1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015 QLogic Corporation 3 * 4 * This software is available under the terms of the GNU General Public License 5 * (GPL) Version 2, available from the file COPYING in the main directory of 6 * this source tree. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/version.h> 12 #include <linux/device.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/skbuff.h> 16 #include <linux/errno.h> 17 #include <linux/list.h> 18 #include <linux/string.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/interrupt.h> 21 #include <asm/byteorder.h> 22 #include <asm/param.h> 23 #include <linux/io.h> 24 #include <linux/netdev_features.h> 25 #include <linux/udp.h> 26 #include <linux/tcp.h> 27 #include <net/vxlan.h> 28 #include <linux/ip.h> 29 #include <net/ipv6.h> 30 #include <net/tcp.h> 31 #include <linux/if_ether.h> 32 #include <linux/if_vlan.h> 33 #include <linux/pkt_sched.h> 34 #include <linux/ethtool.h> 35 #include <linux/in.h> 36 #include <linux/random.h> 37 #include <net/ip6_checksum.h> 38 #include <linux/bitops.h> 39 40 #include "qede.h" 41 42 static char version[] = 43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 44 45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 static uint debug; 50 module_param(debug, uint, 0); 51 MODULE_PARM_DESC(debug, " Default debug msglevel"); 52 53 static const struct qed_eth_ops *qed_ops; 54 55 #define CHIP_NUM_57980S_40 0x1634 56 #define CHIP_NUM_57980S_10 0x1666 57 #define CHIP_NUM_57980S_MF 0x1636 58 #define CHIP_NUM_57980S_100 0x1644 59 #define CHIP_NUM_57980S_50 0x1654 60 #define CHIP_NUM_57980S_25 0x1656 61 62 #ifndef PCI_DEVICE_ID_NX2_57980E 63 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 64 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 65 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 66 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 67 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 68 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 69 #endif 70 71 static const struct pci_device_id qede_pci_tbl[] = { 72 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 }, 73 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 }, 74 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 }, 75 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 }, 76 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 }, 77 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 }, 78 { 0 } 79 }; 80 81 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 82 83 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 84 85 #define TX_TIMEOUT (5 * HZ) 86 87 static void qede_remove(struct pci_dev *pdev); 88 static int qede_alloc_rx_buffer(struct qede_dev *edev, 89 struct qede_rx_queue *rxq); 90 static void qede_link_update(void *dev, struct qed_link_output *link); 91 92 static struct pci_driver qede_pci_driver = { 93 .name = "qede", 94 .id_table = qede_pci_tbl, 95 .probe = qede_probe, 96 .remove = qede_remove, 97 }; 98 99 static struct qed_eth_cb_ops qede_ll_ops = { 100 { 101 .link_update = qede_link_update, 102 }, 103 }; 104 105 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 106 void *ptr) 107 { 108 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 109 struct ethtool_drvinfo drvinfo; 110 struct qede_dev *edev; 111 112 /* Currently only support name change */ 113 if (event != NETDEV_CHANGENAME) 114 goto done; 115 116 /* Check whether this is a qede device */ 117 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 118 goto done; 119 120 memset(&drvinfo, 0, sizeof(drvinfo)); 121 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 122 if (strcmp(drvinfo.driver, "qede")) 123 goto done; 124 edev = netdev_priv(ndev); 125 126 /* Notify qed of the name change */ 127 if (!edev->ops || !edev->ops->common) 128 goto done; 129 edev->ops->common->set_id(edev->cdev, edev->ndev->name, 130 "qede"); 131 132 done: 133 return NOTIFY_DONE; 134 } 135 136 static struct notifier_block qede_netdev_notifier = { 137 .notifier_call = qede_netdev_event, 138 }; 139 140 static 141 int __init qede_init(void) 142 { 143 int ret; 144 u32 qed_ver; 145 146 pr_notice("qede_init: %s\n", version); 147 148 qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH); 149 if (qed_ver != QEDE_ETH_INTERFACE_VERSION) { 150 pr_notice("Version mismatch [%08x != %08x]\n", 151 qed_ver, 152 QEDE_ETH_INTERFACE_VERSION); 153 return -EINVAL; 154 } 155 156 qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION); 157 if (!qed_ops) { 158 pr_notice("Failed to get qed ethtool operations\n"); 159 return -EINVAL; 160 } 161 162 /* Must register notifier before pci ops, since we might miss 163 * interface rename after pci probe and netdev registeration. 164 */ 165 ret = register_netdevice_notifier(&qede_netdev_notifier); 166 if (ret) { 167 pr_notice("Failed to register netdevice_notifier\n"); 168 qed_put_eth_ops(); 169 return -EINVAL; 170 } 171 172 ret = pci_register_driver(&qede_pci_driver); 173 if (ret) { 174 pr_notice("Failed to register driver\n"); 175 unregister_netdevice_notifier(&qede_netdev_notifier); 176 qed_put_eth_ops(); 177 return -EINVAL; 178 } 179 180 return 0; 181 } 182 183 static void __exit qede_cleanup(void) 184 { 185 pr_notice("qede_cleanup called\n"); 186 187 unregister_netdevice_notifier(&qede_netdev_notifier); 188 pci_unregister_driver(&qede_pci_driver); 189 qed_put_eth_ops(); 190 } 191 192 module_init(qede_init); 193 module_exit(qede_cleanup); 194 195 /* ------------------------------------------------------------------------- 196 * START OF FAST-PATH 197 * ------------------------------------------------------------------------- 198 */ 199 200 /* Unmap the data and free skb */ 201 static int qede_free_tx_pkt(struct qede_dev *edev, 202 struct qede_tx_queue *txq, 203 int *len) 204 { 205 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; 206 struct sk_buff *skb = txq->sw_tx_ring[idx].skb; 207 struct eth_tx_1st_bd *first_bd; 208 struct eth_tx_bd *tx_data_bd; 209 int bds_consumed = 0; 210 int nbds; 211 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD; 212 int i, split_bd_len = 0; 213 214 if (unlikely(!skb)) { 215 DP_ERR(edev, 216 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", 217 idx, txq->sw_tx_cons, txq->sw_tx_prod); 218 return -1; 219 } 220 221 *len = skb->len; 222 223 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 224 225 bds_consumed++; 226 227 nbds = first_bd->data.nbds; 228 229 if (data_split) { 230 struct eth_tx_bd *split = (struct eth_tx_bd *) 231 qed_chain_consume(&txq->tx_pbl); 232 split_bd_len = BD_UNMAP_LEN(split); 233 bds_consumed++; 234 } 235 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 236 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 237 238 /* Unmap the data of the skb frags */ 239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { 240 tx_data_bd = (struct eth_tx_bd *) 241 qed_chain_consume(&txq->tx_pbl); 242 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 243 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 244 } 245 246 while (bds_consumed++ < nbds) 247 qed_chain_consume(&txq->tx_pbl); 248 249 /* Free skb */ 250 dev_kfree_skb_any(skb); 251 txq->sw_tx_ring[idx].skb = NULL; 252 txq->sw_tx_ring[idx].flags = 0; 253 254 return 0; 255 } 256 257 /* Unmap the data and free skb when mapping failed during start_xmit */ 258 static void qede_free_failed_tx_pkt(struct qede_dev *edev, 259 struct qede_tx_queue *txq, 260 struct eth_tx_1st_bd *first_bd, 261 int nbd, 262 bool data_split) 263 { 264 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 265 struct sk_buff *skb = txq->sw_tx_ring[idx].skb; 266 struct eth_tx_bd *tx_data_bd; 267 int i, split_bd_len = 0; 268 269 /* Return prod to its position before this skb was handled */ 270 qed_chain_set_prod(&txq->tx_pbl, 271 le16_to_cpu(txq->tx_db.data.bd_prod), 272 first_bd); 273 274 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 275 276 if (data_split) { 277 struct eth_tx_bd *split = (struct eth_tx_bd *) 278 qed_chain_produce(&txq->tx_pbl); 279 split_bd_len = BD_UNMAP_LEN(split); 280 nbd--; 281 } 282 283 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 284 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 285 286 /* Unmap the data of the skb frags */ 287 for (i = 0; i < nbd; i++) { 288 tx_data_bd = (struct eth_tx_bd *) 289 qed_chain_produce(&txq->tx_pbl); 290 if (tx_data_bd->nbytes) 291 dma_unmap_page(&edev->pdev->dev, 292 BD_UNMAP_ADDR(tx_data_bd), 293 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 294 } 295 296 /* Return again prod to its position before this skb was handled */ 297 qed_chain_set_prod(&txq->tx_pbl, 298 le16_to_cpu(txq->tx_db.data.bd_prod), 299 first_bd); 300 301 /* Free skb */ 302 dev_kfree_skb_any(skb); 303 txq->sw_tx_ring[idx].skb = NULL; 304 txq->sw_tx_ring[idx].flags = 0; 305 } 306 307 static u32 qede_xmit_type(struct qede_dev *edev, 308 struct sk_buff *skb, 309 int *ipv6_ext) 310 { 311 u32 rc = XMIT_L4_CSUM; 312 __be16 l3_proto; 313 314 if (skb->ip_summed != CHECKSUM_PARTIAL) 315 return XMIT_PLAIN; 316 317 l3_proto = vlan_get_protocol(skb); 318 if (l3_proto == htons(ETH_P_IPV6) && 319 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) 320 *ipv6_ext = 1; 321 322 if (skb_is_gso(skb)) 323 rc |= XMIT_LSO; 324 325 return rc; 326 } 327 328 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, 329 struct eth_tx_2nd_bd *second_bd, 330 struct eth_tx_3rd_bd *third_bd) 331 { 332 u8 l4_proto; 333 u16 bd2_bits1 = 0, bd2_bits2 = 0; 334 335 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); 336 337 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & 338 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 339 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 340 341 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 342 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); 343 344 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) 345 l4_proto = ipv6_hdr(skb)->nexthdr; 346 else 347 l4_proto = ip_hdr(skb)->protocol; 348 349 if (l4_proto == IPPROTO_UDP) 350 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 351 352 if (third_bd) 353 third_bd->data.bitfields |= 354 cpu_to_le16(((tcp_hdrlen(skb) / 4) & 355 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << 356 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); 357 358 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); 359 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); 360 } 361 362 static int map_frag_to_bd(struct qede_dev *edev, 363 skb_frag_t *frag, 364 struct eth_tx_bd *bd) 365 { 366 dma_addr_t mapping; 367 368 /* Map skb non-linear frag data for DMA */ 369 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0, 370 skb_frag_size(frag), 371 DMA_TO_DEVICE); 372 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 373 DP_NOTICE(edev, "Unable to map frag - dropping packet\n"); 374 return -ENOMEM; 375 } 376 377 /* Setup the data pointer of the frag data */ 378 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); 379 380 return 0; 381 } 382 383 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ 384 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 385 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb, 386 u8 xmit_type) 387 { 388 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; 389 390 if (xmit_type & XMIT_LSO) { 391 int hlen; 392 393 hlen = skb_transport_header(skb) + 394 tcp_hdrlen(skb) - skb->data; 395 396 /* linear payload would require its own BD */ 397 if (skb_headlen(skb) > hlen) 398 allowed_frags--; 399 } 400 401 return (skb_shinfo(skb)->nr_frags > allowed_frags); 402 } 403 #endif 404 405 /* Main transmit function */ 406 static 407 netdev_tx_t qede_start_xmit(struct sk_buff *skb, 408 struct net_device *ndev) 409 { 410 struct qede_dev *edev = netdev_priv(ndev); 411 struct netdev_queue *netdev_txq; 412 struct qede_tx_queue *txq; 413 struct eth_tx_1st_bd *first_bd; 414 struct eth_tx_2nd_bd *second_bd = NULL; 415 struct eth_tx_3rd_bd *third_bd = NULL; 416 struct eth_tx_bd *tx_data_bd = NULL; 417 u16 txq_index; 418 u8 nbd = 0; 419 dma_addr_t mapping; 420 int rc, frag_idx = 0, ipv6_ext = 0; 421 u8 xmit_type; 422 u16 idx; 423 u16 hlen; 424 bool data_split; 425 426 /* Get tx-queue context and netdev index */ 427 txq_index = skb_get_queue_mapping(skb); 428 WARN_ON(txq_index >= QEDE_TSS_CNT(edev)); 429 txq = QEDE_TX_QUEUE(edev, txq_index); 430 netdev_txq = netdev_get_tx_queue(ndev, txq_index); 431 432 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < 433 (MAX_SKB_FRAGS + 1)); 434 435 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext); 436 437 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 438 if (qede_pkt_req_lin(edev, skb, xmit_type)) { 439 if (skb_linearize(skb)) { 440 DP_NOTICE(edev, 441 "SKB linearization failed - silently dropping this SKB\n"); 442 dev_kfree_skb_any(skb); 443 return NETDEV_TX_OK; 444 } 445 } 446 #endif 447 448 /* Fill the entry in the SW ring and the BDs in the FW ring */ 449 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 450 txq->sw_tx_ring[idx].skb = skb; 451 first_bd = (struct eth_tx_1st_bd *) 452 qed_chain_produce(&txq->tx_pbl); 453 memset(first_bd, 0, sizeof(*first_bd)); 454 first_bd->data.bd_flags.bitfields = 455 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 456 457 /* Map skb linear data for DMA and set in the first BD */ 458 mapping = dma_map_single(&edev->pdev->dev, skb->data, 459 skb_headlen(skb), DMA_TO_DEVICE); 460 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 461 DP_NOTICE(edev, "SKB mapping failed\n"); 462 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false); 463 return NETDEV_TX_OK; 464 } 465 nbd++; 466 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); 467 468 /* In case there is IPv6 with extension headers or LSO we need 2nd and 469 * 3rd BDs. 470 */ 471 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { 472 second_bd = (struct eth_tx_2nd_bd *) 473 qed_chain_produce(&txq->tx_pbl); 474 memset(second_bd, 0, sizeof(*second_bd)); 475 476 nbd++; 477 third_bd = (struct eth_tx_3rd_bd *) 478 qed_chain_produce(&txq->tx_pbl); 479 memset(third_bd, 0, sizeof(*third_bd)); 480 481 nbd++; 482 /* We need to fill in additional data in second_bd... */ 483 tx_data_bd = (struct eth_tx_bd *)second_bd; 484 } 485 486 if (skb_vlan_tag_present(skb)) { 487 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 488 first_bd->data.bd_flags.bitfields |= 489 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 490 } 491 492 /* Fill the parsing flags & params according to the requested offload */ 493 if (xmit_type & XMIT_L4_CSUM) { 494 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT; 495 496 /* We don't re-calculate IP checksum as it is already done by 497 * the upper stack 498 */ 499 first_bd->data.bd_flags.bitfields |= 500 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 501 502 first_bd->data.bitfields |= cpu_to_le16(temp); 503 504 /* If the packet is IPv6 with extension header, indicate that 505 * to FW and pass few params, since the device cracker doesn't 506 * support parsing IPv6 with extension header/s. 507 */ 508 if (unlikely(ipv6_ext)) 509 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); 510 } 511 512 if (xmit_type & XMIT_LSO) { 513 first_bd->data.bd_flags.bitfields |= 514 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); 515 third_bd->data.lso_mss = 516 cpu_to_le16(skb_shinfo(skb)->gso_size); 517 518 first_bd->data.bd_flags.bitfields |= 519 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 520 hlen = skb_transport_header(skb) + 521 tcp_hdrlen(skb) - skb->data; 522 523 /* @@@TBD - if will not be removed need to check */ 524 third_bd->data.bitfields |= 525 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT)); 526 527 /* Make life easier for FW guys who can't deal with header and 528 * data on same BD. If we need to split, use the second bd... 529 */ 530 if (unlikely(skb_headlen(skb) > hlen)) { 531 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 532 "TSO split header size is %d (%x:%x)\n", 533 first_bd->nbytes, first_bd->addr.hi, 534 first_bd->addr.lo); 535 536 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), 537 le32_to_cpu(first_bd->addr.lo)) + 538 hlen; 539 540 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, 541 le16_to_cpu(first_bd->nbytes) - 542 hlen); 543 544 /* this marks the BD as one that has no 545 * individual mapping 546 */ 547 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD; 548 549 first_bd->nbytes = cpu_to_le16(hlen); 550 551 tx_data_bd = (struct eth_tx_bd *)third_bd; 552 data_split = true; 553 } 554 } 555 556 /* Handle fragmented skb */ 557 /* special handle for frags inside 2nd and 3rd bds.. */ 558 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { 559 rc = map_frag_to_bd(edev, 560 &skb_shinfo(skb)->frags[frag_idx], 561 tx_data_bd); 562 if (rc) { 563 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, 564 data_split); 565 return NETDEV_TX_OK; 566 } 567 568 if (tx_data_bd == (struct eth_tx_bd *)second_bd) 569 tx_data_bd = (struct eth_tx_bd *)third_bd; 570 else 571 tx_data_bd = NULL; 572 573 frag_idx++; 574 } 575 576 /* map last frags into 4th, 5th .... */ 577 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { 578 tx_data_bd = (struct eth_tx_bd *) 579 qed_chain_produce(&txq->tx_pbl); 580 581 memset(tx_data_bd, 0, sizeof(*tx_data_bd)); 582 583 rc = map_frag_to_bd(edev, 584 &skb_shinfo(skb)->frags[frag_idx], 585 tx_data_bd); 586 if (rc) { 587 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, 588 data_split); 589 return NETDEV_TX_OK; 590 } 591 } 592 593 /* update the first BD with the actual num BDs */ 594 first_bd->data.nbds = nbd; 595 596 netdev_tx_sent_queue(netdev_txq, skb->len); 597 598 skb_tx_timestamp(skb); 599 600 /* Advance packet producer only before sending the packet since mapping 601 * of pages may fail. 602 */ 603 txq->sw_tx_prod++; 604 605 /* 'next page' entries are counted in the producer value */ 606 txq->tx_db.data.bd_prod = 607 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); 608 609 /* wmb makes sure that the BDs data is updated before updating the 610 * producer, otherwise FW may read old data from the BDs. 611 */ 612 wmb(); 613 barrier(); 614 writel(txq->tx_db.raw, txq->doorbell_addr); 615 616 /* mmiowb is needed to synchronize doorbell writes from more than one 617 * processor. It guarantees that the write arrives to the device before 618 * the queue lock is released and another start_xmit is called (possibly 619 * on another CPU). Without this barrier, the next doorbell can bypass 620 * this doorbell. This is applicable to IA64/Altix systems. 621 */ 622 mmiowb(); 623 624 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) 625 < (MAX_SKB_FRAGS + 1))) { 626 netif_tx_stop_queue(netdev_txq); 627 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 628 "Stop queue was called\n"); 629 /* paired memory barrier is in qede_tx_int(), we have to keep 630 * ordering of set_bit() in netif_tx_stop_queue() and read of 631 * fp->bd_tx_cons 632 */ 633 smp_mb(); 634 635 if (qed_chain_get_elem_left(&txq->tx_pbl) 636 >= (MAX_SKB_FRAGS + 1) && 637 (edev->state == QEDE_STATE_OPEN)) { 638 netif_tx_wake_queue(netdev_txq); 639 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 640 "Wake queue was called\n"); 641 } 642 } 643 644 return NETDEV_TX_OK; 645 } 646 647 static int qede_txq_has_work(struct qede_tx_queue *txq) 648 { 649 u16 hw_bd_cons; 650 651 /* Tell compiler that consumer and producer can change */ 652 barrier(); 653 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 654 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) 655 return 0; 656 657 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); 658 } 659 660 static int qede_tx_int(struct qede_dev *edev, 661 struct qede_tx_queue *txq) 662 { 663 struct netdev_queue *netdev_txq; 664 u16 hw_bd_cons; 665 unsigned int pkts_compl = 0, bytes_compl = 0; 666 int rc; 667 668 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 669 670 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 671 barrier(); 672 673 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 674 int len = 0; 675 676 rc = qede_free_tx_pkt(edev, txq, &len); 677 if (rc) { 678 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", 679 hw_bd_cons, 680 qed_chain_get_cons_idx(&txq->tx_pbl)); 681 break; 682 } 683 684 bytes_compl += len; 685 pkts_compl++; 686 txq->sw_tx_cons++; 687 } 688 689 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 690 691 /* Need to make the tx_bd_cons update visible to start_xmit() 692 * before checking for netif_tx_queue_stopped(). Without the 693 * memory barrier, there is a small possibility that 694 * start_xmit() will miss it and cause the queue to be stopped 695 * forever. 696 * On the other hand we need an rmb() here to ensure the proper 697 * ordering of bit testing in the following 698 * netif_tx_queue_stopped(txq) call. 699 */ 700 smp_mb(); 701 702 if (unlikely(netif_tx_queue_stopped(netdev_txq))) { 703 /* Taking tx_lock is needed to prevent reenabling the queue 704 * while it's empty. This could have happen if rx_action() gets 705 * suspended in qede_tx_int() after the condition before 706 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): 707 * 708 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 709 * sends some packets consuming the whole queue again-> 710 * stops the queue 711 */ 712 713 __netif_tx_lock(netdev_txq, smp_processor_id()); 714 715 if ((netif_tx_queue_stopped(netdev_txq)) && 716 (edev->state == QEDE_STATE_OPEN) && 717 (qed_chain_get_elem_left(&txq->tx_pbl) 718 >= (MAX_SKB_FRAGS + 1))) { 719 netif_tx_wake_queue(netdev_txq); 720 DP_VERBOSE(edev, NETIF_MSG_TX_DONE, 721 "Wake queue was called\n"); 722 } 723 724 __netif_tx_unlock(netdev_txq); 725 } 726 727 return 0; 728 } 729 730 static bool qede_has_rx_work(struct qede_rx_queue *rxq) 731 { 732 u16 hw_comp_cons, sw_comp_cons; 733 734 /* Tell compiler that status block fields can change */ 735 barrier(); 736 737 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 738 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 739 740 return hw_comp_cons != sw_comp_cons; 741 } 742 743 static bool qede_has_tx_work(struct qede_fastpath *fp) 744 { 745 u8 tc; 746 747 for (tc = 0; tc < fp->edev->num_tc; tc++) 748 if (qede_txq_has_work(&fp->txqs[tc])) 749 return true; 750 return false; 751 } 752 753 /* This function reuses the buffer(from an offset) from 754 * consumer index to producer index in the bd ring 755 */ 756 static inline void qede_reuse_page(struct qede_dev *edev, 757 struct qede_rx_queue *rxq, 758 struct sw_rx_data *curr_cons) 759 { 760 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 761 struct sw_rx_data *curr_prod; 762 dma_addr_t new_mapping; 763 764 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 765 *curr_prod = *curr_cons; 766 767 new_mapping = curr_prod->mapping + curr_prod->page_offset; 768 769 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); 770 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping)); 771 772 rxq->sw_rx_prod++; 773 curr_cons->data = NULL; 774 } 775 776 static inline int qede_realloc_rx_buffer(struct qede_dev *edev, 777 struct qede_rx_queue *rxq, 778 struct sw_rx_data *curr_cons) 779 { 780 /* Move to the next segment in the page */ 781 curr_cons->page_offset += rxq->rx_buf_seg_size; 782 783 if (curr_cons->page_offset == PAGE_SIZE) { 784 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) 785 return -ENOMEM; 786 787 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping, 788 PAGE_SIZE, DMA_FROM_DEVICE); 789 } else { 790 /* Increment refcount of the page as we don't want 791 * network stack to take the ownership of the page 792 * which can be recycled multiple times by the driver. 793 */ 794 atomic_inc(&curr_cons->data->_count); 795 qede_reuse_page(edev, rxq, curr_cons); 796 } 797 798 return 0; 799 } 800 801 static inline void qede_update_rx_prod(struct qede_dev *edev, 802 struct qede_rx_queue *rxq) 803 { 804 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); 805 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); 806 struct eth_rx_prod_data rx_prods = {0}; 807 808 /* Update producers */ 809 rx_prods.bd_prod = cpu_to_le16(bd_prod); 810 rx_prods.cqe_prod = cpu_to_le16(cqe_prod); 811 812 /* Make sure that the BD and SGE data is updated before updating the 813 * producers since FW might read the BD/SGE right after the producer 814 * is updated. 815 */ 816 wmb(); 817 818 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 819 (u32 *)&rx_prods); 820 821 /* mmiowb is needed to synchronize doorbell writes from more than one 822 * processor. It guarantees that the write arrives to the device before 823 * the napi lock is released and another qede_poll is called (possibly 824 * on another CPU). Without this barrier, the next doorbell can bypass 825 * this doorbell. This is applicable to IA64/Altix systems. 826 */ 827 mmiowb(); 828 } 829 830 static u32 qede_get_rxhash(struct qede_dev *edev, 831 u8 bitfields, 832 __le32 rss_hash, 833 enum pkt_hash_types *rxhash_type) 834 { 835 enum rss_hash_type htype; 836 837 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); 838 839 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) { 840 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) || 841 (htype == RSS_HASH_TYPE_IPV6)) ? 842 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; 843 return le32_to_cpu(rss_hash); 844 } 845 *rxhash_type = PKT_HASH_TYPE_NONE; 846 return 0; 847 } 848 849 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) 850 { 851 skb_checksum_none_assert(skb); 852 853 if (csum_flag & QEDE_CSUM_UNNECESSARY) 854 skb->ip_summed = CHECKSUM_UNNECESSARY; 855 } 856 857 static inline void qede_skb_receive(struct qede_dev *edev, 858 struct qede_fastpath *fp, 859 struct sk_buff *skb, 860 u16 vlan_tag) 861 { 862 if (vlan_tag) 863 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 864 vlan_tag); 865 866 napi_gro_receive(&fp->napi, skb); 867 } 868 869 static void qede_set_gro_params(struct qede_dev *edev, 870 struct sk_buff *skb, 871 struct eth_fast_path_rx_tpa_start_cqe *cqe) 872 { 873 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); 874 875 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & 876 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) 877 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 878 else 879 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 880 881 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - 882 cqe->header_len; 883 } 884 885 static int qede_fill_frag_skb(struct qede_dev *edev, 886 struct qede_rx_queue *rxq, 887 u8 tpa_agg_index, 888 u16 len_on_bd) 889 { 890 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & 891 NUM_RX_BDS_MAX]; 892 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; 893 struct sk_buff *skb = tpa_info->skb; 894 895 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) 896 goto out; 897 898 /* Add one frag and update the appropriate fields in the skb */ 899 skb_fill_page_desc(skb, tpa_info->frag_id++, 900 current_bd->data, current_bd->page_offset, 901 len_on_bd); 902 903 if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) { 904 tpa_info->agg_state = QEDE_AGG_STATE_ERROR; 905 goto out; 906 } 907 908 qed_chain_consume(&rxq->rx_bd_ring); 909 rxq->sw_rx_cons++; 910 911 skb->data_len += len_on_bd; 912 skb->truesize += rxq->rx_buf_seg_size; 913 skb->len += len_on_bd; 914 915 return 0; 916 917 out: 918 return -ENOMEM; 919 } 920 921 static void qede_tpa_start(struct qede_dev *edev, 922 struct qede_rx_queue *rxq, 923 struct eth_fast_path_rx_tpa_start_cqe *cqe) 924 { 925 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 926 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); 927 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 928 struct sw_rx_data *replace_buf = &tpa_info->replace_buf; 929 dma_addr_t mapping = tpa_info->replace_buf_mapping; 930 struct sw_rx_data *sw_rx_data_cons; 931 struct sw_rx_data *sw_rx_data_prod; 932 enum pkt_hash_types rxhash_type; 933 u32 rxhash; 934 935 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 936 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 937 938 /* Use pre-allocated replacement buffer - we can't release the agg. 939 * start until its over and we don't want to risk allocation failing 940 * here, so re-allocate when aggregation will be over. 941 */ 942 dma_unmap_addr_set(sw_rx_data_prod, mapping, 943 dma_unmap_addr(replace_buf, mapping)); 944 945 sw_rx_data_prod->data = replace_buf->data; 946 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 947 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 948 sw_rx_data_prod->page_offset = replace_buf->page_offset; 949 950 rxq->sw_rx_prod++; 951 952 /* move partial skb from cons to pool (don't unmap yet) 953 * save mapping, incase we drop the packet later on. 954 */ 955 tpa_info->start_buf = *sw_rx_data_cons; 956 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), 957 le32_to_cpu(rx_bd_cons->addr.lo)); 958 959 tpa_info->start_buf_mapping = mapping; 960 rxq->sw_rx_cons++; 961 962 /* set tpa state to start only if we are able to allocate skb 963 * for this aggregation, otherwise mark as error and aggregation will 964 * be dropped 965 */ 966 tpa_info->skb = netdev_alloc_skb(edev->ndev, 967 le16_to_cpu(cqe->len_on_first_bd)); 968 if (unlikely(!tpa_info->skb)) { 969 tpa_info->agg_state = QEDE_AGG_STATE_ERROR; 970 return; 971 } 972 973 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); 974 memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe)); 975 976 /* Start filling in the aggregation info */ 977 tpa_info->frag_id = 0; 978 tpa_info->agg_state = QEDE_AGG_STATE_START; 979 980 rxhash = qede_get_rxhash(edev, cqe->bitfields, 981 cqe->rss_hash, &rxhash_type); 982 skb_set_hash(tpa_info->skb, rxhash, rxhash_type); 983 if ((le16_to_cpu(cqe->pars_flags.flags) >> 984 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & 985 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) 986 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 987 else 988 tpa_info->vlan_tag = 0; 989 990 /* This is needed in order to enable forwarding support */ 991 qede_set_gro_params(edev, tpa_info->skb, cqe); 992 993 if (likely(cqe->ext_bd_len_list[0])) 994 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 995 le16_to_cpu(cqe->ext_bd_len_list[0])); 996 997 if (unlikely(cqe->ext_bd_len_list[1])) { 998 DP_ERR(edev, 999 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); 1000 tpa_info->agg_state = QEDE_AGG_STATE_ERROR; 1001 } 1002 } 1003 1004 #ifdef CONFIG_INET 1005 static void qede_gro_ip_csum(struct sk_buff *skb) 1006 { 1007 const struct iphdr *iph = ip_hdr(skb); 1008 struct tcphdr *th; 1009 1010 skb_set_network_header(skb, 0); 1011 skb_set_transport_header(skb, sizeof(struct iphdr)); 1012 th = tcp_hdr(skb); 1013 1014 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 1015 iph->saddr, iph->daddr, 0); 1016 1017 tcp_gro_complete(skb); 1018 } 1019 1020 static void qede_gro_ipv6_csum(struct sk_buff *skb) 1021 { 1022 struct ipv6hdr *iph = ipv6_hdr(skb); 1023 struct tcphdr *th; 1024 1025 skb_set_network_header(skb, 0); 1026 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 1027 th = tcp_hdr(skb); 1028 1029 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 1030 &iph->saddr, &iph->daddr, 0); 1031 tcp_gro_complete(skb); 1032 } 1033 #endif 1034 1035 static void qede_gro_receive(struct qede_dev *edev, 1036 struct qede_fastpath *fp, 1037 struct sk_buff *skb, 1038 u16 vlan_tag) 1039 { 1040 #ifdef CONFIG_INET 1041 if (skb_shinfo(skb)->gso_size) { 1042 switch (skb->protocol) { 1043 case htons(ETH_P_IP): 1044 qede_gro_ip_csum(skb); 1045 break; 1046 case htons(ETH_P_IPV6): 1047 qede_gro_ipv6_csum(skb); 1048 break; 1049 default: 1050 DP_ERR(edev, 1051 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 1052 ntohs(skb->protocol)); 1053 } 1054 } 1055 #endif 1056 skb_record_rx_queue(skb, fp->rss_id); 1057 qede_skb_receive(edev, fp, skb, vlan_tag); 1058 } 1059 1060 static inline void qede_tpa_cont(struct qede_dev *edev, 1061 struct qede_rx_queue *rxq, 1062 struct eth_fast_path_rx_tpa_cont_cqe *cqe) 1063 { 1064 int i; 1065 1066 for (i = 0; cqe->len_list[i]; i++) 1067 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1068 le16_to_cpu(cqe->len_list[i])); 1069 1070 if (unlikely(i > 1)) 1071 DP_ERR(edev, 1072 "Strange - TPA cont with more than a single len_list entry\n"); 1073 } 1074 1075 static void qede_tpa_end(struct qede_dev *edev, 1076 struct qede_fastpath *fp, 1077 struct eth_fast_path_rx_tpa_end_cqe *cqe) 1078 { 1079 struct qede_rx_queue *rxq = fp->rxq; 1080 struct qede_agg_info *tpa_info; 1081 struct sk_buff *skb; 1082 int i; 1083 1084 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 1085 skb = tpa_info->skb; 1086 1087 for (i = 0; cqe->len_list[i]; i++) 1088 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 1089 le16_to_cpu(cqe->len_list[i])); 1090 if (unlikely(i > 1)) 1091 DP_ERR(edev, 1092 "Strange - TPA emd with more than a single len_list entry\n"); 1093 1094 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START)) 1095 goto err; 1096 1097 /* Sanity */ 1098 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) 1099 DP_ERR(edev, 1100 "Strange - TPA had %02x BDs, but SKB has only %d frags\n", 1101 cqe->num_of_bds, tpa_info->frag_id); 1102 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) 1103 DP_ERR(edev, 1104 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", 1105 le16_to_cpu(cqe->total_packet_len), skb->len); 1106 1107 memcpy(skb->data, 1108 page_address(tpa_info->start_buf.data) + 1109 tpa_info->start_cqe.placement_offset + 1110 tpa_info->start_buf.page_offset, 1111 le16_to_cpu(tpa_info->start_cqe.len_on_first_bd)); 1112 1113 /* Recycle [mapped] start buffer for the next replacement */ 1114 tpa_info->replace_buf = tpa_info->start_buf; 1115 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; 1116 1117 /* Finalize the SKB */ 1118 skb->protocol = eth_type_trans(skb, edev->ndev); 1119 skb->ip_summed = CHECKSUM_UNNECESSARY; 1120 1121 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 1122 * to skb_shinfo(skb)->gso_segs 1123 */ 1124 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); 1125 1126 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); 1127 1128 tpa_info->agg_state = QEDE_AGG_STATE_NONE; 1129 1130 return; 1131 err: 1132 /* The BD starting the aggregation is still mapped; Re-use it for 1133 * future aggregations [as replacement buffer] 1134 */ 1135 memcpy(&tpa_info->replace_buf, &tpa_info->start_buf, 1136 sizeof(struct sw_rx_data)); 1137 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping; 1138 tpa_info->start_buf.data = NULL; 1139 tpa_info->agg_state = QEDE_AGG_STATE_NONE; 1140 dev_kfree_skb_any(tpa_info->skb); 1141 tpa_info->skb = NULL; 1142 } 1143 1144 static u8 qede_check_csum(u16 flag) 1145 { 1146 u16 csum_flag = 0; 1147 u8 csum = 0; 1148 1149 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1150 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) { 1151 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1152 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 1153 csum = QEDE_CSUM_UNNECESSARY; 1154 } 1155 1156 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1157 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 1158 1159 if (csum_flag & flag) 1160 return QEDE_CSUM_ERROR; 1161 1162 return csum; 1163 } 1164 1165 static int qede_rx_int(struct qede_fastpath *fp, int budget) 1166 { 1167 struct qede_dev *edev = fp->edev; 1168 struct qede_rx_queue *rxq = fp->rxq; 1169 1170 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag; 1171 int rx_pkt = 0; 1172 u8 csum_flag; 1173 1174 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 1175 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1176 1177 /* Memory barrier to prevent the CPU from doing speculative reads of CQE 1178 * / BD in the while-loop before reading hw_comp_cons. If the CQE is 1179 * read before it is written by FW, then FW writes CQE and SB, and then 1180 * the CPU reads the hw_comp_cons, it will use an old CQE. 1181 */ 1182 rmb(); 1183 1184 /* Loop to complete all indicated BDs */ 1185 while (sw_comp_cons != hw_comp_cons) { 1186 struct eth_fast_path_rx_reg_cqe *fp_cqe; 1187 enum pkt_hash_types rxhash_type; 1188 enum eth_rx_cqe_type cqe_type; 1189 struct sw_rx_data *sw_rx_data; 1190 union eth_rx_cqe *cqe; 1191 struct sk_buff *skb; 1192 struct page *data; 1193 __le16 flags; 1194 u16 len, pad; 1195 u32 rx_hash; 1196 1197 /* Get the CQE from the completion ring */ 1198 cqe = (union eth_rx_cqe *) 1199 qed_chain_consume(&rxq->rx_comp_ring); 1200 cqe_type = cqe->fast_path_regular.type; 1201 1202 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { 1203 edev->ops->eth_cqe_completion( 1204 edev->cdev, fp->rss_id, 1205 (struct eth_slow_path_rx_cqe *)cqe); 1206 goto next_cqe; 1207 } 1208 1209 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) { 1210 switch (cqe_type) { 1211 case ETH_RX_CQE_TYPE_TPA_START: 1212 qede_tpa_start(edev, rxq, 1213 &cqe->fast_path_tpa_start); 1214 goto next_cqe; 1215 case ETH_RX_CQE_TYPE_TPA_CONT: 1216 qede_tpa_cont(edev, rxq, 1217 &cqe->fast_path_tpa_cont); 1218 goto next_cqe; 1219 case ETH_RX_CQE_TYPE_TPA_END: 1220 qede_tpa_end(edev, fp, 1221 &cqe->fast_path_tpa_end); 1222 goto next_rx_only; 1223 default: 1224 break; 1225 } 1226 } 1227 1228 /* Get the data from the SW ring */ 1229 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1230 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; 1231 data = sw_rx_data->data; 1232 1233 fp_cqe = &cqe->fast_path_regular; 1234 len = le16_to_cpu(fp_cqe->len_on_first_bd); 1235 pad = fp_cqe->placement_offset; 1236 flags = cqe->fast_path_regular.pars_flags.flags; 1237 1238 /* If this is an error packet then drop it */ 1239 parse_flag = le16_to_cpu(flags); 1240 1241 csum_flag = qede_check_csum(parse_flag); 1242 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { 1243 DP_NOTICE(edev, 1244 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n", 1245 sw_comp_cons, parse_flag); 1246 rxq->rx_hw_errors++; 1247 qede_reuse_page(edev, rxq, sw_rx_data); 1248 goto next_rx; 1249 } 1250 1251 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); 1252 if (unlikely(!skb)) { 1253 DP_NOTICE(edev, 1254 "Build_skb failed, dropping incoming packet\n"); 1255 qede_reuse_page(edev, rxq, sw_rx_data); 1256 rxq->rx_alloc_errors++; 1257 goto next_rx; 1258 } 1259 1260 /* Copy data into SKB */ 1261 if (len + pad <= QEDE_RX_HDR_SIZE) { 1262 memcpy(skb_put(skb, len), 1263 page_address(data) + pad + 1264 sw_rx_data->page_offset, len); 1265 qede_reuse_page(edev, rxq, sw_rx_data); 1266 } else { 1267 struct skb_frag_struct *frag; 1268 unsigned int pull_len; 1269 unsigned char *va; 1270 1271 frag = &skb_shinfo(skb)->frags[0]; 1272 1273 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data, 1274 pad + sw_rx_data->page_offset, 1275 len, rxq->rx_buf_seg_size); 1276 1277 va = skb_frag_address(frag); 1278 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); 1279 1280 /* Align the pull_len to optimize memcpy */ 1281 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); 1282 1283 skb_frag_size_sub(frag, pull_len); 1284 frag->page_offset += pull_len; 1285 skb->data_len -= pull_len; 1286 skb->tail += pull_len; 1287 1288 if (unlikely(qede_realloc_rx_buffer(edev, rxq, 1289 sw_rx_data))) { 1290 DP_ERR(edev, "Failed to allocate rx buffer\n"); 1291 rxq->rx_alloc_errors++; 1292 goto next_cqe; 1293 } 1294 } 1295 1296 if (fp_cqe->bd_num != 1) { 1297 u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len); 1298 u8 num_frags; 1299 1300 pkt_len -= len; 1301 1302 for (num_frags = fp_cqe->bd_num - 1; num_frags > 0; 1303 num_frags--) { 1304 u16 cur_size = pkt_len > rxq->rx_buf_size ? 1305 rxq->rx_buf_size : pkt_len; 1306 1307 WARN_ONCE(!cur_size, 1308 "Still got %d BDs for mapping jumbo, but length became 0\n", 1309 num_frags); 1310 1311 if (unlikely(qede_alloc_rx_buffer(edev, rxq))) 1312 goto next_cqe; 1313 1314 rxq->sw_rx_cons++; 1315 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1316 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; 1317 qed_chain_consume(&rxq->rx_bd_ring); 1318 dma_unmap_page(&edev->pdev->dev, 1319 sw_rx_data->mapping, 1320 PAGE_SIZE, DMA_FROM_DEVICE); 1321 1322 skb_fill_page_desc(skb, 1323 skb_shinfo(skb)->nr_frags++, 1324 sw_rx_data->data, 0, 1325 cur_size); 1326 1327 skb->truesize += PAGE_SIZE; 1328 skb->data_len += cur_size; 1329 skb->len += cur_size; 1330 pkt_len -= cur_size; 1331 } 1332 1333 if (pkt_len) 1334 DP_ERR(edev, 1335 "Mapped all BDs of jumbo, but still have %d bytes\n", 1336 pkt_len); 1337 } 1338 1339 skb->protocol = eth_type_trans(skb, edev->ndev); 1340 1341 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields, 1342 fp_cqe->rss_hash, 1343 &rxhash_type); 1344 1345 skb_set_hash(skb, rx_hash, rxhash_type); 1346 1347 qede_set_skb_csum(skb, csum_flag); 1348 1349 skb_record_rx_queue(skb, fp->rss_id); 1350 1351 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag)); 1352 1353 qed_chain_consume(&rxq->rx_bd_ring); 1354 next_rx: 1355 rxq->sw_rx_cons++; 1356 next_rx_only: 1357 rx_pkt++; 1358 1359 next_cqe: /* don't consume bd rx buffer */ 1360 qed_chain_recycle_consumed(&rxq->rx_comp_ring); 1361 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1362 /* CR TPA - revisit how to handle budget in TPA perhaps 1363 * increase on "end" 1364 */ 1365 if (rx_pkt == budget) 1366 break; 1367 } /* repeat while sw_comp_cons != hw_comp_cons... */ 1368 1369 /* Update producers */ 1370 qede_update_rx_prod(edev, rxq); 1371 1372 return rx_pkt; 1373 } 1374 1375 static int qede_poll(struct napi_struct *napi, int budget) 1376 { 1377 int work_done = 0; 1378 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, 1379 napi); 1380 struct qede_dev *edev = fp->edev; 1381 1382 while (1) { 1383 u8 tc; 1384 1385 for (tc = 0; tc < edev->num_tc; tc++) 1386 if (qede_txq_has_work(&fp->txqs[tc])) 1387 qede_tx_int(edev, &fp->txqs[tc]); 1388 1389 if (qede_has_rx_work(fp->rxq)) { 1390 work_done += qede_rx_int(fp, budget - work_done); 1391 1392 /* must not complete if we consumed full budget */ 1393 if (work_done >= budget) 1394 break; 1395 } 1396 1397 /* Fall out from the NAPI loop if needed */ 1398 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) { 1399 qed_sb_update_sb_idx(fp->sb_info); 1400 /* *_has_*_work() reads the status block, 1401 * thus we need to ensure that status block indices 1402 * have been actually read (qed_sb_update_sb_idx) 1403 * prior to this check (*_has_*_work) so that 1404 * we won't write the "newer" value of the status block 1405 * to HW (if there was a DMA right after 1406 * qede_has_rx_work and if there is no rmb, the memory 1407 * reading (qed_sb_update_sb_idx) may be postponed 1408 * to right before *_ack_sb). In this case there 1409 * will never be another interrupt until there is 1410 * another update of the status block, while there 1411 * is still unhandled work. 1412 */ 1413 rmb(); 1414 1415 if (!(qede_has_rx_work(fp->rxq) || 1416 qede_has_tx_work(fp))) { 1417 napi_complete(napi); 1418 /* Update and reenable interrupts */ 1419 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1420 1 /*update*/); 1421 break; 1422 } 1423 } 1424 } 1425 1426 return work_done; 1427 } 1428 1429 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) 1430 { 1431 struct qede_fastpath *fp = fp_cookie; 1432 1433 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); 1434 1435 napi_schedule_irqoff(&fp->napi); 1436 return IRQ_HANDLED; 1437 } 1438 1439 /* ------------------------------------------------------------------------- 1440 * END OF FAST-PATH 1441 * ------------------------------------------------------------------------- 1442 */ 1443 1444 static int qede_open(struct net_device *ndev); 1445 static int qede_close(struct net_device *ndev); 1446 static int qede_set_mac_addr(struct net_device *ndev, void *p); 1447 static void qede_set_rx_mode(struct net_device *ndev); 1448 static void qede_config_rx_mode(struct net_device *ndev); 1449 1450 static int qede_set_ucast_rx_mac(struct qede_dev *edev, 1451 enum qed_filter_xcast_params_type opcode, 1452 unsigned char mac[ETH_ALEN]) 1453 { 1454 struct qed_filter_params filter_cmd; 1455 1456 memset(&filter_cmd, 0, sizeof(filter_cmd)); 1457 filter_cmd.type = QED_FILTER_TYPE_UCAST; 1458 filter_cmd.filter.ucast.type = opcode; 1459 filter_cmd.filter.ucast.mac_valid = 1; 1460 ether_addr_copy(filter_cmd.filter.ucast.mac, mac); 1461 1462 return edev->ops->filter_config(edev->cdev, &filter_cmd); 1463 } 1464 1465 static int qede_set_ucast_rx_vlan(struct qede_dev *edev, 1466 enum qed_filter_xcast_params_type opcode, 1467 u16 vid) 1468 { 1469 struct qed_filter_params filter_cmd; 1470 1471 memset(&filter_cmd, 0, sizeof(filter_cmd)); 1472 filter_cmd.type = QED_FILTER_TYPE_UCAST; 1473 filter_cmd.filter.ucast.type = opcode; 1474 filter_cmd.filter.ucast.vlan_valid = 1; 1475 filter_cmd.filter.ucast.vlan = vid; 1476 1477 return edev->ops->filter_config(edev->cdev, &filter_cmd); 1478 } 1479 1480 void qede_fill_by_demand_stats(struct qede_dev *edev) 1481 { 1482 struct qed_eth_stats stats; 1483 1484 edev->ops->get_vport_stats(edev->cdev, &stats); 1485 edev->stats.no_buff_discards = stats.no_buff_discards; 1486 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes; 1487 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes; 1488 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes; 1489 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts; 1490 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts; 1491 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts; 1492 edev->stats.mftag_filter_discards = stats.mftag_filter_discards; 1493 edev->stats.mac_filter_discards = stats.mac_filter_discards; 1494 1495 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes; 1496 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes; 1497 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes; 1498 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts; 1499 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts; 1500 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts; 1501 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts; 1502 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts; 1503 edev->stats.coalesced_events = stats.tpa_coalesced_events; 1504 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num; 1505 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts; 1506 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes; 1507 1508 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets; 1509 edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets; 1510 edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets; 1511 edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets; 1512 edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets; 1513 edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets; 1514 edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets; 1515 edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets; 1516 edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets; 1517 edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets; 1518 edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets; 1519 edev->stats.rx_crc_errors = stats.rx_crc_errors; 1520 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames; 1521 edev->stats.rx_pause_frames = stats.rx_pause_frames; 1522 edev->stats.rx_pfc_frames = stats.rx_pfc_frames; 1523 edev->stats.rx_align_errors = stats.rx_align_errors; 1524 edev->stats.rx_carrier_errors = stats.rx_carrier_errors; 1525 edev->stats.rx_oversize_packets = stats.rx_oversize_packets; 1526 edev->stats.rx_jabbers = stats.rx_jabbers; 1527 edev->stats.rx_undersize_packets = stats.rx_undersize_packets; 1528 edev->stats.rx_fragments = stats.rx_fragments; 1529 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets; 1530 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets; 1531 edev->stats.tx_128_to_255_byte_packets = 1532 stats.tx_128_to_255_byte_packets; 1533 edev->stats.tx_256_to_511_byte_packets = 1534 stats.tx_256_to_511_byte_packets; 1535 edev->stats.tx_512_to_1023_byte_packets = 1536 stats.tx_512_to_1023_byte_packets; 1537 edev->stats.tx_1024_to_1518_byte_packets = 1538 stats.tx_1024_to_1518_byte_packets; 1539 edev->stats.tx_1519_to_2047_byte_packets = 1540 stats.tx_1519_to_2047_byte_packets; 1541 edev->stats.tx_2048_to_4095_byte_packets = 1542 stats.tx_2048_to_4095_byte_packets; 1543 edev->stats.tx_4096_to_9216_byte_packets = 1544 stats.tx_4096_to_9216_byte_packets; 1545 edev->stats.tx_9217_to_16383_byte_packets = 1546 stats.tx_9217_to_16383_byte_packets; 1547 edev->stats.tx_pause_frames = stats.tx_pause_frames; 1548 edev->stats.tx_pfc_frames = stats.tx_pfc_frames; 1549 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count; 1550 edev->stats.tx_total_collisions = stats.tx_total_collisions; 1551 edev->stats.brb_truncates = stats.brb_truncates; 1552 edev->stats.brb_discards = stats.brb_discards; 1553 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames; 1554 } 1555 1556 static struct rtnl_link_stats64 *qede_get_stats64( 1557 struct net_device *dev, 1558 struct rtnl_link_stats64 *stats) 1559 { 1560 struct qede_dev *edev = netdev_priv(dev); 1561 1562 qede_fill_by_demand_stats(edev); 1563 1564 stats->rx_packets = edev->stats.rx_ucast_pkts + 1565 edev->stats.rx_mcast_pkts + 1566 edev->stats.rx_bcast_pkts; 1567 stats->tx_packets = edev->stats.tx_ucast_pkts + 1568 edev->stats.tx_mcast_pkts + 1569 edev->stats.tx_bcast_pkts; 1570 1571 stats->rx_bytes = edev->stats.rx_ucast_bytes + 1572 edev->stats.rx_mcast_bytes + 1573 edev->stats.rx_bcast_bytes; 1574 1575 stats->tx_bytes = edev->stats.tx_ucast_bytes + 1576 edev->stats.tx_mcast_bytes + 1577 edev->stats.tx_bcast_bytes; 1578 1579 stats->tx_errors = edev->stats.tx_err_drop_pkts; 1580 stats->multicast = edev->stats.rx_mcast_pkts + 1581 edev->stats.rx_bcast_pkts; 1582 1583 stats->rx_fifo_errors = edev->stats.no_buff_discards; 1584 1585 stats->collisions = edev->stats.tx_total_collisions; 1586 stats->rx_crc_errors = edev->stats.rx_crc_errors; 1587 stats->rx_frame_errors = edev->stats.rx_align_errors; 1588 1589 return stats; 1590 } 1591 1592 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action) 1593 { 1594 struct qed_update_vport_params params; 1595 int rc; 1596 1597 /* Proceed only if action actually needs to be performed */ 1598 if (edev->accept_any_vlan == action) 1599 return; 1600 1601 memset(¶ms, 0, sizeof(params)); 1602 1603 params.vport_id = 0; 1604 params.accept_any_vlan = action; 1605 params.update_accept_any_vlan_flg = 1; 1606 1607 rc = edev->ops->vport_update(edev->cdev, ¶ms); 1608 if (rc) { 1609 DP_ERR(edev, "Failed to %s accept-any-vlan\n", 1610 action ? "enable" : "disable"); 1611 } else { 1612 DP_INFO(edev, "%s accept-any-vlan\n", 1613 action ? "enabled" : "disabled"); 1614 edev->accept_any_vlan = action; 1615 } 1616 } 1617 1618 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) 1619 { 1620 struct qede_dev *edev = netdev_priv(dev); 1621 struct qede_vlan *vlan, *tmp; 1622 int rc; 1623 1624 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid); 1625 1626 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 1627 if (!vlan) { 1628 DP_INFO(edev, "Failed to allocate struct for vlan\n"); 1629 return -ENOMEM; 1630 } 1631 INIT_LIST_HEAD(&vlan->list); 1632 vlan->vid = vid; 1633 vlan->configured = false; 1634 1635 /* Verify vlan isn't already configured */ 1636 list_for_each_entry(tmp, &edev->vlan_list, list) { 1637 if (tmp->vid == vlan->vid) { 1638 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), 1639 "vlan already configured\n"); 1640 kfree(vlan); 1641 return -EEXIST; 1642 } 1643 } 1644 1645 /* If interface is down, cache this VLAN ID and return */ 1646 if (edev->state != QEDE_STATE_OPEN) { 1647 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1648 "Interface is down, VLAN %d will be configured when interface is up\n", 1649 vid); 1650 if (vid != 0) 1651 edev->non_configured_vlans++; 1652 list_add(&vlan->list, &edev->vlan_list); 1653 1654 return 0; 1655 } 1656 1657 /* Check for the filter limit. 1658 * Note - vlan0 has a reserved filter and can be added without 1659 * worrying about quota 1660 */ 1661 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) || 1662 (vlan->vid == 0)) { 1663 rc = qede_set_ucast_rx_vlan(edev, 1664 QED_FILTER_XCAST_TYPE_ADD, 1665 vlan->vid); 1666 if (rc) { 1667 DP_ERR(edev, "Failed to configure VLAN %d\n", 1668 vlan->vid); 1669 kfree(vlan); 1670 return -EINVAL; 1671 } 1672 vlan->configured = true; 1673 1674 /* vlan0 filter isn't consuming out of our quota */ 1675 if (vlan->vid != 0) 1676 edev->configured_vlans++; 1677 } else { 1678 /* Out of quota; Activate accept-any-VLAN mode */ 1679 if (!edev->non_configured_vlans) 1680 qede_config_accept_any_vlan(edev, true); 1681 1682 edev->non_configured_vlans++; 1683 } 1684 1685 list_add(&vlan->list, &edev->vlan_list); 1686 1687 return 0; 1688 } 1689 1690 static void qede_del_vlan_from_list(struct qede_dev *edev, 1691 struct qede_vlan *vlan) 1692 { 1693 /* vlan0 filter isn't consuming out of our quota */ 1694 if (vlan->vid != 0) { 1695 if (vlan->configured) 1696 edev->configured_vlans--; 1697 else 1698 edev->non_configured_vlans--; 1699 } 1700 1701 list_del(&vlan->list); 1702 kfree(vlan); 1703 } 1704 1705 static int qede_configure_vlan_filters(struct qede_dev *edev) 1706 { 1707 int rc = 0, real_rc = 0, accept_any_vlan = 0; 1708 struct qed_dev_eth_info *dev_info; 1709 struct qede_vlan *vlan = NULL; 1710 1711 if (list_empty(&edev->vlan_list)) 1712 return 0; 1713 1714 dev_info = &edev->dev_info; 1715 1716 /* Configure non-configured vlans */ 1717 list_for_each_entry(vlan, &edev->vlan_list, list) { 1718 if (vlan->configured) 1719 continue; 1720 1721 /* We have used all our credits, now enable accept_any_vlan */ 1722 if ((vlan->vid != 0) && 1723 (edev->configured_vlans == dev_info->num_vlan_filters)) { 1724 accept_any_vlan = 1; 1725 continue; 1726 } 1727 1728 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid); 1729 1730 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, 1731 vlan->vid); 1732 if (rc) { 1733 DP_ERR(edev, "Failed to configure VLAN %u\n", 1734 vlan->vid); 1735 real_rc = rc; 1736 continue; 1737 } 1738 1739 vlan->configured = true; 1740 /* vlan0 filter doesn't consume our VLAN filter's quota */ 1741 if (vlan->vid != 0) { 1742 edev->non_configured_vlans--; 1743 edev->configured_vlans++; 1744 } 1745 } 1746 1747 /* enable accept_any_vlan mode if we have more VLANs than credits, 1748 * or remove accept_any_vlan mode if we've actually removed 1749 * a non-configured vlan, and all remaining vlans are truly configured. 1750 */ 1751 1752 if (accept_any_vlan) 1753 qede_config_accept_any_vlan(edev, true); 1754 else if (!edev->non_configured_vlans) 1755 qede_config_accept_any_vlan(edev, false); 1756 1757 return real_rc; 1758 } 1759 1760 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) 1761 { 1762 struct qede_dev *edev = netdev_priv(dev); 1763 struct qede_vlan *vlan = NULL; 1764 int rc; 1765 1766 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid); 1767 1768 /* Find whether entry exists */ 1769 list_for_each_entry(vlan, &edev->vlan_list, list) 1770 if (vlan->vid == vid) 1771 break; 1772 1773 if (!vlan || (vlan->vid != vid)) { 1774 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), 1775 "Vlan isn't configured\n"); 1776 return 0; 1777 } 1778 1779 if (edev->state != QEDE_STATE_OPEN) { 1780 /* As interface is already down, we don't have a VPORT 1781 * instance to remove vlan filter. So just update vlan list 1782 */ 1783 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1784 "Interface is down, removing VLAN from list only\n"); 1785 qede_del_vlan_from_list(edev, vlan); 1786 return 0; 1787 } 1788 1789 /* Remove vlan */ 1790 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid); 1791 if (rc) { 1792 DP_ERR(edev, "Failed to remove VLAN %d\n", vid); 1793 return -EINVAL; 1794 } 1795 1796 qede_del_vlan_from_list(edev, vlan); 1797 1798 /* We have removed a VLAN - try to see if we can 1799 * configure non-configured VLAN from the list. 1800 */ 1801 rc = qede_configure_vlan_filters(edev); 1802 1803 return rc; 1804 } 1805 1806 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev) 1807 { 1808 struct qede_vlan *vlan = NULL; 1809 1810 if (list_empty(&edev->vlan_list)) 1811 return; 1812 1813 list_for_each_entry(vlan, &edev->vlan_list, list) { 1814 if (!vlan->configured) 1815 continue; 1816 1817 vlan->configured = false; 1818 1819 /* vlan0 filter isn't consuming out of our quota */ 1820 if (vlan->vid != 0) { 1821 edev->non_configured_vlans++; 1822 edev->configured_vlans--; 1823 } 1824 1825 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, 1826 "marked vlan %d as non-configured\n", 1827 vlan->vid); 1828 } 1829 1830 edev->accept_any_vlan = false; 1831 } 1832 1833 static const struct net_device_ops qede_netdev_ops = { 1834 .ndo_open = qede_open, 1835 .ndo_stop = qede_close, 1836 .ndo_start_xmit = qede_start_xmit, 1837 .ndo_set_rx_mode = qede_set_rx_mode, 1838 .ndo_set_mac_address = qede_set_mac_addr, 1839 .ndo_validate_addr = eth_validate_addr, 1840 .ndo_change_mtu = qede_change_mtu, 1841 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 1842 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 1843 .ndo_get_stats64 = qede_get_stats64, 1844 }; 1845 1846 /* ------------------------------------------------------------------------- 1847 * START OF PROBE / REMOVE 1848 * ------------------------------------------------------------------------- 1849 */ 1850 1851 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 1852 struct pci_dev *pdev, 1853 struct qed_dev_eth_info *info, 1854 u32 dp_module, 1855 u8 dp_level) 1856 { 1857 struct net_device *ndev; 1858 struct qede_dev *edev; 1859 1860 ndev = alloc_etherdev_mqs(sizeof(*edev), 1861 info->num_queues, 1862 info->num_queues); 1863 if (!ndev) { 1864 pr_err("etherdev allocation failed\n"); 1865 return NULL; 1866 } 1867 1868 edev = netdev_priv(ndev); 1869 edev->ndev = ndev; 1870 edev->cdev = cdev; 1871 edev->pdev = pdev; 1872 edev->dp_module = dp_module; 1873 edev->dp_level = dp_level; 1874 edev->ops = qed_ops; 1875 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 1876 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 1877 1878 DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n"); 1879 1880 SET_NETDEV_DEV(ndev, &pdev->dev); 1881 1882 memset(&edev->stats, 0, sizeof(edev->stats)); 1883 memcpy(&edev->dev_info, info, sizeof(*info)); 1884 1885 edev->num_tc = edev->dev_info.num_tc; 1886 1887 INIT_LIST_HEAD(&edev->vlan_list); 1888 1889 return edev; 1890 } 1891 1892 static void qede_init_ndev(struct qede_dev *edev) 1893 { 1894 struct net_device *ndev = edev->ndev; 1895 struct pci_dev *pdev = edev->pdev; 1896 u32 hw_features; 1897 1898 pci_set_drvdata(pdev, ndev); 1899 1900 ndev->mem_start = edev->dev_info.common.pci_mem_start; 1901 ndev->base_addr = ndev->mem_start; 1902 ndev->mem_end = edev->dev_info.common.pci_mem_end; 1903 ndev->irq = edev->dev_info.common.pci_irq; 1904 1905 ndev->watchdog_timeo = TX_TIMEOUT; 1906 1907 ndev->netdev_ops = &qede_netdev_ops; 1908 1909 qede_set_ethtool_ops(ndev); 1910 1911 /* user-changeble features */ 1912 hw_features = NETIF_F_GRO | NETIF_F_SG | 1913 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 1914 NETIF_F_TSO | NETIF_F_TSO6; 1915 1916 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 1917 NETIF_F_HIGHDMA; 1918 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 1919 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 1920 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 1921 1922 ndev->hw_features = hw_features; 1923 1924 /* Set network device HW mac */ 1925 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 1926 } 1927 1928 /* This function converts from 32b param to two params of level and module 1929 * Input 32b decoding: 1930 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 1931 * 'happy' flow, e.g. memory allocation failed. 1932 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 1933 * and provide important parameters. 1934 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 1935 * module. VERBOSE prints are for tracking the specific flow in low level. 1936 * 1937 * Notice that the level should be that of the lowest required logs. 1938 */ 1939 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 1940 { 1941 *p_dp_level = QED_LEVEL_NOTICE; 1942 *p_dp_module = 0; 1943 1944 if (debug & QED_LOG_VERBOSE_MASK) { 1945 *p_dp_level = QED_LEVEL_VERBOSE; 1946 *p_dp_module = (debug & 0x3FFFFFFF); 1947 } else if (debug & QED_LOG_INFO_MASK) { 1948 *p_dp_level = QED_LEVEL_INFO; 1949 } else if (debug & QED_LOG_NOTICE_MASK) { 1950 *p_dp_level = QED_LEVEL_NOTICE; 1951 } 1952 } 1953 1954 static void qede_free_fp_array(struct qede_dev *edev) 1955 { 1956 if (edev->fp_array) { 1957 struct qede_fastpath *fp; 1958 int i; 1959 1960 for_each_rss(i) { 1961 fp = &edev->fp_array[i]; 1962 1963 kfree(fp->sb_info); 1964 kfree(fp->rxq); 1965 kfree(fp->txqs); 1966 } 1967 kfree(edev->fp_array); 1968 } 1969 edev->num_rss = 0; 1970 } 1971 1972 static int qede_alloc_fp_array(struct qede_dev *edev) 1973 { 1974 struct qede_fastpath *fp; 1975 int i; 1976 1977 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev), 1978 sizeof(*edev->fp_array), GFP_KERNEL); 1979 if (!edev->fp_array) { 1980 DP_NOTICE(edev, "fp array allocation failed\n"); 1981 goto err; 1982 } 1983 1984 for_each_rss(i) { 1985 fp = &edev->fp_array[i]; 1986 1987 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL); 1988 if (!fp->sb_info) { 1989 DP_NOTICE(edev, "sb info struct allocation failed\n"); 1990 goto err; 1991 } 1992 1993 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL); 1994 if (!fp->rxq) { 1995 DP_NOTICE(edev, "RXQ struct allocation failed\n"); 1996 goto err; 1997 } 1998 1999 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL); 2000 if (!fp->txqs) { 2001 DP_NOTICE(edev, "TXQ array allocation failed\n"); 2002 goto err; 2003 } 2004 } 2005 2006 return 0; 2007 err: 2008 qede_free_fp_array(edev); 2009 return -ENOMEM; 2010 } 2011 2012 static void qede_sp_task(struct work_struct *work) 2013 { 2014 struct qede_dev *edev = container_of(work, struct qede_dev, 2015 sp_task.work); 2016 mutex_lock(&edev->qede_lock); 2017 2018 if (edev->state == QEDE_STATE_OPEN) { 2019 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 2020 qede_config_rx_mode(edev->ndev); 2021 } 2022 2023 mutex_unlock(&edev->qede_lock); 2024 } 2025 2026 static void qede_update_pf_params(struct qed_dev *cdev) 2027 { 2028 struct qed_pf_params pf_params; 2029 2030 /* 16 rx + 16 tx */ 2031 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 2032 pf_params.eth_pf_params.num_cons = 32; 2033 qed_ops->common->update_pf_params(cdev, &pf_params); 2034 } 2035 2036 enum qede_probe_mode { 2037 QEDE_PROBE_NORMAL, 2038 }; 2039 2040 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 2041 enum qede_probe_mode mode) 2042 { 2043 struct qed_slowpath_params params; 2044 struct qed_dev_eth_info dev_info; 2045 struct qede_dev *edev; 2046 struct qed_dev *cdev; 2047 int rc; 2048 2049 if (unlikely(dp_level & QED_LEVEL_INFO)) 2050 pr_notice("Starting qede probe\n"); 2051 2052 cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH, 2053 dp_module, dp_level); 2054 if (!cdev) { 2055 rc = -ENODEV; 2056 goto err0; 2057 } 2058 2059 qede_update_pf_params(cdev); 2060 2061 /* Start the Slowpath-process */ 2062 memset(¶ms, 0, sizeof(struct qed_slowpath_params)); 2063 params.int_mode = QED_INT_MODE_MSIX; 2064 params.drv_major = QEDE_MAJOR_VERSION; 2065 params.drv_minor = QEDE_MINOR_VERSION; 2066 params.drv_rev = QEDE_REVISION_VERSION; 2067 params.drv_eng = QEDE_ENGINEERING_VERSION; 2068 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 2069 rc = qed_ops->common->slowpath_start(cdev, ¶ms); 2070 if (rc) { 2071 pr_notice("Cannot start slowpath\n"); 2072 goto err1; 2073 } 2074 2075 /* Learn information crucial for qede to progress */ 2076 rc = qed_ops->fill_dev_info(cdev, &dev_info); 2077 if (rc) 2078 goto err2; 2079 2080 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 2081 dp_level); 2082 if (!edev) { 2083 rc = -ENOMEM; 2084 goto err2; 2085 } 2086 2087 qede_init_ndev(edev); 2088 2089 rc = register_netdev(edev->ndev); 2090 if (rc) { 2091 DP_NOTICE(edev, "Cannot register net-device\n"); 2092 goto err3; 2093 } 2094 2095 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); 2096 2097 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 2098 2099 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 2100 mutex_init(&edev->qede_lock); 2101 2102 DP_INFO(edev, "Ending successfully qede probe\n"); 2103 2104 return 0; 2105 2106 err3: 2107 free_netdev(edev->ndev); 2108 err2: 2109 qed_ops->common->slowpath_stop(cdev); 2110 err1: 2111 qed_ops->common->remove(cdev); 2112 err0: 2113 return rc; 2114 } 2115 2116 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2117 { 2118 u32 dp_module = 0; 2119 u8 dp_level = 0; 2120 2121 qede_config_debug(debug, &dp_module, &dp_level); 2122 2123 return __qede_probe(pdev, dp_module, dp_level, 2124 QEDE_PROBE_NORMAL); 2125 } 2126 2127 enum qede_remove_mode { 2128 QEDE_REMOVE_NORMAL, 2129 }; 2130 2131 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 2132 { 2133 struct net_device *ndev = pci_get_drvdata(pdev); 2134 struct qede_dev *edev = netdev_priv(ndev); 2135 struct qed_dev *cdev = edev->cdev; 2136 2137 DP_INFO(edev, "Starting qede_remove\n"); 2138 2139 cancel_delayed_work_sync(&edev->sp_task); 2140 unregister_netdev(ndev); 2141 2142 edev->ops->common->set_power_state(cdev, PCI_D0); 2143 2144 pci_set_drvdata(pdev, NULL); 2145 2146 free_netdev(ndev); 2147 2148 /* Use global ops since we've freed edev */ 2149 qed_ops->common->slowpath_stop(cdev); 2150 qed_ops->common->remove(cdev); 2151 2152 pr_notice("Ending successfully qede_remove\n"); 2153 } 2154 2155 static void qede_remove(struct pci_dev *pdev) 2156 { 2157 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 2158 } 2159 2160 /* ------------------------------------------------------------------------- 2161 * START OF LOAD / UNLOAD 2162 * ------------------------------------------------------------------------- 2163 */ 2164 2165 static int qede_set_num_queues(struct qede_dev *edev) 2166 { 2167 int rc; 2168 u16 rss_num; 2169 2170 /* Setup queues according to possible resources*/ 2171 if (edev->req_rss) 2172 rss_num = edev->req_rss; 2173 else 2174 rss_num = netif_get_num_default_rss_queues() * 2175 edev->dev_info.common.num_hwfns; 2176 2177 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 2178 2179 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 2180 if (rc > 0) { 2181 /* Managed to request interrupts for our queues */ 2182 edev->num_rss = rc; 2183 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 2184 QEDE_RSS_CNT(edev), rss_num); 2185 rc = 0; 2186 } 2187 return rc; 2188 } 2189 2190 static void qede_free_mem_sb(struct qede_dev *edev, 2191 struct qed_sb_info *sb_info) 2192 { 2193 if (sb_info->sb_virt) 2194 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 2195 (void *)sb_info->sb_virt, sb_info->sb_phys); 2196 } 2197 2198 /* This function allocates fast-path status block memory */ 2199 static int qede_alloc_mem_sb(struct qede_dev *edev, 2200 struct qed_sb_info *sb_info, 2201 u16 sb_id) 2202 { 2203 struct status_block *sb_virt; 2204 dma_addr_t sb_phys; 2205 int rc; 2206 2207 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 2208 sizeof(*sb_virt), 2209 &sb_phys, GFP_KERNEL); 2210 if (!sb_virt) { 2211 DP_ERR(edev, "Status block allocation failed\n"); 2212 return -ENOMEM; 2213 } 2214 2215 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 2216 sb_virt, sb_phys, sb_id, 2217 QED_SB_TYPE_L2_QUEUE); 2218 if (rc) { 2219 DP_ERR(edev, "Status block initialization failed\n"); 2220 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 2221 sb_virt, sb_phys); 2222 return rc; 2223 } 2224 2225 return 0; 2226 } 2227 2228 static void qede_free_rx_buffers(struct qede_dev *edev, 2229 struct qede_rx_queue *rxq) 2230 { 2231 u16 i; 2232 2233 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 2234 struct sw_rx_data *rx_buf; 2235 struct page *data; 2236 2237 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 2238 data = rx_buf->data; 2239 2240 dma_unmap_page(&edev->pdev->dev, 2241 rx_buf->mapping, 2242 PAGE_SIZE, DMA_FROM_DEVICE); 2243 2244 rx_buf->data = NULL; 2245 __free_page(data); 2246 } 2247 } 2248 2249 static void qede_free_sge_mem(struct qede_dev *edev, 2250 struct qede_rx_queue *rxq) { 2251 int i; 2252 2253 if (edev->gro_disable) 2254 return; 2255 2256 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 2257 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 2258 struct sw_rx_data *replace_buf = &tpa_info->replace_buf; 2259 2260 if (replace_buf) { 2261 dma_unmap_page(&edev->pdev->dev, 2262 dma_unmap_addr(replace_buf, mapping), 2263 PAGE_SIZE, DMA_FROM_DEVICE); 2264 __free_page(replace_buf->data); 2265 } 2266 } 2267 } 2268 2269 static void qede_free_mem_rxq(struct qede_dev *edev, 2270 struct qede_rx_queue *rxq) 2271 { 2272 qede_free_sge_mem(edev, rxq); 2273 2274 /* Free rx buffers */ 2275 qede_free_rx_buffers(edev, rxq); 2276 2277 /* Free the parallel SW ring */ 2278 kfree(rxq->sw_rx_ring); 2279 2280 /* Free the real RQ ring used by FW */ 2281 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 2282 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 2283 } 2284 2285 static int qede_alloc_rx_buffer(struct qede_dev *edev, 2286 struct qede_rx_queue *rxq) 2287 { 2288 struct sw_rx_data *sw_rx_data; 2289 struct eth_rx_bd *rx_bd; 2290 dma_addr_t mapping; 2291 struct page *data; 2292 u16 rx_buf_size; 2293 2294 rx_buf_size = rxq->rx_buf_size; 2295 2296 data = alloc_pages(GFP_ATOMIC, 0); 2297 if (unlikely(!data)) { 2298 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n"); 2299 return -ENOMEM; 2300 } 2301 2302 /* Map the entire page as it would be used 2303 * for multiple RX buffer segment size mapping. 2304 */ 2305 mapping = dma_map_page(&edev->pdev->dev, data, 0, 2306 PAGE_SIZE, DMA_FROM_DEVICE); 2307 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 2308 __free_page(data); 2309 DP_NOTICE(edev, "Failed to map Rx buffer\n"); 2310 return -ENOMEM; 2311 } 2312 2313 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 2314 sw_rx_data->page_offset = 0; 2315 sw_rx_data->data = data; 2316 sw_rx_data->mapping = mapping; 2317 2318 /* Advance PROD and get BD pointer */ 2319 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); 2320 WARN_ON(!rx_bd); 2321 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 2322 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 2323 2324 rxq->sw_rx_prod++; 2325 2326 return 0; 2327 } 2328 2329 static int qede_alloc_sge_mem(struct qede_dev *edev, 2330 struct qede_rx_queue *rxq) 2331 { 2332 dma_addr_t mapping; 2333 int i; 2334 2335 if (edev->gro_disable) 2336 return 0; 2337 2338 if (edev->ndev->mtu > PAGE_SIZE) { 2339 edev->gro_disable = 1; 2340 return 0; 2341 } 2342 2343 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 2344 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 2345 struct sw_rx_data *replace_buf = &tpa_info->replace_buf; 2346 2347 replace_buf->data = alloc_pages(GFP_ATOMIC, 0); 2348 if (unlikely(!replace_buf->data)) { 2349 DP_NOTICE(edev, 2350 "Failed to allocate TPA skb pool [replacement buffer]\n"); 2351 goto err; 2352 } 2353 2354 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0, 2355 rxq->rx_buf_size, DMA_FROM_DEVICE); 2356 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 2357 DP_NOTICE(edev, 2358 "Failed to map TPA replacement buffer\n"); 2359 goto err; 2360 } 2361 2362 dma_unmap_addr_set(replace_buf, mapping, mapping); 2363 tpa_info->replace_buf.page_offset = 0; 2364 2365 tpa_info->replace_buf_mapping = mapping; 2366 tpa_info->agg_state = QEDE_AGG_STATE_NONE; 2367 } 2368 2369 return 0; 2370 err: 2371 qede_free_sge_mem(edev, rxq); 2372 edev->gro_disable = 1; 2373 return -ENOMEM; 2374 } 2375 2376 /* This function allocates all memory needed per Rx queue */ 2377 static int qede_alloc_mem_rxq(struct qede_dev *edev, 2378 struct qede_rx_queue *rxq) 2379 { 2380 int i, rc, size, num_allocated; 2381 2382 rxq->num_rx_buffers = edev->q_num_rx_buffers; 2383 2384 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + 2385 edev->ndev->mtu; 2386 if (rxq->rx_buf_size > PAGE_SIZE) 2387 rxq->rx_buf_size = PAGE_SIZE; 2388 2389 /* Segment size to spilt a page in multiple equal parts */ 2390 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size); 2391 2392 /* Allocate the parallel driver ring for Rx buffers */ 2393 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 2394 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 2395 if (!rxq->sw_rx_ring) { 2396 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 2397 goto err; 2398 } 2399 2400 /* Allocate FW Rx ring */ 2401 rc = edev->ops->common->chain_alloc(edev->cdev, 2402 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 2403 QED_CHAIN_MODE_NEXT_PTR, 2404 RX_RING_SIZE, 2405 sizeof(struct eth_rx_bd), 2406 &rxq->rx_bd_ring); 2407 2408 if (rc) 2409 goto err; 2410 2411 /* Allocate FW completion ring */ 2412 rc = edev->ops->common->chain_alloc(edev->cdev, 2413 QED_CHAIN_USE_TO_CONSUME, 2414 QED_CHAIN_MODE_PBL, 2415 RX_RING_SIZE, 2416 sizeof(union eth_rx_cqe), 2417 &rxq->rx_comp_ring); 2418 if (rc) 2419 goto err; 2420 2421 /* Allocate buffers for the Rx ring */ 2422 for (i = 0; i < rxq->num_rx_buffers; i++) { 2423 rc = qede_alloc_rx_buffer(edev, rxq); 2424 if (rc) 2425 break; 2426 } 2427 num_allocated = i; 2428 if (!num_allocated) { 2429 DP_ERR(edev, "Rx buffers allocation failed\n"); 2430 goto err; 2431 } else if (num_allocated < rxq->num_rx_buffers) { 2432 DP_NOTICE(edev, 2433 "Allocated less buffers than desired (%d allocated)\n", 2434 num_allocated); 2435 } 2436 2437 qede_alloc_sge_mem(edev, rxq); 2438 2439 return 0; 2440 2441 err: 2442 qede_free_mem_rxq(edev, rxq); 2443 return -ENOMEM; 2444 } 2445 2446 static void qede_free_mem_txq(struct qede_dev *edev, 2447 struct qede_tx_queue *txq) 2448 { 2449 /* Free the parallel SW ring */ 2450 kfree(txq->sw_tx_ring); 2451 2452 /* Free the real RQ ring used by FW */ 2453 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 2454 } 2455 2456 /* This function allocates all memory needed per Tx queue */ 2457 static int qede_alloc_mem_txq(struct qede_dev *edev, 2458 struct qede_tx_queue *txq) 2459 { 2460 int size, rc; 2461 union eth_tx_bd_types *p_virt; 2462 2463 txq->num_tx_buffers = edev->q_num_tx_buffers; 2464 2465 /* Allocate the parallel driver ring for Tx buffers */ 2466 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX; 2467 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL); 2468 if (!txq->sw_tx_ring) { 2469 DP_NOTICE(edev, "Tx buffers ring allocation failed\n"); 2470 goto err; 2471 } 2472 2473 rc = edev->ops->common->chain_alloc(edev->cdev, 2474 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 2475 QED_CHAIN_MODE_PBL, 2476 NUM_TX_BDS_MAX, 2477 sizeof(*p_virt), 2478 &txq->tx_pbl); 2479 if (rc) 2480 goto err; 2481 2482 return 0; 2483 2484 err: 2485 qede_free_mem_txq(edev, txq); 2486 return -ENOMEM; 2487 } 2488 2489 /* This function frees all memory of a single fp */ 2490 static void qede_free_mem_fp(struct qede_dev *edev, 2491 struct qede_fastpath *fp) 2492 { 2493 int tc; 2494 2495 qede_free_mem_sb(edev, fp->sb_info); 2496 2497 qede_free_mem_rxq(edev, fp->rxq); 2498 2499 for (tc = 0; tc < edev->num_tc; tc++) 2500 qede_free_mem_txq(edev, &fp->txqs[tc]); 2501 } 2502 2503 /* This function allocates all memory needed for a single fp (i.e. an entity 2504 * which contains status block, one rx queue and multiple per-TC tx queues. 2505 */ 2506 static int qede_alloc_mem_fp(struct qede_dev *edev, 2507 struct qede_fastpath *fp) 2508 { 2509 int rc, tc; 2510 2511 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id); 2512 if (rc) 2513 goto err; 2514 2515 rc = qede_alloc_mem_rxq(edev, fp->rxq); 2516 if (rc) 2517 goto err; 2518 2519 for (tc = 0; tc < edev->num_tc; tc++) { 2520 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]); 2521 if (rc) 2522 goto err; 2523 } 2524 2525 return 0; 2526 2527 err: 2528 qede_free_mem_fp(edev, fp); 2529 return -ENOMEM; 2530 } 2531 2532 static void qede_free_mem_load(struct qede_dev *edev) 2533 { 2534 int i; 2535 2536 for_each_rss(i) { 2537 struct qede_fastpath *fp = &edev->fp_array[i]; 2538 2539 qede_free_mem_fp(edev, fp); 2540 } 2541 } 2542 2543 /* This function allocates all qede memory at NIC load. */ 2544 static int qede_alloc_mem_load(struct qede_dev *edev) 2545 { 2546 int rc = 0, rss_id; 2547 2548 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) { 2549 struct qede_fastpath *fp = &edev->fp_array[rss_id]; 2550 2551 rc = qede_alloc_mem_fp(edev, fp); 2552 if (rc) 2553 break; 2554 } 2555 2556 if (rss_id != QEDE_RSS_CNT(edev)) { 2557 /* Failed allocating memory for all the queues */ 2558 if (!rss_id) { 2559 DP_ERR(edev, 2560 "Failed to allocate memory for the leading queue\n"); 2561 rc = -ENOMEM; 2562 } else { 2563 DP_NOTICE(edev, 2564 "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n", 2565 QEDE_RSS_CNT(edev), rss_id); 2566 } 2567 edev->num_rss = rss_id; 2568 } 2569 2570 return 0; 2571 } 2572 2573 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 2574 static void qede_init_fp(struct qede_dev *edev) 2575 { 2576 int rss_id, txq_index, tc; 2577 struct qede_fastpath *fp; 2578 2579 for_each_rss(rss_id) { 2580 fp = &edev->fp_array[rss_id]; 2581 2582 fp->edev = edev; 2583 fp->rss_id = rss_id; 2584 2585 memset((void *)&fp->napi, 0, sizeof(fp->napi)); 2586 2587 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info)); 2588 2589 memset((void *)fp->rxq, 0, sizeof(*fp->rxq)); 2590 fp->rxq->rxq_id = rss_id; 2591 2592 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs))); 2593 for (tc = 0; tc < edev->num_tc; tc++) { 2594 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id; 2595 fp->txqs[tc].index = txq_index; 2596 } 2597 2598 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 2599 edev->ndev->name, rss_id); 2600 } 2601 2602 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO); 2603 } 2604 2605 static int qede_set_real_num_queues(struct qede_dev *edev) 2606 { 2607 int rc = 0; 2608 2609 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev)); 2610 if (rc) { 2611 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 2612 return rc; 2613 } 2614 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev)); 2615 if (rc) { 2616 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 2617 return rc; 2618 } 2619 2620 return 0; 2621 } 2622 2623 static void qede_napi_disable_remove(struct qede_dev *edev) 2624 { 2625 int i; 2626 2627 for_each_rss(i) { 2628 napi_disable(&edev->fp_array[i].napi); 2629 2630 netif_napi_del(&edev->fp_array[i].napi); 2631 } 2632 } 2633 2634 static void qede_napi_add_enable(struct qede_dev *edev) 2635 { 2636 int i; 2637 2638 /* Add NAPI objects */ 2639 for_each_rss(i) { 2640 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 2641 qede_poll, NAPI_POLL_WEIGHT); 2642 napi_enable(&edev->fp_array[i].napi); 2643 } 2644 } 2645 2646 static void qede_sync_free_irqs(struct qede_dev *edev) 2647 { 2648 int i; 2649 2650 for (i = 0; i < edev->int_info.used_cnt; i++) { 2651 if (edev->int_info.msix_cnt) { 2652 synchronize_irq(edev->int_info.msix[i].vector); 2653 free_irq(edev->int_info.msix[i].vector, 2654 &edev->fp_array[i]); 2655 } else { 2656 edev->ops->common->simd_handler_clean(edev->cdev, i); 2657 } 2658 } 2659 2660 edev->int_info.used_cnt = 0; 2661 } 2662 2663 static int qede_req_msix_irqs(struct qede_dev *edev) 2664 { 2665 int i, rc; 2666 2667 /* Sanitize number of interrupts == number of prepared RSS queues */ 2668 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) { 2669 DP_ERR(edev, 2670 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 2671 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt); 2672 return -EINVAL; 2673 } 2674 2675 for (i = 0; i < QEDE_RSS_CNT(edev); i++) { 2676 rc = request_irq(edev->int_info.msix[i].vector, 2677 qede_msix_fp_int, 0, edev->fp_array[i].name, 2678 &edev->fp_array[i]); 2679 if (rc) { 2680 DP_ERR(edev, "Request fp %d irq failed\n", i); 2681 qede_sync_free_irqs(edev); 2682 return rc; 2683 } 2684 DP_VERBOSE(edev, NETIF_MSG_INTR, 2685 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 2686 edev->fp_array[i].name, i, 2687 &edev->fp_array[i]); 2688 edev->int_info.used_cnt++; 2689 } 2690 2691 return 0; 2692 } 2693 2694 static void qede_simd_fp_handler(void *cookie) 2695 { 2696 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 2697 2698 napi_schedule_irqoff(&fp->napi); 2699 } 2700 2701 static int qede_setup_irqs(struct qede_dev *edev) 2702 { 2703 int i, rc = 0; 2704 2705 /* Learn Interrupt configuration */ 2706 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 2707 if (rc) 2708 return rc; 2709 2710 if (edev->int_info.msix_cnt) { 2711 rc = qede_req_msix_irqs(edev); 2712 if (rc) 2713 return rc; 2714 edev->ndev->irq = edev->int_info.msix[0].vector; 2715 } else { 2716 const struct qed_common_ops *ops; 2717 2718 /* qed should learn receive the RSS ids and callbacks */ 2719 ops = edev->ops->common; 2720 for (i = 0; i < QEDE_RSS_CNT(edev); i++) 2721 ops->simd_handler_config(edev->cdev, 2722 &edev->fp_array[i], i, 2723 qede_simd_fp_handler); 2724 edev->int_info.used_cnt = QEDE_RSS_CNT(edev); 2725 } 2726 return 0; 2727 } 2728 2729 static int qede_drain_txq(struct qede_dev *edev, 2730 struct qede_tx_queue *txq, 2731 bool allow_drain) 2732 { 2733 int rc, cnt = 1000; 2734 2735 while (txq->sw_tx_cons != txq->sw_tx_prod) { 2736 if (!cnt) { 2737 if (allow_drain) { 2738 DP_NOTICE(edev, 2739 "Tx queue[%d] is stuck, requesting MCP to drain\n", 2740 txq->index); 2741 rc = edev->ops->common->drain(edev->cdev); 2742 if (rc) 2743 return rc; 2744 return qede_drain_txq(edev, txq, false); 2745 } 2746 DP_NOTICE(edev, 2747 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 2748 txq->index, txq->sw_tx_prod, 2749 txq->sw_tx_cons); 2750 return -ENODEV; 2751 } 2752 cnt--; 2753 usleep_range(1000, 2000); 2754 barrier(); 2755 } 2756 2757 /* FW finished processing, wait for HW to transmit all tx packets */ 2758 usleep_range(1000, 2000); 2759 2760 return 0; 2761 } 2762 2763 static int qede_stop_queues(struct qede_dev *edev) 2764 { 2765 struct qed_update_vport_params vport_update_params; 2766 struct qed_dev *cdev = edev->cdev; 2767 int rc, tc, i; 2768 2769 /* Disable the vport */ 2770 memset(&vport_update_params, 0, sizeof(vport_update_params)); 2771 vport_update_params.vport_id = 0; 2772 vport_update_params.update_vport_active_flg = 1; 2773 vport_update_params.vport_active_flg = 0; 2774 vport_update_params.update_rss_flg = 0; 2775 2776 rc = edev->ops->vport_update(cdev, &vport_update_params); 2777 if (rc) { 2778 DP_ERR(edev, "Failed to update vport\n"); 2779 return rc; 2780 } 2781 2782 /* Flush Tx queues. If needed, request drain from MCP */ 2783 for_each_rss(i) { 2784 struct qede_fastpath *fp = &edev->fp_array[i]; 2785 2786 for (tc = 0; tc < edev->num_tc; tc++) { 2787 struct qede_tx_queue *txq = &fp->txqs[tc]; 2788 2789 rc = qede_drain_txq(edev, txq, true); 2790 if (rc) 2791 return rc; 2792 } 2793 } 2794 2795 /* Stop all Queues in reverse order*/ 2796 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) { 2797 struct qed_stop_rxq_params rx_params; 2798 2799 /* Stop the Tx Queue(s)*/ 2800 for (tc = 0; tc < edev->num_tc; tc++) { 2801 struct qed_stop_txq_params tx_params; 2802 2803 tx_params.rss_id = i; 2804 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i; 2805 rc = edev->ops->q_tx_stop(cdev, &tx_params); 2806 if (rc) { 2807 DP_ERR(edev, "Failed to stop TXQ #%d\n", 2808 tx_params.tx_queue_id); 2809 return rc; 2810 } 2811 } 2812 2813 /* Stop the Rx Queue*/ 2814 memset(&rx_params, 0, sizeof(rx_params)); 2815 rx_params.rss_id = i; 2816 rx_params.rx_queue_id = i; 2817 2818 rc = edev->ops->q_rx_stop(cdev, &rx_params); 2819 if (rc) { 2820 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 2821 return rc; 2822 } 2823 } 2824 2825 /* Stop the vport */ 2826 rc = edev->ops->vport_stop(cdev, 0); 2827 if (rc) 2828 DP_ERR(edev, "Failed to stop VPORT\n"); 2829 2830 return rc; 2831 } 2832 2833 static int qede_start_queues(struct qede_dev *edev) 2834 { 2835 int rc, tc, i; 2836 int vlan_removal_en = 1; 2837 struct qed_dev *cdev = edev->cdev; 2838 struct qed_update_vport_rss_params *rss_params = &edev->rss_params; 2839 struct qed_update_vport_params vport_update_params; 2840 struct qed_queue_start_common_params q_params; 2841 struct qed_start_vport_params start = {0}; 2842 2843 if (!edev->num_rss) { 2844 DP_ERR(edev, 2845 "Cannot update V-VPORT as active as there are no Rx queues\n"); 2846 return -EINVAL; 2847 } 2848 2849 start.gro_enable = !edev->gro_disable; 2850 start.mtu = edev->ndev->mtu; 2851 start.vport_id = 0; 2852 start.drop_ttl0 = true; 2853 start.remove_inner_vlan = vlan_removal_en; 2854 2855 rc = edev->ops->vport_start(cdev, &start); 2856 2857 if (rc) { 2858 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 2859 return rc; 2860 } 2861 2862 DP_VERBOSE(edev, NETIF_MSG_IFUP, 2863 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 2864 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 2865 2866 for_each_rss(i) { 2867 struct qede_fastpath *fp = &edev->fp_array[i]; 2868 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table; 2869 2870 memset(&q_params, 0, sizeof(q_params)); 2871 q_params.rss_id = i; 2872 q_params.queue_id = i; 2873 q_params.vport_id = 0; 2874 q_params.sb = fp->sb_info->igu_sb_id; 2875 q_params.sb_idx = RX_PI; 2876 2877 rc = edev->ops->q_rx_start(cdev, &q_params, 2878 fp->rxq->rx_buf_size, 2879 fp->rxq->rx_bd_ring.p_phys_addr, 2880 phys_table, 2881 fp->rxq->rx_comp_ring.page_cnt, 2882 &fp->rxq->hw_rxq_prod_addr); 2883 if (rc) { 2884 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc); 2885 return rc; 2886 } 2887 2888 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI]; 2889 2890 qede_update_rx_prod(edev, fp->rxq); 2891 2892 for (tc = 0; tc < edev->num_tc; tc++) { 2893 struct qede_tx_queue *txq = &fp->txqs[tc]; 2894 int txq_index = tc * QEDE_RSS_CNT(edev) + i; 2895 2896 memset(&q_params, 0, sizeof(q_params)); 2897 q_params.rss_id = i; 2898 q_params.queue_id = txq_index; 2899 q_params.vport_id = 0; 2900 q_params.sb = fp->sb_info->igu_sb_id; 2901 q_params.sb_idx = TX_PI(tc); 2902 2903 rc = edev->ops->q_tx_start(cdev, &q_params, 2904 txq->tx_pbl.pbl.p_phys_table, 2905 txq->tx_pbl.page_cnt, 2906 &txq->doorbell_addr); 2907 if (rc) { 2908 DP_ERR(edev, "Start TXQ #%d failed %d\n", 2909 txq_index, rc); 2910 return rc; 2911 } 2912 2913 txq->hw_cons_ptr = 2914 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)]; 2915 SET_FIELD(txq->tx_db.data.params, 2916 ETH_DB_DATA_DEST, DB_DEST_XCM); 2917 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, 2918 DB_AGG_CMD_SET); 2919 SET_FIELD(txq->tx_db.data.params, 2920 ETH_DB_DATA_AGG_VAL_SEL, 2921 DQ_XCM_ETH_TX_BD_PROD_CMD); 2922 2923 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 2924 } 2925 } 2926 2927 /* Prepare and send the vport enable */ 2928 memset(&vport_update_params, 0, sizeof(vport_update_params)); 2929 vport_update_params.vport_id = start.vport_id; 2930 vport_update_params.update_vport_active_flg = 1; 2931 vport_update_params.vport_active_flg = 1; 2932 2933 /* Fill struct with RSS params */ 2934 if (QEDE_RSS_CNT(edev) > 1) { 2935 vport_update_params.update_rss_flg = 1; 2936 for (i = 0; i < 128; i++) 2937 rss_params->rss_ind_table[i] = 2938 ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev)); 2939 netdev_rss_key_fill(rss_params->rss_key, 2940 sizeof(rss_params->rss_key)); 2941 } else { 2942 memset(rss_params, 0, sizeof(*rss_params)); 2943 } 2944 memcpy(&vport_update_params.rss_params, rss_params, 2945 sizeof(*rss_params)); 2946 2947 rc = edev->ops->vport_update(cdev, &vport_update_params); 2948 if (rc) { 2949 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 2950 return rc; 2951 } 2952 2953 return 0; 2954 } 2955 2956 static int qede_set_mcast_rx_mac(struct qede_dev *edev, 2957 enum qed_filter_xcast_params_type opcode, 2958 unsigned char *mac, int num_macs) 2959 { 2960 struct qed_filter_params filter_cmd; 2961 int i; 2962 2963 memset(&filter_cmd, 0, sizeof(filter_cmd)); 2964 filter_cmd.type = QED_FILTER_TYPE_MCAST; 2965 filter_cmd.filter.mcast.type = opcode; 2966 filter_cmd.filter.mcast.num = num_macs; 2967 2968 for (i = 0; i < num_macs; i++, mac += ETH_ALEN) 2969 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac); 2970 2971 return edev->ops->filter_config(edev->cdev, &filter_cmd); 2972 } 2973 2974 enum qede_unload_mode { 2975 QEDE_UNLOAD_NORMAL, 2976 }; 2977 2978 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode) 2979 { 2980 struct qed_link_params link_params; 2981 int rc; 2982 2983 DP_INFO(edev, "Starting qede unload\n"); 2984 2985 mutex_lock(&edev->qede_lock); 2986 edev->state = QEDE_STATE_CLOSED; 2987 2988 /* Close OS Tx */ 2989 netif_tx_disable(edev->ndev); 2990 netif_carrier_off(edev->ndev); 2991 2992 /* Reset the link */ 2993 memset(&link_params, 0, sizeof(link_params)); 2994 link_params.link_up = false; 2995 edev->ops->common->set_link(edev->cdev, &link_params); 2996 rc = qede_stop_queues(edev); 2997 if (rc) { 2998 qede_sync_free_irqs(edev); 2999 goto out; 3000 } 3001 3002 DP_INFO(edev, "Stopped Queues\n"); 3003 3004 qede_vlan_mark_nonconfigured(edev); 3005 edev->ops->fastpath_stop(edev->cdev); 3006 3007 /* Release the interrupts */ 3008 qede_sync_free_irqs(edev); 3009 edev->ops->common->set_fp_int(edev->cdev, 0); 3010 3011 qede_napi_disable_remove(edev); 3012 3013 qede_free_mem_load(edev); 3014 qede_free_fp_array(edev); 3015 3016 out: 3017 mutex_unlock(&edev->qede_lock); 3018 DP_INFO(edev, "Ending qede unload\n"); 3019 } 3020 3021 enum qede_load_mode { 3022 QEDE_LOAD_NORMAL, 3023 }; 3024 3025 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode) 3026 { 3027 struct qed_link_params link_params; 3028 struct qed_link_output link_output; 3029 int rc; 3030 3031 DP_INFO(edev, "Starting qede load\n"); 3032 3033 rc = qede_set_num_queues(edev); 3034 if (rc) 3035 goto err0; 3036 3037 rc = qede_alloc_fp_array(edev); 3038 if (rc) 3039 goto err0; 3040 3041 qede_init_fp(edev); 3042 3043 rc = qede_alloc_mem_load(edev); 3044 if (rc) 3045 goto err1; 3046 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n", 3047 QEDE_RSS_CNT(edev), edev->num_tc); 3048 3049 rc = qede_set_real_num_queues(edev); 3050 if (rc) 3051 goto err2; 3052 3053 qede_napi_add_enable(edev); 3054 DP_INFO(edev, "Napi added and enabled\n"); 3055 3056 rc = qede_setup_irqs(edev); 3057 if (rc) 3058 goto err3; 3059 DP_INFO(edev, "Setup IRQs succeeded\n"); 3060 3061 rc = qede_start_queues(edev); 3062 if (rc) 3063 goto err4; 3064 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 3065 3066 /* Add primary mac and set Rx filters */ 3067 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); 3068 3069 mutex_lock(&edev->qede_lock); 3070 edev->state = QEDE_STATE_OPEN; 3071 mutex_unlock(&edev->qede_lock); 3072 3073 /* Program un-configured VLANs */ 3074 qede_configure_vlan_filters(edev); 3075 3076 /* Ask for link-up using current configuration */ 3077 memset(&link_params, 0, sizeof(link_params)); 3078 link_params.link_up = true; 3079 edev->ops->common->set_link(edev->cdev, &link_params); 3080 3081 /* Query whether link is already-up */ 3082 memset(&link_output, 0, sizeof(link_output)); 3083 edev->ops->common->get_link(edev->cdev, &link_output); 3084 qede_link_update(edev, &link_output); 3085 3086 DP_INFO(edev, "Ending successfully qede load\n"); 3087 3088 return 0; 3089 3090 err4: 3091 qede_sync_free_irqs(edev); 3092 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 3093 err3: 3094 qede_napi_disable_remove(edev); 3095 err2: 3096 qede_free_mem_load(edev); 3097 err1: 3098 edev->ops->common->set_fp_int(edev->cdev, 0); 3099 qede_free_fp_array(edev); 3100 edev->num_rss = 0; 3101 err0: 3102 return rc; 3103 } 3104 3105 void qede_reload(struct qede_dev *edev, 3106 void (*func)(struct qede_dev *, union qede_reload_args *), 3107 union qede_reload_args *args) 3108 { 3109 qede_unload(edev, QEDE_UNLOAD_NORMAL); 3110 /* Call function handler to update parameters 3111 * needed for function load. 3112 */ 3113 if (func) 3114 func(edev, args); 3115 3116 qede_load(edev, QEDE_LOAD_NORMAL); 3117 3118 mutex_lock(&edev->qede_lock); 3119 qede_config_rx_mode(edev->ndev); 3120 mutex_unlock(&edev->qede_lock); 3121 } 3122 3123 /* called with rtnl_lock */ 3124 static int qede_open(struct net_device *ndev) 3125 { 3126 struct qede_dev *edev = netdev_priv(ndev); 3127 3128 netif_carrier_off(ndev); 3129 3130 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 3131 3132 return qede_load(edev, QEDE_LOAD_NORMAL); 3133 } 3134 3135 static int qede_close(struct net_device *ndev) 3136 { 3137 struct qede_dev *edev = netdev_priv(ndev); 3138 3139 qede_unload(edev, QEDE_UNLOAD_NORMAL); 3140 3141 return 0; 3142 } 3143 3144 static void qede_link_update(void *dev, struct qed_link_output *link) 3145 { 3146 struct qede_dev *edev = dev; 3147 3148 if (!netif_running(edev->ndev)) { 3149 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 3150 return; 3151 } 3152 3153 if (link->link_up) { 3154 if (!netif_carrier_ok(edev->ndev)) { 3155 DP_NOTICE(edev, "Link is up\n"); 3156 netif_tx_start_all_queues(edev->ndev); 3157 netif_carrier_on(edev->ndev); 3158 } 3159 } else { 3160 if (netif_carrier_ok(edev->ndev)) { 3161 DP_NOTICE(edev, "Link is down\n"); 3162 netif_tx_disable(edev->ndev); 3163 netif_carrier_off(edev->ndev); 3164 } 3165 } 3166 } 3167 3168 static int qede_set_mac_addr(struct net_device *ndev, void *p) 3169 { 3170 struct qede_dev *edev = netdev_priv(ndev); 3171 struct sockaddr *addr = p; 3172 int rc; 3173 3174 ASSERT_RTNL(); /* @@@TBD To be removed */ 3175 3176 DP_INFO(edev, "Set_mac_addr called\n"); 3177 3178 if (!is_valid_ether_addr(addr->sa_data)) { 3179 DP_NOTICE(edev, "The MAC address is not valid\n"); 3180 return -EFAULT; 3181 } 3182 3183 ether_addr_copy(ndev->dev_addr, addr->sa_data); 3184 3185 if (!netif_running(ndev)) { 3186 DP_NOTICE(edev, "The device is currently down\n"); 3187 return 0; 3188 } 3189 3190 /* Remove the previous primary mac */ 3191 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 3192 edev->primary_mac); 3193 if (rc) 3194 return rc; 3195 3196 /* Add MAC filter according to the new unicast HW MAC address */ 3197 ether_addr_copy(edev->primary_mac, ndev->dev_addr); 3198 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 3199 edev->primary_mac); 3200 } 3201 3202 static int 3203 qede_configure_mcast_filtering(struct net_device *ndev, 3204 enum qed_filter_rx_mode_type *accept_flags) 3205 { 3206 struct qede_dev *edev = netdev_priv(ndev); 3207 unsigned char *mc_macs, *temp; 3208 struct netdev_hw_addr *ha; 3209 int rc = 0, mc_count; 3210 size_t size; 3211 3212 size = 64 * ETH_ALEN; 3213 3214 mc_macs = kzalloc(size, GFP_KERNEL); 3215 if (!mc_macs) { 3216 DP_NOTICE(edev, 3217 "Failed to allocate memory for multicast MACs\n"); 3218 rc = -ENOMEM; 3219 goto exit; 3220 } 3221 3222 temp = mc_macs; 3223 3224 /* Remove all previously configured MAC filters */ 3225 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, 3226 mc_macs, 1); 3227 if (rc) 3228 goto exit; 3229 3230 netif_addr_lock_bh(ndev); 3231 3232 mc_count = netdev_mc_count(ndev); 3233 if (mc_count < 64) { 3234 netdev_for_each_mc_addr(ha, ndev) { 3235 ether_addr_copy(temp, ha->addr); 3236 temp += ETH_ALEN; 3237 } 3238 } 3239 3240 netif_addr_unlock_bh(ndev); 3241 3242 /* Check for all multicast @@@TBD resource allocation */ 3243 if ((ndev->flags & IFF_ALLMULTI) || 3244 (mc_count > 64)) { 3245 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR) 3246 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; 3247 } else { 3248 /* Add all multicast MAC filters */ 3249 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, 3250 mc_macs, mc_count); 3251 } 3252 3253 exit: 3254 kfree(mc_macs); 3255 return rc; 3256 } 3257 3258 static void qede_set_rx_mode(struct net_device *ndev) 3259 { 3260 struct qede_dev *edev = netdev_priv(ndev); 3261 3262 DP_INFO(edev, "qede_set_rx_mode called\n"); 3263 3264 if (edev->state != QEDE_STATE_OPEN) { 3265 DP_INFO(edev, 3266 "qede_set_rx_mode called while interface is down\n"); 3267 } else { 3268 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags); 3269 schedule_delayed_work(&edev->sp_task, 0); 3270 } 3271 } 3272 3273 /* Must be called with qede_lock held */ 3274 static void qede_config_rx_mode(struct net_device *ndev) 3275 { 3276 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST; 3277 struct qede_dev *edev = netdev_priv(ndev); 3278 struct qed_filter_params rx_mode; 3279 unsigned char *uc_macs, *temp; 3280 struct netdev_hw_addr *ha; 3281 int rc, uc_count; 3282 size_t size; 3283 3284 netif_addr_lock_bh(ndev); 3285 3286 uc_count = netdev_uc_count(ndev); 3287 size = uc_count * ETH_ALEN; 3288 3289 uc_macs = kzalloc(size, GFP_ATOMIC); 3290 if (!uc_macs) { 3291 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n"); 3292 netif_addr_unlock_bh(ndev); 3293 return; 3294 } 3295 3296 temp = uc_macs; 3297 netdev_for_each_uc_addr(ha, ndev) { 3298 ether_addr_copy(temp, ha->addr); 3299 temp += ETH_ALEN; 3300 } 3301 3302 netif_addr_unlock_bh(ndev); 3303 3304 /* Configure the struct for the Rx mode */ 3305 memset(&rx_mode, 0, sizeof(struct qed_filter_params)); 3306 rx_mode.type = QED_FILTER_TYPE_RX_MODE; 3307 3308 /* Remove all previous unicast secondary macs and multicast macs 3309 * (configrue / leave the primary mac) 3310 */ 3311 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE, 3312 edev->primary_mac); 3313 if (rc) 3314 goto out; 3315 3316 /* Check for promiscuous */ 3317 if ((ndev->flags & IFF_PROMISC) || 3318 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */ 3319 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; 3320 } else { 3321 /* Add MAC filters according to the unicast secondary macs */ 3322 int i; 3323 3324 temp = uc_macs; 3325 for (i = 0; i < uc_count; i++) { 3326 rc = qede_set_ucast_rx_mac(edev, 3327 QED_FILTER_XCAST_TYPE_ADD, 3328 temp); 3329 if (rc) 3330 goto out; 3331 3332 temp += ETH_ALEN; 3333 } 3334 3335 rc = qede_configure_mcast_filtering(ndev, &accept_flags); 3336 if (rc) 3337 goto out; 3338 } 3339 3340 /* take care of VLAN mode */ 3341 if (ndev->flags & IFF_PROMISC) { 3342 qede_config_accept_any_vlan(edev, true); 3343 } else if (!edev->non_configured_vlans) { 3344 /* It's possible that accept_any_vlan mode is set due to a 3345 * previous setting of IFF_PROMISC. If vlan credits are 3346 * sufficient, disable accept_any_vlan. 3347 */ 3348 qede_config_accept_any_vlan(edev, false); 3349 } 3350 3351 rx_mode.filter.accept_flags = accept_flags; 3352 edev->ops->filter_config(edev->cdev, &rx_mode); 3353 out: 3354 kfree(uc_macs); 3355 } 3356