xref: /openbmc/linux/drivers/net/ethernet/qlogic/qede/qede_main.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41 
42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
43 MODULE_LICENSE("GPL");
44 
45 static uint debug;
46 module_param(debug, uint, 0);
47 MODULE_PARM_DESC(debug, " Default debug msglevel");
48 
49 static const struct qed_eth_ops *qed_ops;
50 
51 #define CHIP_NUM_57980S_40		0x1634
52 #define CHIP_NUM_57980S_10		0x1666
53 #define CHIP_NUM_57980S_MF		0x1636
54 #define CHIP_NUM_57980S_100		0x1644
55 #define CHIP_NUM_57980S_50		0x1654
56 #define CHIP_NUM_57980S_25		0x1656
57 #define CHIP_NUM_57980S_IOV		0x1664
58 #define CHIP_NUM_AH			0x8070
59 #define CHIP_NUM_AH_IOV			0x8090
60 
61 #ifndef PCI_DEVICE_ID_NX2_57980E
62 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
63 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
64 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
65 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
66 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
67 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
68 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
69 #define PCI_DEVICE_ID_AH		CHIP_NUM_AH
70 #define PCI_DEVICE_ID_AH_IOV		CHIP_NUM_AH_IOV
71 
72 #endif
73 
74 enum qede_pci_private {
75 	QEDE_PRIVATE_PF,
76 	QEDE_PRIVATE_VF
77 };
78 
79 static const struct pci_device_id qede_pci_tbl[] = {
80 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
81 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
82 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
83 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
86 #ifdef CONFIG_QED_SRIOV
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
88 #endif
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
92 #endif
93 	{ 0 }
94 };
95 
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97 
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99 static pci_ers_result_t
100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101 
102 #define TX_TIMEOUT		(5 * HZ)
103 
104 /* Utilize last protocol index for XDP */
105 #define XDP_PI	11
106 
107 static void qede_remove(struct pci_dev *pdev);
108 static void qede_shutdown(struct pci_dev *pdev);
109 static void qede_link_update(void *dev, struct qed_link_output *link);
110 static void qede_schedule_recovery_handler(void *dev);
111 static void qede_recovery_handler(struct qede_dev *edev);
112 static void qede_schedule_hw_err_handler(void *dev,
113 					 enum qed_hw_err_type err_type);
114 static void qede_get_eth_tlv_data(void *edev, void *data);
115 static void qede_get_generic_tlv_data(void *edev,
116 				      struct qed_generic_tlvs *data);
117 static void qede_generic_hw_err_handler(struct qede_dev *edev);
118 #ifdef CONFIG_QED_SRIOV
119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
120 			    __be16 vlan_proto)
121 {
122 	struct qede_dev *edev = netdev_priv(ndev);
123 
124 	if (vlan > 4095) {
125 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
126 		return -EINVAL;
127 	}
128 
129 	if (vlan_proto != htons(ETH_P_8021Q))
130 		return -EPROTONOSUPPORT;
131 
132 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
133 		   vlan, vf);
134 
135 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
136 }
137 
138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 {
140 	struct qede_dev *edev = netdev_priv(ndev);
141 
142 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143 
144 	if (!is_valid_ether_addr(mac)) {
145 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
146 		return -EINVAL;
147 	}
148 
149 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
150 }
151 
152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 {
154 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
155 	struct qed_dev_info *qed_info = &edev->dev_info.common;
156 	struct qed_update_vport_params *vport_params;
157 	int rc;
158 
159 	vport_params = vzalloc(sizeof(*vport_params));
160 	if (!vport_params)
161 		return -ENOMEM;
162 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163 
164 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165 
166 	/* Enable/Disable Tx switching for PF */
167 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
168 	    !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
169 		vport_params->vport_id = 0;
170 		vport_params->update_tx_switching_flg = 1;
171 		vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
172 		edev->ops->vport_update(edev->cdev, vport_params);
173 	}
174 
175 	vfree(vport_params);
176 	return rc;
177 }
178 #endif
179 
180 static const struct pci_error_handlers qede_err_handler = {
181 	.error_detected = qede_io_error_detected,
182 };
183 
184 static struct pci_driver qede_pci_driver = {
185 	.name = "qede",
186 	.id_table = qede_pci_tbl,
187 	.probe = qede_probe,
188 	.remove = qede_remove,
189 	.shutdown = qede_shutdown,
190 #ifdef CONFIG_QED_SRIOV
191 	.sriov_configure = qede_sriov_configure,
192 #endif
193 	.err_handler = &qede_err_handler,
194 };
195 
196 static struct qed_eth_cb_ops qede_ll_ops = {
197 	{
198 #ifdef CONFIG_RFS_ACCEL
199 		.arfs_filter_op = qede_arfs_filter_op,
200 #endif
201 		.link_update = qede_link_update,
202 		.schedule_recovery_handler = qede_schedule_recovery_handler,
203 		.schedule_hw_err_handler = qede_schedule_hw_err_handler,
204 		.get_generic_tlv_data = qede_get_generic_tlv_data,
205 		.get_protocol_tlv_data = qede_get_eth_tlv_data,
206 	},
207 	.force_mac = qede_force_mac,
208 	.ports_update = qede_udp_ports_update,
209 };
210 
211 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
212 			     void *ptr)
213 {
214 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
215 	struct ethtool_drvinfo drvinfo;
216 	struct qede_dev *edev;
217 
218 	if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
219 		goto done;
220 
221 	/* Check whether this is a qede device */
222 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
223 		goto done;
224 
225 	memset(&drvinfo, 0, sizeof(drvinfo));
226 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
227 	if (strcmp(drvinfo.driver, "qede"))
228 		goto done;
229 	edev = netdev_priv(ndev);
230 
231 	switch (event) {
232 	case NETDEV_CHANGENAME:
233 		/* Notify qed of the name change */
234 		if (!edev->ops || !edev->ops->common)
235 			goto done;
236 		edev->ops->common->set_name(edev->cdev, edev->ndev->name);
237 		break;
238 	case NETDEV_CHANGEADDR:
239 		edev = netdev_priv(ndev);
240 		qede_rdma_event_changeaddr(edev);
241 		break;
242 	}
243 
244 done:
245 	return NOTIFY_DONE;
246 }
247 
248 static struct notifier_block qede_netdev_notifier = {
249 	.notifier_call = qede_netdev_event,
250 };
251 
252 static
253 int __init qede_init(void)
254 {
255 	int ret;
256 
257 	pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
258 
259 	qede_forced_speed_maps_init();
260 
261 	qed_ops = qed_get_eth_ops();
262 	if (!qed_ops) {
263 		pr_notice("Failed to get qed ethtool operations\n");
264 		return -EINVAL;
265 	}
266 
267 	/* Must register notifier before pci ops, since we might miss
268 	 * interface rename after pci probe and netdev registration.
269 	 */
270 	ret = register_netdevice_notifier(&qede_netdev_notifier);
271 	if (ret) {
272 		pr_notice("Failed to register netdevice_notifier\n");
273 		qed_put_eth_ops();
274 		return -EINVAL;
275 	}
276 
277 	ret = pci_register_driver(&qede_pci_driver);
278 	if (ret) {
279 		pr_notice("Failed to register driver\n");
280 		unregister_netdevice_notifier(&qede_netdev_notifier);
281 		qed_put_eth_ops();
282 		return -EINVAL;
283 	}
284 
285 	return 0;
286 }
287 
288 static void __exit qede_cleanup(void)
289 {
290 	if (debug & QED_LOG_INFO_MASK)
291 		pr_info("qede_cleanup called\n");
292 
293 	unregister_netdevice_notifier(&qede_netdev_notifier);
294 	pci_unregister_driver(&qede_pci_driver);
295 	qed_put_eth_ops();
296 }
297 
298 module_init(qede_init);
299 module_exit(qede_cleanup);
300 
301 static int qede_open(struct net_device *ndev);
302 static int qede_close(struct net_device *ndev);
303 
304 void qede_fill_by_demand_stats(struct qede_dev *edev)
305 {
306 	struct qede_stats_common *p_common = &edev->stats.common;
307 	struct qed_eth_stats stats;
308 
309 	edev->ops->get_vport_stats(edev->cdev, &stats);
310 
311 	p_common->no_buff_discards = stats.common.no_buff_discards;
312 	p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
313 	p_common->ttl0_discard = stats.common.ttl0_discard;
314 	p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
315 	p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
316 	p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
317 	p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
318 	p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
319 	p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
320 	p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
321 	p_common->mac_filter_discards = stats.common.mac_filter_discards;
322 	p_common->gft_filter_drop = stats.common.gft_filter_drop;
323 
324 	p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
325 	p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
326 	p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
327 	p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
328 	p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
329 	p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
330 	p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
331 	p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
332 	p_common->coalesced_events = stats.common.tpa_coalesced_events;
333 	p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
334 	p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
335 	p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
336 
337 	p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
338 	p_common->rx_65_to_127_byte_packets =
339 	    stats.common.rx_65_to_127_byte_packets;
340 	p_common->rx_128_to_255_byte_packets =
341 	    stats.common.rx_128_to_255_byte_packets;
342 	p_common->rx_256_to_511_byte_packets =
343 	    stats.common.rx_256_to_511_byte_packets;
344 	p_common->rx_512_to_1023_byte_packets =
345 	    stats.common.rx_512_to_1023_byte_packets;
346 	p_common->rx_1024_to_1518_byte_packets =
347 	    stats.common.rx_1024_to_1518_byte_packets;
348 	p_common->rx_crc_errors = stats.common.rx_crc_errors;
349 	p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
350 	p_common->rx_pause_frames = stats.common.rx_pause_frames;
351 	p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
352 	p_common->rx_align_errors = stats.common.rx_align_errors;
353 	p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
354 	p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
355 	p_common->rx_jabbers = stats.common.rx_jabbers;
356 	p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
357 	p_common->rx_fragments = stats.common.rx_fragments;
358 	p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
359 	p_common->tx_65_to_127_byte_packets =
360 	    stats.common.tx_65_to_127_byte_packets;
361 	p_common->tx_128_to_255_byte_packets =
362 	    stats.common.tx_128_to_255_byte_packets;
363 	p_common->tx_256_to_511_byte_packets =
364 	    stats.common.tx_256_to_511_byte_packets;
365 	p_common->tx_512_to_1023_byte_packets =
366 	    stats.common.tx_512_to_1023_byte_packets;
367 	p_common->tx_1024_to_1518_byte_packets =
368 	    stats.common.tx_1024_to_1518_byte_packets;
369 	p_common->tx_pause_frames = stats.common.tx_pause_frames;
370 	p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
371 	p_common->brb_truncates = stats.common.brb_truncates;
372 	p_common->brb_discards = stats.common.brb_discards;
373 	p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
374 	p_common->link_change_count = stats.common.link_change_count;
375 	p_common->ptp_skip_txts = edev->ptp_skip_txts;
376 
377 	if (QEDE_IS_BB(edev)) {
378 		struct qede_stats_bb *p_bb = &edev->stats.bb;
379 
380 		p_bb->rx_1519_to_1522_byte_packets =
381 		    stats.bb.rx_1519_to_1522_byte_packets;
382 		p_bb->rx_1519_to_2047_byte_packets =
383 		    stats.bb.rx_1519_to_2047_byte_packets;
384 		p_bb->rx_2048_to_4095_byte_packets =
385 		    stats.bb.rx_2048_to_4095_byte_packets;
386 		p_bb->rx_4096_to_9216_byte_packets =
387 		    stats.bb.rx_4096_to_9216_byte_packets;
388 		p_bb->rx_9217_to_16383_byte_packets =
389 		    stats.bb.rx_9217_to_16383_byte_packets;
390 		p_bb->tx_1519_to_2047_byte_packets =
391 		    stats.bb.tx_1519_to_2047_byte_packets;
392 		p_bb->tx_2048_to_4095_byte_packets =
393 		    stats.bb.tx_2048_to_4095_byte_packets;
394 		p_bb->tx_4096_to_9216_byte_packets =
395 		    stats.bb.tx_4096_to_9216_byte_packets;
396 		p_bb->tx_9217_to_16383_byte_packets =
397 		    stats.bb.tx_9217_to_16383_byte_packets;
398 		p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
399 		p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
400 	} else {
401 		struct qede_stats_ah *p_ah = &edev->stats.ah;
402 
403 		p_ah->rx_1519_to_max_byte_packets =
404 		    stats.ah.rx_1519_to_max_byte_packets;
405 		p_ah->tx_1519_to_max_byte_packets =
406 		    stats.ah.tx_1519_to_max_byte_packets;
407 	}
408 }
409 
410 static void qede_get_stats64(struct net_device *dev,
411 			     struct rtnl_link_stats64 *stats)
412 {
413 	struct qede_dev *edev = netdev_priv(dev);
414 	struct qede_stats_common *p_common;
415 
416 	qede_fill_by_demand_stats(edev);
417 	p_common = &edev->stats.common;
418 
419 	stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
420 			    p_common->rx_bcast_pkts;
421 	stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
422 			    p_common->tx_bcast_pkts;
423 
424 	stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
425 			  p_common->rx_bcast_bytes;
426 	stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
427 			  p_common->tx_bcast_bytes;
428 
429 	stats->tx_errors = p_common->tx_err_drop_pkts;
430 	stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
431 
432 	stats->rx_fifo_errors = p_common->no_buff_discards;
433 
434 	if (QEDE_IS_BB(edev))
435 		stats->collisions = edev->stats.bb.tx_total_collisions;
436 	stats->rx_crc_errors = p_common->rx_crc_errors;
437 	stats->rx_frame_errors = p_common->rx_align_errors;
438 }
439 
440 #ifdef CONFIG_QED_SRIOV
441 static int qede_get_vf_config(struct net_device *dev, int vfidx,
442 			      struct ifla_vf_info *ivi)
443 {
444 	struct qede_dev *edev = netdev_priv(dev);
445 
446 	if (!edev->ops)
447 		return -EINVAL;
448 
449 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
450 }
451 
452 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
453 			    int min_tx_rate, int max_tx_rate)
454 {
455 	struct qede_dev *edev = netdev_priv(dev);
456 
457 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
458 					max_tx_rate);
459 }
460 
461 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
462 {
463 	struct qede_dev *edev = netdev_priv(dev);
464 
465 	if (!edev->ops)
466 		return -EINVAL;
467 
468 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
469 }
470 
471 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
472 				  int link_state)
473 {
474 	struct qede_dev *edev = netdev_priv(dev);
475 
476 	if (!edev->ops)
477 		return -EINVAL;
478 
479 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
480 }
481 
482 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
483 {
484 	struct qede_dev *edev = netdev_priv(dev);
485 
486 	if (!edev->ops)
487 		return -EINVAL;
488 
489 	return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
490 }
491 #endif
492 
493 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
494 {
495 	struct qede_dev *edev = netdev_priv(dev);
496 
497 	if (!netif_running(dev))
498 		return -EAGAIN;
499 
500 	switch (cmd) {
501 	case SIOCSHWTSTAMP:
502 		return qede_ptp_hw_ts(edev, ifr);
503 	default:
504 		DP_VERBOSE(edev, QED_MSG_DEBUG,
505 			   "default IOCTL cmd 0x%x\n", cmd);
506 		return -EOPNOTSUPP;
507 	}
508 
509 	return 0;
510 }
511 
512 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
513 {
514 	char *p_sb = (char *)fp->sb_info->sb_virt;
515 	u32 sb_size, i;
516 
517 	sb_size = sizeof(struct status_block);
518 
519 	for (i = 0; i < sb_size; i += 8)
520 		DP_NOTICE(edev,
521 			  "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
522 			  p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
523 			  p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
524 }
525 
526 static void
527 qede_txq_fp_log_metadata(struct qede_dev *edev,
528 			 struct qede_fastpath *fp, struct qede_tx_queue *txq)
529 {
530 	struct qed_chain *p_chain = &txq->tx_pbl;
531 
532 	/* Dump txq/fp/sb ids etc. other metadata */
533 	DP_NOTICE(edev,
534 		  "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
535 		  fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
536 		  p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
537 
538 	/* Dump all the relevant prod/cons indexes */
539 	DP_NOTICE(edev,
540 		  "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
541 		  le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
542 		  qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
543 }
544 
545 static void
546 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
547 {
548 	struct qed_sb_info_dbg sb_dbg;
549 	int rc;
550 
551 	/* sb info */
552 	qede_fp_sb_dump(edev, fp);
553 
554 	memset(&sb_dbg, 0, sizeof(sb_dbg));
555 	rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
556 
557 	DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
558 		  sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
559 
560 	/* report to mfw */
561 	edev->ops->common->mfw_report(edev->cdev,
562 				      "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
563 				      txq->index, le16_to_cpu(*txq->hw_cons_ptr),
564 				      qed_chain_get_cons_idx(&txq->tx_pbl),
565 				      qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
566 	if (!rc)
567 		edev->ops->common->mfw_report(edev->cdev,
568 					      "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
569 					      txq->index, fp->sb_info->igu_sb_id,
570 					      sb_dbg.igu_prod, sb_dbg.igu_cons,
571 					      sb_dbg.pi[TX_PI(txq->cos)]);
572 }
573 
574 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
575 {
576 	struct qede_dev *edev = netdev_priv(dev);
577 	int i;
578 
579 	netif_carrier_off(dev);
580 	DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
581 
582 	for_each_queue(i) {
583 		struct qede_tx_queue *txq;
584 		struct qede_fastpath *fp;
585 		int cos;
586 
587 		fp = &edev->fp_array[i];
588 		if (!(fp->type & QEDE_FASTPATH_TX))
589 			continue;
590 
591 		for_each_cos_in_txq(edev, cos) {
592 			txq = &fp->txq[cos];
593 
594 			/* Dump basic metadata for all queues */
595 			qede_txq_fp_log_metadata(edev, fp, txq);
596 
597 			if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
598 			    qed_chain_get_prod_idx(&txq->tx_pbl))
599 				qede_tx_log_print(edev, fp, txq);
600 		}
601 	}
602 
603 	if (IS_VF(edev))
604 		return;
605 
606 	if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
607 	    edev->state == QEDE_STATE_RECOVERY) {
608 		DP_INFO(edev,
609 			"Avoid handling a Tx timeout while another HW error is being handled\n");
610 		return;
611 	}
612 
613 	set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
614 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
615 	schedule_delayed_work(&edev->sp_task, 0);
616 }
617 
618 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
619 {
620 	struct qede_dev *edev = netdev_priv(ndev);
621 	int cos, count, offset;
622 
623 	if (num_tc > edev->dev_info.num_tc)
624 		return -EINVAL;
625 
626 	netdev_reset_tc(ndev);
627 	netdev_set_num_tc(ndev, num_tc);
628 
629 	for_each_cos_in_txq(edev, cos) {
630 		count = QEDE_TSS_COUNT(edev);
631 		offset = cos * QEDE_TSS_COUNT(edev);
632 		netdev_set_tc_queue(ndev, cos, count, offset);
633 	}
634 
635 	return 0;
636 }
637 
638 static int
639 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
640 		__be16 proto)
641 {
642 	switch (f->command) {
643 	case FLOW_CLS_REPLACE:
644 		return qede_add_tc_flower_fltr(edev, proto, f);
645 	case FLOW_CLS_DESTROY:
646 		return qede_delete_flow_filter(edev, f->cookie);
647 	default:
648 		return -EOPNOTSUPP;
649 	}
650 }
651 
652 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
653 				  void *cb_priv)
654 {
655 	struct flow_cls_offload *f;
656 	struct qede_dev *edev = cb_priv;
657 
658 	if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
659 		return -EOPNOTSUPP;
660 
661 	switch (type) {
662 	case TC_SETUP_CLSFLOWER:
663 		f = type_data;
664 		return qede_set_flower(edev, f, f->common.protocol);
665 	default:
666 		return -EOPNOTSUPP;
667 	}
668 }
669 
670 static LIST_HEAD(qede_block_cb_list);
671 
672 static int
673 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
674 		      void *type_data)
675 {
676 	struct qede_dev *edev = netdev_priv(dev);
677 	struct tc_mqprio_qopt *mqprio;
678 
679 	switch (type) {
680 	case TC_SETUP_BLOCK:
681 		return flow_block_cb_setup_simple(type_data,
682 						  &qede_block_cb_list,
683 						  qede_setup_tc_block_cb,
684 						  edev, edev, true);
685 	case TC_SETUP_QDISC_MQPRIO:
686 		mqprio = type_data;
687 
688 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
689 		return qede_setup_tc(dev, mqprio->num_tc);
690 	default:
691 		return -EOPNOTSUPP;
692 	}
693 }
694 
695 static const struct net_device_ops qede_netdev_ops = {
696 	.ndo_open		= qede_open,
697 	.ndo_stop		= qede_close,
698 	.ndo_start_xmit		= qede_start_xmit,
699 	.ndo_select_queue	= qede_select_queue,
700 	.ndo_set_rx_mode	= qede_set_rx_mode,
701 	.ndo_set_mac_address	= qede_set_mac_addr,
702 	.ndo_validate_addr	= eth_validate_addr,
703 	.ndo_change_mtu		= qede_change_mtu,
704 	.ndo_eth_ioctl		= qede_ioctl,
705 	.ndo_tx_timeout		= qede_tx_timeout,
706 #ifdef CONFIG_QED_SRIOV
707 	.ndo_set_vf_mac		= qede_set_vf_mac,
708 	.ndo_set_vf_vlan	= qede_set_vf_vlan,
709 	.ndo_set_vf_trust	= qede_set_vf_trust,
710 #endif
711 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
712 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
713 	.ndo_fix_features	= qede_fix_features,
714 	.ndo_set_features	= qede_set_features,
715 	.ndo_get_stats64	= qede_get_stats64,
716 #ifdef CONFIG_QED_SRIOV
717 	.ndo_set_vf_link_state	= qede_set_vf_link_state,
718 	.ndo_set_vf_spoofchk	= qede_set_vf_spoofchk,
719 	.ndo_get_vf_config	= qede_get_vf_config,
720 	.ndo_set_vf_rate	= qede_set_vf_rate,
721 #endif
722 	.ndo_features_check	= qede_features_check,
723 	.ndo_bpf		= qede_xdp,
724 #ifdef CONFIG_RFS_ACCEL
725 	.ndo_rx_flow_steer	= qede_rx_flow_steer,
726 #endif
727 	.ndo_xdp_xmit		= qede_xdp_transmit,
728 	.ndo_setup_tc		= qede_setup_tc_offload,
729 };
730 
731 static const struct net_device_ops qede_netdev_vf_ops = {
732 	.ndo_open		= qede_open,
733 	.ndo_stop		= qede_close,
734 	.ndo_start_xmit		= qede_start_xmit,
735 	.ndo_select_queue	= qede_select_queue,
736 	.ndo_set_rx_mode	= qede_set_rx_mode,
737 	.ndo_set_mac_address	= qede_set_mac_addr,
738 	.ndo_validate_addr	= eth_validate_addr,
739 	.ndo_change_mtu		= qede_change_mtu,
740 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
741 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
742 	.ndo_fix_features	= qede_fix_features,
743 	.ndo_set_features	= qede_set_features,
744 	.ndo_get_stats64	= qede_get_stats64,
745 	.ndo_features_check	= qede_features_check,
746 };
747 
748 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
749 	.ndo_open		= qede_open,
750 	.ndo_stop		= qede_close,
751 	.ndo_start_xmit		= qede_start_xmit,
752 	.ndo_select_queue	= qede_select_queue,
753 	.ndo_set_rx_mode	= qede_set_rx_mode,
754 	.ndo_set_mac_address	= qede_set_mac_addr,
755 	.ndo_validate_addr	= eth_validate_addr,
756 	.ndo_change_mtu		= qede_change_mtu,
757 	.ndo_vlan_rx_add_vid	= qede_vlan_rx_add_vid,
758 	.ndo_vlan_rx_kill_vid	= qede_vlan_rx_kill_vid,
759 	.ndo_fix_features	= qede_fix_features,
760 	.ndo_set_features	= qede_set_features,
761 	.ndo_get_stats64	= qede_get_stats64,
762 	.ndo_features_check	= qede_features_check,
763 	.ndo_bpf		= qede_xdp,
764 	.ndo_xdp_xmit		= qede_xdp_transmit,
765 };
766 
767 /* -------------------------------------------------------------------------
768  * START OF PROBE / REMOVE
769  * -------------------------------------------------------------------------
770  */
771 
772 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
773 					    struct pci_dev *pdev,
774 					    struct qed_dev_eth_info *info,
775 					    u32 dp_module, u8 dp_level)
776 {
777 	struct net_device *ndev;
778 	struct qede_dev *edev;
779 
780 	ndev = alloc_etherdev_mqs(sizeof(*edev),
781 				  info->num_queues * info->num_tc,
782 				  info->num_queues);
783 	if (!ndev) {
784 		pr_err("etherdev allocation failed\n");
785 		return NULL;
786 	}
787 
788 	edev = netdev_priv(ndev);
789 	edev->ndev = ndev;
790 	edev->cdev = cdev;
791 	edev->pdev = pdev;
792 	edev->dp_module = dp_module;
793 	edev->dp_level = dp_level;
794 	edev->ops = qed_ops;
795 
796 	if (is_kdump_kernel()) {
797 		edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
798 		edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
799 	} else {
800 		edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
801 		edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
802 	}
803 
804 	DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
805 		info->num_queues, info->num_queues);
806 
807 	SET_NETDEV_DEV(ndev, &pdev->dev);
808 
809 	memset(&edev->stats, 0, sizeof(edev->stats));
810 	memcpy(&edev->dev_info, info, sizeof(*info));
811 
812 	/* As ethtool doesn't have the ability to show WoL behavior as
813 	 * 'default', if device supports it declare it's enabled.
814 	 */
815 	if (edev->dev_info.common.wol_support)
816 		edev->wol_enabled = true;
817 
818 	INIT_LIST_HEAD(&edev->vlan_list);
819 
820 	return edev;
821 }
822 
823 static void qede_init_ndev(struct qede_dev *edev)
824 {
825 	struct net_device *ndev = edev->ndev;
826 	struct pci_dev *pdev = edev->pdev;
827 	bool udp_tunnel_enable = false;
828 	netdev_features_t hw_features;
829 
830 	pci_set_drvdata(pdev, ndev);
831 
832 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
833 	ndev->base_addr = ndev->mem_start;
834 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
835 	ndev->irq = edev->dev_info.common.pci_irq;
836 
837 	ndev->watchdog_timeo = TX_TIMEOUT;
838 
839 	if (IS_VF(edev)) {
840 		if (edev->dev_info.xdp_supported)
841 			ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
842 		else
843 			ndev->netdev_ops = &qede_netdev_vf_ops;
844 	} else {
845 		ndev->netdev_ops = &qede_netdev_ops;
846 	}
847 
848 	qede_set_ethtool_ops(ndev);
849 
850 	ndev->priv_flags |= IFF_UNICAST_FLT;
851 
852 	/* user-changeble features */
853 	hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
854 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
855 		      NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
856 
857 	if (edev->dev_info.common.b_arfs_capable)
858 		hw_features |= NETIF_F_NTUPLE;
859 
860 	if (edev->dev_info.common.vxlan_enable ||
861 	    edev->dev_info.common.geneve_enable)
862 		udp_tunnel_enable = true;
863 
864 	if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
865 		hw_features |= NETIF_F_TSO_ECN;
866 		ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
867 					NETIF_F_SG | NETIF_F_TSO |
868 					NETIF_F_TSO_ECN | NETIF_F_TSO6 |
869 					NETIF_F_RXCSUM;
870 	}
871 
872 	if (udp_tunnel_enable) {
873 		hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
874 				NETIF_F_GSO_UDP_TUNNEL_CSUM);
875 		ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
876 					  NETIF_F_GSO_UDP_TUNNEL_CSUM);
877 
878 		qede_set_udp_tunnels(edev);
879 	}
880 
881 	if (edev->dev_info.common.gre_enable) {
882 		hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
883 		ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
884 					  NETIF_F_GSO_GRE_CSUM);
885 	}
886 
887 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
888 			      NETIF_F_HIGHDMA;
889 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
890 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
891 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
892 
893 	ndev->hw_features = hw_features;
894 
895 	/* MTU range: 46 - 9600 */
896 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
897 	ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
898 
899 	/* Set network device HW mac */
900 	eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
901 
902 	ndev->mtu = edev->dev_info.common.mtu;
903 }
904 
905 /* This function converts from 32b param to two params of level and module
906  * Input 32b decoding:
907  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
908  * 'happy' flow, e.g. memory allocation failed.
909  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
910  * and provide important parameters.
911  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
912  * module. VERBOSE prints are for tracking the specific flow in low level.
913  *
914  * Notice that the level should be that of the lowest required logs.
915  */
916 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
917 {
918 	*p_dp_level = QED_LEVEL_NOTICE;
919 	*p_dp_module = 0;
920 
921 	if (debug & QED_LOG_VERBOSE_MASK) {
922 		*p_dp_level = QED_LEVEL_VERBOSE;
923 		*p_dp_module = (debug & 0x3FFFFFFF);
924 	} else if (debug & QED_LOG_INFO_MASK) {
925 		*p_dp_level = QED_LEVEL_INFO;
926 	} else if (debug & QED_LOG_NOTICE_MASK) {
927 		*p_dp_level = QED_LEVEL_NOTICE;
928 	}
929 }
930 
931 static void qede_free_fp_array(struct qede_dev *edev)
932 {
933 	if (edev->fp_array) {
934 		struct qede_fastpath *fp;
935 		int i;
936 
937 		for_each_queue(i) {
938 			fp = &edev->fp_array[i];
939 
940 			kfree(fp->sb_info);
941 			/* Handle mem alloc failure case where qede_init_fp
942 			 * didn't register xdp_rxq_info yet.
943 			 * Implicit only (fp->type & QEDE_FASTPATH_RX)
944 			 */
945 			if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
946 				xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
947 			kfree(fp->rxq);
948 			kfree(fp->xdp_tx);
949 			kfree(fp->txq);
950 		}
951 		kfree(edev->fp_array);
952 	}
953 
954 	edev->num_queues = 0;
955 	edev->fp_num_tx = 0;
956 	edev->fp_num_rx = 0;
957 }
958 
959 static int qede_alloc_fp_array(struct qede_dev *edev)
960 {
961 	u8 fp_combined, fp_rx = edev->fp_num_rx;
962 	struct qede_fastpath *fp;
963 	void *mem;
964 	int i;
965 
966 	edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
967 				 sizeof(*edev->fp_array), GFP_KERNEL);
968 	if (!edev->fp_array) {
969 		DP_NOTICE(edev, "fp array allocation failed\n");
970 		goto err;
971 	}
972 
973 	mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
974 		       sizeof(*edev->coal_entry), GFP_KERNEL);
975 	if (!mem) {
976 		DP_ERR(edev, "coalesce entry allocation failed\n");
977 		kfree(edev->coal_entry);
978 		goto err;
979 	}
980 	edev->coal_entry = mem;
981 
982 	fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
983 
984 	/* Allocate the FP elements for Rx queues followed by combined and then
985 	 * the Tx. This ordering should be maintained so that the respective
986 	 * queues (Rx or Tx) will be together in the fastpath array and the
987 	 * associated ids will be sequential.
988 	 */
989 	for_each_queue(i) {
990 		fp = &edev->fp_array[i];
991 
992 		fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
993 		if (!fp->sb_info) {
994 			DP_NOTICE(edev, "sb info struct allocation failed\n");
995 			goto err;
996 		}
997 
998 		if (fp_rx) {
999 			fp->type = QEDE_FASTPATH_RX;
1000 			fp_rx--;
1001 		} else if (fp_combined) {
1002 			fp->type = QEDE_FASTPATH_COMBINED;
1003 			fp_combined--;
1004 		} else {
1005 			fp->type = QEDE_FASTPATH_TX;
1006 		}
1007 
1008 		if (fp->type & QEDE_FASTPATH_TX) {
1009 			fp->txq = kcalloc(edev->dev_info.num_tc,
1010 					  sizeof(*fp->txq), GFP_KERNEL);
1011 			if (!fp->txq)
1012 				goto err;
1013 		}
1014 
1015 		if (fp->type & QEDE_FASTPATH_RX) {
1016 			fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1017 			if (!fp->rxq)
1018 				goto err;
1019 
1020 			if (edev->xdp_prog) {
1021 				fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1022 						     GFP_KERNEL);
1023 				if (!fp->xdp_tx)
1024 					goto err;
1025 				fp->type |= QEDE_FASTPATH_XDP;
1026 			}
1027 		}
1028 	}
1029 
1030 	return 0;
1031 err:
1032 	qede_free_fp_array(edev);
1033 	return -ENOMEM;
1034 }
1035 
1036 /* The qede lock is used to protect driver state change and driver flows that
1037  * are not reentrant.
1038  */
1039 void __qede_lock(struct qede_dev *edev)
1040 {
1041 	mutex_lock(&edev->qede_lock);
1042 }
1043 
1044 void __qede_unlock(struct qede_dev *edev)
1045 {
1046 	mutex_unlock(&edev->qede_lock);
1047 }
1048 
1049 /* This version of the lock should be used when acquiring the RTNL lock is also
1050  * needed in addition to the internal qede lock.
1051  */
1052 static void qede_lock(struct qede_dev *edev)
1053 {
1054 	rtnl_lock();
1055 	__qede_lock(edev);
1056 }
1057 
1058 static void qede_unlock(struct qede_dev *edev)
1059 {
1060 	__qede_unlock(edev);
1061 	rtnl_unlock();
1062 }
1063 
1064 static void qede_sp_task(struct work_struct *work)
1065 {
1066 	struct qede_dev *edev = container_of(work, struct qede_dev,
1067 					     sp_task.work);
1068 
1069 	/* Disable execution of this deferred work once
1070 	 * qede removal is in progress, this stop any future
1071 	 * scheduling of sp_task.
1072 	 */
1073 	if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1074 		return;
1075 
1076 	/* The locking scheme depends on the specific flag:
1077 	 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1078 	 * ensure that ongoing flows are ended and new ones are not started.
1079 	 * In other cases - only the internal qede lock should be acquired.
1080 	 */
1081 
1082 	if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1083 #ifdef CONFIG_QED_SRIOV
1084 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1085 		 * The recovery of the active VFs is currently not supported.
1086 		 */
1087 		if (pci_num_vf(edev->pdev))
1088 			qede_sriov_configure(edev->pdev, 0);
1089 #endif
1090 		qede_lock(edev);
1091 		qede_recovery_handler(edev);
1092 		qede_unlock(edev);
1093 	}
1094 
1095 	__qede_lock(edev);
1096 
1097 	if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1098 		if (edev->state == QEDE_STATE_OPEN)
1099 			qede_config_rx_mode(edev->ndev);
1100 
1101 #ifdef CONFIG_RFS_ACCEL
1102 	if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1103 		if (edev->state == QEDE_STATE_OPEN)
1104 			qede_process_arfs_filters(edev, false);
1105 	}
1106 #endif
1107 	if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1108 		qede_generic_hw_err_handler(edev);
1109 	__qede_unlock(edev);
1110 
1111 	if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1112 #ifdef CONFIG_QED_SRIOV
1113 		/* SRIOV must be disabled outside the lock to avoid a deadlock.
1114 		 * The recovery of the active VFs is currently not supported.
1115 		 */
1116 		if (pci_num_vf(edev->pdev))
1117 			qede_sriov_configure(edev->pdev, 0);
1118 #endif
1119 		edev->ops->common->recovery_process(edev->cdev);
1120 	}
1121 }
1122 
1123 static void qede_update_pf_params(struct qed_dev *cdev)
1124 {
1125 	struct qed_pf_params pf_params;
1126 	u16 num_cons;
1127 
1128 	/* 64 rx + 64 tx + 64 XDP */
1129 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
1130 
1131 	/* 1 rx + 1 xdp + max tx cos */
1132 	num_cons = QED_MIN_L2_CONS;
1133 
1134 	pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1135 
1136 	/* Same for VFs - make sure they'll have sufficient connections
1137 	 * to support XDP Tx queues.
1138 	 */
1139 	pf_params.eth_pf_params.num_vf_cons = 48;
1140 
1141 	pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1142 	qed_ops->common->update_pf_params(cdev, &pf_params);
1143 }
1144 
1145 #define QEDE_FW_VER_STR_SIZE	80
1146 
1147 static void qede_log_probe(struct qede_dev *edev)
1148 {
1149 	struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1150 	u8 buf[QEDE_FW_VER_STR_SIZE];
1151 	size_t left_size;
1152 
1153 	snprintf(buf, QEDE_FW_VER_STR_SIZE,
1154 		 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1155 		 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1156 		 p_dev_info->fw_eng,
1157 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1158 		 QED_MFW_VERSION_3_OFFSET,
1159 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1160 		 QED_MFW_VERSION_2_OFFSET,
1161 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1162 		 QED_MFW_VERSION_1_OFFSET,
1163 		 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1164 		 QED_MFW_VERSION_0_OFFSET);
1165 
1166 	left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1167 	if (p_dev_info->mbi_version && left_size)
1168 		snprintf(buf + strlen(buf), left_size,
1169 			 " [MBI %d.%d.%d]",
1170 			 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1171 			 QED_MBI_VERSION_2_OFFSET,
1172 			 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1173 			 QED_MBI_VERSION_1_OFFSET,
1174 			 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1175 			 QED_MBI_VERSION_0_OFFSET);
1176 
1177 	pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1178 		PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1179 		buf, edev->ndev->name);
1180 }
1181 
1182 enum qede_probe_mode {
1183 	QEDE_PROBE_NORMAL,
1184 	QEDE_PROBE_RECOVERY,
1185 };
1186 
1187 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1188 			bool is_vf, enum qede_probe_mode mode)
1189 {
1190 	struct qed_probe_params probe_params;
1191 	struct qed_slowpath_params sp_params;
1192 	struct qed_dev_eth_info dev_info;
1193 	struct qede_dev *edev;
1194 	struct qed_dev *cdev;
1195 	int rc;
1196 
1197 	if (unlikely(dp_level & QED_LEVEL_INFO))
1198 		pr_notice("Starting qede probe\n");
1199 
1200 	memset(&probe_params, 0, sizeof(probe_params));
1201 	probe_params.protocol = QED_PROTOCOL_ETH;
1202 	probe_params.dp_module = dp_module;
1203 	probe_params.dp_level = dp_level;
1204 	probe_params.is_vf = is_vf;
1205 	probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1206 	cdev = qed_ops->common->probe(pdev, &probe_params);
1207 	if (!cdev) {
1208 		rc = -ENODEV;
1209 		goto err0;
1210 	}
1211 
1212 	qede_update_pf_params(cdev);
1213 
1214 	/* Start the Slowpath-process */
1215 	memset(&sp_params, 0, sizeof(sp_params));
1216 	sp_params.int_mode = QED_INT_MODE_MSIX;
1217 	strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1218 	rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1219 	if (rc) {
1220 		pr_notice("Cannot start slowpath\n");
1221 		goto err1;
1222 	}
1223 
1224 	/* Learn information crucial for qede to progress */
1225 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
1226 	if (rc)
1227 		goto err2;
1228 
1229 	if (mode != QEDE_PROBE_RECOVERY) {
1230 		edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1231 					   dp_level);
1232 		if (!edev) {
1233 			rc = -ENOMEM;
1234 			goto err2;
1235 		}
1236 
1237 		edev->devlink = qed_ops->common->devlink_register(cdev);
1238 		if (IS_ERR(edev->devlink)) {
1239 			DP_NOTICE(edev, "Cannot register devlink\n");
1240 			rc = PTR_ERR(edev->devlink);
1241 			edev->devlink = NULL;
1242 			goto err3;
1243 		}
1244 	} else {
1245 		struct net_device *ndev = pci_get_drvdata(pdev);
1246 		struct qed_devlink *qdl;
1247 
1248 		edev = netdev_priv(ndev);
1249 		qdl = devlink_priv(edev->devlink);
1250 		qdl->cdev = cdev;
1251 		edev->cdev = cdev;
1252 		memset(&edev->stats, 0, sizeof(edev->stats));
1253 		memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1254 	}
1255 
1256 	if (is_vf)
1257 		set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1258 
1259 	qede_init_ndev(edev);
1260 
1261 	rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1262 	if (rc)
1263 		goto err3;
1264 
1265 	if (mode != QEDE_PROBE_RECOVERY) {
1266 		/* Prepare the lock prior to the registration of the netdev,
1267 		 * as once it's registered we might reach flows requiring it
1268 		 * [it's even possible to reach a flow needing it directly
1269 		 * from there, although it's unlikely].
1270 		 */
1271 		INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1272 		mutex_init(&edev->qede_lock);
1273 
1274 		rc = register_netdev(edev->ndev);
1275 		if (rc) {
1276 			DP_NOTICE(edev, "Cannot register net-device\n");
1277 			goto err4;
1278 		}
1279 	}
1280 
1281 	edev->ops->common->set_name(cdev, edev->ndev->name);
1282 
1283 	/* PTP not supported on VFs */
1284 	if (!is_vf)
1285 		qede_ptp_enable(edev);
1286 
1287 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1288 
1289 #ifdef CONFIG_DCB
1290 	if (!IS_VF(edev))
1291 		qede_set_dcbnl_ops(edev->ndev);
1292 #endif
1293 
1294 	edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1295 
1296 	qede_log_probe(edev);
1297 	return 0;
1298 
1299 err4:
1300 	qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1301 err3:
1302 	if (mode != QEDE_PROBE_RECOVERY)
1303 		free_netdev(edev->ndev);
1304 	else
1305 		edev->cdev = NULL;
1306 err2:
1307 	qed_ops->common->slowpath_stop(cdev);
1308 err1:
1309 	qed_ops->common->remove(cdev);
1310 err0:
1311 	return rc;
1312 }
1313 
1314 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1315 {
1316 	bool is_vf = false;
1317 	u32 dp_module = 0;
1318 	u8 dp_level = 0;
1319 
1320 	switch ((enum qede_pci_private)id->driver_data) {
1321 	case QEDE_PRIVATE_VF:
1322 		if (debug & QED_LOG_VERBOSE_MASK)
1323 			dev_err(&pdev->dev, "Probing a VF\n");
1324 		is_vf = true;
1325 		break;
1326 	default:
1327 		if (debug & QED_LOG_VERBOSE_MASK)
1328 			dev_err(&pdev->dev, "Probing a PF\n");
1329 	}
1330 
1331 	qede_config_debug(debug, &dp_module, &dp_level);
1332 
1333 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
1334 			    QEDE_PROBE_NORMAL);
1335 }
1336 
1337 enum qede_remove_mode {
1338 	QEDE_REMOVE_NORMAL,
1339 	QEDE_REMOVE_RECOVERY,
1340 };
1341 
1342 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1343 {
1344 	struct net_device *ndev = pci_get_drvdata(pdev);
1345 	struct qede_dev *edev;
1346 	struct qed_dev *cdev;
1347 
1348 	if (!ndev) {
1349 		dev_info(&pdev->dev, "Device has already been removed\n");
1350 		return;
1351 	}
1352 
1353 	edev = netdev_priv(ndev);
1354 	cdev = edev->cdev;
1355 
1356 	DP_INFO(edev, "Starting qede_remove\n");
1357 
1358 	qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1359 
1360 	if (mode != QEDE_REMOVE_RECOVERY) {
1361 		set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1362 		unregister_netdev(ndev);
1363 
1364 		cancel_delayed_work_sync(&edev->sp_task);
1365 
1366 		edev->ops->common->set_power_state(cdev, PCI_D0);
1367 
1368 		pci_set_drvdata(pdev, NULL);
1369 	}
1370 
1371 	qede_ptp_disable(edev);
1372 
1373 	/* Use global ops since we've freed edev */
1374 	qed_ops->common->slowpath_stop(cdev);
1375 	if (system_state == SYSTEM_POWER_OFF)
1376 		return;
1377 
1378 	if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1379 		qed_ops->common->devlink_unregister(edev->devlink);
1380 		edev->devlink = NULL;
1381 	}
1382 	qed_ops->common->remove(cdev);
1383 	edev->cdev = NULL;
1384 
1385 	/* Since this can happen out-of-sync with other flows,
1386 	 * don't release the netdevice until after slowpath stop
1387 	 * has been called to guarantee various other contexts
1388 	 * [e.g., QED register callbacks] won't break anything when
1389 	 * accessing the netdevice.
1390 	 */
1391 	if (mode != QEDE_REMOVE_RECOVERY) {
1392 		kfree(edev->coal_entry);
1393 		free_netdev(ndev);
1394 	}
1395 
1396 	dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1397 }
1398 
1399 static void qede_remove(struct pci_dev *pdev)
1400 {
1401 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1402 }
1403 
1404 static void qede_shutdown(struct pci_dev *pdev)
1405 {
1406 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
1407 }
1408 
1409 /* -------------------------------------------------------------------------
1410  * START OF LOAD / UNLOAD
1411  * -------------------------------------------------------------------------
1412  */
1413 
1414 static int qede_set_num_queues(struct qede_dev *edev)
1415 {
1416 	int rc;
1417 	u16 rss_num;
1418 
1419 	/* Setup queues according to possible resources*/
1420 	if (edev->req_queues)
1421 		rss_num = edev->req_queues;
1422 	else
1423 		rss_num = netif_get_num_default_rss_queues() *
1424 			  edev->dev_info.common.num_hwfns;
1425 
1426 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1427 
1428 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1429 	if (rc > 0) {
1430 		/* Managed to request interrupts for our queues */
1431 		edev->num_queues = rc;
1432 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1433 			QEDE_QUEUE_CNT(edev), rss_num);
1434 		rc = 0;
1435 	}
1436 
1437 	edev->fp_num_tx = edev->req_num_tx;
1438 	edev->fp_num_rx = edev->req_num_rx;
1439 
1440 	return rc;
1441 }
1442 
1443 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1444 			     u16 sb_id)
1445 {
1446 	if (sb_info->sb_virt) {
1447 		edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1448 					      QED_SB_TYPE_L2_QUEUE);
1449 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1450 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
1451 		memset(sb_info, 0, sizeof(*sb_info));
1452 	}
1453 }
1454 
1455 /* This function allocates fast-path status block memory */
1456 static int qede_alloc_mem_sb(struct qede_dev *edev,
1457 			     struct qed_sb_info *sb_info, u16 sb_id)
1458 {
1459 	struct status_block *sb_virt;
1460 	dma_addr_t sb_phys;
1461 	int rc;
1462 
1463 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1464 				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1465 	if (!sb_virt) {
1466 		DP_ERR(edev, "Status block allocation failed\n");
1467 		return -ENOMEM;
1468 	}
1469 
1470 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1471 					sb_virt, sb_phys, sb_id,
1472 					QED_SB_TYPE_L2_QUEUE);
1473 	if (rc) {
1474 		DP_ERR(edev, "Status block initialization failed\n");
1475 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1476 				  sb_virt, sb_phys);
1477 		return rc;
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 static void qede_free_rx_buffers(struct qede_dev *edev,
1484 				 struct qede_rx_queue *rxq)
1485 {
1486 	u16 i;
1487 
1488 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1489 		struct sw_rx_data *rx_buf;
1490 		struct page *data;
1491 
1492 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1493 		data = rx_buf->data;
1494 
1495 		dma_unmap_page(&edev->pdev->dev,
1496 			       rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1497 
1498 		rx_buf->data = NULL;
1499 		__free_page(data);
1500 	}
1501 }
1502 
1503 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1504 {
1505 	/* Free rx buffers */
1506 	qede_free_rx_buffers(edev, rxq);
1507 
1508 	/* Free the parallel SW ring */
1509 	kfree(rxq->sw_rx_ring);
1510 
1511 	/* Free the real RQ ring used by FW */
1512 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1513 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1514 }
1515 
1516 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1517 {
1518 	int i;
1519 
1520 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1521 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1522 
1523 		tpa_info->state = QEDE_AGG_STATE_NONE;
1524 	}
1525 }
1526 
1527 /* This function allocates all memory needed per Rx queue */
1528 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1529 {
1530 	struct qed_chain_init_params params = {
1531 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1532 		.num_elems	= RX_RING_SIZE,
1533 	};
1534 	struct qed_dev *cdev = edev->cdev;
1535 	int i, rc, size;
1536 
1537 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
1538 
1539 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1540 
1541 	rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1542 	size = rxq->rx_headroom +
1543 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1544 
1545 	/* Make sure that the headroom and  payload fit in a single page */
1546 	if (rxq->rx_buf_size + size > PAGE_SIZE)
1547 		rxq->rx_buf_size = PAGE_SIZE - size;
1548 
1549 	/* Segment size to split a page in multiple equal parts,
1550 	 * unless XDP is used in which case we'd use the entire page.
1551 	 */
1552 	if (!edev->xdp_prog) {
1553 		size = size + rxq->rx_buf_size;
1554 		rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1555 	} else {
1556 		rxq->rx_buf_seg_size = PAGE_SIZE;
1557 		edev->ndev->features &= ~NETIF_F_GRO_HW;
1558 	}
1559 
1560 	/* Allocate the parallel driver ring for Rx buffers */
1561 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1562 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1563 	if (!rxq->sw_rx_ring) {
1564 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
1565 		rc = -ENOMEM;
1566 		goto err;
1567 	}
1568 
1569 	/* Allocate FW Rx ring  */
1570 	params.mode = QED_CHAIN_MODE_NEXT_PTR;
1571 	params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1572 	params.elem_size = sizeof(struct eth_rx_bd);
1573 
1574 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1575 	if (rc)
1576 		goto err;
1577 
1578 	/* Allocate FW completion ring */
1579 	params.mode = QED_CHAIN_MODE_PBL;
1580 	params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1581 	params.elem_size = sizeof(union eth_rx_cqe);
1582 
1583 	rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1584 	if (rc)
1585 		goto err;
1586 
1587 	/* Allocate buffers for the Rx ring */
1588 	rxq->filled_buffers = 0;
1589 	for (i = 0; i < rxq->num_rx_buffers; i++) {
1590 		rc = qede_alloc_rx_buffer(rxq, false);
1591 		if (rc) {
1592 			DP_ERR(edev,
1593 			       "Rx buffers allocation failed at index %d\n", i);
1594 			goto err;
1595 		}
1596 	}
1597 
1598 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1599 	if (!edev->gro_disable)
1600 		qede_set_tpa_param(rxq);
1601 err:
1602 	return rc;
1603 }
1604 
1605 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1606 {
1607 	/* Free the parallel SW ring */
1608 	if (txq->is_xdp)
1609 		kfree(txq->sw_tx_ring.xdp);
1610 	else
1611 		kfree(txq->sw_tx_ring.skbs);
1612 
1613 	/* Free the real RQ ring used by FW */
1614 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1615 }
1616 
1617 /* This function allocates all memory needed per Tx queue */
1618 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1619 {
1620 	struct qed_chain_init_params params = {
1621 		.mode		= QED_CHAIN_MODE_PBL,
1622 		.intended_use	= QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1623 		.cnt_type	= QED_CHAIN_CNT_TYPE_U16,
1624 		.num_elems	= edev->q_num_tx_buffers,
1625 		.elem_size	= sizeof(union eth_tx_bd_types),
1626 	};
1627 	int size, rc;
1628 
1629 	txq->num_tx_buffers = edev->q_num_tx_buffers;
1630 
1631 	/* Allocate the parallel driver ring for Tx buffers */
1632 	if (txq->is_xdp) {
1633 		size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1634 		txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1635 		if (!txq->sw_tx_ring.xdp)
1636 			goto err;
1637 	} else {
1638 		size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1639 		txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1640 		if (!txq->sw_tx_ring.skbs)
1641 			goto err;
1642 	}
1643 
1644 	rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1645 	if (rc)
1646 		goto err;
1647 
1648 	return 0;
1649 
1650 err:
1651 	qede_free_mem_txq(edev, txq);
1652 	return -ENOMEM;
1653 }
1654 
1655 /* This function frees all memory of a single fp */
1656 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1657 {
1658 	qede_free_mem_sb(edev, fp->sb_info, fp->id);
1659 
1660 	if (fp->type & QEDE_FASTPATH_RX)
1661 		qede_free_mem_rxq(edev, fp->rxq);
1662 
1663 	if (fp->type & QEDE_FASTPATH_XDP)
1664 		qede_free_mem_txq(edev, fp->xdp_tx);
1665 
1666 	if (fp->type & QEDE_FASTPATH_TX) {
1667 		int cos;
1668 
1669 		for_each_cos_in_txq(edev, cos)
1670 			qede_free_mem_txq(edev, &fp->txq[cos]);
1671 	}
1672 }
1673 
1674 /* This function allocates all memory needed for a single fp (i.e. an entity
1675  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1676  */
1677 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1678 {
1679 	int rc = 0;
1680 
1681 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1682 	if (rc)
1683 		goto out;
1684 
1685 	if (fp->type & QEDE_FASTPATH_RX) {
1686 		rc = qede_alloc_mem_rxq(edev, fp->rxq);
1687 		if (rc)
1688 			goto out;
1689 	}
1690 
1691 	if (fp->type & QEDE_FASTPATH_XDP) {
1692 		rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1693 		if (rc)
1694 			goto out;
1695 	}
1696 
1697 	if (fp->type & QEDE_FASTPATH_TX) {
1698 		int cos;
1699 
1700 		for_each_cos_in_txq(edev, cos) {
1701 			rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1702 			if (rc)
1703 				goto out;
1704 		}
1705 	}
1706 
1707 out:
1708 	return rc;
1709 }
1710 
1711 static void qede_free_mem_load(struct qede_dev *edev)
1712 {
1713 	int i;
1714 
1715 	for_each_queue(i) {
1716 		struct qede_fastpath *fp = &edev->fp_array[i];
1717 
1718 		qede_free_mem_fp(edev, fp);
1719 	}
1720 }
1721 
1722 /* This function allocates all qede memory at NIC load. */
1723 static int qede_alloc_mem_load(struct qede_dev *edev)
1724 {
1725 	int rc = 0, queue_id;
1726 
1727 	for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1728 		struct qede_fastpath *fp = &edev->fp_array[queue_id];
1729 
1730 		rc = qede_alloc_mem_fp(edev, fp);
1731 		if (rc) {
1732 			DP_ERR(edev,
1733 			       "Failed to allocate memory for fastpath - rss id = %d\n",
1734 			       queue_id);
1735 			qede_free_mem_load(edev);
1736 			return rc;
1737 		}
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 static void qede_empty_tx_queue(struct qede_dev *edev,
1744 				struct qede_tx_queue *txq)
1745 {
1746 	unsigned int pkts_compl = 0, bytes_compl = 0;
1747 	struct netdev_queue *netdev_txq;
1748 	int rc, len = 0;
1749 
1750 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1751 
1752 	while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1753 	       qed_chain_get_prod_idx(&txq->tx_pbl)) {
1754 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1755 			   "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1756 			   txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1757 			   qed_chain_get_prod_idx(&txq->tx_pbl));
1758 
1759 		rc = qede_free_tx_pkt(edev, txq, &len);
1760 		if (rc) {
1761 			DP_NOTICE(edev,
1762 				  "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1763 				  txq->index,
1764 				  qed_chain_get_cons_idx(&txq->tx_pbl),
1765 				  qed_chain_get_prod_idx(&txq->tx_pbl));
1766 			break;
1767 		}
1768 
1769 		bytes_compl += len;
1770 		pkts_compl++;
1771 		txq->sw_tx_cons++;
1772 	}
1773 
1774 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1775 }
1776 
1777 static void qede_empty_tx_queues(struct qede_dev *edev)
1778 {
1779 	int i;
1780 
1781 	for_each_queue(i)
1782 		if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1783 			int cos;
1784 
1785 			for_each_cos_in_txq(edev, cos) {
1786 				struct qede_fastpath *fp;
1787 
1788 				fp = &edev->fp_array[i];
1789 				qede_empty_tx_queue(edev,
1790 						    &fp->txq[cos]);
1791 			}
1792 		}
1793 }
1794 
1795 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1796 static void qede_init_fp(struct qede_dev *edev)
1797 {
1798 	int queue_id, rxq_index = 0, txq_index = 0;
1799 	struct qede_fastpath *fp;
1800 	bool init_xdp = false;
1801 
1802 	for_each_queue(queue_id) {
1803 		fp = &edev->fp_array[queue_id];
1804 
1805 		fp->edev = edev;
1806 		fp->id = queue_id;
1807 
1808 		if (fp->type & QEDE_FASTPATH_XDP) {
1809 			fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1810 								rxq_index);
1811 			fp->xdp_tx->is_xdp = 1;
1812 
1813 			spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1814 			init_xdp = true;
1815 		}
1816 
1817 		if (fp->type & QEDE_FASTPATH_RX) {
1818 			fp->rxq->rxq_id = rxq_index++;
1819 
1820 			/* Determine how to map buffers for this queue */
1821 			if (fp->type & QEDE_FASTPATH_XDP)
1822 				fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1823 			else
1824 				fp->rxq->data_direction = DMA_FROM_DEVICE;
1825 			fp->rxq->dev = &edev->pdev->dev;
1826 
1827 			/* Driver have no error path from here */
1828 			WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1829 						 fp->rxq->rxq_id, 0) < 0);
1830 
1831 			if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1832 						       MEM_TYPE_PAGE_ORDER0,
1833 						       NULL)) {
1834 				DP_NOTICE(edev,
1835 					  "Failed to register XDP memory model\n");
1836 			}
1837 		}
1838 
1839 		if (fp->type & QEDE_FASTPATH_TX) {
1840 			int cos;
1841 
1842 			for_each_cos_in_txq(edev, cos) {
1843 				struct qede_tx_queue *txq = &fp->txq[cos];
1844 				u16 ndev_tx_id;
1845 
1846 				txq->cos = cos;
1847 				txq->index = txq_index;
1848 				ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1849 				txq->ndev_txq_id = ndev_tx_id;
1850 
1851 				if (edev->dev_info.is_legacy)
1852 					txq->is_legacy = true;
1853 				txq->dev = &edev->pdev->dev;
1854 			}
1855 
1856 			txq_index++;
1857 		}
1858 
1859 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1860 			 edev->ndev->name, queue_id);
1861 	}
1862 
1863 	if (init_xdp) {
1864 		edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1865 		DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1866 	}
1867 }
1868 
1869 static int qede_set_real_num_queues(struct qede_dev *edev)
1870 {
1871 	int rc = 0;
1872 
1873 	rc = netif_set_real_num_tx_queues(edev->ndev,
1874 					  QEDE_TSS_COUNT(edev) *
1875 					  edev->dev_info.num_tc);
1876 	if (rc) {
1877 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1878 		return rc;
1879 	}
1880 
1881 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1882 	if (rc) {
1883 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1884 		return rc;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 static void qede_napi_disable_remove(struct qede_dev *edev)
1891 {
1892 	int i;
1893 
1894 	for_each_queue(i) {
1895 		napi_disable(&edev->fp_array[i].napi);
1896 
1897 		netif_napi_del(&edev->fp_array[i].napi);
1898 	}
1899 }
1900 
1901 static void qede_napi_add_enable(struct qede_dev *edev)
1902 {
1903 	int i;
1904 
1905 	/* Add NAPI objects */
1906 	for_each_queue(i) {
1907 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1908 			       qede_poll, NAPI_POLL_WEIGHT);
1909 		napi_enable(&edev->fp_array[i].napi);
1910 	}
1911 }
1912 
1913 static void qede_sync_free_irqs(struct qede_dev *edev)
1914 {
1915 	int i;
1916 
1917 	for (i = 0; i < edev->int_info.used_cnt; i++) {
1918 		if (edev->int_info.msix_cnt) {
1919 			synchronize_irq(edev->int_info.msix[i].vector);
1920 			free_irq(edev->int_info.msix[i].vector,
1921 				 &edev->fp_array[i]);
1922 		} else {
1923 			edev->ops->common->simd_handler_clean(edev->cdev, i);
1924 		}
1925 	}
1926 
1927 	edev->int_info.used_cnt = 0;
1928 	edev->int_info.msix_cnt = 0;
1929 }
1930 
1931 static int qede_req_msix_irqs(struct qede_dev *edev)
1932 {
1933 	int i, rc;
1934 
1935 	/* Sanitize number of interrupts == number of prepared RSS queues */
1936 	if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1937 		DP_ERR(edev,
1938 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1939 		       QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1940 		return -EINVAL;
1941 	}
1942 
1943 	for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1944 #ifdef CONFIG_RFS_ACCEL
1945 		struct qede_fastpath *fp = &edev->fp_array[i];
1946 
1947 		if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1948 			rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1949 					      edev->int_info.msix[i].vector);
1950 			if (rc) {
1951 				DP_ERR(edev, "Failed to add CPU rmap\n");
1952 				qede_free_arfs(edev);
1953 			}
1954 		}
1955 #endif
1956 		rc = request_irq(edev->int_info.msix[i].vector,
1957 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
1958 				 &edev->fp_array[i]);
1959 		if (rc) {
1960 			DP_ERR(edev, "Request fp %d irq failed\n", i);
1961 #ifdef CONFIG_RFS_ACCEL
1962 			if (edev->ndev->rx_cpu_rmap)
1963 				free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1964 
1965 			edev->ndev->rx_cpu_rmap = NULL;
1966 #endif
1967 			qede_sync_free_irqs(edev);
1968 			return rc;
1969 		}
1970 		DP_VERBOSE(edev, NETIF_MSG_INTR,
1971 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1972 			   edev->fp_array[i].name, i,
1973 			   &edev->fp_array[i]);
1974 		edev->int_info.used_cnt++;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static void qede_simd_fp_handler(void *cookie)
1981 {
1982 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1983 
1984 	napi_schedule_irqoff(&fp->napi);
1985 }
1986 
1987 static int qede_setup_irqs(struct qede_dev *edev)
1988 {
1989 	int i, rc = 0;
1990 
1991 	/* Learn Interrupt configuration */
1992 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1993 	if (rc)
1994 		return rc;
1995 
1996 	if (edev->int_info.msix_cnt) {
1997 		rc = qede_req_msix_irqs(edev);
1998 		if (rc)
1999 			return rc;
2000 		edev->ndev->irq = edev->int_info.msix[0].vector;
2001 	} else {
2002 		const struct qed_common_ops *ops;
2003 
2004 		/* qed should learn receive the RSS ids and callbacks */
2005 		ops = edev->ops->common;
2006 		for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2007 			ops->simd_handler_config(edev->cdev,
2008 						 &edev->fp_array[i], i,
2009 						 qede_simd_fp_handler);
2010 		edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2011 	}
2012 	return 0;
2013 }
2014 
2015 static int qede_drain_txq(struct qede_dev *edev,
2016 			  struct qede_tx_queue *txq, bool allow_drain)
2017 {
2018 	int rc, cnt = 1000;
2019 
2020 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
2021 		if (!cnt) {
2022 			if (allow_drain) {
2023 				DP_NOTICE(edev,
2024 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
2025 					  txq->index);
2026 				rc = edev->ops->common->drain(edev->cdev);
2027 				if (rc)
2028 					return rc;
2029 				return qede_drain_txq(edev, txq, false);
2030 			}
2031 			DP_NOTICE(edev,
2032 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2033 				  txq->index, txq->sw_tx_prod,
2034 				  txq->sw_tx_cons);
2035 			return -ENODEV;
2036 		}
2037 		cnt--;
2038 		usleep_range(1000, 2000);
2039 		barrier();
2040 	}
2041 
2042 	/* FW finished processing, wait for HW to transmit all tx packets */
2043 	usleep_range(1000, 2000);
2044 
2045 	return 0;
2046 }
2047 
2048 static int qede_stop_txq(struct qede_dev *edev,
2049 			 struct qede_tx_queue *txq, int rss_id)
2050 {
2051 	/* delete doorbell from doorbell recovery mechanism */
2052 	edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2053 					   &txq->tx_db);
2054 
2055 	return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2056 }
2057 
2058 static int qede_stop_queues(struct qede_dev *edev)
2059 {
2060 	struct qed_update_vport_params *vport_update_params;
2061 	struct qed_dev *cdev = edev->cdev;
2062 	struct qede_fastpath *fp;
2063 	int rc, i;
2064 
2065 	/* Disable the vport */
2066 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2067 	if (!vport_update_params)
2068 		return -ENOMEM;
2069 
2070 	vport_update_params->vport_id = 0;
2071 	vport_update_params->update_vport_active_flg = 1;
2072 	vport_update_params->vport_active_flg = 0;
2073 	vport_update_params->update_rss_flg = 0;
2074 
2075 	rc = edev->ops->vport_update(cdev, vport_update_params);
2076 	vfree(vport_update_params);
2077 
2078 	if (rc) {
2079 		DP_ERR(edev, "Failed to update vport\n");
2080 		return rc;
2081 	}
2082 
2083 	/* Flush Tx queues. If needed, request drain from MCP */
2084 	for_each_queue(i) {
2085 		fp = &edev->fp_array[i];
2086 
2087 		if (fp->type & QEDE_FASTPATH_TX) {
2088 			int cos;
2089 
2090 			for_each_cos_in_txq(edev, cos) {
2091 				rc = qede_drain_txq(edev, &fp->txq[cos], true);
2092 				if (rc)
2093 					return rc;
2094 			}
2095 		}
2096 
2097 		if (fp->type & QEDE_FASTPATH_XDP) {
2098 			rc = qede_drain_txq(edev, fp->xdp_tx, true);
2099 			if (rc)
2100 				return rc;
2101 		}
2102 	}
2103 
2104 	/* Stop all Queues in reverse order */
2105 	for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2106 		fp = &edev->fp_array[i];
2107 
2108 		/* Stop the Tx Queue(s) */
2109 		if (fp->type & QEDE_FASTPATH_TX) {
2110 			int cos;
2111 
2112 			for_each_cos_in_txq(edev, cos) {
2113 				rc = qede_stop_txq(edev, &fp->txq[cos], i);
2114 				if (rc)
2115 					return rc;
2116 			}
2117 		}
2118 
2119 		/* Stop the Rx Queue */
2120 		if (fp->type & QEDE_FASTPATH_RX) {
2121 			rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2122 			if (rc) {
2123 				DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2124 				return rc;
2125 			}
2126 		}
2127 
2128 		/* Stop the XDP forwarding queue */
2129 		if (fp->type & QEDE_FASTPATH_XDP) {
2130 			rc = qede_stop_txq(edev, fp->xdp_tx, i);
2131 			if (rc)
2132 				return rc;
2133 
2134 			bpf_prog_put(fp->rxq->xdp_prog);
2135 		}
2136 	}
2137 
2138 	/* Stop the vport */
2139 	rc = edev->ops->vport_stop(cdev, 0);
2140 	if (rc)
2141 		DP_ERR(edev, "Failed to stop VPORT\n");
2142 
2143 	return rc;
2144 }
2145 
2146 static int qede_start_txq(struct qede_dev *edev,
2147 			  struct qede_fastpath *fp,
2148 			  struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2149 {
2150 	dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2151 	u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2152 	struct qed_queue_start_common_params params;
2153 	struct qed_txq_start_ret_params ret_params;
2154 	int rc;
2155 
2156 	memset(&params, 0, sizeof(params));
2157 	memset(&ret_params, 0, sizeof(ret_params));
2158 
2159 	/* Let the XDP queue share the queue-zone with one of the regular txq.
2160 	 * We don't really care about its coalescing.
2161 	 */
2162 	if (txq->is_xdp)
2163 		params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2164 	else
2165 		params.queue_id = txq->index;
2166 
2167 	params.p_sb = fp->sb_info;
2168 	params.sb_idx = sb_idx;
2169 	params.tc = txq->cos;
2170 
2171 	rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2172 				   page_cnt, &ret_params);
2173 	if (rc) {
2174 		DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2175 		return rc;
2176 	}
2177 
2178 	txq->doorbell_addr = ret_params.p_doorbell;
2179 	txq->handle = ret_params.p_handle;
2180 
2181 	/* Determine the FW consumer address associated */
2182 	txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2183 
2184 	/* Prepare the doorbell parameters */
2185 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2186 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2187 	SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2188 		  DQ_XCM_ETH_TX_BD_PROD_CMD);
2189 	txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2190 
2191 	/* register doorbell with doorbell recovery mechanism */
2192 	rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2193 						&txq->tx_db, DB_REC_WIDTH_32B,
2194 						DB_REC_KERNEL);
2195 
2196 	return rc;
2197 }
2198 
2199 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2200 {
2201 	int vlan_removal_en = 1;
2202 	struct qed_dev *cdev = edev->cdev;
2203 	struct qed_dev_info *qed_info = &edev->dev_info.common;
2204 	struct qed_update_vport_params *vport_update_params;
2205 	struct qed_queue_start_common_params q_params;
2206 	struct qed_start_vport_params start = {0};
2207 	int rc, i;
2208 
2209 	if (!edev->num_queues) {
2210 		DP_ERR(edev,
2211 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
2212 		return -EINVAL;
2213 	}
2214 
2215 	vport_update_params = vzalloc(sizeof(*vport_update_params));
2216 	if (!vport_update_params)
2217 		return -ENOMEM;
2218 
2219 	start.handle_ptp_pkts = !!(edev->ptp);
2220 	start.gro_enable = !edev->gro_disable;
2221 	start.mtu = edev->ndev->mtu;
2222 	start.vport_id = 0;
2223 	start.drop_ttl0 = true;
2224 	start.remove_inner_vlan = vlan_removal_en;
2225 	start.clear_stats = clear_stats;
2226 
2227 	rc = edev->ops->vport_start(cdev, &start);
2228 
2229 	if (rc) {
2230 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2231 		goto out;
2232 	}
2233 
2234 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
2235 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2236 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2237 
2238 	for_each_queue(i) {
2239 		struct qede_fastpath *fp = &edev->fp_array[i];
2240 		dma_addr_t p_phys_table;
2241 		u32 page_cnt;
2242 
2243 		if (fp->type & QEDE_FASTPATH_RX) {
2244 			struct qed_rxq_start_ret_params ret_params;
2245 			struct qede_rx_queue *rxq = fp->rxq;
2246 			__le16 *val;
2247 
2248 			memset(&ret_params, 0, sizeof(ret_params));
2249 			memset(&q_params, 0, sizeof(q_params));
2250 			q_params.queue_id = rxq->rxq_id;
2251 			q_params.vport_id = 0;
2252 			q_params.p_sb = fp->sb_info;
2253 			q_params.sb_idx = RX_PI;
2254 
2255 			p_phys_table =
2256 			    qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2257 			page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2258 
2259 			rc = edev->ops->q_rx_start(cdev, i, &q_params,
2260 						   rxq->rx_buf_size,
2261 						   rxq->rx_bd_ring.p_phys_addr,
2262 						   p_phys_table,
2263 						   page_cnt, &ret_params);
2264 			if (rc) {
2265 				DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2266 				       rc);
2267 				goto out;
2268 			}
2269 
2270 			/* Use the return parameters */
2271 			rxq->hw_rxq_prod_addr = ret_params.p_prod;
2272 			rxq->handle = ret_params.p_handle;
2273 
2274 			val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2275 			rxq->hw_cons_ptr = val;
2276 
2277 			qede_update_rx_prod(edev, rxq);
2278 		}
2279 
2280 		if (fp->type & QEDE_FASTPATH_XDP) {
2281 			rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2282 			if (rc)
2283 				goto out;
2284 
2285 			bpf_prog_add(edev->xdp_prog, 1);
2286 			fp->rxq->xdp_prog = edev->xdp_prog;
2287 		}
2288 
2289 		if (fp->type & QEDE_FASTPATH_TX) {
2290 			int cos;
2291 
2292 			for_each_cos_in_txq(edev, cos) {
2293 				rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2294 						    TX_PI(cos));
2295 				if (rc)
2296 					goto out;
2297 			}
2298 		}
2299 	}
2300 
2301 	/* Prepare and send the vport enable */
2302 	vport_update_params->vport_id = start.vport_id;
2303 	vport_update_params->update_vport_active_flg = 1;
2304 	vport_update_params->vport_active_flg = 1;
2305 
2306 	if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2307 	    qed_info->tx_switching) {
2308 		vport_update_params->update_tx_switching_flg = 1;
2309 		vport_update_params->tx_switching_flg = 1;
2310 	}
2311 
2312 	qede_fill_rss_params(edev, &vport_update_params->rss_params,
2313 			     &vport_update_params->update_rss_flg);
2314 
2315 	rc = edev->ops->vport_update(cdev, vport_update_params);
2316 	if (rc)
2317 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2318 
2319 out:
2320 	vfree(vport_update_params);
2321 	return rc;
2322 }
2323 
2324 enum qede_unload_mode {
2325 	QEDE_UNLOAD_NORMAL,
2326 	QEDE_UNLOAD_RECOVERY,
2327 };
2328 
2329 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2330 			bool is_locked)
2331 {
2332 	struct qed_link_params link_params;
2333 	int rc;
2334 
2335 	DP_INFO(edev, "Starting qede unload\n");
2336 
2337 	if (!is_locked)
2338 		__qede_lock(edev);
2339 
2340 	clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2341 
2342 	if (mode != QEDE_UNLOAD_RECOVERY)
2343 		edev->state = QEDE_STATE_CLOSED;
2344 
2345 	qede_rdma_dev_event_close(edev);
2346 
2347 	/* Close OS Tx */
2348 	netif_tx_disable(edev->ndev);
2349 	netif_carrier_off(edev->ndev);
2350 
2351 	if (mode != QEDE_UNLOAD_RECOVERY) {
2352 		/* Reset the link */
2353 		memset(&link_params, 0, sizeof(link_params));
2354 		link_params.link_up = false;
2355 		edev->ops->common->set_link(edev->cdev, &link_params);
2356 
2357 		rc = qede_stop_queues(edev);
2358 		if (rc) {
2359 #ifdef CONFIG_RFS_ACCEL
2360 			if (edev->dev_info.common.b_arfs_capable) {
2361 				qede_poll_for_freeing_arfs_filters(edev);
2362 				if (edev->ndev->rx_cpu_rmap)
2363 					free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2364 
2365 				edev->ndev->rx_cpu_rmap = NULL;
2366 			}
2367 #endif
2368 			qede_sync_free_irqs(edev);
2369 			goto out;
2370 		}
2371 
2372 		DP_INFO(edev, "Stopped Queues\n");
2373 	}
2374 
2375 	qede_vlan_mark_nonconfigured(edev);
2376 	edev->ops->fastpath_stop(edev->cdev);
2377 
2378 	if (edev->dev_info.common.b_arfs_capable) {
2379 		qede_poll_for_freeing_arfs_filters(edev);
2380 		qede_free_arfs(edev);
2381 	}
2382 
2383 	/* Release the interrupts */
2384 	qede_sync_free_irqs(edev);
2385 	edev->ops->common->set_fp_int(edev->cdev, 0);
2386 
2387 	qede_napi_disable_remove(edev);
2388 
2389 	if (mode == QEDE_UNLOAD_RECOVERY)
2390 		qede_empty_tx_queues(edev);
2391 
2392 	qede_free_mem_load(edev);
2393 	qede_free_fp_array(edev);
2394 
2395 out:
2396 	if (!is_locked)
2397 		__qede_unlock(edev);
2398 
2399 	if (mode != QEDE_UNLOAD_RECOVERY)
2400 		DP_NOTICE(edev, "Link is down\n");
2401 
2402 	edev->ptp_skip_txts = 0;
2403 
2404 	DP_INFO(edev, "Ending qede unload\n");
2405 }
2406 
2407 enum qede_load_mode {
2408 	QEDE_LOAD_NORMAL,
2409 	QEDE_LOAD_RELOAD,
2410 	QEDE_LOAD_RECOVERY,
2411 };
2412 
2413 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2414 		     bool is_locked)
2415 {
2416 	struct qed_link_params link_params;
2417 	struct ethtool_coalesce coal = {};
2418 	u8 num_tc;
2419 	int rc, i;
2420 
2421 	DP_INFO(edev, "Starting qede load\n");
2422 
2423 	if (!is_locked)
2424 		__qede_lock(edev);
2425 
2426 	rc = qede_set_num_queues(edev);
2427 	if (rc)
2428 		goto out;
2429 
2430 	rc = qede_alloc_fp_array(edev);
2431 	if (rc)
2432 		goto out;
2433 
2434 	qede_init_fp(edev);
2435 
2436 	rc = qede_alloc_mem_load(edev);
2437 	if (rc)
2438 		goto err1;
2439 	DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2440 		QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2441 
2442 	rc = qede_set_real_num_queues(edev);
2443 	if (rc)
2444 		goto err2;
2445 
2446 	if (qede_alloc_arfs(edev)) {
2447 		edev->ndev->features &= ~NETIF_F_NTUPLE;
2448 		edev->dev_info.common.b_arfs_capable = false;
2449 	}
2450 
2451 	qede_napi_add_enable(edev);
2452 	DP_INFO(edev, "Napi added and enabled\n");
2453 
2454 	rc = qede_setup_irqs(edev);
2455 	if (rc)
2456 		goto err3;
2457 	DP_INFO(edev, "Setup IRQs succeeded\n");
2458 
2459 	rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2460 	if (rc)
2461 		goto err4;
2462 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2463 
2464 	num_tc = netdev_get_num_tc(edev->ndev);
2465 	num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2466 	qede_setup_tc(edev->ndev, num_tc);
2467 
2468 	/* Program un-configured VLANs */
2469 	qede_configure_vlan_filters(edev);
2470 
2471 	set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2472 
2473 	/* Ask for link-up using current configuration */
2474 	memset(&link_params, 0, sizeof(link_params));
2475 	link_params.link_up = true;
2476 	edev->ops->common->set_link(edev->cdev, &link_params);
2477 
2478 	edev->state = QEDE_STATE_OPEN;
2479 
2480 	coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2481 	coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2482 
2483 	for_each_queue(i) {
2484 		if (edev->coal_entry[i].isvalid) {
2485 			coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2486 			coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2487 		}
2488 		__qede_unlock(edev);
2489 		qede_set_per_coalesce(edev->ndev, i, &coal);
2490 		__qede_lock(edev);
2491 	}
2492 	DP_INFO(edev, "Ending successfully qede load\n");
2493 
2494 	goto out;
2495 err4:
2496 	qede_sync_free_irqs(edev);
2497 err3:
2498 	qede_napi_disable_remove(edev);
2499 err2:
2500 	qede_free_mem_load(edev);
2501 err1:
2502 	edev->ops->common->set_fp_int(edev->cdev, 0);
2503 	qede_free_fp_array(edev);
2504 	edev->num_queues = 0;
2505 	edev->fp_num_tx = 0;
2506 	edev->fp_num_rx = 0;
2507 out:
2508 	if (!is_locked)
2509 		__qede_unlock(edev);
2510 
2511 	return rc;
2512 }
2513 
2514 /* 'func' should be able to run between unload and reload assuming interface
2515  * is actually running, or afterwards in case it's currently DOWN.
2516  */
2517 void qede_reload(struct qede_dev *edev,
2518 		 struct qede_reload_args *args, bool is_locked)
2519 {
2520 	if (!is_locked)
2521 		__qede_lock(edev);
2522 
2523 	/* Since qede_lock is held, internal state wouldn't change even
2524 	 * if netdev state would start transitioning. Check whether current
2525 	 * internal configuration indicates device is up, then reload.
2526 	 */
2527 	if (edev->state == QEDE_STATE_OPEN) {
2528 		qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2529 		if (args)
2530 			args->func(edev, args);
2531 		qede_load(edev, QEDE_LOAD_RELOAD, true);
2532 
2533 		/* Since no one is going to do it for us, re-configure */
2534 		qede_config_rx_mode(edev->ndev);
2535 	} else if (args) {
2536 		args->func(edev, args);
2537 	}
2538 
2539 	if (!is_locked)
2540 		__qede_unlock(edev);
2541 }
2542 
2543 /* called with rtnl_lock */
2544 static int qede_open(struct net_device *ndev)
2545 {
2546 	struct qede_dev *edev = netdev_priv(ndev);
2547 	int rc;
2548 
2549 	netif_carrier_off(ndev);
2550 
2551 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2552 
2553 	rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2554 	if (rc)
2555 		return rc;
2556 
2557 	udp_tunnel_nic_reset_ntf(ndev);
2558 
2559 	edev->ops->common->update_drv_state(edev->cdev, true);
2560 
2561 	return 0;
2562 }
2563 
2564 static int qede_close(struct net_device *ndev)
2565 {
2566 	struct qede_dev *edev = netdev_priv(ndev);
2567 
2568 	qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2569 
2570 	if (edev->cdev)
2571 		edev->ops->common->update_drv_state(edev->cdev, false);
2572 
2573 	return 0;
2574 }
2575 
2576 static void qede_link_update(void *dev, struct qed_link_output *link)
2577 {
2578 	struct qede_dev *edev = dev;
2579 
2580 	if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2581 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2582 		return;
2583 	}
2584 
2585 	if (link->link_up) {
2586 		if (!netif_carrier_ok(edev->ndev)) {
2587 			DP_NOTICE(edev, "Link is up\n");
2588 			netif_tx_start_all_queues(edev->ndev);
2589 			netif_carrier_on(edev->ndev);
2590 			qede_rdma_dev_event_open(edev);
2591 		}
2592 	} else {
2593 		if (netif_carrier_ok(edev->ndev)) {
2594 			DP_NOTICE(edev, "Link is down\n");
2595 			netif_tx_disable(edev->ndev);
2596 			netif_carrier_off(edev->ndev);
2597 			qede_rdma_dev_event_close(edev);
2598 		}
2599 	}
2600 }
2601 
2602 static void qede_schedule_recovery_handler(void *dev)
2603 {
2604 	struct qede_dev *edev = dev;
2605 
2606 	if (edev->state == QEDE_STATE_RECOVERY) {
2607 		DP_NOTICE(edev,
2608 			  "Avoid scheduling a recovery handling since already in recovery state\n");
2609 		return;
2610 	}
2611 
2612 	set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2613 	schedule_delayed_work(&edev->sp_task, 0);
2614 
2615 	DP_INFO(edev, "Scheduled a recovery handler\n");
2616 }
2617 
2618 static void qede_recovery_failed(struct qede_dev *edev)
2619 {
2620 	netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2621 
2622 	netif_device_detach(edev->ndev);
2623 
2624 	if (edev->cdev)
2625 		edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2626 }
2627 
2628 static void qede_recovery_handler(struct qede_dev *edev)
2629 {
2630 	u32 curr_state = edev->state;
2631 	int rc;
2632 
2633 	DP_NOTICE(edev, "Starting a recovery process\n");
2634 
2635 	/* No need to acquire first the qede_lock since is done by qede_sp_task
2636 	 * before calling this function.
2637 	 */
2638 	edev->state = QEDE_STATE_RECOVERY;
2639 
2640 	edev->ops->common->recovery_prolog(edev->cdev);
2641 
2642 	if (curr_state == QEDE_STATE_OPEN)
2643 		qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2644 
2645 	__qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2646 
2647 	rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2648 			  IS_VF(edev), QEDE_PROBE_RECOVERY);
2649 	if (rc) {
2650 		edev->cdev = NULL;
2651 		goto err;
2652 	}
2653 
2654 	if (curr_state == QEDE_STATE_OPEN) {
2655 		rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2656 		if (rc)
2657 			goto err;
2658 
2659 		qede_config_rx_mode(edev->ndev);
2660 		udp_tunnel_nic_reset_ntf(edev->ndev);
2661 	}
2662 
2663 	edev->state = curr_state;
2664 
2665 	DP_NOTICE(edev, "Recovery handling is done\n");
2666 
2667 	return;
2668 
2669 err:
2670 	qede_recovery_failed(edev);
2671 }
2672 
2673 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2674 {
2675 	struct qed_dev *cdev = edev->cdev;
2676 
2677 	DP_NOTICE(edev,
2678 		  "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2679 		  edev->err_flags);
2680 
2681 	/* Get a call trace of the flow that led to the error */
2682 	WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2683 
2684 	/* Prevent HW attentions from being reasserted */
2685 	if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2686 		edev->ops->common->attn_clr_enable(cdev, true);
2687 
2688 	DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2689 }
2690 
2691 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2692 {
2693 	DP_NOTICE(edev,
2694 		  "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2695 		  edev->err_flags);
2696 
2697 	if (edev->devlink) {
2698 		DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2699 		edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2700 	}
2701 
2702 	clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2703 
2704 	DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2705 }
2706 
2707 static void qede_set_hw_err_flags(struct qede_dev *edev,
2708 				  enum qed_hw_err_type err_type)
2709 {
2710 	unsigned long err_flags = 0;
2711 
2712 	switch (err_type) {
2713 	case QED_HW_ERR_DMAE_FAIL:
2714 		set_bit(QEDE_ERR_WARN, &err_flags);
2715 		fallthrough;
2716 	case QED_HW_ERR_MFW_RESP_FAIL:
2717 	case QED_HW_ERR_HW_ATTN:
2718 	case QED_HW_ERR_RAMROD_FAIL:
2719 	case QED_HW_ERR_FW_ASSERT:
2720 		set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2721 		set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2722 		/* make this error as recoverable and start recovery*/
2723 		set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2724 		break;
2725 
2726 	default:
2727 		DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2728 		break;
2729 	}
2730 
2731 	edev->err_flags |= err_flags;
2732 }
2733 
2734 static void qede_schedule_hw_err_handler(void *dev,
2735 					 enum qed_hw_err_type err_type)
2736 {
2737 	struct qede_dev *edev = dev;
2738 
2739 	/* Fan failure cannot be masked by handling of another HW error or by a
2740 	 * concurrent recovery process.
2741 	 */
2742 	if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2743 	     edev->state == QEDE_STATE_RECOVERY) &&
2744 	     err_type != QED_HW_ERR_FAN_FAIL) {
2745 		DP_INFO(edev,
2746 			"Avoid scheduling an error handling while another HW error is being handled\n");
2747 		return;
2748 	}
2749 
2750 	if (err_type >= QED_HW_ERR_LAST) {
2751 		DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2752 		clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2753 		return;
2754 	}
2755 
2756 	edev->last_err_type = err_type;
2757 	qede_set_hw_err_flags(edev, err_type);
2758 	qede_atomic_hw_err_handler(edev);
2759 	set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2760 	schedule_delayed_work(&edev->sp_task, 0);
2761 
2762 	DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2763 }
2764 
2765 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2766 {
2767 	struct netdev_queue *netdev_txq;
2768 
2769 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2770 	if (netif_xmit_stopped(netdev_txq))
2771 		return true;
2772 
2773 	return false;
2774 }
2775 
2776 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2777 {
2778 	struct qede_dev *edev = dev;
2779 	struct netdev_hw_addr *ha;
2780 	int i;
2781 
2782 	if (edev->ndev->features & NETIF_F_IP_CSUM)
2783 		data->feat_flags |= QED_TLV_IP_CSUM;
2784 	if (edev->ndev->features & NETIF_F_TSO)
2785 		data->feat_flags |= QED_TLV_LSO;
2786 
2787 	ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2788 	eth_zero_addr(data->mac[1]);
2789 	eth_zero_addr(data->mac[2]);
2790 	/* Copy the first two UC macs */
2791 	netif_addr_lock_bh(edev->ndev);
2792 	i = 1;
2793 	netdev_for_each_uc_addr(ha, edev->ndev) {
2794 		ether_addr_copy(data->mac[i++], ha->addr);
2795 		if (i == QED_TLV_MAC_COUNT)
2796 			break;
2797 	}
2798 
2799 	netif_addr_unlock_bh(edev->ndev);
2800 }
2801 
2802 static void qede_get_eth_tlv_data(void *dev, void *data)
2803 {
2804 	struct qed_mfw_tlv_eth *etlv = data;
2805 	struct qede_dev *edev = dev;
2806 	struct qede_fastpath *fp;
2807 	int i;
2808 
2809 	etlv->lso_maxoff_size = 0XFFFF;
2810 	etlv->lso_maxoff_size_set = true;
2811 	etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2812 	etlv->lso_minseg_size_set = true;
2813 	etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2814 	etlv->prom_mode_set = true;
2815 	etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2816 	etlv->tx_descr_size_set = true;
2817 	etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2818 	etlv->rx_descr_size_set = true;
2819 	etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2820 	etlv->iov_offload_set = true;
2821 
2822 	/* Fill information regarding queues; Should be done under the qede
2823 	 * lock to guarantee those don't change beneath our feet.
2824 	 */
2825 	etlv->txqs_empty = true;
2826 	etlv->rxqs_empty = true;
2827 	etlv->num_txqs_full = 0;
2828 	etlv->num_rxqs_full = 0;
2829 
2830 	__qede_lock(edev);
2831 	for_each_queue(i) {
2832 		fp = &edev->fp_array[i];
2833 		if (fp->type & QEDE_FASTPATH_TX) {
2834 			struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2835 
2836 			if (txq->sw_tx_cons != txq->sw_tx_prod)
2837 				etlv->txqs_empty = false;
2838 			if (qede_is_txq_full(edev, txq))
2839 				etlv->num_txqs_full++;
2840 		}
2841 		if (fp->type & QEDE_FASTPATH_RX) {
2842 			if (qede_has_rx_work(fp->rxq))
2843 				etlv->rxqs_empty = false;
2844 
2845 			/* This one is a bit tricky; Firmware might stop
2846 			 * placing packets if ring is not yet full.
2847 			 * Give an approximation.
2848 			 */
2849 			if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2850 			    qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2851 			    RX_RING_SIZE - 100)
2852 				etlv->num_rxqs_full++;
2853 		}
2854 	}
2855 	__qede_unlock(edev);
2856 
2857 	etlv->txqs_empty_set = true;
2858 	etlv->rxqs_empty_set = true;
2859 	etlv->num_txqs_full_set = true;
2860 	etlv->num_rxqs_full_set = true;
2861 }
2862 
2863 /**
2864  * qede_io_error_detected(): Called when PCI error is detected
2865  *
2866  * @pdev: Pointer to PCI device
2867  * @state: The current pci connection state
2868  *
2869  *Return: pci_ers_result_t.
2870  *
2871  * This function is called after a PCI bus error affecting
2872  * this device has been detected.
2873  */
2874 static pci_ers_result_t
2875 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2876 {
2877 	struct net_device *dev = pci_get_drvdata(pdev);
2878 	struct qede_dev *edev = netdev_priv(dev);
2879 
2880 	if (!edev)
2881 		return PCI_ERS_RESULT_NONE;
2882 
2883 	DP_NOTICE(edev, "IO error detected [%d]\n", state);
2884 
2885 	__qede_lock(edev);
2886 	if (edev->state == QEDE_STATE_RECOVERY) {
2887 		DP_NOTICE(edev, "Device already in the recovery state\n");
2888 		__qede_unlock(edev);
2889 		return PCI_ERS_RESULT_NONE;
2890 	}
2891 
2892 	/* PF handles the recovery of its VFs */
2893 	if (IS_VF(edev)) {
2894 		DP_VERBOSE(edev, QED_MSG_IOV,
2895 			   "VF recovery is handled by its PF\n");
2896 		__qede_unlock(edev);
2897 		return PCI_ERS_RESULT_RECOVERED;
2898 	}
2899 
2900 	/* Close OS Tx */
2901 	netif_tx_disable(edev->ndev);
2902 	netif_carrier_off(edev->ndev);
2903 
2904 	set_bit(QEDE_SP_AER, &edev->sp_flags);
2905 	schedule_delayed_work(&edev->sp_task, 0);
2906 
2907 	__qede_unlock(edev);
2908 
2909 	return PCI_ERS_RESULT_CAN_RECOVER;
2910 }
2911