rc)
2364 		goto err4;
2365 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2366 
2367 	num_tc = netdev_get_num_tc(edev->ndev);
2368 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2369 	qede_setup_tc(edev->ndev, num_tc);
2370 
2371 	/* Program un-configured VLANs */
2372 	qede_configure_vlan_filters(edev);
2373 
2374 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2375 
2376 	/* Ask for link-up using current configuration */
2377 	memset(&link_params, 0, sizeof(link_params));
2378 	link_params.link_up = true;
2379 	edev->ops->common->set_link(edev->cdev, &link_params);
2380 
2381 	edev->state = QEDE_STATE_OPEN;
2382 
2383 	DP_INFO(edev, "Ending successfully qede load\n");
2384 
2385 	goto out;
2386 err4:
2387 	qede_sync_free_irqs(edev);
2388 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2389 err3:
2390 	qede_napi_disable_remove(edev);
2391 err2:
2392 	qede_free_mem_load(edev);
2393 err1:
2394 	edev->ops->common->set_fp_int(edev->cdev, 0);
2395 	qede_free_fp_array(edev);
2396 	edev->num_queues = 0;
2397 	edev->fp_num_tx = 0;
2398 	edev->fp_num_rx = 0;
2399 out:
2400 	if (!is_locked)
2401 		__qede_unlock(edev);
2402 
2403 	return rc;
2404 }
2405 
2406 /* 'func' should be able to run between unload and reload assuming interface
2407  * is actually running, or afterwards in case it's currently DOWN.
2408  */
2409 void qede_reload(struct qede_dev *edev,
2410 		 struct qede_reload_args *args, bool is_locked)
2411 {
2412 	if (!is_locked)
2413 		__qede_lock(edev);
2414 
2415 	/* Since qede_lock is held, internal state wouldn't change even
2416 	 * if netdev state would start transitioning. Check whether current
2417 	 * internal configuration indicates device is up, then reload.
2418 	 */
2419 	if (edev->state == QEDE_STATE_OPEN) {
2420 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2421 		if (args)
2422 			args->func(edev, args);
2423 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2424 
2425 		/* Since no one is going to do it for us, re-configure */
2426 		qede_config_rx_mode(edev->ndev);
2427 	} else if (args) {
2428 		args->func(edev, args);
2429 	}
2430 
2431 	if (!is_locked)
2432 		__qede_unlock(edev);
2433 }
2434 
2435 /* called with rtnl_lock */
2436 static int qede_open(struct net_device *ndev)
2437 {
2438 	struct qede_dev *edev = netdev_priv(ndev);
2439 	int rc;
2440 
2441 	netif_carrier_off(ndev);
2442 
2443 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2444 
2445 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2446 	if (rc)
2447 		return rc;
2448 
2449 	udp_tunnel_get_rx_info(ndev);
2450 
2451 	edev->ops->common->update_drv_state(edev->cdev, true);
2452 
2453 	return 0;
2454 }
2455 
2456 static int qede_close(struct net_device *ndev)
2457 {
2458 	struct qede_dev *edev = netdev_priv(ndev);
2459 
2460 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2461 
2462 	edev->ops->common->update_drv_state(edev->cdev, false);
2463 
2464 	return 0;
2465 }
2466 
2467 static void qede_link_update(void *dev, struct qed_link_output *link)
2468 {
2469 	struct qede_dev *edev = dev;
2470 
2471 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2472 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2473 		return;
2474 	}
2475 
2476 	if (link->link_up) {
2477 		if (!netif_carrier_ok(edev->ndev)) {
2478 			DP_NOTICE(edev, "Link is up\n");
2479 			netif_tx_start_all_queues(edev->ndev);
2480 			netif_carrier_on(edev->ndev);
2481 			qede_rdma_dev_event_open(edev);
2482 		}
2483 	} else {
2484 		if (netif_carrier_ok(edev->ndev)) {
2485 			DP_NOTICE(edev, "Link is down\n");
2486 			netif_tx_disable(edev->ndev);
2487 			netif_carrier_off(edev->ndev);
2488 			qede_rdma_dev_event_close(edev);
2489 		}
2490 	}
2491 }
2492 
2493 static void qede_schedule_recovery_handler(void *dev)
2494 {
2495 	struct qede_dev *edev = dev;
2496 
2497 	if (edev->state == QEDE_STATE_RECOVERY) {
2498 		DP_NOTICE(edev,
2499 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2500 		return;
2501 	}
2502 
2503 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2504 	schedule_delayed_work(&edev->sp_task, 0);
2505 
2506 	DP_INFO(edev, "Scheduled a recovery handler\n");
2507 }
2508 
2509 static void qede_recovery_failed(struct qede_dev *edev)
2510 {
2511 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2512 
2513 	netif_device_detach(edev->ndev);
2514 
2515 	if (edev->cdev)
2516 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2517 }
2518 
2519 static void qede_recovery_handler(struct qede_dev *edev)
2520 {
2521 	u32 curr_state = edev->state;
2522 	int rc;
2523 
2524 	DP_NOTICE(edev, "Starting a recovery process\n");
2525 
2526 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2527 	 * before calling this function.
2528 	 */
2529 	edev->state = QEDE_STATE_RECOVERY;
2530 
2531 	edev->ops->common->recovery_prolog(edev->cdev);
2532 
2533 	if (curr_state == QEDE_STATE_OPEN)
2534 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2535 
2536 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2537 
2538 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2539 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2540 	if (rc) {
2541 		edev->cdev = NULL;
2542 		goto err;
2543 	}
2544 
2545 	if (curr_state == QEDE_STATE_OPEN) {
2546 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2547 		if (rc)
2548 			goto err;
2549 
2550 		qede_config_rx_mode(edev->ndev);
2551 		udp_tunnel_get_rx_info(edev->ndev);
2552 	}
2553 
2554 	edev->state = curr_state;
2555 
2556 	DP_NOTICE(edev, "Recovery handling is done\n");
2557 
2558 	return;
2559 
2560 err:
2561 	qede_recovery_failed(edev);
2562 }
2563 
2564 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2565 {
2566 	struct qed_dev *cdev = edev->cdev;
2567 
2568 	DP_NOTICE(edev,
2569 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2570 		  edev->err_flags);
2571 
2572 	/* Get a call trace of the flow that led to the error */
2573 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2574 
2575 	/* Prevent HW attentions from being reasserted */
2576 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2577 		edev->ops->common->attn_clr_enable(cdev, true);
2578 
2579 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2580 }
2581 
2582 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2583 {
2584 	struct qed_dev *cdev = edev->cdev;
2585 
2586 	DP_NOTICE(edev,
2587 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2588 		  edev->err_flags);
2589 
2590 	/* Trigger a recovery process.
2591 	 * This is placed in the sleep requiring section just to make
2592 	 * sure it is the last one, and that all the other operations
2593 	 * were completed.
2594 	 */
2595 	if (test_bit(QEDE_ERR_IS_RECOVERABLE, &edev->err_flags))
2596 		edev->ops->common->recovery_process(cdev);
2597 
2598 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2599 
2600 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2601 }
2602 
2603 static void qede_set_hw_err_flags(struct qede_dev *edev,
2604 				  enum qed_hw_err_type err_type)
2605 {
2606 	unsigned long err_flags = 0;
2607 
2608 	switch (err_type) {
2609 	case QED_HW_ERR_DMAE_FAIL:
2610 		set_bit(QEDE_ERR_WARN, &err_flags);
2611 		fallthrough;
2612 	case QED_HW_ERR_MFW_RESP_FAIL:
2613 	case QED_HW_ERR_HW_ATTN:
2614 	case QED_HW_ERR_RAMROD_FAIL:
2615 	case QED_HW_ERR_FW_ASSERT:
2616 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2617 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2618 		break;
2619 
2620 	default:
2621 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2622 		break;
2623 	}
2624 
2625 	edev->err_flags |= err_flags;
2626 }
2627 
2628 static void qede_schedule_hw_err_handler(void *dev,
2629 					 enum qed_hw_err_type err_type)
2630 {
2631 	struct qede_dev *edev = dev;
2632 
2633 	/* Fan failure cannot be masked by handling of another HW error or by a
2634 	 * concurrent recovery process.
2635 	 */
2636 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2637 	     edev->state == QEDE_STATE_RECOVERY) &&
2638 	     err_type != QED_HW_ERR_FAN_FAIL) {
2639 		DP_INFO(edev,
2640 			"Avoid scheduling an error handling while another HW error is being handled\n");
2641 		return;
2642 	}
2643 
2644 	if (err_type >= QED_HW_ERR_LAST) {
2645 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2646 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2647 		return;
2648 	}
2649 
2650 	qede_set_hw_err_flags(edev, err_type);
2651 	qede_atomic_hw_err_handler(edev);
2652 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2653 	schedule_delayed_work(&edev->sp_task, 0);
2654 
2655 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2656 }
2657 
2658 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2659 {
2660 	struct netdev_queue *netdev_txq;
2661 
2662 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2663 	if (netif_xmit_stopped(netdev_txq))
2664 		return true;
2665 
2666 	return false;
2667 }
2668 
2669 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2670 {
2671 	struct qede_dev *edev = dev;
2672 	struct netdev_hw_addr *ha;
2673 	int i;
2674 
2675 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2676 		data->feat_flags |= QED_TLV_IP_CSUM;
2677 	if (edev->ndev->features & NETIF_F_TSO)
2678 		data->feat_flags |= QED_TLV_LSO;
2679 
2680 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2681 	memset(data->mac[1], 0, ETH_ALEN);
2682 	memset(data->mac[2], 0, ETH_ALEN);
2683 	/* Copy the first two UC macs */
2684 	netif_addr_lock_bh(edev->ndev);
2685 	i = 1;
2686 	netdev_for_each_uc_addr(ha, edev->ndev) {
2687 		ether_addr_copy(data->mac[i++], ha->addr);
2688 		if (i == QED_TLV_MAC_COUNT)
2689 			break;
2690 	}
2691 
2692 	netif_addr_unlock_bh(edev->ndev);
2693 }
2694 
2695 static void qede_get_eth_tlv_data(void *dev, void *data)
2696 {
2697 	struct qed_mfw_tlv_eth *etlv = data;
2698 	struct qede_dev *edev = dev;
2699 	struct qede_fastpath *fp;
2700 	int i;
2701 
2702 	etlv->lso_maxoff_size = 0XFFFF;
2703 	etlv->lso_maxoff_size_set = true;
2704 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2705 	etlv->lso_minseg_size_set = true;
2706 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2707 	etlv->prom_mode_set = true;
2708 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2709 	etlv->tx_descr_size_set = true;
2710 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2711 	etlv->rx_descr_size_set = true;
2712 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2713 	etlv->iov_offload_set = true;
2714 
2715 	/* Fill information regarding queues; Should be done under the qede
2716 	 * lock to guarantee those don't change beneath our feet.
2717 	 */
2718 	etlv->txqs_empty = true;
2719 	etlv->rxqs_empty = true;
2720 	etlv->num_txqs_full = 0;
2721 	etlv->num_rxqs_full = 0;
2722 
2723 	__qede_lock(edev);
2724 	for_each_queue(i) {
2725 		fp = &edev->fp_array[i];
2726 		if (fp->type & QEDE_FASTPATH_TX) {
2727 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2728 
2729 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2730 				etlv->txqs_empty = false;
2731 			if (qede_is_txq_full(edev, txq))
2732 				etlv->num_txqs_full++;
2733 		}
2734 		if (fp->type & QEDE_FASTPATH_RX) {
2735 			if (qede_has_rx_work(fp->rxq))
2736 				etlv->rxqs_empty = false;
2737 
2738 			/* This one is a bit tricky; Firmware might stop
2739 			 * placing packets if ring is not yet full.
2740 			 * Give an approximation.
2741 			 */
2742 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2743 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2744 			    RX_RING_SIZE - 100)
2745 				etlv->num_rxqs_full++;
2746 		}
2747 	}
2748 	__qede_unlock(edev);
2749 
2750 	etlv->txqs_empty_set = true;
2751 	etlv->rxqs_empty_set = true;
2752 	etlv->num_txqs_full_set = true;
2753 	etlv->num_rxqs_full_set = true;
2754 }
2755 
2756 /**
2757  * qede_io_error_detected - called when PCI error is detected
2758  * @pdev: Pointer to PCI device
2759  * @state: The current pci connection state
2760  *
2761  * This function is called after a PCI bus error affecting
2762  * this device has been detected.
2763  */
2764 static pci_ers_result_t
2765 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2766 {
2767 	struct net_device *dev = pci_get_drvdata(pdev);
2768 	struct qede_dev *edev = netdev_priv(dev);
2769 
2770 	if (!edev)
2771 		return PCI_ERS_RESULT_NONE;
2772 
2773 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2774 
2775 	__qede_lock(edev);
2776 	if (edev->state == QEDE_STATE_RECOVERY) {
2777 		DP_NOTICE(edev, "Device already in the recovery state\n");
2778 		__qede_unlock(edev);
2779 		return PCI_ERS_RESULT_NONE;
2780 	}
2781 
2782 	/* PF handles the recovery of its VFs */
2783 	if (IS_VF(edev)) {
2784 		DP_VERBOSE(edev, QED_MSG_IOV,
2785 			   "VF recovery is handled by its PF\n");
2786 		__qede_unlock(edev);
2787 		return PCI_ERS_RESULT_RECOVERED;
2788 	}
2789 
2790 	/* Close OS Tx */
2791 	netif_tx_disable(edev->ndev);
2792 	netif_carrier_off(edev->ndev);
2793 
2794 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2795 	schedule_delayed_work(&edev->sp_task, 0);
2796 
2797 	__qede_unlock(edev);
2798 
2799 	return PCI_ERS_RESULT_CAN_RECOVER;
2800 }
2801