1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44 
45 #include "qede.h"
46 
47 static char version[] =
48 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49 
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53 
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57 
58 static const struct qed_eth_ops *qed_ops;
59 
60 #define CHIP_NUM_57980S_40		0x1634
61 #define CHIP_NUM_57980S_10		0x1666
62 #define CHIP_NUM_57980S_MF		0x1636
63 #define CHIP_NUM_57980S_100		0x1644
64 #define CHIP_NUM_57980S_50		0x1654
65 #define CHIP_NUM_57980S_25		0x1656
66 #define CHIP_NUM_57980S_IOV		0x1664
67 
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
76 #endif
77 
78 enum qede_pci_private {
79 	QEDE_PRIVATE_PF,
80 	QEDE_PRIVATE_VF
81 };
82 
83 static const struct pci_device_id qede_pci_tbl[] = {
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91 	{ 0 }
92 };
93 
94 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
95 
96 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
97 
98 #define TX_TIMEOUT		(5 * HZ)
99 
100 static void qede_remove(struct pci_dev *pdev);
101 static int qede_alloc_rx_buffer(struct qede_dev *edev,
102 				struct qede_rx_queue *rxq);
103 static void qede_link_update(void *dev, struct qed_link_output *link);
104 
105 #ifdef CONFIG_QED_SRIOV
106 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
107 {
108 	struct qede_dev *edev = netdev_priv(ndev);
109 
110 	if (vlan > 4095) {
111 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112 		return -EINVAL;
113 	}
114 
115 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
116 		   vlan, vf);
117 
118 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
119 }
120 
121 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
122 {
123 	struct qede_dev *edev = netdev_priv(ndev);
124 
125 	DP_VERBOSE(edev, QED_MSG_IOV,
126 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
127 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
128 
129 	if (!is_valid_ether_addr(mac)) {
130 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
131 		return -EINVAL;
132 	}
133 
134 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
135 }
136 
137 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
138 {
139 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
140 	struct qed_dev_info *qed_info = &edev->dev_info.common;
141 	int rc;
142 
143 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
144 
145 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
146 
147 	/* Enable/Disable Tx switching for PF */
148 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
149 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
150 		struct qed_update_vport_params params;
151 
152 		memset(&params, 0, sizeof(params));
153 		params.vport_id = 0;
154 		params.update_tx_switching_flg = 1;
155 		params.tx_switching_flg = num_vfs_param ? 1 : 0;
156 		edev->ops->vport_update(edev->cdev, &params);
157 	}
158 
159 	return rc;
160 }
161 #endif
162 
163 static struct pci_driver qede_pci_driver = {
164 	.name = "qede",
165 	.id_table = qede_pci_tbl,
166 	.probe = qede_probe,
167 	.remove = qede_remove,
168 #ifdef CONFIG_QED_SRIOV
169 	.sriov_configure = qede_sriov_configure,
170 #endif
171 };
172 
173 static void qede_force_mac(void *dev, u8 *mac)
174 {
175 	struct qede_dev *edev = dev;
176 
177 	ether_addr_copy(edev->ndev->dev_addr, mac);
178 	ether_addr_copy(edev->primary_mac, mac);
179 }
180 
181 static struct qed_eth_cb_ops qede_ll_ops = {
182 	{
183 		.link_update = qede_link_update,
184 	},
185 	.force_mac = qede_force_mac,
186 };
187 
188 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
189 			     void *ptr)
190 {
191 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
192 	struct ethtool_drvinfo drvinfo;
193 	struct qede_dev *edev;
194 
195 	/* Currently only support name change */
196 	if (event != NETDEV_CHANGENAME)
197 		goto done;
198 
199 	/* Check whether this is a qede device */
200 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
201 		goto done;
202 
203 	memset(&drvinfo, 0, sizeof(drvinfo));
204 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
205 	if (strcmp(drvinfo.driver, "qede"))
206 		goto done;
207 	edev = netdev_priv(ndev);
208 
209 	/* Notify qed of the name change */
210 	if (!edev->ops || !edev->ops->common)
211 		goto done;
212 	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
213 				  "qede");
214 
215 done:
216 	return NOTIFY_DONE;
217 }
218 
219 static struct notifier_block qede_netdev_notifier = {
220 	.notifier_call = qede_netdev_event,
221 };
222 
223 static
224 int __init qede_init(void)
225 {
226 	int ret;
227 
228 	pr_notice("qede_init: %s\n", version);
229 
230 	qed_ops = qed_get_eth_ops();
231 	if (!qed_ops) {
232 		pr_notice("Failed to get qed ethtool operations\n");
233 		return -EINVAL;
234 	}
235 
236 	/* Must register notifier before pci ops, since we might miss
237 	 * interface rename after pci probe and netdev registeration.
238 	 */
239 	ret = register_netdevice_notifier(&qede_netdev_notifier);
240 	if (ret) {
241 		pr_notice("Failed to register netdevice_notifier\n");
242 		qed_put_eth_ops();
243 		return -EINVAL;
244 	}
245 
246 	ret = pci_register_driver(&qede_pci_driver);
247 	if (ret) {
248 		pr_notice("Failed to register driver\n");
249 		unregister_netdevice_notifier(&qede_netdev_notifier);
250 		qed_put_eth_ops();
251 		return -EINVAL;
252 	}
253 
254 	return 0;
255 }
256 
257 static void __exit qede_cleanup(void)
258 {
259 	pr_notice("qede_cleanup called\n");
260 
261 	unregister_netdevice_notifier(&qede_netdev_notifier);
262 	pci_unregister_driver(&qede_pci_driver);
263 	qed_put_eth_ops();
264 }
265 
266 module_init(qede_init);
267 module_exit(qede_cleanup);
268 
269 /* -------------------------------------------------------------------------
270  * START OF FAST-PATH
271  * -------------------------------------------------------------------------
272  */
273 
274 /* Unmap the data and free skb */
275 static int qede_free_tx_pkt(struct qede_dev *edev,
276 			    struct qede_tx_queue *txq,
277 			    int *len)
278 {
279 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
280 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
281 	struct eth_tx_1st_bd *first_bd;
282 	struct eth_tx_bd *tx_data_bd;
283 	int bds_consumed = 0;
284 	int nbds;
285 	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
286 	int i, split_bd_len = 0;
287 
288 	if (unlikely(!skb)) {
289 		DP_ERR(edev,
290 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
291 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
292 		return -1;
293 	}
294 
295 	*len = skb->len;
296 
297 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
298 
299 	bds_consumed++;
300 
301 	nbds = first_bd->data.nbds;
302 
303 	if (data_split) {
304 		struct eth_tx_bd *split = (struct eth_tx_bd *)
305 			qed_chain_consume(&txq->tx_pbl);
306 		split_bd_len = BD_UNMAP_LEN(split);
307 		bds_consumed++;
308 	}
309 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
310 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
311 
312 	/* Unmap the data of the skb frags */
313 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
314 		tx_data_bd = (struct eth_tx_bd *)
315 			qed_chain_consume(&txq->tx_pbl);
316 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
317 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
318 	}
319 
320 	while (bds_consumed++ < nbds)
321 		qed_chain_consume(&txq->tx_pbl);
322 
323 	/* Free skb */
324 	dev_kfree_skb_any(skb);
325 	txq->sw_tx_ring[idx].skb = NULL;
326 	txq->sw_tx_ring[idx].flags = 0;
327 
328 	return 0;
329 }
330 
331 /* Unmap the data and free skb when mapping failed during start_xmit */
332 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
333 				    struct qede_tx_queue *txq,
334 				    struct eth_tx_1st_bd *first_bd,
335 				    int nbd,
336 				    bool data_split)
337 {
338 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
339 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
340 	struct eth_tx_bd *tx_data_bd;
341 	int i, split_bd_len = 0;
342 
343 	/* Return prod to its position before this skb was handled */
344 	qed_chain_set_prod(&txq->tx_pbl,
345 			   le16_to_cpu(txq->tx_db.data.bd_prod),
346 			   first_bd);
347 
348 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
349 
350 	if (data_split) {
351 		struct eth_tx_bd *split = (struct eth_tx_bd *)
352 					  qed_chain_produce(&txq->tx_pbl);
353 		split_bd_len = BD_UNMAP_LEN(split);
354 		nbd--;
355 	}
356 
357 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
358 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
359 
360 	/* Unmap the data of the skb frags */
361 	for (i = 0; i < nbd; i++) {
362 		tx_data_bd = (struct eth_tx_bd *)
363 			qed_chain_produce(&txq->tx_pbl);
364 		if (tx_data_bd->nbytes)
365 			dma_unmap_page(&edev->pdev->dev,
366 				       BD_UNMAP_ADDR(tx_data_bd),
367 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
368 	}
369 
370 	/* Return again prod to its position before this skb was handled */
371 	qed_chain_set_prod(&txq->tx_pbl,
372 			   le16_to_cpu(txq->tx_db.data.bd_prod),
373 			   first_bd);
374 
375 	/* Free skb */
376 	dev_kfree_skb_any(skb);
377 	txq->sw_tx_ring[idx].skb = NULL;
378 	txq->sw_tx_ring[idx].flags = 0;
379 }
380 
381 static u32 qede_xmit_type(struct qede_dev *edev,
382 			  struct sk_buff *skb,
383 			  int *ipv6_ext)
384 {
385 	u32 rc = XMIT_L4_CSUM;
386 	__be16 l3_proto;
387 
388 	if (skb->ip_summed != CHECKSUM_PARTIAL)
389 		return XMIT_PLAIN;
390 
391 	l3_proto = vlan_get_protocol(skb);
392 	if (l3_proto == htons(ETH_P_IPV6) &&
393 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
394 		*ipv6_ext = 1;
395 
396 	if (skb->encapsulation)
397 		rc |= XMIT_ENC;
398 
399 	if (skb_is_gso(skb))
400 		rc |= XMIT_LSO;
401 
402 	return rc;
403 }
404 
405 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
406 					 struct eth_tx_2nd_bd *second_bd,
407 					 struct eth_tx_3rd_bd *third_bd)
408 {
409 	u8 l4_proto;
410 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
411 
412 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
413 
414 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
415 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
416 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
417 
418 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
419 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
420 
421 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
422 		l4_proto = ipv6_hdr(skb)->nexthdr;
423 	else
424 		l4_proto = ip_hdr(skb)->protocol;
425 
426 	if (l4_proto == IPPROTO_UDP)
427 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
428 
429 	if (third_bd)
430 		third_bd->data.bitfields |=
431 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
432 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
433 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
434 
435 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
436 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
437 }
438 
439 static int map_frag_to_bd(struct qede_dev *edev,
440 			  skb_frag_t *frag,
441 			  struct eth_tx_bd *bd)
442 {
443 	dma_addr_t mapping;
444 
445 	/* Map skb non-linear frag data for DMA */
446 	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
447 				   skb_frag_size(frag),
448 				   DMA_TO_DEVICE);
449 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
450 		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
451 		return -ENOMEM;
452 	}
453 
454 	/* Setup the data pointer of the frag data */
455 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
456 
457 	return 0;
458 }
459 
460 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
461 {
462 	if (is_encap_pkt)
463 		return (skb_inner_transport_header(skb) +
464 			inner_tcp_hdrlen(skb) - skb->data);
465 	else
466 		return (skb_transport_header(skb) +
467 			tcp_hdrlen(skb) - skb->data);
468 }
469 
470 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
471 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
472 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
473 			     u8 xmit_type)
474 {
475 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
476 
477 	if (xmit_type & XMIT_LSO) {
478 		int hlen;
479 
480 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
481 
482 		/* linear payload would require its own BD */
483 		if (skb_headlen(skb) > hlen)
484 			allowed_frags--;
485 	}
486 
487 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
488 }
489 #endif
490 
491 /* Main transmit function */
492 static
493 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
494 			    struct net_device *ndev)
495 {
496 	struct qede_dev *edev = netdev_priv(ndev);
497 	struct netdev_queue *netdev_txq;
498 	struct qede_tx_queue *txq;
499 	struct eth_tx_1st_bd *first_bd;
500 	struct eth_tx_2nd_bd *second_bd = NULL;
501 	struct eth_tx_3rd_bd *third_bd = NULL;
502 	struct eth_tx_bd *tx_data_bd = NULL;
503 	u16 txq_index;
504 	u8 nbd = 0;
505 	dma_addr_t mapping;
506 	int rc, frag_idx = 0, ipv6_ext = 0;
507 	u8 xmit_type;
508 	u16 idx;
509 	u16 hlen;
510 	bool data_split = false;
511 
512 	/* Get tx-queue context and netdev index */
513 	txq_index = skb_get_queue_mapping(skb);
514 	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
515 	txq = QEDE_TX_QUEUE(edev, txq_index);
516 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
517 
518 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
519 			       (MAX_SKB_FRAGS + 1));
520 
521 	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
522 
523 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
524 	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
525 		if (skb_linearize(skb)) {
526 			DP_NOTICE(edev,
527 				  "SKB linearization failed - silently dropping this SKB\n");
528 			dev_kfree_skb_any(skb);
529 			return NETDEV_TX_OK;
530 		}
531 	}
532 #endif
533 
534 	/* Fill the entry in the SW ring and the BDs in the FW ring */
535 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
536 	txq->sw_tx_ring[idx].skb = skb;
537 	first_bd = (struct eth_tx_1st_bd *)
538 		   qed_chain_produce(&txq->tx_pbl);
539 	memset(first_bd, 0, sizeof(*first_bd));
540 	first_bd->data.bd_flags.bitfields =
541 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
542 
543 	/* Map skb linear data for DMA and set in the first BD */
544 	mapping = dma_map_single(&edev->pdev->dev, skb->data,
545 				 skb_headlen(skb), DMA_TO_DEVICE);
546 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
547 		DP_NOTICE(edev, "SKB mapping failed\n");
548 		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
549 		return NETDEV_TX_OK;
550 	}
551 	nbd++;
552 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
553 
554 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
555 	 * 3rd BDs.
556 	 */
557 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
558 		second_bd = (struct eth_tx_2nd_bd *)
559 			qed_chain_produce(&txq->tx_pbl);
560 		memset(second_bd, 0, sizeof(*second_bd));
561 
562 		nbd++;
563 		third_bd = (struct eth_tx_3rd_bd *)
564 			qed_chain_produce(&txq->tx_pbl);
565 		memset(third_bd, 0, sizeof(*third_bd));
566 
567 		nbd++;
568 		/* We need to fill in additional data in second_bd... */
569 		tx_data_bd = (struct eth_tx_bd *)second_bd;
570 	}
571 
572 	if (skb_vlan_tag_present(skb)) {
573 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
574 		first_bd->data.bd_flags.bitfields |=
575 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
576 	}
577 
578 	/* Fill the parsing flags & params according to the requested offload */
579 	if (xmit_type & XMIT_L4_CSUM) {
580 		u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
581 
582 		/* We don't re-calculate IP checksum as it is already done by
583 		 * the upper stack
584 		 */
585 		first_bd->data.bd_flags.bitfields |=
586 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
587 
588 		if (xmit_type & XMIT_ENC) {
589 			first_bd->data.bd_flags.bitfields |=
590 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
591 		} else {
592 			/* In cases when OS doesn't indicate for inner offloads
593 			 * when packet is tunnelled, we need to override the HW
594 			 * tunnel configuration so that packets are treated as
595 			 * regular non tunnelled packets and no inner offloads
596 			 * are done by the hardware.
597 			 */
598 			first_bd->data.bitfields |= cpu_to_le16(temp);
599 		}
600 
601 		/* If the packet is IPv6 with extension header, indicate that
602 		 * to FW and pass few params, since the device cracker doesn't
603 		 * support parsing IPv6 with extension header/s.
604 		 */
605 		if (unlikely(ipv6_ext))
606 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
607 	}
608 
609 	if (xmit_type & XMIT_LSO) {
610 		first_bd->data.bd_flags.bitfields |=
611 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
612 		third_bd->data.lso_mss =
613 			cpu_to_le16(skb_shinfo(skb)->gso_size);
614 
615 		if (unlikely(xmit_type & XMIT_ENC)) {
616 			first_bd->data.bd_flags.bitfields |=
617 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
618 			hlen = qede_get_skb_hlen(skb, true);
619 		} else {
620 			first_bd->data.bd_flags.bitfields |=
621 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
622 			hlen = qede_get_skb_hlen(skb, false);
623 		}
624 
625 		/* @@@TBD - if will not be removed need to check */
626 		third_bd->data.bitfields |=
627 			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
628 
629 		/* Make life easier for FW guys who can't deal with header and
630 		 * data on same BD. If we need to split, use the second bd...
631 		 */
632 		if (unlikely(skb_headlen(skb) > hlen)) {
633 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
634 				   "TSO split header size is %d (%x:%x)\n",
635 				   first_bd->nbytes, first_bd->addr.hi,
636 				   first_bd->addr.lo);
637 
638 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
639 					   le32_to_cpu(first_bd->addr.lo)) +
640 					   hlen;
641 
642 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
643 					      le16_to_cpu(first_bd->nbytes) -
644 					      hlen);
645 
646 			/* this marks the BD as one that has no
647 			 * individual mapping
648 			 */
649 			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
650 
651 			first_bd->nbytes = cpu_to_le16(hlen);
652 
653 			tx_data_bd = (struct eth_tx_bd *)third_bd;
654 			data_split = true;
655 		}
656 	}
657 
658 	/* Handle fragmented skb */
659 	/* special handle for frags inside 2nd and 3rd bds.. */
660 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
661 		rc = map_frag_to_bd(edev,
662 				    &skb_shinfo(skb)->frags[frag_idx],
663 				    tx_data_bd);
664 		if (rc) {
665 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
666 						data_split);
667 			return NETDEV_TX_OK;
668 		}
669 
670 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
671 			tx_data_bd = (struct eth_tx_bd *)third_bd;
672 		else
673 			tx_data_bd = NULL;
674 
675 		frag_idx++;
676 	}
677 
678 	/* map last frags into 4th, 5th .... */
679 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
680 		tx_data_bd = (struct eth_tx_bd *)
681 			     qed_chain_produce(&txq->tx_pbl);
682 
683 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
684 
685 		rc = map_frag_to_bd(edev,
686 				    &skb_shinfo(skb)->frags[frag_idx],
687 				    tx_data_bd);
688 		if (rc) {
689 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
690 						data_split);
691 			return NETDEV_TX_OK;
692 		}
693 	}
694 
695 	/* update the first BD with the actual num BDs */
696 	first_bd->data.nbds = nbd;
697 
698 	netdev_tx_sent_queue(netdev_txq, skb->len);
699 
700 	skb_tx_timestamp(skb);
701 
702 	/* Advance packet producer only before sending the packet since mapping
703 	 * of pages may fail.
704 	 */
705 	txq->sw_tx_prod++;
706 
707 	/* 'next page' entries are counted in the producer value */
708 	txq->tx_db.data.bd_prod =
709 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
710 
711 	/* wmb makes sure that the BDs data is updated before updating the
712 	 * producer, otherwise FW may read old data from the BDs.
713 	 */
714 	wmb();
715 	barrier();
716 	writel(txq->tx_db.raw, txq->doorbell_addr);
717 
718 	/* mmiowb is needed to synchronize doorbell writes from more than one
719 	 * processor. It guarantees that the write arrives to the device before
720 	 * the queue lock is released and another start_xmit is called (possibly
721 	 * on another CPU). Without this barrier, the next doorbell can bypass
722 	 * this doorbell. This is applicable to IA64/Altix systems.
723 	 */
724 	mmiowb();
725 
726 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
727 		      < (MAX_SKB_FRAGS + 1))) {
728 		netif_tx_stop_queue(netdev_txq);
729 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
730 			   "Stop queue was called\n");
731 		/* paired memory barrier is in qede_tx_int(), we have to keep
732 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
733 		 * fp->bd_tx_cons
734 		 */
735 		smp_mb();
736 
737 		if (qed_chain_get_elem_left(&txq->tx_pbl)
738 		     >= (MAX_SKB_FRAGS + 1) &&
739 		    (edev->state == QEDE_STATE_OPEN)) {
740 			netif_tx_wake_queue(netdev_txq);
741 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
742 				   "Wake queue was called\n");
743 		}
744 	}
745 
746 	return NETDEV_TX_OK;
747 }
748 
749 int qede_txq_has_work(struct qede_tx_queue *txq)
750 {
751 	u16 hw_bd_cons;
752 
753 	/* Tell compiler that consumer and producer can change */
754 	barrier();
755 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
756 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
757 		return 0;
758 
759 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
760 }
761 
762 static int qede_tx_int(struct qede_dev *edev,
763 		       struct qede_tx_queue *txq)
764 {
765 	struct netdev_queue *netdev_txq;
766 	u16 hw_bd_cons;
767 	unsigned int pkts_compl = 0, bytes_compl = 0;
768 	int rc;
769 
770 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
771 
772 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
773 	barrier();
774 
775 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
776 		int len = 0;
777 
778 		rc = qede_free_tx_pkt(edev, txq, &len);
779 		if (rc) {
780 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
781 				  hw_bd_cons,
782 				  qed_chain_get_cons_idx(&txq->tx_pbl));
783 			break;
784 		}
785 
786 		bytes_compl += len;
787 		pkts_compl++;
788 		txq->sw_tx_cons++;
789 	}
790 
791 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
792 
793 	/* Need to make the tx_bd_cons update visible to start_xmit()
794 	 * before checking for netif_tx_queue_stopped().  Without the
795 	 * memory barrier, there is a small possibility that
796 	 * start_xmit() will miss it and cause the queue to be stopped
797 	 * forever.
798 	 * On the other hand we need an rmb() here to ensure the proper
799 	 * ordering of bit testing in the following
800 	 * netif_tx_queue_stopped(txq) call.
801 	 */
802 	smp_mb();
803 
804 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
805 		/* Taking tx_lock is needed to prevent reenabling the queue
806 		 * while it's empty. This could have happen if rx_action() gets
807 		 * suspended in qede_tx_int() after the condition before
808 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
809 		 *
810 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
811 		 * sends some packets consuming the whole queue again->
812 		 * stops the queue
813 		 */
814 
815 		__netif_tx_lock(netdev_txq, smp_processor_id());
816 
817 		if ((netif_tx_queue_stopped(netdev_txq)) &&
818 		    (edev->state == QEDE_STATE_OPEN) &&
819 		    (qed_chain_get_elem_left(&txq->tx_pbl)
820 		      >= (MAX_SKB_FRAGS + 1))) {
821 			netif_tx_wake_queue(netdev_txq);
822 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
823 				   "Wake queue was called\n");
824 		}
825 
826 		__netif_tx_unlock(netdev_txq);
827 	}
828 
829 	return 0;
830 }
831 
832 bool qede_has_rx_work(struct qede_rx_queue *rxq)
833 {
834 	u16 hw_comp_cons, sw_comp_cons;
835 
836 	/* Tell compiler that status block fields can change */
837 	barrier();
838 
839 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
840 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
841 
842 	return hw_comp_cons != sw_comp_cons;
843 }
844 
845 static bool qede_has_tx_work(struct qede_fastpath *fp)
846 {
847 	u8 tc;
848 
849 	for (tc = 0; tc < fp->edev->num_tc; tc++)
850 		if (qede_txq_has_work(&fp->txqs[tc]))
851 			return true;
852 	return false;
853 }
854 
855 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
856 {
857 	qed_chain_consume(&rxq->rx_bd_ring);
858 	rxq->sw_rx_cons++;
859 }
860 
861 /* This function reuses the buffer(from an offset) from
862  * consumer index to producer index in the bd ring
863  */
864 static inline void qede_reuse_page(struct qede_dev *edev,
865 				   struct qede_rx_queue *rxq,
866 				   struct sw_rx_data *curr_cons)
867 {
868 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
869 	struct sw_rx_data *curr_prod;
870 	dma_addr_t new_mapping;
871 
872 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
873 	*curr_prod = *curr_cons;
874 
875 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
876 
877 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
878 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
879 
880 	rxq->sw_rx_prod++;
881 	curr_cons->data = NULL;
882 }
883 
884 /* In case of allocation failures reuse buffers
885  * from consumer index to produce buffers for firmware
886  */
887 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
888 			     struct qede_dev *edev, u8 count)
889 {
890 	struct sw_rx_data *curr_cons;
891 
892 	for (; count > 0; count--) {
893 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
894 		qede_reuse_page(edev, rxq, curr_cons);
895 		qede_rx_bd_ring_consume(rxq);
896 	}
897 }
898 
899 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
900 					 struct qede_rx_queue *rxq,
901 					 struct sw_rx_data *curr_cons)
902 {
903 	/* Move to the next segment in the page */
904 	curr_cons->page_offset += rxq->rx_buf_seg_size;
905 
906 	if (curr_cons->page_offset == PAGE_SIZE) {
907 		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
908 			/* Since we failed to allocate new buffer
909 			 * current buffer can be used again.
910 			 */
911 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
912 
913 			return -ENOMEM;
914 		}
915 
916 		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
917 			       PAGE_SIZE, DMA_FROM_DEVICE);
918 	} else {
919 		/* Increment refcount of the page as we don't want
920 		 * network stack to take the ownership of the page
921 		 * which can be recycled multiple times by the driver.
922 		 */
923 		page_ref_inc(curr_cons->data);
924 		qede_reuse_page(edev, rxq, curr_cons);
925 	}
926 
927 	return 0;
928 }
929 
930 static inline void qede_update_rx_prod(struct qede_dev *edev,
931 				       struct qede_rx_queue *rxq)
932 {
933 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
934 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
935 	struct eth_rx_prod_data rx_prods = {0};
936 
937 	/* Update producers */
938 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
939 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
940 
941 	/* Make sure that the BD and SGE data is updated before updating the
942 	 * producers since FW might read the BD/SGE right after the producer
943 	 * is updated.
944 	 */
945 	wmb();
946 
947 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
948 			(u32 *)&rx_prods);
949 
950 	/* mmiowb is needed to synchronize doorbell writes from more than one
951 	 * processor. It guarantees that the write arrives to the device before
952 	 * the napi lock is released and another qede_poll is called (possibly
953 	 * on another CPU). Without this barrier, the next doorbell can bypass
954 	 * this doorbell. This is applicable to IA64/Altix systems.
955 	 */
956 	mmiowb();
957 }
958 
959 static u32 qede_get_rxhash(struct qede_dev *edev,
960 			   u8 bitfields,
961 			   __le32 rss_hash,
962 			   enum pkt_hash_types *rxhash_type)
963 {
964 	enum rss_hash_type htype;
965 
966 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
967 
968 	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
969 		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
970 				(htype == RSS_HASH_TYPE_IPV6)) ?
971 				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
972 		return le32_to_cpu(rss_hash);
973 	}
974 	*rxhash_type = PKT_HASH_TYPE_NONE;
975 	return 0;
976 }
977 
978 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
979 {
980 	skb_checksum_none_assert(skb);
981 
982 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
983 		skb->ip_summed = CHECKSUM_UNNECESSARY;
984 
985 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
986 		skb->csum_level = 1;
987 }
988 
989 static inline void qede_skb_receive(struct qede_dev *edev,
990 				    struct qede_fastpath *fp,
991 				    struct sk_buff *skb,
992 				    u16 vlan_tag)
993 {
994 	if (vlan_tag)
995 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
996 				       vlan_tag);
997 
998 	napi_gro_receive(&fp->napi, skb);
999 }
1000 
1001 static void qede_set_gro_params(struct qede_dev *edev,
1002 				struct sk_buff *skb,
1003 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
1004 {
1005 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1006 
1007 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1008 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1009 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1010 	else
1011 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1012 
1013 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1014 					cqe->header_len;
1015 }
1016 
1017 static int qede_fill_frag_skb(struct qede_dev *edev,
1018 			      struct qede_rx_queue *rxq,
1019 			      u8 tpa_agg_index,
1020 			      u16 len_on_bd)
1021 {
1022 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1023 							 NUM_RX_BDS_MAX];
1024 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1025 	struct sk_buff *skb = tpa_info->skb;
1026 
1027 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1028 		goto out;
1029 
1030 	/* Add one frag and update the appropriate fields in the skb */
1031 	skb_fill_page_desc(skb, tpa_info->frag_id++,
1032 			   current_bd->data, current_bd->page_offset,
1033 			   len_on_bd);
1034 
1035 	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1036 		/* Incr page ref count to reuse on allocation failure
1037 		 * so that it doesn't get freed while freeing SKB.
1038 		 */
1039 		page_ref_inc(current_bd->data);
1040 		goto out;
1041 	}
1042 
1043 	qed_chain_consume(&rxq->rx_bd_ring);
1044 	rxq->sw_rx_cons++;
1045 
1046 	skb->data_len += len_on_bd;
1047 	skb->truesize += rxq->rx_buf_seg_size;
1048 	skb->len += len_on_bd;
1049 
1050 	return 0;
1051 
1052 out:
1053 	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1054 	qede_recycle_rx_bd_ring(rxq, edev, 1);
1055 	return -ENOMEM;
1056 }
1057 
1058 static void qede_tpa_start(struct qede_dev *edev,
1059 			   struct qede_rx_queue *rxq,
1060 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
1061 {
1062 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1063 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1064 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1065 	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1066 	dma_addr_t mapping = tpa_info->replace_buf_mapping;
1067 	struct sw_rx_data *sw_rx_data_cons;
1068 	struct sw_rx_data *sw_rx_data_prod;
1069 	enum pkt_hash_types rxhash_type;
1070 	u32 rxhash;
1071 
1072 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1073 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1074 
1075 	/* Use pre-allocated replacement buffer - we can't release the agg.
1076 	 * start until its over and we don't want to risk allocation failing
1077 	 * here, so re-allocate when aggregation will be over.
1078 	 */
1079 	sw_rx_data_prod->mapping = replace_buf->mapping;
1080 
1081 	sw_rx_data_prod->data = replace_buf->data;
1082 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1083 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1084 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
1085 
1086 	rxq->sw_rx_prod++;
1087 
1088 	/* move partial skb from cons to pool (don't unmap yet)
1089 	 * save mapping, incase we drop the packet later on.
1090 	 */
1091 	tpa_info->start_buf = *sw_rx_data_cons;
1092 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1093 			   le32_to_cpu(rx_bd_cons->addr.lo));
1094 
1095 	tpa_info->start_buf_mapping = mapping;
1096 	rxq->sw_rx_cons++;
1097 
1098 	/* set tpa state to start only if we are able to allocate skb
1099 	 * for this aggregation, otherwise mark as error and aggregation will
1100 	 * be dropped
1101 	 */
1102 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
1103 					 le16_to_cpu(cqe->len_on_first_bd));
1104 	if (unlikely(!tpa_info->skb)) {
1105 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1106 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1107 		goto cons_buf;
1108 	}
1109 
1110 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1111 	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1112 
1113 	/* Start filling in the aggregation info */
1114 	tpa_info->frag_id = 0;
1115 	tpa_info->agg_state = QEDE_AGG_STATE_START;
1116 
1117 	rxhash = qede_get_rxhash(edev, cqe->bitfields,
1118 				 cqe->rss_hash, &rxhash_type);
1119 	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1120 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1121 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1122 		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1123 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1124 	else
1125 		tpa_info->vlan_tag = 0;
1126 
1127 	/* This is needed in order to enable forwarding support */
1128 	qede_set_gro_params(edev, tpa_info->skb, cqe);
1129 
1130 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1131 	if (likely(cqe->ext_bd_len_list[0]))
1132 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1133 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1134 
1135 	if (unlikely(cqe->ext_bd_len_list[1])) {
1136 		DP_ERR(edev,
1137 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1138 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1139 	}
1140 }
1141 
1142 #ifdef CONFIG_INET
1143 static void qede_gro_ip_csum(struct sk_buff *skb)
1144 {
1145 	const struct iphdr *iph = ip_hdr(skb);
1146 	struct tcphdr *th;
1147 
1148 	skb_set_transport_header(skb, sizeof(struct iphdr));
1149 	th = tcp_hdr(skb);
1150 
1151 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1152 				  iph->saddr, iph->daddr, 0);
1153 
1154 	tcp_gro_complete(skb);
1155 }
1156 
1157 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1158 {
1159 	struct ipv6hdr *iph = ipv6_hdr(skb);
1160 	struct tcphdr *th;
1161 
1162 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1163 	th = tcp_hdr(skb);
1164 
1165 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1166 				  &iph->saddr, &iph->daddr, 0);
1167 	tcp_gro_complete(skb);
1168 }
1169 #endif
1170 
1171 static void qede_gro_receive(struct qede_dev *edev,
1172 			     struct qede_fastpath *fp,
1173 			     struct sk_buff *skb,
1174 			     u16 vlan_tag)
1175 {
1176 	/* FW can send a single MTU sized packet from gro flow
1177 	 * due to aggregation timeout/last segment etc. which
1178 	 * is not expected to be a gro packet. If a skb has zero
1179 	 * frags then simply push it in the stack as non gso skb.
1180 	 */
1181 	if (unlikely(!skb->data_len)) {
1182 		skb_shinfo(skb)->gso_type = 0;
1183 		skb_shinfo(skb)->gso_size = 0;
1184 		goto send_skb;
1185 	}
1186 
1187 #ifdef CONFIG_INET
1188 	if (skb_shinfo(skb)->gso_size) {
1189 		skb_set_network_header(skb, 0);
1190 
1191 		switch (skb->protocol) {
1192 		case htons(ETH_P_IP):
1193 			qede_gro_ip_csum(skb);
1194 			break;
1195 		case htons(ETH_P_IPV6):
1196 			qede_gro_ipv6_csum(skb);
1197 			break;
1198 		default:
1199 			DP_ERR(edev,
1200 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1201 			       ntohs(skb->protocol));
1202 		}
1203 	}
1204 #endif
1205 
1206 send_skb:
1207 	skb_record_rx_queue(skb, fp->rss_id);
1208 	qede_skb_receive(edev, fp, skb, vlan_tag);
1209 }
1210 
1211 static inline void qede_tpa_cont(struct qede_dev *edev,
1212 				 struct qede_rx_queue *rxq,
1213 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1214 {
1215 	int i;
1216 
1217 	for (i = 0; cqe->len_list[i]; i++)
1218 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1219 				   le16_to_cpu(cqe->len_list[i]));
1220 
1221 	if (unlikely(i > 1))
1222 		DP_ERR(edev,
1223 		       "Strange - TPA cont with more than a single len_list entry\n");
1224 }
1225 
1226 static void qede_tpa_end(struct qede_dev *edev,
1227 			 struct qede_fastpath *fp,
1228 			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1229 {
1230 	struct qede_rx_queue *rxq = fp->rxq;
1231 	struct qede_agg_info *tpa_info;
1232 	struct sk_buff *skb;
1233 	int i;
1234 
1235 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1236 	skb = tpa_info->skb;
1237 
1238 	for (i = 0; cqe->len_list[i]; i++)
1239 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1240 				   le16_to_cpu(cqe->len_list[i]));
1241 	if (unlikely(i > 1))
1242 		DP_ERR(edev,
1243 		       "Strange - TPA emd with more than a single len_list entry\n");
1244 
1245 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1246 		goto err;
1247 
1248 	/* Sanity */
1249 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1250 		DP_ERR(edev,
1251 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1252 		       cqe->num_of_bds, tpa_info->frag_id);
1253 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1254 		DP_ERR(edev,
1255 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1256 		       le16_to_cpu(cqe->total_packet_len), skb->len);
1257 
1258 	memcpy(skb->data,
1259 	       page_address(tpa_info->start_buf.data) +
1260 		tpa_info->start_cqe.placement_offset +
1261 		tpa_info->start_buf.page_offset,
1262 	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1263 
1264 	/* Recycle [mapped] start buffer for the next replacement */
1265 	tpa_info->replace_buf = tpa_info->start_buf;
1266 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1267 
1268 	/* Finalize the SKB */
1269 	skb->protocol = eth_type_trans(skb, edev->ndev);
1270 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1271 
1272 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1273 	 * to skb_shinfo(skb)->gso_segs
1274 	 */
1275 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1276 
1277 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1278 
1279 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1280 
1281 	return;
1282 err:
1283 	/* The BD starting the aggregation is still mapped; Re-use it for
1284 	 * future aggregations [as replacement buffer]
1285 	 */
1286 	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1287 	       sizeof(struct sw_rx_data));
1288 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1289 	tpa_info->start_buf.data = NULL;
1290 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1291 	dev_kfree_skb_any(tpa_info->skb);
1292 	tpa_info->skb = NULL;
1293 }
1294 
1295 static bool qede_tunn_exist(u16 flag)
1296 {
1297 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1298 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1299 }
1300 
1301 static u8 qede_check_tunn_csum(u16 flag)
1302 {
1303 	u16 csum_flag = 0;
1304 	u8 tcsum = 0;
1305 
1306 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1307 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1308 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1309 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1310 
1311 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1312 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1313 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1314 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1315 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1316 	}
1317 
1318 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1319 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1320 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1321 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1322 
1323 	if (csum_flag & flag)
1324 		return QEDE_CSUM_ERROR;
1325 
1326 	return QEDE_CSUM_UNNECESSARY | tcsum;
1327 }
1328 
1329 static u8 qede_check_notunn_csum(u16 flag)
1330 {
1331 	u16 csum_flag = 0;
1332 	u8 csum = 0;
1333 
1334 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1335 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1336 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1337 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1338 		csum = QEDE_CSUM_UNNECESSARY;
1339 	}
1340 
1341 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1342 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1343 
1344 	if (csum_flag & flag)
1345 		return QEDE_CSUM_ERROR;
1346 
1347 	return csum;
1348 }
1349 
1350 static u8 qede_check_csum(u16 flag)
1351 {
1352 	if (!qede_tunn_exist(flag))
1353 		return qede_check_notunn_csum(flag);
1354 	else
1355 		return qede_check_tunn_csum(flag);
1356 }
1357 
1358 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1359 {
1360 	struct qede_dev *edev = fp->edev;
1361 	struct qede_rx_queue *rxq = fp->rxq;
1362 
1363 	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1364 	int rx_pkt = 0;
1365 	u8 csum_flag;
1366 
1367 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1368 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1369 
1370 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1371 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1372 	 * read before it is written by FW, then FW writes CQE and SB, and then
1373 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1374 	 */
1375 	rmb();
1376 
1377 	/* Loop to complete all indicated BDs */
1378 	while (sw_comp_cons != hw_comp_cons) {
1379 		struct eth_fast_path_rx_reg_cqe *fp_cqe;
1380 		enum pkt_hash_types rxhash_type;
1381 		enum eth_rx_cqe_type cqe_type;
1382 		struct sw_rx_data *sw_rx_data;
1383 		union eth_rx_cqe *cqe;
1384 		struct sk_buff *skb;
1385 		struct page *data;
1386 		__le16 flags;
1387 		u16 len, pad;
1388 		u32 rx_hash;
1389 
1390 		/* Get the CQE from the completion ring */
1391 		cqe = (union eth_rx_cqe *)
1392 			qed_chain_consume(&rxq->rx_comp_ring);
1393 		cqe_type = cqe->fast_path_regular.type;
1394 
1395 		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1396 			edev->ops->eth_cqe_completion(
1397 					edev->cdev, fp->rss_id,
1398 					(struct eth_slow_path_rx_cqe *)cqe);
1399 			goto next_cqe;
1400 		}
1401 
1402 		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1403 			switch (cqe_type) {
1404 			case ETH_RX_CQE_TYPE_TPA_START:
1405 				qede_tpa_start(edev, rxq,
1406 					       &cqe->fast_path_tpa_start);
1407 				goto next_cqe;
1408 			case ETH_RX_CQE_TYPE_TPA_CONT:
1409 				qede_tpa_cont(edev, rxq,
1410 					      &cqe->fast_path_tpa_cont);
1411 				goto next_cqe;
1412 			case ETH_RX_CQE_TYPE_TPA_END:
1413 				qede_tpa_end(edev, fp,
1414 					     &cqe->fast_path_tpa_end);
1415 				goto next_rx_only;
1416 			default:
1417 				break;
1418 			}
1419 		}
1420 
1421 		/* Get the data from the SW ring */
1422 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1423 		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1424 		data = sw_rx_data->data;
1425 
1426 		fp_cqe = &cqe->fast_path_regular;
1427 		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1428 		pad = fp_cqe->placement_offset;
1429 		flags = cqe->fast_path_regular.pars_flags.flags;
1430 
1431 		/* If this is an error packet then drop it */
1432 		parse_flag = le16_to_cpu(flags);
1433 
1434 		csum_flag = qede_check_csum(parse_flag);
1435 		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1436 			DP_NOTICE(edev,
1437 				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1438 				  sw_comp_cons, parse_flag);
1439 			rxq->rx_hw_errors++;
1440 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1441 			goto next_cqe;
1442 		}
1443 
1444 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1445 		if (unlikely(!skb)) {
1446 			DP_NOTICE(edev,
1447 				  "Build_skb failed, dropping incoming packet\n");
1448 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1449 			rxq->rx_alloc_errors++;
1450 			goto next_cqe;
1451 		}
1452 
1453 		/* Copy data into SKB */
1454 		if (len + pad <= QEDE_RX_HDR_SIZE) {
1455 			memcpy(skb_put(skb, len),
1456 			       page_address(data) + pad +
1457 				sw_rx_data->page_offset, len);
1458 			qede_reuse_page(edev, rxq, sw_rx_data);
1459 		} else {
1460 			struct skb_frag_struct *frag;
1461 			unsigned int pull_len;
1462 			unsigned char *va;
1463 
1464 			frag = &skb_shinfo(skb)->frags[0];
1465 
1466 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1467 					pad + sw_rx_data->page_offset,
1468 					len, rxq->rx_buf_seg_size);
1469 
1470 			va = skb_frag_address(frag);
1471 			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1472 
1473 			/* Align the pull_len to optimize memcpy */
1474 			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1475 
1476 			skb_frag_size_sub(frag, pull_len);
1477 			frag->page_offset += pull_len;
1478 			skb->data_len -= pull_len;
1479 			skb->tail += pull_len;
1480 
1481 			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1482 							    sw_rx_data))) {
1483 				DP_ERR(edev, "Failed to allocate rx buffer\n");
1484 				/* Incr page ref count to reuse on allocation
1485 				 * failure so that it doesn't get freed while
1486 				 * freeing SKB.
1487 				 */
1488 
1489 				page_ref_inc(sw_rx_data->data);
1490 				rxq->rx_alloc_errors++;
1491 				qede_recycle_rx_bd_ring(rxq, edev,
1492 							fp_cqe->bd_num);
1493 				dev_kfree_skb_any(skb);
1494 				goto next_cqe;
1495 			}
1496 		}
1497 
1498 		qede_rx_bd_ring_consume(rxq);
1499 
1500 		if (fp_cqe->bd_num != 1) {
1501 			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1502 			u8 num_frags;
1503 
1504 			pkt_len -= len;
1505 
1506 			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1507 			     num_frags--) {
1508 				u16 cur_size = pkt_len > rxq->rx_buf_size ?
1509 						rxq->rx_buf_size : pkt_len;
1510 				if (unlikely(!cur_size)) {
1511 					DP_ERR(edev,
1512 					       "Still got %d BDs for mapping jumbo, but length became 0\n",
1513 					       num_frags);
1514 					qede_recycle_rx_bd_ring(rxq, edev,
1515 								num_frags);
1516 					dev_kfree_skb_any(skb);
1517 					goto next_cqe;
1518 				}
1519 
1520 				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1521 					qede_recycle_rx_bd_ring(rxq, edev,
1522 								num_frags);
1523 					dev_kfree_skb_any(skb);
1524 					goto next_cqe;
1525 				}
1526 
1527 				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1528 				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1529 				qede_rx_bd_ring_consume(rxq);
1530 
1531 				dma_unmap_page(&edev->pdev->dev,
1532 					       sw_rx_data->mapping,
1533 					       PAGE_SIZE, DMA_FROM_DEVICE);
1534 
1535 				skb_fill_page_desc(skb,
1536 						   skb_shinfo(skb)->nr_frags++,
1537 						   sw_rx_data->data, 0,
1538 						   cur_size);
1539 
1540 				skb->truesize += PAGE_SIZE;
1541 				skb->data_len += cur_size;
1542 				skb->len += cur_size;
1543 				pkt_len -= cur_size;
1544 			}
1545 
1546 			if (unlikely(pkt_len))
1547 				DP_ERR(edev,
1548 				       "Mapped all BDs of jumbo, but still have %d bytes\n",
1549 				       pkt_len);
1550 		}
1551 
1552 		skb->protocol = eth_type_trans(skb, edev->ndev);
1553 
1554 		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1555 					  fp_cqe->rss_hash,
1556 					  &rxhash_type);
1557 
1558 		skb_set_hash(skb, rx_hash, rxhash_type);
1559 
1560 		qede_set_skb_csum(skb, csum_flag);
1561 
1562 		skb_record_rx_queue(skb, fp->rss_id);
1563 
1564 		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1565 next_rx_only:
1566 		rx_pkt++;
1567 
1568 next_cqe: /* don't consume bd rx buffer */
1569 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1570 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1571 		/* CR TPA - revisit how to handle budget in TPA perhaps
1572 		 * increase on "end"
1573 		 */
1574 		if (rx_pkt == budget)
1575 			break;
1576 	} /* repeat while sw_comp_cons != hw_comp_cons... */
1577 
1578 	/* Update producers */
1579 	qede_update_rx_prod(edev, rxq);
1580 
1581 	return rx_pkt;
1582 }
1583 
1584 static int qede_poll(struct napi_struct *napi, int budget)
1585 {
1586 	int work_done = 0;
1587 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1588 						 napi);
1589 	struct qede_dev *edev = fp->edev;
1590 
1591 	while (1) {
1592 		u8 tc;
1593 
1594 		for (tc = 0; tc < edev->num_tc; tc++)
1595 			if (qede_txq_has_work(&fp->txqs[tc]))
1596 				qede_tx_int(edev, &fp->txqs[tc]);
1597 
1598 		if (qede_has_rx_work(fp->rxq)) {
1599 			work_done += qede_rx_int(fp, budget - work_done);
1600 
1601 			/* must not complete if we consumed full budget */
1602 			if (work_done >= budget)
1603 				break;
1604 		}
1605 
1606 		/* Fall out from the NAPI loop if needed */
1607 		if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1608 			qed_sb_update_sb_idx(fp->sb_info);
1609 			/* *_has_*_work() reads the status block,
1610 			 * thus we need to ensure that status block indices
1611 			 * have been actually read (qed_sb_update_sb_idx)
1612 			 * prior to this check (*_has_*_work) so that
1613 			 * we won't write the "newer" value of the status block
1614 			 * to HW (if there was a DMA right after
1615 			 * qede_has_rx_work and if there is no rmb, the memory
1616 			 * reading (qed_sb_update_sb_idx) may be postponed
1617 			 * to right before *_ack_sb). In this case there
1618 			 * will never be another interrupt until there is
1619 			 * another update of the status block, while there
1620 			 * is still unhandled work.
1621 			 */
1622 			rmb();
1623 
1624 			if (!(qede_has_rx_work(fp->rxq) ||
1625 			      qede_has_tx_work(fp))) {
1626 				napi_complete(napi);
1627 				/* Update and reenable interrupts */
1628 				qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1629 					   1 /*update*/);
1630 				break;
1631 			}
1632 		}
1633 	}
1634 
1635 	return work_done;
1636 }
1637 
1638 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1639 {
1640 	struct qede_fastpath *fp = fp_cookie;
1641 
1642 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1643 
1644 	napi_schedule_irqoff(&fp->napi);
1645 	return IRQ_HANDLED;
1646 }
1647 
1648 /* -------------------------------------------------------------------------
1649  * END OF FAST-PATH
1650  * -------------------------------------------------------------------------
1651  */
1652 
1653 static int qede_open(struct net_device *ndev);
1654 static int qede_close(struct net_device *ndev);
1655 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1656 static void qede_set_rx_mode(struct net_device *ndev);
1657 static void qede_config_rx_mode(struct net_device *ndev);
1658 
1659 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1660 				 enum qed_filter_xcast_params_type opcode,
1661 				 unsigned char mac[ETH_ALEN])
1662 {
1663 	struct qed_filter_params filter_cmd;
1664 
1665 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1666 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1667 	filter_cmd.filter.ucast.type = opcode;
1668 	filter_cmd.filter.ucast.mac_valid = 1;
1669 	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1670 
1671 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1672 }
1673 
1674 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1675 				  enum qed_filter_xcast_params_type opcode,
1676 				  u16 vid)
1677 {
1678 	struct qed_filter_params filter_cmd;
1679 
1680 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1681 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1682 	filter_cmd.filter.ucast.type = opcode;
1683 	filter_cmd.filter.ucast.vlan_valid = 1;
1684 	filter_cmd.filter.ucast.vlan = vid;
1685 
1686 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1687 }
1688 
1689 void qede_fill_by_demand_stats(struct qede_dev *edev)
1690 {
1691 	struct qed_eth_stats stats;
1692 
1693 	edev->ops->get_vport_stats(edev->cdev, &stats);
1694 	edev->stats.no_buff_discards = stats.no_buff_discards;
1695 	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1696 	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1697 	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1698 	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1699 	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1700 	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1701 	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1702 	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1703 
1704 	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1705 	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1706 	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1707 	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1708 	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1709 	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1710 	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1711 	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1712 	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1713 	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1714 	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1715 	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1716 
1717 	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1718 	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1719 	edev->stats.rx_128_to_255_byte_packets =
1720 				stats.rx_128_to_255_byte_packets;
1721 	edev->stats.rx_256_to_511_byte_packets =
1722 				stats.rx_256_to_511_byte_packets;
1723 	edev->stats.rx_512_to_1023_byte_packets =
1724 				stats.rx_512_to_1023_byte_packets;
1725 	edev->stats.rx_1024_to_1518_byte_packets =
1726 				stats.rx_1024_to_1518_byte_packets;
1727 	edev->stats.rx_1519_to_1522_byte_packets =
1728 				stats.rx_1519_to_1522_byte_packets;
1729 	edev->stats.rx_1519_to_2047_byte_packets =
1730 				stats.rx_1519_to_2047_byte_packets;
1731 	edev->stats.rx_2048_to_4095_byte_packets =
1732 				stats.rx_2048_to_4095_byte_packets;
1733 	edev->stats.rx_4096_to_9216_byte_packets =
1734 				stats.rx_4096_to_9216_byte_packets;
1735 	edev->stats.rx_9217_to_16383_byte_packets =
1736 				stats.rx_9217_to_16383_byte_packets;
1737 	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1738 	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1739 	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1740 	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1741 	edev->stats.rx_align_errors = stats.rx_align_errors;
1742 	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1743 	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1744 	edev->stats.rx_jabbers = stats.rx_jabbers;
1745 	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1746 	edev->stats.rx_fragments = stats.rx_fragments;
1747 	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1748 	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1749 	edev->stats.tx_128_to_255_byte_packets =
1750 				stats.tx_128_to_255_byte_packets;
1751 	edev->stats.tx_256_to_511_byte_packets =
1752 				stats.tx_256_to_511_byte_packets;
1753 	edev->stats.tx_512_to_1023_byte_packets =
1754 				stats.tx_512_to_1023_byte_packets;
1755 	edev->stats.tx_1024_to_1518_byte_packets =
1756 				stats.tx_1024_to_1518_byte_packets;
1757 	edev->stats.tx_1519_to_2047_byte_packets =
1758 				stats.tx_1519_to_2047_byte_packets;
1759 	edev->stats.tx_2048_to_4095_byte_packets =
1760 				stats.tx_2048_to_4095_byte_packets;
1761 	edev->stats.tx_4096_to_9216_byte_packets =
1762 				stats.tx_4096_to_9216_byte_packets;
1763 	edev->stats.tx_9217_to_16383_byte_packets =
1764 				stats.tx_9217_to_16383_byte_packets;
1765 	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1766 	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1767 	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1768 	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1769 	edev->stats.brb_truncates = stats.brb_truncates;
1770 	edev->stats.brb_discards = stats.brb_discards;
1771 	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1772 }
1773 
1774 static struct rtnl_link_stats64 *qede_get_stats64(
1775 			    struct net_device *dev,
1776 			    struct rtnl_link_stats64 *stats)
1777 {
1778 	struct qede_dev *edev = netdev_priv(dev);
1779 
1780 	qede_fill_by_demand_stats(edev);
1781 
1782 	stats->rx_packets = edev->stats.rx_ucast_pkts +
1783 			    edev->stats.rx_mcast_pkts +
1784 			    edev->stats.rx_bcast_pkts;
1785 	stats->tx_packets = edev->stats.tx_ucast_pkts +
1786 			    edev->stats.tx_mcast_pkts +
1787 			    edev->stats.tx_bcast_pkts;
1788 
1789 	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1790 			  edev->stats.rx_mcast_bytes +
1791 			  edev->stats.rx_bcast_bytes;
1792 
1793 	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1794 			  edev->stats.tx_mcast_bytes +
1795 			  edev->stats.tx_bcast_bytes;
1796 
1797 	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1798 	stats->multicast = edev->stats.rx_mcast_pkts +
1799 			   edev->stats.rx_bcast_pkts;
1800 
1801 	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1802 
1803 	stats->collisions = edev->stats.tx_total_collisions;
1804 	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1805 	stats->rx_frame_errors = edev->stats.rx_align_errors;
1806 
1807 	return stats;
1808 }
1809 
1810 #ifdef CONFIG_QED_SRIOV
1811 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1812 			      struct ifla_vf_info *ivi)
1813 {
1814 	struct qede_dev *edev = netdev_priv(dev);
1815 
1816 	if (!edev->ops)
1817 		return -EINVAL;
1818 
1819 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1820 }
1821 
1822 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1823 			    int min_tx_rate, int max_tx_rate)
1824 {
1825 	struct qede_dev *edev = netdev_priv(dev);
1826 
1827 	return edev->ops->iov->set_rate(edev->cdev, vfidx, max_tx_rate,
1828 					max_tx_rate);
1829 }
1830 
1831 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1832 {
1833 	struct qede_dev *edev = netdev_priv(dev);
1834 
1835 	if (!edev->ops)
1836 		return -EINVAL;
1837 
1838 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1839 }
1840 
1841 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1842 				  int link_state)
1843 {
1844 	struct qede_dev *edev = netdev_priv(dev);
1845 
1846 	if (!edev->ops)
1847 		return -EINVAL;
1848 
1849 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1850 }
1851 #endif
1852 
1853 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1854 {
1855 	struct qed_update_vport_params params;
1856 	int rc;
1857 
1858 	/* Proceed only if action actually needs to be performed */
1859 	if (edev->accept_any_vlan == action)
1860 		return;
1861 
1862 	memset(&params, 0, sizeof(params));
1863 
1864 	params.vport_id = 0;
1865 	params.accept_any_vlan = action;
1866 	params.update_accept_any_vlan_flg = 1;
1867 
1868 	rc = edev->ops->vport_update(edev->cdev, &params);
1869 	if (rc) {
1870 		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1871 		       action ? "enable" : "disable");
1872 	} else {
1873 		DP_INFO(edev, "%s accept-any-vlan\n",
1874 			action ? "enabled" : "disabled");
1875 		edev->accept_any_vlan = action;
1876 	}
1877 }
1878 
1879 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1880 {
1881 	struct qede_dev *edev = netdev_priv(dev);
1882 	struct qede_vlan *vlan, *tmp;
1883 	int rc;
1884 
1885 	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1886 
1887 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1888 	if (!vlan) {
1889 		DP_INFO(edev, "Failed to allocate struct for vlan\n");
1890 		return -ENOMEM;
1891 	}
1892 	INIT_LIST_HEAD(&vlan->list);
1893 	vlan->vid = vid;
1894 	vlan->configured = false;
1895 
1896 	/* Verify vlan isn't already configured */
1897 	list_for_each_entry(tmp, &edev->vlan_list, list) {
1898 		if (tmp->vid == vlan->vid) {
1899 			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1900 				   "vlan already configured\n");
1901 			kfree(vlan);
1902 			return -EEXIST;
1903 		}
1904 	}
1905 
1906 	/* If interface is down, cache this VLAN ID and return */
1907 	if (edev->state != QEDE_STATE_OPEN) {
1908 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1909 			   "Interface is down, VLAN %d will be configured when interface is up\n",
1910 			   vid);
1911 		if (vid != 0)
1912 			edev->non_configured_vlans++;
1913 		list_add(&vlan->list, &edev->vlan_list);
1914 
1915 		return 0;
1916 	}
1917 
1918 	/* Check for the filter limit.
1919 	 * Note - vlan0 has a reserved filter and can be added without
1920 	 * worrying about quota
1921 	 */
1922 	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1923 	    (vlan->vid == 0)) {
1924 		rc = qede_set_ucast_rx_vlan(edev,
1925 					    QED_FILTER_XCAST_TYPE_ADD,
1926 					    vlan->vid);
1927 		if (rc) {
1928 			DP_ERR(edev, "Failed to configure VLAN %d\n",
1929 			       vlan->vid);
1930 			kfree(vlan);
1931 			return -EINVAL;
1932 		}
1933 		vlan->configured = true;
1934 
1935 		/* vlan0 filter isn't consuming out of our quota */
1936 		if (vlan->vid != 0)
1937 			edev->configured_vlans++;
1938 	} else {
1939 		/* Out of quota; Activate accept-any-VLAN mode */
1940 		if (!edev->non_configured_vlans)
1941 			qede_config_accept_any_vlan(edev, true);
1942 
1943 		edev->non_configured_vlans++;
1944 	}
1945 
1946 	list_add(&vlan->list, &edev->vlan_list);
1947 
1948 	return 0;
1949 }
1950 
1951 static void qede_del_vlan_from_list(struct qede_dev *edev,
1952 				    struct qede_vlan *vlan)
1953 {
1954 	/* vlan0 filter isn't consuming out of our quota */
1955 	if (vlan->vid != 0) {
1956 		if (vlan->configured)
1957 			edev->configured_vlans--;
1958 		else
1959 			edev->non_configured_vlans--;
1960 	}
1961 
1962 	list_del(&vlan->list);
1963 	kfree(vlan);
1964 }
1965 
1966 static int qede_configure_vlan_filters(struct qede_dev *edev)
1967 {
1968 	int rc = 0, real_rc = 0, accept_any_vlan = 0;
1969 	struct qed_dev_eth_info *dev_info;
1970 	struct qede_vlan *vlan = NULL;
1971 
1972 	if (list_empty(&edev->vlan_list))
1973 		return 0;
1974 
1975 	dev_info = &edev->dev_info;
1976 
1977 	/* Configure non-configured vlans */
1978 	list_for_each_entry(vlan, &edev->vlan_list, list) {
1979 		if (vlan->configured)
1980 			continue;
1981 
1982 		/* We have used all our credits, now enable accept_any_vlan */
1983 		if ((vlan->vid != 0) &&
1984 		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
1985 			accept_any_vlan = 1;
1986 			continue;
1987 		}
1988 
1989 		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1990 
1991 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1992 					    vlan->vid);
1993 		if (rc) {
1994 			DP_ERR(edev, "Failed to configure VLAN %u\n",
1995 			       vlan->vid);
1996 			real_rc = rc;
1997 			continue;
1998 		}
1999 
2000 		vlan->configured = true;
2001 		/* vlan0 filter doesn't consume our VLAN filter's quota */
2002 		if (vlan->vid != 0) {
2003 			edev->non_configured_vlans--;
2004 			edev->configured_vlans++;
2005 		}
2006 	}
2007 
2008 	/* enable accept_any_vlan mode if we have more VLANs than credits,
2009 	 * or remove accept_any_vlan mode if we've actually removed
2010 	 * a non-configured vlan, and all remaining vlans are truly configured.
2011 	 */
2012 
2013 	if (accept_any_vlan)
2014 		qede_config_accept_any_vlan(edev, true);
2015 	else if (!edev->non_configured_vlans)
2016 		qede_config_accept_any_vlan(edev, false);
2017 
2018 	return real_rc;
2019 }
2020 
2021 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2022 {
2023 	struct qede_dev *edev = netdev_priv(dev);
2024 	struct qede_vlan *vlan = NULL;
2025 	int rc;
2026 
2027 	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2028 
2029 	/* Find whether entry exists */
2030 	list_for_each_entry(vlan, &edev->vlan_list, list)
2031 		if (vlan->vid == vid)
2032 			break;
2033 
2034 	if (!vlan || (vlan->vid != vid)) {
2035 		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2036 			   "Vlan isn't configured\n");
2037 		return 0;
2038 	}
2039 
2040 	if (edev->state != QEDE_STATE_OPEN) {
2041 		/* As interface is already down, we don't have a VPORT
2042 		 * instance to remove vlan filter. So just update vlan list
2043 		 */
2044 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2045 			   "Interface is down, removing VLAN from list only\n");
2046 		qede_del_vlan_from_list(edev, vlan);
2047 		return 0;
2048 	}
2049 
2050 	/* Remove vlan */
2051 	rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2052 	if (rc) {
2053 		DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2054 		return -EINVAL;
2055 	}
2056 
2057 	qede_del_vlan_from_list(edev, vlan);
2058 
2059 	/* We have removed a VLAN - try to see if we can
2060 	 * configure non-configured VLAN from the list.
2061 	 */
2062 	rc = qede_configure_vlan_filters(edev);
2063 
2064 	return rc;
2065 }
2066 
2067 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2068 {
2069 	struct qede_vlan *vlan = NULL;
2070 
2071 	if (list_empty(&edev->vlan_list))
2072 		return;
2073 
2074 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2075 		if (!vlan->configured)
2076 			continue;
2077 
2078 		vlan->configured = false;
2079 
2080 		/* vlan0 filter isn't consuming out of our quota */
2081 		if (vlan->vid != 0) {
2082 			edev->non_configured_vlans++;
2083 			edev->configured_vlans--;
2084 		}
2085 
2086 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2087 			   "marked vlan %d as non-configured\n",
2088 			   vlan->vid);
2089 	}
2090 
2091 	edev->accept_any_vlan = false;
2092 }
2093 
2094 #ifdef CONFIG_QEDE_VXLAN
2095 static void qede_add_vxlan_port(struct net_device *dev,
2096 				sa_family_t sa_family, __be16 port)
2097 {
2098 	struct qede_dev *edev = netdev_priv(dev);
2099 	u16 t_port = ntohs(port);
2100 
2101 	if (edev->vxlan_dst_port)
2102 		return;
2103 
2104 	edev->vxlan_dst_port = t_port;
2105 
2106 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2107 
2108 	set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2109 	schedule_delayed_work(&edev->sp_task, 0);
2110 }
2111 
2112 static void qede_del_vxlan_port(struct net_device *dev,
2113 				sa_family_t sa_family, __be16 port)
2114 {
2115 	struct qede_dev *edev = netdev_priv(dev);
2116 	u16 t_port = ntohs(port);
2117 
2118 	if (t_port != edev->vxlan_dst_port)
2119 		return;
2120 
2121 	edev->vxlan_dst_port = 0;
2122 
2123 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2124 
2125 	set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2126 	schedule_delayed_work(&edev->sp_task, 0);
2127 }
2128 #endif
2129 
2130 #ifdef CONFIG_QEDE_GENEVE
2131 static void qede_add_geneve_port(struct net_device *dev,
2132 				 sa_family_t sa_family, __be16 port)
2133 {
2134 	struct qede_dev *edev = netdev_priv(dev);
2135 	u16 t_port = ntohs(port);
2136 
2137 	if (edev->geneve_dst_port)
2138 		return;
2139 
2140 	edev->geneve_dst_port = t_port;
2141 
2142 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2143 	set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2144 	schedule_delayed_work(&edev->sp_task, 0);
2145 }
2146 
2147 static void qede_del_geneve_port(struct net_device *dev,
2148 				 sa_family_t sa_family, __be16 port)
2149 {
2150 	struct qede_dev *edev = netdev_priv(dev);
2151 	u16 t_port = ntohs(port);
2152 
2153 	if (t_port != edev->geneve_dst_port)
2154 		return;
2155 
2156 	edev->geneve_dst_port = 0;
2157 
2158 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2159 	set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2160 	schedule_delayed_work(&edev->sp_task, 0);
2161 }
2162 #endif
2163 
2164 static const struct net_device_ops qede_netdev_ops = {
2165 	.ndo_open = qede_open,
2166 	.ndo_stop = qede_close,
2167 	.ndo_start_xmit = qede_start_xmit,
2168 	.ndo_set_rx_mode = qede_set_rx_mode,
2169 	.ndo_set_mac_address = qede_set_mac_addr,
2170 	.ndo_validate_addr = eth_validate_addr,
2171 	.ndo_change_mtu = qede_change_mtu,
2172 #ifdef CONFIG_QED_SRIOV
2173 	.ndo_set_vf_mac = qede_set_vf_mac,
2174 	.ndo_set_vf_vlan = qede_set_vf_vlan,
2175 #endif
2176 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2177 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2178 	.ndo_get_stats64 = qede_get_stats64,
2179 #ifdef CONFIG_QED_SRIOV
2180 	.ndo_set_vf_link_state = qede_set_vf_link_state,
2181 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2182 	.ndo_get_vf_config = qede_get_vf_config,
2183 	.ndo_set_vf_rate = qede_set_vf_rate,
2184 #endif
2185 #ifdef CONFIG_QEDE_VXLAN
2186 	.ndo_add_vxlan_port = qede_add_vxlan_port,
2187 	.ndo_del_vxlan_port = qede_del_vxlan_port,
2188 #endif
2189 #ifdef CONFIG_QEDE_GENEVE
2190 	.ndo_add_geneve_port = qede_add_geneve_port,
2191 	.ndo_del_geneve_port = qede_del_geneve_port,
2192 #endif
2193 };
2194 
2195 /* -------------------------------------------------------------------------
2196  * START OF PROBE / REMOVE
2197  * -------------------------------------------------------------------------
2198  */
2199 
2200 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2201 					    struct pci_dev *pdev,
2202 					    struct qed_dev_eth_info *info,
2203 					    u32 dp_module,
2204 					    u8 dp_level)
2205 {
2206 	struct net_device *ndev;
2207 	struct qede_dev *edev;
2208 
2209 	ndev = alloc_etherdev_mqs(sizeof(*edev),
2210 				  info->num_queues,
2211 				  info->num_queues);
2212 	if (!ndev) {
2213 		pr_err("etherdev allocation failed\n");
2214 		return NULL;
2215 	}
2216 
2217 	edev = netdev_priv(ndev);
2218 	edev->ndev = ndev;
2219 	edev->cdev = cdev;
2220 	edev->pdev = pdev;
2221 	edev->dp_module = dp_module;
2222 	edev->dp_level = dp_level;
2223 	edev->ops = qed_ops;
2224 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2225 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2226 
2227 	SET_NETDEV_DEV(ndev, &pdev->dev);
2228 
2229 	memset(&edev->stats, 0, sizeof(edev->stats));
2230 	memcpy(&edev->dev_info, info, sizeof(*info));
2231 
2232 	edev->num_tc = edev->dev_info.num_tc;
2233 
2234 	INIT_LIST_HEAD(&edev->vlan_list);
2235 
2236 	return edev;
2237 }
2238 
2239 static void qede_init_ndev(struct qede_dev *edev)
2240 {
2241 	struct net_device *ndev = edev->ndev;
2242 	struct pci_dev *pdev = edev->pdev;
2243 	u32 hw_features;
2244 
2245 	pci_set_drvdata(pdev, ndev);
2246 
2247 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
2248 	ndev->base_addr = ndev->mem_start;
2249 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
2250 	ndev->irq = edev->dev_info.common.pci_irq;
2251 
2252 	ndev->watchdog_timeo = TX_TIMEOUT;
2253 
2254 	ndev->netdev_ops = &qede_netdev_ops;
2255 
2256 	qede_set_ethtool_ops(ndev);
2257 
2258 	/* user-changeble features */
2259 	hw_features = NETIF_F_GRO | NETIF_F_SG |
2260 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2261 		      NETIF_F_TSO | NETIF_F_TSO6;
2262 
2263 	/* Encap features*/
2264 	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2265 		       NETIF_F_TSO_ECN;
2266 	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2267 				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2268 				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2269 				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2270 
2271 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2272 			      NETIF_F_HIGHDMA;
2273 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2274 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2275 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2276 
2277 	ndev->hw_features = hw_features;
2278 
2279 	/* Set network device HW mac */
2280 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2281 }
2282 
2283 /* This function converts from 32b param to two params of level and module
2284  * Input 32b decoding:
2285  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2286  * 'happy' flow, e.g. memory allocation failed.
2287  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2288  * and provide important parameters.
2289  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2290  * module. VERBOSE prints are for tracking the specific flow in low level.
2291  *
2292  * Notice that the level should be that of the lowest required logs.
2293  */
2294 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2295 {
2296 	*p_dp_level = QED_LEVEL_NOTICE;
2297 	*p_dp_module = 0;
2298 
2299 	if (debug & QED_LOG_VERBOSE_MASK) {
2300 		*p_dp_level = QED_LEVEL_VERBOSE;
2301 		*p_dp_module = (debug & 0x3FFFFFFF);
2302 	} else if (debug & QED_LOG_INFO_MASK) {
2303 		*p_dp_level = QED_LEVEL_INFO;
2304 	} else if (debug & QED_LOG_NOTICE_MASK) {
2305 		*p_dp_level = QED_LEVEL_NOTICE;
2306 	}
2307 }
2308 
2309 static void qede_free_fp_array(struct qede_dev *edev)
2310 {
2311 	if (edev->fp_array) {
2312 		struct qede_fastpath *fp;
2313 		int i;
2314 
2315 		for_each_rss(i) {
2316 			fp = &edev->fp_array[i];
2317 
2318 			kfree(fp->sb_info);
2319 			kfree(fp->rxq);
2320 			kfree(fp->txqs);
2321 		}
2322 		kfree(edev->fp_array);
2323 	}
2324 	edev->num_rss = 0;
2325 }
2326 
2327 static int qede_alloc_fp_array(struct qede_dev *edev)
2328 {
2329 	struct qede_fastpath *fp;
2330 	int i;
2331 
2332 	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2333 				 sizeof(*edev->fp_array), GFP_KERNEL);
2334 	if (!edev->fp_array) {
2335 		DP_NOTICE(edev, "fp array allocation failed\n");
2336 		goto err;
2337 	}
2338 
2339 	for_each_rss(i) {
2340 		fp = &edev->fp_array[i];
2341 
2342 		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2343 		if (!fp->sb_info) {
2344 			DP_NOTICE(edev, "sb info struct allocation failed\n");
2345 			goto err;
2346 		}
2347 
2348 		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2349 		if (!fp->rxq) {
2350 			DP_NOTICE(edev, "RXQ struct allocation failed\n");
2351 			goto err;
2352 		}
2353 
2354 		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2355 		if (!fp->txqs) {
2356 			DP_NOTICE(edev, "TXQ array allocation failed\n");
2357 			goto err;
2358 		}
2359 	}
2360 
2361 	return 0;
2362 err:
2363 	qede_free_fp_array(edev);
2364 	return -ENOMEM;
2365 }
2366 
2367 static void qede_sp_task(struct work_struct *work)
2368 {
2369 	struct qede_dev *edev = container_of(work, struct qede_dev,
2370 					     sp_task.work);
2371 	struct qed_dev *cdev = edev->cdev;
2372 
2373 	mutex_lock(&edev->qede_lock);
2374 
2375 	if (edev->state == QEDE_STATE_OPEN) {
2376 		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2377 			qede_config_rx_mode(edev->ndev);
2378 	}
2379 
2380 	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2381 		struct qed_tunn_params tunn_params;
2382 
2383 		memset(&tunn_params, 0, sizeof(tunn_params));
2384 		tunn_params.update_vxlan_port = 1;
2385 		tunn_params.vxlan_port = edev->vxlan_dst_port;
2386 		qed_ops->tunn_config(cdev, &tunn_params);
2387 	}
2388 
2389 	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2390 		struct qed_tunn_params tunn_params;
2391 
2392 		memset(&tunn_params, 0, sizeof(tunn_params));
2393 		tunn_params.update_geneve_port = 1;
2394 		tunn_params.geneve_port = edev->geneve_dst_port;
2395 		qed_ops->tunn_config(cdev, &tunn_params);
2396 	}
2397 
2398 	mutex_unlock(&edev->qede_lock);
2399 }
2400 
2401 static void qede_update_pf_params(struct qed_dev *cdev)
2402 {
2403 	struct qed_pf_params pf_params;
2404 
2405 	/* 64 rx + 64 tx */
2406 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2407 	pf_params.eth_pf_params.num_cons = 128;
2408 	qed_ops->common->update_pf_params(cdev, &pf_params);
2409 }
2410 
2411 enum qede_probe_mode {
2412 	QEDE_PROBE_NORMAL,
2413 };
2414 
2415 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2416 			bool is_vf, enum qede_probe_mode mode)
2417 {
2418 	struct qed_probe_params probe_params;
2419 	struct qed_slowpath_params params;
2420 	struct qed_dev_eth_info dev_info;
2421 	struct qede_dev *edev;
2422 	struct qed_dev *cdev;
2423 	int rc;
2424 
2425 	if (unlikely(dp_level & QED_LEVEL_INFO))
2426 		pr_notice("Starting qede probe\n");
2427 
2428 	memset(&probe_params, 0, sizeof(probe_params));
2429 	probe_params.protocol = QED_PROTOCOL_ETH;
2430 	probe_params.dp_module = dp_module;
2431 	probe_params.dp_level = dp_level;
2432 	probe_params.is_vf = is_vf;
2433 	cdev = qed_ops->common->probe(pdev, &probe_params);
2434 	if (!cdev) {
2435 		rc = -ENODEV;
2436 		goto err0;
2437 	}
2438 
2439 	qede_update_pf_params(cdev);
2440 
2441 	/* Start the Slowpath-process */
2442 	memset(&params, 0, sizeof(struct qed_slowpath_params));
2443 	params.int_mode = QED_INT_MODE_MSIX;
2444 	params.drv_major = QEDE_MAJOR_VERSION;
2445 	params.drv_minor = QEDE_MINOR_VERSION;
2446 	params.drv_rev = QEDE_REVISION_VERSION;
2447 	params.drv_eng = QEDE_ENGINEERING_VERSION;
2448 	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2449 	rc = qed_ops->common->slowpath_start(cdev, &params);
2450 	if (rc) {
2451 		pr_notice("Cannot start slowpath\n");
2452 		goto err1;
2453 	}
2454 
2455 	/* Learn information crucial for qede to progress */
2456 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2457 	if (rc)
2458 		goto err2;
2459 
2460 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2461 				   dp_level);
2462 	if (!edev) {
2463 		rc = -ENOMEM;
2464 		goto err2;
2465 	}
2466 
2467 	if (is_vf)
2468 		edev->flags |= QEDE_FLAG_IS_VF;
2469 
2470 	qede_init_ndev(edev);
2471 
2472 	rc = register_netdev(edev->ndev);
2473 	if (rc) {
2474 		DP_NOTICE(edev, "Cannot register net-device\n");
2475 		goto err3;
2476 	}
2477 
2478 	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2479 
2480 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2481 
2482 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2483 	mutex_init(&edev->qede_lock);
2484 
2485 	DP_INFO(edev, "Ending successfully qede probe\n");
2486 
2487 	return 0;
2488 
2489 err3:
2490 	free_netdev(edev->ndev);
2491 err2:
2492 	qed_ops->common->slowpath_stop(cdev);
2493 err1:
2494 	qed_ops->common->remove(cdev);
2495 err0:
2496 	return rc;
2497 }
2498 
2499 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2500 {
2501 	bool is_vf = false;
2502 	u32 dp_module = 0;
2503 	u8 dp_level = 0;
2504 
2505 	switch ((enum qede_pci_private)id->driver_data) {
2506 	case QEDE_PRIVATE_VF:
2507 		if (debug & QED_LOG_VERBOSE_MASK)
2508 			dev_err(&pdev->dev, "Probing a VF\n");
2509 		is_vf = true;
2510 		break;
2511 	default:
2512 		if (debug & QED_LOG_VERBOSE_MASK)
2513 			dev_err(&pdev->dev, "Probing a PF\n");
2514 	}
2515 
2516 	qede_config_debug(debug, &dp_module, &dp_level);
2517 
2518 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
2519 			    QEDE_PROBE_NORMAL);
2520 }
2521 
2522 enum qede_remove_mode {
2523 	QEDE_REMOVE_NORMAL,
2524 };
2525 
2526 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2527 {
2528 	struct net_device *ndev = pci_get_drvdata(pdev);
2529 	struct qede_dev *edev = netdev_priv(ndev);
2530 	struct qed_dev *cdev = edev->cdev;
2531 
2532 	DP_INFO(edev, "Starting qede_remove\n");
2533 
2534 	cancel_delayed_work_sync(&edev->sp_task);
2535 	unregister_netdev(ndev);
2536 
2537 	edev->ops->common->set_power_state(cdev, PCI_D0);
2538 
2539 	pci_set_drvdata(pdev, NULL);
2540 
2541 	free_netdev(ndev);
2542 
2543 	/* Use global ops since we've freed edev */
2544 	qed_ops->common->slowpath_stop(cdev);
2545 	qed_ops->common->remove(cdev);
2546 
2547 	pr_notice("Ending successfully qede_remove\n");
2548 }
2549 
2550 static void qede_remove(struct pci_dev *pdev)
2551 {
2552 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2553 }
2554 
2555 /* -------------------------------------------------------------------------
2556  * START OF LOAD / UNLOAD
2557  * -------------------------------------------------------------------------
2558  */
2559 
2560 static int qede_set_num_queues(struct qede_dev *edev)
2561 {
2562 	int rc;
2563 	u16 rss_num;
2564 
2565 	/* Setup queues according to possible resources*/
2566 	if (edev->req_rss)
2567 		rss_num = edev->req_rss;
2568 	else
2569 		rss_num = netif_get_num_default_rss_queues() *
2570 			  edev->dev_info.common.num_hwfns;
2571 
2572 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2573 
2574 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2575 	if (rc > 0) {
2576 		/* Managed to request interrupts for our queues */
2577 		edev->num_rss = rc;
2578 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2579 			QEDE_RSS_CNT(edev), rss_num);
2580 		rc = 0;
2581 	}
2582 	return rc;
2583 }
2584 
2585 static void qede_free_mem_sb(struct qede_dev *edev,
2586 			     struct qed_sb_info *sb_info)
2587 {
2588 	if (sb_info->sb_virt)
2589 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2590 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
2591 }
2592 
2593 /* This function allocates fast-path status block memory */
2594 static int qede_alloc_mem_sb(struct qede_dev *edev,
2595 			     struct qed_sb_info *sb_info,
2596 			     u16 sb_id)
2597 {
2598 	struct status_block *sb_virt;
2599 	dma_addr_t sb_phys;
2600 	int rc;
2601 
2602 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2603 				     sizeof(*sb_virt),
2604 				     &sb_phys, GFP_KERNEL);
2605 	if (!sb_virt) {
2606 		DP_ERR(edev, "Status block allocation failed\n");
2607 		return -ENOMEM;
2608 	}
2609 
2610 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2611 					sb_virt, sb_phys, sb_id,
2612 					QED_SB_TYPE_L2_QUEUE);
2613 	if (rc) {
2614 		DP_ERR(edev, "Status block initialization failed\n");
2615 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2616 				  sb_virt, sb_phys);
2617 		return rc;
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 static void qede_free_rx_buffers(struct qede_dev *edev,
2624 				 struct qede_rx_queue *rxq)
2625 {
2626 	u16 i;
2627 
2628 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2629 		struct sw_rx_data *rx_buf;
2630 		struct page *data;
2631 
2632 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2633 		data = rx_buf->data;
2634 
2635 		dma_unmap_page(&edev->pdev->dev,
2636 			       rx_buf->mapping,
2637 			       PAGE_SIZE, DMA_FROM_DEVICE);
2638 
2639 		rx_buf->data = NULL;
2640 		__free_page(data);
2641 	}
2642 }
2643 
2644 static void qede_free_sge_mem(struct qede_dev *edev,
2645 			      struct qede_rx_queue *rxq) {
2646 	int i;
2647 
2648 	if (edev->gro_disable)
2649 		return;
2650 
2651 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2652 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2653 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2654 
2655 		if (replace_buf->data) {
2656 			dma_unmap_page(&edev->pdev->dev,
2657 				       replace_buf->mapping,
2658 				       PAGE_SIZE, DMA_FROM_DEVICE);
2659 			__free_page(replace_buf->data);
2660 		}
2661 	}
2662 }
2663 
2664 static void qede_free_mem_rxq(struct qede_dev *edev,
2665 			      struct qede_rx_queue *rxq)
2666 {
2667 	qede_free_sge_mem(edev, rxq);
2668 
2669 	/* Free rx buffers */
2670 	qede_free_rx_buffers(edev, rxq);
2671 
2672 	/* Free the parallel SW ring */
2673 	kfree(rxq->sw_rx_ring);
2674 
2675 	/* Free the real RQ ring used by FW */
2676 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2677 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2678 }
2679 
2680 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2681 				struct qede_rx_queue *rxq)
2682 {
2683 	struct sw_rx_data *sw_rx_data;
2684 	struct eth_rx_bd *rx_bd;
2685 	dma_addr_t mapping;
2686 	struct page *data;
2687 	u16 rx_buf_size;
2688 
2689 	rx_buf_size = rxq->rx_buf_size;
2690 
2691 	data = alloc_pages(GFP_ATOMIC, 0);
2692 	if (unlikely(!data)) {
2693 		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2694 		return -ENOMEM;
2695 	}
2696 
2697 	/* Map the entire page as it would be used
2698 	 * for multiple RX buffer segment size mapping.
2699 	 */
2700 	mapping = dma_map_page(&edev->pdev->dev, data, 0,
2701 			       PAGE_SIZE, DMA_FROM_DEVICE);
2702 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2703 		__free_page(data);
2704 		DP_NOTICE(edev, "Failed to map Rx buffer\n");
2705 		return -ENOMEM;
2706 	}
2707 
2708 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2709 	sw_rx_data->page_offset = 0;
2710 	sw_rx_data->data = data;
2711 	sw_rx_data->mapping = mapping;
2712 
2713 	/* Advance PROD and get BD pointer */
2714 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2715 	WARN_ON(!rx_bd);
2716 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2717 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2718 
2719 	rxq->sw_rx_prod++;
2720 
2721 	return 0;
2722 }
2723 
2724 static int qede_alloc_sge_mem(struct qede_dev *edev,
2725 			      struct qede_rx_queue *rxq)
2726 {
2727 	dma_addr_t mapping;
2728 	int i;
2729 
2730 	if (edev->gro_disable)
2731 		return 0;
2732 
2733 	if (edev->ndev->mtu > PAGE_SIZE) {
2734 		edev->gro_disable = 1;
2735 		return 0;
2736 	}
2737 
2738 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2739 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2740 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2741 
2742 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2743 		if (unlikely(!replace_buf->data)) {
2744 			DP_NOTICE(edev,
2745 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
2746 			goto err;
2747 		}
2748 
2749 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2750 				       rxq->rx_buf_size, DMA_FROM_DEVICE);
2751 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2752 			DP_NOTICE(edev,
2753 				  "Failed to map TPA replacement buffer\n");
2754 			goto err;
2755 		}
2756 
2757 		replace_buf->mapping = mapping;
2758 		tpa_info->replace_buf.page_offset = 0;
2759 
2760 		tpa_info->replace_buf_mapping = mapping;
2761 		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2762 	}
2763 
2764 	return 0;
2765 err:
2766 	qede_free_sge_mem(edev, rxq);
2767 	edev->gro_disable = 1;
2768 	return -ENOMEM;
2769 }
2770 
2771 /* This function allocates all memory needed per Rx queue */
2772 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2773 			      struct qede_rx_queue *rxq)
2774 {
2775 	int i, rc, size;
2776 
2777 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
2778 
2779 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2780 			   edev->ndev->mtu;
2781 	if (rxq->rx_buf_size > PAGE_SIZE)
2782 		rxq->rx_buf_size = PAGE_SIZE;
2783 
2784 	/* Segment size to spilt a page in multiple equal parts */
2785 	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2786 
2787 	/* Allocate the parallel driver ring for Rx buffers */
2788 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2789 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2790 	if (!rxq->sw_rx_ring) {
2791 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
2792 		rc = -ENOMEM;
2793 		goto err;
2794 	}
2795 
2796 	/* Allocate FW Rx ring  */
2797 	rc = edev->ops->common->chain_alloc(edev->cdev,
2798 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2799 					    QED_CHAIN_MODE_NEXT_PTR,
2800 					    RX_RING_SIZE,
2801 					    sizeof(struct eth_rx_bd),
2802 					    &rxq->rx_bd_ring);
2803 
2804 	if (rc)
2805 		goto err;
2806 
2807 	/* Allocate FW completion ring */
2808 	rc = edev->ops->common->chain_alloc(edev->cdev,
2809 					    QED_CHAIN_USE_TO_CONSUME,
2810 					    QED_CHAIN_MODE_PBL,
2811 					    RX_RING_SIZE,
2812 					    sizeof(union eth_rx_cqe),
2813 					    &rxq->rx_comp_ring);
2814 	if (rc)
2815 		goto err;
2816 
2817 	/* Allocate buffers for the Rx ring */
2818 	for (i = 0; i < rxq->num_rx_buffers; i++) {
2819 		rc = qede_alloc_rx_buffer(edev, rxq);
2820 		if (rc) {
2821 			DP_ERR(edev,
2822 			       "Rx buffers allocation failed at index %d\n", i);
2823 			goto err;
2824 		}
2825 	}
2826 
2827 	rc = qede_alloc_sge_mem(edev, rxq);
2828 err:
2829 	return rc;
2830 }
2831 
2832 static void qede_free_mem_txq(struct qede_dev *edev,
2833 			      struct qede_tx_queue *txq)
2834 {
2835 	/* Free the parallel SW ring */
2836 	kfree(txq->sw_tx_ring);
2837 
2838 	/* Free the real RQ ring used by FW */
2839 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2840 }
2841 
2842 /* This function allocates all memory needed per Tx queue */
2843 static int qede_alloc_mem_txq(struct qede_dev *edev,
2844 			      struct qede_tx_queue *txq)
2845 {
2846 	int size, rc;
2847 	union eth_tx_bd_types *p_virt;
2848 
2849 	txq->num_tx_buffers = edev->q_num_tx_buffers;
2850 
2851 	/* Allocate the parallel driver ring for Tx buffers */
2852 	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2853 	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2854 	if (!txq->sw_tx_ring) {
2855 		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2856 		goto err;
2857 	}
2858 
2859 	rc = edev->ops->common->chain_alloc(edev->cdev,
2860 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2861 					    QED_CHAIN_MODE_PBL,
2862 					    NUM_TX_BDS_MAX,
2863 					    sizeof(*p_virt),
2864 					    &txq->tx_pbl);
2865 	if (rc)
2866 		goto err;
2867 
2868 	return 0;
2869 
2870 err:
2871 	qede_free_mem_txq(edev, txq);
2872 	return -ENOMEM;
2873 }
2874 
2875 /* This function frees all memory of a single fp */
2876 static void qede_free_mem_fp(struct qede_dev *edev,
2877 			     struct qede_fastpath *fp)
2878 {
2879 	int tc;
2880 
2881 	qede_free_mem_sb(edev, fp->sb_info);
2882 
2883 	qede_free_mem_rxq(edev, fp->rxq);
2884 
2885 	for (tc = 0; tc < edev->num_tc; tc++)
2886 		qede_free_mem_txq(edev, &fp->txqs[tc]);
2887 }
2888 
2889 /* This function allocates all memory needed for a single fp (i.e. an entity
2890  * which contains status block, one rx queue and multiple per-TC tx queues.
2891  */
2892 static int qede_alloc_mem_fp(struct qede_dev *edev,
2893 			     struct qede_fastpath *fp)
2894 {
2895 	int rc, tc;
2896 
2897 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2898 	if (rc)
2899 		goto err;
2900 
2901 	rc = qede_alloc_mem_rxq(edev, fp->rxq);
2902 	if (rc)
2903 		goto err;
2904 
2905 	for (tc = 0; tc < edev->num_tc; tc++) {
2906 		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2907 		if (rc)
2908 			goto err;
2909 	}
2910 
2911 	return 0;
2912 err:
2913 	return rc;
2914 }
2915 
2916 static void qede_free_mem_load(struct qede_dev *edev)
2917 {
2918 	int i;
2919 
2920 	for_each_rss(i) {
2921 		struct qede_fastpath *fp = &edev->fp_array[i];
2922 
2923 		qede_free_mem_fp(edev, fp);
2924 	}
2925 }
2926 
2927 /* This function allocates all qede memory at NIC load. */
2928 static int qede_alloc_mem_load(struct qede_dev *edev)
2929 {
2930 	int rc = 0, rss_id;
2931 
2932 	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2933 		struct qede_fastpath *fp = &edev->fp_array[rss_id];
2934 
2935 		rc = qede_alloc_mem_fp(edev, fp);
2936 		if (rc) {
2937 			DP_ERR(edev,
2938 			       "Failed to allocate memory for fastpath - rss id = %d\n",
2939 			       rss_id);
2940 			qede_free_mem_load(edev);
2941 			return rc;
2942 		}
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2949 static void qede_init_fp(struct qede_dev *edev)
2950 {
2951 	int rss_id, txq_index, tc;
2952 	struct qede_fastpath *fp;
2953 
2954 	for_each_rss(rss_id) {
2955 		fp = &edev->fp_array[rss_id];
2956 
2957 		fp->edev = edev;
2958 		fp->rss_id = rss_id;
2959 
2960 		memset((void *)&fp->napi, 0, sizeof(fp->napi));
2961 
2962 		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2963 
2964 		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2965 		fp->rxq->rxq_id = rss_id;
2966 
2967 		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2968 		for (tc = 0; tc < edev->num_tc; tc++) {
2969 			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2970 			fp->txqs[tc].index = txq_index;
2971 		}
2972 
2973 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2974 			 edev->ndev->name, rss_id);
2975 	}
2976 
2977 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2978 }
2979 
2980 static int qede_set_real_num_queues(struct qede_dev *edev)
2981 {
2982 	int rc = 0;
2983 
2984 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2985 	if (rc) {
2986 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2987 		return rc;
2988 	}
2989 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2990 	if (rc) {
2991 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2992 		return rc;
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 static void qede_napi_disable_remove(struct qede_dev *edev)
2999 {
3000 	int i;
3001 
3002 	for_each_rss(i) {
3003 		napi_disable(&edev->fp_array[i].napi);
3004 
3005 		netif_napi_del(&edev->fp_array[i].napi);
3006 	}
3007 }
3008 
3009 static void qede_napi_add_enable(struct qede_dev *edev)
3010 {
3011 	int i;
3012 
3013 	/* Add NAPI objects */
3014 	for_each_rss(i) {
3015 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3016 			       qede_poll, NAPI_POLL_WEIGHT);
3017 		napi_enable(&edev->fp_array[i].napi);
3018 	}
3019 }
3020 
3021 static void qede_sync_free_irqs(struct qede_dev *edev)
3022 {
3023 	int i;
3024 
3025 	for (i = 0; i < edev->int_info.used_cnt; i++) {
3026 		if (edev->int_info.msix_cnt) {
3027 			synchronize_irq(edev->int_info.msix[i].vector);
3028 			free_irq(edev->int_info.msix[i].vector,
3029 				 &edev->fp_array[i]);
3030 		} else {
3031 			edev->ops->common->simd_handler_clean(edev->cdev, i);
3032 		}
3033 	}
3034 
3035 	edev->int_info.used_cnt = 0;
3036 }
3037 
3038 static int qede_req_msix_irqs(struct qede_dev *edev)
3039 {
3040 	int i, rc;
3041 
3042 	/* Sanitize number of interrupts == number of prepared RSS queues */
3043 	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3044 		DP_ERR(edev,
3045 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3046 		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3047 		return -EINVAL;
3048 	}
3049 
3050 	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3051 		rc = request_irq(edev->int_info.msix[i].vector,
3052 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
3053 				 &edev->fp_array[i]);
3054 		if (rc) {
3055 			DP_ERR(edev, "Request fp %d irq failed\n", i);
3056 			qede_sync_free_irqs(edev);
3057 			return rc;
3058 		}
3059 		DP_VERBOSE(edev, NETIF_MSG_INTR,
3060 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3061 			   edev->fp_array[i].name, i,
3062 			   &edev->fp_array[i]);
3063 		edev->int_info.used_cnt++;
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 static void qede_simd_fp_handler(void *cookie)
3070 {
3071 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3072 
3073 	napi_schedule_irqoff(&fp->napi);
3074 }
3075 
3076 static int qede_setup_irqs(struct qede_dev *edev)
3077 {
3078 	int i, rc = 0;
3079 
3080 	/* Learn Interrupt configuration */
3081 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3082 	if (rc)
3083 		return rc;
3084 
3085 	if (edev->int_info.msix_cnt) {
3086 		rc = qede_req_msix_irqs(edev);
3087 		if (rc)
3088 			return rc;
3089 		edev->ndev->irq = edev->int_info.msix[0].vector;
3090 	} else {
3091 		const struct qed_common_ops *ops;
3092 
3093 		/* qed should learn receive the RSS ids and callbacks */
3094 		ops = edev->ops->common;
3095 		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3096 			ops->simd_handler_config(edev->cdev,
3097 						 &edev->fp_array[i], i,
3098 						 qede_simd_fp_handler);
3099 		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3100 	}
3101 	return 0;
3102 }
3103 
3104 static int qede_drain_txq(struct qede_dev *edev,
3105 			  struct qede_tx_queue *txq,
3106 			  bool allow_drain)
3107 {
3108 	int rc, cnt = 1000;
3109 
3110 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
3111 		if (!cnt) {
3112 			if (allow_drain) {
3113 				DP_NOTICE(edev,
3114 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
3115 					  txq->index);
3116 				rc = edev->ops->common->drain(edev->cdev);
3117 				if (rc)
3118 					return rc;
3119 				return qede_drain_txq(edev, txq, false);
3120 			}
3121 			DP_NOTICE(edev,
3122 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3123 				  txq->index, txq->sw_tx_prod,
3124 				  txq->sw_tx_cons);
3125 			return -ENODEV;
3126 		}
3127 		cnt--;
3128 		usleep_range(1000, 2000);
3129 		barrier();
3130 	}
3131 
3132 	/* FW finished processing, wait for HW to transmit all tx packets */
3133 	usleep_range(1000, 2000);
3134 
3135 	return 0;
3136 }
3137 
3138 static int qede_stop_queues(struct qede_dev *edev)
3139 {
3140 	struct qed_update_vport_params vport_update_params;
3141 	struct qed_dev *cdev = edev->cdev;
3142 	int rc, tc, i;
3143 
3144 	/* Disable the vport */
3145 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3146 	vport_update_params.vport_id = 0;
3147 	vport_update_params.update_vport_active_flg = 1;
3148 	vport_update_params.vport_active_flg = 0;
3149 	vport_update_params.update_rss_flg = 0;
3150 
3151 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3152 	if (rc) {
3153 		DP_ERR(edev, "Failed to update vport\n");
3154 		return rc;
3155 	}
3156 
3157 	/* Flush Tx queues. If needed, request drain from MCP */
3158 	for_each_rss(i) {
3159 		struct qede_fastpath *fp = &edev->fp_array[i];
3160 
3161 		for (tc = 0; tc < edev->num_tc; tc++) {
3162 			struct qede_tx_queue *txq = &fp->txqs[tc];
3163 
3164 			rc = qede_drain_txq(edev, txq, true);
3165 			if (rc)
3166 				return rc;
3167 		}
3168 	}
3169 
3170 	/* Stop all Queues in reverse order*/
3171 	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3172 		struct qed_stop_rxq_params rx_params;
3173 
3174 		/* Stop the Tx Queue(s)*/
3175 		for (tc = 0; tc < edev->num_tc; tc++) {
3176 			struct qed_stop_txq_params tx_params;
3177 
3178 			tx_params.rss_id = i;
3179 			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3180 			rc = edev->ops->q_tx_stop(cdev, &tx_params);
3181 			if (rc) {
3182 				DP_ERR(edev, "Failed to stop TXQ #%d\n",
3183 				       tx_params.tx_queue_id);
3184 				return rc;
3185 			}
3186 		}
3187 
3188 		/* Stop the Rx Queue*/
3189 		memset(&rx_params, 0, sizeof(rx_params));
3190 		rx_params.rss_id = i;
3191 		rx_params.rx_queue_id = i;
3192 
3193 		rc = edev->ops->q_rx_stop(cdev, &rx_params);
3194 		if (rc) {
3195 			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3196 			return rc;
3197 		}
3198 	}
3199 
3200 	/* Stop the vport */
3201 	rc = edev->ops->vport_stop(cdev, 0);
3202 	if (rc)
3203 		DP_ERR(edev, "Failed to stop VPORT\n");
3204 
3205 	return rc;
3206 }
3207 
3208 static int qede_start_queues(struct qede_dev *edev)
3209 {
3210 	int rc, tc, i;
3211 	int vlan_removal_en = 1;
3212 	struct qed_dev *cdev = edev->cdev;
3213 	struct qed_update_vport_params vport_update_params;
3214 	struct qed_queue_start_common_params q_params;
3215 	struct qed_dev_info *qed_info = &edev->dev_info.common;
3216 	struct qed_start_vport_params start = {0};
3217 	bool reset_rss_indir = false;
3218 
3219 	if (!edev->num_rss) {
3220 		DP_ERR(edev,
3221 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
3222 		return -EINVAL;
3223 	}
3224 
3225 	start.gro_enable = !edev->gro_disable;
3226 	start.mtu = edev->ndev->mtu;
3227 	start.vport_id = 0;
3228 	start.drop_ttl0 = true;
3229 	start.remove_inner_vlan = vlan_removal_en;
3230 
3231 	rc = edev->ops->vport_start(cdev, &start);
3232 
3233 	if (rc) {
3234 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3235 		return rc;
3236 	}
3237 
3238 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
3239 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3240 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3241 
3242 	for_each_rss(i) {
3243 		struct qede_fastpath *fp = &edev->fp_array[i];
3244 		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3245 
3246 		memset(&q_params, 0, sizeof(q_params));
3247 		q_params.rss_id = i;
3248 		q_params.queue_id = i;
3249 		q_params.vport_id = 0;
3250 		q_params.sb = fp->sb_info->igu_sb_id;
3251 		q_params.sb_idx = RX_PI;
3252 
3253 		rc = edev->ops->q_rx_start(cdev, &q_params,
3254 					   fp->rxq->rx_buf_size,
3255 					   fp->rxq->rx_bd_ring.p_phys_addr,
3256 					   phys_table,
3257 					   fp->rxq->rx_comp_ring.page_cnt,
3258 					   &fp->rxq->hw_rxq_prod_addr);
3259 		if (rc) {
3260 			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3261 			return rc;
3262 		}
3263 
3264 		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3265 
3266 		qede_update_rx_prod(edev, fp->rxq);
3267 
3268 		for (tc = 0; tc < edev->num_tc; tc++) {
3269 			struct qede_tx_queue *txq = &fp->txqs[tc];
3270 			int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3271 
3272 			memset(&q_params, 0, sizeof(q_params));
3273 			q_params.rss_id = i;
3274 			q_params.queue_id = txq_index;
3275 			q_params.vport_id = 0;
3276 			q_params.sb = fp->sb_info->igu_sb_id;
3277 			q_params.sb_idx = TX_PI(tc);
3278 
3279 			rc = edev->ops->q_tx_start(cdev, &q_params,
3280 						   txq->tx_pbl.pbl.p_phys_table,
3281 						   txq->tx_pbl.page_cnt,
3282 						   &txq->doorbell_addr);
3283 			if (rc) {
3284 				DP_ERR(edev, "Start TXQ #%d failed %d\n",
3285 				       txq_index, rc);
3286 				return rc;
3287 			}
3288 
3289 			txq->hw_cons_ptr =
3290 				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3291 			SET_FIELD(txq->tx_db.data.params,
3292 				  ETH_DB_DATA_DEST, DB_DEST_XCM);
3293 			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3294 				  DB_AGG_CMD_SET);
3295 			SET_FIELD(txq->tx_db.data.params,
3296 				  ETH_DB_DATA_AGG_VAL_SEL,
3297 				  DQ_XCM_ETH_TX_BD_PROD_CMD);
3298 
3299 			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3300 		}
3301 	}
3302 
3303 	/* Prepare and send the vport enable */
3304 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3305 	vport_update_params.vport_id = start.vport_id;
3306 	vport_update_params.update_vport_active_flg = 1;
3307 	vport_update_params.vport_active_flg = 1;
3308 
3309 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3310 	    qed_info->tx_switching) {
3311 		vport_update_params.update_tx_switching_flg = 1;
3312 		vport_update_params.tx_switching_flg = 1;
3313 	}
3314 
3315 	/* Fill struct with RSS params */
3316 	if (QEDE_RSS_CNT(edev) > 1) {
3317 		vport_update_params.update_rss_flg = 1;
3318 
3319 		/* Need to validate current RSS config uses valid entries */
3320 		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3321 			if (edev->rss_params.rss_ind_table[i] >=
3322 			    edev->num_rss) {
3323 				reset_rss_indir = true;
3324 				break;
3325 			}
3326 		}
3327 
3328 		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3329 		    reset_rss_indir) {
3330 			u16 val;
3331 
3332 			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3333 				u16 indir_val;
3334 
3335 				val = QEDE_RSS_CNT(edev);
3336 				indir_val = ethtool_rxfh_indir_default(i, val);
3337 				edev->rss_params.rss_ind_table[i] = indir_val;
3338 			}
3339 			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3340 		}
3341 
3342 		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3343 			netdev_rss_key_fill(edev->rss_params.rss_key,
3344 					    sizeof(edev->rss_params.rss_key));
3345 			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3346 		}
3347 
3348 		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3349 			edev->rss_params.rss_caps = QED_RSS_IPV4 |
3350 						    QED_RSS_IPV6 |
3351 						    QED_RSS_IPV4_TCP |
3352 						    QED_RSS_IPV6_TCP;
3353 			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3354 		}
3355 
3356 		memcpy(&vport_update_params.rss_params, &edev->rss_params,
3357 		       sizeof(vport_update_params.rss_params));
3358 	} else {
3359 		memset(&vport_update_params.rss_params, 0,
3360 		       sizeof(vport_update_params.rss_params));
3361 	}
3362 
3363 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3364 	if (rc) {
3365 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3366 		return rc;
3367 	}
3368 
3369 	return 0;
3370 }
3371 
3372 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3373 				 enum qed_filter_xcast_params_type opcode,
3374 				 unsigned char *mac, int num_macs)
3375 {
3376 	struct qed_filter_params filter_cmd;
3377 	int i;
3378 
3379 	memset(&filter_cmd, 0, sizeof(filter_cmd));
3380 	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3381 	filter_cmd.filter.mcast.type = opcode;
3382 	filter_cmd.filter.mcast.num = num_macs;
3383 
3384 	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3385 		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3386 
3387 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3388 }
3389 
3390 enum qede_unload_mode {
3391 	QEDE_UNLOAD_NORMAL,
3392 };
3393 
3394 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3395 {
3396 	struct qed_link_params link_params;
3397 	int rc;
3398 
3399 	DP_INFO(edev, "Starting qede unload\n");
3400 
3401 	mutex_lock(&edev->qede_lock);
3402 	edev->state = QEDE_STATE_CLOSED;
3403 
3404 	/* Close OS Tx */
3405 	netif_tx_disable(edev->ndev);
3406 	netif_carrier_off(edev->ndev);
3407 
3408 	/* Reset the link */
3409 	memset(&link_params, 0, sizeof(link_params));
3410 	link_params.link_up = false;
3411 	edev->ops->common->set_link(edev->cdev, &link_params);
3412 	rc = qede_stop_queues(edev);
3413 	if (rc) {
3414 		qede_sync_free_irqs(edev);
3415 		goto out;
3416 	}
3417 
3418 	DP_INFO(edev, "Stopped Queues\n");
3419 
3420 	qede_vlan_mark_nonconfigured(edev);
3421 	edev->ops->fastpath_stop(edev->cdev);
3422 
3423 	/* Release the interrupts */
3424 	qede_sync_free_irqs(edev);
3425 	edev->ops->common->set_fp_int(edev->cdev, 0);
3426 
3427 	qede_napi_disable_remove(edev);
3428 
3429 	qede_free_mem_load(edev);
3430 	qede_free_fp_array(edev);
3431 
3432 out:
3433 	mutex_unlock(&edev->qede_lock);
3434 	DP_INFO(edev, "Ending qede unload\n");
3435 }
3436 
3437 enum qede_load_mode {
3438 	QEDE_LOAD_NORMAL,
3439 };
3440 
3441 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3442 {
3443 	struct qed_link_params link_params;
3444 	struct qed_link_output link_output;
3445 	int rc;
3446 
3447 	DP_INFO(edev, "Starting qede load\n");
3448 
3449 	rc = qede_set_num_queues(edev);
3450 	if (rc)
3451 		goto err0;
3452 
3453 	rc = qede_alloc_fp_array(edev);
3454 	if (rc)
3455 		goto err0;
3456 
3457 	qede_init_fp(edev);
3458 
3459 	rc = qede_alloc_mem_load(edev);
3460 	if (rc)
3461 		goto err1;
3462 	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3463 		QEDE_RSS_CNT(edev), edev->num_tc);
3464 
3465 	rc = qede_set_real_num_queues(edev);
3466 	if (rc)
3467 		goto err2;
3468 
3469 	qede_napi_add_enable(edev);
3470 	DP_INFO(edev, "Napi added and enabled\n");
3471 
3472 	rc = qede_setup_irqs(edev);
3473 	if (rc)
3474 		goto err3;
3475 	DP_INFO(edev, "Setup IRQs succeeded\n");
3476 
3477 	rc = qede_start_queues(edev);
3478 	if (rc)
3479 		goto err4;
3480 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3481 
3482 	/* Add primary mac and set Rx filters */
3483 	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3484 
3485 	mutex_lock(&edev->qede_lock);
3486 	edev->state = QEDE_STATE_OPEN;
3487 	mutex_unlock(&edev->qede_lock);
3488 
3489 	/* Program un-configured VLANs */
3490 	qede_configure_vlan_filters(edev);
3491 
3492 	/* Ask for link-up using current configuration */
3493 	memset(&link_params, 0, sizeof(link_params));
3494 	link_params.link_up = true;
3495 	edev->ops->common->set_link(edev->cdev, &link_params);
3496 
3497 	/* Query whether link is already-up */
3498 	memset(&link_output, 0, sizeof(link_output));
3499 	edev->ops->common->get_link(edev->cdev, &link_output);
3500 	qede_link_update(edev, &link_output);
3501 
3502 	DP_INFO(edev, "Ending successfully qede load\n");
3503 
3504 	return 0;
3505 
3506 err4:
3507 	qede_sync_free_irqs(edev);
3508 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3509 err3:
3510 	qede_napi_disable_remove(edev);
3511 err2:
3512 	qede_free_mem_load(edev);
3513 err1:
3514 	edev->ops->common->set_fp_int(edev->cdev, 0);
3515 	qede_free_fp_array(edev);
3516 	edev->num_rss = 0;
3517 err0:
3518 	return rc;
3519 }
3520 
3521 void qede_reload(struct qede_dev *edev,
3522 		 void (*func)(struct qede_dev *, union qede_reload_args *),
3523 		 union qede_reload_args *args)
3524 {
3525 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3526 	/* Call function handler to update parameters
3527 	 * needed for function load.
3528 	 */
3529 	if (func)
3530 		func(edev, args);
3531 
3532 	qede_load(edev, QEDE_LOAD_NORMAL);
3533 
3534 	mutex_lock(&edev->qede_lock);
3535 	qede_config_rx_mode(edev->ndev);
3536 	mutex_unlock(&edev->qede_lock);
3537 }
3538 
3539 /* called with rtnl_lock */
3540 static int qede_open(struct net_device *ndev)
3541 {
3542 	struct qede_dev *edev = netdev_priv(ndev);
3543 	int rc;
3544 
3545 	netif_carrier_off(ndev);
3546 
3547 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3548 
3549 	rc = qede_load(edev, QEDE_LOAD_NORMAL);
3550 
3551 	if (rc)
3552 		return rc;
3553 
3554 #ifdef CONFIG_QEDE_VXLAN
3555 	vxlan_get_rx_port(ndev);
3556 #endif
3557 #ifdef CONFIG_QEDE_GENEVE
3558 	geneve_get_rx_port(ndev);
3559 #endif
3560 	return 0;
3561 }
3562 
3563 static int qede_close(struct net_device *ndev)
3564 {
3565 	struct qede_dev *edev = netdev_priv(ndev);
3566 
3567 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3568 
3569 	return 0;
3570 }
3571 
3572 static void qede_link_update(void *dev, struct qed_link_output *link)
3573 {
3574 	struct qede_dev *edev = dev;
3575 
3576 	if (!netif_running(edev->ndev)) {
3577 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3578 		return;
3579 	}
3580 
3581 	if (link->link_up) {
3582 		if (!netif_carrier_ok(edev->ndev)) {
3583 			DP_NOTICE(edev, "Link is up\n");
3584 			netif_tx_start_all_queues(edev->ndev);
3585 			netif_carrier_on(edev->ndev);
3586 		}
3587 	} else {
3588 		if (netif_carrier_ok(edev->ndev)) {
3589 			DP_NOTICE(edev, "Link is down\n");
3590 			netif_tx_disable(edev->ndev);
3591 			netif_carrier_off(edev->ndev);
3592 		}
3593 	}
3594 }
3595 
3596 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3597 {
3598 	struct qede_dev *edev = netdev_priv(ndev);
3599 	struct sockaddr *addr = p;
3600 	int rc;
3601 
3602 	ASSERT_RTNL(); /* @@@TBD To be removed */
3603 
3604 	DP_INFO(edev, "Set_mac_addr called\n");
3605 
3606 	if (!is_valid_ether_addr(addr->sa_data)) {
3607 		DP_NOTICE(edev, "The MAC address is not valid\n");
3608 		return -EFAULT;
3609 	}
3610 
3611 	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3612 		DP_NOTICE(edev, "qed prevents setting MAC\n");
3613 		return -EINVAL;
3614 	}
3615 
3616 	ether_addr_copy(ndev->dev_addr, addr->sa_data);
3617 
3618 	if (!netif_running(ndev))  {
3619 		DP_NOTICE(edev, "The device is currently down\n");
3620 		return 0;
3621 	}
3622 
3623 	/* Remove the previous primary mac */
3624 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3625 				   edev->primary_mac);
3626 	if (rc)
3627 		return rc;
3628 
3629 	/* Add MAC filter according to the new unicast HW MAC address */
3630 	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3631 	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3632 				      edev->primary_mac);
3633 }
3634 
3635 static int
3636 qede_configure_mcast_filtering(struct net_device *ndev,
3637 			       enum qed_filter_rx_mode_type *accept_flags)
3638 {
3639 	struct qede_dev *edev = netdev_priv(ndev);
3640 	unsigned char *mc_macs, *temp;
3641 	struct netdev_hw_addr *ha;
3642 	int rc = 0, mc_count;
3643 	size_t size;
3644 
3645 	size = 64 * ETH_ALEN;
3646 
3647 	mc_macs = kzalloc(size, GFP_KERNEL);
3648 	if (!mc_macs) {
3649 		DP_NOTICE(edev,
3650 			  "Failed to allocate memory for multicast MACs\n");
3651 		rc = -ENOMEM;
3652 		goto exit;
3653 	}
3654 
3655 	temp = mc_macs;
3656 
3657 	/* Remove all previously configured MAC filters */
3658 	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3659 				   mc_macs, 1);
3660 	if (rc)
3661 		goto exit;
3662 
3663 	netif_addr_lock_bh(ndev);
3664 
3665 	mc_count = netdev_mc_count(ndev);
3666 	if (mc_count < 64) {
3667 		netdev_for_each_mc_addr(ha, ndev) {
3668 			ether_addr_copy(temp, ha->addr);
3669 			temp += ETH_ALEN;
3670 		}
3671 	}
3672 
3673 	netif_addr_unlock_bh(ndev);
3674 
3675 	/* Check for all multicast @@@TBD resource allocation */
3676 	if ((ndev->flags & IFF_ALLMULTI) ||
3677 	    (mc_count > 64)) {
3678 		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3679 			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3680 	} else {
3681 		/* Add all multicast MAC filters */
3682 		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3683 					   mc_macs, mc_count);
3684 	}
3685 
3686 exit:
3687 	kfree(mc_macs);
3688 	return rc;
3689 }
3690 
3691 static void qede_set_rx_mode(struct net_device *ndev)
3692 {
3693 	struct qede_dev *edev = netdev_priv(ndev);
3694 
3695 	DP_INFO(edev, "qede_set_rx_mode called\n");
3696 
3697 	if (edev->state != QEDE_STATE_OPEN) {
3698 		DP_INFO(edev,
3699 			"qede_set_rx_mode called while interface is down\n");
3700 	} else {
3701 		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3702 		schedule_delayed_work(&edev->sp_task, 0);
3703 	}
3704 }
3705 
3706 /* Must be called with qede_lock held */
3707 static void qede_config_rx_mode(struct net_device *ndev)
3708 {
3709 	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3710 	struct qede_dev *edev = netdev_priv(ndev);
3711 	struct qed_filter_params rx_mode;
3712 	unsigned char *uc_macs, *temp;
3713 	struct netdev_hw_addr *ha;
3714 	int rc, uc_count;
3715 	size_t size;
3716 
3717 	netif_addr_lock_bh(ndev);
3718 
3719 	uc_count = netdev_uc_count(ndev);
3720 	size = uc_count * ETH_ALEN;
3721 
3722 	uc_macs = kzalloc(size, GFP_ATOMIC);
3723 	if (!uc_macs) {
3724 		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3725 		netif_addr_unlock_bh(ndev);
3726 		return;
3727 	}
3728 
3729 	temp = uc_macs;
3730 	netdev_for_each_uc_addr(ha, ndev) {
3731 		ether_addr_copy(temp, ha->addr);
3732 		temp += ETH_ALEN;
3733 	}
3734 
3735 	netif_addr_unlock_bh(ndev);
3736 
3737 	/* Configure the struct for the Rx mode */
3738 	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3739 	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3740 
3741 	/* Remove all previous unicast secondary macs and multicast macs
3742 	 * (configrue / leave the primary mac)
3743 	 */
3744 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3745 				   edev->primary_mac);
3746 	if (rc)
3747 		goto out;
3748 
3749 	/* Check for promiscuous */
3750 	if ((ndev->flags & IFF_PROMISC) ||
3751 	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3752 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3753 	} else {
3754 		/* Add MAC filters according to the unicast secondary macs */
3755 		int i;
3756 
3757 		temp = uc_macs;
3758 		for (i = 0; i < uc_count; i++) {
3759 			rc = qede_set_ucast_rx_mac(edev,
3760 						   QED_FILTER_XCAST_TYPE_ADD,
3761 						   temp);
3762 			if (rc)
3763 				goto out;
3764 
3765 			temp += ETH_ALEN;
3766 		}
3767 
3768 		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3769 		if (rc)
3770 			goto out;
3771 	}
3772 
3773 	/* take care of VLAN mode */
3774 	if (ndev->flags & IFF_PROMISC) {
3775 		qede_config_accept_any_vlan(edev, true);
3776 	} else if (!edev->non_configured_vlans) {
3777 		/* It's possible that accept_any_vlan mode is set due to a
3778 		 * previous setting of IFF_PROMISC. If vlan credits are
3779 		 * sufficient, disable accept_any_vlan.
3780 		 */
3781 		qede_config_accept_any_vlan(edev, false);
3782 	}
3783 
3784 	rx_mode.filter.accept_flags = accept_flags;
3785 	edev->ops->filter_config(edev->cdev, &rx_mode);
3786 out:
3787 	kfree(uc_macs);
3788 }
3789