xref: /openbmc/linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_schedule_recovery_handler(void *dev);
137 static void qede_recovery_handler(struct qede_dev *edev);
138 static void qede_get_eth_tlv_data(void *edev, void *data);
139 static void qede_get_generic_tlv_data(void *edev,
140 				      struct qed_generic_tlvs *data);
141 
142 #ifdef CONFIG_QED_SRIOV
143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
144 			    __be16 vlan_proto)
145 {
146 	struct qede_dev *edev = netdev_priv(ndev);
147 
148 	if (vlan > 4095) {
149 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
150 		return -EINVAL;
151 	}
152 
153 	if (vlan_proto != htons(ETH_P_8021Q))
154 		return -EPROTONOSUPPORT;
155 
156 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
157 		   vlan, vf);
158 
159 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
160 }
161 
162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
163 {
164 	struct qede_dev *edev = netdev_priv(ndev);
165 
166 	DP_VERBOSE(edev, QED_MSG_IOV,
167 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
168 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
169 
170 	if (!is_valid_ether_addr(mac)) {
171 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
172 		return -EINVAL;
173 	}
174 
175 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
176 }
177 
178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
179 {
180 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
181 	struct qed_dev_info *qed_info = &edev->dev_info.common;
182 	struct qed_update_vport_params *vport_params;
183 	int rc;
184 
185 	vport_params = vzalloc(sizeof(*vport_params));
186 	if (!vport_params)
187 		return -ENOMEM;
188 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
189 
190 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
191 
192 	/* Enable/Disable Tx switching for PF */
193 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
194 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
195 		vport_params->vport_id = 0;
196 		vport_params->update_tx_switching_flg = 1;
197 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
198 		edev->ops->vport_update(edev->cdev, vport_params);
199 	}
200 
201 	vfree(vport_params);
202 	return rc;
203 }
204 #endif
205 
206 static struct pci_driver qede_pci_driver = {
207 	.name = "qede",
208 	.id_table = qede_pci_tbl,
209 	.probe = qede_probe,
210 	.remove = qede_remove,
211 	.shutdown = qede_shutdown,
212 #ifdef CONFIG_QED_SRIOV
213 	.sriov_configure = qede_sriov_configure,
214 #endif
215 };
216 
217 static struct qed_eth_cb_ops qede_ll_ops = {
218 	{
219 #ifdef CONFIG_RFS_ACCEL
220 		.arfs_filter_op = qede_arfs_filter_op,
221 #endif
222 		.link_update = qede_link_update,
223 		.schedule_recovery_handler = qede_schedule_recovery_handler,
224 		.get_generic_tlv_data = qede_get_generic_tlv_data,
225 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
226 	},
227 	.force_mac = qede_force_mac,
228 	.ports_update = qede_udp_ports_update,
229 };
230 
231 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
232 			     void *ptr)
233 {
234 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
235 	struct ethtool_drvinfo drvinfo;
236 	struct qede_dev *edev;
237 
238 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
239 		goto done;
240 
241 	/* Check whether this is a qede device */
242 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
243 		goto done;
244 
245 	memset(&drvinfo, 0, sizeof(drvinfo));
246 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
247 	if (strcmp(drvinfo.driver, "qede"))
248 		goto done;
249 	edev = netdev_priv(ndev);
250 
251 	switch (event) {
252 	case NETDEV_CHANGENAME:
253 		/* Notify qed of the name change */
254 		if (!edev->ops || !edev->ops->common)
255 			goto done;
256 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
257 		break;
258 	case NETDEV_CHANGEADDR:
259 		edev = netdev_priv(ndev);
260 		qede_rdma_event_changeaddr(edev);
261 		break;
262 	}
263 
264 done:
265 	return NOTIFY_DONE;
266 }
267 
268 static struct notifier_block qede_netdev_notifier = {
269 	.notifier_call = qede_netdev_event,
270 };
271 
272 static
273 int __init qede_init(void)
274 {
275 	int ret;
276 
277 	pr_info("qede_init: %s\n", version);
278 
279 	qed_ops = qed_get_eth_ops();
280 	if (!qed_ops) {
281 		pr_notice("Failed to get qed ethtool operations\n");
282 		return -EINVAL;
283 	}
284 
285 	/* Must register notifier before pci ops, since we might miss
286 	 * interface rename after pci probe and netdev registration.
287 	 */
288 	ret = register_netdevice_notifier(&qede_netdev_notifier);
289 	if (ret) {
290 		pr_notice("Failed to register netdevice_notifier\n");
291 		qed_put_eth_ops();
292 		return -EINVAL;
293 	}
294 
295 	ret = pci_register_driver(&qede_pci_driver);
296 	if (ret) {
297 		pr_notice("Failed to register driver\n");
298 		unregister_netdevice_notifier(&qede_netdev_notifier);
299 		qed_put_eth_ops();
300 		return -EINVAL;
301 	}
302 
303 	return 0;
304 }
305 
306 static void __exit qede_cleanup(void)
307 {
308 	if (debug & QED_LOG_INFO_MASK)
309 		pr_info("qede_cleanup called\n");
310 
311 	unregister_netdevice_notifier(&qede_netdev_notifier);
312 	pci_unregister_driver(&qede_pci_driver);
313 	qed_put_eth_ops();
314 }
315 
316 module_init(qede_init);
317 module_exit(qede_cleanup);
318 
319 static int qede_open(struct net_device *ndev);
320 static int qede_close(struct net_device *ndev);
321 
322 void qede_fill_by_demand_stats(struct qede_dev *edev)
323 {
324 	struct qede_stats_common *p_common = &edev->stats.common;
325 	struct qed_eth_stats stats;
326 
327 	edev->ops->get_vport_stats(edev->cdev, &stats);
328 
329 	p_common->no_buff_discards = stats.common.no_buff_discards;
330 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
331 	p_common->ttl0_discard = stats.common.ttl0_discard;
332 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
333 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
334 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
335 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
336 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
337 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
338 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
339 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
340 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
341 
342 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
343 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
344 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
345 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
346 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
347 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
348 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
349 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
350 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
351 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
352 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
353 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
354 
355 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
356 	p_common->rx_65_to_127_byte_packets =
357 	    stats.common.rx_65_to_127_byte_packets;
358 	p_common->rx_128_to_255_byte_packets =
359 	    stats.common.rx_128_to_255_byte_packets;
360 	p_common->rx_256_to_511_byte_packets =
361 	    stats.common.rx_256_to_511_byte_packets;
362 	p_common->rx_512_to_1023_byte_packets =
363 	    stats.common.rx_512_to_1023_byte_packets;
364 	p_common->rx_1024_to_1518_byte_packets =
365 	    stats.common.rx_1024_to_1518_byte_packets;
366 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
367 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
368 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
369 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
370 	p_common->rx_align_errors = stats.common.rx_align_errors;
371 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
372 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
373 	p_common->rx_jabbers = stats.common.rx_jabbers;
374 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
375 	p_common->rx_fragments = stats.common.rx_fragments;
376 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
377 	p_common->tx_65_to_127_byte_packets =
378 	    stats.common.tx_65_to_127_byte_packets;
379 	p_common->tx_128_to_255_byte_packets =
380 	    stats.common.tx_128_to_255_byte_packets;
381 	p_common->tx_256_to_511_byte_packets =
382 	    stats.common.tx_256_to_511_byte_packets;
383 	p_common->tx_512_to_1023_byte_packets =
384 	    stats.common.tx_512_to_1023_byte_packets;
385 	p_common->tx_1024_to_1518_byte_packets =
386 	    stats.common.tx_1024_to_1518_byte_packets;
387 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
388 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
389 	p_common->brb_truncates = stats.common.brb_truncates;
390 	p_common->brb_discards = stats.common.brb_discards;
391 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
392 	p_common->link_change_count = stats.common.link_change_count;
393 
394 	if (QEDE_IS_BB(edev)) {
395 		struct qede_stats_bb *p_bb = &edev->stats.bb;
396 
397 		p_bb->rx_1519_to_1522_byte_packets =
398 		    stats.bb.rx_1519_to_1522_byte_packets;
399 		p_bb->rx_1519_to_2047_byte_packets =
400 		    stats.bb.rx_1519_to_2047_byte_packets;
401 		p_bb->rx_2048_to_4095_byte_packets =
402 		    stats.bb.rx_2048_to_4095_byte_packets;
403 		p_bb->rx_4096_to_9216_byte_packets =
404 		    stats.bb.rx_4096_to_9216_byte_packets;
405 		p_bb->rx_9217_to_16383_byte_packets =
406 		    stats.bb.rx_9217_to_16383_byte_packets;
407 		p_bb->tx_1519_to_2047_byte_packets =
408 		    stats.bb.tx_1519_to_2047_byte_packets;
409 		p_bb->tx_2048_to_4095_byte_packets =
410 		    stats.bb.tx_2048_to_4095_byte_packets;
411 		p_bb->tx_4096_to_9216_byte_packets =
412 		    stats.bb.tx_4096_to_9216_byte_packets;
413 		p_bb->tx_9217_to_16383_byte_packets =
414 		    stats.bb.tx_9217_to_16383_byte_packets;
415 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
416 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
417 	} else {
418 		struct qede_stats_ah *p_ah = &edev->stats.ah;
419 
420 		p_ah->rx_1519_to_max_byte_packets =
421 		    stats.ah.rx_1519_to_max_byte_packets;
422 		p_ah->tx_1519_to_max_byte_packets =
423 		    stats.ah.tx_1519_to_max_byte_packets;
424 	}
425 }
426 
427 static void qede_get_stats64(struct net_device *dev,
428 			     struct rtnl_link_stats64 *stats)
429 {
430 	struct qede_dev *edev = netdev_priv(dev);
431 	struct qede_stats_common *p_common;
432 
433 	qede_fill_by_demand_stats(edev);
434 	p_common = &edev->stats.common;
435 
436 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
437 			    p_common->rx_bcast_pkts;
438 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
439 			    p_common->tx_bcast_pkts;
440 
441 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
442 			  p_common->rx_bcast_bytes;
443 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
444 			  p_common->tx_bcast_bytes;
445 
446 	stats->tx_errors = p_common->tx_err_drop_pkts;
447 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
448 
449 	stats->rx_fifo_errors = p_common->no_buff_discards;
450 
451 	if (QEDE_IS_BB(edev))
452 		stats->collisions = edev->stats.bb.tx_total_collisions;
453 	stats->rx_crc_errors = p_common->rx_crc_errors;
454 	stats->rx_frame_errors = p_common->rx_align_errors;
455 }
456 
457 #ifdef CONFIG_QED_SRIOV
458 static int qede_get_vf_config(struct net_device *dev, int vfidx,
459 			      struct ifla_vf_info *ivi)
460 {
461 	struct qede_dev *edev = netdev_priv(dev);
462 
463 	if (!edev->ops)
464 		return -EINVAL;
465 
466 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
467 }
468 
469 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
470 			    int min_tx_rate, int max_tx_rate)
471 {
472 	struct qede_dev *edev = netdev_priv(dev);
473 
474 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
475 					max_tx_rate);
476 }
477 
478 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
479 {
480 	struct qede_dev *edev = netdev_priv(dev);
481 
482 	if (!edev->ops)
483 		return -EINVAL;
484 
485 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
486 }
487 
488 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
489 				  int link_state)
490 {
491 	struct qede_dev *edev = netdev_priv(dev);
492 
493 	if (!edev->ops)
494 		return -EINVAL;
495 
496 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
497 }
498 
499 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
500 {
501 	struct qede_dev *edev = netdev_priv(dev);
502 
503 	if (!edev->ops)
504 		return -EINVAL;
505 
506 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
507 }
508 #endif
509 
510 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
511 {
512 	struct qede_dev *edev = netdev_priv(dev);
513 
514 	if (!netif_running(dev))
515 		return -EAGAIN;
516 
517 	switch (cmd) {
518 	case SIOCSHWTSTAMP:
519 		return qede_ptp_hw_ts(edev, ifr);
520 	default:
521 		DP_VERBOSE(edev, QED_MSG_DEBUG,
522 			   "default IOCTL cmd 0x%x\n", cmd);
523 		return -EOPNOTSUPP;
524 	}
525 
526 	return 0;
527 }
528 
529 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
530 {
531 	struct qede_dev *edev = netdev_priv(ndev);
532 	int cos, count, offset;
533 
534 	if (num_tc > edev->dev_info.num_tc)
535 		return -EINVAL;
536 
537 	netdev_reset_tc(ndev);
538 	netdev_set_num_tc(ndev, num_tc);
539 
540 	for_each_cos_in_txq(edev, cos) {
541 		count = QEDE_TSS_COUNT(edev);
542 		offset = cos * QEDE_TSS_COUNT(edev);
543 		netdev_set_tc_queue(ndev, cos, count, offset);
544 	}
545 
546 	return 0;
547 }
548 
549 static int
550 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f,
551 		__be16 proto)
552 {
553 	switch (f->command) {
554 	case TC_CLSFLOWER_REPLACE:
555 		return qede_add_tc_flower_fltr(edev, proto, f);
556 	case TC_CLSFLOWER_DESTROY:
557 		return qede_delete_flow_filter(edev, f->cookie);
558 	default:
559 		return -EOPNOTSUPP;
560 	}
561 }
562 
563 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
564 				  void *cb_priv)
565 {
566 	struct tc_cls_flower_offload *f;
567 	struct qede_dev *edev = cb_priv;
568 
569 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
570 		return -EOPNOTSUPP;
571 
572 	switch (type) {
573 	case TC_SETUP_CLSFLOWER:
574 		f = type_data;
575 		return qede_set_flower(edev, f, f->common.protocol);
576 	default:
577 		return -EOPNOTSUPP;
578 	}
579 }
580 
581 static int qede_setup_tc_block(struct qede_dev *edev,
582 			       struct tc_block_offload *f)
583 {
584 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
585 		return -EOPNOTSUPP;
586 
587 	switch (f->command) {
588 	case TC_BLOCK_BIND:
589 		return tcf_block_cb_register(f->block,
590 					     qede_setup_tc_block_cb,
591 					     edev, edev, f->extack);
592 	case TC_BLOCK_UNBIND:
593 		tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev);
594 		return 0;
595 	default:
596 		return -EOPNOTSUPP;
597 	}
598 }
599 
600 static int
601 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
602 		      void *type_data)
603 {
604 	struct qede_dev *edev = netdev_priv(dev);
605 	struct tc_mqprio_qopt *mqprio;
606 
607 	switch (type) {
608 	case TC_SETUP_BLOCK:
609 		return qede_setup_tc_block(edev, type_data);
610 	case TC_SETUP_QDISC_MQPRIO:
611 		mqprio = type_data;
612 
613 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
614 		return qede_setup_tc(dev, mqprio->num_tc);
615 	default:
616 		return -EOPNOTSUPP;
617 	}
618 }
619 
620 static const struct net_device_ops qede_netdev_ops = {
621 	.ndo_open = qede_open,
622 	.ndo_stop = qede_close,
623 	.ndo_start_xmit = qede_start_xmit,
624 	.ndo_select_queue = qede_select_queue,
625 	.ndo_set_rx_mode = qede_set_rx_mode,
626 	.ndo_set_mac_address = qede_set_mac_addr,
627 	.ndo_validate_addr = eth_validate_addr,
628 	.ndo_change_mtu = qede_change_mtu,
629 	.ndo_do_ioctl = qede_ioctl,
630 #ifdef CONFIG_QED_SRIOV
631 	.ndo_set_vf_mac = qede_set_vf_mac,
632 	.ndo_set_vf_vlan = qede_set_vf_vlan,
633 	.ndo_set_vf_trust = qede_set_vf_trust,
634 #endif
635 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
636 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
637 	.ndo_fix_features = qede_fix_features,
638 	.ndo_set_features = qede_set_features,
639 	.ndo_get_stats64 = qede_get_stats64,
640 #ifdef CONFIG_QED_SRIOV
641 	.ndo_set_vf_link_state = qede_set_vf_link_state,
642 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
643 	.ndo_get_vf_config = qede_get_vf_config,
644 	.ndo_set_vf_rate = qede_set_vf_rate,
645 #endif
646 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
647 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
648 	.ndo_features_check = qede_features_check,
649 	.ndo_bpf = qede_xdp,
650 #ifdef CONFIG_RFS_ACCEL
651 	.ndo_rx_flow_steer = qede_rx_flow_steer,
652 #endif
653 	.ndo_setup_tc = qede_setup_tc_offload,
654 };
655 
656 static const struct net_device_ops qede_netdev_vf_ops = {
657 	.ndo_open = qede_open,
658 	.ndo_stop = qede_close,
659 	.ndo_start_xmit = qede_start_xmit,
660 	.ndo_select_queue = qede_select_queue,
661 	.ndo_set_rx_mode = qede_set_rx_mode,
662 	.ndo_set_mac_address = qede_set_mac_addr,
663 	.ndo_validate_addr = eth_validate_addr,
664 	.ndo_change_mtu = qede_change_mtu,
665 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
666 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
667 	.ndo_fix_features = qede_fix_features,
668 	.ndo_set_features = qede_set_features,
669 	.ndo_get_stats64 = qede_get_stats64,
670 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
671 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
672 	.ndo_features_check = qede_features_check,
673 };
674 
675 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
676 	.ndo_open = qede_open,
677 	.ndo_stop = qede_close,
678 	.ndo_start_xmit = qede_start_xmit,
679 	.ndo_select_queue = qede_select_queue,
680 	.ndo_set_rx_mode = qede_set_rx_mode,
681 	.ndo_set_mac_address = qede_set_mac_addr,
682 	.ndo_validate_addr = eth_validate_addr,
683 	.ndo_change_mtu = qede_change_mtu,
684 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
685 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
686 	.ndo_fix_features = qede_fix_features,
687 	.ndo_set_features = qede_set_features,
688 	.ndo_get_stats64 = qede_get_stats64,
689 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
690 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
691 	.ndo_features_check = qede_features_check,
692 	.ndo_bpf = qede_xdp,
693 };
694 
695 /* -------------------------------------------------------------------------
696  * START OF PROBE / REMOVE
697  * -------------------------------------------------------------------------
698  */
699 
700 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
701 					    struct pci_dev *pdev,
702 					    struct qed_dev_eth_info *info,
703 					    u32 dp_module, u8 dp_level)
704 {
705 	struct net_device *ndev;
706 	struct qede_dev *edev;
707 
708 	ndev = alloc_etherdev_mqs(sizeof(*edev),
709 				  info->num_queues * info->num_tc,
710 				  info->num_queues);
711 	if (!ndev) {
712 		pr_err("etherdev allocation failed\n");
713 		return NULL;
714 	}
715 
716 	edev = netdev_priv(ndev);
717 	edev->ndev = ndev;
718 	edev->cdev = cdev;
719 	edev->pdev = pdev;
720 	edev->dp_module = dp_module;
721 	edev->dp_level = dp_level;
722 	edev->ops = qed_ops;
723 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
724 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
725 
726 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
727 		info->num_queues, info->num_queues);
728 
729 	SET_NETDEV_DEV(ndev, &pdev->dev);
730 
731 	memset(&edev->stats, 0, sizeof(edev->stats));
732 	memcpy(&edev->dev_info, info, sizeof(*info));
733 
734 	/* As ethtool doesn't have the ability to show WoL behavior as
735 	 * 'default', if device supports it declare it's enabled.
736 	 */
737 	if (edev->dev_info.common.wol_support)
738 		edev->wol_enabled = true;
739 
740 	INIT_LIST_HEAD(&edev->vlan_list);
741 
742 	return edev;
743 }
744 
745 static void qede_init_ndev(struct qede_dev *edev)
746 {
747 	struct net_device *ndev = edev->ndev;
748 	struct pci_dev *pdev = edev->pdev;
749 	bool udp_tunnel_enable = false;
750 	netdev_features_t hw_features;
751 
752 	pci_set_drvdata(pdev, ndev);
753 
754 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
755 	ndev->base_addr = ndev->mem_start;
756 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
757 	ndev->irq = edev->dev_info.common.pci_irq;
758 
759 	ndev->watchdog_timeo = TX_TIMEOUT;
760 
761 	if (IS_VF(edev)) {
762 		if (edev->dev_info.xdp_supported)
763 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
764 		else
765 			ndev->netdev_ops = &qede_netdev_vf_ops;
766 	} else {
767 		ndev->netdev_ops = &qede_netdev_ops;
768 	}
769 
770 	qede_set_ethtool_ops(ndev);
771 
772 	ndev->priv_flags |= IFF_UNICAST_FLT;
773 
774 	/* user-changeble features */
775 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
776 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
777 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
778 
779 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
780 		hw_features |= NETIF_F_NTUPLE;
781 
782 	if (edev->dev_info.common.vxlan_enable ||
783 	    edev->dev_info.common.geneve_enable)
784 		udp_tunnel_enable = true;
785 
786 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
787 		hw_features |= NETIF_F_TSO_ECN;
788 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
789 					NETIF_F_SG | NETIF_F_TSO |
790 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
791 					NETIF_F_RXCSUM;
792 	}
793 
794 	if (udp_tunnel_enable) {
795 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
796 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
797 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
798 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
799 	}
800 
801 	if (edev->dev_info.common.gre_enable) {
802 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
803 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
804 					  NETIF_F_GSO_GRE_CSUM);
805 	}
806 
807 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
808 			      NETIF_F_HIGHDMA;
809 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
810 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
811 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
812 
813 	ndev->hw_features = hw_features;
814 
815 	/* MTU range: 46 - 9600 */
816 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
817 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
818 
819 	/* Set network device HW mac */
820 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
821 
822 	ndev->mtu = edev->dev_info.common.mtu;
823 }
824 
825 /* This function converts from 32b param to two params of level and module
826  * Input 32b decoding:
827  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
828  * 'happy' flow, e.g. memory allocation failed.
829  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
830  * and provide important parameters.
831  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
832  * module. VERBOSE prints are for tracking the specific flow in low level.
833  *
834  * Notice that the level should be that of the lowest required logs.
835  */
836 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
837 {
838 	*p_dp_level = QED_LEVEL_NOTICE;
839 	*p_dp_module = 0;
840 
841 	if (debug & QED_LOG_VERBOSE_MASK) {
842 		*p_dp_level = QED_LEVEL_VERBOSE;
843 		*p_dp_module = (debug & 0x3FFFFFFF);
844 	} else if (debug & QED_LOG_INFO_MASK) {
845 		*p_dp_level = QED_LEVEL_INFO;
846 	} else if (debug & QED_LOG_NOTICE_MASK) {
847 		*p_dp_level = QED_LEVEL_NOTICE;
848 	}
849 }
850 
851 static void qede_free_fp_array(struct qede_dev *edev)
852 {
853 	if (edev->fp_array) {
854 		struct qede_fastpath *fp;
855 		int i;
856 
857 		for_each_queue(i) {
858 			fp = &edev->fp_array[i];
859 
860 			kfree(fp->sb_info);
861 			/* Handle mem alloc failure case where qede_init_fp
862 			 * didn't register xdp_rxq_info yet.
863 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
864 			 */
865 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
866 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
867 			kfree(fp->rxq);
868 			kfree(fp->xdp_tx);
869 			kfree(fp->txq);
870 		}
871 		kfree(edev->fp_array);
872 	}
873 
874 	edev->num_queues = 0;
875 	edev->fp_num_tx = 0;
876 	edev->fp_num_rx = 0;
877 }
878 
879 static int qede_alloc_fp_array(struct qede_dev *edev)
880 {
881 	u8 fp_combined, fp_rx = edev->fp_num_rx;
882 	struct qede_fastpath *fp;
883 	int i;
884 
885 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
886 				 sizeof(*edev->fp_array), GFP_KERNEL);
887 	if (!edev->fp_array) {
888 		DP_NOTICE(edev, "fp array allocation failed\n");
889 		goto err;
890 	}
891 
892 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
893 
894 	/* Allocate the FP elements for Rx queues followed by combined and then
895 	 * the Tx. This ordering should be maintained so that the respective
896 	 * queues (Rx or Tx) will be together in the fastpath array and the
897 	 * associated ids will be sequential.
898 	 */
899 	for_each_queue(i) {
900 		fp = &edev->fp_array[i];
901 
902 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
903 		if (!fp->sb_info) {
904 			DP_NOTICE(edev, "sb info struct allocation failed\n");
905 			goto err;
906 		}
907 
908 		if (fp_rx) {
909 			fp->type = QEDE_FASTPATH_RX;
910 			fp_rx--;
911 		} else if (fp_combined) {
912 			fp->type = QEDE_FASTPATH_COMBINED;
913 			fp_combined--;
914 		} else {
915 			fp->type = QEDE_FASTPATH_TX;
916 		}
917 
918 		if (fp->type & QEDE_FASTPATH_TX) {
919 			fp->txq = kcalloc(edev->dev_info.num_tc,
920 					  sizeof(*fp->txq), GFP_KERNEL);
921 			if (!fp->txq)
922 				goto err;
923 		}
924 
925 		if (fp->type & QEDE_FASTPATH_RX) {
926 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
927 			if (!fp->rxq)
928 				goto err;
929 
930 			if (edev->xdp_prog) {
931 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
932 						     GFP_KERNEL);
933 				if (!fp->xdp_tx)
934 					goto err;
935 				fp->type |= QEDE_FASTPATH_XDP;
936 			}
937 		}
938 	}
939 
940 	return 0;
941 err:
942 	qede_free_fp_array(edev);
943 	return -ENOMEM;
944 }
945 
946 /* The qede lock is used to protect driver state change and driver flows that
947  * are not reentrant.
948  */
949 void __qede_lock(struct qede_dev *edev)
950 {
951 	mutex_lock(&edev->qede_lock);
952 }
953 
954 void __qede_unlock(struct qede_dev *edev)
955 {
956 	mutex_unlock(&edev->qede_lock);
957 }
958 
959 /* This version of the lock should be used when acquiring the RTNL lock is also
960  * needed in addition to the internal qede lock.
961  */
962 void qede_lock(struct qede_dev *edev)
963 {
964 	rtnl_lock();
965 	__qede_lock(edev);
966 }
967 
968 void qede_unlock(struct qede_dev *edev)
969 {
970 	__qede_unlock(edev);
971 	rtnl_unlock();
972 }
973 
974 static void qede_sp_task(struct work_struct *work)
975 {
976 	struct qede_dev *edev = container_of(work, struct qede_dev,
977 					     sp_task.work);
978 
979 	/* The locking scheme depends on the specific flag:
980 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
981 	 * ensure that ongoing flows are ended and new ones are not started.
982 	 * In other cases - only the internal qede lock should be acquired.
983 	 */
984 
985 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
986 #ifdef CONFIG_QED_SRIOV
987 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
988 		 * The recovery of the active VFs is currently not supported.
989 		 */
990 		qede_sriov_configure(edev->pdev, 0);
991 #endif
992 		qede_lock(edev);
993 		qede_recovery_handler(edev);
994 		qede_unlock(edev);
995 	}
996 
997 	__qede_lock(edev);
998 
999 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1000 		if (edev->state == QEDE_STATE_OPEN)
1001 			qede_config_rx_mode(edev->ndev);
1002 
1003 #ifdef CONFIG_RFS_ACCEL
1004 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1005 		if (edev->state == QEDE_STATE_OPEN)
1006 			qede_process_arfs_filters(edev, false);
1007 	}
1008 #endif
1009 	__qede_unlock(edev);
1010 }
1011 
1012 static void qede_update_pf_params(struct qed_dev *cdev)
1013 {
1014 	struct qed_pf_params pf_params;
1015 	u16 num_cons;
1016 
1017 	/* 64 rx + 64 tx + 64 XDP */
1018 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1019 
1020 	/* 1 rx + 1 xdp + max tx cos */
1021 	num_cons = QED_MIN_L2_CONS;
1022 
1023 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1024 
1025 	/* Same for VFs - make sure they'll have sufficient connections
1026 	 * to support XDP Tx queues.
1027 	 */
1028 	pf_params.eth_pf_params.num_vf_cons = 48;
1029 
1030 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1031 	qed_ops->common->update_pf_params(cdev, &pf_params);
1032 }
1033 
1034 #define QEDE_FW_VER_STR_SIZE	80
1035 
1036 static void qede_log_probe(struct qede_dev *edev)
1037 {
1038 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1039 	u8 buf[QEDE_FW_VER_STR_SIZE];
1040 	size_t left_size;
1041 
1042 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1043 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1044 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1045 		 p_dev_info->fw_eng,
1046 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1047 		 QED_MFW_VERSION_3_OFFSET,
1048 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1049 		 QED_MFW_VERSION_2_OFFSET,
1050 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1051 		 QED_MFW_VERSION_1_OFFSET,
1052 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1053 		 QED_MFW_VERSION_0_OFFSET);
1054 
1055 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1056 	if (p_dev_info->mbi_version && left_size)
1057 		snprintf(buf + strlen(buf), left_size,
1058 			 " [MBI %d.%d.%d]",
1059 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1060 			 QED_MBI_VERSION_2_OFFSET,
1061 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1062 			 QED_MBI_VERSION_1_OFFSET,
1063 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1064 			 QED_MBI_VERSION_0_OFFSET);
1065 
1066 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1067 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1068 		buf, edev->ndev->name);
1069 }
1070 
1071 enum qede_probe_mode {
1072 	QEDE_PROBE_NORMAL,
1073 	QEDE_PROBE_RECOVERY,
1074 };
1075 
1076 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1077 			bool is_vf, enum qede_probe_mode mode)
1078 {
1079 	struct qed_probe_params probe_params;
1080 	struct qed_slowpath_params sp_params;
1081 	struct qed_dev_eth_info dev_info;
1082 	struct qede_dev *edev;
1083 	struct qed_dev *cdev;
1084 	int rc;
1085 
1086 	if (unlikely(dp_level & QED_LEVEL_INFO))
1087 		pr_notice("Starting qede probe\n");
1088 
1089 	memset(&probe_params, 0, sizeof(probe_params));
1090 	probe_params.protocol = QED_PROTOCOL_ETH;
1091 	probe_params.dp_module = dp_module;
1092 	probe_params.dp_level = dp_level;
1093 	probe_params.is_vf = is_vf;
1094 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1095 	cdev = qed_ops->common->probe(pdev, &probe_params);
1096 	if (!cdev) {
1097 		rc = -ENODEV;
1098 		goto err0;
1099 	}
1100 
1101 	qede_update_pf_params(cdev);
1102 
1103 	/* Start the Slowpath-process */
1104 	memset(&sp_params, 0, sizeof(sp_params));
1105 	sp_params.int_mode = QED_INT_MODE_MSIX;
1106 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1107 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1108 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1109 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1110 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1111 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1112 	if (rc) {
1113 		pr_notice("Cannot start slowpath\n");
1114 		goto err1;
1115 	}
1116 
1117 	/* Learn information crucial for qede to progress */
1118 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1119 	if (rc)
1120 		goto err2;
1121 
1122 	if (mode != QEDE_PROBE_RECOVERY) {
1123 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1124 					   dp_level);
1125 		if (!edev) {
1126 			rc = -ENOMEM;
1127 			goto err2;
1128 		}
1129 	} else {
1130 		struct net_device *ndev = pci_get_drvdata(pdev);
1131 
1132 		edev = netdev_priv(ndev);
1133 		edev->cdev = cdev;
1134 		memset(&edev->stats, 0, sizeof(edev->stats));
1135 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1136 	}
1137 
1138 	if (is_vf)
1139 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1140 
1141 	qede_init_ndev(edev);
1142 
1143 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1144 	if (rc)
1145 		goto err3;
1146 
1147 	if (mode != QEDE_PROBE_RECOVERY) {
1148 		/* Prepare the lock prior to the registration of the netdev,
1149 		 * as once it's registered we might reach flows requiring it
1150 		 * [it's even possible to reach a flow needing it directly
1151 		 * from there, although it's unlikely].
1152 		 */
1153 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1154 		mutex_init(&edev->qede_lock);
1155 
1156 		rc = register_netdev(edev->ndev);
1157 		if (rc) {
1158 			DP_NOTICE(edev, "Cannot register net-device\n");
1159 			goto err4;
1160 		}
1161 	}
1162 
1163 	edev->ops->common->set_name(cdev, edev->ndev->name);
1164 
1165 	/* PTP not supported on VFs */
1166 	if (!is_vf)
1167 		qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1168 
1169 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1170 
1171 #ifdef CONFIG_DCB
1172 	if (!IS_VF(edev))
1173 		qede_set_dcbnl_ops(edev->ndev);
1174 #endif
1175 
1176 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1177 
1178 	qede_log_probe(edev);
1179 	return 0;
1180 
1181 err4:
1182 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1183 err3:
1184 	free_netdev(edev->ndev);
1185 err2:
1186 	qed_ops->common->slowpath_stop(cdev);
1187 err1:
1188 	qed_ops->common->remove(cdev);
1189 err0:
1190 	return rc;
1191 }
1192 
1193 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1194 {
1195 	bool is_vf = false;
1196 	u32 dp_module = 0;
1197 	u8 dp_level = 0;
1198 
1199 	switch ((enum qede_pci_private)id->driver_data) {
1200 	case QEDE_PRIVATE_VF:
1201 		if (debug & QED_LOG_VERBOSE_MASK)
1202 			dev_err(&pdev->dev, "Probing a VF\n");
1203 		is_vf = true;
1204 		break;
1205 	default:
1206 		if (debug & QED_LOG_VERBOSE_MASK)
1207 			dev_err(&pdev->dev, "Probing a PF\n");
1208 	}
1209 
1210 	qede_config_debug(debug, &dp_module, &dp_level);
1211 
1212 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1213 			    QEDE_PROBE_NORMAL);
1214 }
1215 
1216 enum qede_remove_mode {
1217 	QEDE_REMOVE_NORMAL,
1218 	QEDE_REMOVE_RECOVERY,
1219 };
1220 
1221 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1222 {
1223 	struct net_device *ndev = pci_get_drvdata(pdev);
1224 	struct qede_dev *edev = netdev_priv(ndev);
1225 	struct qed_dev *cdev = edev->cdev;
1226 
1227 	DP_INFO(edev, "Starting qede_remove\n");
1228 
1229 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1230 
1231 	if (mode != QEDE_REMOVE_RECOVERY) {
1232 		unregister_netdev(ndev);
1233 
1234 		cancel_delayed_work_sync(&edev->sp_task);
1235 
1236 		edev->ops->common->set_power_state(cdev, PCI_D0);
1237 
1238 		pci_set_drvdata(pdev, NULL);
1239 	}
1240 
1241 	qede_ptp_disable(edev);
1242 
1243 	/* Use global ops since we've freed edev */
1244 	qed_ops->common->slowpath_stop(cdev);
1245 	if (system_state == SYSTEM_POWER_OFF)
1246 		return;
1247 	qed_ops->common->remove(cdev);
1248 
1249 	/* Since this can happen out-of-sync with other flows,
1250 	 * don't release the netdevice until after slowpath stop
1251 	 * has been called to guarantee various other contexts
1252 	 * [e.g., QED register callbacks] won't break anything when
1253 	 * accessing the netdevice.
1254 	 */
1255 	if (mode != QEDE_REMOVE_RECOVERY)
1256 		free_netdev(ndev);
1257 
1258 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1259 }
1260 
1261 static void qede_remove(struct pci_dev *pdev)
1262 {
1263 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1264 }
1265 
1266 static void qede_shutdown(struct pci_dev *pdev)
1267 {
1268 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1269 }
1270 
1271 /* -------------------------------------------------------------------------
1272  * START OF LOAD / UNLOAD
1273  * -------------------------------------------------------------------------
1274  */
1275 
1276 static int qede_set_num_queues(struct qede_dev *edev)
1277 {
1278 	int rc;
1279 	u16 rss_num;
1280 
1281 	/* Setup queues according to possible resources*/
1282 	if (edev->req_queues)
1283 		rss_num = edev->req_queues;
1284 	else
1285 		rss_num = netif_get_num_default_rss_queues() *
1286 			  edev->dev_info.common.num_hwfns;
1287 
1288 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1289 
1290 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1291 	if (rc > 0) {
1292 		/* Managed to request interrupts for our queues */
1293 		edev->num_queues = rc;
1294 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1295 			QEDE_QUEUE_CNT(edev), rss_num);
1296 		rc = 0;
1297 	}
1298 
1299 	edev->fp_num_tx = edev->req_num_tx;
1300 	edev->fp_num_rx = edev->req_num_rx;
1301 
1302 	return rc;
1303 }
1304 
1305 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1306 			     u16 sb_id)
1307 {
1308 	if (sb_info->sb_virt) {
1309 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1310 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1311 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1312 		memset(sb_info, 0, sizeof(*sb_info));
1313 	}
1314 }
1315 
1316 /* This function allocates fast-path status block memory */
1317 static int qede_alloc_mem_sb(struct qede_dev *edev,
1318 			     struct qed_sb_info *sb_info, u16 sb_id)
1319 {
1320 	struct status_block_e4 *sb_virt;
1321 	dma_addr_t sb_phys;
1322 	int rc;
1323 
1324 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1325 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1326 	if (!sb_virt) {
1327 		DP_ERR(edev, "Status block allocation failed\n");
1328 		return -ENOMEM;
1329 	}
1330 
1331 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1332 					sb_virt, sb_phys, sb_id,
1333 					QED_SB_TYPE_L2_QUEUE);
1334 	if (rc) {
1335 		DP_ERR(edev, "Status block initialization failed\n");
1336 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1337 				  sb_virt, sb_phys);
1338 		return rc;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static void qede_free_rx_buffers(struct qede_dev *edev,
1345 				 struct qede_rx_queue *rxq)
1346 {
1347 	u16 i;
1348 
1349 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1350 		struct sw_rx_data *rx_buf;
1351 		struct page *data;
1352 
1353 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1354 		data = rx_buf->data;
1355 
1356 		dma_unmap_page(&edev->pdev->dev,
1357 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1358 
1359 		rx_buf->data = NULL;
1360 		__free_page(data);
1361 	}
1362 }
1363 
1364 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1365 {
1366 	/* Free rx buffers */
1367 	qede_free_rx_buffers(edev, rxq);
1368 
1369 	/* Free the parallel SW ring */
1370 	kfree(rxq->sw_rx_ring);
1371 
1372 	/* Free the real RQ ring used by FW */
1373 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1374 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1375 }
1376 
1377 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1378 {
1379 	int i;
1380 
1381 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1382 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1383 
1384 		tpa_info->state = QEDE_AGG_STATE_NONE;
1385 	}
1386 }
1387 
1388 /* This function allocates all memory needed per Rx queue */
1389 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1390 {
1391 	int i, rc, size;
1392 
1393 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1394 
1395 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1396 
1397 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1398 	size = rxq->rx_headroom +
1399 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1400 
1401 	/* Make sure that the headroom and  payload fit in a single page */
1402 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1403 		rxq->rx_buf_size = PAGE_SIZE - size;
1404 
1405 	/* Segment size to spilt a page in multiple equal parts ,
1406 	 * unless XDP is used in which case we'd use the entire page.
1407 	 */
1408 	if (!edev->xdp_prog) {
1409 		size = size + rxq->rx_buf_size;
1410 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1411 	} else {
1412 		rxq->rx_buf_seg_size = PAGE_SIZE;
1413 	}
1414 
1415 	/* Allocate the parallel driver ring for Rx buffers */
1416 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1417 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1418 	if (!rxq->sw_rx_ring) {
1419 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1420 		rc = -ENOMEM;
1421 		goto err;
1422 	}
1423 
1424 	/* Allocate FW Rx ring  */
1425 	rc = edev->ops->common->chain_alloc(edev->cdev,
1426 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1427 					    QED_CHAIN_MODE_NEXT_PTR,
1428 					    QED_CHAIN_CNT_TYPE_U16,
1429 					    RX_RING_SIZE,
1430 					    sizeof(struct eth_rx_bd),
1431 					    &rxq->rx_bd_ring, NULL);
1432 	if (rc)
1433 		goto err;
1434 
1435 	/* Allocate FW completion ring */
1436 	rc = edev->ops->common->chain_alloc(edev->cdev,
1437 					    QED_CHAIN_USE_TO_CONSUME,
1438 					    QED_CHAIN_MODE_PBL,
1439 					    QED_CHAIN_CNT_TYPE_U16,
1440 					    RX_RING_SIZE,
1441 					    sizeof(union eth_rx_cqe),
1442 					    &rxq->rx_comp_ring, NULL);
1443 	if (rc)
1444 		goto err;
1445 
1446 	/* Allocate buffers for the Rx ring */
1447 	rxq->filled_buffers = 0;
1448 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1449 		rc = qede_alloc_rx_buffer(rxq, false);
1450 		if (rc) {
1451 			DP_ERR(edev,
1452 			       "Rx buffers allocation failed at index %d\n", i);
1453 			goto err;
1454 		}
1455 	}
1456 
1457 	if (!edev->gro_disable)
1458 		qede_set_tpa_param(rxq);
1459 err:
1460 	return rc;
1461 }
1462 
1463 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1464 {
1465 	/* Free the parallel SW ring */
1466 	if (txq->is_xdp)
1467 		kfree(txq->sw_tx_ring.xdp);
1468 	else
1469 		kfree(txq->sw_tx_ring.skbs);
1470 
1471 	/* Free the real RQ ring used by FW */
1472 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1473 }
1474 
1475 /* This function allocates all memory needed per Tx queue */
1476 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1477 {
1478 	union eth_tx_bd_types *p_virt;
1479 	int size, rc;
1480 
1481 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1482 
1483 	/* Allocate the parallel driver ring for Tx buffers */
1484 	if (txq->is_xdp) {
1485 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1486 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1487 		if (!txq->sw_tx_ring.xdp)
1488 			goto err;
1489 	} else {
1490 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1491 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1492 		if (!txq->sw_tx_ring.skbs)
1493 			goto err;
1494 	}
1495 
1496 	rc = edev->ops->common->chain_alloc(edev->cdev,
1497 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1498 					    QED_CHAIN_MODE_PBL,
1499 					    QED_CHAIN_CNT_TYPE_U16,
1500 					    txq->num_tx_buffers,
1501 					    sizeof(*p_virt),
1502 					    &txq->tx_pbl, NULL);
1503 	if (rc)
1504 		goto err;
1505 
1506 	return 0;
1507 
1508 err:
1509 	qede_free_mem_txq(edev, txq);
1510 	return -ENOMEM;
1511 }
1512 
1513 /* This function frees all memory of a single fp */
1514 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1515 {
1516 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1517 
1518 	if (fp->type & QEDE_FASTPATH_RX)
1519 		qede_free_mem_rxq(edev, fp->rxq);
1520 
1521 	if (fp->type & QEDE_FASTPATH_XDP)
1522 		qede_free_mem_txq(edev, fp->xdp_tx);
1523 
1524 	if (fp->type & QEDE_FASTPATH_TX) {
1525 		int cos;
1526 
1527 		for_each_cos_in_txq(edev, cos)
1528 			qede_free_mem_txq(edev, &fp->txq[cos]);
1529 	}
1530 }
1531 
1532 /* This function allocates all memory needed for a single fp (i.e. an entity
1533  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1534  */
1535 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1536 {
1537 	int rc = 0;
1538 
1539 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1540 	if (rc)
1541 		goto out;
1542 
1543 	if (fp->type & QEDE_FASTPATH_RX) {
1544 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1545 		if (rc)
1546 			goto out;
1547 	}
1548 
1549 	if (fp->type & QEDE_FASTPATH_XDP) {
1550 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1551 		if (rc)
1552 			goto out;
1553 	}
1554 
1555 	if (fp->type & QEDE_FASTPATH_TX) {
1556 		int cos;
1557 
1558 		for_each_cos_in_txq(edev, cos) {
1559 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1560 			if (rc)
1561 				goto out;
1562 		}
1563 	}
1564 
1565 out:
1566 	return rc;
1567 }
1568 
1569 static void qede_free_mem_load(struct qede_dev *edev)
1570 {
1571 	int i;
1572 
1573 	for_each_queue(i) {
1574 		struct qede_fastpath *fp = &edev->fp_array[i];
1575 
1576 		qede_free_mem_fp(edev, fp);
1577 	}
1578 }
1579 
1580 /* This function allocates all qede memory at NIC load. */
1581 static int qede_alloc_mem_load(struct qede_dev *edev)
1582 {
1583 	int rc = 0, queue_id;
1584 
1585 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1586 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1587 
1588 		rc = qede_alloc_mem_fp(edev, fp);
1589 		if (rc) {
1590 			DP_ERR(edev,
1591 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1592 			       queue_id);
1593 			qede_free_mem_load(edev);
1594 			return rc;
1595 		}
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 static void qede_empty_tx_queue(struct qede_dev *edev,
1602 				struct qede_tx_queue *txq)
1603 {
1604 	unsigned int pkts_compl = 0, bytes_compl = 0;
1605 	struct netdev_queue *netdev_txq;
1606 	int rc, len = 0;
1607 
1608 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1609 
1610 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1611 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1612 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1613 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1614 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1615 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1616 
1617 		rc = qede_free_tx_pkt(edev, txq, &len);
1618 		if (rc) {
1619 			DP_NOTICE(edev,
1620 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1621 				  txq->index,
1622 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1623 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1624 			break;
1625 		}
1626 
1627 		bytes_compl += len;
1628 		pkts_compl++;
1629 		txq->sw_tx_cons++;
1630 	}
1631 
1632 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1633 }
1634 
1635 static void qede_empty_tx_queues(struct qede_dev *edev)
1636 {
1637 	int i;
1638 
1639 	for_each_queue(i)
1640 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1641 			int cos;
1642 
1643 			for_each_cos_in_txq(edev, cos) {
1644 				struct qede_fastpath *fp;
1645 
1646 				fp = &edev->fp_array[i];
1647 				qede_empty_tx_queue(edev,
1648 						    &fp->txq[cos]);
1649 			}
1650 		}
1651 }
1652 
1653 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1654 static void qede_init_fp(struct qede_dev *edev)
1655 {
1656 	int queue_id, rxq_index = 0, txq_index = 0;
1657 	struct qede_fastpath *fp;
1658 
1659 	for_each_queue(queue_id) {
1660 		fp = &edev->fp_array[queue_id];
1661 
1662 		fp->edev = edev;
1663 		fp->id = queue_id;
1664 
1665 		if (fp->type & QEDE_FASTPATH_XDP) {
1666 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1667 								rxq_index);
1668 			fp->xdp_tx->is_xdp = 1;
1669 		}
1670 
1671 		if (fp->type & QEDE_FASTPATH_RX) {
1672 			fp->rxq->rxq_id = rxq_index++;
1673 
1674 			/* Determine how to map buffers for this queue */
1675 			if (fp->type & QEDE_FASTPATH_XDP)
1676 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1677 			else
1678 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1679 			fp->rxq->dev = &edev->pdev->dev;
1680 
1681 			/* Driver have no error path from here */
1682 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1683 						 fp->rxq->rxq_id) < 0);
1684 		}
1685 
1686 		if (fp->type & QEDE_FASTPATH_TX) {
1687 			int cos;
1688 
1689 			for_each_cos_in_txq(edev, cos) {
1690 				struct qede_tx_queue *txq = &fp->txq[cos];
1691 				u16 ndev_tx_id;
1692 
1693 				txq->cos = cos;
1694 				txq->index = txq_index;
1695 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1696 				txq->ndev_txq_id = ndev_tx_id;
1697 
1698 				if (edev->dev_info.is_legacy)
1699 					txq->is_legacy = 1;
1700 				txq->dev = &edev->pdev->dev;
1701 			}
1702 
1703 			txq_index++;
1704 		}
1705 
1706 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1707 			 edev->ndev->name, queue_id);
1708 	}
1709 
1710 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1711 }
1712 
1713 static int qede_set_real_num_queues(struct qede_dev *edev)
1714 {
1715 	int rc = 0;
1716 
1717 	rc = netif_set_real_num_tx_queues(edev->ndev,
1718 					  QEDE_TSS_COUNT(edev) *
1719 					  edev->dev_info.num_tc);
1720 	if (rc) {
1721 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1722 		return rc;
1723 	}
1724 
1725 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1726 	if (rc) {
1727 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1728 		return rc;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static void qede_napi_disable_remove(struct qede_dev *edev)
1735 {
1736 	int i;
1737 
1738 	for_each_queue(i) {
1739 		napi_disable(&edev->fp_array[i].napi);
1740 
1741 		netif_napi_del(&edev->fp_array[i].napi);
1742 	}
1743 }
1744 
1745 static void qede_napi_add_enable(struct qede_dev *edev)
1746 {
1747 	int i;
1748 
1749 	/* Add NAPI objects */
1750 	for_each_queue(i) {
1751 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1752 			       qede_poll, NAPI_POLL_WEIGHT);
1753 		napi_enable(&edev->fp_array[i].napi);
1754 	}
1755 }
1756 
1757 static void qede_sync_free_irqs(struct qede_dev *edev)
1758 {
1759 	int i;
1760 
1761 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1762 		if (edev->int_info.msix_cnt) {
1763 			synchronize_irq(edev->int_info.msix[i].vector);
1764 			free_irq(edev->int_info.msix[i].vector,
1765 				 &edev->fp_array[i]);
1766 		} else {
1767 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1768 		}
1769 	}
1770 
1771 	edev->int_info.used_cnt = 0;
1772 }
1773 
1774 static int qede_req_msix_irqs(struct qede_dev *edev)
1775 {
1776 	int i, rc;
1777 
1778 	/* Sanitize number of interrupts == number of prepared RSS queues */
1779 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1780 		DP_ERR(edev,
1781 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1782 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1783 		return -EINVAL;
1784 	}
1785 
1786 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1787 #ifdef CONFIG_RFS_ACCEL
1788 		struct qede_fastpath *fp = &edev->fp_array[i];
1789 
1790 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1791 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1792 					      edev->int_info.msix[i].vector);
1793 			if (rc) {
1794 				DP_ERR(edev, "Failed to add CPU rmap\n");
1795 				qede_free_arfs(edev);
1796 			}
1797 		}
1798 #endif
1799 		rc = request_irq(edev->int_info.msix[i].vector,
1800 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1801 				 &edev->fp_array[i]);
1802 		if (rc) {
1803 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1804 			qede_sync_free_irqs(edev);
1805 			return rc;
1806 		}
1807 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1808 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1809 			   edev->fp_array[i].name, i,
1810 			   &edev->fp_array[i]);
1811 		edev->int_info.used_cnt++;
1812 	}
1813 
1814 	return 0;
1815 }
1816 
1817 static void qede_simd_fp_handler(void *cookie)
1818 {
1819 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1820 
1821 	napi_schedule_irqoff(&fp->napi);
1822 }
1823 
1824 static int qede_setup_irqs(struct qede_dev *edev)
1825 {
1826 	int i, rc = 0;
1827 
1828 	/* Learn Interrupt configuration */
1829 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1830 	if (rc)
1831 		return rc;
1832 
1833 	if (edev->int_info.msix_cnt) {
1834 		rc = qede_req_msix_irqs(edev);
1835 		if (rc)
1836 			return rc;
1837 		edev->ndev->irq = edev->int_info.msix[0].vector;
1838 	} else {
1839 		const struct qed_common_ops *ops;
1840 
1841 		/* qed should learn receive the RSS ids and callbacks */
1842 		ops = edev->ops->common;
1843 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1844 			ops->simd_handler_config(edev->cdev,
1845 						 &edev->fp_array[i], i,
1846 						 qede_simd_fp_handler);
1847 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1848 	}
1849 	return 0;
1850 }
1851 
1852 static int qede_drain_txq(struct qede_dev *edev,
1853 			  struct qede_tx_queue *txq, bool allow_drain)
1854 {
1855 	int rc, cnt = 1000;
1856 
1857 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1858 		if (!cnt) {
1859 			if (allow_drain) {
1860 				DP_NOTICE(edev,
1861 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1862 					  txq->index);
1863 				rc = edev->ops->common->drain(edev->cdev);
1864 				if (rc)
1865 					return rc;
1866 				return qede_drain_txq(edev, txq, false);
1867 			}
1868 			DP_NOTICE(edev,
1869 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1870 				  txq->index, txq->sw_tx_prod,
1871 				  txq->sw_tx_cons);
1872 			return -ENODEV;
1873 		}
1874 		cnt--;
1875 		usleep_range(1000, 2000);
1876 		barrier();
1877 	}
1878 
1879 	/* FW finished processing, wait for HW to transmit all tx packets */
1880 	usleep_range(1000, 2000);
1881 
1882 	return 0;
1883 }
1884 
1885 static int qede_stop_txq(struct qede_dev *edev,
1886 			 struct qede_tx_queue *txq, int rss_id)
1887 {
1888 	/* delete doorbell from doorbell recovery mechanism */
1889 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1890 					   &txq->tx_db);
1891 
1892 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1893 }
1894 
1895 static int qede_stop_queues(struct qede_dev *edev)
1896 {
1897 	struct qed_update_vport_params *vport_update_params;
1898 	struct qed_dev *cdev = edev->cdev;
1899 	struct qede_fastpath *fp;
1900 	int rc, i;
1901 
1902 	/* Disable the vport */
1903 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1904 	if (!vport_update_params)
1905 		return -ENOMEM;
1906 
1907 	vport_update_params->vport_id = 0;
1908 	vport_update_params->update_vport_active_flg = 1;
1909 	vport_update_params->vport_active_flg = 0;
1910 	vport_update_params->update_rss_flg = 0;
1911 
1912 	rc = edev->ops->vport_update(cdev, vport_update_params);
1913 	vfree(vport_update_params);
1914 
1915 	if (rc) {
1916 		DP_ERR(edev, "Failed to update vport\n");
1917 		return rc;
1918 	}
1919 
1920 	/* Flush Tx queues. If needed, request drain from MCP */
1921 	for_each_queue(i) {
1922 		fp = &edev->fp_array[i];
1923 
1924 		if (fp->type & QEDE_FASTPATH_TX) {
1925 			int cos;
1926 
1927 			for_each_cos_in_txq(edev, cos) {
1928 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1929 				if (rc)
1930 					return rc;
1931 			}
1932 		}
1933 
1934 		if (fp->type & QEDE_FASTPATH_XDP) {
1935 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1936 			if (rc)
1937 				return rc;
1938 		}
1939 	}
1940 
1941 	/* Stop all Queues in reverse order */
1942 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1943 		fp = &edev->fp_array[i];
1944 
1945 		/* Stop the Tx Queue(s) */
1946 		if (fp->type & QEDE_FASTPATH_TX) {
1947 			int cos;
1948 
1949 			for_each_cos_in_txq(edev, cos) {
1950 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1951 				if (rc)
1952 					return rc;
1953 			}
1954 		}
1955 
1956 		/* Stop the Rx Queue */
1957 		if (fp->type & QEDE_FASTPATH_RX) {
1958 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1959 			if (rc) {
1960 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1961 				return rc;
1962 			}
1963 		}
1964 
1965 		/* Stop the XDP forwarding queue */
1966 		if (fp->type & QEDE_FASTPATH_XDP) {
1967 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1968 			if (rc)
1969 				return rc;
1970 
1971 			bpf_prog_put(fp->rxq->xdp_prog);
1972 		}
1973 	}
1974 
1975 	/* Stop the vport */
1976 	rc = edev->ops->vport_stop(cdev, 0);
1977 	if (rc)
1978 		DP_ERR(edev, "Failed to stop VPORT\n");
1979 
1980 	return rc;
1981 }
1982 
1983 static int qede_start_txq(struct qede_dev *edev,
1984 			  struct qede_fastpath *fp,
1985 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1986 {
1987 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1988 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1989 	struct qed_queue_start_common_params params;
1990 	struct qed_txq_start_ret_params ret_params;
1991 	int rc;
1992 
1993 	memset(&params, 0, sizeof(params));
1994 	memset(&ret_params, 0, sizeof(ret_params));
1995 
1996 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1997 	 * We don't really care about its coalescing.
1998 	 */
1999 	if (txq->is_xdp)
2000 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2001 	else
2002 		params.queue_id = txq->index;
2003 
2004 	params.p_sb = fp->sb_info;
2005 	params.sb_idx = sb_idx;
2006 	params.tc = txq->cos;
2007 
2008 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2009 				   page_cnt, &ret_params);
2010 	if (rc) {
2011 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2012 		return rc;
2013 	}
2014 
2015 	txq->doorbell_addr = ret_params.p_doorbell;
2016 	txq->handle = ret_params.p_handle;
2017 
2018 	/* Determine the FW consumer address associated */
2019 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2020 
2021 	/* Prepare the doorbell parameters */
2022 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2023 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2024 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2025 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2026 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2027 
2028 	/* register doorbell with doorbell recovery mechanism */
2029 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2030 						&txq->tx_db, DB_REC_WIDTH_32B,
2031 						DB_REC_KERNEL);
2032 
2033 	return rc;
2034 }
2035 
2036 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2037 {
2038 	int vlan_removal_en = 1;
2039 	struct qed_dev *cdev = edev->cdev;
2040 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2041 	struct qed_update_vport_params *vport_update_params;
2042 	struct qed_queue_start_common_params q_params;
2043 	struct qed_start_vport_params start = {0};
2044 	int rc, i;
2045 
2046 	if (!edev->num_queues) {
2047 		DP_ERR(edev,
2048 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2049 		return -EINVAL;
2050 	}
2051 
2052 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2053 	if (!vport_update_params)
2054 		return -ENOMEM;
2055 
2056 	start.handle_ptp_pkts = !!(edev->ptp);
2057 	start.gro_enable = !edev->gro_disable;
2058 	start.mtu = edev->ndev->mtu;
2059 	start.vport_id = 0;
2060 	start.drop_ttl0 = true;
2061 	start.remove_inner_vlan = vlan_removal_en;
2062 	start.clear_stats = clear_stats;
2063 
2064 	rc = edev->ops->vport_start(cdev, &start);
2065 
2066 	if (rc) {
2067 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2068 		goto out;
2069 	}
2070 
2071 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2072 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2073 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2074 
2075 	for_each_queue(i) {
2076 		struct qede_fastpath *fp = &edev->fp_array[i];
2077 		dma_addr_t p_phys_table;
2078 		u32 page_cnt;
2079 
2080 		if (fp->type & QEDE_FASTPATH_RX) {
2081 			struct qed_rxq_start_ret_params ret_params;
2082 			struct qede_rx_queue *rxq = fp->rxq;
2083 			__le16 *val;
2084 
2085 			memset(&ret_params, 0, sizeof(ret_params));
2086 			memset(&q_params, 0, sizeof(q_params));
2087 			q_params.queue_id = rxq->rxq_id;
2088 			q_params.vport_id = 0;
2089 			q_params.p_sb = fp->sb_info;
2090 			q_params.sb_idx = RX_PI;
2091 
2092 			p_phys_table =
2093 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2094 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2095 
2096 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2097 						   rxq->rx_buf_size,
2098 						   rxq->rx_bd_ring.p_phys_addr,
2099 						   p_phys_table,
2100 						   page_cnt, &ret_params);
2101 			if (rc) {
2102 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2103 				       rc);
2104 				goto out;
2105 			}
2106 
2107 			/* Use the return parameters */
2108 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2109 			rxq->handle = ret_params.p_handle;
2110 
2111 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2112 			rxq->hw_cons_ptr = val;
2113 
2114 			qede_update_rx_prod(edev, rxq);
2115 		}
2116 
2117 		if (fp->type & QEDE_FASTPATH_XDP) {
2118 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2119 			if (rc)
2120 				goto out;
2121 
2122 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2123 			if (IS_ERR(fp->rxq->xdp_prog)) {
2124 				rc = PTR_ERR(fp->rxq->xdp_prog);
2125 				fp->rxq->xdp_prog = NULL;
2126 				goto out;
2127 			}
2128 		}
2129 
2130 		if (fp->type & QEDE_FASTPATH_TX) {
2131 			int cos;
2132 
2133 			for_each_cos_in_txq(edev, cos) {
2134 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2135 						    TX_PI(cos));
2136 				if (rc)
2137 					goto out;
2138 			}
2139 		}
2140 	}
2141 
2142 	/* Prepare and send the vport enable */
2143 	vport_update_params->vport_id = start.vport_id;
2144 	vport_update_params->update_vport_active_flg = 1;
2145 	vport_update_params->vport_active_flg = 1;
2146 
2147 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2148 	    qed_info->tx_switching) {
2149 		vport_update_params->update_tx_switching_flg = 1;
2150 		vport_update_params->tx_switching_flg = 1;
2151 	}
2152 
2153 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2154 			     &vport_update_params->update_rss_flg);
2155 
2156 	rc = edev->ops->vport_update(cdev, vport_update_params);
2157 	if (rc)
2158 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2159 
2160 out:
2161 	vfree(vport_update_params);
2162 	return rc;
2163 }
2164 
2165 enum qede_unload_mode {
2166 	QEDE_UNLOAD_NORMAL,
2167 	QEDE_UNLOAD_RECOVERY,
2168 };
2169 
2170 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2171 			bool is_locked)
2172 {
2173 	struct qed_link_params link_params;
2174 	int rc;
2175 
2176 	DP_INFO(edev, "Starting qede unload\n");
2177 
2178 	if (!is_locked)
2179 		__qede_lock(edev);
2180 
2181 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2182 
2183 	if (mode != QEDE_UNLOAD_RECOVERY)
2184 		edev->state = QEDE_STATE_CLOSED;
2185 
2186 	qede_rdma_dev_event_close(edev);
2187 
2188 	/* Close OS Tx */
2189 	netif_tx_disable(edev->ndev);
2190 	netif_carrier_off(edev->ndev);
2191 
2192 	if (mode != QEDE_UNLOAD_RECOVERY) {
2193 		/* Reset the link */
2194 		memset(&link_params, 0, sizeof(link_params));
2195 		link_params.link_up = false;
2196 		edev->ops->common->set_link(edev->cdev, &link_params);
2197 
2198 		rc = qede_stop_queues(edev);
2199 		if (rc) {
2200 			qede_sync_free_irqs(edev);
2201 			goto out;
2202 		}
2203 
2204 		DP_INFO(edev, "Stopped Queues\n");
2205 	}
2206 
2207 	qede_vlan_mark_nonconfigured(edev);
2208 	edev->ops->fastpath_stop(edev->cdev);
2209 
2210 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2211 		qede_poll_for_freeing_arfs_filters(edev);
2212 		qede_free_arfs(edev);
2213 	}
2214 
2215 	/* Release the interrupts */
2216 	qede_sync_free_irqs(edev);
2217 	edev->ops->common->set_fp_int(edev->cdev, 0);
2218 
2219 	qede_napi_disable_remove(edev);
2220 
2221 	if (mode == QEDE_UNLOAD_RECOVERY)
2222 		qede_empty_tx_queues(edev);
2223 
2224 	qede_free_mem_load(edev);
2225 	qede_free_fp_array(edev);
2226 
2227 out:
2228 	if (!is_locked)
2229 		__qede_unlock(edev);
2230 
2231 	if (mode != QEDE_UNLOAD_RECOVERY)
2232 		DP_NOTICE(edev, "Link is down\n");
2233 
2234 	DP_INFO(edev, "Ending qede unload\n");
2235 }
2236 
2237 enum qede_load_mode {
2238 	QEDE_LOAD_NORMAL,
2239 	QEDE_LOAD_RELOAD,
2240 	QEDE_LOAD_RECOVERY,
2241 };
2242 
2243 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2244 		     bool is_locked)
2245 {
2246 	struct qed_link_params link_params;
2247 	u8 num_tc;
2248 	int rc;
2249 
2250 	DP_INFO(edev, "Starting qede load\n");
2251 
2252 	if (!is_locked)
2253 		__qede_lock(edev);
2254 
2255 	rc = qede_set_num_queues(edev);
2256 	if (rc)
2257 		goto out;
2258 
2259 	rc = qede_alloc_fp_array(edev);
2260 	if (rc)
2261 		goto out;
2262 
2263 	qede_init_fp(edev);
2264 
2265 	rc = qede_alloc_mem_load(edev);
2266 	if (rc)
2267 		goto err1;
2268 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2269 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2270 
2271 	rc = qede_set_real_num_queues(edev);
2272 	if (rc)
2273 		goto err2;
2274 
2275 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2276 		rc = qede_alloc_arfs(edev);
2277 		if (rc)
2278 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2279 	}
2280 
2281 	qede_napi_add_enable(edev);
2282 	DP_INFO(edev, "Napi added and enabled\n");
2283 
2284 	rc = qede_setup_irqs(edev);
2285 	if (rc)
2286 		goto err3;
2287 	DP_INFO(edev, "Setup IRQs succeeded\n");
2288 
2289 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2290 	if (rc)
2291 		goto err4;
2292 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2293 
2294 	num_tc = netdev_get_num_tc(edev->ndev);
2295 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2296 	qede_setup_tc(edev->ndev, num_tc);
2297 
2298 	/* Program un-configured VLANs */
2299 	qede_configure_vlan_filters(edev);
2300 
2301 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2302 
2303 	/* Ask for link-up using current configuration */
2304 	memset(&link_params, 0, sizeof(link_params));
2305 	link_params.link_up = true;
2306 	edev->ops->common->set_link(edev->cdev, &link_params);
2307 
2308 	edev->state = QEDE_STATE_OPEN;
2309 
2310 	DP_INFO(edev, "Ending successfully qede load\n");
2311 
2312 	goto out;
2313 err4:
2314 	qede_sync_free_irqs(edev);
2315 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2316 err3:
2317 	qede_napi_disable_remove(edev);
2318 err2:
2319 	qede_free_mem_load(edev);
2320 err1:
2321 	edev->ops->common->set_fp_int(edev->cdev, 0);
2322 	qede_free_fp_array(edev);
2323 	edev->num_queues = 0;
2324 	edev->fp_num_tx = 0;
2325 	edev->fp_num_rx = 0;
2326 out:
2327 	if (!is_locked)
2328 		__qede_unlock(edev);
2329 
2330 	return rc;
2331 }
2332 
2333 /* 'func' should be able to run between unload and reload assuming interface
2334  * is actually running, or afterwards in case it's currently DOWN.
2335  */
2336 void qede_reload(struct qede_dev *edev,
2337 		 struct qede_reload_args *args, bool is_locked)
2338 {
2339 	if (!is_locked)
2340 		__qede_lock(edev);
2341 
2342 	/* Since qede_lock is held, internal state wouldn't change even
2343 	 * if netdev state would start transitioning. Check whether current
2344 	 * internal configuration indicates device is up, then reload.
2345 	 */
2346 	if (edev->state == QEDE_STATE_OPEN) {
2347 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2348 		if (args)
2349 			args->func(edev, args);
2350 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2351 
2352 		/* Since no one is going to do it for us, re-configure */
2353 		qede_config_rx_mode(edev->ndev);
2354 	} else if (args) {
2355 		args->func(edev, args);
2356 	}
2357 
2358 	if (!is_locked)
2359 		__qede_unlock(edev);
2360 }
2361 
2362 /* called with rtnl_lock */
2363 static int qede_open(struct net_device *ndev)
2364 {
2365 	struct qede_dev *edev = netdev_priv(ndev);
2366 	int rc;
2367 
2368 	netif_carrier_off(ndev);
2369 
2370 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2371 
2372 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2373 	if (rc)
2374 		return rc;
2375 
2376 	udp_tunnel_get_rx_info(ndev);
2377 
2378 	edev->ops->common->update_drv_state(edev->cdev, true);
2379 
2380 	return 0;
2381 }
2382 
2383 static int qede_close(struct net_device *ndev)
2384 {
2385 	struct qede_dev *edev = netdev_priv(ndev);
2386 
2387 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2388 
2389 	edev->ops->common->update_drv_state(edev->cdev, false);
2390 
2391 	return 0;
2392 }
2393 
2394 static void qede_link_update(void *dev, struct qed_link_output *link)
2395 {
2396 	struct qede_dev *edev = dev;
2397 
2398 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2399 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2400 		return;
2401 	}
2402 
2403 	if (link->link_up) {
2404 		if (!netif_carrier_ok(edev->ndev)) {
2405 			DP_NOTICE(edev, "Link is up\n");
2406 			netif_tx_start_all_queues(edev->ndev);
2407 			netif_carrier_on(edev->ndev);
2408 			qede_rdma_dev_event_open(edev);
2409 		}
2410 	} else {
2411 		if (netif_carrier_ok(edev->ndev)) {
2412 			DP_NOTICE(edev, "Link is down\n");
2413 			netif_tx_disable(edev->ndev);
2414 			netif_carrier_off(edev->ndev);
2415 			qede_rdma_dev_event_close(edev);
2416 		}
2417 	}
2418 }
2419 
2420 static void qede_schedule_recovery_handler(void *dev)
2421 {
2422 	struct qede_dev *edev = dev;
2423 
2424 	if (edev->state == QEDE_STATE_RECOVERY) {
2425 		DP_NOTICE(edev,
2426 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2427 		return;
2428 	}
2429 
2430 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2431 	schedule_delayed_work(&edev->sp_task, 0);
2432 
2433 	DP_INFO(edev, "Scheduled a recovery handler\n");
2434 }
2435 
2436 static void qede_recovery_failed(struct qede_dev *edev)
2437 {
2438 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2439 
2440 	netif_device_detach(edev->ndev);
2441 
2442 	if (edev->cdev)
2443 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2444 }
2445 
2446 static void qede_recovery_handler(struct qede_dev *edev)
2447 {
2448 	u32 curr_state = edev->state;
2449 	int rc;
2450 
2451 	DP_NOTICE(edev, "Starting a recovery process\n");
2452 
2453 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2454 	 * before calling this function.
2455 	 */
2456 	edev->state = QEDE_STATE_RECOVERY;
2457 
2458 	edev->ops->common->recovery_prolog(edev->cdev);
2459 
2460 	if (curr_state == QEDE_STATE_OPEN)
2461 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2462 
2463 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2464 
2465 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2466 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2467 	if (rc) {
2468 		edev->cdev = NULL;
2469 		goto err;
2470 	}
2471 
2472 	if (curr_state == QEDE_STATE_OPEN) {
2473 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2474 		if (rc)
2475 			goto err;
2476 
2477 		qede_config_rx_mode(edev->ndev);
2478 		udp_tunnel_get_rx_info(edev->ndev);
2479 	}
2480 
2481 	edev->state = curr_state;
2482 
2483 	DP_NOTICE(edev, "Recovery handling is done\n");
2484 
2485 	return;
2486 
2487 err:
2488 	qede_recovery_failed(edev);
2489 }
2490 
2491 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2492 {
2493 	struct netdev_queue *netdev_txq;
2494 
2495 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2496 	if (netif_xmit_stopped(netdev_txq))
2497 		return true;
2498 
2499 	return false;
2500 }
2501 
2502 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2503 {
2504 	struct qede_dev *edev = dev;
2505 	struct netdev_hw_addr *ha;
2506 	int i;
2507 
2508 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2509 		data->feat_flags |= QED_TLV_IP_CSUM;
2510 	if (edev->ndev->features & NETIF_F_TSO)
2511 		data->feat_flags |= QED_TLV_LSO;
2512 
2513 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2514 	memset(data->mac[1], 0, ETH_ALEN);
2515 	memset(data->mac[2], 0, ETH_ALEN);
2516 	/* Copy the first two UC macs */
2517 	netif_addr_lock_bh(edev->ndev);
2518 	i = 1;
2519 	netdev_for_each_uc_addr(ha, edev->ndev) {
2520 		ether_addr_copy(data->mac[i++], ha->addr);
2521 		if (i == QED_TLV_MAC_COUNT)
2522 			break;
2523 	}
2524 
2525 	netif_addr_unlock_bh(edev->ndev);
2526 }
2527 
2528 static void qede_get_eth_tlv_data(void *dev, void *data)
2529 {
2530 	struct qed_mfw_tlv_eth *etlv = data;
2531 	struct qede_dev *edev = dev;
2532 	struct qede_fastpath *fp;
2533 	int i;
2534 
2535 	etlv->lso_maxoff_size = 0XFFFF;
2536 	etlv->lso_maxoff_size_set = true;
2537 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2538 	etlv->lso_minseg_size_set = true;
2539 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2540 	etlv->prom_mode_set = true;
2541 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2542 	etlv->tx_descr_size_set = true;
2543 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2544 	etlv->rx_descr_size_set = true;
2545 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2546 	etlv->iov_offload_set = true;
2547 
2548 	/* Fill information regarding queues; Should be done under the qede
2549 	 * lock to guarantee those don't change beneath our feet.
2550 	 */
2551 	etlv->txqs_empty = true;
2552 	etlv->rxqs_empty = true;
2553 	etlv->num_txqs_full = 0;
2554 	etlv->num_rxqs_full = 0;
2555 
2556 	__qede_lock(edev);
2557 	for_each_queue(i) {
2558 		fp = &edev->fp_array[i];
2559 		if (fp->type & QEDE_FASTPATH_TX) {
2560 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2561 
2562 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2563 				etlv->txqs_empty = false;
2564 			if (qede_is_txq_full(edev, txq))
2565 				etlv->num_txqs_full++;
2566 		}
2567 		if (fp->type & QEDE_FASTPATH_RX) {
2568 			if (qede_has_rx_work(fp->rxq))
2569 				etlv->rxqs_empty = false;
2570 
2571 			/* This one is a bit tricky; Firmware might stop
2572 			 * placing packets if ring is not yet full.
2573 			 * Give an approximation.
2574 			 */
2575 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2576 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2577 			    RX_RING_SIZE - 100)
2578 				etlv->num_rxqs_full++;
2579 		}
2580 	}
2581 	__qede_unlock(edev);
2582 
2583 	etlv->txqs_empty_set = true;
2584 	etlv->rxqs_empty_set = true;
2585 	etlv->num_txqs_full_set = true;
2586 	etlv->num_rxqs_full_set = true;
2587 }
2588