1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/version.h>
35 #include <linux/device.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/errno.h>
40 #include <linux/list.h>
41 #include <linux/string.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/interrupt.h>
44 #include <asm/byteorder.h>
45 #include <asm/param.h>
46 #include <linux/io.h>
47 #include <linux/netdev_features.h>
48 #include <linux/udp.h>
49 #include <linux/tcp.h>
50 #include <net/udp_tunnel.h>
51 #include <linux/ip.h>
52 #include <net/ipv6.h>
53 #include <net/tcp.h>
54 #include <linux/if_ether.h>
55 #include <linux/if_vlan.h>
56 #include <linux/pkt_sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/in.h>
59 #include <linux/random.h>
60 #include <net/ip6_checksum.h>
61 #include <linux/bitops.h>
62 #include <linux/vmalloc.h>
63 #include "qede.h"
64 #include "qede_ptp.h"
65 
66 static char version[] =
67 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
68 
69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_MODULE_VERSION);
72 
73 static uint debug;
74 module_param(debug, uint, 0);
75 MODULE_PARM_DESC(debug, " Default debug msglevel");
76 
77 static const struct qed_eth_ops *qed_ops;
78 
79 #define CHIP_NUM_57980S_40		0x1634
80 #define CHIP_NUM_57980S_10		0x1666
81 #define CHIP_NUM_57980S_MF		0x1636
82 #define CHIP_NUM_57980S_100		0x1644
83 #define CHIP_NUM_57980S_50		0x1654
84 #define CHIP_NUM_57980S_25		0x1656
85 #define CHIP_NUM_57980S_IOV		0x1664
86 #define CHIP_NUM_AH			0x8070
87 #define CHIP_NUM_AH_IOV			0x8090
88 
89 #ifndef PCI_DEVICE_ID_NX2_57980E
90 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
91 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
92 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
93 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
94 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
95 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
96 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
97 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
98 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
99 
100 #endif
101 
102 enum qede_pci_private {
103 	QEDE_PRIVATE_PF,
104 	QEDE_PRIVATE_VF
105 };
106 
107 static const struct pci_device_id qede_pci_tbl[] = {
108 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
109 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
110 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
111 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
112 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
113 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
114 #ifdef CONFIG_QED_SRIOV
115 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
116 #endif
117 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
118 #ifdef CONFIG_QED_SRIOV
119 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
120 #endif
121 	{ 0 }
122 };
123 
124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
125 
126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
127 
128 #define TX_TIMEOUT		(5 * HZ)
129 
130 /* Utilize last protocol index for XDP */
131 #define XDP_PI	11
132 
133 static void qede_remove(struct pci_dev *pdev);
134 static void qede_shutdown(struct pci_dev *pdev);
135 static void qede_link_update(void *dev, struct qed_link_output *link);
136 static void qede_schedule_recovery_handler(void *dev);
137 static void qede_recovery_handler(struct qede_dev *edev);
138 static void qede_get_eth_tlv_data(void *edev, void *data);
139 static void qede_get_generic_tlv_data(void *edev,
140 				      struct qed_generic_tlvs *data);
141 
142 #ifdef CONFIG_QED_SRIOV
143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
144 			    __be16 vlan_proto)
145 {
146 	struct qede_dev *edev = netdev_priv(ndev);
147 
148 	if (vlan > 4095) {
149 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
150 		return -EINVAL;
151 	}
152 
153 	if (vlan_proto != htons(ETH_P_8021Q))
154 		return -EPROTONOSUPPORT;
155 
156 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
157 		   vlan, vf);
158 
159 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
160 }
161 
162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
163 {
164 	struct qede_dev *edev = netdev_priv(ndev);
165 
166 	DP_VERBOSE(edev, QED_MSG_IOV,
167 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
168 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
169 
170 	if (!is_valid_ether_addr(mac)) {
171 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
172 		return -EINVAL;
173 	}
174 
175 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
176 }
177 
178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
179 {
180 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
181 	struct qed_dev_info *qed_info = &edev->dev_info.common;
182 	struct qed_update_vport_params *vport_params;
183 	int rc;
184 
185 	vport_params = vzalloc(sizeof(*vport_params));
186 	if (!vport_params)
187 		return -ENOMEM;
188 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
189 
190 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
191 
192 	/* Enable/Disable Tx switching for PF */
193 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
194 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
195 		vport_params->vport_id = 0;
196 		vport_params->update_tx_switching_flg = 1;
197 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
198 		edev->ops->vport_update(edev->cdev, vport_params);
199 	}
200 
201 	vfree(vport_params);
202 	return rc;
203 }
204 #endif
205 
206 static struct pci_driver qede_pci_driver = {
207 	.name = "qede",
208 	.id_table = qede_pci_tbl,
209 	.probe = qede_probe,
210 	.remove = qede_remove,
211 	.shutdown = qede_shutdown,
212 #ifdef CONFIG_QED_SRIOV
213 	.sriov_configure = qede_sriov_configure,
214 #endif
215 };
216 
217 static struct qed_eth_cb_ops qede_ll_ops = {
218 	{
219 #ifdef CONFIG_RFS_ACCEL
220 		.arfs_filter_op = qede_arfs_filter_op,
221 #endif
222 		.link_update = qede_link_update,
223 		.schedule_recovery_handler = qede_schedule_recovery_handler,
224 		.get_generic_tlv_data = qede_get_generic_tlv_data,
225 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
226 	},
227 	.force_mac = qede_force_mac,
228 	.ports_update = qede_udp_ports_update,
229 };
230 
231 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
232 			     void *ptr)
233 {
234 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
235 	struct ethtool_drvinfo drvinfo;
236 	struct qede_dev *edev;
237 
238 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
239 		goto done;
240 
241 	/* Check whether this is a qede device */
242 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
243 		goto done;
244 
245 	memset(&drvinfo, 0, sizeof(drvinfo));
246 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
247 	if (strcmp(drvinfo.driver, "qede"))
248 		goto done;
249 	edev = netdev_priv(ndev);
250 
251 	switch (event) {
252 	case NETDEV_CHANGENAME:
253 		/* Notify qed of the name change */
254 		if (!edev->ops || !edev->ops->common)
255 			goto done;
256 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
257 		break;
258 	case NETDEV_CHANGEADDR:
259 		edev = netdev_priv(ndev);
260 		qede_rdma_event_changeaddr(edev);
261 		break;
262 	}
263 
264 done:
265 	return NOTIFY_DONE;
266 }
267 
268 static struct notifier_block qede_netdev_notifier = {
269 	.notifier_call = qede_netdev_event,
270 };
271 
272 static
273 int __init qede_init(void)
274 {
275 	int ret;
276 
277 	pr_info("qede_init: %s\n", version);
278 
279 	qed_ops = qed_get_eth_ops();
280 	if (!qed_ops) {
281 		pr_notice("Failed to get qed ethtool operations\n");
282 		return -EINVAL;
283 	}
284 
285 	/* Must register notifier before pci ops, since we might miss
286 	 * interface rename after pci probe and netdev registration.
287 	 */
288 	ret = register_netdevice_notifier(&qede_netdev_notifier);
289 	if (ret) {
290 		pr_notice("Failed to register netdevice_notifier\n");
291 		qed_put_eth_ops();
292 		return -EINVAL;
293 	}
294 
295 	ret = pci_register_driver(&qede_pci_driver);
296 	if (ret) {
297 		pr_notice("Failed to register driver\n");
298 		unregister_netdevice_notifier(&qede_netdev_notifier);
299 		qed_put_eth_ops();
300 		return -EINVAL;
301 	}
302 
303 	return 0;
304 }
305 
306 static void __exit qede_cleanup(void)
307 {
308 	if (debug & QED_LOG_INFO_MASK)
309 		pr_info("qede_cleanup called\n");
310 
311 	unregister_netdevice_notifier(&qede_netdev_notifier);
312 	pci_unregister_driver(&qede_pci_driver);
313 	qed_put_eth_ops();
314 }
315 
316 module_init(qede_init);
317 module_exit(qede_cleanup);
318 
319 static int qede_open(struct net_device *ndev);
320 static int qede_close(struct net_device *ndev);
321 
322 void qede_fill_by_demand_stats(struct qede_dev *edev)
323 {
324 	struct qede_stats_common *p_common = &edev->stats.common;
325 	struct qed_eth_stats stats;
326 
327 	edev->ops->get_vport_stats(edev->cdev, &stats);
328 
329 	p_common->no_buff_discards = stats.common.no_buff_discards;
330 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
331 	p_common->ttl0_discard = stats.common.ttl0_discard;
332 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
333 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
334 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
335 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
336 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
337 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
338 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
339 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
340 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
341 
342 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
343 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
344 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
345 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
346 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
347 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
348 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
349 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
350 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
351 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
352 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
353 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
354 
355 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
356 	p_common->rx_65_to_127_byte_packets =
357 	    stats.common.rx_65_to_127_byte_packets;
358 	p_common->rx_128_to_255_byte_packets =
359 	    stats.common.rx_128_to_255_byte_packets;
360 	p_common->rx_256_to_511_byte_packets =
361 	    stats.common.rx_256_to_511_byte_packets;
362 	p_common->rx_512_to_1023_byte_packets =
363 	    stats.common.rx_512_to_1023_byte_packets;
364 	p_common->rx_1024_to_1518_byte_packets =
365 	    stats.common.rx_1024_to_1518_byte_packets;
366 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
367 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
368 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
369 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
370 	p_common->rx_align_errors = stats.common.rx_align_errors;
371 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
372 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
373 	p_common->rx_jabbers = stats.common.rx_jabbers;
374 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
375 	p_common->rx_fragments = stats.common.rx_fragments;
376 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
377 	p_common->tx_65_to_127_byte_packets =
378 	    stats.common.tx_65_to_127_byte_packets;
379 	p_common->tx_128_to_255_byte_packets =
380 	    stats.common.tx_128_to_255_byte_packets;
381 	p_common->tx_256_to_511_byte_packets =
382 	    stats.common.tx_256_to_511_byte_packets;
383 	p_common->tx_512_to_1023_byte_packets =
384 	    stats.common.tx_512_to_1023_byte_packets;
385 	p_common->tx_1024_to_1518_byte_packets =
386 	    stats.common.tx_1024_to_1518_byte_packets;
387 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
388 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
389 	p_common->brb_truncates = stats.common.brb_truncates;
390 	p_common->brb_discards = stats.common.brb_discards;
391 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
392 	p_common->link_change_count = stats.common.link_change_count;
393 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
394 
395 	if (QEDE_IS_BB(edev)) {
396 		struct qede_stats_bb *p_bb = &edev->stats.bb;
397 
398 		p_bb->rx_1519_to_1522_byte_packets =
399 		    stats.bb.rx_1519_to_1522_byte_packets;
400 		p_bb->rx_1519_to_2047_byte_packets =
401 		    stats.bb.rx_1519_to_2047_byte_packets;
402 		p_bb->rx_2048_to_4095_byte_packets =
403 		    stats.bb.rx_2048_to_4095_byte_packets;
404 		p_bb->rx_4096_to_9216_byte_packets =
405 		    stats.bb.rx_4096_to_9216_byte_packets;
406 		p_bb->rx_9217_to_16383_byte_packets =
407 		    stats.bb.rx_9217_to_16383_byte_packets;
408 		p_bb->tx_1519_to_2047_byte_packets =
409 		    stats.bb.tx_1519_to_2047_byte_packets;
410 		p_bb->tx_2048_to_4095_byte_packets =
411 		    stats.bb.tx_2048_to_4095_byte_packets;
412 		p_bb->tx_4096_to_9216_byte_packets =
413 		    stats.bb.tx_4096_to_9216_byte_packets;
414 		p_bb->tx_9217_to_16383_byte_packets =
415 		    stats.bb.tx_9217_to_16383_byte_packets;
416 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
417 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
418 	} else {
419 		struct qede_stats_ah *p_ah = &edev->stats.ah;
420 
421 		p_ah->rx_1519_to_max_byte_packets =
422 		    stats.ah.rx_1519_to_max_byte_packets;
423 		p_ah->tx_1519_to_max_byte_packets =
424 		    stats.ah.tx_1519_to_max_byte_packets;
425 	}
426 }
427 
428 static void qede_get_stats64(struct net_device *dev,
429 			     struct rtnl_link_stats64 *stats)
430 {
431 	struct qede_dev *edev = netdev_priv(dev);
432 	struct qede_stats_common *p_common;
433 
434 	qede_fill_by_demand_stats(edev);
435 	p_common = &edev->stats.common;
436 
437 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
438 			    p_common->rx_bcast_pkts;
439 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
440 			    p_common->tx_bcast_pkts;
441 
442 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
443 			  p_common->rx_bcast_bytes;
444 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
445 			  p_common->tx_bcast_bytes;
446 
447 	stats->tx_errors = p_common->tx_err_drop_pkts;
448 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
449 
450 	stats->rx_fifo_errors = p_common->no_buff_discards;
451 
452 	if (QEDE_IS_BB(edev))
453 		stats->collisions = edev->stats.bb.tx_total_collisions;
454 	stats->rx_crc_errors = p_common->rx_crc_errors;
455 	stats->rx_frame_errors = p_common->rx_align_errors;
456 }
457 
458 #ifdef CONFIG_QED_SRIOV
459 static int qede_get_vf_config(struct net_device *dev, int vfidx,
460 			      struct ifla_vf_info *ivi)
461 {
462 	struct qede_dev *edev = netdev_priv(dev);
463 
464 	if (!edev->ops)
465 		return -EINVAL;
466 
467 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
468 }
469 
470 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
471 			    int min_tx_rate, int max_tx_rate)
472 {
473 	struct qede_dev *edev = netdev_priv(dev);
474 
475 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
476 					max_tx_rate);
477 }
478 
479 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
480 {
481 	struct qede_dev *edev = netdev_priv(dev);
482 
483 	if (!edev->ops)
484 		return -EINVAL;
485 
486 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
487 }
488 
489 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
490 				  int link_state)
491 {
492 	struct qede_dev *edev = netdev_priv(dev);
493 
494 	if (!edev->ops)
495 		return -EINVAL;
496 
497 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
498 }
499 
500 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
501 {
502 	struct qede_dev *edev = netdev_priv(dev);
503 
504 	if (!edev->ops)
505 		return -EINVAL;
506 
507 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
508 }
509 #endif
510 
511 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
512 {
513 	struct qede_dev *edev = netdev_priv(dev);
514 
515 	if (!netif_running(dev))
516 		return -EAGAIN;
517 
518 	switch (cmd) {
519 	case SIOCSHWTSTAMP:
520 		return qede_ptp_hw_ts(edev, ifr);
521 	default:
522 		DP_VERBOSE(edev, QED_MSG_DEBUG,
523 			   "default IOCTL cmd 0x%x\n", cmd);
524 		return -EOPNOTSUPP;
525 	}
526 
527 	return 0;
528 }
529 
530 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
531 {
532 	struct qede_dev *edev = netdev_priv(ndev);
533 	int cos, count, offset;
534 
535 	if (num_tc > edev->dev_info.num_tc)
536 		return -EINVAL;
537 
538 	netdev_reset_tc(ndev);
539 	netdev_set_num_tc(ndev, num_tc);
540 
541 	for_each_cos_in_txq(edev, cos) {
542 		count = QEDE_TSS_COUNT(edev);
543 		offset = cos * QEDE_TSS_COUNT(edev);
544 		netdev_set_tc_queue(ndev, cos, count, offset);
545 	}
546 
547 	return 0;
548 }
549 
550 static int
551 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f,
552 		__be16 proto)
553 {
554 	switch (f->command) {
555 	case TC_CLSFLOWER_REPLACE:
556 		return qede_add_tc_flower_fltr(edev, proto, f);
557 	case TC_CLSFLOWER_DESTROY:
558 		return qede_delete_flow_filter(edev, f->cookie);
559 	default:
560 		return -EOPNOTSUPP;
561 	}
562 }
563 
564 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
565 				  void *cb_priv)
566 {
567 	struct tc_cls_flower_offload *f;
568 	struct qede_dev *edev = cb_priv;
569 
570 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
571 		return -EOPNOTSUPP;
572 
573 	switch (type) {
574 	case TC_SETUP_CLSFLOWER:
575 		f = type_data;
576 		return qede_set_flower(edev, f, f->common.protocol);
577 	default:
578 		return -EOPNOTSUPP;
579 	}
580 }
581 
582 static int
583 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
584 		      void *type_data)
585 {
586 	struct qede_dev *edev = netdev_priv(dev);
587 	struct tc_mqprio_qopt *mqprio;
588 
589 	switch (type) {
590 	case TC_SETUP_BLOCK:
591 		return flow_block_cb_setup_simple(type_data, NULL,
592 						  qede_setup_tc_block_cb,
593 						  edev, edev, true);
594 	case TC_SETUP_QDISC_MQPRIO:
595 		mqprio = type_data;
596 
597 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
598 		return qede_setup_tc(dev, mqprio->num_tc);
599 	default:
600 		return -EOPNOTSUPP;
601 	}
602 }
603 
604 static const struct net_device_ops qede_netdev_ops = {
605 	.ndo_open = qede_open,
606 	.ndo_stop = qede_close,
607 	.ndo_start_xmit = qede_start_xmit,
608 	.ndo_select_queue = qede_select_queue,
609 	.ndo_set_rx_mode = qede_set_rx_mode,
610 	.ndo_set_mac_address = qede_set_mac_addr,
611 	.ndo_validate_addr = eth_validate_addr,
612 	.ndo_change_mtu = qede_change_mtu,
613 	.ndo_do_ioctl = qede_ioctl,
614 #ifdef CONFIG_QED_SRIOV
615 	.ndo_set_vf_mac = qede_set_vf_mac,
616 	.ndo_set_vf_vlan = qede_set_vf_vlan,
617 	.ndo_set_vf_trust = qede_set_vf_trust,
618 #endif
619 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
620 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
621 	.ndo_fix_features = qede_fix_features,
622 	.ndo_set_features = qede_set_features,
623 	.ndo_get_stats64 = qede_get_stats64,
624 #ifdef CONFIG_QED_SRIOV
625 	.ndo_set_vf_link_state = qede_set_vf_link_state,
626 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
627 	.ndo_get_vf_config = qede_get_vf_config,
628 	.ndo_set_vf_rate = qede_set_vf_rate,
629 #endif
630 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
631 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
632 	.ndo_features_check = qede_features_check,
633 	.ndo_bpf = qede_xdp,
634 #ifdef CONFIG_RFS_ACCEL
635 	.ndo_rx_flow_steer = qede_rx_flow_steer,
636 #endif
637 	.ndo_setup_tc = qede_setup_tc_offload,
638 };
639 
640 static const struct net_device_ops qede_netdev_vf_ops = {
641 	.ndo_open = qede_open,
642 	.ndo_stop = qede_close,
643 	.ndo_start_xmit = qede_start_xmit,
644 	.ndo_select_queue = qede_select_queue,
645 	.ndo_set_rx_mode = qede_set_rx_mode,
646 	.ndo_set_mac_address = qede_set_mac_addr,
647 	.ndo_validate_addr = eth_validate_addr,
648 	.ndo_change_mtu = qede_change_mtu,
649 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
650 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
651 	.ndo_fix_features = qede_fix_features,
652 	.ndo_set_features = qede_set_features,
653 	.ndo_get_stats64 = qede_get_stats64,
654 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
655 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
656 	.ndo_features_check = qede_features_check,
657 };
658 
659 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
660 	.ndo_open = qede_open,
661 	.ndo_stop = qede_close,
662 	.ndo_start_xmit = qede_start_xmit,
663 	.ndo_select_queue = qede_select_queue,
664 	.ndo_set_rx_mode = qede_set_rx_mode,
665 	.ndo_set_mac_address = qede_set_mac_addr,
666 	.ndo_validate_addr = eth_validate_addr,
667 	.ndo_change_mtu = qede_change_mtu,
668 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
669 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
670 	.ndo_fix_features = qede_fix_features,
671 	.ndo_set_features = qede_set_features,
672 	.ndo_get_stats64 = qede_get_stats64,
673 	.ndo_udp_tunnel_add = qede_udp_tunnel_add,
674 	.ndo_udp_tunnel_del = qede_udp_tunnel_del,
675 	.ndo_features_check = qede_features_check,
676 	.ndo_bpf = qede_xdp,
677 };
678 
679 /* -------------------------------------------------------------------------
680  * START OF PROBE / REMOVE
681  * -------------------------------------------------------------------------
682  */
683 
684 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
685 					    struct pci_dev *pdev,
686 					    struct qed_dev_eth_info *info,
687 					    u32 dp_module, u8 dp_level)
688 {
689 	struct net_device *ndev;
690 	struct qede_dev *edev;
691 
692 	ndev = alloc_etherdev_mqs(sizeof(*edev),
693 				  info->num_queues * info->num_tc,
694 				  info->num_queues);
695 	if (!ndev) {
696 		pr_err("etherdev allocation failed\n");
697 		return NULL;
698 	}
699 
700 	edev = netdev_priv(ndev);
701 	edev->ndev = ndev;
702 	edev->cdev = cdev;
703 	edev->pdev = pdev;
704 	edev->dp_module = dp_module;
705 	edev->dp_level = dp_level;
706 	edev->ops = qed_ops;
707 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
708 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
709 
710 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
711 		info->num_queues, info->num_queues);
712 
713 	SET_NETDEV_DEV(ndev, &pdev->dev);
714 
715 	memset(&edev->stats, 0, sizeof(edev->stats));
716 	memcpy(&edev->dev_info, info, sizeof(*info));
717 
718 	/* As ethtool doesn't have the ability to show WoL behavior as
719 	 * 'default', if device supports it declare it's enabled.
720 	 */
721 	if (edev->dev_info.common.wol_support)
722 		edev->wol_enabled = true;
723 
724 	INIT_LIST_HEAD(&edev->vlan_list);
725 
726 	return edev;
727 }
728 
729 static void qede_init_ndev(struct qede_dev *edev)
730 {
731 	struct net_device *ndev = edev->ndev;
732 	struct pci_dev *pdev = edev->pdev;
733 	bool udp_tunnel_enable = false;
734 	netdev_features_t hw_features;
735 
736 	pci_set_drvdata(pdev, ndev);
737 
738 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
739 	ndev->base_addr = ndev->mem_start;
740 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
741 	ndev->irq = edev->dev_info.common.pci_irq;
742 
743 	ndev->watchdog_timeo = TX_TIMEOUT;
744 
745 	if (IS_VF(edev)) {
746 		if (edev->dev_info.xdp_supported)
747 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
748 		else
749 			ndev->netdev_ops = &qede_netdev_vf_ops;
750 	} else {
751 		ndev->netdev_ops = &qede_netdev_ops;
752 	}
753 
754 	qede_set_ethtool_ops(ndev);
755 
756 	ndev->priv_flags |= IFF_UNICAST_FLT;
757 
758 	/* user-changeble features */
759 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
760 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
761 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
762 
763 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
764 		hw_features |= NETIF_F_NTUPLE;
765 
766 	if (edev->dev_info.common.vxlan_enable ||
767 	    edev->dev_info.common.geneve_enable)
768 		udp_tunnel_enable = true;
769 
770 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
771 		hw_features |= NETIF_F_TSO_ECN;
772 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
773 					NETIF_F_SG | NETIF_F_TSO |
774 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
775 					NETIF_F_RXCSUM;
776 	}
777 
778 	if (udp_tunnel_enable) {
779 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
780 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
781 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
782 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
783 	}
784 
785 	if (edev->dev_info.common.gre_enable) {
786 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
787 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
788 					  NETIF_F_GSO_GRE_CSUM);
789 	}
790 
791 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
792 			      NETIF_F_HIGHDMA;
793 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
794 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
795 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
796 
797 	ndev->hw_features = hw_features;
798 
799 	/* MTU range: 46 - 9600 */
800 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
801 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
802 
803 	/* Set network device HW mac */
804 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
805 
806 	ndev->mtu = edev->dev_info.common.mtu;
807 }
808 
809 /* This function converts from 32b param to two params of level and module
810  * Input 32b decoding:
811  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
812  * 'happy' flow, e.g. memory allocation failed.
813  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
814  * and provide important parameters.
815  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
816  * module. VERBOSE prints are for tracking the specific flow in low level.
817  *
818  * Notice that the level should be that of the lowest required logs.
819  */
820 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
821 {
822 	*p_dp_level = QED_LEVEL_NOTICE;
823 	*p_dp_module = 0;
824 
825 	if (debug & QED_LOG_VERBOSE_MASK) {
826 		*p_dp_level = QED_LEVEL_VERBOSE;
827 		*p_dp_module = (debug & 0x3FFFFFFF);
828 	} else if (debug & QED_LOG_INFO_MASK) {
829 		*p_dp_level = QED_LEVEL_INFO;
830 	} else if (debug & QED_LOG_NOTICE_MASK) {
831 		*p_dp_level = QED_LEVEL_NOTICE;
832 	}
833 }
834 
835 static void qede_free_fp_array(struct qede_dev *edev)
836 {
837 	if (edev->fp_array) {
838 		struct qede_fastpath *fp;
839 		int i;
840 
841 		for_each_queue(i) {
842 			fp = &edev->fp_array[i];
843 
844 			kfree(fp->sb_info);
845 			/* Handle mem alloc failure case where qede_init_fp
846 			 * didn't register xdp_rxq_info yet.
847 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
848 			 */
849 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
850 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
851 			kfree(fp->rxq);
852 			kfree(fp->xdp_tx);
853 			kfree(fp->txq);
854 		}
855 		kfree(edev->fp_array);
856 	}
857 
858 	edev->num_queues = 0;
859 	edev->fp_num_tx = 0;
860 	edev->fp_num_rx = 0;
861 }
862 
863 static int qede_alloc_fp_array(struct qede_dev *edev)
864 {
865 	u8 fp_combined, fp_rx = edev->fp_num_rx;
866 	struct qede_fastpath *fp;
867 	int i;
868 
869 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
870 				 sizeof(*edev->fp_array), GFP_KERNEL);
871 	if (!edev->fp_array) {
872 		DP_NOTICE(edev, "fp array allocation failed\n");
873 		goto err;
874 	}
875 
876 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
877 
878 	/* Allocate the FP elements for Rx queues followed by combined and then
879 	 * the Tx. This ordering should be maintained so that the respective
880 	 * queues (Rx or Tx) will be together in the fastpath array and the
881 	 * associated ids will be sequential.
882 	 */
883 	for_each_queue(i) {
884 		fp = &edev->fp_array[i];
885 
886 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
887 		if (!fp->sb_info) {
888 			DP_NOTICE(edev, "sb info struct allocation failed\n");
889 			goto err;
890 		}
891 
892 		if (fp_rx) {
893 			fp->type = QEDE_FASTPATH_RX;
894 			fp_rx--;
895 		} else if (fp_combined) {
896 			fp->type = QEDE_FASTPATH_COMBINED;
897 			fp_combined--;
898 		} else {
899 			fp->type = QEDE_FASTPATH_TX;
900 		}
901 
902 		if (fp->type & QEDE_FASTPATH_TX) {
903 			fp->txq = kcalloc(edev->dev_info.num_tc,
904 					  sizeof(*fp->txq), GFP_KERNEL);
905 			if (!fp->txq)
906 				goto err;
907 		}
908 
909 		if (fp->type & QEDE_FASTPATH_RX) {
910 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
911 			if (!fp->rxq)
912 				goto err;
913 
914 			if (edev->xdp_prog) {
915 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
916 						     GFP_KERNEL);
917 				if (!fp->xdp_tx)
918 					goto err;
919 				fp->type |= QEDE_FASTPATH_XDP;
920 			}
921 		}
922 	}
923 
924 	return 0;
925 err:
926 	qede_free_fp_array(edev);
927 	return -ENOMEM;
928 }
929 
930 /* The qede lock is used to protect driver state change and driver flows that
931  * are not reentrant.
932  */
933 void __qede_lock(struct qede_dev *edev)
934 {
935 	mutex_lock(&edev->qede_lock);
936 }
937 
938 void __qede_unlock(struct qede_dev *edev)
939 {
940 	mutex_unlock(&edev->qede_lock);
941 }
942 
943 /* This version of the lock should be used when acquiring the RTNL lock is also
944  * needed in addition to the internal qede lock.
945  */
946 static void qede_lock(struct qede_dev *edev)
947 {
948 	rtnl_lock();
949 	__qede_lock(edev);
950 }
951 
952 static void qede_unlock(struct qede_dev *edev)
953 {
954 	__qede_unlock(edev);
955 	rtnl_unlock();
956 }
957 
958 static void qede_sp_task(struct work_struct *work)
959 {
960 	struct qede_dev *edev = container_of(work, struct qede_dev,
961 					     sp_task.work);
962 
963 	/* The locking scheme depends on the specific flag:
964 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
965 	 * ensure that ongoing flows are ended and new ones are not started.
966 	 * In other cases - only the internal qede lock should be acquired.
967 	 */
968 
969 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
970 #ifdef CONFIG_QED_SRIOV
971 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
972 		 * The recovery of the active VFs is currently not supported.
973 		 */
974 		qede_sriov_configure(edev->pdev, 0);
975 #endif
976 		qede_lock(edev);
977 		qede_recovery_handler(edev);
978 		qede_unlock(edev);
979 	}
980 
981 	__qede_lock(edev);
982 
983 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
984 		if (edev->state == QEDE_STATE_OPEN)
985 			qede_config_rx_mode(edev->ndev);
986 
987 #ifdef CONFIG_RFS_ACCEL
988 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
989 		if (edev->state == QEDE_STATE_OPEN)
990 			qede_process_arfs_filters(edev, false);
991 	}
992 #endif
993 	__qede_unlock(edev);
994 }
995 
996 static void qede_update_pf_params(struct qed_dev *cdev)
997 {
998 	struct qed_pf_params pf_params;
999 	u16 num_cons;
1000 
1001 	/* 64 rx + 64 tx + 64 XDP */
1002 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1003 
1004 	/* 1 rx + 1 xdp + max tx cos */
1005 	num_cons = QED_MIN_L2_CONS;
1006 
1007 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1008 
1009 	/* Same for VFs - make sure they'll have sufficient connections
1010 	 * to support XDP Tx queues.
1011 	 */
1012 	pf_params.eth_pf_params.num_vf_cons = 48;
1013 
1014 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1015 	qed_ops->common->update_pf_params(cdev, &pf_params);
1016 }
1017 
1018 #define QEDE_FW_VER_STR_SIZE	80
1019 
1020 static void qede_log_probe(struct qede_dev *edev)
1021 {
1022 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1023 	u8 buf[QEDE_FW_VER_STR_SIZE];
1024 	size_t left_size;
1025 
1026 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1027 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1028 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1029 		 p_dev_info->fw_eng,
1030 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1031 		 QED_MFW_VERSION_3_OFFSET,
1032 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1033 		 QED_MFW_VERSION_2_OFFSET,
1034 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1035 		 QED_MFW_VERSION_1_OFFSET,
1036 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1037 		 QED_MFW_VERSION_0_OFFSET);
1038 
1039 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1040 	if (p_dev_info->mbi_version && left_size)
1041 		snprintf(buf + strlen(buf), left_size,
1042 			 " [MBI %d.%d.%d]",
1043 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1044 			 QED_MBI_VERSION_2_OFFSET,
1045 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1046 			 QED_MBI_VERSION_1_OFFSET,
1047 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1048 			 QED_MBI_VERSION_0_OFFSET);
1049 
1050 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1051 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1052 		buf, edev->ndev->name);
1053 }
1054 
1055 enum qede_probe_mode {
1056 	QEDE_PROBE_NORMAL,
1057 	QEDE_PROBE_RECOVERY,
1058 };
1059 
1060 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1061 			bool is_vf, enum qede_probe_mode mode)
1062 {
1063 	struct qed_probe_params probe_params;
1064 	struct qed_slowpath_params sp_params;
1065 	struct qed_dev_eth_info dev_info;
1066 	struct qede_dev *edev;
1067 	struct qed_dev *cdev;
1068 	int rc;
1069 
1070 	if (unlikely(dp_level & QED_LEVEL_INFO))
1071 		pr_notice("Starting qede probe\n");
1072 
1073 	memset(&probe_params, 0, sizeof(probe_params));
1074 	probe_params.protocol = QED_PROTOCOL_ETH;
1075 	probe_params.dp_module = dp_module;
1076 	probe_params.dp_level = dp_level;
1077 	probe_params.is_vf = is_vf;
1078 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1079 	cdev = qed_ops->common->probe(pdev, &probe_params);
1080 	if (!cdev) {
1081 		rc = -ENODEV;
1082 		goto err0;
1083 	}
1084 
1085 	qede_update_pf_params(cdev);
1086 
1087 	/* Start the Slowpath-process */
1088 	memset(&sp_params, 0, sizeof(sp_params));
1089 	sp_params.int_mode = QED_INT_MODE_MSIX;
1090 	sp_params.drv_major = QEDE_MAJOR_VERSION;
1091 	sp_params.drv_minor = QEDE_MINOR_VERSION;
1092 	sp_params.drv_rev = QEDE_REVISION_VERSION;
1093 	sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1094 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1095 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1096 	if (rc) {
1097 		pr_notice("Cannot start slowpath\n");
1098 		goto err1;
1099 	}
1100 
1101 	/* Learn information crucial for qede to progress */
1102 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1103 	if (rc)
1104 		goto err2;
1105 
1106 	if (mode != QEDE_PROBE_RECOVERY) {
1107 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1108 					   dp_level);
1109 		if (!edev) {
1110 			rc = -ENOMEM;
1111 			goto err2;
1112 		}
1113 	} else {
1114 		struct net_device *ndev = pci_get_drvdata(pdev);
1115 
1116 		edev = netdev_priv(ndev);
1117 		edev->cdev = cdev;
1118 		memset(&edev->stats, 0, sizeof(edev->stats));
1119 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1120 	}
1121 
1122 	if (is_vf)
1123 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1124 
1125 	qede_init_ndev(edev);
1126 
1127 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1128 	if (rc)
1129 		goto err3;
1130 
1131 	if (mode != QEDE_PROBE_RECOVERY) {
1132 		/* Prepare the lock prior to the registration of the netdev,
1133 		 * as once it's registered we might reach flows requiring it
1134 		 * [it's even possible to reach a flow needing it directly
1135 		 * from there, although it's unlikely].
1136 		 */
1137 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1138 		mutex_init(&edev->qede_lock);
1139 
1140 		rc = register_netdev(edev->ndev);
1141 		if (rc) {
1142 			DP_NOTICE(edev, "Cannot register net-device\n");
1143 			goto err4;
1144 		}
1145 	}
1146 
1147 	edev->ops->common->set_name(cdev, edev->ndev->name);
1148 
1149 	/* PTP not supported on VFs */
1150 	if (!is_vf)
1151 		qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1152 
1153 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1154 
1155 #ifdef CONFIG_DCB
1156 	if (!IS_VF(edev))
1157 		qede_set_dcbnl_ops(edev->ndev);
1158 #endif
1159 
1160 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1161 
1162 	qede_log_probe(edev);
1163 	return 0;
1164 
1165 err4:
1166 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1167 err3:
1168 	free_netdev(edev->ndev);
1169 err2:
1170 	qed_ops->common->slowpath_stop(cdev);
1171 err1:
1172 	qed_ops->common->remove(cdev);
1173 err0:
1174 	return rc;
1175 }
1176 
1177 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1178 {
1179 	bool is_vf = false;
1180 	u32 dp_module = 0;
1181 	u8 dp_level = 0;
1182 
1183 	switch ((enum qede_pci_private)id->driver_data) {
1184 	case QEDE_PRIVATE_VF:
1185 		if (debug & QED_LOG_VERBOSE_MASK)
1186 			dev_err(&pdev->dev, "Probing a VF\n");
1187 		is_vf = true;
1188 		break;
1189 	default:
1190 		if (debug & QED_LOG_VERBOSE_MASK)
1191 			dev_err(&pdev->dev, "Probing a PF\n");
1192 	}
1193 
1194 	qede_config_debug(debug, &dp_module, &dp_level);
1195 
1196 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1197 			    QEDE_PROBE_NORMAL);
1198 }
1199 
1200 enum qede_remove_mode {
1201 	QEDE_REMOVE_NORMAL,
1202 	QEDE_REMOVE_RECOVERY,
1203 };
1204 
1205 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1206 {
1207 	struct net_device *ndev = pci_get_drvdata(pdev);
1208 	struct qede_dev *edev = netdev_priv(ndev);
1209 	struct qed_dev *cdev = edev->cdev;
1210 
1211 	DP_INFO(edev, "Starting qede_remove\n");
1212 
1213 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1214 
1215 	if (mode != QEDE_REMOVE_RECOVERY) {
1216 		unregister_netdev(ndev);
1217 
1218 		cancel_delayed_work_sync(&edev->sp_task);
1219 
1220 		edev->ops->common->set_power_state(cdev, PCI_D0);
1221 
1222 		pci_set_drvdata(pdev, NULL);
1223 	}
1224 
1225 	qede_ptp_disable(edev);
1226 
1227 	/* Use global ops since we've freed edev */
1228 	qed_ops->common->slowpath_stop(cdev);
1229 	if (system_state == SYSTEM_POWER_OFF)
1230 		return;
1231 	qed_ops->common->remove(cdev);
1232 
1233 	/* Since this can happen out-of-sync with other flows,
1234 	 * don't release the netdevice until after slowpath stop
1235 	 * has been called to guarantee various other contexts
1236 	 * [e.g., QED register callbacks] won't break anything when
1237 	 * accessing the netdevice.
1238 	 */
1239 	if (mode != QEDE_REMOVE_RECOVERY)
1240 		free_netdev(ndev);
1241 
1242 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1243 }
1244 
1245 static void qede_remove(struct pci_dev *pdev)
1246 {
1247 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1248 }
1249 
1250 static void qede_shutdown(struct pci_dev *pdev)
1251 {
1252 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1253 }
1254 
1255 /* -------------------------------------------------------------------------
1256  * START OF LOAD / UNLOAD
1257  * -------------------------------------------------------------------------
1258  */
1259 
1260 static int qede_set_num_queues(struct qede_dev *edev)
1261 {
1262 	int rc;
1263 	u16 rss_num;
1264 
1265 	/* Setup queues according to possible resources*/
1266 	if (edev->req_queues)
1267 		rss_num = edev->req_queues;
1268 	else
1269 		rss_num = netif_get_num_default_rss_queues() *
1270 			  edev->dev_info.common.num_hwfns;
1271 
1272 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1273 
1274 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1275 	if (rc > 0) {
1276 		/* Managed to request interrupts for our queues */
1277 		edev->num_queues = rc;
1278 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1279 			QEDE_QUEUE_CNT(edev), rss_num);
1280 		rc = 0;
1281 	}
1282 
1283 	edev->fp_num_tx = edev->req_num_tx;
1284 	edev->fp_num_rx = edev->req_num_rx;
1285 
1286 	return rc;
1287 }
1288 
1289 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1290 			     u16 sb_id)
1291 {
1292 	if (sb_info->sb_virt) {
1293 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1294 					      QED_SB_TYPE_L2_QUEUE);
1295 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1296 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1297 		memset(sb_info, 0, sizeof(*sb_info));
1298 	}
1299 }
1300 
1301 /* This function allocates fast-path status block memory */
1302 static int qede_alloc_mem_sb(struct qede_dev *edev,
1303 			     struct qed_sb_info *sb_info, u16 sb_id)
1304 {
1305 	struct status_block_e4 *sb_virt;
1306 	dma_addr_t sb_phys;
1307 	int rc;
1308 
1309 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1310 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1311 	if (!sb_virt) {
1312 		DP_ERR(edev, "Status block allocation failed\n");
1313 		return -ENOMEM;
1314 	}
1315 
1316 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1317 					sb_virt, sb_phys, sb_id,
1318 					QED_SB_TYPE_L2_QUEUE);
1319 	if (rc) {
1320 		DP_ERR(edev, "Status block initialization failed\n");
1321 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1322 				  sb_virt, sb_phys);
1323 		return rc;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static void qede_free_rx_buffers(struct qede_dev *edev,
1330 				 struct qede_rx_queue *rxq)
1331 {
1332 	u16 i;
1333 
1334 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1335 		struct sw_rx_data *rx_buf;
1336 		struct page *data;
1337 
1338 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1339 		data = rx_buf->data;
1340 
1341 		dma_unmap_page(&edev->pdev->dev,
1342 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1343 
1344 		rx_buf->data = NULL;
1345 		__free_page(data);
1346 	}
1347 }
1348 
1349 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1350 {
1351 	/* Free rx buffers */
1352 	qede_free_rx_buffers(edev, rxq);
1353 
1354 	/* Free the parallel SW ring */
1355 	kfree(rxq->sw_rx_ring);
1356 
1357 	/* Free the real RQ ring used by FW */
1358 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1359 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1360 }
1361 
1362 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1363 {
1364 	int i;
1365 
1366 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1367 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1368 
1369 		tpa_info->state = QEDE_AGG_STATE_NONE;
1370 	}
1371 }
1372 
1373 /* This function allocates all memory needed per Rx queue */
1374 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1375 {
1376 	int i, rc, size;
1377 
1378 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1379 
1380 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1381 
1382 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1383 	size = rxq->rx_headroom +
1384 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1385 
1386 	/* Make sure that the headroom and  payload fit in a single page */
1387 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1388 		rxq->rx_buf_size = PAGE_SIZE - size;
1389 
1390 	/* Segment size to spilt a page in multiple equal parts ,
1391 	 * unless XDP is used in which case we'd use the entire page.
1392 	 */
1393 	if (!edev->xdp_prog) {
1394 		size = size + rxq->rx_buf_size;
1395 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1396 	} else {
1397 		rxq->rx_buf_seg_size = PAGE_SIZE;
1398 	}
1399 
1400 	/* Allocate the parallel driver ring for Rx buffers */
1401 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1402 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1403 	if (!rxq->sw_rx_ring) {
1404 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1405 		rc = -ENOMEM;
1406 		goto err;
1407 	}
1408 
1409 	/* Allocate FW Rx ring  */
1410 	rc = edev->ops->common->chain_alloc(edev->cdev,
1411 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1412 					    QED_CHAIN_MODE_NEXT_PTR,
1413 					    QED_CHAIN_CNT_TYPE_U16,
1414 					    RX_RING_SIZE,
1415 					    sizeof(struct eth_rx_bd),
1416 					    &rxq->rx_bd_ring, NULL);
1417 	if (rc)
1418 		goto err;
1419 
1420 	/* Allocate FW completion ring */
1421 	rc = edev->ops->common->chain_alloc(edev->cdev,
1422 					    QED_CHAIN_USE_TO_CONSUME,
1423 					    QED_CHAIN_MODE_PBL,
1424 					    QED_CHAIN_CNT_TYPE_U16,
1425 					    RX_RING_SIZE,
1426 					    sizeof(union eth_rx_cqe),
1427 					    &rxq->rx_comp_ring, NULL);
1428 	if (rc)
1429 		goto err;
1430 
1431 	/* Allocate buffers for the Rx ring */
1432 	rxq->filled_buffers = 0;
1433 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1434 		rc = qede_alloc_rx_buffer(rxq, false);
1435 		if (rc) {
1436 			DP_ERR(edev,
1437 			       "Rx buffers allocation failed at index %d\n", i);
1438 			goto err;
1439 		}
1440 	}
1441 
1442 	if (!edev->gro_disable)
1443 		qede_set_tpa_param(rxq);
1444 err:
1445 	return rc;
1446 }
1447 
1448 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1449 {
1450 	/* Free the parallel SW ring */
1451 	if (txq->is_xdp)
1452 		kfree(txq->sw_tx_ring.xdp);
1453 	else
1454 		kfree(txq->sw_tx_ring.skbs);
1455 
1456 	/* Free the real RQ ring used by FW */
1457 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1458 }
1459 
1460 /* This function allocates all memory needed per Tx queue */
1461 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1462 {
1463 	union eth_tx_bd_types *p_virt;
1464 	int size, rc;
1465 
1466 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1467 
1468 	/* Allocate the parallel driver ring for Tx buffers */
1469 	if (txq->is_xdp) {
1470 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1471 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1472 		if (!txq->sw_tx_ring.xdp)
1473 			goto err;
1474 	} else {
1475 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1476 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1477 		if (!txq->sw_tx_ring.skbs)
1478 			goto err;
1479 	}
1480 
1481 	rc = edev->ops->common->chain_alloc(edev->cdev,
1482 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1483 					    QED_CHAIN_MODE_PBL,
1484 					    QED_CHAIN_CNT_TYPE_U16,
1485 					    txq->num_tx_buffers,
1486 					    sizeof(*p_virt),
1487 					    &txq->tx_pbl, NULL);
1488 	if (rc)
1489 		goto err;
1490 
1491 	return 0;
1492 
1493 err:
1494 	qede_free_mem_txq(edev, txq);
1495 	return -ENOMEM;
1496 }
1497 
1498 /* This function frees all memory of a single fp */
1499 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1500 {
1501 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1502 
1503 	if (fp->type & QEDE_FASTPATH_RX)
1504 		qede_free_mem_rxq(edev, fp->rxq);
1505 
1506 	if (fp->type & QEDE_FASTPATH_XDP)
1507 		qede_free_mem_txq(edev, fp->xdp_tx);
1508 
1509 	if (fp->type & QEDE_FASTPATH_TX) {
1510 		int cos;
1511 
1512 		for_each_cos_in_txq(edev, cos)
1513 			qede_free_mem_txq(edev, &fp->txq[cos]);
1514 	}
1515 }
1516 
1517 /* This function allocates all memory needed for a single fp (i.e. an entity
1518  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1519  */
1520 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1521 {
1522 	int rc = 0;
1523 
1524 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1525 	if (rc)
1526 		goto out;
1527 
1528 	if (fp->type & QEDE_FASTPATH_RX) {
1529 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1530 		if (rc)
1531 			goto out;
1532 	}
1533 
1534 	if (fp->type & QEDE_FASTPATH_XDP) {
1535 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1536 		if (rc)
1537 			goto out;
1538 	}
1539 
1540 	if (fp->type & QEDE_FASTPATH_TX) {
1541 		int cos;
1542 
1543 		for_each_cos_in_txq(edev, cos) {
1544 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1545 			if (rc)
1546 				goto out;
1547 		}
1548 	}
1549 
1550 out:
1551 	return rc;
1552 }
1553 
1554 static void qede_free_mem_load(struct qede_dev *edev)
1555 {
1556 	int i;
1557 
1558 	for_each_queue(i) {
1559 		struct qede_fastpath *fp = &edev->fp_array[i];
1560 
1561 		qede_free_mem_fp(edev, fp);
1562 	}
1563 }
1564 
1565 /* This function allocates all qede memory at NIC load. */
1566 static int qede_alloc_mem_load(struct qede_dev *edev)
1567 {
1568 	int rc = 0, queue_id;
1569 
1570 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1571 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1572 
1573 		rc = qede_alloc_mem_fp(edev, fp);
1574 		if (rc) {
1575 			DP_ERR(edev,
1576 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1577 			       queue_id);
1578 			qede_free_mem_load(edev);
1579 			return rc;
1580 		}
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 static void qede_empty_tx_queue(struct qede_dev *edev,
1587 				struct qede_tx_queue *txq)
1588 {
1589 	unsigned int pkts_compl = 0, bytes_compl = 0;
1590 	struct netdev_queue *netdev_txq;
1591 	int rc, len = 0;
1592 
1593 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1594 
1595 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1596 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1597 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1598 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1599 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1600 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1601 
1602 		rc = qede_free_tx_pkt(edev, txq, &len);
1603 		if (rc) {
1604 			DP_NOTICE(edev,
1605 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1606 				  txq->index,
1607 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1608 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1609 			break;
1610 		}
1611 
1612 		bytes_compl += len;
1613 		pkts_compl++;
1614 		txq->sw_tx_cons++;
1615 	}
1616 
1617 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1618 }
1619 
1620 static void qede_empty_tx_queues(struct qede_dev *edev)
1621 {
1622 	int i;
1623 
1624 	for_each_queue(i)
1625 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1626 			int cos;
1627 
1628 			for_each_cos_in_txq(edev, cos) {
1629 				struct qede_fastpath *fp;
1630 
1631 				fp = &edev->fp_array[i];
1632 				qede_empty_tx_queue(edev,
1633 						    &fp->txq[cos]);
1634 			}
1635 		}
1636 }
1637 
1638 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1639 static void qede_init_fp(struct qede_dev *edev)
1640 {
1641 	int queue_id, rxq_index = 0, txq_index = 0;
1642 	struct qede_fastpath *fp;
1643 
1644 	for_each_queue(queue_id) {
1645 		fp = &edev->fp_array[queue_id];
1646 
1647 		fp->edev = edev;
1648 		fp->id = queue_id;
1649 
1650 		if (fp->type & QEDE_FASTPATH_XDP) {
1651 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1652 								rxq_index);
1653 			fp->xdp_tx->is_xdp = 1;
1654 		}
1655 
1656 		if (fp->type & QEDE_FASTPATH_RX) {
1657 			fp->rxq->rxq_id = rxq_index++;
1658 
1659 			/* Determine how to map buffers for this queue */
1660 			if (fp->type & QEDE_FASTPATH_XDP)
1661 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1662 			else
1663 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1664 			fp->rxq->dev = &edev->pdev->dev;
1665 
1666 			/* Driver have no error path from here */
1667 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1668 						 fp->rxq->rxq_id) < 0);
1669 		}
1670 
1671 		if (fp->type & QEDE_FASTPATH_TX) {
1672 			int cos;
1673 
1674 			for_each_cos_in_txq(edev, cos) {
1675 				struct qede_tx_queue *txq = &fp->txq[cos];
1676 				u16 ndev_tx_id;
1677 
1678 				txq->cos = cos;
1679 				txq->index = txq_index;
1680 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1681 				txq->ndev_txq_id = ndev_tx_id;
1682 
1683 				if (edev->dev_info.is_legacy)
1684 					txq->is_legacy = 1;
1685 				txq->dev = &edev->pdev->dev;
1686 			}
1687 
1688 			txq_index++;
1689 		}
1690 
1691 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1692 			 edev->ndev->name, queue_id);
1693 	}
1694 
1695 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1696 }
1697 
1698 static int qede_set_real_num_queues(struct qede_dev *edev)
1699 {
1700 	int rc = 0;
1701 
1702 	rc = netif_set_real_num_tx_queues(edev->ndev,
1703 					  QEDE_TSS_COUNT(edev) *
1704 					  edev->dev_info.num_tc);
1705 	if (rc) {
1706 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1707 		return rc;
1708 	}
1709 
1710 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1711 	if (rc) {
1712 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1713 		return rc;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static void qede_napi_disable_remove(struct qede_dev *edev)
1720 {
1721 	int i;
1722 
1723 	for_each_queue(i) {
1724 		napi_disable(&edev->fp_array[i].napi);
1725 
1726 		netif_napi_del(&edev->fp_array[i].napi);
1727 	}
1728 }
1729 
1730 static void qede_napi_add_enable(struct qede_dev *edev)
1731 {
1732 	int i;
1733 
1734 	/* Add NAPI objects */
1735 	for_each_queue(i) {
1736 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1737 			       qede_poll, NAPI_POLL_WEIGHT);
1738 		napi_enable(&edev->fp_array[i].napi);
1739 	}
1740 }
1741 
1742 static void qede_sync_free_irqs(struct qede_dev *edev)
1743 {
1744 	int i;
1745 
1746 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1747 		if (edev->int_info.msix_cnt) {
1748 			synchronize_irq(edev->int_info.msix[i].vector);
1749 			free_irq(edev->int_info.msix[i].vector,
1750 				 &edev->fp_array[i]);
1751 		} else {
1752 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1753 		}
1754 	}
1755 
1756 	edev->int_info.used_cnt = 0;
1757 }
1758 
1759 static int qede_req_msix_irqs(struct qede_dev *edev)
1760 {
1761 	int i, rc;
1762 
1763 	/* Sanitize number of interrupts == number of prepared RSS queues */
1764 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1765 		DP_ERR(edev,
1766 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1767 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1768 		return -EINVAL;
1769 	}
1770 
1771 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1772 #ifdef CONFIG_RFS_ACCEL
1773 		struct qede_fastpath *fp = &edev->fp_array[i];
1774 
1775 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1776 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1777 					      edev->int_info.msix[i].vector);
1778 			if (rc) {
1779 				DP_ERR(edev, "Failed to add CPU rmap\n");
1780 				qede_free_arfs(edev);
1781 			}
1782 		}
1783 #endif
1784 		rc = request_irq(edev->int_info.msix[i].vector,
1785 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1786 				 &edev->fp_array[i]);
1787 		if (rc) {
1788 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1789 			qede_sync_free_irqs(edev);
1790 			return rc;
1791 		}
1792 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1793 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1794 			   edev->fp_array[i].name, i,
1795 			   &edev->fp_array[i]);
1796 		edev->int_info.used_cnt++;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static void qede_simd_fp_handler(void *cookie)
1803 {
1804 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1805 
1806 	napi_schedule_irqoff(&fp->napi);
1807 }
1808 
1809 static int qede_setup_irqs(struct qede_dev *edev)
1810 {
1811 	int i, rc = 0;
1812 
1813 	/* Learn Interrupt configuration */
1814 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1815 	if (rc)
1816 		return rc;
1817 
1818 	if (edev->int_info.msix_cnt) {
1819 		rc = qede_req_msix_irqs(edev);
1820 		if (rc)
1821 			return rc;
1822 		edev->ndev->irq = edev->int_info.msix[0].vector;
1823 	} else {
1824 		const struct qed_common_ops *ops;
1825 
1826 		/* qed should learn receive the RSS ids and callbacks */
1827 		ops = edev->ops->common;
1828 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1829 			ops->simd_handler_config(edev->cdev,
1830 						 &edev->fp_array[i], i,
1831 						 qede_simd_fp_handler);
1832 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1833 	}
1834 	return 0;
1835 }
1836 
1837 static int qede_drain_txq(struct qede_dev *edev,
1838 			  struct qede_tx_queue *txq, bool allow_drain)
1839 {
1840 	int rc, cnt = 1000;
1841 
1842 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
1843 		if (!cnt) {
1844 			if (allow_drain) {
1845 				DP_NOTICE(edev,
1846 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
1847 					  txq->index);
1848 				rc = edev->ops->common->drain(edev->cdev);
1849 				if (rc)
1850 					return rc;
1851 				return qede_drain_txq(edev, txq, false);
1852 			}
1853 			DP_NOTICE(edev,
1854 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1855 				  txq->index, txq->sw_tx_prod,
1856 				  txq->sw_tx_cons);
1857 			return -ENODEV;
1858 		}
1859 		cnt--;
1860 		usleep_range(1000, 2000);
1861 		barrier();
1862 	}
1863 
1864 	/* FW finished processing, wait for HW to transmit all tx packets */
1865 	usleep_range(1000, 2000);
1866 
1867 	return 0;
1868 }
1869 
1870 static int qede_stop_txq(struct qede_dev *edev,
1871 			 struct qede_tx_queue *txq, int rss_id)
1872 {
1873 	/* delete doorbell from doorbell recovery mechanism */
1874 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1875 					   &txq->tx_db);
1876 
1877 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1878 }
1879 
1880 static int qede_stop_queues(struct qede_dev *edev)
1881 {
1882 	struct qed_update_vport_params *vport_update_params;
1883 	struct qed_dev *cdev = edev->cdev;
1884 	struct qede_fastpath *fp;
1885 	int rc, i;
1886 
1887 	/* Disable the vport */
1888 	vport_update_params = vzalloc(sizeof(*vport_update_params));
1889 	if (!vport_update_params)
1890 		return -ENOMEM;
1891 
1892 	vport_update_params->vport_id = 0;
1893 	vport_update_params->update_vport_active_flg = 1;
1894 	vport_update_params->vport_active_flg = 0;
1895 	vport_update_params->update_rss_flg = 0;
1896 
1897 	rc = edev->ops->vport_update(cdev, vport_update_params);
1898 	vfree(vport_update_params);
1899 
1900 	if (rc) {
1901 		DP_ERR(edev, "Failed to update vport\n");
1902 		return rc;
1903 	}
1904 
1905 	/* Flush Tx queues. If needed, request drain from MCP */
1906 	for_each_queue(i) {
1907 		fp = &edev->fp_array[i];
1908 
1909 		if (fp->type & QEDE_FASTPATH_TX) {
1910 			int cos;
1911 
1912 			for_each_cos_in_txq(edev, cos) {
1913 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
1914 				if (rc)
1915 					return rc;
1916 			}
1917 		}
1918 
1919 		if (fp->type & QEDE_FASTPATH_XDP) {
1920 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
1921 			if (rc)
1922 				return rc;
1923 		}
1924 	}
1925 
1926 	/* Stop all Queues in reverse order */
1927 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1928 		fp = &edev->fp_array[i];
1929 
1930 		/* Stop the Tx Queue(s) */
1931 		if (fp->type & QEDE_FASTPATH_TX) {
1932 			int cos;
1933 
1934 			for_each_cos_in_txq(edev, cos) {
1935 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
1936 				if (rc)
1937 					return rc;
1938 			}
1939 		}
1940 
1941 		/* Stop the Rx Queue */
1942 		if (fp->type & QEDE_FASTPATH_RX) {
1943 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1944 			if (rc) {
1945 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1946 				return rc;
1947 			}
1948 		}
1949 
1950 		/* Stop the XDP forwarding queue */
1951 		if (fp->type & QEDE_FASTPATH_XDP) {
1952 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
1953 			if (rc)
1954 				return rc;
1955 
1956 			bpf_prog_put(fp->rxq->xdp_prog);
1957 		}
1958 	}
1959 
1960 	/* Stop the vport */
1961 	rc = edev->ops->vport_stop(cdev, 0);
1962 	if (rc)
1963 		DP_ERR(edev, "Failed to stop VPORT\n");
1964 
1965 	return rc;
1966 }
1967 
1968 static int qede_start_txq(struct qede_dev *edev,
1969 			  struct qede_fastpath *fp,
1970 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1971 {
1972 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1973 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1974 	struct qed_queue_start_common_params params;
1975 	struct qed_txq_start_ret_params ret_params;
1976 	int rc;
1977 
1978 	memset(&params, 0, sizeof(params));
1979 	memset(&ret_params, 0, sizeof(ret_params));
1980 
1981 	/* Let the XDP queue share the queue-zone with one of the regular txq.
1982 	 * We don't really care about its coalescing.
1983 	 */
1984 	if (txq->is_xdp)
1985 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1986 	else
1987 		params.queue_id = txq->index;
1988 
1989 	params.p_sb = fp->sb_info;
1990 	params.sb_idx = sb_idx;
1991 	params.tc = txq->cos;
1992 
1993 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1994 				   page_cnt, &ret_params);
1995 	if (rc) {
1996 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1997 		return rc;
1998 	}
1999 
2000 	txq->doorbell_addr = ret_params.p_doorbell;
2001 	txq->handle = ret_params.p_handle;
2002 
2003 	/* Determine the FW consumer address associated */
2004 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2005 
2006 	/* Prepare the doorbell parameters */
2007 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2008 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2009 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2010 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2011 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2012 
2013 	/* register doorbell with doorbell recovery mechanism */
2014 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2015 						&txq->tx_db, DB_REC_WIDTH_32B,
2016 						DB_REC_KERNEL);
2017 
2018 	return rc;
2019 }
2020 
2021 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2022 {
2023 	int vlan_removal_en = 1;
2024 	struct qed_dev *cdev = edev->cdev;
2025 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2026 	struct qed_update_vport_params *vport_update_params;
2027 	struct qed_queue_start_common_params q_params;
2028 	struct qed_start_vport_params start = {0};
2029 	int rc, i;
2030 
2031 	if (!edev->num_queues) {
2032 		DP_ERR(edev,
2033 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2038 	if (!vport_update_params)
2039 		return -ENOMEM;
2040 
2041 	start.handle_ptp_pkts = !!(edev->ptp);
2042 	start.gro_enable = !edev->gro_disable;
2043 	start.mtu = edev->ndev->mtu;
2044 	start.vport_id = 0;
2045 	start.drop_ttl0 = true;
2046 	start.remove_inner_vlan = vlan_removal_en;
2047 	start.clear_stats = clear_stats;
2048 
2049 	rc = edev->ops->vport_start(cdev, &start);
2050 
2051 	if (rc) {
2052 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2053 		goto out;
2054 	}
2055 
2056 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2057 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2058 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2059 
2060 	for_each_queue(i) {
2061 		struct qede_fastpath *fp = &edev->fp_array[i];
2062 		dma_addr_t p_phys_table;
2063 		u32 page_cnt;
2064 
2065 		if (fp->type & QEDE_FASTPATH_RX) {
2066 			struct qed_rxq_start_ret_params ret_params;
2067 			struct qede_rx_queue *rxq = fp->rxq;
2068 			__le16 *val;
2069 
2070 			memset(&ret_params, 0, sizeof(ret_params));
2071 			memset(&q_params, 0, sizeof(q_params));
2072 			q_params.queue_id = rxq->rxq_id;
2073 			q_params.vport_id = 0;
2074 			q_params.p_sb = fp->sb_info;
2075 			q_params.sb_idx = RX_PI;
2076 
2077 			p_phys_table =
2078 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2079 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2080 
2081 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2082 						   rxq->rx_buf_size,
2083 						   rxq->rx_bd_ring.p_phys_addr,
2084 						   p_phys_table,
2085 						   page_cnt, &ret_params);
2086 			if (rc) {
2087 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2088 				       rc);
2089 				goto out;
2090 			}
2091 
2092 			/* Use the return parameters */
2093 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2094 			rxq->handle = ret_params.p_handle;
2095 
2096 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2097 			rxq->hw_cons_ptr = val;
2098 
2099 			qede_update_rx_prod(edev, rxq);
2100 		}
2101 
2102 		if (fp->type & QEDE_FASTPATH_XDP) {
2103 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2104 			if (rc)
2105 				goto out;
2106 
2107 			fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2108 			if (IS_ERR(fp->rxq->xdp_prog)) {
2109 				rc = PTR_ERR(fp->rxq->xdp_prog);
2110 				fp->rxq->xdp_prog = NULL;
2111 				goto out;
2112 			}
2113 		}
2114 
2115 		if (fp->type & QEDE_FASTPATH_TX) {
2116 			int cos;
2117 
2118 			for_each_cos_in_txq(edev, cos) {
2119 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2120 						    TX_PI(cos));
2121 				if (rc)
2122 					goto out;
2123 			}
2124 		}
2125 	}
2126 
2127 	/* Prepare and send the vport enable */
2128 	vport_update_params->vport_id = start.vport_id;
2129 	vport_update_params->update_vport_active_flg = 1;
2130 	vport_update_params->vport_active_flg = 1;
2131 
2132 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2133 	    qed_info->tx_switching) {
2134 		vport_update_params->update_tx_switching_flg = 1;
2135 		vport_update_params->tx_switching_flg = 1;
2136 	}
2137 
2138 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2139 			     &vport_update_params->update_rss_flg);
2140 
2141 	rc = edev->ops->vport_update(cdev, vport_update_params);
2142 	if (rc)
2143 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2144 
2145 out:
2146 	vfree(vport_update_params);
2147 	return rc;
2148 }
2149 
2150 enum qede_unload_mode {
2151 	QEDE_UNLOAD_NORMAL,
2152 	QEDE_UNLOAD_RECOVERY,
2153 };
2154 
2155 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2156 			bool is_locked)
2157 {
2158 	struct qed_link_params link_params;
2159 	int rc;
2160 
2161 	DP_INFO(edev, "Starting qede unload\n");
2162 
2163 	if (!is_locked)
2164 		__qede_lock(edev);
2165 
2166 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2167 
2168 	if (mode != QEDE_UNLOAD_RECOVERY)
2169 		edev->state = QEDE_STATE_CLOSED;
2170 
2171 	qede_rdma_dev_event_close(edev);
2172 
2173 	/* Close OS Tx */
2174 	netif_tx_disable(edev->ndev);
2175 	netif_carrier_off(edev->ndev);
2176 
2177 	if (mode != QEDE_UNLOAD_RECOVERY) {
2178 		/* Reset the link */
2179 		memset(&link_params, 0, sizeof(link_params));
2180 		link_params.link_up = false;
2181 		edev->ops->common->set_link(edev->cdev, &link_params);
2182 
2183 		rc = qede_stop_queues(edev);
2184 		if (rc) {
2185 			qede_sync_free_irqs(edev);
2186 			goto out;
2187 		}
2188 
2189 		DP_INFO(edev, "Stopped Queues\n");
2190 	}
2191 
2192 	qede_vlan_mark_nonconfigured(edev);
2193 	edev->ops->fastpath_stop(edev->cdev);
2194 
2195 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2196 		qede_poll_for_freeing_arfs_filters(edev);
2197 		qede_free_arfs(edev);
2198 	}
2199 
2200 	/* Release the interrupts */
2201 	qede_sync_free_irqs(edev);
2202 	edev->ops->common->set_fp_int(edev->cdev, 0);
2203 
2204 	qede_napi_disable_remove(edev);
2205 
2206 	if (mode == QEDE_UNLOAD_RECOVERY)
2207 		qede_empty_tx_queues(edev);
2208 
2209 	qede_free_mem_load(edev);
2210 	qede_free_fp_array(edev);
2211 
2212 out:
2213 	if (!is_locked)
2214 		__qede_unlock(edev);
2215 
2216 	if (mode != QEDE_UNLOAD_RECOVERY)
2217 		DP_NOTICE(edev, "Link is down\n");
2218 
2219 	edev->ptp_skip_txts = 0;
2220 
2221 	DP_INFO(edev, "Ending qede unload\n");
2222 }
2223 
2224 enum qede_load_mode {
2225 	QEDE_LOAD_NORMAL,
2226 	QEDE_LOAD_RELOAD,
2227 	QEDE_LOAD_RECOVERY,
2228 };
2229 
2230 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2231 		     bool is_locked)
2232 {
2233 	struct qed_link_params link_params;
2234 	u8 num_tc;
2235 	int rc;
2236 
2237 	DP_INFO(edev, "Starting qede load\n");
2238 
2239 	if (!is_locked)
2240 		__qede_lock(edev);
2241 
2242 	rc = qede_set_num_queues(edev);
2243 	if (rc)
2244 		goto out;
2245 
2246 	rc = qede_alloc_fp_array(edev);
2247 	if (rc)
2248 		goto out;
2249 
2250 	qede_init_fp(edev);
2251 
2252 	rc = qede_alloc_mem_load(edev);
2253 	if (rc)
2254 		goto err1;
2255 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2256 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2257 
2258 	rc = qede_set_real_num_queues(edev);
2259 	if (rc)
2260 		goto err2;
2261 
2262 	if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2263 		rc = qede_alloc_arfs(edev);
2264 		if (rc)
2265 			DP_NOTICE(edev, "aRFS memory allocation failed\n");
2266 	}
2267 
2268 	qede_napi_add_enable(edev);
2269 	DP_INFO(edev, "Napi added and enabled\n");
2270 
2271 	rc = qede_setup_irqs(edev);
2272 	if (rc)
2273 		goto err3;
2274 	DP_INFO(edev, "Setup IRQs succeeded\n");
2275 
2276 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2277 	if (rc)
2278 		goto err4;
2279 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2280 
2281 	num_tc = netdev_get_num_tc(edev->ndev);
2282 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2283 	qede_setup_tc(edev->ndev, num_tc);
2284 
2285 	/* Program un-configured VLANs */
2286 	qede_configure_vlan_filters(edev);
2287 
2288 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2289 
2290 	/* Ask for link-up using current configuration */
2291 	memset(&link_params, 0, sizeof(link_params));
2292 	link_params.link_up = true;
2293 	edev->ops->common->set_link(edev->cdev, &link_params);
2294 
2295 	edev->state = QEDE_STATE_OPEN;
2296 
2297 	DP_INFO(edev, "Ending successfully qede load\n");
2298 
2299 	goto out;
2300 err4:
2301 	qede_sync_free_irqs(edev);
2302 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2303 err3:
2304 	qede_napi_disable_remove(edev);
2305 err2:
2306 	qede_free_mem_load(edev);
2307 err1:
2308 	edev->ops->common->set_fp_int(edev->cdev, 0);
2309 	qede_free_fp_array(edev);
2310 	edev->num_queues = 0;
2311 	edev->fp_num_tx = 0;
2312 	edev->fp_num_rx = 0;
2313 out:
2314 	if (!is_locked)
2315 		__qede_unlock(edev);
2316 
2317 	return rc;
2318 }
2319 
2320 /* 'func' should be able to run between unload and reload assuming interface
2321  * is actually running, or afterwards in case it's currently DOWN.
2322  */
2323 void qede_reload(struct qede_dev *edev,
2324 		 struct qede_reload_args *args, bool is_locked)
2325 {
2326 	if (!is_locked)
2327 		__qede_lock(edev);
2328 
2329 	/* Since qede_lock is held, internal state wouldn't change even
2330 	 * if netdev state would start transitioning. Check whether current
2331 	 * internal configuration indicates device is up, then reload.
2332 	 */
2333 	if (edev->state == QEDE_STATE_OPEN) {
2334 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2335 		if (args)
2336 			args->func(edev, args);
2337 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2338 
2339 		/* Since no one is going to do it for us, re-configure */
2340 		qede_config_rx_mode(edev->ndev);
2341 	} else if (args) {
2342 		args->func(edev, args);
2343 	}
2344 
2345 	if (!is_locked)
2346 		__qede_unlock(edev);
2347 }
2348 
2349 /* called with rtnl_lock */
2350 static int qede_open(struct net_device *ndev)
2351 {
2352 	struct qede_dev *edev = netdev_priv(ndev);
2353 	int rc;
2354 
2355 	netif_carrier_off(ndev);
2356 
2357 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2358 
2359 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2360 	if (rc)
2361 		return rc;
2362 
2363 	udp_tunnel_get_rx_info(ndev);
2364 
2365 	edev->ops->common->update_drv_state(edev->cdev, true);
2366 
2367 	return 0;
2368 }
2369 
2370 static int qede_close(struct net_device *ndev)
2371 {
2372 	struct qede_dev *edev = netdev_priv(ndev);
2373 
2374 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2375 
2376 	edev->ops->common->update_drv_state(edev->cdev, false);
2377 
2378 	return 0;
2379 }
2380 
2381 static void qede_link_update(void *dev, struct qed_link_output *link)
2382 {
2383 	struct qede_dev *edev = dev;
2384 
2385 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2386 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2387 		return;
2388 	}
2389 
2390 	if (link->link_up) {
2391 		if (!netif_carrier_ok(edev->ndev)) {
2392 			DP_NOTICE(edev, "Link is up\n");
2393 			netif_tx_start_all_queues(edev->ndev);
2394 			netif_carrier_on(edev->ndev);
2395 			qede_rdma_dev_event_open(edev);
2396 		}
2397 	} else {
2398 		if (netif_carrier_ok(edev->ndev)) {
2399 			DP_NOTICE(edev, "Link is down\n");
2400 			netif_tx_disable(edev->ndev);
2401 			netif_carrier_off(edev->ndev);
2402 			qede_rdma_dev_event_close(edev);
2403 		}
2404 	}
2405 }
2406 
2407 static void qede_schedule_recovery_handler(void *dev)
2408 {
2409 	struct qede_dev *edev = dev;
2410 
2411 	if (edev->state == QEDE_STATE_RECOVERY) {
2412 		DP_NOTICE(edev,
2413 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2414 		return;
2415 	}
2416 
2417 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2418 	schedule_delayed_work(&edev->sp_task, 0);
2419 
2420 	DP_INFO(edev, "Scheduled a recovery handler\n");
2421 }
2422 
2423 static void qede_recovery_failed(struct qede_dev *edev)
2424 {
2425 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2426 
2427 	netif_device_detach(edev->ndev);
2428 
2429 	if (edev->cdev)
2430 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2431 }
2432 
2433 static void qede_recovery_handler(struct qede_dev *edev)
2434 {
2435 	u32 curr_state = edev->state;
2436 	int rc;
2437 
2438 	DP_NOTICE(edev, "Starting a recovery process\n");
2439 
2440 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2441 	 * before calling this function.
2442 	 */
2443 	edev->state = QEDE_STATE_RECOVERY;
2444 
2445 	edev->ops->common->recovery_prolog(edev->cdev);
2446 
2447 	if (curr_state == QEDE_STATE_OPEN)
2448 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2449 
2450 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2451 
2452 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2453 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2454 	if (rc) {
2455 		edev->cdev = NULL;
2456 		goto err;
2457 	}
2458 
2459 	if (curr_state == QEDE_STATE_OPEN) {
2460 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2461 		if (rc)
2462 			goto err;
2463 
2464 		qede_config_rx_mode(edev->ndev);
2465 		udp_tunnel_get_rx_info(edev->ndev);
2466 	}
2467 
2468 	edev->state = curr_state;
2469 
2470 	DP_NOTICE(edev, "Recovery handling is done\n");
2471 
2472 	return;
2473 
2474 err:
2475 	qede_recovery_failed(edev);
2476 }
2477 
2478 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2479 {
2480 	struct netdev_queue *netdev_txq;
2481 
2482 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2483 	if (netif_xmit_stopped(netdev_txq))
2484 		return true;
2485 
2486 	return false;
2487 }
2488 
2489 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2490 {
2491 	struct qede_dev *edev = dev;
2492 	struct netdev_hw_addr *ha;
2493 	int i;
2494 
2495 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2496 		data->feat_flags |= QED_TLV_IP_CSUM;
2497 	if (edev->ndev->features & NETIF_F_TSO)
2498 		data->feat_flags |= QED_TLV_LSO;
2499 
2500 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2501 	memset(data->mac[1], 0, ETH_ALEN);
2502 	memset(data->mac[2], 0, ETH_ALEN);
2503 	/* Copy the first two UC macs */
2504 	netif_addr_lock_bh(edev->ndev);
2505 	i = 1;
2506 	netdev_for_each_uc_addr(ha, edev->ndev) {
2507 		ether_addr_copy(data->mac[i++], ha->addr);
2508 		if (i == QED_TLV_MAC_COUNT)
2509 			break;
2510 	}
2511 
2512 	netif_addr_unlock_bh(edev->ndev);
2513 }
2514 
2515 static void qede_get_eth_tlv_data(void *dev, void *data)
2516 {
2517 	struct qed_mfw_tlv_eth *etlv = data;
2518 	struct qede_dev *edev = dev;
2519 	struct qede_fastpath *fp;
2520 	int i;
2521 
2522 	etlv->lso_maxoff_size = 0XFFFF;
2523 	etlv->lso_maxoff_size_set = true;
2524 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2525 	etlv->lso_minseg_size_set = true;
2526 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2527 	etlv->prom_mode_set = true;
2528 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2529 	etlv->tx_descr_size_set = true;
2530 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2531 	etlv->rx_descr_size_set = true;
2532 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2533 	etlv->iov_offload_set = true;
2534 
2535 	/* Fill information regarding queues; Should be done under the qede
2536 	 * lock to guarantee those don't change beneath our feet.
2537 	 */
2538 	etlv->txqs_empty = true;
2539 	etlv->rxqs_empty = true;
2540 	etlv->num_txqs_full = 0;
2541 	etlv->num_rxqs_full = 0;
2542 
2543 	__qede_lock(edev);
2544 	for_each_queue(i) {
2545 		fp = &edev->fp_array[i];
2546 		if (fp->type & QEDE_FASTPATH_TX) {
2547 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2548 
2549 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2550 				etlv->txqs_empty = false;
2551 			if (qede_is_txq_full(edev, txq))
2552 				etlv->num_txqs_full++;
2553 		}
2554 		if (fp->type & QEDE_FASTPATH_RX) {
2555 			if (qede_has_rx_work(fp->rxq))
2556 				etlv->rxqs_empty = false;
2557 
2558 			/* This one is a bit tricky; Firmware might stop
2559 			 * placing packets if ring is not yet full.
2560 			 * Give an approximation.
2561 			 */
2562 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2563 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2564 			    RX_RING_SIZE - 100)
2565 				etlv->num_rxqs_full++;
2566 		}
2567 	}
2568 	__qede_unlock(edev);
2569 
2570 	etlv->txqs_empty_set = true;
2571 	etlv->rxqs_empty_set = true;
2572 	etlv->num_txqs_full_set = true;
2573 	etlv->num_rxqs_full_set = true;
2574 }
2575