1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include "qede.h" 64 #include "qede_ptp.h" 65 66 static char version[] = 67 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 68 69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 70 MODULE_LICENSE("GPL"); 71 MODULE_VERSION(DRV_MODULE_VERSION); 72 73 static uint debug; 74 module_param(debug, uint, 0); 75 MODULE_PARM_DESC(debug, " Default debug msglevel"); 76 77 static const struct qed_eth_ops *qed_ops; 78 79 #define CHIP_NUM_57980S_40 0x1634 80 #define CHIP_NUM_57980S_10 0x1666 81 #define CHIP_NUM_57980S_MF 0x1636 82 #define CHIP_NUM_57980S_100 0x1644 83 #define CHIP_NUM_57980S_50 0x1654 84 #define CHIP_NUM_57980S_25 0x1656 85 #define CHIP_NUM_57980S_IOV 0x1664 86 #define CHIP_NUM_AH 0x8070 87 #define CHIP_NUM_AH_IOV 0x8090 88 89 #ifndef PCI_DEVICE_ID_NX2_57980E 90 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 91 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 92 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 93 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 94 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 95 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 96 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 97 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 98 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 99 100 #endif 101 102 enum qede_pci_private { 103 QEDE_PRIVATE_PF, 104 QEDE_PRIVATE_VF 105 }; 106 107 static const struct pci_device_id qede_pci_tbl[] = { 108 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 114 #ifdef CONFIG_QED_SRIOV 115 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 116 #endif 117 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 118 #ifdef CONFIG_QED_SRIOV 119 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 120 #endif 121 { 0 } 122 }; 123 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 125 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 127 128 #define TX_TIMEOUT (5 * HZ) 129 130 /* Utilize last protocol index for XDP */ 131 #define XDP_PI 11 132 133 static void qede_remove(struct pci_dev *pdev); 134 static void qede_shutdown(struct pci_dev *pdev); 135 static void qede_link_update(void *dev, struct qed_link_output *link); 136 static void qede_schedule_recovery_handler(void *dev); 137 static void qede_recovery_handler(struct qede_dev *edev); 138 static void qede_get_eth_tlv_data(void *edev, void *data); 139 static void qede_get_generic_tlv_data(void *edev, 140 struct qed_generic_tlvs *data); 141 142 #ifdef CONFIG_QED_SRIOV 143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 144 __be16 vlan_proto) 145 { 146 struct qede_dev *edev = netdev_priv(ndev); 147 148 if (vlan > 4095) { 149 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 150 return -EINVAL; 151 } 152 153 if (vlan_proto != htons(ETH_P_8021Q)) 154 return -EPROTONOSUPPORT; 155 156 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 157 vlan, vf); 158 159 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 160 } 161 162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 163 { 164 struct qede_dev *edev = netdev_priv(ndev); 165 166 DP_VERBOSE(edev, QED_MSG_IOV, 167 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 168 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 169 170 if (!is_valid_ether_addr(mac)) { 171 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 172 return -EINVAL; 173 } 174 175 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 176 } 177 178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 179 { 180 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 181 struct qed_dev_info *qed_info = &edev->dev_info.common; 182 struct qed_update_vport_params *vport_params; 183 int rc; 184 185 vport_params = vzalloc(sizeof(*vport_params)); 186 if (!vport_params) 187 return -ENOMEM; 188 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 189 190 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 191 192 /* Enable/Disable Tx switching for PF */ 193 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 194 !qed_info->b_inter_pf_switch && qed_info->tx_switching) { 195 vport_params->vport_id = 0; 196 vport_params->update_tx_switching_flg = 1; 197 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 198 edev->ops->vport_update(edev->cdev, vport_params); 199 } 200 201 vfree(vport_params); 202 return rc; 203 } 204 #endif 205 206 static struct pci_driver qede_pci_driver = { 207 .name = "qede", 208 .id_table = qede_pci_tbl, 209 .probe = qede_probe, 210 .remove = qede_remove, 211 .shutdown = qede_shutdown, 212 #ifdef CONFIG_QED_SRIOV 213 .sriov_configure = qede_sriov_configure, 214 #endif 215 }; 216 217 static struct qed_eth_cb_ops qede_ll_ops = { 218 { 219 #ifdef CONFIG_RFS_ACCEL 220 .arfs_filter_op = qede_arfs_filter_op, 221 #endif 222 .link_update = qede_link_update, 223 .schedule_recovery_handler = qede_schedule_recovery_handler, 224 .get_generic_tlv_data = qede_get_generic_tlv_data, 225 .get_protocol_tlv_data = qede_get_eth_tlv_data, 226 }, 227 .force_mac = qede_force_mac, 228 .ports_update = qede_udp_ports_update, 229 }; 230 231 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 232 void *ptr) 233 { 234 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 235 struct ethtool_drvinfo drvinfo; 236 struct qede_dev *edev; 237 238 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 239 goto done; 240 241 /* Check whether this is a qede device */ 242 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 243 goto done; 244 245 memset(&drvinfo, 0, sizeof(drvinfo)); 246 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 247 if (strcmp(drvinfo.driver, "qede")) 248 goto done; 249 edev = netdev_priv(ndev); 250 251 switch (event) { 252 case NETDEV_CHANGENAME: 253 /* Notify qed of the name change */ 254 if (!edev->ops || !edev->ops->common) 255 goto done; 256 edev->ops->common->set_name(edev->cdev, edev->ndev->name); 257 break; 258 case NETDEV_CHANGEADDR: 259 edev = netdev_priv(ndev); 260 qede_rdma_event_changeaddr(edev); 261 break; 262 } 263 264 done: 265 return NOTIFY_DONE; 266 } 267 268 static struct notifier_block qede_netdev_notifier = { 269 .notifier_call = qede_netdev_event, 270 }; 271 272 static 273 int __init qede_init(void) 274 { 275 int ret; 276 277 pr_info("qede_init: %s\n", version); 278 279 qed_ops = qed_get_eth_ops(); 280 if (!qed_ops) { 281 pr_notice("Failed to get qed ethtool operations\n"); 282 return -EINVAL; 283 } 284 285 /* Must register notifier before pci ops, since we might miss 286 * interface rename after pci probe and netdev registration. 287 */ 288 ret = register_netdevice_notifier(&qede_netdev_notifier); 289 if (ret) { 290 pr_notice("Failed to register netdevice_notifier\n"); 291 qed_put_eth_ops(); 292 return -EINVAL; 293 } 294 295 ret = pci_register_driver(&qede_pci_driver); 296 if (ret) { 297 pr_notice("Failed to register driver\n"); 298 unregister_netdevice_notifier(&qede_netdev_notifier); 299 qed_put_eth_ops(); 300 return -EINVAL; 301 } 302 303 return 0; 304 } 305 306 static void __exit qede_cleanup(void) 307 { 308 if (debug & QED_LOG_INFO_MASK) 309 pr_info("qede_cleanup called\n"); 310 311 unregister_netdevice_notifier(&qede_netdev_notifier); 312 pci_unregister_driver(&qede_pci_driver); 313 qed_put_eth_ops(); 314 } 315 316 module_init(qede_init); 317 module_exit(qede_cleanup); 318 319 static int qede_open(struct net_device *ndev); 320 static int qede_close(struct net_device *ndev); 321 322 void qede_fill_by_demand_stats(struct qede_dev *edev) 323 { 324 struct qede_stats_common *p_common = &edev->stats.common; 325 struct qed_eth_stats stats; 326 327 edev->ops->get_vport_stats(edev->cdev, &stats); 328 329 p_common->no_buff_discards = stats.common.no_buff_discards; 330 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 331 p_common->ttl0_discard = stats.common.ttl0_discard; 332 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 333 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 334 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 335 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 336 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 337 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 338 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 339 p_common->mac_filter_discards = stats.common.mac_filter_discards; 340 p_common->gft_filter_drop = stats.common.gft_filter_drop; 341 342 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 343 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 344 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 345 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 346 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 347 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 348 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 349 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 350 p_common->coalesced_events = stats.common.tpa_coalesced_events; 351 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 352 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 353 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 354 355 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 356 p_common->rx_65_to_127_byte_packets = 357 stats.common.rx_65_to_127_byte_packets; 358 p_common->rx_128_to_255_byte_packets = 359 stats.common.rx_128_to_255_byte_packets; 360 p_common->rx_256_to_511_byte_packets = 361 stats.common.rx_256_to_511_byte_packets; 362 p_common->rx_512_to_1023_byte_packets = 363 stats.common.rx_512_to_1023_byte_packets; 364 p_common->rx_1024_to_1518_byte_packets = 365 stats.common.rx_1024_to_1518_byte_packets; 366 p_common->rx_crc_errors = stats.common.rx_crc_errors; 367 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 368 p_common->rx_pause_frames = stats.common.rx_pause_frames; 369 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 370 p_common->rx_align_errors = stats.common.rx_align_errors; 371 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 372 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 373 p_common->rx_jabbers = stats.common.rx_jabbers; 374 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 375 p_common->rx_fragments = stats.common.rx_fragments; 376 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 377 p_common->tx_65_to_127_byte_packets = 378 stats.common.tx_65_to_127_byte_packets; 379 p_common->tx_128_to_255_byte_packets = 380 stats.common.tx_128_to_255_byte_packets; 381 p_common->tx_256_to_511_byte_packets = 382 stats.common.tx_256_to_511_byte_packets; 383 p_common->tx_512_to_1023_byte_packets = 384 stats.common.tx_512_to_1023_byte_packets; 385 p_common->tx_1024_to_1518_byte_packets = 386 stats.common.tx_1024_to_1518_byte_packets; 387 p_common->tx_pause_frames = stats.common.tx_pause_frames; 388 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 389 p_common->brb_truncates = stats.common.brb_truncates; 390 p_common->brb_discards = stats.common.brb_discards; 391 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 392 p_common->link_change_count = stats.common.link_change_count; 393 p_common->ptp_skip_txts = edev->ptp_skip_txts; 394 395 if (QEDE_IS_BB(edev)) { 396 struct qede_stats_bb *p_bb = &edev->stats.bb; 397 398 p_bb->rx_1519_to_1522_byte_packets = 399 stats.bb.rx_1519_to_1522_byte_packets; 400 p_bb->rx_1519_to_2047_byte_packets = 401 stats.bb.rx_1519_to_2047_byte_packets; 402 p_bb->rx_2048_to_4095_byte_packets = 403 stats.bb.rx_2048_to_4095_byte_packets; 404 p_bb->rx_4096_to_9216_byte_packets = 405 stats.bb.rx_4096_to_9216_byte_packets; 406 p_bb->rx_9217_to_16383_byte_packets = 407 stats.bb.rx_9217_to_16383_byte_packets; 408 p_bb->tx_1519_to_2047_byte_packets = 409 stats.bb.tx_1519_to_2047_byte_packets; 410 p_bb->tx_2048_to_4095_byte_packets = 411 stats.bb.tx_2048_to_4095_byte_packets; 412 p_bb->tx_4096_to_9216_byte_packets = 413 stats.bb.tx_4096_to_9216_byte_packets; 414 p_bb->tx_9217_to_16383_byte_packets = 415 stats.bb.tx_9217_to_16383_byte_packets; 416 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 417 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 418 } else { 419 struct qede_stats_ah *p_ah = &edev->stats.ah; 420 421 p_ah->rx_1519_to_max_byte_packets = 422 stats.ah.rx_1519_to_max_byte_packets; 423 p_ah->tx_1519_to_max_byte_packets = 424 stats.ah.tx_1519_to_max_byte_packets; 425 } 426 } 427 428 static void qede_get_stats64(struct net_device *dev, 429 struct rtnl_link_stats64 *stats) 430 { 431 struct qede_dev *edev = netdev_priv(dev); 432 struct qede_stats_common *p_common; 433 434 qede_fill_by_demand_stats(edev); 435 p_common = &edev->stats.common; 436 437 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 438 p_common->rx_bcast_pkts; 439 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 440 p_common->tx_bcast_pkts; 441 442 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 443 p_common->rx_bcast_bytes; 444 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 445 p_common->tx_bcast_bytes; 446 447 stats->tx_errors = p_common->tx_err_drop_pkts; 448 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 449 450 stats->rx_fifo_errors = p_common->no_buff_discards; 451 452 if (QEDE_IS_BB(edev)) 453 stats->collisions = edev->stats.bb.tx_total_collisions; 454 stats->rx_crc_errors = p_common->rx_crc_errors; 455 stats->rx_frame_errors = p_common->rx_align_errors; 456 } 457 458 #ifdef CONFIG_QED_SRIOV 459 static int qede_get_vf_config(struct net_device *dev, int vfidx, 460 struct ifla_vf_info *ivi) 461 { 462 struct qede_dev *edev = netdev_priv(dev); 463 464 if (!edev->ops) 465 return -EINVAL; 466 467 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 468 } 469 470 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 471 int min_tx_rate, int max_tx_rate) 472 { 473 struct qede_dev *edev = netdev_priv(dev); 474 475 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 476 max_tx_rate); 477 } 478 479 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 480 { 481 struct qede_dev *edev = netdev_priv(dev); 482 483 if (!edev->ops) 484 return -EINVAL; 485 486 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 487 } 488 489 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 490 int link_state) 491 { 492 struct qede_dev *edev = netdev_priv(dev); 493 494 if (!edev->ops) 495 return -EINVAL; 496 497 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 498 } 499 500 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 501 { 502 struct qede_dev *edev = netdev_priv(dev); 503 504 if (!edev->ops) 505 return -EINVAL; 506 507 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 508 } 509 #endif 510 511 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 512 { 513 struct qede_dev *edev = netdev_priv(dev); 514 515 if (!netif_running(dev)) 516 return -EAGAIN; 517 518 switch (cmd) { 519 case SIOCSHWTSTAMP: 520 return qede_ptp_hw_ts(edev, ifr); 521 default: 522 DP_VERBOSE(edev, QED_MSG_DEBUG, 523 "default IOCTL cmd 0x%x\n", cmd); 524 return -EOPNOTSUPP; 525 } 526 527 return 0; 528 } 529 530 static int qede_setup_tc(struct net_device *ndev, u8 num_tc) 531 { 532 struct qede_dev *edev = netdev_priv(ndev); 533 int cos, count, offset; 534 535 if (num_tc > edev->dev_info.num_tc) 536 return -EINVAL; 537 538 netdev_reset_tc(ndev); 539 netdev_set_num_tc(ndev, num_tc); 540 541 for_each_cos_in_txq(edev, cos) { 542 count = QEDE_TSS_COUNT(edev); 543 offset = cos * QEDE_TSS_COUNT(edev); 544 netdev_set_tc_queue(ndev, cos, count, offset); 545 } 546 547 return 0; 548 } 549 550 static int 551 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f, 552 __be16 proto) 553 { 554 switch (f->command) { 555 case TC_CLSFLOWER_REPLACE: 556 return qede_add_tc_flower_fltr(edev, proto, f); 557 case TC_CLSFLOWER_DESTROY: 558 return qede_delete_flow_filter(edev, f->cookie); 559 default: 560 return -EOPNOTSUPP; 561 } 562 } 563 564 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 565 void *cb_priv) 566 { 567 struct tc_cls_flower_offload *f; 568 struct qede_dev *edev = cb_priv; 569 570 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data)) 571 return -EOPNOTSUPP; 572 573 switch (type) { 574 case TC_SETUP_CLSFLOWER: 575 f = type_data; 576 return qede_set_flower(edev, f, f->common.protocol); 577 default: 578 return -EOPNOTSUPP; 579 } 580 } 581 582 static int 583 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type, 584 void *type_data) 585 { 586 struct qede_dev *edev = netdev_priv(dev); 587 struct tc_mqprio_qopt *mqprio; 588 589 switch (type) { 590 case TC_SETUP_BLOCK: 591 return flow_block_cb_setup_simple(type_data, NULL, 592 qede_setup_tc_block_cb, 593 edev, edev, true); 594 case TC_SETUP_QDISC_MQPRIO: 595 mqprio = type_data; 596 597 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 598 return qede_setup_tc(dev, mqprio->num_tc); 599 default: 600 return -EOPNOTSUPP; 601 } 602 } 603 604 static const struct net_device_ops qede_netdev_ops = { 605 .ndo_open = qede_open, 606 .ndo_stop = qede_close, 607 .ndo_start_xmit = qede_start_xmit, 608 .ndo_select_queue = qede_select_queue, 609 .ndo_set_rx_mode = qede_set_rx_mode, 610 .ndo_set_mac_address = qede_set_mac_addr, 611 .ndo_validate_addr = eth_validate_addr, 612 .ndo_change_mtu = qede_change_mtu, 613 .ndo_do_ioctl = qede_ioctl, 614 #ifdef CONFIG_QED_SRIOV 615 .ndo_set_vf_mac = qede_set_vf_mac, 616 .ndo_set_vf_vlan = qede_set_vf_vlan, 617 .ndo_set_vf_trust = qede_set_vf_trust, 618 #endif 619 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 620 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 621 .ndo_fix_features = qede_fix_features, 622 .ndo_set_features = qede_set_features, 623 .ndo_get_stats64 = qede_get_stats64, 624 #ifdef CONFIG_QED_SRIOV 625 .ndo_set_vf_link_state = qede_set_vf_link_state, 626 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 627 .ndo_get_vf_config = qede_get_vf_config, 628 .ndo_set_vf_rate = qede_set_vf_rate, 629 #endif 630 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 631 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 632 .ndo_features_check = qede_features_check, 633 .ndo_bpf = qede_xdp, 634 #ifdef CONFIG_RFS_ACCEL 635 .ndo_rx_flow_steer = qede_rx_flow_steer, 636 #endif 637 .ndo_setup_tc = qede_setup_tc_offload, 638 }; 639 640 static const struct net_device_ops qede_netdev_vf_ops = { 641 .ndo_open = qede_open, 642 .ndo_stop = qede_close, 643 .ndo_start_xmit = qede_start_xmit, 644 .ndo_select_queue = qede_select_queue, 645 .ndo_set_rx_mode = qede_set_rx_mode, 646 .ndo_set_mac_address = qede_set_mac_addr, 647 .ndo_validate_addr = eth_validate_addr, 648 .ndo_change_mtu = qede_change_mtu, 649 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 650 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 651 .ndo_fix_features = qede_fix_features, 652 .ndo_set_features = qede_set_features, 653 .ndo_get_stats64 = qede_get_stats64, 654 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 655 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 656 .ndo_features_check = qede_features_check, 657 }; 658 659 static const struct net_device_ops qede_netdev_vf_xdp_ops = { 660 .ndo_open = qede_open, 661 .ndo_stop = qede_close, 662 .ndo_start_xmit = qede_start_xmit, 663 .ndo_select_queue = qede_select_queue, 664 .ndo_set_rx_mode = qede_set_rx_mode, 665 .ndo_set_mac_address = qede_set_mac_addr, 666 .ndo_validate_addr = eth_validate_addr, 667 .ndo_change_mtu = qede_change_mtu, 668 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 669 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 670 .ndo_fix_features = qede_fix_features, 671 .ndo_set_features = qede_set_features, 672 .ndo_get_stats64 = qede_get_stats64, 673 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 674 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 675 .ndo_features_check = qede_features_check, 676 .ndo_bpf = qede_xdp, 677 }; 678 679 /* ------------------------------------------------------------------------- 680 * START OF PROBE / REMOVE 681 * ------------------------------------------------------------------------- 682 */ 683 684 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 685 struct pci_dev *pdev, 686 struct qed_dev_eth_info *info, 687 u32 dp_module, u8 dp_level) 688 { 689 struct net_device *ndev; 690 struct qede_dev *edev; 691 692 ndev = alloc_etherdev_mqs(sizeof(*edev), 693 info->num_queues * info->num_tc, 694 info->num_queues); 695 if (!ndev) { 696 pr_err("etherdev allocation failed\n"); 697 return NULL; 698 } 699 700 edev = netdev_priv(ndev); 701 edev->ndev = ndev; 702 edev->cdev = cdev; 703 edev->pdev = pdev; 704 edev->dp_module = dp_module; 705 edev->dp_level = dp_level; 706 edev->ops = qed_ops; 707 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 708 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 709 710 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 711 info->num_queues, info->num_queues); 712 713 SET_NETDEV_DEV(ndev, &pdev->dev); 714 715 memset(&edev->stats, 0, sizeof(edev->stats)); 716 memcpy(&edev->dev_info, info, sizeof(*info)); 717 718 /* As ethtool doesn't have the ability to show WoL behavior as 719 * 'default', if device supports it declare it's enabled. 720 */ 721 if (edev->dev_info.common.wol_support) 722 edev->wol_enabled = true; 723 724 INIT_LIST_HEAD(&edev->vlan_list); 725 726 return edev; 727 } 728 729 static void qede_init_ndev(struct qede_dev *edev) 730 { 731 struct net_device *ndev = edev->ndev; 732 struct pci_dev *pdev = edev->pdev; 733 bool udp_tunnel_enable = false; 734 netdev_features_t hw_features; 735 736 pci_set_drvdata(pdev, ndev); 737 738 ndev->mem_start = edev->dev_info.common.pci_mem_start; 739 ndev->base_addr = ndev->mem_start; 740 ndev->mem_end = edev->dev_info.common.pci_mem_end; 741 ndev->irq = edev->dev_info.common.pci_irq; 742 743 ndev->watchdog_timeo = TX_TIMEOUT; 744 745 if (IS_VF(edev)) { 746 if (edev->dev_info.xdp_supported) 747 ndev->netdev_ops = &qede_netdev_vf_xdp_ops; 748 else 749 ndev->netdev_ops = &qede_netdev_vf_ops; 750 } else { 751 ndev->netdev_ops = &qede_netdev_ops; 752 } 753 754 qede_set_ethtool_ops(ndev); 755 756 ndev->priv_flags |= IFF_UNICAST_FLT; 757 758 /* user-changeble features */ 759 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG | 760 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 761 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC; 762 763 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 764 hw_features |= NETIF_F_NTUPLE; 765 766 if (edev->dev_info.common.vxlan_enable || 767 edev->dev_info.common.geneve_enable) 768 udp_tunnel_enable = true; 769 770 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 771 hw_features |= NETIF_F_TSO_ECN; 772 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 773 NETIF_F_SG | NETIF_F_TSO | 774 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 775 NETIF_F_RXCSUM; 776 } 777 778 if (udp_tunnel_enable) { 779 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 780 NETIF_F_GSO_UDP_TUNNEL_CSUM); 781 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 782 NETIF_F_GSO_UDP_TUNNEL_CSUM); 783 } 784 785 if (edev->dev_info.common.gre_enable) { 786 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 787 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 788 NETIF_F_GSO_GRE_CSUM); 789 } 790 791 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 792 NETIF_F_HIGHDMA; 793 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 794 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 795 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 796 797 ndev->hw_features = hw_features; 798 799 /* MTU range: 46 - 9600 */ 800 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 801 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 802 803 /* Set network device HW mac */ 804 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 805 806 ndev->mtu = edev->dev_info.common.mtu; 807 } 808 809 /* This function converts from 32b param to two params of level and module 810 * Input 32b decoding: 811 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 812 * 'happy' flow, e.g. memory allocation failed. 813 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 814 * and provide important parameters. 815 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 816 * module. VERBOSE prints are for tracking the specific flow in low level. 817 * 818 * Notice that the level should be that of the lowest required logs. 819 */ 820 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 821 { 822 *p_dp_level = QED_LEVEL_NOTICE; 823 *p_dp_module = 0; 824 825 if (debug & QED_LOG_VERBOSE_MASK) { 826 *p_dp_level = QED_LEVEL_VERBOSE; 827 *p_dp_module = (debug & 0x3FFFFFFF); 828 } else if (debug & QED_LOG_INFO_MASK) { 829 *p_dp_level = QED_LEVEL_INFO; 830 } else if (debug & QED_LOG_NOTICE_MASK) { 831 *p_dp_level = QED_LEVEL_NOTICE; 832 } 833 } 834 835 static void qede_free_fp_array(struct qede_dev *edev) 836 { 837 if (edev->fp_array) { 838 struct qede_fastpath *fp; 839 int i; 840 841 for_each_queue(i) { 842 fp = &edev->fp_array[i]; 843 844 kfree(fp->sb_info); 845 /* Handle mem alloc failure case where qede_init_fp 846 * didn't register xdp_rxq_info yet. 847 * Implicit only (fp->type & QEDE_FASTPATH_RX) 848 */ 849 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq)) 850 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq); 851 kfree(fp->rxq); 852 kfree(fp->xdp_tx); 853 kfree(fp->txq); 854 } 855 kfree(edev->fp_array); 856 } 857 858 edev->num_queues = 0; 859 edev->fp_num_tx = 0; 860 edev->fp_num_rx = 0; 861 } 862 863 static int qede_alloc_fp_array(struct qede_dev *edev) 864 { 865 u8 fp_combined, fp_rx = edev->fp_num_rx; 866 struct qede_fastpath *fp; 867 int i; 868 869 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 870 sizeof(*edev->fp_array), GFP_KERNEL); 871 if (!edev->fp_array) { 872 DP_NOTICE(edev, "fp array allocation failed\n"); 873 goto err; 874 } 875 876 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 877 878 /* Allocate the FP elements for Rx queues followed by combined and then 879 * the Tx. This ordering should be maintained so that the respective 880 * queues (Rx or Tx) will be together in the fastpath array and the 881 * associated ids will be sequential. 882 */ 883 for_each_queue(i) { 884 fp = &edev->fp_array[i]; 885 886 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 887 if (!fp->sb_info) { 888 DP_NOTICE(edev, "sb info struct allocation failed\n"); 889 goto err; 890 } 891 892 if (fp_rx) { 893 fp->type = QEDE_FASTPATH_RX; 894 fp_rx--; 895 } else if (fp_combined) { 896 fp->type = QEDE_FASTPATH_COMBINED; 897 fp_combined--; 898 } else { 899 fp->type = QEDE_FASTPATH_TX; 900 } 901 902 if (fp->type & QEDE_FASTPATH_TX) { 903 fp->txq = kcalloc(edev->dev_info.num_tc, 904 sizeof(*fp->txq), GFP_KERNEL); 905 if (!fp->txq) 906 goto err; 907 } 908 909 if (fp->type & QEDE_FASTPATH_RX) { 910 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 911 if (!fp->rxq) 912 goto err; 913 914 if (edev->xdp_prog) { 915 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 916 GFP_KERNEL); 917 if (!fp->xdp_tx) 918 goto err; 919 fp->type |= QEDE_FASTPATH_XDP; 920 } 921 } 922 } 923 924 return 0; 925 err: 926 qede_free_fp_array(edev); 927 return -ENOMEM; 928 } 929 930 /* The qede lock is used to protect driver state change and driver flows that 931 * are not reentrant. 932 */ 933 void __qede_lock(struct qede_dev *edev) 934 { 935 mutex_lock(&edev->qede_lock); 936 } 937 938 void __qede_unlock(struct qede_dev *edev) 939 { 940 mutex_unlock(&edev->qede_lock); 941 } 942 943 /* This version of the lock should be used when acquiring the RTNL lock is also 944 * needed in addition to the internal qede lock. 945 */ 946 static void qede_lock(struct qede_dev *edev) 947 { 948 rtnl_lock(); 949 __qede_lock(edev); 950 } 951 952 static void qede_unlock(struct qede_dev *edev) 953 { 954 __qede_unlock(edev); 955 rtnl_unlock(); 956 } 957 958 static void qede_sp_task(struct work_struct *work) 959 { 960 struct qede_dev *edev = container_of(work, struct qede_dev, 961 sp_task.work); 962 963 /* The locking scheme depends on the specific flag: 964 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to 965 * ensure that ongoing flows are ended and new ones are not started. 966 * In other cases - only the internal qede lock should be acquired. 967 */ 968 969 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) { 970 #ifdef CONFIG_QED_SRIOV 971 /* SRIOV must be disabled outside the lock to avoid a deadlock. 972 * The recovery of the active VFs is currently not supported. 973 */ 974 qede_sriov_configure(edev->pdev, 0); 975 #endif 976 qede_lock(edev); 977 qede_recovery_handler(edev); 978 qede_unlock(edev); 979 } 980 981 __qede_lock(edev); 982 983 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 984 if (edev->state == QEDE_STATE_OPEN) 985 qede_config_rx_mode(edev->ndev); 986 987 #ifdef CONFIG_RFS_ACCEL 988 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 989 if (edev->state == QEDE_STATE_OPEN) 990 qede_process_arfs_filters(edev, false); 991 } 992 #endif 993 __qede_unlock(edev); 994 } 995 996 static void qede_update_pf_params(struct qed_dev *cdev) 997 { 998 struct qed_pf_params pf_params; 999 u16 num_cons; 1000 1001 /* 64 rx + 64 tx + 64 XDP */ 1002 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 1003 1004 /* 1 rx + 1 xdp + max tx cos */ 1005 num_cons = QED_MIN_L2_CONS; 1006 1007 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons; 1008 1009 /* Same for VFs - make sure they'll have sufficient connections 1010 * to support XDP Tx queues. 1011 */ 1012 pf_params.eth_pf_params.num_vf_cons = 48; 1013 1014 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 1015 qed_ops->common->update_pf_params(cdev, &pf_params); 1016 } 1017 1018 #define QEDE_FW_VER_STR_SIZE 80 1019 1020 static void qede_log_probe(struct qede_dev *edev) 1021 { 1022 struct qed_dev_info *p_dev_info = &edev->dev_info.common; 1023 u8 buf[QEDE_FW_VER_STR_SIZE]; 1024 size_t left_size; 1025 1026 snprintf(buf, QEDE_FW_VER_STR_SIZE, 1027 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d", 1028 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev, 1029 p_dev_info->fw_eng, 1030 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >> 1031 QED_MFW_VERSION_3_OFFSET, 1032 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >> 1033 QED_MFW_VERSION_2_OFFSET, 1034 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >> 1035 QED_MFW_VERSION_1_OFFSET, 1036 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >> 1037 QED_MFW_VERSION_0_OFFSET); 1038 1039 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf); 1040 if (p_dev_info->mbi_version && left_size) 1041 snprintf(buf + strlen(buf), left_size, 1042 " [MBI %d.%d.%d]", 1043 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >> 1044 QED_MBI_VERSION_2_OFFSET, 1045 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >> 1046 QED_MBI_VERSION_1_OFFSET, 1047 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >> 1048 QED_MBI_VERSION_0_OFFSET); 1049 1050 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number, 1051 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn), 1052 buf, edev->ndev->name); 1053 } 1054 1055 enum qede_probe_mode { 1056 QEDE_PROBE_NORMAL, 1057 QEDE_PROBE_RECOVERY, 1058 }; 1059 1060 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 1061 bool is_vf, enum qede_probe_mode mode) 1062 { 1063 struct qed_probe_params probe_params; 1064 struct qed_slowpath_params sp_params; 1065 struct qed_dev_eth_info dev_info; 1066 struct qede_dev *edev; 1067 struct qed_dev *cdev; 1068 int rc; 1069 1070 if (unlikely(dp_level & QED_LEVEL_INFO)) 1071 pr_notice("Starting qede probe\n"); 1072 1073 memset(&probe_params, 0, sizeof(probe_params)); 1074 probe_params.protocol = QED_PROTOCOL_ETH; 1075 probe_params.dp_module = dp_module; 1076 probe_params.dp_level = dp_level; 1077 probe_params.is_vf = is_vf; 1078 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY); 1079 cdev = qed_ops->common->probe(pdev, &probe_params); 1080 if (!cdev) { 1081 rc = -ENODEV; 1082 goto err0; 1083 } 1084 1085 qede_update_pf_params(cdev); 1086 1087 /* Start the Slowpath-process */ 1088 memset(&sp_params, 0, sizeof(sp_params)); 1089 sp_params.int_mode = QED_INT_MODE_MSIX; 1090 sp_params.drv_major = QEDE_MAJOR_VERSION; 1091 sp_params.drv_minor = QEDE_MINOR_VERSION; 1092 sp_params.drv_rev = QEDE_REVISION_VERSION; 1093 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 1094 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 1095 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 1096 if (rc) { 1097 pr_notice("Cannot start slowpath\n"); 1098 goto err1; 1099 } 1100 1101 /* Learn information crucial for qede to progress */ 1102 rc = qed_ops->fill_dev_info(cdev, &dev_info); 1103 if (rc) 1104 goto err2; 1105 1106 if (mode != QEDE_PROBE_RECOVERY) { 1107 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 1108 dp_level); 1109 if (!edev) { 1110 rc = -ENOMEM; 1111 goto err2; 1112 } 1113 } else { 1114 struct net_device *ndev = pci_get_drvdata(pdev); 1115 1116 edev = netdev_priv(ndev); 1117 edev->cdev = cdev; 1118 memset(&edev->stats, 0, sizeof(edev->stats)); 1119 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info)); 1120 } 1121 1122 if (is_vf) 1123 set_bit(QEDE_FLAGS_IS_VF, &edev->flags); 1124 1125 qede_init_ndev(edev); 1126 1127 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY)); 1128 if (rc) 1129 goto err3; 1130 1131 if (mode != QEDE_PROBE_RECOVERY) { 1132 /* Prepare the lock prior to the registration of the netdev, 1133 * as once it's registered we might reach flows requiring it 1134 * [it's even possible to reach a flow needing it directly 1135 * from there, although it's unlikely]. 1136 */ 1137 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 1138 mutex_init(&edev->qede_lock); 1139 1140 rc = register_netdev(edev->ndev); 1141 if (rc) { 1142 DP_NOTICE(edev, "Cannot register net-device\n"); 1143 goto err4; 1144 } 1145 } 1146 1147 edev->ops->common->set_name(cdev, edev->ndev->name); 1148 1149 /* PTP not supported on VFs */ 1150 if (!is_vf) 1151 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL)); 1152 1153 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 1154 1155 #ifdef CONFIG_DCB 1156 if (!IS_VF(edev)) 1157 qede_set_dcbnl_ops(edev->ndev); 1158 #endif 1159 1160 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 1161 1162 qede_log_probe(edev); 1163 return 0; 1164 1165 err4: 1166 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY)); 1167 err3: 1168 free_netdev(edev->ndev); 1169 err2: 1170 qed_ops->common->slowpath_stop(cdev); 1171 err1: 1172 qed_ops->common->remove(cdev); 1173 err0: 1174 return rc; 1175 } 1176 1177 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1178 { 1179 bool is_vf = false; 1180 u32 dp_module = 0; 1181 u8 dp_level = 0; 1182 1183 switch ((enum qede_pci_private)id->driver_data) { 1184 case QEDE_PRIVATE_VF: 1185 if (debug & QED_LOG_VERBOSE_MASK) 1186 dev_err(&pdev->dev, "Probing a VF\n"); 1187 is_vf = true; 1188 break; 1189 default: 1190 if (debug & QED_LOG_VERBOSE_MASK) 1191 dev_err(&pdev->dev, "Probing a PF\n"); 1192 } 1193 1194 qede_config_debug(debug, &dp_module, &dp_level); 1195 1196 return __qede_probe(pdev, dp_module, dp_level, is_vf, 1197 QEDE_PROBE_NORMAL); 1198 } 1199 1200 enum qede_remove_mode { 1201 QEDE_REMOVE_NORMAL, 1202 QEDE_REMOVE_RECOVERY, 1203 }; 1204 1205 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 1206 { 1207 struct net_device *ndev = pci_get_drvdata(pdev); 1208 struct qede_dev *edev = netdev_priv(ndev); 1209 struct qed_dev *cdev = edev->cdev; 1210 1211 DP_INFO(edev, "Starting qede_remove\n"); 1212 1213 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY)); 1214 1215 if (mode != QEDE_REMOVE_RECOVERY) { 1216 unregister_netdev(ndev); 1217 1218 cancel_delayed_work_sync(&edev->sp_task); 1219 1220 edev->ops->common->set_power_state(cdev, PCI_D0); 1221 1222 pci_set_drvdata(pdev, NULL); 1223 } 1224 1225 qede_ptp_disable(edev); 1226 1227 /* Use global ops since we've freed edev */ 1228 qed_ops->common->slowpath_stop(cdev); 1229 if (system_state == SYSTEM_POWER_OFF) 1230 return; 1231 qed_ops->common->remove(cdev); 1232 1233 /* Since this can happen out-of-sync with other flows, 1234 * don't release the netdevice until after slowpath stop 1235 * has been called to guarantee various other contexts 1236 * [e.g., QED register callbacks] won't break anything when 1237 * accessing the netdevice. 1238 */ 1239 if (mode != QEDE_REMOVE_RECOVERY) 1240 free_netdev(ndev); 1241 1242 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1243 } 1244 1245 static void qede_remove(struct pci_dev *pdev) 1246 { 1247 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1248 } 1249 1250 static void qede_shutdown(struct pci_dev *pdev) 1251 { 1252 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1253 } 1254 1255 /* ------------------------------------------------------------------------- 1256 * START OF LOAD / UNLOAD 1257 * ------------------------------------------------------------------------- 1258 */ 1259 1260 static int qede_set_num_queues(struct qede_dev *edev) 1261 { 1262 int rc; 1263 u16 rss_num; 1264 1265 /* Setup queues according to possible resources*/ 1266 if (edev->req_queues) 1267 rss_num = edev->req_queues; 1268 else 1269 rss_num = netif_get_num_default_rss_queues() * 1270 edev->dev_info.common.num_hwfns; 1271 1272 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1273 1274 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1275 if (rc > 0) { 1276 /* Managed to request interrupts for our queues */ 1277 edev->num_queues = rc; 1278 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1279 QEDE_QUEUE_CNT(edev), rss_num); 1280 rc = 0; 1281 } 1282 1283 edev->fp_num_tx = edev->req_num_tx; 1284 edev->fp_num_rx = edev->req_num_rx; 1285 1286 return rc; 1287 } 1288 1289 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info, 1290 u16 sb_id) 1291 { 1292 if (sb_info->sb_virt) { 1293 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id, 1294 QED_SB_TYPE_L2_QUEUE); 1295 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1296 (void *)sb_info->sb_virt, sb_info->sb_phys); 1297 memset(sb_info, 0, sizeof(*sb_info)); 1298 } 1299 } 1300 1301 /* This function allocates fast-path status block memory */ 1302 static int qede_alloc_mem_sb(struct qede_dev *edev, 1303 struct qed_sb_info *sb_info, u16 sb_id) 1304 { 1305 struct status_block_e4 *sb_virt; 1306 dma_addr_t sb_phys; 1307 int rc; 1308 1309 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1310 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1311 if (!sb_virt) { 1312 DP_ERR(edev, "Status block allocation failed\n"); 1313 return -ENOMEM; 1314 } 1315 1316 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1317 sb_virt, sb_phys, sb_id, 1318 QED_SB_TYPE_L2_QUEUE); 1319 if (rc) { 1320 DP_ERR(edev, "Status block initialization failed\n"); 1321 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1322 sb_virt, sb_phys); 1323 return rc; 1324 } 1325 1326 return 0; 1327 } 1328 1329 static void qede_free_rx_buffers(struct qede_dev *edev, 1330 struct qede_rx_queue *rxq) 1331 { 1332 u16 i; 1333 1334 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1335 struct sw_rx_data *rx_buf; 1336 struct page *data; 1337 1338 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1339 data = rx_buf->data; 1340 1341 dma_unmap_page(&edev->pdev->dev, 1342 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1343 1344 rx_buf->data = NULL; 1345 __free_page(data); 1346 } 1347 } 1348 1349 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1350 { 1351 /* Free rx buffers */ 1352 qede_free_rx_buffers(edev, rxq); 1353 1354 /* Free the parallel SW ring */ 1355 kfree(rxq->sw_rx_ring); 1356 1357 /* Free the real RQ ring used by FW */ 1358 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1359 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1360 } 1361 1362 static void qede_set_tpa_param(struct qede_rx_queue *rxq) 1363 { 1364 int i; 1365 1366 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1367 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1368 1369 tpa_info->state = QEDE_AGG_STATE_NONE; 1370 } 1371 } 1372 1373 /* This function allocates all memory needed per Rx queue */ 1374 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1375 { 1376 int i, rc, size; 1377 1378 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1379 1380 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1381 1382 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD; 1383 size = rxq->rx_headroom + 1384 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1385 1386 /* Make sure that the headroom and payload fit in a single page */ 1387 if (rxq->rx_buf_size + size > PAGE_SIZE) 1388 rxq->rx_buf_size = PAGE_SIZE - size; 1389 1390 /* Segment size to spilt a page in multiple equal parts , 1391 * unless XDP is used in which case we'd use the entire page. 1392 */ 1393 if (!edev->xdp_prog) { 1394 size = size + rxq->rx_buf_size; 1395 rxq->rx_buf_seg_size = roundup_pow_of_two(size); 1396 } else { 1397 rxq->rx_buf_seg_size = PAGE_SIZE; 1398 } 1399 1400 /* Allocate the parallel driver ring for Rx buffers */ 1401 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1402 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1403 if (!rxq->sw_rx_ring) { 1404 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1405 rc = -ENOMEM; 1406 goto err; 1407 } 1408 1409 /* Allocate FW Rx ring */ 1410 rc = edev->ops->common->chain_alloc(edev->cdev, 1411 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1412 QED_CHAIN_MODE_NEXT_PTR, 1413 QED_CHAIN_CNT_TYPE_U16, 1414 RX_RING_SIZE, 1415 sizeof(struct eth_rx_bd), 1416 &rxq->rx_bd_ring, NULL); 1417 if (rc) 1418 goto err; 1419 1420 /* Allocate FW completion ring */ 1421 rc = edev->ops->common->chain_alloc(edev->cdev, 1422 QED_CHAIN_USE_TO_CONSUME, 1423 QED_CHAIN_MODE_PBL, 1424 QED_CHAIN_CNT_TYPE_U16, 1425 RX_RING_SIZE, 1426 sizeof(union eth_rx_cqe), 1427 &rxq->rx_comp_ring, NULL); 1428 if (rc) 1429 goto err; 1430 1431 /* Allocate buffers for the Rx ring */ 1432 rxq->filled_buffers = 0; 1433 for (i = 0; i < rxq->num_rx_buffers; i++) { 1434 rc = qede_alloc_rx_buffer(rxq, false); 1435 if (rc) { 1436 DP_ERR(edev, 1437 "Rx buffers allocation failed at index %d\n", i); 1438 goto err; 1439 } 1440 } 1441 1442 if (!edev->gro_disable) 1443 qede_set_tpa_param(rxq); 1444 err: 1445 return rc; 1446 } 1447 1448 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1449 { 1450 /* Free the parallel SW ring */ 1451 if (txq->is_xdp) 1452 kfree(txq->sw_tx_ring.xdp); 1453 else 1454 kfree(txq->sw_tx_ring.skbs); 1455 1456 /* Free the real RQ ring used by FW */ 1457 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1458 } 1459 1460 /* This function allocates all memory needed per Tx queue */ 1461 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1462 { 1463 union eth_tx_bd_types *p_virt; 1464 int size, rc; 1465 1466 txq->num_tx_buffers = edev->q_num_tx_buffers; 1467 1468 /* Allocate the parallel driver ring for Tx buffers */ 1469 if (txq->is_xdp) { 1470 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers; 1471 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1472 if (!txq->sw_tx_ring.xdp) 1473 goto err; 1474 } else { 1475 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers; 1476 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1477 if (!txq->sw_tx_ring.skbs) 1478 goto err; 1479 } 1480 1481 rc = edev->ops->common->chain_alloc(edev->cdev, 1482 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1483 QED_CHAIN_MODE_PBL, 1484 QED_CHAIN_CNT_TYPE_U16, 1485 txq->num_tx_buffers, 1486 sizeof(*p_virt), 1487 &txq->tx_pbl, NULL); 1488 if (rc) 1489 goto err; 1490 1491 return 0; 1492 1493 err: 1494 qede_free_mem_txq(edev, txq); 1495 return -ENOMEM; 1496 } 1497 1498 /* This function frees all memory of a single fp */ 1499 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1500 { 1501 qede_free_mem_sb(edev, fp->sb_info, fp->id); 1502 1503 if (fp->type & QEDE_FASTPATH_RX) 1504 qede_free_mem_rxq(edev, fp->rxq); 1505 1506 if (fp->type & QEDE_FASTPATH_XDP) 1507 qede_free_mem_txq(edev, fp->xdp_tx); 1508 1509 if (fp->type & QEDE_FASTPATH_TX) { 1510 int cos; 1511 1512 for_each_cos_in_txq(edev, cos) 1513 qede_free_mem_txq(edev, &fp->txq[cos]); 1514 } 1515 } 1516 1517 /* This function allocates all memory needed for a single fp (i.e. an entity 1518 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1519 */ 1520 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1521 { 1522 int rc = 0; 1523 1524 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1525 if (rc) 1526 goto out; 1527 1528 if (fp->type & QEDE_FASTPATH_RX) { 1529 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1530 if (rc) 1531 goto out; 1532 } 1533 1534 if (fp->type & QEDE_FASTPATH_XDP) { 1535 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1536 if (rc) 1537 goto out; 1538 } 1539 1540 if (fp->type & QEDE_FASTPATH_TX) { 1541 int cos; 1542 1543 for_each_cos_in_txq(edev, cos) { 1544 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]); 1545 if (rc) 1546 goto out; 1547 } 1548 } 1549 1550 out: 1551 return rc; 1552 } 1553 1554 static void qede_free_mem_load(struct qede_dev *edev) 1555 { 1556 int i; 1557 1558 for_each_queue(i) { 1559 struct qede_fastpath *fp = &edev->fp_array[i]; 1560 1561 qede_free_mem_fp(edev, fp); 1562 } 1563 } 1564 1565 /* This function allocates all qede memory at NIC load. */ 1566 static int qede_alloc_mem_load(struct qede_dev *edev) 1567 { 1568 int rc = 0, queue_id; 1569 1570 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1571 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1572 1573 rc = qede_alloc_mem_fp(edev, fp); 1574 if (rc) { 1575 DP_ERR(edev, 1576 "Failed to allocate memory for fastpath - rss id = %d\n", 1577 queue_id); 1578 qede_free_mem_load(edev); 1579 return rc; 1580 } 1581 } 1582 1583 return 0; 1584 } 1585 1586 static void qede_empty_tx_queue(struct qede_dev *edev, 1587 struct qede_tx_queue *txq) 1588 { 1589 unsigned int pkts_compl = 0, bytes_compl = 0; 1590 struct netdev_queue *netdev_txq; 1591 int rc, len = 0; 1592 1593 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 1594 1595 while (qed_chain_get_cons_idx(&txq->tx_pbl) != 1596 qed_chain_get_prod_idx(&txq->tx_pbl)) { 1597 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1598 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1599 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl), 1600 qed_chain_get_prod_idx(&txq->tx_pbl)); 1601 1602 rc = qede_free_tx_pkt(edev, txq, &len); 1603 if (rc) { 1604 DP_NOTICE(edev, 1605 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n", 1606 txq->index, 1607 qed_chain_get_cons_idx(&txq->tx_pbl), 1608 qed_chain_get_prod_idx(&txq->tx_pbl)); 1609 break; 1610 } 1611 1612 bytes_compl += len; 1613 pkts_compl++; 1614 txq->sw_tx_cons++; 1615 } 1616 1617 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 1618 } 1619 1620 static void qede_empty_tx_queues(struct qede_dev *edev) 1621 { 1622 int i; 1623 1624 for_each_queue(i) 1625 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) { 1626 int cos; 1627 1628 for_each_cos_in_txq(edev, cos) { 1629 struct qede_fastpath *fp; 1630 1631 fp = &edev->fp_array[i]; 1632 qede_empty_tx_queue(edev, 1633 &fp->txq[cos]); 1634 } 1635 } 1636 } 1637 1638 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1639 static void qede_init_fp(struct qede_dev *edev) 1640 { 1641 int queue_id, rxq_index = 0, txq_index = 0; 1642 struct qede_fastpath *fp; 1643 1644 for_each_queue(queue_id) { 1645 fp = &edev->fp_array[queue_id]; 1646 1647 fp->edev = edev; 1648 fp->id = queue_id; 1649 1650 if (fp->type & QEDE_FASTPATH_XDP) { 1651 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1652 rxq_index); 1653 fp->xdp_tx->is_xdp = 1; 1654 } 1655 1656 if (fp->type & QEDE_FASTPATH_RX) { 1657 fp->rxq->rxq_id = rxq_index++; 1658 1659 /* Determine how to map buffers for this queue */ 1660 if (fp->type & QEDE_FASTPATH_XDP) 1661 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1662 else 1663 fp->rxq->data_direction = DMA_FROM_DEVICE; 1664 fp->rxq->dev = &edev->pdev->dev; 1665 1666 /* Driver have no error path from here */ 1667 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev, 1668 fp->rxq->rxq_id) < 0); 1669 } 1670 1671 if (fp->type & QEDE_FASTPATH_TX) { 1672 int cos; 1673 1674 for_each_cos_in_txq(edev, cos) { 1675 struct qede_tx_queue *txq = &fp->txq[cos]; 1676 u16 ndev_tx_id; 1677 1678 txq->cos = cos; 1679 txq->index = txq_index; 1680 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq); 1681 txq->ndev_txq_id = ndev_tx_id; 1682 1683 if (edev->dev_info.is_legacy) 1684 txq->is_legacy = 1; 1685 txq->dev = &edev->pdev->dev; 1686 } 1687 1688 txq_index++; 1689 } 1690 1691 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1692 edev->ndev->name, queue_id); 1693 } 1694 1695 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW); 1696 } 1697 1698 static int qede_set_real_num_queues(struct qede_dev *edev) 1699 { 1700 int rc = 0; 1701 1702 rc = netif_set_real_num_tx_queues(edev->ndev, 1703 QEDE_TSS_COUNT(edev) * 1704 edev->dev_info.num_tc); 1705 if (rc) { 1706 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1707 return rc; 1708 } 1709 1710 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1711 if (rc) { 1712 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1713 return rc; 1714 } 1715 1716 return 0; 1717 } 1718 1719 static void qede_napi_disable_remove(struct qede_dev *edev) 1720 { 1721 int i; 1722 1723 for_each_queue(i) { 1724 napi_disable(&edev->fp_array[i].napi); 1725 1726 netif_napi_del(&edev->fp_array[i].napi); 1727 } 1728 } 1729 1730 static void qede_napi_add_enable(struct qede_dev *edev) 1731 { 1732 int i; 1733 1734 /* Add NAPI objects */ 1735 for_each_queue(i) { 1736 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1737 qede_poll, NAPI_POLL_WEIGHT); 1738 napi_enable(&edev->fp_array[i].napi); 1739 } 1740 } 1741 1742 static void qede_sync_free_irqs(struct qede_dev *edev) 1743 { 1744 int i; 1745 1746 for (i = 0; i < edev->int_info.used_cnt; i++) { 1747 if (edev->int_info.msix_cnt) { 1748 synchronize_irq(edev->int_info.msix[i].vector); 1749 free_irq(edev->int_info.msix[i].vector, 1750 &edev->fp_array[i]); 1751 } else { 1752 edev->ops->common->simd_handler_clean(edev->cdev, i); 1753 } 1754 } 1755 1756 edev->int_info.used_cnt = 0; 1757 } 1758 1759 static int qede_req_msix_irqs(struct qede_dev *edev) 1760 { 1761 int i, rc; 1762 1763 /* Sanitize number of interrupts == number of prepared RSS queues */ 1764 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1765 DP_ERR(edev, 1766 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1767 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1768 return -EINVAL; 1769 } 1770 1771 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1772 #ifdef CONFIG_RFS_ACCEL 1773 struct qede_fastpath *fp = &edev->fp_array[i]; 1774 1775 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1776 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1777 edev->int_info.msix[i].vector); 1778 if (rc) { 1779 DP_ERR(edev, "Failed to add CPU rmap\n"); 1780 qede_free_arfs(edev); 1781 } 1782 } 1783 #endif 1784 rc = request_irq(edev->int_info.msix[i].vector, 1785 qede_msix_fp_int, 0, edev->fp_array[i].name, 1786 &edev->fp_array[i]); 1787 if (rc) { 1788 DP_ERR(edev, "Request fp %d irq failed\n", i); 1789 qede_sync_free_irqs(edev); 1790 return rc; 1791 } 1792 DP_VERBOSE(edev, NETIF_MSG_INTR, 1793 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1794 edev->fp_array[i].name, i, 1795 &edev->fp_array[i]); 1796 edev->int_info.used_cnt++; 1797 } 1798 1799 return 0; 1800 } 1801 1802 static void qede_simd_fp_handler(void *cookie) 1803 { 1804 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1805 1806 napi_schedule_irqoff(&fp->napi); 1807 } 1808 1809 static int qede_setup_irqs(struct qede_dev *edev) 1810 { 1811 int i, rc = 0; 1812 1813 /* Learn Interrupt configuration */ 1814 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1815 if (rc) 1816 return rc; 1817 1818 if (edev->int_info.msix_cnt) { 1819 rc = qede_req_msix_irqs(edev); 1820 if (rc) 1821 return rc; 1822 edev->ndev->irq = edev->int_info.msix[0].vector; 1823 } else { 1824 const struct qed_common_ops *ops; 1825 1826 /* qed should learn receive the RSS ids and callbacks */ 1827 ops = edev->ops->common; 1828 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1829 ops->simd_handler_config(edev->cdev, 1830 &edev->fp_array[i], i, 1831 qede_simd_fp_handler); 1832 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1833 } 1834 return 0; 1835 } 1836 1837 static int qede_drain_txq(struct qede_dev *edev, 1838 struct qede_tx_queue *txq, bool allow_drain) 1839 { 1840 int rc, cnt = 1000; 1841 1842 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1843 if (!cnt) { 1844 if (allow_drain) { 1845 DP_NOTICE(edev, 1846 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1847 txq->index); 1848 rc = edev->ops->common->drain(edev->cdev); 1849 if (rc) 1850 return rc; 1851 return qede_drain_txq(edev, txq, false); 1852 } 1853 DP_NOTICE(edev, 1854 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1855 txq->index, txq->sw_tx_prod, 1856 txq->sw_tx_cons); 1857 return -ENODEV; 1858 } 1859 cnt--; 1860 usleep_range(1000, 2000); 1861 barrier(); 1862 } 1863 1864 /* FW finished processing, wait for HW to transmit all tx packets */ 1865 usleep_range(1000, 2000); 1866 1867 return 0; 1868 } 1869 1870 static int qede_stop_txq(struct qede_dev *edev, 1871 struct qede_tx_queue *txq, int rss_id) 1872 { 1873 /* delete doorbell from doorbell recovery mechanism */ 1874 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr, 1875 &txq->tx_db); 1876 1877 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1878 } 1879 1880 static int qede_stop_queues(struct qede_dev *edev) 1881 { 1882 struct qed_update_vport_params *vport_update_params; 1883 struct qed_dev *cdev = edev->cdev; 1884 struct qede_fastpath *fp; 1885 int rc, i; 1886 1887 /* Disable the vport */ 1888 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1889 if (!vport_update_params) 1890 return -ENOMEM; 1891 1892 vport_update_params->vport_id = 0; 1893 vport_update_params->update_vport_active_flg = 1; 1894 vport_update_params->vport_active_flg = 0; 1895 vport_update_params->update_rss_flg = 0; 1896 1897 rc = edev->ops->vport_update(cdev, vport_update_params); 1898 vfree(vport_update_params); 1899 1900 if (rc) { 1901 DP_ERR(edev, "Failed to update vport\n"); 1902 return rc; 1903 } 1904 1905 /* Flush Tx queues. If needed, request drain from MCP */ 1906 for_each_queue(i) { 1907 fp = &edev->fp_array[i]; 1908 1909 if (fp->type & QEDE_FASTPATH_TX) { 1910 int cos; 1911 1912 for_each_cos_in_txq(edev, cos) { 1913 rc = qede_drain_txq(edev, &fp->txq[cos], true); 1914 if (rc) 1915 return rc; 1916 } 1917 } 1918 1919 if (fp->type & QEDE_FASTPATH_XDP) { 1920 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1921 if (rc) 1922 return rc; 1923 } 1924 } 1925 1926 /* Stop all Queues in reverse order */ 1927 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1928 fp = &edev->fp_array[i]; 1929 1930 /* Stop the Tx Queue(s) */ 1931 if (fp->type & QEDE_FASTPATH_TX) { 1932 int cos; 1933 1934 for_each_cos_in_txq(edev, cos) { 1935 rc = qede_stop_txq(edev, &fp->txq[cos], i); 1936 if (rc) 1937 return rc; 1938 } 1939 } 1940 1941 /* Stop the Rx Queue */ 1942 if (fp->type & QEDE_FASTPATH_RX) { 1943 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1944 if (rc) { 1945 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1946 return rc; 1947 } 1948 } 1949 1950 /* Stop the XDP forwarding queue */ 1951 if (fp->type & QEDE_FASTPATH_XDP) { 1952 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1953 if (rc) 1954 return rc; 1955 1956 bpf_prog_put(fp->rxq->xdp_prog); 1957 } 1958 } 1959 1960 /* Stop the vport */ 1961 rc = edev->ops->vport_stop(cdev, 0); 1962 if (rc) 1963 DP_ERR(edev, "Failed to stop VPORT\n"); 1964 1965 return rc; 1966 } 1967 1968 static int qede_start_txq(struct qede_dev *edev, 1969 struct qede_fastpath *fp, 1970 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1971 { 1972 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1973 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1974 struct qed_queue_start_common_params params; 1975 struct qed_txq_start_ret_params ret_params; 1976 int rc; 1977 1978 memset(¶ms, 0, sizeof(params)); 1979 memset(&ret_params, 0, sizeof(ret_params)); 1980 1981 /* Let the XDP queue share the queue-zone with one of the regular txq. 1982 * We don't really care about its coalescing. 1983 */ 1984 if (txq->is_xdp) 1985 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1986 else 1987 params.queue_id = txq->index; 1988 1989 params.p_sb = fp->sb_info; 1990 params.sb_idx = sb_idx; 1991 params.tc = txq->cos; 1992 1993 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1994 page_cnt, &ret_params); 1995 if (rc) { 1996 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1997 return rc; 1998 } 1999 2000 txq->doorbell_addr = ret_params.p_doorbell; 2001 txq->handle = ret_params.p_handle; 2002 2003 /* Determine the FW consumer address associated */ 2004 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 2005 2006 /* Prepare the doorbell parameters */ 2007 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 2008 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 2009 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 2010 DQ_XCM_ETH_TX_BD_PROD_CMD); 2011 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2012 2013 /* register doorbell with doorbell recovery mechanism */ 2014 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr, 2015 &txq->tx_db, DB_REC_WIDTH_32B, 2016 DB_REC_KERNEL); 2017 2018 return rc; 2019 } 2020 2021 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 2022 { 2023 int vlan_removal_en = 1; 2024 struct qed_dev *cdev = edev->cdev; 2025 struct qed_dev_info *qed_info = &edev->dev_info.common; 2026 struct qed_update_vport_params *vport_update_params; 2027 struct qed_queue_start_common_params q_params; 2028 struct qed_start_vport_params start = {0}; 2029 int rc, i; 2030 2031 if (!edev->num_queues) { 2032 DP_ERR(edev, 2033 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2034 return -EINVAL; 2035 } 2036 2037 vport_update_params = vzalloc(sizeof(*vport_update_params)); 2038 if (!vport_update_params) 2039 return -ENOMEM; 2040 2041 start.handle_ptp_pkts = !!(edev->ptp); 2042 start.gro_enable = !edev->gro_disable; 2043 start.mtu = edev->ndev->mtu; 2044 start.vport_id = 0; 2045 start.drop_ttl0 = true; 2046 start.remove_inner_vlan = vlan_removal_en; 2047 start.clear_stats = clear_stats; 2048 2049 rc = edev->ops->vport_start(cdev, &start); 2050 2051 if (rc) { 2052 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2053 goto out; 2054 } 2055 2056 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2057 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2058 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2059 2060 for_each_queue(i) { 2061 struct qede_fastpath *fp = &edev->fp_array[i]; 2062 dma_addr_t p_phys_table; 2063 u32 page_cnt; 2064 2065 if (fp->type & QEDE_FASTPATH_RX) { 2066 struct qed_rxq_start_ret_params ret_params; 2067 struct qede_rx_queue *rxq = fp->rxq; 2068 __le16 *val; 2069 2070 memset(&ret_params, 0, sizeof(ret_params)); 2071 memset(&q_params, 0, sizeof(q_params)); 2072 q_params.queue_id = rxq->rxq_id; 2073 q_params.vport_id = 0; 2074 q_params.p_sb = fp->sb_info; 2075 q_params.sb_idx = RX_PI; 2076 2077 p_phys_table = 2078 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 2079 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 2080 2081 rc = edev->ops->q_rx_start(cdev, i, &q_params, 2082 rxq->rx_buf_size, 2083 rxq->rx_bd_ring.p_phys_addr, 2084 p_phys_table, 2085 page_cnt, &ret_params); 2086 if (rc) { 2087 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 2088 rc); 2089 goto out; 2090 } 2091 2092 /* Use the return parameters */ 2093 rxq->hw_rxq_prod_addr = ret_params.p_prod; 2094 rxq->handle = ret_params.p_handle; 2095 2096 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2097 rxq->hw_cons_ptr = val; 2098 2099 qede_update_rx_prod(edev, rxq); 2100 } 2101 2102 if (fp->type & QEDE_FASTPATH_XDP) { 2103 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 2104 if (rc) 2105 goto out; 2106 2107 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 2108 if (IS_ERR(fp->rxq->xdp_prog)) { 2109 rc = PTR_ERR(fp->rxq->xdp_prog); 2110 fp->rxq->xdp_prog = NULL; 2111 goto out; 2112 } 2113 } 2114 2115 if (fp->type & QEDE_FASTPATH_TX) { 2116 int cos; 2117 2118 for_each_cos_in_txq(edev, cos) { 2119 rc = qede_start_txq(edev, fp, &fp->txq[cos], i, 2120 TX_PI(cos)); 2121 if (rc) 2122 goto out; 2123 } 2124 } 2125 } 2126 2127 /* Prepare and send the vport enable */ 2128 vport_update_params->vport_id = start.vport_id; 2129 vport_update_params->update_vport_active_flg = 1; 2130 vport_update_params->vport_active_flg = 1; 2131 2132 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) && 2133 qed_info->tx_switching) { 2134 vport_update_params->update_tx_switching_flg = 1; 2135 vport_update_params->tx_switching_flg = 1; 2136 } 2137 2138 qede_fill_rss_params(edev, &vport_update_params->rss_params, 2139 &vport_update_params->update_rss_flg); 2140 2141 rc = edev->ops->vport_update(cdev, vport_update_params); 2142 if (rc) 2143 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2144 2145 out: 2146 vfree(vport_update_params); 2147 return rc; 2148 } 2149 2150 enum qede_unload_mode { 2151 QEDE_UNLOAD_NORMAL, 2152 QEDE_UNLOAD_RECOVERY, 2153 }; 2154 2155 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 2156 bool is_locked) 2157 { 2158 struct qed_link_params link_params; 2159 int rc; 2160 2161 DP_INFO(edev, "Starting qede unload\n"); 2162 2163 if (!is_locked) 2164 __qede_lock(edev); 2165 2166 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2167 2168 if (mode != QEDE_UNLOAD_RECOVERY) 2169 edev->state = QEDE_STATE_CLOSED; 2170 2171 qede_rdma_dev_event_close(edev); 2172 2173 /* Close OS Tx */ 2174 netif_tx_disable(edev->ndev); 2175 netif_carrier_off(edev->ndev); 2176 2177 if (mode != QEDE_UNLOAD_RECOVERY) { 2178 /* Reset the link */ 2179 memset(&link_params, 0, sizeof(link_params)); 2180 link_params.link_up = false; 2181 edev->ops->common->set_link(edev->cdev, &link_params); 2182 2183 rc = qede_stop_queues(edev); 2184 if (rc) { 2185 qede_sync_free_irqs(edev); 2186 goto out; 2187 } 2188 2189 DP_INFO(edev, "Stopped Queues\n"); 2190 } 2191 2192 qede_vlan_mark_nonconfigured(edev); 2193 edev->ops->fastpath_stop(edev->cdev); 2194 2195 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2196 qede_poll_for_freeing_arfs_filters(edev); 2197 qede_free_arfs(edev); 2198 } 2199 2200 /* Release the interrupts */ 2201 qede_sync_free_irqs(edev); 2202 edev->ops->common->set_fp_int(edev->cdev, 0); 2203 2204 qede_napi_disable_remove(edev); 2205 2206 if (mode == QEDE_UNLOAD_RECOVERY) 2207 qede_empty_tx_queues(edev); 2208 2209 qede_free_mem_load(edev); 2210 qede_free_fp_array(edev); 2211 2212 out: 2213 if (!is_locked) 2214 __qede_unlock(edev); 2215 2216 if (mode != QEDE_UNLOAD_RECOVERY) 2217 DP_NOTICE(edev, "Link is down\n"); 2218 2219 edev->ptp_skip_txts = 0; 2220 2221 DP_INFO(edev, "Ending qede unload\n"); 2222 } 2223 2224 enum qede_load_mode { 2225 QEDE_LOAD_NORMAL, 2226 QEDE_LOAD_RELOAD, 2227 QEDE_LOAD_RECOVERY, 2228 }; 2229 2230 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 2231 bool is_locked) 2232 { 2233 struct qed_link_params link_params; 2234 u8 num_tc; 2235 int rc; 2236 2237 DP_INFO(edev, "Starting qede load\n"); 2238 2239 if (!is_locked) 2240 __qede_lock(edev); 2241 2242 rc = qede_set_num_queues(edev); 2243 if (rc) 2244 goto out; 2245 2246 rc = qede_alloc_fp_array(edev); 2247 if (rc) 2248 goto out; 2249 2250 qede_init_fp(edev); 2251 2252 rc = qede_alloc_mem_load(edev); 2253 if (rc) 2254 goto err1; 2255 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 2256 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 2257 2258 rc = qede_set_real_num_queues(edev); 2259 if (rc) 2260 goto err2; 2261 2262 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 2263 rc = qede_alloc_arfs(edev); 2264 if (rc) 2265 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 2266 } 2267 2268 qede_napi_add_enable(edev); 2269 DP_INFO(edev, "Napi added and enabled\n"); 2270 2271 rc = qede_setup_irqs(edev); 2272 if (rc) 2273 goto err3; 2274 DP_INFO(edev, "Setup IRQs succeeded\n"); 2275 2276 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 2277 if (rc) 2278 goto err4; 2279 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 2280 2281 num_tc = netdev_get_num_tc(edev->ndev); 2282 num_tc = num_tc ? num_tc : edev->dev_info.num_tc; 2283 qede_setup_tc(edev->ndev, num_tc); 2284 2285 /* Program un-configured VLANs */ 2286 qede_configure_vlan_filters(edev); 2287 2288 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags); 2289 2290 /* Ask for link-up using current configuration */ 2291 memset(&link_params, 0, sizeof(link_params)); 2292 link_params.link_up = true; 2293 edev->ops->common->set_link(edev->cdev, &link_params); 2294 2295 edev->state = QEDE_STATE_OPEN; 2296 2297 DP_INFO(edev, "Ending successfully qede load\n"); 2298 2299 goto out; 2300 err4: 2301 qede_sync_free_irqs(edev); 2302 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 2303 err3: 2304 qede_napi_disable_remove(edev); 2305 err2: 2306 qede_free_mem_load(edev); 2307 err1: 2308 edev->ops->common->set_fp_int(edev->cdev, 0); 2309 qede_free_fp_array(edev); 2310 edev->num_queues = 0; 2311 edev->fp_num_tx = 0; 2312 edev->fp_num_rx = 0; 2313 out: 2314 if (!is_locked) 2315 __qede_unlock(edev); 2316 2317 return rc; 2318 } 2319 2320 /* 'func' should be able to run between unload and reload assuming interface 2321 * is actually running, or afterwards in case it's currently DOWN. 2322 */ 2323 void qede_reload(struct qede_dev *edev, 2324 struct qede_reload_args *args, bool is_locked) 2325 { 2326 if (!is_locked) 2327 __qede_lock(edev); 2328 2329 /* Since qede_lock is held, internal state wouldn't change even 2330 * if netdev state would start transitioning. Check whether current 2331 * internal configuration indicates device is up, then reload. 2332 */ 2333 if (edev->state == QEDE_STATE_OPEN) { 2334 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2335 if (args) 2336 args->func(edev, args); 2337 qede_load(edev, QEDE_LOAD_RELOAD, true); 2338 2339 /* Since no one is going to do it for us, re-configure */ 2340 qede_config_rx_mode(edev->ndev); 2341 } else if (args) { 2342 args->func(edev, args); 2343 } 2344 2345 if (!is_locked) 2346 __qede_unlock(edev); 2347 } 2348 2349 /* called with rtnl_lock */ 2350 static int qede_open(struct net_device *ndev) 2351 { 2352 struct qede_dev *edev = netdev_priv(ndev); 2353 int rc; 2354 2355 netif_carrier_off(ndev); 2356 2357 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2358 2359 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2360 if (rc) 2361 return rc; 2362 2363 udp_tunnel_get_rx_info(ndev); 2364 2365 edev->ops->common->update_drv_state(edev->cdev, true); 2366 2367 return 0; 2368 } 2369 2370 static int qede_close(struct net_device *ndev) 2371 { 2372 struct qede_dev *edev = netdev_priv(ndev); 2373 2374 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2375 2376 edev->ops->common->update_drv_state(edev->cdev, false); 2377 2378 return 0; 2379 } 2380 2381 static void qede_link_update(void *dev, struct qed_link_output *link) 2382 { 2383 struct qede_dev *edev = dev; 2384 2385 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) { 2386 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n"); 2387 return; 2388 } 2389 2390 if (link->link_up) { 2391 if (!netif_carrier_ok(edev->ndev)) { 2392 DP_NOTICE(edev, "Link is up\n"); 2393 netif_tx_start_all_queues(edev->ndev); 2394 netif_carrier_on(edev->ndev); 2395 qede_rdma_dev_event_open(edev); 2396 } 2397 } else { 2398 if (netif_carrier_ok(edev->ndev)) { 2399 DP_NOTICE(edev, "Link is down\n"); 2400 netif_tx_disable(edev->ndev); 2401 netif_carrier_off(edev->ndev); 2402 qede_rdma_dev_event_close(edev); 2403 } 2404 } 2405 } 2406 2407 static void qede_schedule_recovery_handler(void *dev) 2408 { 2409 struct qede_dev *edev = dev; 2410 2411 if (edev->state == QEDE_STATE_RECOVERY) { 2412 DP_NOTICE(edev, 2413 "Avoid scheduling a recovery handling since already in recovery state\n"); 2414 return; 2415 } 2416 2417 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags); 2418 schedule_delayed_work(&edev->sp_task, 0); 2419 2420 DP_INFO(edev, "Scheduled a recovery handler\n"); 2421 } 2422 2423 static void qede_recovery_failed(struct qede_dev *edev) 2424 { 2425 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n"); 2426 2427 netif_device_detach(edev->ndev); 2428 2429 if (edev->cdev) 2430 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot); 2431 } 2432 2433 static void qede_recovery_handler(struct qede_dev *edev) 2434 { 2435 u32 curr_state = edev->state; 2436 int rc; 2437 2438 DP_NOTICE(edev, "Starting a recovery process\n"); 2439 2440 /* No need to acquire first the qede_lock since is done by qede_sp_task 2441 * before calling this function. 2442 */ 2443 edev->state = QEDE_STATE_RECOVERY; 2444 2445 edev->ops->common->recovery_prolog(edev->cdev); 2446 2447 if (curr_state == QEDE_STATE_OPEN) 2448 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true); 2449 2450 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY); 2451 2452 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level, 2453 IS_VF(edev), QEDE_PROBE_RECOVERY); 2454 if (rc) { 2455 edev->cdev = NULL; 2456 goto err; 2457 } 2458 2459 if (curr_state == QEDE_STATE_OPEN) { 2460 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true); 2461 if (rc) 2462 goto err; 2463 2464 qede_config_rx_mode(edev->ndev); 2465 udp_tunnel_get_rx_info(edev->ndev); 2466 } 2467 2468 edev->state = curr_state; 2469 2470 DP_NOTICE(edev, "Recovery handling is done\n"); 2471 2472 return; 2473 2474 err: 2475 qede_recovery_failed(edev); 2476 } 2477 2478 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq) 2479 { 2480 struct netdev_queue *netdev_txq; 2481 2482 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 2483 if (netif_xmit_stopped(netdev_txq)) 2484 return true; 2485 2486 return false; 2487 } 2488 2489 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data) 2490 { 2491 struct qede_dev *edev = dev; 2492 struct netdev_hw_addr *ha; 2493 int i; 2494 2495 if (edev->ndev->features & NETIF_F_IP_CSUM) 2496 data->feat_flags |= QED_TLV_IP_CSUM; 2497 if (edev->ndev->features & NETIF_F_TSO) 2498 data->feat_flags |= QED_TLV_LSO; 2499 2500 ether_addr_copy(data->mac[0], edev->ndev->dev_addr); 2501 memset(data->mac[1], 0, ETH_ALEN); 2502 memset(data->mac[2], 0, ETH_ALEN); 2503 /* Copy the first two UC macs */ 2504 netif_addr_lock_bh(edev->ndev); 2505 i = 1; 2506 netdev_for_each_uc_addr(ha, edev->ndev) { 2507 ether_addr_copy(data->mac[i++], ha->addr); 2508 if (i == QED_TLV_MAC_COUNT) 2509 break; 2510 } 2511 2512 netif_addr_unlock_bh(edev->ndev); 2513 } 2514 2515 static void qede_get_eth_tlv_data(void *dev, void *data) 2516 { 2517 struct qed_mfw_tlv_eth *etlv = data; 2518 struct qede_dev *edev = dev; 2519 struct qede_fastpath *fp; 2520 int i; 2521 2522 etlv->lso_maxoff_size = 0XFFFF; 2523 etlv->lso_maxoff_size_set = true; 2524 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN; 2525 etlv->lso_minseg_size_set = true; 2526 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC); 2527 etlv->prom_mode_set = true; 2528 etlv->tx_descr_size = QEDE_TSS_COUNT(edev); 2529 etlv->tx_descr_size_set = true; 2530 etlv->rx_descr_size = QEDE_RSS_COUNT(edev); 2531 etlv->rx_descr_size_set = true; 2532 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB; 2533 etlv->iov_offload_set = true; 2534 2535 /* Fill information regarding queues; Should be done under the qede 2536 * lock to guarantee those don't change beneath our feet. 2537 */ 2538 etlv->txqs_empty = true; 2539 etlv->rxqs_empty = true; 2540 etlv->num_txqs_full = 0; 2541 etlv->num_rxqs_full = 0; 2542 2543 __qede_lock(edev); 2544 for_each_queue(i) { 2545 fp = &edev->fp_array[i]; 2546 if (fp->type & QEDE_FASTPATH_TX) { 2547 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp); 2548 2549 if (txq->sw_tx_cons != txq->sw_tx_prod) 2550 etlv->txqs_empty = false; 2551 if (qede_is_txq_full(edev, txq)) 2552 etlv->num_txqs_full++; 2553 } 2554 if (fp->type & QEDE_FASTPATH_RX) { 2555 if (qede_has_rx_work(fp->rxq)) 2556 etlv->rxqs_empty = false; 2557 2558 /* This one is a bit tricky; Firmware might stop 2559 * placing packets if ring is not yet full. 2560 * Give an approximation. 2561 */ 2562 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) - 2563 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) > 2564 RX_RING_SIZE - 100) 2565 etlv->num_rxqs_full++; 2566 } 2567 } 2568 __qede_unlock(edev); 2569 2570 etlv->txqs_empty_set = true; 2571 etlv->rxqs_empty_set = true; 2572 etlv->num_txqs_full_set = true; 2573 etlv->num_rxqs_full_set = true; 2574 } 2575