1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/pci.h> 34 #include <linux/version.h> 35 #include <linux/device.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/skbuff.h> 39 #include <linux/errno.h> 40 #include <linux/list.h> 41 #include <linux/string.h> 42 #include <linux/dma-mapping.h> 43 #include <linux/interrupt.h> 44 #include <asm/byteorder.h> 45 #include <asm/param.h> 46 #include <linux/io.h> 47 #include <linux/netdev_features.h> 48 #include <linux/udp.h> 49 #include <linux/tcp.h> 50 #include <net/udp_tunnel.h> 51 #include <linux/ip.h> 52 #include <net/ipv6.h> 53 #include <net/tcp.h> 54 #include <linux/if_ether.h> 55 #include <linux/if_vlan.h> 56 #include <linux/pkt_sched.h> 57 #include <linux/ethtool.h> 58 #include <linux/in.h> 59 #include <linux/random.h> 60 #include <net/ip6_checksum.h> 61 #include <linux/bitops.h> 62 #include <linux/vmalloc.h> 63 #include <linux/qed/qede_roce.h> 64 #include "qede.h" 65 #include "qede_ptp.h" 66 67 static char version[] = 68 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n"; 69 70 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver"); 71 MODULE_LICENSE("GPL"); 72 MODULE_VERSION(DRV_MODULE_VERSION); 73 74 static uint debug; 75 module_param(debug, uint, 0); 76 MODULE_PARM_DESC(debug, " Default debug msglevel"); 77 78 static const struct qed_eth_ops *qed_ops; 79 80 #define CHIP_NUM_57980S_40 0x1634 81 #define CHIP_NUM_57980S_10 0x1666 82 #define CHIP_NUM_57980S_MF 0x1636 83 #define CHIP_NUM_57980S_100 0x1644 84 #define CHIP_NUM_57980S_50 0x1654 85 #define CHIP_NUM_57980S_25 0x1656 86 #define CHIP_NUM_57980S_IOV 0x1664 87 #define CHIP_NUM_AH 0x8070 88 #define CHIP_NUM_AH_IOV 0x8090 89 90 #ifndef PCI_DEVICE_ID_NX2_57980E 91 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 92 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 93 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF 94 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 95 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 96 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 97 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV 98 #define PCI_DEVICE_ID_AH CHIP_NUM_AH 99 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV 100 101 #endif 102 103 enum qede_pci_private { 104 QEDE_PRIVATE_PF, 105 QEDE_PRIVATE_VF 106 }; 107 108 static const struct pci_device_id qede_pci_tbl[] = { 109 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF}, 110 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF}, 111 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF}, 112 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF}, 113 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF}, 114 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF}, 115 #ifdef CONFIG_QED_SRIOV 116 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF}, 117 #endif 118 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF}, 119 #ifdef CONFIG_QED_SRIOV 120 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF}, 121 #endif 122 { 0 } 123 }; 124 125 MODULE_DEVICE_TABLE(pci, qede_pci_tbl); 126 127 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); 128 129 #define TX_TIMEOUT (5 * HZ) 130 131 /* Utilize last protocol index for XDP */ 132 #define XDP_PI 11 133 134 static void qede_remove(struct pci_dev *pdev); 135 static void qede_shutdown(struct pci_dev *pdev); 136 static void qede_link_update(void *dev, struct qed_link_output *link); 137 138 /* The qede lock is used to protect driver state change and driver flows that 139 * are not reentrant. 140 */ 141 void __qede_lock(struct qede_dev *edev) 142 { 143 mutex_lock(&edev->qede_lock); 144 } 145 146 void __qede_unlock(struct qede_dev *edev) 147 { 148 mutex_unlock(&edev->qede_lock); 149 } 150 151 #ifdef CONFIG_QED_SRIOV 152 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos, 153 __be16 vlan_proto) 154 { 155 struct qede_dev *edev = netdev_priv(ndev); 156 157 if (vlan > 4095) { 158 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan); 159 return -EINVAL; 160 } 161 162 if (vlan_proto != htons(ETH_P_8021Q)) 163 return -EPROTONOSUPPORT; 164 165 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n", 166 vlan, vf); 167 168 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf); 169 } 170 171 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac) 172 { 173 struct qede_dev *edev = netdev_priv(ndev); 174 175 DP_VERBOSE(edev, QED_MSG_IOV, 176 "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n", 177 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx); 178 179 if (!is_valid_ether_addr(mac)) { 180 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n"); 181 return -EINVAL; 182 } 183 184 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx); 185 } 186 187 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param) 188 { 189 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev)); 190 struct qed_dev_info *qed_info = &edev->dev_info.common; 191 struct qed_update_vport_params *vport_params; 192 int rc; 193 194 vport_params = vzalloc(sizeof(*vport_params)); 195 if (!vport_params) 196 return -ENOMEM; 197 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param); 198 199 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param); 200 201 /* Enable/Disable Tx switching for PF */ 202 if ((rc == num_vfs_param) && netif_running(edev->ndev) && 203 qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) { 204 vport_params->vport_id = 0; 205 vport_params->update_tx_switching_flg = 1; 206 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0; 207 edev->ops->vport_update(edev->cdev, vport_params); 208 } 209 210 vfree(vport_params); 211 return rc; 212 } 213 #endif 214 215 static struct pci_driver qede_pci_driver = { 216 .name = "qede", 217 .id_table = qede_pci_tbl, 218 .probe = qede_probe, 219 .remove = qede_remove, 220 .shutdown = qede_shutdown, 221 #ifdef CONFIG_QED_SRIOV 222 .sriov_configure = qede_sriov_configure, 223 #endif 224 }; 225 226 static struct qed_eth_cb_ops qede_ll_ops = { 227 { 228 #ifdef CONFIG_RFS_ACCEL 229 .arfs_filter_op = qede_arfs_filter_op, 230 #endif 231 .link_update = qede_link_update, 232 }, 233 .force_mac = qede_force_mac, 234 .ports_update = qede_udp_ports_update, 235 }; 236 237 static int qede_netdev_event(struct notifier_block *this, unsigned long event, 238 void *ptr) 239 { 240 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 241 struct ethtool_drvinfo drvinfo; 242 struct qede_dev *edev; 243 244 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR) 245 goto done; 246 247 /* Check whether this is a qede device */ 248 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) 249 goto done; 250 251 memset(&drvinfo, 0, sizeof(drvinfo)); 252 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); 253 if (strcmp(drvinfo.driver, "qede")) 254 goto done; 255 edev = netdev_priv(ndev); 256 257 switch (event) { 258 case NETDEV_CHANGENAME: 259 /* Notify qed of the name change */ 260 if (!edev->ops || !edev->ops->common) 261 goto done; 262 edev->ops->common->set_id(edev->cdev, edev->ndev->name, "qede"); 263 break; 264 case NETDEV_CHANGEADDR: 265 edev = netdev_priv(ndev); 266 qede_roce_event_changeaddr(edev); 267 break; 268 } 269 270 done: 271 return NOTIFY_DONE; 272 } 273 274 static struct notifier_block qede_netdev_notifier = { 275 .notifier_call = qede_netdev_event, 276 }; 277 278 static 279 int __init qede_init(void) 280 { 281 int ret; 282 283 pr_info("qede_init: %s\n", version); 284 285 qed_ops = qed_get_eth_ops(); 286 if (!qed_ops) { 287 pr_notice("Failed to get qed ethtool operations\n"); 288 return -EINVAL; 289 } 290 291 /* Must register notifier before pci ops, since we might miss 292 * interface rename after pci probe and netdev registeration. 293 */ 294 ret = register_netdevice_notifier(&qede_netdev_notifier); 295 if (ret) { 296 pr_notice("Failed to register netdevice_notifier\n"); 297 qed_put_eth_ops(); 298 return -EINVAL; 299 } 300 301 ret = pci_register_driver(&qede_pci_driver); 302 if (ret) { 303 pr_notice("Failed to register driver\n"); 304 unregister_netdevice_notifier(&qede_netdev_notifier); 305 qed_put_eth_ops(); 306 return -EINVAL; 307 } 308 309 return 0; 310 } 311 312 static void __exit qede_cleanup(void) 313 { 314 if (debug & QED_LOG_INFO_MASK) 315 pr_info("qede_cleanup called\n"); 316 317 unregister_netdevice_notifier(&qede_netdev_notifier); 318 pci_unregister_driver(&qede_pci_driver); 319 qed_put_eth_ops(); 320 } 321 322 module_init(qede_init); 323 module_exit(qede_cleanup); 324 325 static int qede_open(struct net_device *ndev); 326 static int qede_close(struct net_device *ndev); 327 328 void qede_fill_by_demand_stats(struct qede_dev *edev) 329 { 330 struct qede_stats_common *p_common = &edev->stats.common; 331 struct qed_eth_stats stats; 332 333 edev->ops->get_vport_stats(edev->cdev, &stats); 334 335 p_common->no_buff_discards = stats.common.no_buff_discards; 336 p_common->packet_too_big_discard = stats.common.packet_too_big_discard; 337 p_common->ttl0_discard = stats.common.ttl0_discard; 338 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes; 339 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes; 340 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes; 341 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts; 342 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts; 343 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts; 344 p_common->mftag_filter_discards = stats.common.mftag_filter_discards; 345 p_common->mac_filter_discards = stats.common.mac_filter_discards; 346 347 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes; 348 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes; 349 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes; 350 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts; 351 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts; 352 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts; 353 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts; 354 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts; 355 p_common->coalesced_events = stats.common.tpa_coalesced_events; 356 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num; 357 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts; 358 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes; 359 360 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets; 361 p_common->rx_65_to_127_byte_packets = 362 stats.common.rx_65_to_127_byte_packets; 363 p_common->rx_128_to_255_byte_packets = 364 stats.common.rx_128_to_255_byte_packets; 365 p_common->rx_256_to_511_byte_packets = 366 stats.common.rx_256_to_511_byte_packets; 367 p_common->rx_512_to_1023_byte_packets = 368 stats.common.rx_512_to_1023_byte_packets; 369 p_common->rx_1024_to_1518_byte_packets = 370 stats.common.rx_1024_to_1518_byte_packets; 371 p_common->rx_crc_errors = stats.common.rx_crc_errors; 372 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames; 373 p_common->rx_pause_frames = stats.common.rx_pause_frames; 374 p_common->rx_pfc_frames = stats.common.rx_pfc_frames; 375 p_common->rx_align_errors = stats.common.rx_align_errors; 376 p_common->rx_carrier_errors = stats.common.rx_carrier_errors; 377 p_common->rx_oversize_packets = stats.common.rx_oversize_packets; 378 p_common->rx_jabbers = stats.common.rx_jabbers; 379 p_common->rx_undersize_packets = stats.common.rx_undersize_packets; 380 p_common->rx_fragments = stats.common.rx_fragments; 381 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets; 382 p_common->tx_65_to_127_byte_packets = 383 stats.common.tx_65_to_127_byte_packets; 384 p_common->tx_128_to_255_byte_packets = 385 stats.common.tx_128_to_255_byte_packets; 386 p_common->tx_256_to_511_byte_packets = 387 stats.common.tx_256_to_511_byte_packets; 388 p_common->tx_512_to_1023_byte_packets = 389 stats.common.tx_512_to_1023_byte_packets; 390 p_common->tx_1024_to_1518_byte_packets = 391 stats.common.tx_1024_to_1518_byte_packets; 392 p_common->tx_pause_frames = stats.common.tx_pause_frames; 393 p_common->tx_pfc_frames = stats.common.tx_pfc_frames; 394 p_common->brb_truncates = stats.common.brb_truncates; 395 p_common->brb_discards = stats.common.brb_discards; 396 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames; 397 398 if (QEDE_IS_BB(edev)) { 399 struct qede_stats_bb *p_bb = &edev->stats.bb; 400 401 p_bb->rx_1519_to_1522_byte_packets = 402 stats.bb.rx_1519_to_1522_byte_packets; 403 p_bb->rx_1519_to_2047_byte_packets = 404 stats.bb.rx_1519_to_2047_byte_packets; 405 p_bb->rx_2048_to_4095_byte_packets = 406 stats.bb.rx_2048_to_4095_byte_packets; 407 p_bb->rx_4096_to_9216_byte_packets = 408 stats.bb.rx_4096_to_9216_byte_packets; 409 p_bb->rx_9217_to_16383_byte_packets = 410 stats.bb.rx_9217_to_16383_byte_packets; 411 p_bb->tx_1519_to_2047_byte_packets = 412 stats.bb.tx_1519_to_2047_byte_packets; 413 p_bb->tx_2048_to_4095_byte_packets = 414 stats.bb.tx_2048_to_4095_byte_packets; 415 p_bb->tx_4096_to_9216_byte_packets = 416 stats.bb.tx_4096_to_9216_byte_packets; 417 p_bb->tx_9217_to_16383_byte_packets = 418 stats.bb.tx_9217_to_16383_byte_packets; 419 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count; 420 p_bb->tx_total_collisions = stats.bb.tx_total_collisions; 421 } else { 422 struct qede_stats_ah *p_ah = &edev->stats.ah; 423 424 p_ah->rx_1519_to_max_byte_packets = 425 stats.ah.rx_1519_to_max_byte_packets; 426 p_ah->tx_1519_to_max_byte_packets = 427 stats.ah.tx_1519_to_max_byte_packets; 428 } 429 } 430 431 static void qede_get_stats64(struct net_device *dev, 432 struct rtnl_link_stats64 *stats) 433 { 434 struct qede_dev *edev = netdev_priv(dev); 435 struct qede_stats_common *p_common; 436 437 qede_fill_by_demand_stats(edev); 438 p_common = &edev->stats.common; 439 440 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts + 441 p_common->rx_bcast_pkts; 442 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts + 443 p_common->tx_bcast_pkts; 444 445 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes + 446 p_common->rx_bcast_bytes; 447 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes + 448 p_common->tx_bcast_bytes; 449 450 stats->tx_errors = p_common->tx_err_drop_pkts; 451 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts; 452 453 stats->rx_fifo_errors = p_common->no_buff_discards; 454 455 if (QEDE_IS_BB(edev)) 456 stats->collisions = edev->stats.bb.tx_total_collisions; 457 stats->rx_crc_errors = p_common->rx_crc_errors; 458 stats->rx_frame_errors = p_common->rx_align_errors; 459 } 460 461 #ifdef CONFIG_QED_SRIOV 462 static int qede_get_vf_config(struct net_device *dev, int vfidx, 463 struct ifla_vf_info *ivi) 464 { 465 struct qede_dev *edev = netdev_priv(dev); 466 467 if (!edev->ops) 468 return -EINVAL; 469 470 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi); 471 } 472 473 static int qede_set_vf_rate(struct net_device *dev, int vfidx, 474 int min_tx_rate, int max_tx_rate) 475 { 476 struct qede_dev *edev = netdev_priv(dev); 477 478 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate, 479 max_tx_rate); 480 } 481 482 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val) 483 { 484 struct qede_dev *edev = netdev_priv(dev); 485 486 if (!edev->ops) 487 return -EINVAL; 488 489 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val); 490 } 491 492 static int qede_set_vf_link_state(struct net_device *dev, int vfidx, 493 int link_state) 494 { 495 struct qede_dev *edev = netdev_priv(dev); 496 497 if (!edev->ops) 498 return -EINVAL; 499 500 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state); 501 } 502 503 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting) 504 { 505 struct qede_dev *edev = netdev_priv(dev); 506 507 if (!edev->ops) 508 return -EINVAL; 509 510 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting); 511 } 512 #endif 513 514 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 515 { 516 struct qede_dev *edev = netdev_priv(dev); 517 518 if (!netif_running(dev)) 519 return -EAGAIN; 520 521 switch (cmd) { 522 case SIOCSHWTSTAMP: 523 return qede_ptp_hw_ts(edev, ifr); 524 default: 525 DP_VERBOSE(edev, QED_MSG_DEBUG, 526 "default IOCTL cmd 0x%x\n", cmd); 527 return -EOPNOTSUPP; 528 } 529 530 return 0; 531 } 532 533 static const struct net_device_ops qede_netdev_ops = { 534 .ndo_open = qede_open, 535 .ndo_stop = qede_close, 536 .ndo_start_xmit = qede_start_xmit, 537 .ndo_set_rx_mode = qede_set_rx_mode, 538 .ndo_set_mac_address = qede_set_mac_addr, 539 .ndo_validate_addr = eth_validate_addr, 540 .ndo_change_mtu = qede_change_mtu, 541 .ndo_do_ioctl = qede_ioctl, 542 #ifdef CONFIG_QED_SRIOV 543 .ndo_set_vf_mac = qede_set_vf_mac, 544 .ndo_set_vf_vlan = qede_set_vf_vlan, 545 .ndo_set_vf_trust = qede_set_vf_trust, 546 #endif 547 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid, 548 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid, 549 .ndo_set_features = qede_set_features, 550 .ndo_get_stats64 = qede_get_stats64, 551 #ifdef CONFIG_QED_SRIOV 552 .ndo_set_vf_link_state = qede_set_vf_link_state, 553 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk, 554 .ndo_get_vf_config = qede_get_vf_config, 555 .ndo_set_vf_rate = qede_set_vf_rate, 556 #endif 557 .ndo_udp_tunnel_add = qede_udp_tunnel_add, 558 .ndo_udp_tunnel_del = qede_udp_tunnel_del, 559 .ndo_features_check = qede_features_check, 560 .ndo_xdp = qede_xdp, 561 #ifdef CONFIG_RFS_ACCEL 562 .ndo_rx_flow_steer = qede_rx_flow_steer, 563 #endif 564 }; 565 566 /* ------------------------------------------------------------------------- 567 * START OF PROBE / REMOVE 568 * ------------------------------------------------------------------------- 569 */ 570 571 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, 572 struct pci_dev *pdev, 573 struct qed_dev_eth_info *info, 574 u32 dp_module, u8 dp_level) 575 { 576 struct net_device *ndev; 577 struct qede_dev *edev; 578 579 ndev = alloc_etherdev_mqs(sizeof(*edev), 580 info->num_queues, info->num_queues); 581 if (!ndev) { 582 pr_err("etherdev allocation failed\n"); 583 return NULL; 584 } 585 586 edev = netdev_priv(ndev); 587 edev->ndev = ndev; 588 edev->cdev = cdev; 589 edev->pdev = pdev; 590 edev->dp_module = dp_module; 591 edev->dp_level = dp_level; 592 edev->ops = qed_ops; 593 edev->q_num_rx_buffers = NUM_RX_BDS_DEF; 594 edev->q_num_tx_buffers = NUM_TX_BDS_DEF; 595 596 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n", 597 info->num_queues, info->num_queues); 598 599 SET_NETDEV_DEV(ndev, &pdev->dev); 600 601 memset(&edev->stats, 0, sizeof(edev->stats)); 602 memcpy(&edev->dev_info, info, sizeof(*info)); 603 604 INIT_LIST_HEAD(&edev->vlan_list); 605 606 return edev; 607 } 608 609 static void qede_init_ndev(struct qede_dev *edev) 610 { 611 struct net_device *ndev = edev->ndev; 612 struct pci_dev *pdev = edev->pdev; 613 bool udp_tunnel_enable = false; 614 netdev_features_t hw_features; 615 616 pci_set_drvdata(pdev, ndev); 617 618 ndev->mem_start = edev->dev_info.common.pci_mem_start; 619 ndev->base_addr = ndev->mem_start; 620 ndev->mem_end = edev->dev_info.common.pci_mem_end; 621 ndev->irq = edev->dev_info.common.pci_irq; 622 623 ndev->watchdog_timeo = TX_TIMEOUT; 624 625 ndev->netdev_ops = &qede_netdev_ops; 626 627 qede_set_ethtool_ops(ndev); 628 629 ndev->priv_flags |= IFF_UNICAST_FLT; 630 631 /* user-changeble features */ 632 hw_features = NETIF_F_GRO | NETIF_F_SG | 633 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 634 NETIF_F_TSO | NETIF_F_TSO6; 635 636 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) 637 hw_features |= NETIF_F_NTUPLE; 638 639 if (edev->dev_info.common.vxlan_enable || 640 edev->dev_info.common.geneve_enable) 641 udp_tunnel_enable = true; 642 643 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) { 644 hw_features |= NETIF_F_TSO_ECN; 645 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 646 NETIF_F_SG | NETIF_F_TSO | 647 NETIF_F_TSO_ECN | NETIF_F_TSO6 | 648 NETIF_F_RXCSUM; 649 } 650 651 if (udp_tunnel_enable) { 652 hw_features |= (NETIF_F_GSO_UDP_TUNNEL | 653 NETIF_F_GSO_UDP_TUNNEL_CSUM); 654 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL | 655 NETIF_F_GSO_UDP_TUNNEL_CSUM); 656 } 657 658 if (edev->dev_info.common.gre_enable) { 659 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM); 660 ndev->hw_enc_features |= (NETIF_F_GSO_GRE | 661 NETIF_F_GSO_GRE_CSUM); 662 } 663 664 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 665 NETIF_F_HIGHDMA; 666 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | 667 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | 668 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX; 669 670 ndev->hw_features = hw_features; 671 672 /* MTU range: 46 - 9600 */ 673 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 674 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE; 675 676 /* Set network device HW mac */ 677 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); 678 679 ndev->mtu = edev->dev_info.common.mtu; 680 } 681 682 /* This function converts from 32b param to two params of level and module 683 * Input 32b decoding: 684 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the 685 * 'happy' flow, e.g. memory allocation failed. 686 * b30 - enable all INFO prints. INFO prints are for major steps in the flow 687 * and provide important parameters. 688 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that 689 * module. VERBOSE prints are for tracking the specific flow in low level. 690 * 691 * Notice that the level should be that of the lowest required logs. 692 */ 693 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) 694 { 695 *p_dp_level = QED_LEVEL_NOTICE; 696 *p_dp_module = 0; 697 698 if (debug & QED_LOG_VERBOSE_MASK) { 699 *p_dp_level = QED_LEVEL_VERBOSE; 700 *p_dp_module = (debug & 0x3FFFFFFF); 701 } else if (debug & QED_LOG_INFO_MASK) { 702 *p_dp_level = QED_LEVEL_INFO; 703 } else if (debug & QED_LOG_NOTICE_MASK) { 704 *p_dp_level = QED_LEVEL_NOTICE; 705 } 706 } 707 708 static void qede_free_fp_array(struct qede_dev *edev) 709 { 710 if (edev->fp_array) { 711 struct qede_fastpath *fp; 712 int i; 713 714 for_each_queue(i) { 715 fp = &edev->fp_array[i]; 716 717 kfree(fp->sb_info); 718 kfree(fp->rxq); 719 kfree(fp->xdp_tx); 720 kfree(fp->txq); 721 } 722 kfree(edev->fp_array); 723 } 724 725 edev->num_queues = 0; 726 edev->fp_num_tx = 0; 727 edev->fp_num_rx = 0; 728 } 729 730 static int qede_alloc_fp_array(struct qede_dev *edev) 731 { 732 u8 fp_combined, fp_rx = edev->fp_num_rx; 733 struct qede_fastpath *fp; 734 int i; 735 736 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev), 737 sizeof(*edev->fp_array), GFP_KERNEL); 738 if (!edev->fp_array) { 739 DP_NOTICE(edev, "fp array allocation failed\n"); 740 goto err; 741 } 742 743 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx; 744 745 /* Allocate the FP elements for Rx queues followed by combined and then 746 * the Tx. This ordering should be maintained so that the respective 747 * queues (Rx or Tx) will be together in the fastpath array and the 748 * associated ids will be sequential. 749 */ 750 for_each_queue(i) { 751 fp = &edev->fp_array[i]; 752 753 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL); 754 if (!fp->sb_info) { 755 DP_NOTICE(edev, "sb info struct allocation failed\n"); 756 goto err; 757 } 758 759 if (fp_rx) { 760 fp->type = QEDE_FASTPATH_RX; 761 fp_rx--; 762 } else if (fp_combined) { 763 fp->type = QEDE_FASTPATH_COMBINED; 764 fp_combined--; 765 } else { 766 fp->type = QEDE_FASTPATH_TX; 767 } 768 769 if (fp->type & QEDE_FASTPATH_TX) { 770 fp->txq = kzalloc(sizeof(*fp->txq), GFP_KERNEL); 771 if (!fp->txq) 772 goto err; 773 } 774 775 if (fp->type & QEDE_FASTPATH_RX) { 776 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL); 777 if (!fp->rxq) 778 goto err; 779 780 if (edev->xdp_prog) { 781 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx), 782 GFP_KERNEL); 783 if (!fp->xdp_tx) 784 goto err; 785 fp->type |= QEDE_FASTPATH_XDP; 786 } 787 } 788 } 789 790 return 0; 791 err: 792 qede_free_fp_array(edev); 793 return -ENOMEM; 794 } 795 796 static void qede_sp_task(struct work_struct *work) 797 { 798 struct qede_dev *edev = container_of(work, struct qede_dev, 799 sp_task.work); 800 801 __qede_lock(edev); 802 803 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags)) 804 if (edev->state == QEDE_STATE_OPEN) 805 qede_config_rx_mode(edev->ndev); 806 807 #ifdef CONFIG_RFS_ACCEL 808 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) { 809 if (edev->state == QEDE_STATE_OPEN) 810 qede_process_arfs_filters(edev, false); 811 } 812 #endif 813 __qede_unlock(edev); 814 } 815 816 static void qede_update_pf_params(struct qed_dev *cdev) 817 { 818 struct qed_pf_params pf_params; 819 820 /* 64 rx + 64 tx + 64 XDP */ 821 memset(&pf_params, 0, sizeof(struct qed_pf_params)); 822 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * 3; 823 #ifdef CONFIG_RFS_ACCEL 824 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR; 825 #endif 826 qed_ops->common->update_pf_params(cdev, &pf_params); 827 } 828 829 enum qede_probe_mode { 830 QEDE_PROBE_NORMAL, 831 }; 832 833 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, 834 bool is_vf, enum qede_probe_mode mode) 835 { 836 struct qed_probe_params probe_params; 837 struct qed_slowpath_params sp_params; 838 struct qed_dev_eth_info dev_info; 839 struct qede_dev *edev; 840 struct qed_dev *cdev; 841 int rc; 842 843 if (unlikely(dp_level & QED_LEVEL_INFO)) 844 pr_notice("Starting qede probe\n"); 845 846 memset(&probe_params, 0, sizeof(probe_params)); 847 probe_params.protocol = QED_PROTOCOL_ETH; 848 probe_params.dp_module = dp_module; 849 probe_params.dp_level = dp_level; 850 probe_params.is_vf = is_vf; 851 cdev = qed_ops->common->probe(pdev, &probe_params); 852 if (!cdev) { 853 rc = -ENODEV; 854 goto err0; 855 } 856 857 qede_update_pf_params(cdev); 858 859 /* Start the Slowpath-process */ 860 memset(&sp_params, 0, sizeof(sp_params)); 861 sp_params.int_mode = QED_INT_MODE_MSIX; 862 sp_params.drv_major = QEDE_MAJOR_VERSION; 863 sp_params.drv_minor = QEDE_MINOR_VERSION; 864 sp_params.drv_rev = QEDE_REVISION_VERSION; 865 sp_params.drv_eng = QEDE_ENGINEERING_VERSION; 866 strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE); 867 rc = qed_ops->common->slowpath_start(cdev, &sp_params); 868 if (rc) { 869 pr_notice("Cannot start slowpath\n"); 870 goto err1; 871 } 872 873 /* Learn information crucial for qede to progress */ 874 rc = qed_ops->fill_dev_info(cdev, &dev_info); 875 if (rc) 876 goto err2; 877 878 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, 879 dp_level); 880 if (!edev) { 881 rc = -ENOMEM; 882 goto err2; 883 } 884 885 if (is_vf) 886 edev->flags |= QEDE_FLAG_IS_VF; 887 888 qede_init_ndev(edev); 889 890 rc = qede_roce_dev_add(edev); 891 if (rc) 892 goto err3; 893 894 /* Prepare the lock prior to the registeration of the netdev, 895 * as once it's registered we might reach flows requiring it 896 * [it's even possible to reach a flow needing it directly 897 * from there, although it's unlikely]. 898 */ 899 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task); 900 mutex_init(&edev->qede_lock); 901 rc = register_netdev(edev->ndev); 902 if (rc) { 903 DP_NOTICE(edev, "Cannot register net-device\n"); 904 goto err4; 905 } 906 907 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); 908 909 /* PTP not supported on VFs */ 910 if (!is_vf) 911 qede_ptp_enable(edev, true); 912 913 edev->ops->register_ops(cdev, &qede_ll_ops, edev); 914 915 #ifdef CONFIG_DCB 916 if (!IS_VF(edev)) 917 qede_set_dcbnl_ops(edev->ndev); 918 #endif 919 920 edev->rx_copybreak = QEDE_RX_HDR_SIZE; 921 922 DP_INFO(edev, "Ending successfully qede probe\n"); 923 924 return 0; 925 926 err4: 927 qede_roce_dev_remove(edev); 928 err3: 929 free_netdev(edev->ndev); 930 err2: 931 qed_ops->common->slowpath_stop(cdev); 932 err1: 933 qed_ops->common->remove(cdev); 934 err0: 935 return rc; 936 } 937 938 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) 939 { 940 bool is_vf = false; 941 u32 dp_module = 0; 942 u8 dp_level = 0; 943 944 switch ((enum qede_pci_private)id->driver_data) { 945 case QEDE_PRIVATE_VF: 946 if (debug & QED_LOG_VERBOSE_MASK) 947 dev_err(&pdev->dev, "Probing a VF\n"); 948 is_vf = true; 949 break; 950 default: 951 if (debug & QED_LOG_VERBOSE_MASK) 952 dev_err(&pdev->dev, "Probing a PF\n"); 953 } 954 955 qede_config_debug(debug, &dp_module, &dp_level); 956 957 return __qede_probe(pdev, dp_module, dp_level, is_vf, 958 QEDE_PROBE_NORMAL); 959 } 960 961 enum qede_remove_mode { 962 QEDE_REMOVE_NORMAL, 963 }; 964 965 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) 966 { 967 struct net_device *ndev = pci_get_drvdata(pdev); 968 struct qede_dev *edev = netdev_priv(ndev); 969 struct qed_dev *cdev = edev->cdev; 970 971 DP_INFO(edev, "Starting qede_remove\n"); 972 973 unregister_netdev(ndev); 974 cancel_delayed_work_sync(&edev->sp_task); 975 976 qede_ptp_disable(edev); 977 978 qede_roce_dev_remove(edev); 979 980 edev->ops->common->set_power_state(cdev, PCI_D0); 981 982 pci_set_drvdata(pdev, NULL); 983 984 /* Release edev's reference to XDP's bpf if such exist */ 985 if (edev->xdp_prog) 986 bpf_prog_put(edev->xdp_prog); 987 988 /* Use global ops since we've freed edev */ 989 qed_ops->common->slowpath_stop(cdev); 990 if (system_state == SYSTEM_POWER_OFF) 991 return; 992 qed_ops->common->remove(cdev); 993 994 /* Since this can happen out-of-sync with other flows, 995 * don't release the netdevice until after slowpath stop 996 * has been called to guarantee various other contexts 997 * [e.g., QED register callbacks] won't break anything when 998 * accessing the netdevice. 999 */ 1000 free_netdev(ndev); 1001 1002 dev_info(&pdev->dev, "Ending qede_remove successfully\n"); 1003 } 1004 1005 static void qede_remove(struct pci_dev *pdev) 1006 { 1007 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1008 } 1009 1010 static void qede_shutdown(struct pci_dev *pdev) 1011 { 1012 __qede_remove(pdev, QEDE_REMOVE_NORMAL); 1013 } 1014 1015 /* ------------------------------------------------------------------------- 1016 * START OF LOAD / UNLOAD 1017 * ------------------------------------------------------------------------- 1018 */ 1019 1020 static int qede_set_num_queues(struct qede_dev *edev) 1021 { 1022 int rc; 1023 u16 rss_num; 1024 1025 /* Setup queues according to possible resources*/ 1026 if (edev->req_queues) 1027 rss_num = edev->req_queues; 1028 else 1029 rss_num = netif_get_num_default_rss_queues() * 1030 edev->dev_info.common.num_hwfns; 1031 1032 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); 1033 1034 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); 1035 if (rc > 0) { 1036 /* Managed to request interrupts for our queues */ 1037 edev->num_queues = rc; 1038 DP_INFO(edev, "Managed %d [of %d] RSS queues\n", 1039 QEDE_QUEUE_CNT(edev), rss_num); 1040 rc = 0; 1041 } 1042 1043 edev->fp_num_tx = edev->req_num_tx; 1044 edev->fp_num_rx = edev->req_num_rx; 1045 1046 return rc; 1047 } 1048 1049 static void qede_free_mem_sb(struct qede_dev *edev, 1050 struct qed_sb_info *sb_info) 1051 { 1052 if (sb_info->sb_virt) 1053 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), 1054 (void *)sb_info->sb_virt, sb_info->sb_phys); 1055 } 1056 1057 /* This function allocates fast-path status block memory */ 1058 static int qede_alloc_mem_sb(struct qede_dev *edev, 1059 struct qed_sb_info *sb_info, u16 sb_id) 1060 { 1061 struct status_block *sb_virt; 1062 dma_addr_t sb_phys; 1063 int rc; 1064 1065 sb_virt = dma_alloc_coherent(&edev->pdev->dev, 1066 sizeof(*sb_virt), &sb_phys, GFP_KERNEL); 1067 if (!sb_virt) { 1068 DP_ERR(edev, "Status block allocation failed\n"); 1069 return -ENOMEM; 1070 } 1071 1072 rc = edev->ops->common->sb_init(edev->cdev, sb_info, 1073 sb_virt, sb_phys, sb_id, 1074 QED_SB_TYPE_L2_QUEUE); 1075 if (rc) { 1076 DP_ERR(edev, "Status block initialization failed\n"); 1077 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), 1078 sb_virt, sb_phys); 1079 return rc; 1080 } 1081 1082 return 0; 1083 } 1084 1085 static void qede_free_rx_buffers(struct qede_dev *edev, 1086 struct qede_rx_queue *rxq) 1087 { 1088 u16 i; 1089 1090 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { 1091 struct sw_rx_data *rx_buf; 1092 struct page *data; 1093 1094 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; 1095 data = rx_buf->data; 1096 1097 dma_unmap_page(&edev->pdev->dev, 1098 rx_buf->mapping, PAGE_SIZE, rxq->data_direction); 1099 1100 rx_buf->data = NULL; 1101 __free_page(data); 1102 } 1103 } 1104 1105 static void qede_free_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) 1106 { 1107 int i; 1108 1109 if (edev->gro_disable) 1110 return; 1111 1112 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1113 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1114 struct sw_rx_data *replace_buf = &tpa_info->buffer; 1115 1116 if (replace_buf->data) { 1117 dma_unmap_page(&edev->pdev->dev, 1118 replace_buf->mapping, 1119 PAGE_SIZE, DMA_FROM_DEVICE); 1120 __free_page(replace_buf->data); 1121 } 1122 } 1123 } 1124 1125 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1126 { 1127 qede_free_sge_mem(edev, rxq); 1128 1129 /* Free rx buffers */ 1130 qede_free_rx_buffers(edev, rxq); 1131 1132 /* Free the parallel SW ring */ 1133 kfree(rxq->sw_rx_ring); 1134 1135 /* Free the real RQ ring used by FW */ 1136 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); 1137 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); 1138 } 1139 1140 static int qede_alloc_sge_mem(struct qede_dev *edev, struct qede_rx_queue *rxq) 1141 { 1142 dma_addr_t mapping; 1143 int i; 1144 1145 /* Don't perform FW aggregations in case of XDP */ 1146 if (edev->xdp_prog) 1147 edev->gro_disable = 1; 1148 1149 if (edev->gro_disable) 1150 return 0; 1151 1152 if (edev->ndev->mtu > PAGE_SIZE) { 1153 edev->gro_disable = 1; 1154 return 0; 1155 } 1156 1157 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) { 1158 struct qede_agg_info *tpa_info = &rxq->tpa_info[i]; 1159 struct sw_rx_data *replace_buf = &tpa_info->buffer; 1160 1161 replace_buf->data = alloc_pages(GFP_ATOMIC, 0); 1162 if (unlikely(!replace_buf->data)) { 1163 DP_NOTICE(edev, 1164 "Failed to allocate TPA skb pool [replacement buffer]\n"); 1165 goto err; 1166 } 1167 1168 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0, 1169 PAGE_SIZE, DMA_FROM_DEVICE); 1170 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { 1171 DP_NOTICE(edev, 1172 "Failed to map TPA replacement buffer\n"); 1173 goto err; 1174 } 1175 1176 replace_buf->mapping = mapping; 1177 tpa_info->buffer.page_offset = 0; 1178 tpa_info->buffer_mapping = mapping; 1179 tpa_info->state = QEDE_AGG_STATE_NONE; 1180 } 1181 1182 return 0; 1183 err: 1184 qede_free_sge_mem(edev, rxq); 1185 edev->gro_disable = 1; 1186 return -ENOMEM; 1187 } 1188 1189 /* This function allocates all memory needed per Rx queue */ 1190 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq) 1191 { 1192 int i, rc, size; 1193 1194 rxq->num_rx_buffers = edev->q_num_rx_buffers; 1195 1196 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu; 1197 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : 0; 1198 1199 /* Make sure that the headroom and payload fit in a single page */ 1200 if (rxq->rx_buf_size + rxq->rx_headroom > PAGE_SIZE) 1201 rxq->rx_buf_size = PAGE_SIZE - rxq->rx_headroom; 1202 1203 /* Segment size to spilt a page in multiple equal parts, 1204 * unless XDP is used in which case we'd use the entire page. 1205 */ 1206 if (!edev->xdp_prog) 1207 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size); 1208 else 1209 rxq->rx_buf_seg_size = PAGE_SIZE; 1210 1211 /* Allocate the parallel driver ring for Rx buffers */ 1212 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE; 1213 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); 1214 if (!rxq->sw_rx_ring) { 1215 DP_ERR(edev, "Rx buffers ring allocation failed\n"); 1216 rc = -ENOMEM; 1217 goto err; 1218 } 1219 1220 /* Allocate FW Rx ring */ 1221 rc = edev->ops->common->chain_alloc(edev->cdev, 1222 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1223 QED_CHAIN_MODE_NEXT_PTR, 1224 QED_CHAIN_CNT_TYPE_U16, 1225 RX_RING_SIZE, 1226 sizeof(struct eth_rx_bd), 1227 &rxq->rx_bd_ring); 1228 1229 if (rc) 1230 goto err; 1231 1232 /* Allocate FW completion ring */ 1233 rc = edev->ops->common->chain_alloc(edev->cdev, 1234 QED_CHAIN_USE_TO_CONSUME, 1235 QED_CHAIN_MODE_PBL, 1236 QED_CHAIN_CNT_TYPE_U16, 1237 RX_RING_SIZE, 1238 sizeof(union eth_rx_cqe), 1239 &rxq->rx_comp_ring); 1240 if (rc) 1241 goto err; 1242 1243 /* Allocate buffers for the Rx ring */ 1244 rxq->filled_buffers = 0; 1245 for (i = 0; i < rxq->num_rx_buffers; i++) { 1246 rc = qede_alloc_rx_buffer(rxq, false); 1247 if (rc) { 1248 DP_ERR(edev, 1249 "Rx buffers allocation failed at index %d\n", i); 1250 goto err; 1251 } 1252 } 1253 1254 rc = qede_alloc_sge_mem(edev, rxq); 1255 err: 1256 return rc; 1257 } 1258 1259 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1260 { 1261 /* Free the parallel SW ring */ 1262 if (txq->is_xdp) 1263 kfree(txq->sw_tx_ring.xdp); 1264 else 1265 kfree(txq->sw_tx_ring.skbs); 1266 1267 /* Free the real RQ ring used by FW */ 1268 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); 1269 } 1270 1271 /* This function allocates all memory needed per Tx queue */ 1272 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq) 1273 { 1274 union eth_tx_bd_types *p_virt; 1275 int size, rc; 1276 1277 txq->num_tx_buffers = edev->q_num_tx_buffers; 1278 1279 /* Allocate the parallel driver ring for Tx buffers */ 1280 if (txq->is_xdp) { 1281 size = sizeof(*txq->sw_tx_ring.xdp) * TX_RING_SIZE; 1282 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL); 1283 if (!txq->sw_tx_ring.xdp) 1284 goto err; 1285 } else { 1286 size = sizeof(*txq->sw_tx_ring.skbs) * TX_RING_SIZE; 1287 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL); 1288 if (!txq->sw_tx_ring.skbs) 1289 goto err; 1290 } 1291 1292 rc = edev->ops->common->chain_alloc(edev->cdev, 1293 QED_CHAIN_USE_TO_CONSUME_PRODUCE, 1294 QED_CHAIN_MODE_PBL, 1295 QED_CHAIN_CNT_TYPE_U16, 1296 TX_RING_SIZE, 1297 sizeof(*p_virt), &txq->tx_pbl); 1298 if (rc) 1299 goto err; 1300 1301 return 0; 1302 1303 err: 1304 qede_free_mem_txq(edev, txq); 1305 return -ENOMEM; 1306 } 1307 1308 /* This function frees all memory of a single fp */ 1309 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1310 { 1311 qede_free_mem_sb(edev, fp->sb_info); 1312 1313 if (fp->type & QEDE_FASTPATH_RX) 1314 qede_free_mem_rxq(edev, fp->rxq); 1315 1316 if (fp->type & QEDE_FASTPATH_TX) 1317 qede_free_mem_txq(edev, fp->txq); 1318 } 1319 1320 /* This function allocates all memory needed for a single fp (i.e. an entity 1321 * which contains status block, one rx queue and/or multiple per-TC tx queues. 1322 */ 1323 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp) 1324 { 1325 int rc = 0; 1326 1327 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id); 1328 if (rc) 1329 goto out; 1330 1331 if (fp->type & QEDE_FASTPATH_RX) { 1332 rc = qede_alloc_mem_rxq(edev, fp->rxq); 1333 if (rc) 1334 goto out; 1335 } 1336 1337 if (fp->type & QEDE_FASTPATH_XDP) { 1338 rc = qede_alloc_mem_txq(edev, fp->xdp_tx); 1339 if (rc) 1340 goto out; 1341 } 1342 1343 if (fp->type & QEDE_FASTPATH_TX) { 1344 rc = qede_alloc_mem_txq(edev, fp->txq); 1345 if (rc) 1346 goto out; 1347 } 1348 1349 out: 1350 return rc; 1351 } 1352 1353 static void qede_free_mem_load(struct qede_dev *edev) 1354 { 1355 int i; 1356 1357 for_each_queue(i) { 1358 struct qede_fastpath *fp = &edev->fp_array[i]; 1359 1360 qede_free_mem_fp(edev, fp); 1361 } 1362 } 1363 1364 /* This function allocates all qede memory at NIC load. */ 1365 static int qede_alloc_mem_load(struct qede_dev *edev) 1366 { 1367 int rc = 0, queue_id; 1368 1369 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) { 1370 struct qede_fastpath *fp = &edev->fp_array[queue_id]; 1371 1372 rc = qede_alloc_mem_fp(edev, fp); 1373 if (rc) { 1374 DP_ERR(edev, 1375 "Failed to allocate memory for fastpath - rss id = %d\n", 1376 queue_id); 1377 qede_free_mem_load(edev); 1378 return rc; 1379 } 1380 } 1381 1382 return 0; 1383 } 1384 1385 /* This function inits fp content and resets the SB, RXQ and TXQ structures */ 1386 static void qede_init_fp(struct qede_dev *edev) 1387 { 1388 int queue_id, rxq_index = 0, txq_index = 0; 1389 struct qede_fastpath *fp; 1390 1391 for_each_queue(queue_id) { 1392 fp = &edev->fp_array[queue_id]; 1393 1394 fp->edev = edev; 1395 fp->id = queue_id; 1396 1397 if (fp->type & QEDE_FASTPATH_XDP) { 1398 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev, 1399 rxq_index); 1400 fp->xdp_tx->is_xdp = 1; 1401 } 1402 1403 if (fp->type & QEDE_FASTPATH_RX) { 1404 fp->rxq->rxq_id = rxq_index++; 1405 1406 /* Determine how to map buffers for this queue */ 1407 if (fp->type & QEDE_FASTPATH_XDP) 1408 fp->rxq->data_direction = DMA_BIDIRECTIONAL; 1409 else 1410 fp->rxq->data_direction = DMA_FROM_DEVICE; 1411 fp->rxq->dev = &edev->pdev->dev; 1412 } 1413 1414 if (fp->type & QEDE_FASTPATH_TX) { 1415 fp->txq->index = txq_index++; 1416 if (edev->dev_info.is_legacy) 1417 fp->txq->is_legacy = 1; 1418 fp->txq->dev = &edev->pdev->dev; 1419 } 1420 1421 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1422 edev->ndev->name, queue_id); 1423 } 1424 1425 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO); 1426 } 1427 1428 static int qede_set_real_num_queues(struct qede_dev *edev) 1429 { 1430 int rc = 0; 1431 1432 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_COUNT(edev)); 1433 if (rc) { 1434 DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); 1435 return rc; 1436 } 1437 1438 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev)); 1439 if (rc) { 1440 DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); 1441 return rc; 1442 } 1443 1444 return 0; 1445 } 1446 1447 static void qede_napi_disable_remove(struct qede_dev *edev) 1448 { 1449 int i; 1450 1451 for_each_queue(i) { 1452 napi_disable(&edev->fp_array[i].napi); 1453 1454 netif_napi_del(&edev->fp_array[i].napi); 1455 } 1456 } 1457 1458 static void qede_napi_add_enable(struct qede_dev *edev) 1459 { 1460 int i; 1461 1462 /* Add NAPI objects */ 1463 for_each_queue(i) { 1464 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, 1465 qede_poll, NAPI_POLL_WEIGHT); 1466 napi_enable(&edev->fp_array[i].napi); 1467 } 1468 } 1469 1470 static void qede_sync_free_irqs(struct qede_dev *edev) 1471 { 1472 int i; 1473 1474 for (i = 0; i < edev->int_info.used_cnt; i++) { 1475 if (edev->int_info.msix_cnt) { 1476 synchronize_irq(edev->int_info.msix[i].vector); 1477 free_irq(edev->int_info.msix[i].vector, 1478 &edev->fp_array[i]); 1479 } else { 1480 edev->ops->common->simd_handler_clean(edev->cdev, i); 1481 } 1482 } 1483 1484 edev->int_info.used_cnt = 0; 1485 } 1486 1487 static int qede_req_msix_irqs(struct qede_dev *edev) 1488 { 1489 int i, rc; 1490 1491 /* Sanitize number of interrupts == number of prepared RSS queues */ 1492 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) { 1493 DP_ERR(edev, 1494 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", 1495 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt); 1496 return -EINVAL; 1497 } 1498 1499 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) { 1500 #ifdef CONFIG_RFS_ACCEL 1501 struct qede_fastpath *fp = &edev->fp_array[i]; 1502 1503 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) { 1504 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap, 1505 edev->int_info.msix[i].vector); 1506 if (rc) { 1507 DP_ERR(edev, "Failed to add CPU rmap\n"); 1508 qede_free_arfs(edev); 1509 } 1510 } 1511 #endif 1512 rc = request_irq(edev->int_info.msix[i].vector, 1513 qede_msix_fp_int, 0, edev->fp_array[i].name, 1514 &edev->fp_array[i]); 1515 if (rc) { 1516 DP_ERR(edev, "Request fp %d irq failed\n", i); 1517 qede_sync_free_irqs(edev); 1518 return rc; 1519 } 1520 DP_VERBOSE(edev, NETIF_MSG_INTR, 1521 "Requested fp irq for %s [entry %d]. Cookie is at %p\n", 1522 edev->fp_array[i].name, i, 1523 &edev->fp_array[i]); 1524 edev->int_info.used_cnt++; 1525 } 1526 1527 return 0; 1528 } 1529 1530 static void qede_simd_fp_handler(void *cookie) 1531 { 1532 struct qede_fastpath *fp = (struct qede_fastpath *)cookie; 1533 1534 napi_schedule_irqoff(&fp->napi); 1535 } 1536 1537 static int qede_setup_irqs(struct qede_dev *edev) 1538 { 1539 int i, rc = 0; 1540 1541 /* Learn Interrupt configuration */ 1542 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); 1543 if (rc) 1544 return rc; 1545 1546 if (edev->int_info.msix_cnt) { 1547 rc = qede_req_msix_irqs(edev); 1548 if (rc) 1549 return rc; 1550 edev->ndev->irq = edev->int_info.msix[0].vector; 1551 } else { 1552 const struct qed_common_ops *ops; 1553 1554 /* qed should learn receive the RSS ids and callbacks */ 1555 ops = edev->ops->common; 1556 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) 1557 ops->simd_handler_config(edev->cdev, 1558 &edev->fp_array[i], i, 1559 qede_simd_fp_handler); 1560 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev); 1561 } 1562 return 0; 1563 } 1564 1565 static int qede_drain_txq(struct qede_dev *edev, 1566 struct qede_tx_queue *txq, bool allow_drain) 1567 { 1568 int rc, cnt = 1000; 1569 1570 while (txq->sw_tx_cons != txq->sw_tx_prod) { 1571 if (!cnt) { 1572 if (allow_drain) { 1573 DP_NOTICE(edev, 1574 "Tx queue[%d] is stuck, requesting MCP to drain\n", 1575 txq->index); 1576 rc = edev->ops->common->drain(edev->cdev); 1577 if (rc) 1578 return rc; 1579 return qede_drain_txq(edev, txq, false); 1580 } 1581 DP_NOTICE(edev, 1582 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", 1583 txq->index, txq->sw_tx_prod, 1584 txq->sw_tx_cons); 1585 return -ENODEV; 1586 } 1587 cnt--; 1588 usleep_range(1000, 2000); 1589 barrier(); 1590 } 1591 1592 /* FW finished processing, wait for HW to transmit all tx packets */ 1593 usleep_range(1000, 2000); 1594 1595 return 0; 1596 } 1597 1598 static int qede_stop_txq(struct qede_dev *edev, 1599 struct qede_tx_queue *txq, int rss_id) 1600 { 1601 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle); 1602 } 1603 1604 static int qede_stop_queues(struct qede_dev *edev) 1605 { 1606 struct qed_update_vport_params *vport_update_params; 1607 struct qed_dev *cdev = edev->cdev; 1608 struct qede_fastpath *fp; 1609 int rc, i; 1610 1611 /* Disable the vport */ 1612 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1613 if (!vport_update_params) 1614 return -ENOMEM; 1615 1616 vport_update_params->vport_id = 0; 1617 vport_update_params->update_vport_active_flg = 1; 1618 vport_update_params->vport_active_flg = 0; 1619 vport_update_params->update_rss_flg = 0; 1620 1621 rc = edev->ops->vport_update(cdev, vport_update_params); 1622 vfree(vport_update_params); 1623 1624 if (rc) { 1625 DP_ERR(edev, "Failed to update vport\n"); 1626 return rc; 1627 } 1628 1629 /* Flush Tx queues. If needed, request drain from MCP */ 1630 for_each_queue(i) { 1631 fp = &edev->fp_array[i]; 1632 1633 if (fp->type & QEDE_FASTPATH_TX) { 1634 rc = qede_drain_txq(edev, fp->txq, true); 1635 if (rc) 1636 return rc; 1637 } 1638 1639 if (fp->type & QEDE_FASTPATH_XDP) { 1640 rc = qede_drain_txq(edev, fp->xdp_tx, true); 1641 if (rc) 1642 return rc; 1643 } 1644 } 1645 1646 /* Stop all Queues in reverse order */ 1647 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) { 1648 fp = &edev->fp_array[i]; 1649 1650 /* Stop the Tx Queue(s) */ 1651 if (fp->type & QEDE_FASTPATH_TX) { 1652 rc = qede_stop_txq(edev, fp->txq, i); 1653 if (rc) 1654 return rc; 1655 } 1656 1657 /* Stop the Rx Queue */ 1658 if (fp->type & QEDE_FASTPATH_RX) { 1659 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle); 1660 if (rc) { 1661 DP_ERR(edev, "Failed to stop RXQ #%d\n", i); 1662 return rc; 1663 } 1664 } 1665 1666 /* Stop the XDP forwarding queue */ 1667 if (fp->type & QEDE_FASTPATH_XDP) { 1668 rc = qede_stop_txq(edev, fp->xdp_tx, i); 1669 if (rc) 1670 return rc; 1671 1672 bpf_prog_put(fp->rxq->xdp_prog); 1673 } 1674 } 1675 1676 /* Stop the vport */ 1677 rc = edev->ops->vport_stop(cdev, 0); 1678 if (rc) 1679 DP_ERR(edev, "Failed to stop VPORT\n"); 1680 1681 return rc; 1682 } 1683 1684 static int qede_start_txq(struct qede_dev *edev, 1685 struct qede_fastpath *fp, 1686 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx) 1687 { 1688 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl); 1689 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl); 1690 struct qed_queue_start_common_params params; 1691 struct qed_txq_start_ret_params ret_params; 1692 int rc; 1693 1694 memset(¶ms, 0, sizeof(params)); 1695 memset(&ret_params, 0, sizeof(ret_params)); 1696 1697 /* Let the XDP queue share the queue-zone with one of the regular txq. 1698 * We don't really care about its coalescing. 1699 */ 1700 if (txq->is_xdp) 1701 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq); 1702 else 1703 params.queue_id = txq->index; 1704 1705 params.sb = fp->sb_info->igu_sb_id; 1706 params.sb_idx = sb_idx; 1707 1708 rc = edev->ops->q_tx_start(edev->cdev, rss_id, ¶ms, phys_table, 1709 page_cnt, &ret_params); 1710 if (rc) { 1711 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc); 1712 return rc; 1713 } 1714 1715 txq->doorbell_addr = ret_params.p_doorbell; 1716 txq->handle = ret_params.p_handle; 1717 1718 /* Determine the FW consumer address associated */ 1719 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx]; 1720 1721 /* Prepare the doorbell parameters */ 1722 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM); 1723 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); 1724 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL, 1725 DQ_XCM_ETH_TX_BD_PROD_CMD); 1726 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; 1727 1728 return rc; 1729 } 1730 1731 static int qede_start_queues(struct qede_dev *edev, bool clear_stats) 1732 { 1733 int vlan_removal_en = 1; 1734 struct qed_dev *cdev = edev->cdev; 1735 struct qed_dev_info *qed_info = &edev->dev_info.common; 1736 struct qed_update_vport_params *vport_update_params; 1737 struct qed_queue_start_common_params q_params; 1738 struct qed_start_vport_params start = {0}; 1739 int rc, i; 1740 1741 if (!edev->num_queues) { 1742 DP_ERR(edev, 1743 "Cannot update V-VPORT as active as there are no Rx queues\n"); 1744 return -EINVAL; 1745 } 1746 1747 vport_update_params = vzalloc(sizeof(*vport_update_params)); 1748 if (!vport_update_params) 1749 return -ENOMEM; 1750 1751 start.handle_ptp_pkts = !!(edev->ptp); 1752 start.gro_enable = !edev->gro_disable; 1753 start.mtu = edev->ndev->mtu; 1754 start.vport_id = 0; 1755 start.drop_ttl0 = true; 1756 start.remove_inner_vlan = vlan_removal_en; 1757 start.clear_stats = clear_stats; 1758 1759 rc = edev->ops->vport_start(cdev, &start); 1760 1761 if (rc) { 1762 DP_ERR(edev, "Start V-PORT failed %d\n", rc); 1763 goto out; 1764 } 1765 1766 DP_VERBOSE(edev, NETIF_MSG_IFUP, 1767 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", 1768 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); 1769 1770 for_each_queue(i) { 1771 struct qede_fastpath *fp = &edev->fp_array[i]; 1772 dma_addr_t p_phys_table; 1773 u32 page_cnt; 1774 1775 if (fp->type & QEDE_FASTPATH_RX) { 1776 struct qed_rxq_start_ret_params ret_params; 1777 struct qede_rx_queue *rxq = fp->rxq; 1778 __le16 *val; 1779 1780 memset(&ret_params, 0, sizeof(ret_params)); 1781 memset(&q_params, 0, sizeof(q_params)); 1782 q_params.queue_id = rxq->rxq_id; 1783 q_params.vport_id = 0; 1784 q_params.sb = fp->sb_info->igu_sb_id; 1785 q_params.sb_idx = RX_PI; 1786 1787 p_phys_table = 1788 qed_chain_get_pbl_phys(&rxq->rx_comp_ring); 1789 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring); 1790 1791 rc = edev->ops->q_rx_start(cdev, i, &q_params, 1792 rxq->rx_buf_size, 1793 rxq->rx_bd_ring.p_phys_addr, 1794 p_phys_table, 1795 page_cnt, &ret_params); 1796 if (rc) { 1797 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, 1798 rc); 1799 goto out; 1800 } 1801 1802 /* Use the return parameters */ 1803 rxq->hw_rxq_prod_addr = ret_params.p_prod; 1804 rxq->handle = ret_params.p_handle; 1805 1806 val = &fp->sb_info->sb_virt->pi_array[RX_PI]; 1807 rxq->hw_cons_ptr = val; 1808 1809 qede_update_rx_prod(edev, rxq); 1810 } 1811 1812 if (fp->type & QEDE_FASTPATH_XDP) { 1813 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI); 1814 if (rc) 1815 goto out; 1816 1817 fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1); 1818 if (IS_ERR(fp->rxq->xdp_prog)) { 1819 rc = PTR_ERR(fp->rxq->xdp_prog); 1820 fp->rxq->xdp_prog = NULL; 1821 goto out; 1822 } 1823 } 1824 1825 if (fp->type & QEDE_FASTPATH_TX) { 1826 rc = qede_start_txq(edev, fp, fp->txq, i, TX_PI(0)); 1827 if (rc) 1828 goto out; 1829 } 1830 } 1831 1832 /* Prepare and send the vport enable */ 1833 vport_update_params->vport_id = start.vport_id; 1834 vport_update_params->update_vport_active_flg = 1; 1835 vport_update_params->vport_active_flg = 1; 1836 1837 if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) && 1838 qed_info->tx_switching) { 1839 vport_update_params->update_tx_switching_flg = 1; 1840 vport_update_params->tx_switching_flg = 1; 1841 } 1842 1843 qede_fill_rss_params(edev, &vport_update_params->rss_params, 1844 &vport_update_params->update_rss_flg); 1845 1846 rc = edev->ops->vport_update(cdev, vport_update_params); 1847 if (rc) 1848 DP_ERR(edev, "Update V-PORT failed %d\n", rc); 1849 1850 out: 1851 vfree(vport_update_params); 1852 return rc; 1853 } 1854 1855 enum qede_unload_mode { 1856 QEDE_UNLOAD_NORMAL, 1857 }; 1858 1859 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode, 1860 bool is_locked) 1861 { 1862 struct qed_link_params link_params; 1863 int rc; 1864 1865 DP_INFO(edev, "Starting qede unload\n"); 1866 1867 if (!is_locked) 1868 __qede_lock(edev); 1869 1870 qede_roce_dev_event_close(edev); 1871 edev->state = QEDE_STATE_CLOSED; 1872 1873 /* Close OS Tx */ 1874 netif_tx_disable(edev->ndev); 1875 netif_carrier_off(edev->ndev); 1876 1877 /* Reset the link */ 1878 memset(&link_params, 0, sizeof(link_params)); 1879 link_params.link_up = false; 1880 edev->ops->common->set_link(edev->cdev, &link_params); 1881 rc = qede_stop_queues(edev); 1882 if (rc) { 1883 qede_sync_free_irqs(edev); 1884 goto out; 1885 } 1886 1887 DP_INFO(edev, "Stopped Queues\n"); 1888 1889 qede_vlan_mark_nonconfigured(edev); 1890 edev->ops->fastpath_stop(edev->cdev); 1891 #ifdef CONFIG_RFS_ACCEL 1892 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 1893 qede_poll_for_freeing_arfs_filters(edev); 1894 qede_free_arfs(edev); 1895 } 1896 #endif 1897 /* Release the interrupts */ 1898 qede_sync_free_irqs(edev); 1899 edev->ops->common->set_fp_int(edev->cdev, 0); 1900 1901 qede_napi_disable_remove(edev); 1902 1903 qede_free_mem_load(edev); 1904 qede_free_fp_array(edev); 1905 1906 out: 1907 if (!is_locked) 1908 __qede_unlock(edev); 1909 DP_INFO(edev, "Ending qede unload\n"); 1910 } 1911 1912 enum qede_load_mode { 1913 QEDE_LOAD_NORMAL, 1914 QEDE_LOAD_RELOAD, 1915 }; 1916 1917 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode, 1918 bool is_locked) 1919 { 1920 struct qed_link_params link_params; 1921 int rc; 1922 1923 DP_INFO(edev, "Starting qede load\n"); 1924 1925 if (!is_locked) 1926 __qede_lock(edev); 1927 1928 rc = qede_set_num_queues(edev); 1929 if (rc) 1930 goto out; 1931 1932 rc = qede_alloc_fp_array(edev); 1933 if (rc) 1934 goto out; 1935 1936 qede_init_fp(edev); 1937 1938 rc = qede_alloc_mem_load(edev); 1939 if (rc) 1940 goto err1; 1941 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n", 1942 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev)); 1943 1944 rc = qede_set_real_num_queues(edev); 1945 if (rc) 1946 goto err2; 1947 1948 #ifdef CONFIG_RFS_ACCEL 1949 if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) { 1950 rc = qede_alloc_arfs(edev); 1951 if (rc) 1952 DP_NOTICE(edev, "aRFS memory allocation failed\n"); 1953 } 1954 #endif 1955 qede_napi_add_enable(edev); 1956 DP_INFO(edev, "Napi added and enabled\n"); 1957 1958 rc = qede_setup_irqs(edev); 1959 if (rc) 1960 goto err3; 1961 DP_INFO(edev, "Setup IRQs succeeded\n"); 1962 1963 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD); 1964 if (rc) 1965 goto err4; 1966 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); 1967 1968 /* Add primary mac and set Rx filters */ 1969 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); 1970 1971 /* Program un-configured VLANs */ 1972 qede_configure_vlan_filters(edev); 1973 1974 /* Ask for link-up using current configuration */ 1975 memset(&link_params, 0, sizeof(link_params)); 1976 link_params.link_up = true; 1977 edev->ops->common->set_link(edev->cdev, &link_params); 1978 1979 qede_roce_dev_event_open(edev); 1980 1981 edev->state = QEDE_STATE_OPEN; 1982 1983 DP_INFO(edev, "Ending successfully qede load\n"); 1984 1985 goto out; 1986 err4: 1987 qede_sync_free_irqs(edev); 1988 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); 1989 err3: 1990 qede_napi_disable_remove(edev); 1991 err2: 1992 qede_free_mem_load(edev); 1993 err1: 1994 edev->ops->common->set_fp_int(edev->cdev, 0); 1995 qede_free_fp_array(edev); 1996 edev->num_queues = 0; 1997 edev->fp_num_tx = 0; 1998 edev->fp_num_rx = 0; 1999 out: 2000 if (!is_locked) 2001 __qede_unlock(edev); 2002 2003 return rc; 2004 } 2005 2006 /* 'func' should be able to run between unload and reload assuming interface 2007 * is actually running, or afterwards in case it's currently DOWN. 2008 */ 2009 void qede_reload(struct qede_dev *edev, 2010 struct qede_reload_args *args, bool is_locked) 2011 { 2012 if (!is_locked) 2013 __qede_lock(edev); 2014 2015 /* Since qede_lock is held, internal state wouldn't change even 2016 * if netdev state would start transitioning. Check whether current 2017 * internal configuration indicates device is up, then reload. 2018 */ 2019 if (edev->state == QEDE_STATE_OPEN) { 2020 qede_unload(edev, QEDE_UNLOAD_NORMAL, true); 2021 if (args) 2022 args->func(edev, args); 2023 qede_load(edev, QEDE_LOAD_RELOAD, true); 2024 2025 /* Since no one is going to do it for us, re-configure */ 2026 qede_config_rx_mode(edev->ndev); 2027 } else if (args) { 2028 args->func(edev, args); 2029 } 2030 2031 if (!is_locked) 2032 __qede_unlock(edev); 2033 } 2034 2035 /* called with rtnl_lock */ 2036 static int qede_open(struct net_device *ndev) 2037 { 2038 struct qede_dev *edev = netdev_priv(ndev); 2039 int rc; 2040 2041 netif_carrier_off(ndev); 2042 2043 edev->ops->common->set_power_state(edev->cdev, PCI_D0); 2044 2045 rc = qede_load(edev, QEDE_LOAD_NORMAL, false); 2046 if (rc) 2047 return rc; 2048 2049 udp_tunnel_get_rx_info(ndev); 2050 2051 edev->ops->common->update_drv_state(edev->cdev, true); 2052 2053 return 0; 2054 } 2055 2056 static int qede_close(struct net_device *ndev) 2057 { 2058 struct qede_dev *edev = netdev_priv(ndev); 2059 2060 qede_unload(edev, QEDE_UNLOAD_NORMAL, false); 2061 2062 edev->ops->common->update_drv_state(edev->cdev, false); 2063 2064 return 0; 2065 } 2066 2067 static void qede_link_update(void *dev, struct qed_link_output *link) 2068 { 2069 struct qede_dev *edev = dev; 2070 2071 if (!netif_running(edev->ndev)) { 2072 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n"); 2073 return; 2074 } 2075 2076 if (link->link_up) { 2077 if (!netif_carrier_ok(edev->ndev)) { 2078 DP_NOTICE(edev, "Link is up\n"); 2079 netif_tx_start_all_queues(edev->ndev); 2080 netif_carrier_on(edev->ndev); 2081 } 2082 } else { 2083 if (netif_carrier_ok(edev->ndev)) { 2084 DP_NOTICE(edev, "Link is down\n"); 2085 netif_tx_disable(edev->ndev); 2086 netif_carrier_off(edev->ndev); 2087 } 2088 } 2089 } 2090