1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #ifdef CONFIG_QEDE_VXLAN
28 #include <net/vxlan.h>
29 #endif
30 #ifdef CONFIG_QEDE_GENEVE
31 #include <net/geneve.h>
32 #endif
33 #include <linux/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tcp.h>
36 #include <linux/if_ether.h>
37 #include <linux/if_vlan.h>
38 #include <linux/pkt_sched.h>
39 #include <linux/ethtool.h>
40 #include <linux/in.h>
41 #include <linux/random.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/bitops.h>
44 
45 #include "qede.h"
46 
47 static char version[] =
48 	"QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
49 
50 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_MODULE_VERSION);
53 
54 static uint debug;
55 module_param(debug, uint, 0);
56 MODULE_PARM_DESC(debug, " Default debug msglevel");
57 
58 static const struct qed_eth_ops *qed_ops;
59 
60 #define CHIP_NUM_57980S_40		0x1634
61 #define CHIP_NUM_57980S_10		0x1666
62 #define CHIP_NUM_57980S_MF		0x1636
63 #define CHIP_NUM_57980S_100		0x1644
64 #define CHIP_NUM_57980S_50		0x1654
65 #define CHIP_NUM_57980S_25		0x1656
66 #define CHIP_NUM_57980S_IOV		0x1664
67 
68 #ifndef PCI_DEVICE_ID_NX2_57980E
69 #define PCI_DEVICE_ID_57980S_40		CHIP_NUM_57980S_40
70 #define PCI_DEVICE_ID_57980S_10		CHIP_NUM_57980S_10
71 #define PCI_DEVICE_ID_57980S_MF		CHIP_NUM_57980S_MF
72 #define PCI_DEVICE_ID_57980S_100	CHIP_NUM_57980S_100
73 #define PCI_DEVICE_ID_57980S_50		CHIP_NUM_57980S_50
74 #define PCI_DEVICE_ID_57980S_25		CHIP_NUM_57980S_25
75 #define PCI_DEVICE_ID_57980S_IOV	CHIP_NUM_57980S_IOV
76 #endif
77 
78 enum qede_pci_private {
79 	QEDE_PRIVATE_PF,
80 	QEDE_PRIVATE_VF
81 };
82 
83 static const struct pci_device_id qede_pci_tbl[] = {
84 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
85 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
86 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
87 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
88 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
89 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
90 	{PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
91 	{ 0 }
92 };
93 
94 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
95 
96 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
97 
98 #define TX_TIMEOUT		(5 * HZ)
99 
100 static void qede_remove(struct pci_dev *pdev);
101 static int qede_alloc_rx_buffer(struct qede_dev *edev,
102 				struct qede_rx_queue *rxq);
103 static void qede_link_update(void *dev, struct qed_link_output *link);
104 
105 #ifdef CONFIG_QED_SRIOV
106 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos)
107 {
108 	struct qede_dev *edev = netdev_priv(ndev);
109 
110 	if (vlan > 4095) {
111 		DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
112 		return -EINVAL;
113 	}
114 
115 	DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
116 		   vlan, vf);
117 
118 	return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
119 }
120 
121 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
122 {
123 	struct qede_dev *edev = netdev_priv(ndev);
124 
125 	DP_VERBOSE(edev, QED_MSG_IOV,
126 		   "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
127 		   mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
128 
129 	if (!is_valid_ether_addr(mac)) {
130 		DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
131 		return -EINVAL;
132 	}
133 
134 	return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
135 }
136 
137 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
138 {
139 	struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
140 	struct qed_dev_info *qed_info = &edev->dev_info.common;
141 	int rc;
142 
143 	DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
144 
145 	rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
146 
147 	/* Enable/Disable Tx switching for PF */
148 	if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
149 	    qed_info->mf_mode != QED_MF_NPAR && qed_info->tx_switching) {
150 		struct qed_update_vport_params params;
151 
152 		memset(&params, 0, sizeof(params));
153 		params.vport_id = 0;
154 		params.update_tx_switching_flg = 1;
155 		params.tx_switching_flg = num_vfs_param ? 1 : 0;
156 		edev->ops->vport_update(edev->cdev, &params);
157 	}
158 
159 	return rc;
160 }
161 #endif
162 
163 static struct pci_driver qede_pci_driver = {
164 	.name = "qede",
165 	.id_table = qede_pci_tbl,
166 	.probe = qede_probe,
167 	.remove = qede_remove,
168 #ifdef CONFIG_QED_SRIOV
169 	.sriov_configure = qede_sriov_configure,
170 #endif
171 };
172 
173 static void qede_force_mac(void *dev, u8 *mac)
174 {
175 	struct qede_dev *edev = dev;
176 
177 	ether_addr_copy(edev->ndev->dev_addr, mac);
178 	ether_addr_copy(edev->primary_mac, mac);
179 }
180 
181 static struct qed_eth_cb_ops qede_ll_ops = {
182 	{
183 		.link_update = qede_link_update,
184 	},
185 	.force_mac = qede_force_mac,
186 };
187 
188 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
189 			     void *ptr)
190 {
191 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
192 	struct ethtool_drvinfo drvinfo;
193 	struct qede_dev *edev;
194 
195 	/* Currently only support name change */
196 	if (event != NETDEV_CHANGENAME)
197 		goto done;
198 
199 	/* Check whether this is a qede device */
200 	if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
201 		goto done;
202 
203 	memset(&drvinfo, 0, sizeof(drvinfo));
204 	ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
205 	if (strcmp(drvinfo.driver, "qede"))
206 		goto done;
207 	edev = netdev_priv(ndev);
208 
209 	/* Notify qed of the name change */
210 	if (!edev->ops || !edev->ops->common)
211 		goto done;
212 	edev->ops->common->set_id(edev->cdev, edev->ndev->name,
213 				  "qede");
214 
215 done:
216 	return NOTIFY_DONE;
217 }
218 
219 static struct notifier_block qede_netdev_notifier = {
220 	.notifier_call = qede_netdev_event,
221 };
222 
223 static
224 int __init qede_init(void)
225 {
226 	int ret;
227 
228 	pr_notice("qede_init: %s\n", version);
229 
230 	qed_ops = qed_get_eth_ops();
231 	if (!qed_ops) {
232 		pr_notice("Failed to get qed ethtool operations\n");
233 		return -EINVAL;
234 	}
235 
236 	/* Must register notifier before pci ops, since we might miss
237 	 * interface rename after pci probe and netdev registeration.
238 	 */
239 	ret = register_netdevice_notifier(&qede_netdev_notifier);
240 	if (ret) {
241 		pr_notice("Failed to register netdevice_notifier\n");
242 		qed_put_eth_ops();
243 		return -EINVAL;
244 	}
245 
246 	ret = pci_register_driver(&qede_pci_driver);
247 	if (ret) {
248 		pr_notice("Failed to register driver\n");
249 		unregister_netdevice_notifier(&qede_netdev_notifier);
250 		qed_put_eth_ops();
251 		return -EINVAL;
252 	}
253 
254 	return 0;
255 }
256 
257 static void __exit qede_cleanup(void)
258 {
259 	pr_notice("qede_cleanup called\n");
260 
261 	unregister_netdevice_notifier(&qede_netdev_notifier);
262 	pci_unregister_driver(&qede_pci_driver);
263 	qed_put_eth_ops();
264 }
265 
266 module_init(qede_init);
267 module_exit(qede_cleanup);
268 
269 /* -------------------------------------------------------------------------
270  * START OF FAST-PATH
271  * -------------------------------------------------------------------------
272  */
273 
274 /* Unmap the data and free skb */
275 static int qede_free_tx_pkt(struct qede_dev *edev,
276 			    struct qede_tx_queue *txq,
277 			    int *len)
278 {
279 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
280 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
281 	struct eth_tx_1st_bd *first_bd;
282 	struct eth_tx_bd *tx_data_bd;
283 	int bds_consumed = 0;
284 	int nbds;
285 	bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
286 	int i, split_bd_len = 0;
287 
288 	if (unlikely(!skb)) {
289 		DP_ERR(edev,
290 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
291 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
292 		return -1;
293 	}
294 
295 	*len = skb->len;
296 
297 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
298 
299 	bds_consumed++;
300 
301 	nbds = first_bd->data.nbds;
302 
303 	if (data_split) {
304 		struct eth_tx_bd *split = (struct eth_tx_bd *)
305 			qed_chain_consume(&txq->tx_pbl);
306 		split_bd_len = BD_UNMAP_LEN(split);
307 		bds_consumed++;
308 	}
309 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
310 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
311 
312 	/* Unmap the data of the skb frags */
313 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
314 		tx_data_bd = (struct eth_tx_bd *)
315 			qed_chain_consume(&txq->tx_pbl);
316 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
317 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
318 	}
319 
320 	while (bds_consumed++ < nbds)
321 		qed_chain_consume(&txq->tx_pbl);
322 
323 	/* Free skb */
324 	dev_kfree_skb_any(skb);
325 	txq->sw_tx_ring[idx].skb = NULL;
326 	txq->sw_tx_ring[idx].flags = 0;
327 
328 	return 0;
329 }
330 
331 /* Unmap the data and free skb when mapping failed during start_xmit */
332 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
333 				    struct qede_tx_queue *txq,
334 				    struct eth_tx_1st_bd *first_bd,
335 				    int nbd,
336 				    bool data_split)
337 {
338 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
339 	struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
340 	struct eth_tx_bd *tx_data_bd;
341 	int i, split_bd_len = 0;
342 
343 	/* Return prod to its position before this skb was handled */
344 	qed_chain_set_prod(&txq->tx_pbl,
345 			   le16_to_cpu(txq->tx_db.data.bd_prod),
346 			   first_bd);
347 
348 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
349 
350 	if (data_split) {
351 		struct eth_tx_bd *split = (struct eth_tx_bd *)
352 					  qed_chain_produce(&txq->tx_pbl);
353 		split_bd_len = BD_UNMAP_LEN(split);
354 		nbd--;
355 	}
356 
357 	dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
358 		       BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
359 
360 	/* Unmap the data of the skb frags */
361 	for (i = 0; i < nbd; i++) {
362 		tx_data_bd = (struct eth_tx_bd *)
363 			qed_chain_produce(&txq->tx_pbl);
364 		if (tx_data_bd->nbytes)
365 			dma_unmap_page(&edev->pdev->dev,
366 				       BD_UNMAP_ADDR(tx_data_bd),
367 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
368 	}
369 
370 	/* Return again prod to its position before this skb was handled */
371 	qed_chain_set_prod(&txq->tx_pbl,
372 			   le16_to_cpu(txq->tx_db.data.bd_prod),
373 			   first_bd);
374 
375 	/* Free skb */
376 	dev_kfree_skb_any(skb);
377 	txq->sw_tx_ring[idx].skb = NULL;
378 	txq->sw_tx_ring[idx].flags = 0;
379 }
380 
381 static u32 qede_xmit_type(struct qede_dev *edev,
382 			  struct sk_buff *skb,
383 			  int *ipv6_ext)
384 {
385 	u32 rc = XMIT_L4_CSUM;
386 	__be16 l3_proto;
387 
388 	if (skb->ip_summed != CHECKSUM_PARTIAL)
389 		return XMIT_PLAIN;
390 
391 	l3_proto = vlan_get_protocol(skb);
392 	if (l3_proto == htons(ETH_P_IPV6) &&
393 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
394 		*ipv6_ext = 1;
395 
396 	if (skb->encapsulation)
397 		rc |= XMIT_ENC;
398 
399 	if (skb_is_gso(skb))
400 		rc |= XMIT_LSO;
401 
402 	return rc;
403 }
404 
405 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
406 					 struct eth_tx_2nd_bd *second_bd,
407 					 struct eth_tx_3rd_bd *third_bd)
408 {
409 	u8 l4_proto;
410 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
411 
412 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
413 
414 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
415 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
416 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
417 
418 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
419 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
420 
421 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
422 		l4_proto = ipv6_hdr(skb)->nexthdr;
423 	else
424 		l4_proto = ip_hdr(skb)->protocol;
425 
426 	if (l4_proto == IPPROTO_UDP)
427 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
428 
429 	if (third_bd)
430 		third_bd->data.bitfields |=
431 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
432 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
433 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
434 
435 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
436 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
437 }
438 
439 static int map_frag_to_bd(struct qede_dev *edev,
440 			  skb_frag_t *frag,
441 			  struct eth_tx_bd *bd)
442 {
443 	dma_addr_t mapping;
444 
445 	/* Map skb non-linear frag data for DMA */
446 	mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
447 				   skb_frag_size(frag),
448 				   DMA_TO_DEVICE);
449 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
450 		DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
451 		return -ENOMEM;
452 	}
453 
454 	/* Setup the data pointer of the frag data */
455 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
456 
457 	return 0;
458 }
459 
460 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
461 {
462 	if (is_encap_pkt)
463 		return (skb_inner_transport_header(skb) +
464 			inner_tcp_hdrlen(skb) - skb->data);
465 	else
466 		return (skb_transport_header(skb) +
467 			tcp_hdrlen(skb) - skb->data);
468 }
469 
470 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
471 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
472 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
473 			     u8 xmit_type)
474 {
475 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
476 
477 	if (xmit_type & XMIT_LSO) {
478 		int hlen;
479 
480 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
481 
482 		/* linear payload would require its own BD */
483 		if (skb_headlen(skb) > hlen)
484 			allowed_frags--;
485 	}
486 
487 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
488 }
489 #endif
490 
491 /* Main transmit function */
492 static
493 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
494 			    struct net_device *ndev)
495 {
496 	struct qede_dev *edev = netdev_priv(ndev);
497 	struct netdev_queue *netdev_txq;
498 	struct qede_tx_queue *txq;
499 	struct eth_tx_1st_bd *first_bd;
500 	struct eth_tx_2nd_bd *second_bd = NULL;
501 	struct eth_tx_3rd_bd *third_bd = NULL;
502 	struct eth_tx_bd *tx_data_bd = NULL;
503 	u16 txq_index;
504 	u8 nbd = 0;
505 	dma_addr_t mapping;
506 	int rc, frag_idx = 0, ipv6_ext = 0;
507 	u8 xmit_type;
508 	u16 idx;
509 	u16 hlen;
510 	bool data_split = false;
511 
512 	/* Get tx-queue context and netdev index */
513 	txq_index = skb_get_queue_mapping(skb);
514 	WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
515 	txq = QEDE_TX_QUEUE(edev, txq_index);
516 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
517 
518 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
519 			       (MAX_SKB_FRAGS + 1));
520 
521 	xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
522 
523 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
524 	if (qede_pkt_req_lin(edev, skb, xmit_type)) {
525 		if (skb_linearize(skb)) {
526 			DP_NOTICE(edev,
527 				  "SKB linearization failed - silently dropping this SKB\n");
528 			dev_kfree_skb_any(skb);
529 			return NETDEV_TX_OK;
530 		}
531 	}
532 #endif
533 
534 	/* Fill the entry in the SW ring and the BDs in the FW ring */
535 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
536 	txq->sw_tx_ring[idx].skb = skb;
537 	first_bd = (struct eth_tx_1st_bd *)
538 		   qed_chain_produce(&txq->tx_pbl);
539 	memset(first_bd, 0, sizeof(*first_bd));
540 	first_bd->data.bd_flags.bitfields =
541 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
542 
543 	/* Map skb linear data for DMA and set in the first BD */
544 	mapping = dma_map_single(&edev->pdev->dev, skb->data,
545 				 skb_headlen(skb), DMA_TO_DEVICE);
546 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
547 		DP_NOTICE(edev, "SKB mapping failed\n");
548 		qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
549 		return NETDEV_TX_OK;
550 	}
551 	nbd++;
552 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
553 
554 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
555 	 * 3rd BDs.
556 	 */
557 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
558 		second_bd = (struct eth_tx_2nd_bd *)
559 			qed_chain_produce(&txq->tx_pbl);
560 		memset(second_bd, 0, sizeof(*second_bd));
561 
562 		nbd++;
563 		third_bd = (struct eth_tx_3rd_bd *)
564 			qed_chain_produce(&txq->tx_pbl);
565 		memset(third_bd, 0, sizeof(*third_bd));
566 
567 		nbd++;
568 		/* We need to fill in additional data in second_bd... */
569 		tx_data_bd = (struct eth_tx_bd *)second_bd;
570 	}
571 
572 	if (skb_vlan_tag_present(skb)) {
573 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
574 		first_bd->data.bd_flags.bitfields |=
575 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
576 	}
577 
578 	/* Fill the parsing flags & params according to the requested offload */
579 	if (xmit_type & XMIT_L4_CSUM) {
580 		u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
581 
582 		/* We don't re-calculate IP checksum as it is already done by
583 		 * the upper stack
584 		 */
585 		first_bd->data.bd_flags.bitfields |=
586 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
587 
588 		if (xmit_type & XMIT_ENC) {
589 			first_bd->data.bd_flags.bitfields |=
590 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
591 		} else {
592 			/* In cases when OS doesn't indicate for inner offloads
593 			 * when packet is tunnelled, we need to override the HW
594 			 * tunnel configuration so that packets are treated as
595 			 * regular non tunnelled packets and no inner offloads
596 			 * are done by the hardware.
597 			 */
598 			first_bd->data.bitfields |= cpu_to_le16(temp);
599 		}
600 
601 		/* If the packet is IPv6 with extension header, indicate that
602 		 * to FW and pass few params, since the device cracker doesn't
603 		 * support parsing IPv6 with extension header/s.
604 		 */
605 		if (unlikely(ipv6_ext))
606 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
607 	}
608 
609 	if (xmit_type & XMIT_LSO) {
610 		first_bd->data.bd_flags.bitfields |=
611 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
612 		third_bd->data.lso_mss =
613 			cpu_to_le16(skb_shinfo(skb)->gso_size);
614 
615 		if (unlikely(xmit_type & XMIT_ENC)) {
616 			first_bd->data.bd_flags.bitfields |=
617 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
618 			hlen = qede_get_skb_hlen(skb, true);
619 		} else {
620 			first_bd->data.bd_flags.bitfields |=
621 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
622 			hlen = qede_get_skb_hlen(skb, false);
623 		}
624 
625 		/* @@@TBD - if will not be removed need to check */
626 		third_bd->data.bitfields |=
627 			cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
628 
629 		/* Make life easier for FW guys who can't deal with header and
630 		 * data on same BD. If we need to split, use the second bd...
631 		 */
632 		if (unlikely(skb_headlen(skb) > hlen)) {
633 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
634 				   "TSO split header size is %d (%x:%x)\n",
635 				   first_bd->nbytes, first_bd->addr.hi,
636 				   first_bd->addr.lo);
637 
638 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
639 					   le32_to_cpu(first_bd->addr.lo)) +
640 					   hlen;
641 
642 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
643 					      le16_to_cpu(first_bd->nbytes) -
644 					      hlen);
645 
646 			/* this marks the BD as one that has no
647 			 * individual mapping
648 			 */
649 			txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
650 
651 			first_bd->nbytes = cpu_to_le16(hlen);
652 
653 			tx_data_bd = (struct eth_tx_bd *)third_bd;
654 			data_split = true;
655 		}
656 	}
657 
658 	/* Handle fragmented skb */
659 	/* special handle for frags inside 2nd and 3rd bds.. */
660 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
661 		rc = map_frag_to_bd(edev,
662 				    &skb_shinfo(skb)->frags[frag_idx],
663 				    tx_data_bd);
664 		if (rc) {
665 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
666 						data_split);
667 			return NETDEV_TX_OK;
668 		}
669 
670 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
671 			tx_data_bd = (struct eth_tx_bd *)third_bd;
672 		else
673 			tx_data_bd = NULL;
674 
675 		frag_idx++;
676 	}
677 
678 	/* map last frags into 4th, 5th .... */
679 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
680 		tx_data_bd = (struct eth_tx_bd *)
681 			     qed_chain_produce(&txq->tx_pbl);
682 
683 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
684 
685 		rc = map_frag_to_bd(edev,
686 				    &skb_shinfo(skb)->frags[frag_idx],
687 				    tx_data_bd);
688 		if (rc) {
689 			qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
690 						data_split);
691 			return NETDEV_TX_OK;
692 		}
693 	}
694 
695 	/* update the first BD with the actual num BDs */
696 	first_bd->data.nbds = nbd;
697 
698 	netdev_tx_sent_queue(netdev_txq, skb->len);
699 
700 	skb_tx_timestamp(skb);
701 
702 	/* Advance packet producer only before sending the packet since mapping
703 	 * of pages may fail.
704 	 */
705 	txq->sw_tx_prod++;
706 
707 	/* 'next page' entries are counted in the producer value */
708 	txq->tx_db.data.bd_prod =
709 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
710 
711 	/* wmb makes sure that the BDs data is updated before updating the
712 	 * producer, otherwise FW may read old data from the BDs.
713 	 */
714 	wmb();
715 	barrier();
716 	writel(txq->tx_db.raw, txq->doorbell_addr);
717 
718 	/* mmiowb is needed to synchronize doorbell writes from more than one
719 	 * processor. It guarantees that the write arrives to the device before
720 	 * the queue lock is released and another start_xmit is called (possibly
721 	 * on another CPU). Without this barrier, the next doorbell can bypass
722 	 * this doorbell. This is applicable to IA64/Altix systems.
723 	 */
724 	mmiowb();
725 
726 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
727 		      < (MAX_SKB_FRAGS + 1))) {
728 		netif_tx_stop_queue(netdev_txq);
729 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
730 			   "Stop queue was called\n");
731 		/* paired memory barrier is in qede_tx_int(), we have to keep
732 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
733 		 * fp->bd_tx_cons
734 		 */
735 		smp_mb();
736 
737 		if (qed_chain_get_elem_left(&txq->tx_pbl)
738 		     >= (MAX_SKB_FRAGS + 1) &&
739 		    (edev->state == QEDE_STATE_OPEN)) {
740 			netif_tx_wake_queue(netdev_txq);
741 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
742 				   "Wake queue was called\n");
743 		}
744 	}
745 
746 	return NETDEV_TX_OK;
747 }
748 
749 int qede_txq_has_work(struct qede_tx_queue *txq)
750 {
751 	u16 hw_bd_cons;
752 
753 	/* Tell compiler that consumer and producer can change */
754 	barrier();
755 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
756 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
757 		return 0;
758 
759 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
760 }
761 
762 static int qede_tx_int(struct qede_dev *edev,
763 		       struct qede_tx_queue *txq)
764 {
765 	struct netdev_queue *netdev_txq;
766 	u16 hw_bd_cons;
767 	unsigned int pkts_compl = 0, bytes_compl = 0;
768 	int rc;
769 
770 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
771 
772 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
773 	barrier();
774 
775 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
776 		int len = 0;
777 
778 		rc = qede_free_tx_pkt(edev, txq, &len);
779 		if (rc) {
780 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
781 				  hw_bd_cons,
782 				  qed_chain_get_cons_idx(&txq->tx_pbl));
783 			break;
784 		}
785 
786 		bytes_compl += len;
787 		pkts_compl++;
788 		txq->sw_tx_cons++;
789 	}
790 
791 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
792 
793 	/* Need to make the tx_bd_cons update visible to start_xmit()
794 	 * before checking for netif_tx_queue_stopped().  Without the
795 	 * memory barrier, there is a small possibility that
796 	 * start_xmit() will miss it and cause the queue to be stopped
797 	 * forever.
798 	 * On the other hand we need an rmb() here to ensure the proper
799 	 * ordering of bit testing in the following
800 	 * netif_tx_queue_stopped(txq) call.
801 	 */
802 	smp_mb();
803 
804 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
805 		/* Taking tx_lock is needed to prevent reenabling the queue
806 		 * while it's empty. This could have happen if rx_action() gets
807 		 * suspended in qede_tx_int() after the condition before
808 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
809 		 *
810 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
811 		 * sends some packets consuming the whole queue again->
812 		 * stops the queue
813 		 */
814 
815 		__netif_tx_lock(netdev_txq, smp_processor_id());
816 
817 		if ((netif_tx_queue_stopped(netdev_txq)) &&
818 		    (edev->state == QEDE_STATE_OPEN) &&
819 		    (qed_chain_get_elem_left(&txq->tx_pbl)
820 		      >= (MAX_SKB_FRAGS + 1))) {
821 			netif_tx_wake_queue(netdev_txq);
822 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
823 				   "Wake queue was called\n");
824 		}
825 
826 		__netif_tx_unlock(netdev_txq);
827 	}
828 
829 	return 0;
830 }
831 
832 bool qede_has_rx_work(struct qede_rx_queue *rxq)
833 {
834 	u16 hw_comp_cons, sw_comp_cons;
835 
836 	/* Tell compiler that status block fields can change */
837 	barrier();
838 
839 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
840 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
841 
842 	return hw_comp_cons != sw_comp_cons;
843 }
844 
845 static bool qede_has_tx_work(struct qede_fastpath *fp)
846 {
847 	u8 tc;
848 
849 	for (tc = 0; tc < fp->edev->num_tc; tc++)
850 		if (qede_txq_has_work(&fp->txqs[tc]))
851 			return true;
852 	return false;
853 }
854 
855 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
856 {
857 	qed_chain_consume(&rxq->rx_bd_ring);
858 	rxq->sw_rx_cons++;
859 }
860 
861 /* This function reuses the buffer(from an offset) from
862  * consumer index to producer index in the bd ring
863  */
864 static inline void qede_reuse_page(struct qede_dev *edev,
865 				   struct qede_rx_queue *rxq,
866 				   struct sw_rx_data *curr_cons)
867 {
868 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
869 	struct sw_rx_data *curr_prod;
870 	dma_addr_t new_mapping;
871 
872 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
873 	*curr_prod = *curr_cons;
874 
875 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
876 
877 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
878 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
879 
880 	rxq->sw_rx_prod++;
881 	curr_cons->data = NULL;
882 }
883 
884 /* In case of allocation failures reuse buffers
885  * from consumer index to produce buffers for firmware
886  */
887 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
888 			     struct qede_dev *edev, u8 count)
889 {
890 	struct sw_rx_data *curr_cons;
891 
892 	for (; count > 0; count--) {
893 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
894 		qede_reuse_page(edev, rxq, curr_cons);
895 		qede_rx_bd_ring_consume(rxq);
896 	}
897 }
898 
899 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
900 					 struct qede_rx_queue *rxq,
901 					 struct sw_rx_data *curr_cons)
902 {
903 	/* Move to the next segment in the page */
904 	curr_cons->page_offset += rxq->rx_buf_seg_size;
905 
906 	if (curr_cons->page_offset == PAGE_SIZE) {
907 		if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
908 			/* Since we failed to allocate new buffer
909 			 * current buffer can be used again.
910 			 */
911 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
912 
913 			return -ENOMEM;
914 		}
915 
916 		dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
917 			       PAGE_SIZE, DMA_FROM_DEVICE);
918 	} else {
919 		/* Increment refcount of the page as we don't want
920 		 * network stack to take the ownership of the page
921 		 * which can be recycled multiple times by the driver.
922 		 */
923 		page_ref_inc(curr_cons->data);
924 		qede_reuse_page(edev, rxq, curr_cons);
925 	}
926 
927 	return 0;
928 }
929 
930 static inline void qede_update_rx_prod(struct qede_dev *edev,
931 				       struct qede_rx_queue *rxq)
932 {
933 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
934 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
935 	struct eth_rx_prod_data rx_prods = {0};
936 
937 	/* Update producers */
938 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
939 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
940 
941 	/* Make sure that the BD and SGE data is updated before updating the
942 	 * producers since FW might read the BD/SGE right after the producer
943 	 * is updated.
944 	 */
945 	wmb();
946 
947 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
948 			(u32 *)&rx_prods);
949 
950 	/* mmiowb is needed to synchronize doorbell writes from more than one
951 	 * processor. It guarantees that the write arrives to the device before
952 	 * the napi lock is released and another qede_poll is called (possibly
953 	 * on another CPU). Without this barrier, the next doorbell can bypass
954 	 * this doorbell. This is applicable to IA64/Altix systems.
955 	 */
956 	mmiowb();
957 }
958 
959 static u32 qede_get_rxhash(struct qede_dev *edev,
960 			   u8 bitfields,
961 			   __le32 rss_hash,
962 			   enum pkt_hash_types *rxhash_type)
963 {
964 	enum rss_hash_type htype;
965 
966 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
967 
968 	if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
969 		*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
970 				(htype == RSS_HASH_TYPE_IPV6)) ?
971 				PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
972 		return le32_to_cpu(rss_hash);
973 	}
974 	*rxhash_type = PKT_HASH_TYPE_NONE;
975 	return 0;
976 }
977 
978 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
979 {
980 	skb_checksum_none_assert(skb);
981 
982 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
983 		skb->ip_summed = CHECKSUM_UNNECESSARY;
984 
985 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY)
986 		skb->csum_level = 1;
987 }
988 
989 static inline void qede_skb_receive(struct qede_dev *edev,
990 				    struct qede_fastpath *fp,
991 				    struct sk_buff *skb,
992 				    u16 vlan_tag)
993 {
994 	if (vlan_tag)
995 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
996 				       vlan_tag);
997 
998 	napi_gro_receive(&fp->napi, skb);
999 }
1000 
1001 static void qede_set_gro_params(struct qede_dev *edev,
1002 				struct sk_buff *skb,
1003 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
1004 {
1005 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
1006 
1007 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
1008 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
1009 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
1010 	else
1011 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
1012 
1013 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
1014 					cqe->header_len;
1015 }
1016 
1017 static int qede_fill_frag_skb(struct qede_dev *edev,
1018 			      struct qede_rx_queue *rxq,
1019 			      u8 tpa_agg_index,
1020 			      u16 len_on_bd)
1021 {
1022 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
1023 							 NUM_RX_BDS_MAX];
1024 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
1025 	struct sk_buff *skb = tpa_info->skb;
1026 
1027 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1028 		goto out;
1029 
1030 	/* Add one frag and update the appropriate fields in the skb */
1031 	skb_fill_page_desc(skb, tpa_info->frag_id++,
1032 			   current_bd->data, current_bd->page_offset,
1033 			   len_on_bd);
1034 
1035 	if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
1036 		/* Incr page ref count to reuse on allocation failure
1037 		 * so that it doesn't get freed while freeing SKB.
1038 		 */
1039 		page_ref_inc(current_bd->data);
1040 		goto out;
1041 	}
1042 
1043 	qed_chain_consume(&rxq->rx_bd_ring);
1044 	rxq->sw_rx_cons++;
1045 
1046 	skb->data_len += len_on_bd;
1047 	skb->truesize += rxq->rx_buf_seg_size;
1048 	skb->len += len_on_bd;
1049 
1050 	return 0;
1051 
1052 out:
1053 	tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1054 	qede_recycle_rx_bd_ring(rxq, edev, 1);
1055 	return -ENOMEM;
1056 }
1057 
1058 static void qede_tpa_start(struct qede_dev *edev,
1059 			   struct qede_rx_queue *rxq,
1060 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
1061 {
1062 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1063 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
1064 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
1065 	struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
1066 	dma_addr_t mapping = tpa_info->replace_buf_mapping;
1067 	struct sw_rx_data *sw_rx_data_cons;
1068 	struct sw_rx_data *sw_rx_data_prod;
1069 	enum pkt_hash_types rxhash_type;
1070 	u32 rxhash;
1071 
1072 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
1073 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
1074 
1075 	/* Use pre-allocated replacement buffer - we can't release the agg.
1076 	 * start until its over and we don't want to risk allocation failing
1077 	 * here, so re-allocate when aggregation will be over.
1078 	 */
1079 	sw_rx_data_prod->mapping = replace_buf->mapping;
1080 
1081 	sw_rx_data_prod->data = replace_buf->data;
1082 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
1083 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
1084 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
1085 
1086 	rxq->sw_rx_prod++;
1087 
1088 	/* move partial skb from cons to pool (don't unmap yet)
1089 	 * save mapping, incase we drop the packet later on.
1090 	 */
1091 	tpa_info->start_buf = *sw_rx_data_cons;
1092 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
1093 			   le32_to_cpu(rx_bd_cons->addr.lo));
1094 
1095 	tpa_info->start_buf_mapping = mapping;
1096 	rxq->sw_rx_cons++;
1097 
1098 	/* set tpa state to start only if we are able to allocate skb
1099 	 * for this aggregation, otherwise mark as error and aggregation will
1100 	 * be dropped
1101 	 */
1102 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
1103 					 le16_to_cpu(cqe->len_on_first_bd));
1104 	if (unlikely(!tpa_info->skb)) {
1105 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
1106 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1107 		goto cons_buf;
1108 	}
1109 
1110 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
1111 	memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
1112 
1113 	/* Start filling in the aggregation info */
1114 	tpa_info->frag_id = 0;
1115 	tpa_info->agg_state = QEDE_AGG_STATE_START;
1116 
1117 	rxhash = qede_get_rxhash(edev, cqe->bitfields,
1118 				 cqe->rss_hash, &rxhash_type);
1119 	skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
1120 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
1121 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
1122 		    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
1123 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
1124 	else
1125 		tpa_info->vlan_tag = 0;
1126 
1127 	/* This is needed in order to enable forwarding support */
1128 	qede_set_gro_params(edev, tpa_info->skb, cqe);
1129 
1130 cons_buf: /* We still need to handle bd_len_list to consume buffers */
1131 	if (likely(cqe->ext_bd_len_list[0]))
1132 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1133 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
1134 
1135 	if (unlikely(cqe->ext_bd_len_list[1])) {
1136 		DP_ERR(edev,
1137 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1138 		tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1139 	}
1140 }
1141 
1142 #ifdef CONFIG_INET
1143 static void qede_gro_ip_csum(struct sk_buff *skb)
1144 {
1145 	const struct iphdr *iph = ip_hdr(skb);
1146 	struct tcphdr *th;
1147 
1148 	skb_set_transport_header(skb, sizeof(struct iphdr));
1149 	th = tcp_hdr(skb);
1150 
1151 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1152 				  iph->saddr, iph->daddr, 0);
1153 
1154 	tcp_gro_complete(skb);
1155 }
1156 
1157 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1158 {
1159 	struct ipv6hdr *iph = ipv6_hdr(skb);
1160 	struct tcphdr *th;
1161 
1162 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1163 	th = tcp_hdr(skb);
1164 
1165 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1166 				  &iph->saddr, &iph->daddr, 0);
1167 	tcp_gro_complete(skb);
1168 }
1169 #endif
1170 
1171 static void qede_gro_receive(struct qede_dev *edev,
1172 			     struct qede_fastpath *fp,
1173 			     struct sk_buff *skb,
1174 			     u16 vlan_tag)
1175 {
1176 	/* FW can send a single MTU sized packet from gro flow
1177 	 * due to aggregation timeout/last segment etc. which
1178 	 * is not expected to be a gro packet. If a skb has zero
1179 	 * frags then simply push it in the stack as non gso skb.
1180 	 */
1181 	if (unlikely(!skb->data_len)) {
1182 		skb_shinfo(skb)->gso_type = 0;
1183 		skb_shinfo(skb)->gso_size = 0;
1184 		goto send_skb;
1185 	}
1186 
1187 #ifdef CONFIG_INET
1188 	if (skb_shinfo(skb)->gso_size) {
1189 		skb_set_network_header(skb, 0);
1190 
1191 		switch (skb->protocol) {
1192 		case htons(ETH_P_IP):
1193 			qede_gro_ip_csum(skb);
1194 			break;
1195 		case htons(ETH_P_IPV6):
1196 			qede_gro_ipv6_csum(skb);
1197 			break;
1198 		default:
1199 			DP_ERR(edev,
1200 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1201 			       ntohs(skb->protocol));
1202 		}
1203 	}
1204 #endif
1205 
1206 send_skb:
1207 	skb_record_rx_queue(skb, fp->rss_id);
1208 	qede_skb_receive(edev, fp, skb, vlan_tag);
1209 }
1210 
1211 static inline void qede_tpa_cont(struct qede_dev *edev,
1212 				 struct qede_rx_queue *rxq,
1213 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1214 {
1215 	int i;
1216 
1217 	for (i = 0; cqe->len_list[i]; i++)
1218 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1219 				   le16_to_cpu(cqe->len_list[i]));
1220 
1221 	if (unlikely(i > 1))
1222 		DP_ERR(edev,
1223 		       "Strange - TPA cont with more than a single len_list entry\n");
1224 }
1225 
1226 static void qede_tpa_end(struct qede_dev *edev,
1227 			 struct qede_fastpath *fp,
1228 			 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1229 {
1230 	struct qede_rx_queue *rxq = fp->rxq;
1231 	struct qede_agg_info *tpa_info;
1232 	struct sk_buff *skb;
1233 	int i;
1234 
1235 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1236 	skb = tpa_info->skb;
1237 
1238 	for (i = 0; cqe->len_list[i]; i++)
1239 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1240 				   le16_to_cpu(cqe->len_list[i]));
1241 	if (unlikely(i > 1))
1242 		DP_ERR(edev,
1243 		       "Strange - TPA emd with more than a single len_list entry\n");
1244 
1245 	if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1246 		goto err;
1247 
1248 	/* Sanity */
1249 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1250 		DP_ERR(edev,
1251 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1252 		       cqe->num_of_bds, tpa_info->frag_id);
1253 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1254 		DP_ERR(edev,
1255 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1256 		       le16_to_cpu(cqe->total_packet_len), skb->len);
1257 
1258 	memcpy(skb->data,
1259 	       page_address(tpa_info->start_buf.data) +
1260 		tpa_info->start_cqe.placement_offset +
1261 		tpa_info->start_buf.page_offset,
1262 	       le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1263 
1264 	/* Recycle [mapped] start buffer for the next replacement */
1265 	tpa_info->replace_buf = tpa_info->start_buf;
1266 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1267 
1268 	/* Finalize the SKB */
1269 	skb->protocol = eth_type_trans(skb, edev->ndev);
1270 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1271 
1272 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1273 	 * to skb_shinfo(skb)->gso_segs
1274 	 */
1275 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1276 
1277 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1278 
1279 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1280 
1281 	return;
1282 err:
1283 	/* The BD starting the aggregation is still mapped; Re-use it for
1284 	 * future aggregations [as replacement buffer]
1285 	 */
1286 	memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1287 	       sizeof(struct sw_rx_data));
1288 	tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1289 	tpa_info->start_buf.data = NULL;
1290 	tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1291 	dev_kfree_skb_any(tpa_info->skb);
1292 	tpa_info->skb = NULL;
1293 }
1294 
1295 static bool qede_tunn_exist(u16 flag)
1296 {
1297 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1298 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
1299 }
1300 
1301 static u8 qede_check_tunn_csum(u16 flag)
1302 {
1303 	u16 csum_flag = 0;
1304 	u8 tcsum = 0;
1305 
1306 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1307 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
1308 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1309 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
1310 
1311 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1312 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1313 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1314 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1315 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
1316 	}
1317 
1318 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1319 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
1320 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1321 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1322 
1323 	if (csum_flag & flag)
1324 		return QEDE_CSUM_ERROR;
1325 
1326 	return QEDE_CSUM_UNNECESSARY | tcsum;
1327 }
1328 
1329 static u8 qede_check_notunn_csum(u16 flag)
1330 {
1331 	u16 csum_flag = 0;
1332 	u8 csum = 0;
1333 
1334 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1335 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1336 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1337 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1338 		csum = QEDE_CSUM_UNNECESSARY;
1339 	}
1340 
1341 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1342 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1343 
1344 	if (csum_flag & flag)
1345 		return QEDE_CSUM_ERROR;
1346 
1347 	return csum;
1348 }
1349 
1350 static u8 qede_check_csum(u16 flag)
1351 {
1352 	if (!qede_tunn_exist(flag))
1353 		return qede_check_notunn_csum(flag);
1354 	else
1355 		return qede_check_tunn_csum(flag);
1356 }
1357 
1358 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1359 {
1360 	struct qede_dev *edev = fp->edev;
1361 	struct qede_rx_queue *rxq = fp->rxq;
1362 
1363 	u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1364 	int rx_pkt = 0;
1365 	u8 csum_flag;
1366 
1367 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1368 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1369 
1370 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1371 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1372 	 * read before it is written by FW, then FW writes CQE and SB, and then
1373 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1374 	 */
1375 	rmb();
1376 
1377 	/* Loop to complete all indicated BDs */
1378 	while (sw_comp_cons != hw_comp_cons) {
1379 		struct eth_fast_path_rx_reg_cqe *fp_cqe;
1380 		enum pkt_hash_types rxhash_type;
1381 		enum eth_rx_cqe_type cqe_type;
1382 		struct sw_rx_data *sw_rx_data;
1383 		union eth_rx_cqe *cqe;
1384 		struct sk_buff *skb;
1385 		struct page *data;
1386 		__le16 flags;
1387 		u16 len, pad;
1388 		u32 rx_hash;
1389 
1390 		/* Get the CQE from the completion ring */
1391 		cqe = (union eth_rx_cqe *)
1392 			qed_chain_consume(&rxq->rx_comp_ring);
1393 		cqe_type = cqe->fast_path_regular.type;
1394 
1395 		if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1396 			edev->ops->eth_cqe_completion(
1397 					edev->cdev, fp->rss_id,
1398 					(struct eth_slow_path_rx_cqe *)cqe);
1399 			goto next_cqe;
1400 		}
1401 
1402 		if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1403 			switch (cqe_type) {
1404 			case ETH_RX_CQE_TYPE_TPA_START:
1405 				qede_tpa_start(edev, rxq,
1406 					       &cqe->fast_path_tpa_start);
1407 				goto next_cqe;
1408 			case ETH_RX_CQE_TYPE_TPA_CONT:
1409 				qede_tpa_cont(edev, rxq,
1410 					      &cqe->fast_path_tpa_cont);
1411 				goto next_cqe;
1412 			case ETH_RX_CQE_TYPE_TPA_END:
1413 				qede_tpa_end(edev, fp,
1414 					     &cqe->fast_path_tpa_end);
1415 				goto next_rx_only;
1416 			default:
1417 				break;
1418 			}
1419 		}
1420 
1421 		/* Get the data from the SW ring */
1422 		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1423 		sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1424 		data = sw_rx_data->data;
1425 
1426 		fp_cqe = &cqe->fast_path_regular;
1427 		len =  le16_to_cpu(fp_cqe->len_on_first_bd);
1428 		pad = fp_cqe->placement_offset;
1429 		flags = cqe->fast_path_regular.pars_flags.flags;
1430 
1431 		/* If this is an error packet then drop it */
1432 		parse_flag = le16_to_cpu(flags);
1433 
1434 		csum_flag = qede_check_csum(parse_flag);
1435 		if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1436 			DP_NOTICE(edev,
1437 				  "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1438 				  sw_comp_cons, parse_flag);
1439 			rxq->rx_hw_errors++;
1440 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1441 			goto next_cqe;
1442 		}
1443 
1444 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1445 		if (unlikely(!skb)) {
1446 			DP_NOTICE(edev,
1447 				  "Build_skb failed, dropping incoming packet\n");
1448 			qede_recycle_rx_bd_ring(rxq, edev, fp_cqe->bd_num);
1449 			rxq->rx_alloc_errors++;
1450 			goto next_cqe;
1451 		}
1452 
1453 		/* Copy data into SKB */
1454 		if (len + pad <= QEDE_RX_HDR_SIZE) {
1455 			memcpy(skb_put(skb, len),
1456 			       page_address(data) + pad +
1457 				sw_rx_data->page_offset, len);
1458 			qede_reuse_page(edev, rxq, sw_rx_data);
1459 		} else {
1460 			struct skb_frag_struct *frag;
1461 			unsigned int pull_len;
1462 			unsigned char *va;
1463 
1464 			frag = &skb_shinfo(skb)->frags[0];
1465 
1466 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1467 					pad + sw_rx_data->page_offset,
1468 					len, rxq->rx_buf_seg_size);
1469 
1470 			va = skb_frag_address(frag);
1471 			pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1472 
1473 			/* Align the pull_len to optimize memcpy */
1474 			memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1475 
1476 			skb_frag_size_sub(frag, pull_len);
1477 			frag->page_offset += pull_len;
1478 			skb->data_len -= pull_len;
1479 			skb->tail += pull_len;
1480 
1481 			if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1482 							    sw_rx_data))) {
1483 				DP_ERR(edev, "Failed to allocate rx buffer\n");
1484 				/* Incr page ref count to reuse on allocation
1485 				 * failure so that it doesn't get freed while
1486 				 * freeing SKB.
1487 				 */
1488 
1489 				page_ref_inc(sw_rx_data->data);
1490 				rxq->rx_alloc_errors++;
1491 				qede_recycle_rx_bd_ring(rxq, edev,
1492 							fp_cqe->bd_num);
1493 				dev_kfree_skb_any(skb);
1494 				goto next_cqe;
1495 			}
1496 		}
1497 
1498 		qede_rx_bd_ring_consume(rxq);
1499 
1500 		if (fp_cqe->bd_num != 1) {
1501 			u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1502 			u8 num_frags;
1503 
1504 			pkt_len -= len;
1505 
1506 			for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1507 			     num_frags--) {
1508 				u16 cur_size = pkt_len > rxq->rx_buf_size ?
1509 						rxq->rx_buf_size : pkt_len;
1510 				if (unlikely(!cur_size)) {
1511 					DP_ERR(edev,
1512 					       "Still got %d BDs for mapping jumbo, but length became 0\n",
1513 					       num_frags);
1514 					qede_recycle_rx_bd_ring(rxq, edev,
1515 								num_frags);
1516 					dev_kfree_skb_any(skb);
1517 					goto next_cqe;
1518 				}
1519 
1520 				if (unlikely(qede_alloc_rx_buffer(edev, rxq))) {
1521 					qede_recycle_rx_bd_ring(rxq, edev,
1522 								num_frags);
1523 					dev_kfree_skb_any(skb);
1524 					goto next_cqe;
1525 				}
1526 
1527 				sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1528 				sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1529 				qede_rx_bd_ring_consume(rxq);
1530 
1531 				dma_unmap_page(&edev->pdev->dev,
1532 					       sw_rx_data->mapping,
1533 					       PAGE_SIZE, DMA_FROM_DEVICE);
1534 
1535 				skb_fill_page_desc(skb,
1536 						   skb_shinfo(skb)->nr_frags++,
1537 						   sw_rx_data->data, 0,
1538 						   cur_size);
1539 
1540 				skb->truesize += PAGE_SIZE;
1541 				skb->data_len += cur_size;
1542 				skb->len += cur_size;
1543 				pkt_len -= cur_size;
1544 			}
1545 
1546 			if (unlikely(pkt_len))
1547 				DP_ERR(edev,
1548 				       "Mapped all BDs of jumbo, but still have %d bytes\n",
1549 				       pkt_len);
1550 		}
1551 
1552 		skb->protocol = eth_type_trans(skb, edev->ndev);
1553 
1554 		rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1555 					  fp_cqe->rss_hash,
1556 					  &rxhash_type);
1557 
1558 		skb_set_hash(skb, rx_hash, rxhash_type);
1559 
1560 		qede_set_skb_csum(skb, csum_flag);
1561 
1562 		skb_record_rx_queue(skb, fp->rss_id);
1563 
1564 		qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1565 next_rx_only:
1566 		rx_pkt++;
1567 
1568 next_cqe: /* don't consume bd rx buffer */
1569 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1570 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1571 		/* CR TPA - revisit how to handle budget in TPA perhaps
1572 		 * increase on "end"
1573 		 */
1574 		if (rx_pkt == budget)
1575 			break;
1576 	} /* repeat while sw_comp_cons != hw_comp_cons... */
1577 
1578 	/* Update producers */
1579 	qede_update_rx_prod(edev, rxq);
1580 
1581 	return rx_pkt;
1582 }
1583 
1584 static int qede_poll(struct napi_struct *napi, int budget)
1585 {
1586 	int work_done = 0;
1587 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1588 						 napi);
1589 	struct qede_dev *edev = fp->edev;
1590 
1591 	while (1) {
1592 		u8 tc;
1593 
1594 		for (tc = 0; tc < edev->num_tc; tc++)
1595 			if (qede_txq_has_work(&fp->txqs[tc]))
1596 				qede_tx_int(edev, &fp->txqs[tc]);
1597 
1598 		if (qede_has_rx_work(fp->rxq)) {
1599 			work_done += qede_rx_int(fp, budget - work_done);
1600 
1601 			/* must not complete if we consumed full budget */
1602 			if (work_done >= budget)
1603 				break;
1604 		}
1605 
1606 		/* Fall out from the NAPI loop if needed */
1607 		if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1608 			qed_sb_update_sb_idx(fp->sb_info);
1609 			/* *_has_*_work() reads the status block,
1610 			 * thus we need to ensure that status block indices
1611 			 * have been actually read (qed_sb_update_sb_idx)
1612 			 * prior to this check (*_has_*_work) so that
1613 			 * we won't write the "newer" value of the status block
1614 			 * to HW (if there was a DMA right after
1615 			 * qede_has_rx_work and if there is no rmb, the memory
1616 			 * reading (qed_sb_update_sb_idx) may be postponed
1617 			 * to right before *_ack_sb). In this case there
1618 			 * will never be another interrupt until there is
1619 			 * another update of the status block, while there
1620 			 * is still unhandled work.
1621 			 */
1622 			rmb();
1623 
1624 			if (!(qede_has_rx_work(fp->rxq) ||
1625 			      qede_has_tx_work(fp))) {
1626 				napi_complete(napi);
1627 				/* Update and reenable interrupts */
1628 				qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1629 					   1 /*update*/);
1630 				break;
1631 			}
1632 		}
1633 	}
1634 
1635 	return work_done;
1636 }
1637 
1638 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1639 {
1640 	struct qede_fastpath *fp = fp_cookie;
1641 
1642 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1643 
1644 	napi_schedule_irqoff(&fp->napi);
1645 	return IRQ_HANDLED;
1646 }
1647 
1648 /* -------------------------------------------------------------------------
1649  * END OF FAST-PATH
1650  * -------------------------------------------------------------------------
1651  */
1652 
1653 static int qede_open(struct net_device *ndev);
1654 static int qede_close(struct net_device *ndev);
1655 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1656 static void qede_set_rx_mode(struct net_device *ndev);
1657 static void qede_config_rx_mode(struct net_device *ndev);
1658 
1659 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1660 				 enum qed_filter_xcast_params_type opcode,
1661 				 unsigned char mac[ETH_ALEN])
1662 {
1663 	struct qed_filter_params filter_cmd;
1664 
1665 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1666 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1667 	filter_cmd.filter.ucast.type = opcode;
1668 	filter_cmd.filter.ucast.mac_valid = 1;
1669 	ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1670 
1671 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1672 }
1673 
1674 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1675 				  enum qed_filter_xcast_params_type opcode,
1676 				  u16 vid)
1677 {
1678 	struct qed_filter_params filter_cmd;
1679 
1680 	memset(&filter_cmd, 0, sizeof(filter_cmd));
1681 	filter_cmd.type = QED_FILTER_TYPE_UCAST;
1682 	filter_cmd.filter.ucast.type = opcode;
1683 	filter_cmd.filter.ucast.vlan_valid = 1;
1684 	filter_cmd.filter.ucast.vlan = vid;
1685 
1686 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
1687 }
1688 
1689 void qede_fill_by_demand_stats(struct qede_dev *edev)
1690 {
1691 	struct qed_eth_stats stats;
1692 
1693 	edev->ops->get_vport_stats(edev->cdev, &stats);
1694 	edev->stats.no_buff_discards = stats.no_buff_discards;
1695 	edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1696 	edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1697 	edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1698 	edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1699 	edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1700 	edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1701 	edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1702 	edev->stats.mac_filter_discards = stats.mac_filter_discards;
1703 
1704 	edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1705 	edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1706 	edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1707 	edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1708 	edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1709 	edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1710 	edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1711 	edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1712 	edev->stats.coalesced_events = stats.tpa_coalesced_events;
1713 	edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1714 	edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1715 	edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1716 
1717 	edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1718 	edev->stats.rx_65_to_127_byte_packets = stats.rx_65_to_127_byte_packets;
1719 	edev->stats.rx_128_to_255_byte_packets =
1720 				stats.rx_128_to_255_byte_packets;
1721 	edev->stats.rx_256_to_511_byte_packets =
1722 				stats.rx_256_to_511_byte_packets;
1723 	edev->stats.rx_512_to_1023_byte_packets =
1724 				stats.rx_512_to_1023_byte_packets;
1725 	edev->stats.rx_1024_to_1518_byte_packets =
1726 				stats.rx_1024_to_1518_byte_packets;
1727 	edev->stats.rx_1519_to_1522_byte_packets =
1728 				stats.rx_1519_to_1522_byte_packets;
1729 	edev->stats.rx_1519_to_2047_byte_packets =
1730 				stats.rx_1519_to_2047_byte_packets;
1731 	edev->stats.rx_2048_to_4095_byte_packets =
1732 				stats.rx_2048_to_4095_byte_packets;
1733 	edev->stats.rx_4096_to_9216_byte_packets =
1734 				stats.rx_4096_to_9216_byte_packets;
1735 	edev->stats.rx_9217_to_16383_byte_packets =
1736 				stats.rx_9217_to_16383_byte_packets;
1737 	edev->stats.rx_crc_errors = stats.rx_crc_errors;
1738 	edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1739 	edev->stats.rx_pause_frames = stats.rx_pause_frames;
1740 	edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1741 	edev->stats.rx_align_errors = stats.rx_align_errors;
1742 	edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1743 	edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1744 	edev->stats.rx_jabbers = stats.rx_jabbers;
1745 	edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1746 	edev->stats.rx_fragments = stats.rx_fragments;
1747 	edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1748 	edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1749 	edev->stats.tx_128_to_255_byte_packets =
1750 				stats.tx_128_to_255_byte_packets;
1751 	edev->stats.tx_256_to_511_byte_packets =
1752 				stats.tx_256_to_511_byte_packets;
1753 	edev->stats.tx_512_to_1023_byte_packets =
1754 				stats.tx_512_to_1023_byte_packets;
1755 	edev->stats.tx_1024_to_1518_byte_packets =
1756 				stats.tx_1024_to_1518_byte_packets;
1757 	edev->stats.tx_1519_to_2047_byte_packets =
1758 				stats.tx_1519_to_2047_byte_packets;
1759 	edev->stats.tx_2048_to_4095_byte_packets =
1760 				stats.tx_2048_to_4095_byte_packets;
1761 	edev->stats.tx_4096_to_9216_byte_packets =
1762 				stats.tx_4096_to_9216_byte_packets;
1763 	edev->stats.tx_9217_to_16383_byte_packets =
1764 				stats.tx_9217_to_16383_byte_packets;
1765 	edev->stats.tx_pause_frames = stats.tx_pause_frames;
1766 	edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1767 	edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1768 	edev->stats.tx_total_collisions = stats.tx_total_collisions;
1769 	edev->stats.brb_truncates = stats.brb_truncates;
1770 	edev->stats.brb_discards = stats.brb_discards;
1771 	edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1772 }
1773 
1774 static struct rtnl_link_stats64 *qede_get_stats64(
1775 			    struct net_device *dev,
1776 			    struct rtnl_link_stats64 *stats)
1777 {
1778 	struct qede_dev *edev = netdev_priv(dev);
1779 
1780 	qede_fill_by_demand_stats(edev);
1781 
1782 	stats->rx_packets = edev->stats.rx_ucast_pkts +
1783 			    edev->stats.rx_mcast_pkts +
1784 			    edev->stats.rx_bcast_pkts;
1785 	stats->tx_packets = edev->stats.tx_ucast_pkts +
1786 			    edev->stats.tx_mcast_pkts +
1787 			    edev->stats.tx_bcast_pkts;
1788 
1789 	stats->rx_bytes = edev->stats.rx_ucast_bytes +
1790 			  edev->stats.rx_mcast_bytes +
1791 			  edev->stats.rx_bcast_bytes;
1792 
1793 	stats->tx_bytes = edev->stats.tx_ucast_bytes +
1794 			  edev->stats.tx_mcast_bytes +
1795 			  edev->stats.tx_bcast_bytes;
1796 
1797 	stats->tx_errors = edev->stats.tx_err_drop_pkts;
1798 	stats->multicast = edev->stats.rx_mcast_pkts +
1799 			   edev->stats.rx_bcast_pkts;
1800 
1801 	stats->rx_fifo_errors = edev->stats.no_buff_discards;
1802 
1803 	stats->collisions = edev->stats.tx_total_collisions;
1804 	stats->rx_crc_errors = edev->stats.rx_crc_errors;
1805 	stats->rx_frame_errors = edev->stats.rx_align_errors;
1806 
1807 	return stats;
1808 }
1809 
1810 #ifdef CONFIG_QED_SRIOV
1811 static int qede_get_vf_config(struct net_device *dev, int vfidx,
1812 			      struct ifla_vf_info *ivi)
1813 {
1814 	struct qede_dev *edev = netdev_priv(dev);
1815 
1816 	if (!edev->ops)
1817 		return -EINVAL;
1818 
1819 	return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
1820 }
1821 
1822 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
1823 			    int min_tx_rate, int max_tx_rate)
1824 {
1825 	struct qede_dev *edev = netdev_priv(dev);
1826 
1827 	return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
1828 					max_tx_rate);
1829 }
1830 
1831 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
1832 {
1833 	struct qede_dev *edev = netdev_priv(dev);
1834 
1835 	if (!edev->ops)
1836 		return -EINVAL;
1837 
1838 	return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
1839 }
1840 
1841 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
1842 				  int link_state)
1843 {
1844 	struct qede_dev *edev = netdev_priv(dev);
1845 
1846 	if (!edev->ops)
1847 		return -EINVAL;
1848 
1849 	return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
1850 }
1851 #endif
1852 
1853 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1854 {
1855 	struct qed_update_vport_params params;
1856 	int rc;
1857 
1858 	/* Proceed only if action actually needs to be performed */
1859 	if (edev->accept_any_vlan == action)
1860 		return;
1861 
1862 	memset(&params, 0, sizeof(params));
1863 
1864 	params.vport_id = 0;
1865 	params.accept_any_vlan = action;
1866 	params.update_accept_any_vlan_flg = 1;
1867 
1868 	rc = edev->ops->vport_update(edev->cdev, &params);
1869 	if (rc) {
1870 		DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1871 		       action ? "enable" : "disable");
1872 	} else {
1873 		DP_INFO(edev, "%s accept-any-vlan\n",
1874 			action ? "enabled" : "disabled");
1875 		edev->accept_any_vlan = action;
1876 	}
1877 }
1878 
1879 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1880 {
1881 	struct qede_dev *edev = netdev_priv(dev);
1882 	struct qede_vlan *vlan, *tmp;
1883 	int rc;
1884 
1885 	DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1886 
1887 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1888 	if (!vlan) {
1889 		DP_INFO(edev, "Failed to allocate struct for vlan\n");
1890 		return -ENOMEM;
1891 	}
1892 	INIT_LIST_HEAD(&vlan->list);
1893 	vlan->vid = vid;
1894 	vlan->configured = false;
1895 
1896 	/* Verify vlan isn't already configured */
1897 	list_for_each_entry(tmp, &edev->vlan_list, list) {
1898 		if (tmp->vid == vlan->vid) {
1899 			DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1900 				   "vlan already configured\n");
1901 			kfree(vlan);
1902 			return -EEXIST;
1903 		}
1904 	}
1905 
1906 	/* If interface is down, cache this VLAN ID and return */
1907 	if (edev->state != QEDE_STATE_OPEN) {
1908 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1909 			   "Interface is down, VLAN %d will be configured when interface is up\n",
1910 			   vid);
1911 		if (vid != 0)
1912 			edev->non_configured_vlans++;
1913 		list_add(&vlan->list, &edev->vlan_list);
1914 
1915 		return 0;
1916 	}
1917 
1918 	/* Check for the filter limit.
1919 	 * Note - vlan0 has a reserved filter and can be added without
1920 	 * worrying about quota
1921 	 */
1922 	if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1923 	    (vlan->vid == 0)) {
1924 		rc = qede_set_ucast_rx_vlan(edev,
1925 					    QED_FILTER_XCAST_TYPE_ADD,
1926 					    vlan->vid);
1927 		if (rc) {
1928 			DP_ERR(edev, "Failed to configure VLAN %d\n",
1929 			       vlan->vid);
1930 			kfree(vlan);
1931 			return -EINVAL;
1932 		}
1933 		vlan->configured = true;
1934 
1935 		/* vlan0 filter isn't consuming out of our quota */
1936 		if (vlan->vid != 0)
1937 			edev->configured_vlans++;
1938 	} else {
1939 		/* Out of quota; Activate accept-any-VLAN mode */
1940 		if (!edev->non_configured_vlans)
1941 			qede_config_accept_any_vlan(edev, true);
1942 
1943 		edev->non_configured_vlans++;
1944 	}
1945 
1946 	list_add(&vlan->list, &edev->vlan_list);
1947 
1948 	return 0;
1949 }
1950 
1951 static void qede_del_vlan_from_list(struct qede_dev *edev,
1952 				    struct qede_vlan *vlan)
1953 {
1954 	/* vlan0 filter isn't consuming out of our quota */
1955 	if (vlan->vid != 0) {
1956 		if (vlan->configured)
1957 			edev->configured_vlans--;
1958 		else
1959 			edev->non_configured_vlans--;
1960 	}
1961 
1962 	list_del(&vlan->list);
1963 	kfree(vlan);
1964 }
1965 
1966 static int qede_configure_vlan_filters(struct qede_dev *edev)
1967 {
1968 	int rc = 0, real_rc = 0, accept_any_vlan = 0;
1969 	struct qed_dev_eth_info *dev_info;
1970 	struct qede_vlan *vlan = NULL;
1971 
1972 	if (list_empty(&edev->vlan_list))
1973 		return 0;
1974 
1975 	dev_info = &edev->dev_info;
1976 
1977 	/* Configure non-configured vlans */
1978 	list_for_each_entry(vlan, &edev->vlan_list, list) {
1979 		if (vlan->configured)
1980 			continue;
1981 
1982 		/* We have used all our credits, now enable accept_any_vlan */
1983 		if ((vlan->vid != 0) &&
1984 		    (edev->configured_vlans == dev_info->num_vlan_filters)) {
1985 			accept_any_vlan = 1;
1986 			continue;
1987 		}
1988 
1989 		DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1990 
1991 		rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1992 					    vlan->vid);
1993 		if (rc) {
1994 			DP_ERR(edev, "Failed to configure VLAN %u\n",
1995 			       vlan->vid);
1996 			real_rc = rc;
1997 			continue;
1998 		}
1999 
2000 		vlan->configured = true;
2001 		/* vlan0 filter doesn't consume our VLAN filter's quota */
2002 		if (vlan->vid != 0) {
2003 			edev->non_configured_vlans--;
2004 			edev->configured_vlans++;
2005 		}
2006 	}
2007 
2008 	/* enable accept_any_vlan mode if we have more VLANs than credits,
2009 	 * or remove accept_any_vlan mode if we've actually removed
2010 	 * a non-configured vlan, and all remaining vlans are truly configured.
2011 	 */
2012 
2013 	if (accept_any_vlan)
2014 		qede_config_accept_any_vlan(edev, true);
2015 	else if (!edev->non_configured_vlans)
2016 		qede_config_accept_any_vlan(edev, false);
2017 
2018 	return real_rc;
2019 }
2020 
2021 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
2022 {
2023 	struct qede_dev *edev = netdev_priv(dev);
2024 	struct qede_vlan *vlan = NULL;
2025 	int rc;
2026 
2027 	DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
2028 
2029 	/* Find whether entry exists */
2030 	list_for_each_entry(vlan, &edev->vlan_list, list)
2031 		if (vlan->vid == vid)
2032 			break;
2033 
2034 	if (!vlan || (vlan->vid != vid)) {
2035 		DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
2036 			   "Vlan isn't configured\n");
2037 		return 0;
2038 	}
2039 
2040 	if (edev->state != QEDE_STATE_OPEN) {
2041 		/* As interface is already down, we don't have a VPORT
2042 		 * instance to remove vlan filter. So just update vlan list
2043 		 */
2044 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2045 			   "Interface is down, removing VLAN from list only\n");
2046 		qede_del_vlan_from_list(edev, vlan);
2047 		return 0;
2048 	}
2049 
2050 	/* Remove vlan */
2051 	rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
2052 	if (rc) {
2053 		DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
2054 		return -EINVAL;
2055 	}
2056 
2057 	qede_del_vlan_from_list(edev, vlan);
2058 
2059 	/* We have removed a VLAN - try to see if we can
2060 	 * configure non-configured VLAN from the list.
2061 	 */
2062 	rc = qede_configure_vlan_filters(edev);
2063 
2064 	return rc;
2065 }
2066 
2067 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
2068 {
2069 	struct qede_vlan *vlan = NULL;
2070 
2071 	if (list_empty(&edev->vlan_list))
2072 		return;
2073 
2074 	list_for_each_entry(vlan, &edev->vlan_list, list) {
2075 		if (!vlan->configured)
2076 			continue;
2077 
2078 		vlan->configured = false;
2079 
2080 		/* vlan0 filter isn't consuming out of our quota */
2081 		if (vlan->vid != 0) {
2082 			edev->non_configured_vlans++;
2083 			edev->configured_vlans--;
2084 		}
2085 
2086 		DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
2087 			   "marked vlan %d as non-configured\n",
2088 			   vlan->vid);
2089 	}
2090 
2091 	edev->accept_any_vlan = false;
2092 }
2093 
2094 int qede_set_features(struct net_device *dev, netdev_features_t features)
2095 {
2096 	struct qede_dev *edev = netdev_priv(dev);
2097 	netdev_features_t changes = features ^ dev->features;
2098 	bool need_reload = false;
2099 
2100 	/* No action needed if hardware GRO is disabled during driver load */
2101 	if (changes & NETIF_F_GRO) {
2102 		if (dev->features & NETIF_F_GRO)
2103 			need_reload = !edev->gro_disable;
2104 		else
2105 			need_reload = edev->gro_disable;
2106 	}
2107 
2108 	if (need_reload && netif_running(edev->ndev)) {
2109 		dev->features = features;
2110 		qede_reload(edev, NULL, NULL);
2111 		return 1;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 #ifdef CONFIG_QEDE_VXLAN
2118 static void qede_add_vxlan_port(struct net_device *dev,
2119 				sa_family_t sa_family, __be16 port)
2120 {
2121 	struct qede_dev *edev = netdev_priv(dev);
2122 	u16 t_port = ntohs(port);
2123 
2124 	if (edev->vxlan_dst_port)
2125 		return;
2126 
2127 	edev->vxlan_dst_port = t_port;
2128 
2129 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d", t_port);
2130 
2131 	set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2132 	schedule_delayed_work(&edev->sp_task, 0);
2133 }
2134 
2135 static void qede_del_vxlan_port(struct net_device *dev,
2136 				sa_family_t sa_family, __be16 port)
2137 {
2138 	struct qede_dev *edev = netdev_priv(dev);
2139 	u16 t_port = ntohs(port);
2140 
2141 	if (t_port != edev->vxlan_dst_port)
2142 		return;
2143 
2144 	edev->vxlan_dst_port = 0;
2145 
2146 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d", t_port);
2147 
2148 	set_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags);
2149 	schedule_delayed_work(&edev->sp_task, 0);
2150 }
2151 #endif
2152 
2153 #ifdef CONFIG_QEDE_GENEVE
2154 static void qede_add_geneve_port(struct net_device *dev,
2155 				 sa_family_t sa_family, __be16 port)
2156 {
2157 	struct qede_dev *edev = netdev_priv(dev);
2158 	u16 t_port = ntohs(port);
2159 
2160 	if (edev->geneve_dst_port)
2161 		return;
2162 
2163 	edev->geneve_dst_port = t_port;
2164 
2165 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d", t_port);
2166 	set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2167 	schedule_delayed_work(&edev->sp_task, 0);
2168 }
2169 
2170 static void qede_del_geneve_port(struct net_device *dev,
2171 				 sa_family_t sa_family, __be16 port)
2172 {
2173 	struct qede_dev *edev = netdev_priv(dev);
2174 	u16 t_port = ntohs(port);
2175 
2176 	if (t_port != edev->geneve_dst_port)
2177 		return;
2178 
2179 	edev->geneve_dst_port = 0;
2180 
2181 	DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d", t_port);
2182 	set_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags);
2183 	schedule_delayed_work(&edev->sp_task, 0);
2184 }
2185 #endif
2186 
2187 static const struct net_device_ops qede_netdev_ops = {
2188 	.ndo_open = qede_open,
2189 	.ndo_stop = qede_close,
2190 	.ndo_start_xmit = qede_start_xmit,
2191 	.ndo_set_rx_mode = qede_set_rx_mode,
2192 	.ndo_set_mac_address = qede_set_mac_addr,
2193 	.ndo_validate_addr = eth_validate_addr,
2194 	.ndo_change_mtu = qede_change_mtu,
2195 #ifdef CONFIG_QED_SRIOV
2196 	.ndo_set_vf_mac = qede_set_vf_mac,
2197 	.ndo_set_vf_vlan = qede_set_vf_vlan,
2198 #endif
2199 	.ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
2200 	.ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
2201 	.ndo_set_features = qede_set_features,
2202 	.ndo_get_stats64 = qede_get_stats64,
2203 #ifdef CONFIG_QED_SRIOV
2204 	.ndo_set_vf_link_state = qede_set_vf_link_state,
2205 	.ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
2206 	.ndo_get_vf_config = qede_get_vf_config,
2207 	.ndo_set_vf_rate = qede_set_vf_rate,
2208 #endif
2209 #ifdef CONFIG_QEDE_VXLAN
2210 	.ndo_add_vxlan_port = qede_add_vxlan_port,
2211 	.ndo_del_vxlan_port = qede_del_vxlan_port,
2212 #endif
2213 #ifdef CONFIG_QEDE_GENEVE
2214 	.ndo_add_geneve_port = qede_add_geneve_port,
2215 	.ndo_del_geneve_port = qede_del_geneve_port,
2216 #endif
2217 };
2218 
2219 /* -------------------------------------------------------------------------
2220  * START OF PROBE / REMOVE
2221  * -------------------------------------------------------------------------
2222  */
2223 
2224 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
2225 					    struct pci_dev *pdev,
2226 					    struct qed_dev_eth_info *info,
2227 					    u32 dp_module,
2228 					    u8 dp_level)
2229 {
2230 	struct net_device *ndev;
2231 	struct qede_dev *edev;
2232 
2233 	ndev = alloc_etherdev_mqs(sizeof(*edev),
2234 				  info->num_queues,
2235 				  info->num_queues);
2236 	if (!ndev) {
2237 		pr_err("etherdev allocation failed\n");
2238 		return NULL;
2239 	}
2240 
2241 	edev = netdev_priv(ndev);
2242 	edev->ndev = ndev;
2243 	edev->cdev = cdev;
2244 	edev->pdev = pdev;
2245 	edev->dp_module = dp_module;
2246 	edev->dp_level = dp_level;
2247 	edev->ops = qed_ops;
2248 	edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
2249 	edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
2250 
2251 	SET_NETDEV_DEV(ndev, &pdev->dev);
2252 
2253 	memset(&edev->stats, 0, sizeof(edev->stats));
2254 	memcpy(&edev->dev_info, info, sizeof(*info));
2255 
2256 	edev->num_tc = edev->dev_info.num_tc;
2257 
2258 	INIT_LIST_HEAD(&edev->vlan_list);
2259 
2260 	return edev;
2261 }
2262 
2263 static void qede_init_ndev(struct qede_dev *edev)
2264 {
2265 	struct net_device *ndev = edev->ndev;
2266 	struct pci_dev *pdev = edev->pdev;
2267 	u32 hw_features;
2268 
2269 	pci_set_drvdata(pdev, ndev);
2270 
2271 	ndev->mem_start = edev->dev_info.common.pci_mem_start;
2272 	ndev->base_addr = ndev->mem_start;
2273 	ndev->mem_end = edev->dev_info.common.pci_mem_end;
2274 	ndev->irq = edev->dev_info.common.pci_irq;
2275 
2276 	ndev->watchdog_timeo = TX_TIMEOUT;
2277 
2278 	ndev->netdev_ops = &qede_netdev_ops;
2279 
2280 	qede_set_ethtool_ops(ndev);
2281 
2282 	/* user-changeble features */
2283 	hw_features = NETIF_F_GRO | NETIF_F_SG |
2284 		      NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2285 		      NETIF_F_TSO | NETIF_F_TSO6;
2286 
2287 	/* Encap features*/
2288 	hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
2289 		       NETIF_F_TSO_ECN;
2290 	ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2291 				NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO_ECN |
2292 				NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2293 				NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXCSUM;
2294 
2295 	ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2296 			      NETIF_F_HIGHDMA;
2297 	ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
2298 			 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
2299 			 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
2300 
2301 	ndev->hw_features = hw_features;
2302 
2303 	/* Set network device HW mac */
2304 	ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
2305 }
2306 
2307 /* This function converts from 32b param to two params of level and module
2308  * Input 32b decoding:
2309  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
2310  * 'happy' flow, e.g. memory allocation failed.
2311  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
2312  * and provide important parameters.
2313  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
2314  * module. VERBOSE prints are for tracking the specific flow in low level.
2315  *
2316  * Notice that the level should be that of the lowest required logs.
2317  */
2318 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
2319 {
2320 	*p_dp_level = QED_LEVEL_NOTICE;
2321 	*p_dp_module = 0;
2322 
2323 	if (debug & QED_LOG_VERBOSE_MASK) {
2324 		*p_dp_level = QED_LEVEL_VERBOSE;
2325 		*p_dp_module = (debug & 0x3FFFFFFF);
2326 	} else if (debug & QED_LOG_INFO_MASK) {
2327 		*p_dp_level = QED_LEVEL_INFO;
2328 	} else if (debug & QED_LOG_NOTICE_MASK) {
2329 		*p_dp_level = QED_LEVEL_NOTICE;
2330 	}
2331 }
2332 
2333 static void qede_free_fp_array(struct qede_dev *edev)
2334 {
2335 	if (edev->fp_array) {
2336 		struct qede_fastpath *fp;
2337 		int i;
2338 
2339 		for_each_rss(i) {
2340 			fp = &edev->fp_array[i];
2341 
2342 			kfree(fp->sb_info);
2343 			kfree(fp->rxq);
2344 			kfree(fp->txqs);
2345 		}
2346 		kfree(edev->fp_array);
2347 	}
2348 	edev->num_rss = 0;
2349 }
2350 
2351 static int qede_alloc_fp_array(struct qede_dev *edev)
2352 {
2353 	struct qede_fastpath *fp;
2354 	int i;
2355 
2356 	edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
2357 				 sizeof(*edev->fp_array), GFP_KERNEL);
2358 	if (!edev->fp_array) {
2359 		DP_NOTICE(edev, "fp array allocation failed\n");
2360 		goto err;
2361 	}
2362 
2363 	for_each_rss(i) {
2364 		fp = &edev->fp_array[i];
2365 
2366 		fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
2367 		if (!fp->sb_info) {
2368 			DP_NOTICE(edev, "sb info struct allocation failed\n");
2369 			goto err;
2370 		}
2371 
2372 		fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
2373 		if (!fp->rxq) {
2374 			DP_NOTICE(edev, "RXQ struct allocation failed\n");
2375 			goto err;
2376 		}
2377 
2378 		fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2379 		if (!fp->txqs) {
2380 			DP_NOTICE(edev, "TXQ array allocation failed\n");
2381 			goto err;
2382 		}
2383 	}
2384 
2385 	return 0;
2386 err:
2387 	qede_free_fp_array(edev);
2388 	return -ENOMEM;
2389 }
2390 
2391 static void qede_sp_task(struct work_struct *work)
2392 {
2393 	struct qede_dev *edev = container_of(work, struct qede_dev,
2394 					     sp_task.work);
2395 	struct qed_dev *cdev = edev->cdev;
2396 
2397 	mutex_lock(&edev->qede_lock);
2398 
2399 	if (edev->state == QEDE_STATE_OPEN) {
2400 		if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2401 			qede_config_rx_mode(edev->ndev);
2402 	}
2403 
2404 	if (test_and_clear_bit(QEDE_SP_VXLAN_PORT_CONFIG, &edev->sp_flags)) {
2405 		struct qed_tunn_params tunn_params;
2406 
2407 		memset(&tunn_params, 0, sizeof(tunn_params));
2408 		tunn_params.update_vxlan_port = 1;
2409 		tunn_params.vxlan_port = edev->vxlan_dst_port;
2410 		qed_ops->tunn_config(cdev, &tunn_params);
2411 	}
2412 
2413 	if (test_and_clear_bit(QEDE_SP_GENEVE_PORT_CONFIG, &edev->sp_flags)) {
2414 		struct qed_tunn_params tunn_params;
2415 
2416 		memset(&tunn_params, 0, sizeof(tunn_params));
2417 		tunn_params.update_geneve_port = 1;
2418 		tunn_params.geneve_port = edev->geneve_dst_port;
2419 		qed_ops->tunn_config(cdev, &tunn_params);
2420 	}
2421 
2422 	mutex_unlock(&edev->qede_lock);
2423 }
2424 
2425 static void qede_update_pf_params(struct qed_dev *cdev)
2426 {
2427 	struct qed_pf_params pf_params;
2428 
2429 	/* 64 rx + 64 tx */
2430 	memset(&pf_params, 0, sizeof(struct qed_pf_params));
2431 	pf_params.eth_pf_params.num_cons = 128;
2432 	qed_ops->common->update_pf_params(cdev, &pf_params);
2433 }
2434 
2435 enum qede_probe_mode {
2436 	QEDE_PROBE_NORMAL,
2437 };
2438 
2439 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2440 			bool is_vf, enum qede_probe_mode mode)
2441 {
2442 	struct qed_probe_params probe_params;
2443 	struct qed_slowpath_params params;
2444 	struct qed_dev_eth_info dev_info;
2445 	struct qede_dev *edev;
2446 	struct qed_dev *cdev;
2447 	int rc;
2448 
2449 	if (unlikely(dp_level & QED_LEVEL_INFO))
2450 		pr_notice("Starting qede probe\n");
2451 
2452 	memset(&probe_params, 0, sizeof(probe_params));
2453 	probe_params.protocol = QED_PROTOCOL_ETH;
2454 	probe_params.dp_module = dp_module;
2455 	probe_params.dp_level = dp_level;
2456 	probe_params.is_vf = is_vf;
2457 	cdev = qed_ops->common->probe(pdev, &probe_params);
2458 	if (!cdev) {
2459 		rc = -ENODEV;
2460 		goto err0;
2461 	}
2462 
2463 	qede_update_pf_params(cdev);
2464 
2465 	/* Start the Slowpath-process */
2466 	memset(&params, 0, sizeof(struct qed_slowpath_params));
2467 	params.int_mode = QED_INT_MODE_MSIX;
2468 	params.drv_major = QEDE_MAJOR_VERSION;
2469 	params.drv_minor = QEDE_MINOR_VERSION;
2470 	params.drv_rev = QEDE_REVISION_VERSION;
2471 	params.drv_eng = QEDE_ENGINEERING_VERSION;
2472 	strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2473 	rc = qed_ops->common->slowpath_start(cdev, &params);
2474 	if (rc) {
2475 		pr_notice("Cannot start slowpath\n");
2476 		goto err1;
2477 	}
2478 
2479 	/* Learn information crucial for qede to progress */
2480 	rc = qed_ops->fill_dev_info(cdev, &dev_info);
2481 	if (rc)
2482 		goto err2;
2483 
2484 	edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2485 				   dp_level);
2486 	if (!edev) {
2487 		rc = -ENOMEM;
2488 		goto err2;
2489 	}
2490 
2491 	if (is_vf)
2492 		edev->flags |= QEDE_FLAG_IS_VF;
2493 
2494 	qede_init_ndev(edev);
2495 
2496 	rc = register_netdev(edev->ndev);
2497 	if (rc) {
2498 		DP_NOTICE(edev, "Cannot register net-device\n");
2499 		goto err3;
2500 	}
2501 
2502 	edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2503 
2504 	edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2505 
2506 	INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2507 	mutex_init(&edev->qede_lock);
2508 
2509 	DP_INFO(edev, "Ending successfully qede probe\n");
2510 
2511 	return 0;
2512 
2513 err3:
2514 	free_netdev(edev->ndev);
2515 err2:
2516 	qed_ops->common->slowpath_stop(cdev);
2517 err1:
2518 	qed_ops->common->remove(cdev);
2519 err0:
2520 	return rc;
2521 }
2522 
2523 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2524 {
2525 	bool is_vf = false;
2526 	u32 dp_module = 0;
2527 	u8 dp_level = 0;
2528 
2529 	switch ((enum qede_pci_private)id->driver_data) {
2530 	case QEDE_PRIVATE_VF:
2531 		if (debug & QED_LOG_VERBOSE_MASK)
2532 			dev_err(&pdev->dev, "Probing a VF\n");
2533 		is_vf = true;
2534 		break;
2535 	default:
2536 		if (debug & QED_LOG_VERBOSE_MASK)
2537 			dev_err(&pdev->dev, "Probing a PF\n");
2538 	}
2539 
2540 	qede_config_debug(debug, &dp_module, &dp_level);
2541 
2542 	return __qede_probe(pdev, dp_module, dp_level, is_vf,
2543 			    QEDE_PROBE_NORMAL);
2544 }
2545 
2546 enum qede_remove_mode {
2547 	QEDE_REMOVE_NORMAL,
2548 };
2549 
2550 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2551 {
2552 	struct net_device *ndev = pci_get_drvdata(pdev);
2553 	struct qede_dev *edev = netdev_priv(ndev);
2554 	struct qed_dev *cdev = edev->cdev;
2555 
2556 	DP_INFO(edev, "Starting qede_remove\n");
2557 
2558 	cancel_delayed_work_sync(&edev->sp_task);
2559 	unregister_netdev(ndev);
2560 
2561 	edev->ops->common->set_power_state(cdev, PCI_D0);
2562 
2563 	pci_set_drvdata(pdev, NULL);
2564 
2565 	free_netdev(ndev);
2566 
2567 	/* Use global ops since we've freed edev */
2568 	qed_ops->common->slowpath_stop(cdev);
2569 	qed_ops->common->remove(cdev);
2570 
2571 	pr_notice("Ending successfully qede_remove\n");
2572 }
2573 
2574 static void qede_remove(struct pci_dev *pdev)
2575 {
2576 	__qede_remove(pdev, QEDE_REMOVE_NORMAL);
2577 }
2578 
2579 /* -------------------------------------------------------------------------
2580  * START OF LOAD / UNLOAD
2581  * -------------------------------------------------------------------------
2582  */
2583 
2584 static int qede_set_num_queues(struct qede_dev *edev)
2585 {
2586 	int rc;
2587 	u16 rss_num;
2588 
2589 	/* Setup queues according to possible resources*/
2590 	if (edev->req_rss)
2591 		rss_num = edev->req_rss;
2592 	else
2593 		rss_num = netif_get_num_default_rss_queues() *
2594 			  edev->dev_info.common.num_hwfns;
2595 
2596 	rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2597 
2598 	rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2599 	if (rc > 0) {
2600 		/* Managed to request interrupts for our queues */
2601 		edev->num_rss = rc;
2602 		DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2603 			QEDE_RSS_CNT(edev), rss_num);
2604 		rc = 0;
2605 	}
2606 	return rc;
2607 }
2608 
2609 static void qede_free_mem_sb(struct qede_dev *edev,
2610 			     struct qed_sb_info *sb_info)
2611 {
2612 	if (sb_info->sb_virt)
2613 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2614 				  (void *)sb_info->sb_virt, sb_info->sb_phys);
2615 }
2616 
2617 /* This function allocates fast-path status block memory */
2618 static int qede_alloc_mem_sb(struct qede_dev *edev,
2619 			     struct qed_sb_info *sb_info,
2620 			     u16 sb_id)
2621 {
2622 	struct status_block *sb_virt;
2623 	dma_addr_t sb_phys;
2624 	int rc;
2625 
2626 	sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2627 				     sizeof(*sb_virt),
2628 				     &sb_phys, GFP_KERNEL);
2629 	if (!sb_virt) {
2630 		DP_ERR(edev, "Status block allocation failed\n");
2631 		return -ENOMEM;
2632 	}
2633 
2634 	rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2635 					sb_virt, sb_phys, sb_id,
2636 					QED_SB_TYPE_L2_QUEUE);
2637 	if (rc) {
2638 		DP_ERR(edev, "Status block initialization failed\n");
2639 		dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2640 				  sb_virt, sb_phys);
2641 		return rc;
2642 	}
2643 
2644 	return 0;
2645 }
2646 
2647 static void qede_free_rx_buffers(struct qede_dev *edev,
2648 				 struct qede_rx_queue *rxq)
2649 {
2650 	u16 i;
2651 
2652 	for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2653 		struct sw_rx_data *rx_buf;
2654 		struct page *data;
2655 
2656 		rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2657 		data = rx_buf->data;
2658 
2659 		dma_unmap_page(&edev->pdev->dev,
2660 			       rx_buf->mapping,
2661 			       PAGE_SIZE, DMA_FROM_DEVICE);
2662 
2663 		rx_buf->data = NULL;
2664 		__free_page(data);
2665 	}
2666 }
2667 
2668 static void qede_free_sge_mem(struct qede_dev *edev,
2669 			      struct qede_rx_queue *rxq) {
2670 	int i;
2671 
2672 	if (edev->gro_disable)
2673 		return;
2674 
2675 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2676 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2677 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2678 
2679 		if (replace_buf->data) {
2680 			dma_unmap_page(&edev->pdev->dev,
2681 				       replace_buf->mapping,
2682 				       PAGE_SIZE, DMA_FROM_DEVICE);
2683 			__free_page(replace_buf->data);
2684 		}
2685 	}
2686 }
2687 
2688 static void qede_free_mem_rxq(struct qede_dev *edev,
2689 			      struct qede_rx_queue *rxq)
2690 {
2691 	qede_free_sge_mem(edev, rxq);
2692 
2693 	/* Free rx buffers */
2694 	qede_free_rx_buffers(edev, rxq);
2695 
2696 	/* Free the parallel SW ring */
2697 	kfree(rxq->sw_rx_ring);
2698 
2699 	/* Free the real RQ ring used by FW */
2700 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2701 	edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2702 }
2703 
2704 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2705 				struct qede_rx_queue *rxq)
2706 {
2707 	struct sw_rx_data *sw_rx_data;
2708 	struct eth_rx_bd *rx_bd;
2709 	dma_addr_t mapping;
2710 	struct page *data;
2711 	u16 rx_buf_size;
2712 
2713 	rx_buf_size = rxq->rx_buf_size;
2714 
2715 	data = alloc_pages(GFP_ATOMIC, 0);
2716 	if (unlikely(!data)) {
2717 		DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2718 		return -ENOMEM;
2719 	}
2720 
2721 	/* Map the entire page as it would be used
2722 	 * for multiple RX buffer segment size mapping.
2723 	 */
2724 	mapping = dma_map_page(&edev->pdev->dev, data, 0,
2725 			       PAGE_SIZE, DMA_FROM_DEVICE);
2726 	if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2727 		__free_page(data);
2728 		DP_NOTICE(edev, "Failed to map Rx buffer\n");
2729 		return -ENOMEM;
2730 	}
2731 
2732 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2733 	sw_rx_data->page_offset = 0;
2734 	sw_rx_data->data = data;
2735 	sw_rx_data->mapping = mapping;
2736 
2737 	/* Advance PROD and get BD pointer */
2738 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2739 	WARN_ON(!rx_bd);
2740 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2741 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2742 
2743 	rxq->sw_rx_prod++;
2744 
2745 	return 0;
2746 }
2747 
2748 static int qede_alloc_sge_mem(struct qede_dev *edev,
2749 			      struct qede_rx_queue *rxq)
2750 {
2751 	dma_addr_t mapping;
2752 	int i;
2753 
2754 	if (edev->gro_disable)
2755 		return 0;
2756 
2757 	if (edev->ndev->mtu > PAGE_SIZE) {
2758 		edev->gro_disable = 1;
2759 		return 0;
2760 	}
2761 
2762 	for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2763 		struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2764 		struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2765 
2766 		replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2767 		if (unlikely(!replace_buf->data)) {
2768 			DP_NOTICE(edev,
2769 				  "Failed to allocate TPA skb pool [replacement buffer]\n");
2770 			goto err;
2771 		}
2772 
2773 		mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2774 				       rxq->rx_buf_size, DMA_FROM_DEVICE);
2775 		if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2776 			DP_NOTICE(edev,
2777 				  "Failed to map TPA replacement buffer\n");
2778 			goto err;
2779 		}
2780 
2781 		replace_buf->mapping = mapping;
2782 		tpa_info->replace_buf.page_offset = 0;
2783 
2784 		tpa_info->replace_buf_mapping = mapping;
2785 		tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2786 	}
2787 
2788 	return 0;
2789 err:
2790 	qede_free_sge_mem(edev, rxq);
2791 	edev->gro_disable = 1;
2792 	return -ENOMEM;
2793 }
2794 
2795 /* This function allocates all memory needed per Rx queue */
2796 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2797 			      struct qede_rx_queue *rxq)
2798 {
2799 	int i, rc, size;
2800 
2801 	rxq->num_rx_buffers = edev->q_num_rx_buffers;
2802 
2803 	rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2804 			   edev->ndev->mtu;
2805 	if (rxq->rx_buf_size > PAGE_SIZE)
2806 		rxq->rx_buf_size = PAGE_SIZE;
2807 
2808 	/* Segment size to spilt a page in multiple equal parts */
2809 	rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2810 
2811 	/* Allocate the parallel driver ring for Rx buffers */
2812 	size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2813 	rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2814 	if (!rxq->sw_rx_ring) {
2815 		DP_ERR(edev, "Rx buffers ring allocation failed\n");
2816 		rc = -ENOMEM;
2817 		goto err;
2818 	}
2819 
2820 	/* Allocate FW Rx ring  */
2821 	rc = edev->ops->common->chain_alloc(edev->cdev,
2822 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2823 					    QED_CHAIN_MODE_NEXT_PTR,
2824 					    RX_RING_SIZE,
2825 					    sizeof(struct eth_rx_bd),
2826 					    &rxq->rx_bd_ring);
2827 
2828 	if (rc)
2829 		goto err;
2830 
2831 	/* Allocate FW completion ring */
2832 	rc = edev->ops->common->chain_alloc(edev->cdev,
2833 					    QED_CHAIN_USE_TO_CONSUME,
2834 					    QED_CHAIN_MODE_PBL,
2835 					    RX_RING_SIZE,
2836 					    sizeof(union eth_rx_cqe),
2837 					    &rxq->rx_comp_ring);
2838 	if (rc)
2839 		goto err;
2840 
2841 	/* Allocate buffers for the Rx ring */
2842 	for (i = 0; i < rxq->num_rx_buffers; i++) {
2843 		rc = qede_alloc_rx_buffer(edev, rxq);
2844 		if (rc) {
2845 			DP_ERR(edev,
2846 			       "Rx buffers allocation failed at index %d\n", i);
2847 			goto err;
2848 		}
2849 	}
2850 
2851 	rc = qede_alloc_sge_mem(edev, rxq);
2852 err:
2853 	return rc;
2854 }
2855 
2856 static void qede_free_mem_txq(struct qede_dev *edev,
2857 			      struct qede_tx_queue *txq)
2858 {
2859 	/* Free the parallel SW ring */
2860 	kfree(txq->sw_tx_ring);
2861 
2862 	/* Free the real RQ ring used by FW */
2863 	edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2864 }
2865 
2866 /* This function allocates all memory needed per Tx queue */
2867 static int qede_alloc_mem_txq(struct qede_dev *edev,
2868 			      struct qede_tx_queue *txq)
2869 {
2870 	int size, rc;
2871 	union eth_tx_bd_types *p_virt;
2872 
2873 	txq->num_tx_buffers = edev->q_num_tx_buffers;
2874 
2875 	/* Allocate the parallel driver ring for Tx buffers */
2876 	size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2877 	txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2878 	if (!txq->sw_tx_ring) {
2879 		DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2880 		goto err;
2881 	}
2882 
2883 	rc = edev->ops->common->chain_alloc(edev->cdev,
2884 					    QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2885 					    QED_CHAIN_MODE_PBL,
2886 					    NUM_TX_BDS_MAX,
2887 					    sizeof(*p_virt),
2888 					    &txq->tx_pbl);
2889 	if (rc)
2890 		goto err;
2891 
2892 	return 0;
2893 
2894 err:
2895 	qede_free_mem_txq(edev, txq);
2896 	return -ENOMEM;
2897 }
2898 
2899 /* This function frees all memory of a single fp */
2900 static void qede_free_mem_fp(struct qede_dev *edev,
2901 			     struct qede_fastpath *fp)
2902 {
2903 	int tc;
2904 
2905 	qede_free_mem_sb(edev, fp->sb_info);
2906 
2907 	qede_free_mem_rxq(edev, fp->rxq);
2908 
2909 	for (tc = 0; tc < edev->num_tc; tc++)
2910 		qede_free_mem_txq(edev, &fp->txqs[tc]);
2911 }
2912 
2913 /* This function allocates all memory needed for a single fp (i.e. an entity
2914  * which contains status block, one rx queue and multiple per-TC tx queues.
2915  */
2916 static int qede_alloc_mem_fp(struct qede_dev *edev,
2917 			     struct qede_fastpath *fp)
2918 {
2919 	int rc, tc;
2920 
2921 	rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2922 	if (rc)
2923 		goto err;
2924 
2925 	rc = qede_alloc_mem_rxq(edev, fp->rxq);
2926 	if (rc)
2927 		goto err;
2928 
2929 	for (tc = 0; tc < edev->num_tc; tc++) {
2930 		rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2931 		if (rc)
2932 			goto err;
2933 	}
2934 
2935 	return 0;
2936 err:
2937 	return rc;
2938 }
2939 
2940 static void qede_free_mem_load(struct qede_dev *edev)
2941 {
2942 	int i;
2943 
2944 	for_each_rss(i) {
2945 		struct qede_fastpath *fp = &edev->fp_array[i];
2946 
2947 		qede_free_mem_fp(edev, fp);
2948 	}
2949 }
2950 
2951 /* This function allocates all qede memory at NIC load. */
2952 static int qede_alloc_mem_load(struct qede_dev *edev)
2953 {
2954 	int rc = 0, rss_id;
2955 
2956 	for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2957 		struct qede_fastpath *fp = &edev->fp_array[rss_id];
2958 
2959 		rc = qede_alloc_mem_fp(edev, fp);
2960 		if (rc) {
2961 			DP_ERR(edev,
2962 			       "Failed to allocate memory for fastpath - rss id = %d\n",
2963 			       rss_id);
2964 			qede_free_mem_load(edev);
2965 			return rc;
2966 		}
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2973 static void qede_init_fp(struct qede_dev *edev)
2974 {
2975 	int rss_id, txq_index, tc;
2976 	struct qede_fastpath *fp;
2977 
2978 	for_each_rss(rss_id) {
2979 		fp = &edev->fp_array[rss_id];
2980 
2981 		fp->edev = edev;
2982 		fp->rss_id = rss_id;
2983 
2984 		memset((void *)&fp->napi, 0, sizeof(fp->napi));
2985 
2986 		memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2987 
2988 		memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2989 		fp->rxq->rxq_id = rss_id;
2990 
2991 		memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2992 		for (tc = 0; tc < edev->num_tc; tc++) {
2993 			txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2994 			fp->txqs[tc].index = txq_index;
2995 		}
2996 
2997 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2998 			 edev->ndev->name, rss_id);
2999 	}
3000 
3001 	edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
3002 }
3003 
3004 static int qede_set_real_num_queues(struct qede_dev *edev)
3005 {
3006 	int rc = 0;
3007 
3008 	rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
3009 	if (rc) {
3010 		DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
3011 		return rc;
3012 	}
3013 	rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
3014 	if (rc) {
3015 		DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
3016 		return rc;
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 static void qede_napi_disable_remove(struct qede_dev *edev)
3023 {
3024 	int i;
3025 
3026 	for_each_rss(i) {
3027 		napi_disable(&edev->fp_array[i].napi);
3028 
3029 		netif_napi_del(&edev->fp_array[i].napi);
3030 	}
3031 }
3032 
3033 static void qede_napi_add_enable(struct qede_dev *edev)
3034 {
3035 	int i;
3036 
3037 	/* Add NAPI objects */
3038 	for_each_rss(i) {
3039 		netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
3040 			       qede_poll, NAPI_POLL_WEIGHT);
3041 		napi_enable(&edev->fp_array[i].napi);
3042 	}
3043 }
3044 
3045 static void qede_sync_free_irqs(struct qede_dev *edev)
3046 {
3047 	int i;
3048 
3049 	for (i = 0; i < edev->int_info.used_cnt; i++) {
3050 		if (edev->int_info.msix_cnt) {
3051 			synchronize_irq(edev->int_info.msix[i].vector);
3052 			free_irq(edev->int_info.msix[i].vector,
3053 				 &edev->fp_array[i]);
3054 		} else {
3055 			edev->ops->common->simd_handler_clean(edev->cdev, i);
3056 		}
3057 	}
3058 
3059 	edev->int_info.used_cnt = 0;
3060 }
3061 
3062 static int qede_req_msix_irqs(struct qede_dev *edev)
3063 {
3064 	int i, rc;
3065 
3066 	/* Sanitize number of interrupts == number of prepared RSS queues */
3067 	if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
3068 		DP_ERR(edev,
3069 		       "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
3070 		       QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
3071 		return -EINVAL;
3072 	}
3073 
3074 	for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
3075 		rc = request_irq(edev->int_info.msix[i].vector,
3076 				 qede_msix_fp_int, 0, edev->fp_array[i].name,
3077 				 &edev->fp_array[i]);
3078 		if (rc) {
3079 			DP_ERR(edev, "Request fp %d irq failed\n", i);
3080 			qede_sync_free_irqs(edev);
3081 			return rc;
3082 		}
3083 		DP_VERBOSE(edev, NETIF_MSG_INTR,
3084 			   "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
3085 			   edev->fp_array[i].name, i,
3086 			   &edev->fp_array[i]);
3087 		edev->int_info.used_cnt++;
3088 	}
3089 
3090 	return 0;
3091 }
3092 
3093 static void qede_simd_fp_handler(void *cookie)
3094 {
3095 	struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
3096 
3097 	napi_schedule_irqoff(&fp->napi);
3098 }
3099 
3100 static int qede_setup_irqs(struct qede_dev *edev)
3101 {
3102 	int i, rc = 0;
3103 
3104 	/* Learn Interrupt configuration */
3105 	rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
3106 	if (rc)
3107 		return rc;
3108 
3109 	if (edev->int_info.msix_cnt) {
3110 		rc = qede_req_msix_irqs(edev);
3111 		if (rc)
3112 			return rc;
3113 		edev->ndev->irq = edev->int_info.msix[0].vector;
3114 	} else {
3115 		const struct qed_common_ops *ops;
3116 
3117 		/* qed should learn receive the RSS ids and callbacks */
3118 		ops = edev->ops->common;
3119 		for (i = 0; i < QEDE_RSS_CNT(edev); i++)
3120 			ops->simd_handler_config(edev->cdev,
3121 						 &edev->fp_array[i], i,
3122 						 qede_simd_fp_handler);
3123 		edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
3124 	}
3125 	return 0;
3126 }
3127 
3128 static int qede_drain_txq(struct qede_dev *edev,
3129 			  struct qede_tx_queue *txq,
3130 			  bool allow_drain)
3131 {
3132 	int rc, cnt = 1000;
3133 
3134 	while (txq->sw_tx_cons != txq->sw_tx_prod) {
3135 		if (!cnt) {
3136 			if (allow_drain) {
3137 				DP_NOTICE(edev,
3138 					  "Tx queue[%d] is stuck, requesting MCP to drain\n",
3139 					  txq->index);
3140 				rc = edev->ops->common->drain(edev->cdev);
3141 				if (rc)
3142 					return rc;
3143 				return qede_drain_txq(edev, txq, false);
3144 			}
3145 			DP_NOTICE(edev,
3146 				  "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
3147 				  txq->index, txq->sw_tx_prod,
3148 				  txq->sw_tx_cons);
3149 			return -ENODEV;
3150 		}
3151 		cnt--;
3152 		usleep_range(1000, 2000);
3153 		barrier();
3154 	}
3155 
3156 	/* FW finished processing, wait for HW to transmit all tx packets */
3157 	usleep_range(1000, 2000);
3158 
3159 	return 0;
3160 }
3161 
3162 static int qede_stop_queues(struct qede_dev *edev)
3163 {
3164 	struct qed_update_vport_params vport_update_params;
3165 	struct qed_dev *cdev = edev->cdev;
3166 	int rc, tc, i;
3167 
3168 	/* Disable the vport */
3169 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3170 	vport_update_params.vport_id = 0;
3171 	vport_update_params.update_vport_active_flg = 1;
3172 	vport_update_params.vport_active_flg = 0;
3173 	vport_update_params.update_rss_flg = 0;
3174 
3175 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3176 	if (rc) {
3177 		DP_ERR(edev, "Failed to update vport\n");
3178 		return rc;
3179 	}
3180 
3181 	/* Flush Tx queues. If needed, request drain from MCP */
3182 	for_each_rss(i) {
3183 		struct qede_fastpath *fp = &edev->fp_array[i];
3184 
3185 		for (tc = 0; tc < edev->num_tc; tc++) {
3186 			struct qede_tx_queue *txq = &fp->txqs[tc];
3187 
3188 			rc = qede_drain_txq(edev, txq, true);
3189 			if (rc)
3190 				return rc;
3191 		}
3192 	}
3193 
3194 	/* Stop all Queues in reverse order*/
3195 	for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
3196 		struct qed_stop_rxq_params rx_params;
3197 
3198 		/* Stop the Tx Queue(s)*/
3199 		for (tc = 0; tc < edev->num_tc; tc++) {
3200 			struct qed_stop_txq_params tx_params;
3201 
3202 			tx_params.rss_id = i;
3203 			tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
3204 			rc = edev->ops->q_tx_stop(cdev, &tx_params);
3205 			if (rc) {
3206 				DP_ERR(edev, "Failed to stop TXQ #%d\n",
3207 				       tx_params.tx_queue_id);
3208 				return rc;
3209 			}
3210 		}
3211 
3212 		/* Stop the Rx Queue*/
3213 		memset(&rx_params, 0, sizeof(rx_params));
3214 		rx_params.rss_id = i;
3215 		rx_params.rx_queue_id = i;
3216 
3217 		rc = edev->ops->q_rx_stop(cdev, &rx_params);
3218 		if (rc) {
3219 			DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
3220 			return rc;
3221 		}
3222 	}
3223 
3224 	/* Stop the vport */
3225 	rc = edev->ops->vport_stop(cdev, 0);
3226 	if (rc)
3227 		DP_ERR(edev, "Failed to stop VPORT\n");
3228 
3229 	return rc;
3230 }
3231 
3232 static int qede_start_queues(struct qede_dev *edev)
3233 {
3234 	int rc, tc, i;
3235 	int vlan_removal_en = 1;
3236 	struct qed_dev *cdev = edev->cdev;
3237 	struct qed_update_vport_params vport_update_params;
3238 	struct qed_queue_start_common_params q_params;
3239 	struct qed_dev_info *qed_info = &edev->dev_info.common;
3240 	struct qed_start_vport_params start = {0};
3241 	bool reset_rss_indir = false;
3242 
3243 	if (!edev->num_rss) {
3244 		DP_ERR(edev,
3245 		       "Cannot update V-VPORT as active as there are no Rx queues\n");
3246 		return -EINVAL;
3247 	}
3248 
3249 	start.gro_enable = !edev->gro_disable;
3250 	start.mtu = edev->ndev->mtu;
3251 	start.vport_id = 0;
3252 	start.drop_ttl0 = true;
3253 	start.remove_inner_vlan = vlan_removal_en;
3254 
3255 	rc = edev->ops->vport_start(cdev, &start);
3256 
3257 	if (rc) {
3258 		DP_ERR(edev, "Start V-PORT failed %d\n", rc);
3259 		return rc;
3260 	}
3261 
3262 	DP_VERBOSE(edev, NETIF_MSG_IFUP,
3263 		   "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
3264 		   start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
3265 
3266 	for_each_rss(i) {
3267 		struct qede_fastpath *fp = &edev->fp_array[i];
3268 		dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
3269 
3270 		memset(&q_params, 0, sizeof(q_params));
3271 		q_params.rss_id = i;
3272 		q_params.queue_id = i;
3273 		q_params.vport_id = 0;
3274 		q_params.sb = fp->sb_info->igu_sb_id;
3275 		q_params.sb_idx = RX_PI;
3276 
3277 		rc = edev->ops->q_rx_start(cdev, &q_params,
3278 					   fp->rxq->rx_buf_size,
3279 					   fp->rxq->rx_bd_ring.p_phys_addr,
3280 					   phys_table,
3281 					   fp->rxq->rx_comp_ring.page_cnt,
3282 					   &fp->rxq->hw_rxq_prod_addr);
3283 		if (rc) {
3284 			DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
3285 			return rc;
3286 		}
3287 
3288 		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
3289 
3290 		qede_update_rx_prod(edev, fp->rxq);
3291 
3292 		for (tc = 0; tc < edev->num_tc; tc++) {
3293 			struct qede_tx_queue *txq = &fp->txqs[tc];
3294 			int txq_index = tc * QEDE_RSS_CNT(edev) + i;
3295 
3296 			memset(&q_params, 0, sizeof(q_params));
3297 			q_params.rss_id = i;
3298 			q_params.queue_id = txq_index;
3299 			q_params.vport_id = 0;
3300 			q_params.sb = fp->sb_info->igu_sb_id;
3301 			q_params.sb_idx = TX_PI(tc);
3302 
3303 			rc = edev->ops->q_tx_start(cdev, &q_params,
3304 						   txq->tx_pbl.pbl.p_phys_table,
3305 						   txq->tx_pbl.page_cnt,
3306 						   &txq->doorbell_addr);
3307 			if (rc) {
3308 				DP_ERR(edev, "Start TXQ #%d failed %d\n",
3309 				       txq_index, rc);
3310 				return rc;
3311 			}
3312 
3313 			txq->hw_cons_ptr =
3314 				&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
3315 			SET_FIELD(txq->tx_db.data.params,
3316 				  ETH_DB_DATA_DEST, DB_DEST_XCM);
3317 			SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
3318 				  DB_AGG_CMD_SET);
3319 			SET_FIELD(txq->tx_db.data.params,
3320 				  ETH_DB_DATA_AGG_VAL_SEL,
3321 				  DQ_XCM_ETH_TX_BD_PROD_CMD);
3322 
3323 			txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
3324 		}
3325 	}
3326 
3327 	/* Prepare and send the vport enable */
3328 	memset(&vport_update_params, 0, sizeof(vport_update_params));
3329 	vport_update_params.vport_id = start.vport_id;
3330 	vport_update_params.update_vport_active_flg = 1;
3331 	vport_update_params.vport_active_flg = 1;
3332 
3333 	if ((qed_info->mf_mode == QED_MF_NPAR || pci_num_vf(edev->pdev)) &&
3334 	    qed_info->tx_switching) {
3335 		vport_update_params.update_tx_switching_flg = 1;
3336 		vport_update_params.tx_switching_flg = 1;
3337 	}
3338 
3339 	/* Fill struct with RSS params */
3340 	if (QEDE_RSS_CNT(edev) > 1) {
3341 		vport_update_params.update_rss_flg = 1;
3342 
3343 		/* Need to validate current RSS config uses valid entries */
3344 		for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3345 			if (edev->rss_params.rss_ind_table[i] >=
3346 			    edev->num_rss) {
3347 				reset_rss_indir = true;
3348 				break;
3349 			}
3350 		}
3351 
3352 		if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) ||
3353 		    reset_rss_indir) {
3354 			u16 val;
3355 
3356 			for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
3357 				u16 indir_val;
3358 
3359 				val = QEDE_RSS_CNT(edev);
3360 				indir_val = ethtool_rxfh_indir_default(i, val);
3361 				edev->rss_params.rss_ind_table[i] = indir_val;
3362 			}
3363 			edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
3364 		}
3365 
3366 		if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
3367 			netdev_rss_key_fill(edev->rss_params.rss_key,
3368 					    sizeof(edev->rss_params.rss_key));
3369 			edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
3370 		}
3371 
3372 		if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
3373 			edev->rss_params.rss_caps = QED_RSS_IPV4 |
3374 						    QED_RSS_IPV6 |
3375 						    QED_RSS_IPV4_TCP |
3376 						    QED_RSS_IPV6_TCP;
3377 			edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
3378 		}
3379 
3380 		memcpy(&vport_update_params.rss_params, &edev->rss_params,
3381 		       sizeof(vport_update_params.rss_params));
3382 	} else {
3383 		memset(&vport_update_params.rss_params, 0,
3384 		       sizeof(vport_update_params.rss_params));
3385 	}
3386 
3387 	rc = edev->ops->vport_update(cdev, &vport_update_params);
3388 	if (rc) {
3389 		DP_ERR(edev, "Update V-PORT failed %d\n", rc);
3390 		return rc;
3391 	}
3392 
3393 	return 0;
3394 }
3395 
3396 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
3397 				 enum qed_filter_xcast_params_type opcode,
3398 				 unsigned char *mac, int num_macs)
3399 {
3400 	struct qed_filter_params filter_cmd;
3401 	int i;
3402 
3403 	memset(&filter_cmd, 0, sizeof(filter_cmd));
3404 	filter_cmd.type = QED_FILTER_TYPE_MCAST;
3405 	filter_cmd.filter.mcast.type = opcode;
3406 	filter_cmd.filter.mcast.num = num_macs;
3407 
3408 	for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
3409 		ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
3410 
3411 	return edev->ops->filter_config(edev->cdev, &filter_cmd);
3412 }
3413 
3414 enum qede_unload_mode {
3415 	QEDE_UNLOAD_NORMAL,
3416 };
3417 
3418 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
3419 {
3420 	struct qed_link_params link_params;
3421 	int rc;
3422 
3423 	DP_INFO(edev, "Starting qede unload\n");
3424 
3425 	mutex_lock(&edev->qede_lock);
3426 	edev->state = QEDE_STATE_CLOSED;
3427 
3428 	/* Close OS Tx */
3429 	netif_tx_disable(edev->ndev);
3430 	netif_carrier_off(edev->ndev);
3431 
3432 	/* Reset the link */
3433 	memset(&link_params, 0, sizeof(link_params));
3434 	link_params.link_up = false;
3435 	edev->ops->common->set_link(edev->cdev, &link_params);
3436 	rc = qede_stop_queues(edev);
3437 	if (rc) {
3438 		qede_sync_free_irqs(edev);
3439 		goto out;
3440 	}
3441 
3442 	DP_INFO(edev, "Stopped Queues\n");
3443 
3444 	qede_vlan_mark_nonconfigured(edev);
3445 	edev->ops->fastpath_stop(edev->cdev);
3446 
3447 	/* Release the interrupts */
3448 	qede_sync_free_irqs(edev);
3449 	edev->ops->common->set_fp_int(edev->cdev, 0);
3450 
3451 	qede_napi_disable_remove(edev);
3452 
3453 	qede_free_mem_load(edev);
3454 	qede_free_fp_array(edev);
3455 
3456 out:
3457 	mutex_unlock(&edev->qede_lock);
3458 	DP_INFO(edev, "Ending qede unload\n");
3459 }
3460 
3461 enum qede_load_mode {
3462 	QEDE_LOAD_NORMAL,
3463 };
3464 
3465 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3466 {
3467 	struct qed_link_params link_params;
3468 	struct qed_link_output link_output;
3469 	int rc;
3470 
3471 	DP_INFO(edev, "Starting qede load\n");
3472 
3473 	rc = qede_set_num_queues(edev);
3474 	if (rc)
3475 		goto err0;
3476 
3477 	rc = qede_alloc_fp_array(edev);
3478 	if (rc)
3479 		goto err0;
3480 
3481 	qede_init_fp(edev);
3482 
3483 	rc = qede_alloc_mem_load(edev);
3484 	if (rc)
3485 		goto err1;
3486 	DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3487 		QEDE_RSS_CNT(edev), edev->num_tc);
3488 
3489 	rc = qede_set_real_num_queues(edev);
3490 	if (rc)
3491 		goto err2;
3492 
3493 	qede_napi_add_enable(edev);
3494 	DP_INFO(edev, "Napi added and enabled\n");
3495 
3496 	rc = qede_setup_irqs(edev);
3497 	if (rc)
3498 		goto err3;
3499 	DP_INFO(edev, "Setup IRQs succeeded\n");
3500 
3501 	rc = qede_start_queues(edev);
3502 	if (rc)
3503 		goto err4;
3504 	DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3505 
3506 	/* Add primary mac and set Rx filters */
3507 	ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3508 
3509 	mutex_lock(&edev->qede_lock);
3510 	edev->state = QEDE_STATE_OPEN;
3511 	mutex_unlock(&edev->qede_lock);
3512 
3513 	/* Program un-configured VLANs */
3514 	qede_configure_vlan_filters(edev);
3515 
3516 	/* Ask for link-up using current configuration */
3517 	memset(&link_params, 0, sizeof(link_params));
3518 	link_params.link_up = true;
3519 	edev->ops->common->set_link(edev->cdev, &link_params);
3520 
3521 	/* Query whether link is already-up */
3522 	memset(&link_output, 0, sizeof(link_output));
3523 	edev->ops->common->get_link(edev->cdev, &link_output);
3524 	qede_link_update(edev, &link_output);
3525 
3526 	DP_INFO(edev, "Ending successfully qede load\n");
3527 
3528 	return 0;
3529 
3530 err4:
3531 	qede_sync_free_irqs(edev);
3532 	memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3533 err3:
3534 	qede_napi_disable_remove(edev);
3535 err2:
3536 	qede_free_mem_load(edev);
3537 err1:
3538 	edev->ops->common->set_fp_int(edev->cdev, 0);
3539 	qede_free_fp_array(edev);
3540 	edev->num_rss = 0;
3541 err0:
3542 	return rc;
3543 }
3544 
3545 void qede_reload(struct qede_dev *edev,
3546 		 void (*func)(struct qede_dev *, union qede_reload_args *),
3547 		 union qede_reload_args *args)
3548 {
3549 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3550 	/* Call function handler to update parameters
3551 	 * needed for function load.
3552 	 */
3553 	if (func)
3554 		func(edev, args);
3555 
3556 	qede_load(edev, QEDE_LOAD_NORMAL);
3557 
3558 	mutex_lock(&edev->qede_lock);
3559 	qede_config_rx_mode(edev->ndev);
3560 	mutex_unlock(&edev->qede_lock);
3561 }
3562 
3563 /* called with rtnl_lock */
3564 static int qede_open(struct net_device *ndev)
3565 {
3566 	struct qede_dev *edev = netdev_priv(ndev);
3567 	int rc;
3568 
3569 	netif_carrier_off(ndev);
3570 
3571 	edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3572 
3573 	rc = qede_load(edev, QEDE_LOAD_NORMAL);
3574 
3575 	if (rc)
3576 		return rc;
3577 
3578 #ifdef CONFIG_QEDE_VXLAN
3579 	vxlan_get_rx_port(ndev);
3580 #endif
3581 #ifdef CONFIG_QEDE_GENEVE
3582 	geneve_get_rx_port(ndev);
3583 #endif
3584 	return 0;
3585 }
3586 
3587 static int qede_close(struct net_device *ndev)
3588 {
3589 	struct qede_dev *edev = netdev_priv(ndev);
3590 
3591 	qede_unload(edev, QEDE_UNLOAD_NORMAL);
3592 
3593 	return 0;
3594 }
3595 
3596 static void qede_link_update(void *dev, struct qed_link_output *link)
3597 {
3598 	struct qede_dev *edev = dev;
3599 
3600 	if (!netif_running(edev->ndev)) {
3601 		DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3602 		return;
3603 	}
3604 
3605 	if (link->link_up) {
3606 		if (!netif_carrier_ok(edev->ndev)) {
3607 			DP_NOTICE(edev, "Link is up\n");
3608 			netif_tx_start_all_queues(edev->ndev);
3609 			netif_carrier_on(edev->ndev);
3610 		}
3611 	} else {
3612 		if (netif_carrier_ok(edev->ndev)) {
3613 			DP_NOTICE(edev, "Link is down\n");
3614 			netif_tx_disable(edev->ndev);
3615 			netif_carrier_off(edev->ndev);
3616 		}
3617 	}
3618 }
3619 
3620 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3621 {
3622 	struct qede_dev *edev = netdev_priv(ndev);
3623 	struct sockaddr *addr = p;
3624 	int rc;
3625 
3626 	ASSERT_RTNL(); /* @@@TBD To be removed */
3627 
3628 	DP_INFO(edev, "Set_mac_addr called\n");
3629 
3630 	if (!is_valid_ether_addr(addr->sa_data)) {
3631 		DP_NOTICE(edev, "The MAC address is not valid\n");
3632 		return -EFAULT;
3633 	}
3634 
3635 	if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
3636 		DP_NOTICE(edev, "qed prevents setting MAC\n");
3637 		return -EINVAL;
3638 	}
3639 
3640 	ether_addr_copy(ndev->dev_addr, addr->sa_data);
3641 
3642 	if (!netif_running(ndev))  {
3643 		DP_NOTICE(edev, "The device is currently down\n");
3644 		return 0;
3645 	}
3646 
3647 	/* Remove the previous primary mac */
3648 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3649 				   edev->primary_mac);
3650 	if (rc)
3651 		return rc;
3652 
3653 	/* Add MAC filter according to the new unicast HW MAC address */
3654 	ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3655 	return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3656 				      edev->primary_mac);
3657 }
3658 
3659 static int
3660 qede_configure_mcast_filtering(struct net_device *ndev,
3661 			       enum qed_filter_rx_mode_type *accept_flags)
3662 {
3663 	struct qede_dev *edev = netdev_priv(ndev);
3664 	unsigned char *mc_macs, *temp;
3665 	struct netdev_hw_addr *ha;
3666 	int rc = 0, mc_count;
3667 	size_t size;
3668 
3669 	size = 64 * ETH_ALEN;
3670 
3671 	mc_macs = kzalloc(size, GFP_KERNEL);
3672 	if (!mc_macs) {
3673 		DP_NOTICE(edev,
3674 			  "Failed to allocate memory for multicast MACs\n");
3675 		rc = -ENOMEM;
3676 		goto exit;
3677 	}
3678 
3679 	temp = mc_macs;
3680 
3681 	/* Remove all previously configured MAC filters */
3682 	rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3683 				   mc_macs, 1);
3684 	if (rc)
3685 		goto exit;
3686 
3687 	netif_addr_lock_bh(ndev);
3688 
3689 	mc_count = netdev_mc_count(ndev);
3690 	if (mc_count < 64) {
3691 		netdev_for_each_mc_addr(ha, ndev) {
3692 			ether_addr_copy(temp, ha->addr);
3693 			temp += ETH_ALEN;
3694 		}
3695 	}
3696 
3697 	netif_addr_unlock_bh(ndev);
3698 
3699 	/* Check for all multicast @@@TBD resource allocation */
3700 	if ((ndev->flags & IFF_ALLMULTI) ||
3701 	    (mc_count > 64)) {
3702 		if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3703 			*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3704 	} else {
3705 		/* Add all multicast MAC filters */
3706 		rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3707 					   mc_macs, mc_count);
3708 	}
3709 
3710 exit:
3711 	kfree(mc_macs);
3712 	return rc;
3713 }
3714 
3715 static void qede_set_rx_mode(struct net_device *ndev)
3716 {
3717 	struct qede_dev *edev = netdev_priv(ndev);
3718 
3719 	DP_INFO(edev, "qede_set_rx_mode called\n");
3720 
3721 	if (edev->state != QEDE_STATE_OPEN) {
3722 		DP_INFO(edev,
3723 			"qede_set_rx_mode called while interface is down\n");
3724 	} else {
3725 		set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3726 		schedule_delayed_work(&edev->sp_task, 0);
3727 	}
3728 }
3729 
3730 /* Must be called with qede_lock held */
3731 static void qede_config_rx_mode(struct net_device *ndev)
3732 {
3733 	enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3734 	struct qede_dev *edev = netdev_priv(ndev);
3735 	struct qed_filter_params rx_mode;
3736 	unsigned char *uc_macs, *temp;
3737 	struct netdev_hw_addr *ha;
3738 	int rc, uc_count;
3739 	size_t size;
3740 
3741 	netif_addr_lock_bh(ndev);
3742 
3743 	uc_count = netdev_uc_count(ndev);
3744 	size = uc_count * ETH_ALEN;
3745 
3746 	uc_macs = kzalloc(size, GFP_ATOMIC);
3747 	if (!uc_macs) {
3748 		DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3749 		netif_addr_unlock_bh(ndev);
3750 		return;
3751 	}
3752 
3753 	temp = uc_macs;
3754 	netdev_for_each_uc_addr(ha, ndev) {
3755 		ether_addr_copy(temp, ha->addr);
3756 		temp += ETH_ALEN;
3757 	}
3758 
3759 	netif_addr_unlock_bh(ndev);
3760 
3761 	/* Configure the struct for the Rx mode */
3762 	memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3763 	rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3764 
3765 	/* Remove all previous unicast secondary macs and multicast macs
3766 	 * (configrue / leave the primary mac)
3767 	 */
3768 	rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3769 				   edev->primary_mac);
3770 	if (rc)
3771 		goto out;
3772 
3773 	/* Check for promiscuous */
3774 	if ((ndev->flags & IFF_PROMISC) ||
3775 	    (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3776 		accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3777 	} else {
3778 		/* Add MAC filters according to the unicast secondary macs */
3779 		int i;
3780 
3781 		temp = uc_macs;
3782 		for (i = 0; i < uc_count; i++) {
3783 			rc = qede_set_ucast_rx_mac(edev,
3784 						   QED_FILTER_XCAST_TYPE_ADD,
3785 						   temp);
3786 			if (rc)
3787 				goto out;
3788 
3789 			temp += ETH_ALEN;
3790 		}
3791 
3792 		rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3793 		if (rc)
3794 			goto out;
3795 	}
3796 
3797 	/* take care of VLAN mode */
3798 	if (ndev->flags & IFF_PROMISC) {
3799 		qede_config_accept_any_vlan(edev, true);
3800 	} else if (!edev->non_configured_vlans) {
3801 		/* It's possible that accept_any_vlan mode is set due to a
3802 		 * previous setting of IFF_PROMISC. If vlan credits are
3803 		 * sufficient, disable accept_any_vlan.
3804 		 */
3805 		qede_config_accept_any_vlan(edev, false);
3806 	}
3807 
3808 	rx_mode.filter.accept_flags = accept_flags;
3809 	edev->ops->filter_config(edev->cdev, &rx_mode);
3810 out:
3811 	kfree(uc_macs);
3812 }
3813