1 /* QLogic qede NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/netdevice.h> 33 #include <linux/etherdevice.h> 34 #include <linux/skbuff.h> 35 #include <net/udp_tunnel.h> 36 #include <linux/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tcp.h> 39 #include <linux/if_ether.h> 40 #include <linux/if_vlan.h> 41 #include <net/ip6_checksum.h> 42 43 #include <linux/qed/qed_if.h> 44 #include "qede.h" 45 /********************************* 46 * Content also used by slowpath * 47 *********************************/ 48 49 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy) 50 { 51 struct sw_rx_data *sw_rx_data; 52 struct eth_rx_bd *rx_bd; 53 dma_addr_t mapping; 54 struct page *data; 55 56 /* In case lazy-allocation is allowed, postpone allocation until the 57 * end of the NAPI run. We'd still need to make sure the Rx ring has 58 * sufficient buffers to guarantee an additional Rx interrupt. 59 */ 60 if (allow_lazy && likely(rxq->filled_buffers > 12)) { 61 rxq->filled_buffers--; 62 return 0; 63 } 64 65 data = alloc_pages(GFP_ATOMIC, 0); 66 if (unlikely(!data)) 67 return -ENOMEM; 68 69 /* Map the entire page as it would be used 70 * for multiple RX buffer segment size mapping. 71 */ 72 mapping = dma_map_page(rxq->dev, data, 0, 73 PAGE_SIZE, rxq->data_direction); 74 if (unlikely(dma_mapping_error(rxq->dev, mapping))) { 75 __free_page(data); 76 return -ENOMEM; 77 } 78 79 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 80 sw_rx_data->page_offset = 0; 81 sw_rx_data->data = data; 82 sw_rx_data->mapping = mapping; 83 84 /* Advance PROD and get BD pointer */ 85 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); 86 WARN_ON(!rx_bd); 87 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 88 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 89 90 rxq->sw_rx_prod++; 91 rxq->filled_buffers++; 92 93 return 0; 94 } 95 96 /* Unmap the data and free skb */ 97 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len) 98 { 99 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; 100 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 101 struct eth_tx_1st_bd *first_bd; 102 struct eth_tx_bd *tx_data_bd; 103 int bds_consumed = 0; 104 int nbds; 105 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD; 106 int i, split_bd_len = 0; 107 108 if (unlikely(!skb)) { 109 DP_ERR(edev, 110 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", 111 idx, txq->sw_tx_cons, txq->sw_tx_prod); 112 return -1; 113 } 114 115 *len = skb->len; 116 117 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 118 119 bds_consumed++; 120 121 nbds = first_bd->data.nbds; 122 123 if (data_split) { 124 struct eth_tx_bd *split = (struct eth_tx_bd *) 125 qed_chain_consume(&txq->tx_pbl); 126 split_bd_len = BD_UNMAP_LEN(split); 127 bds_consumed++; 128 } 129 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 130 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 131 132 /* Unmap the data of the skb frags */ 133 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { 134 tx_data_bd = (struct eth_tx_bd *) 135 qed_chain_consume(&txq->tx_pbl); 136 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 137 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 138 } 139 140 while (bds_consumed++ < nbds) 141 qed_chain_consume(&txq->tx_pbl); 142 143 /* Free skb */ 144 dev_kfree_skb_any(skb); 145 txq->sw_tx_ring.skbs[idx].skb = NULL; 146 txq->sw_tx_ring.skbs[idx].flags = 0; 147 148 return 0; 149 } 150 151 /* Unmap the data and free skb when mapping failed during start_xmit */ 152 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq, 153 struct eth_tx_1st_bd *first_bd, 154 int nbd, bool data_split) 155 { 156 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 157 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 158 struct eth_tx_bd *tx_data_bd; 159 int i, split_bd_len = 0; 160 161 /* Return prod to its position before this skb was handled */ 162 qed_chain_set_prod(&txq->tx_pbl, 163 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 164 165 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 166 167 if (data_split) { 168 struct eth_tx_bd *split = (struct eth_tx_bd *) 169 qed_chain_produce(&txq->tx_pbl); 170 split_bd_len = BD_UNMAP_LEN(split); 171 nbd--; 172 } 173 174 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd), 175 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 176 177 /* Unmap the data of the skb frags */ 178 for (i = 0; i < nbd; i++) { 179 tx_data_bd = (struct eth_tx_bd *) 180 qed_chain_produce(&txq->tx_pbl); 181 if (tx_data_bd->nbytes) 182 dma_unmap_page(txq->dev, 183 BD_UNMAP_ADDR(tx_data_bd), 184 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 185 } 186 187 /* Return again prod to its position before this skb was handled */ 188 qed_chain_set_prod(&txq->tx_pbl, 189 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 190 191 /* Free skb */ 192 dev_kfree_skb_any(skb); 193 txq->sw_tx_ring.skbs[idx].skb = NULL; 194 txq->sw_tx_ring.skbs[idx].flags = 0; 195 } 196 197 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext) 198 { 199 u32 rc = XMIT_L4_CSUM; 200 __be16 l3_proto; 201 202 if (skb->ip_summed != CHECKSUM_PARTIAL) 203 return XMIT_PLAIN; 204 205 l3_proto = vlan_get_protocol(skb); 206 if (l3_proto == htons(ETH_P_IPV6) && 207 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) 208 *ipv6_ext = 1; 209 210 if (skb->encapsulation) { 211 rc |= XMIT_ENC; 212 if (skb_is_gso(skb)) { 213 unsigned short gso_type = skb_shinfo(skb)->gso_type; 214 215 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) || 216 (gso_type & SKB_GSO_GRE_CSUM)) 217 rc |= XMIT_ENC_GSO_L4_CSUM; 218 219 rc |= XMIT_LSO; 220 return rc; 221 } 222 } 223 224 if (skb_is_gso(skb)) 225 rc |= XMIT_LSO; 226 227 return rc; 228 } 229 230 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, 231 struct eth_tx_2nd_bd *second_bd, 232 struct eth_tx_3rd_bd *third_bd) 233 { 234 u8 l4_proto; 235 u16 bd2_bits1 = 0, bd2_bits2 = 0; 236 237 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); 238 239 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & 240 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 241 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 242 243 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 244 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); 245 246 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) 247 l4_proto = ipv6_hdr(skb)->nexthdr; 248 else 249 l4_proto = ip_hdr(skb)->protocol; 250 251 if (l4_proto == IPPROTO_UDP) 252 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 253 254 if (third_bd) 255 third_bd->data.bitfields |= 256 cpu_to_le16(((tcp_hdrlen(skb) / 4) & 257 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << 258 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); 259 260 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); 261 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); 262 } 263 264 static int map_frag_to_bd(struct qede_tx_queue *txq, 265 skb_frag_t *frag, struct eth_tx_bd *bd) 266 { 267 dma_addr_t mapping; 268 269 /* Map skb non-linear frag data for DMA */ 270 mapping = skb_frag_dma_map(txq->dev, frag, 0, 271 skb_frag_size(frag), DMA_TO_DEVICE); 272 if (unlikely(dma_mapping_error(txq->dev, mapping))) 273 return -ENOMEM; 274 275 /* Setup the data pointer of the frag data */ 276 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); 277 278 return 0; 279 } 280 281 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) 282 { 283 if (is_encap_pkt) 284 return (skb_inner_transport_header(skb) + 285 inner_tcp_hdrlen(skb) - skb->data); 286 else 287 return (skb_transport_header(skb) + 288 tcp_hdrlen(skb) - skb->data); 289 } 290 291 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ 292 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 293 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type) 294 { 295 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; 296 297 if (xmit_type & XMIT_LSO) { 298 int hlen; 299 300 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); 301 302 /* linear payload would require its own BD */ 303 if (skb_headlen(skb) > hlen) 304 allowed_frags--; 305 } 306 307 return (skb_shinfo(skb)->nr_frags > allowed_frags); 308 } 309 #endif 310 311 static inline void qede_update_tx_producer(struct qede_tx_queue *txq) 312 { 313 /* wmb makes sure that the BDs data is updated before updating the 314 * producer, otherwise FW may read old data from the BDs. 315 */ 316 wmb(); 317 barrier(); 318 writel(txq->tx_db.raw, txq->doorbell_addr); 319 320 /* mmiowb is needed to synchronize doorbell writes from more than one 321 * processor. It guarantees that the write arrives to the device before 322 * the queue lock is released and another start_xmit is called (possibly 323 * on another CPU). Without this barrier, the next doorbell can bypass 324 * this doorbell. This is applicable to IA64/Altix systems. 325 */ 326 mmiowb(); 327 } 328 329 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp, 330 struct sw_rx_data *metadata, u16 padding, u16 length) 331 { 332 struct qede_tx_queue *txq = fp->xdp_tx; 333 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 334 struct eth_tx_1st_bd *first_bd; 335 336 if (!qed_chain_get_elem_left(&txq->tx_pbl)) { 337 txq->stopped_cnt++; 338 return -ENOMEM; 339 } 340 341 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 342 343 memset(first_bd, 0, sizeof(*first_bd)); 344 first_bd->data.bd_flags.bitfields = 345 BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT); 346 first_bd->data.bitfields |= 347 (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 348 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 349 first_bd->data.nbds = 1; 350 351 /* We can safely ignore the offset, as it's 0 for XDP */ 352 BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length); 353 354 /* Synchronize the buffer back to device, as program [probably] 355 * has changed it. 356 */ 357 dma_sync_single_for_device(&edev->pdev->dev, 358 metadata->mapping + padding, 359 length, PCI_DMA_TODEVICE); 360 361 txq->sw_tx_ring.pages[idx] = metadata->data; 362 txq->sw_tx_prod++; 363 364 /* Mark the fastpath for future XDP doorbell */ 365 fp->xdp_xmit = 1; 366 367 return 0; 368 } 369 370 int qede_txq_has_work(struct qede_tx_queue *txq) 371 { 372 u16 hw_bd_cons; 373 374 /* Tell compiler that consumer and producer can change */ 375 barrier(); 376 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 377 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) 378 return 0; 379 380 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); 381 } 382 383 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 384 { 385 struct eth_tx_1st_bd *bd; 386 u16 hw_bd_cons; 387 388 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 389 barrier(); 390 391 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 392 bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 393 394 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(bd), 395 PAGE_SIZE, DMA_BIDIRECTIONAL); 396 __free_page(txq->sw_tx_ring.pages[txq->sw_tx_cons & 397 NUM_TX_BDS_MAX]); 398 399 txq->sw_tx_cons++; 400 txq->xmit_pkts++; 401 } 402 } 403 404 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 405 { 406 struct netdev_queue *netdev_txq; 407 u16 hw_bd_cons; 408 unsigned int pkts_compl = 0, bytes_compl = 0; 409 int rc; 410 411 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); 412 413 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 414 barrier(); 415 416 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 417 int len = 0; 418 419 rc = qede_free_tx_pkt(edev, txq, &len); 420 if (rc) { 421 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", 422 hw_bd_cons, 423 qed_chain_get_cons_idx(&txq->tx_pbl)); 424 break; 425 } 426 427 bytes_compl += len; 428 pkts_compl++; 429 txq->sw_tx_cons++; 430 txq->xmit_pkts++; 431 } 432 433 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 434 435 /* Need to make the tx_bd_cons update visible to start_xmit() 436 * before checking for netif_tx_queue_stopped(). Without the 437 * memory barrier, there is a small possibility that 438 * start_xmit() will miss it and cause the queue to be stopped 439 * forever. 440 * On the other hand we need an rmb() here to ensure the proper 441 * ordering of bit testing in the following 442 * netif_tx_queue_stopped(txq) call. 443 */ 444 smp_mb(); 445 446 if (unlikely(netif_tx_queue_stopped(netdev_txq))) { 447 /* Taking tx_lock is needed to prevent reenabling the queue 448 * while it's empty. This could have happen if rx_action() gets 449 * suspended in qede_tx_int() after the condition before 450 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): 451 * 452 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 453 * sends some packets consuming the whole queue again-> 454 * stops the queue 455 */ 456 457 __netif_tx_lock(netdev_txq, smp_processor_id()); 458 459 if ((netif_tx_queue_stopped(netdev_txq)) && 460 (edev->state == QEDE_STATE_OPEN) && 461 (qed_chain_get_elem_left(&txq->tx_pbl) 462 >= (MAX_SKB_FRAGS + 1))) { 463 netif_tx_wake_queue(netdev_txq); 464 DP_VERBOSE(edev, NETIF_MSG_TX_DONE, 465 "Wake queue was called\n"); 466 } 467 468 __netif_tx_unlock(netdev_txq); 469 } 470 471 return 0; 472 } 473 474 bool qede_has_rx_work(struct qede_rx_queue *rxq) 475 { 476 u16 hw_comp_cons, sw_comp_cons; 477 478 /* Tell compiler that status block fields can change */ 479 barrier(); 480 481 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 482 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 483 484 return hw_comp_cons != sw_comp_cons; 485 } 486 487 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) 488 { 489 qed_chain_consume(&rxq->rx_bd_ring); 490 rxq->sw_rx_cons++; 491 } 492 493 /* This function reuses the buffer(from an offset) from 494 * consumer index to producer index in the bd ring 495 */ 496 static inline void qede_reuse_page(struct qede_rx_queue *rxq, 497 struct sw_rx_data *curr_cons) 498 { 499 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 500 struct sw_rx_data *curr_prod; 501 dma_addr_t new_mapping; 502 503 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 504 *curr_prod = *curr_cons; 505 506 new_mapping = curr_prod->mapping + curr_prod->page_offset; 507 508 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); 509 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping)); 510 511 rxq->sw_rx_prod++; 512 curr_cons->data = NULL; 513 } 514 515 /* In case of allocation failures reuse buffers 516 * from consumer index to produce buffers for firmware 517 */ 518 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count) 519 { 520 struct sw_rx_data *curr_cons; 521 522 for (; count > 0; count--) { 523 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 524 qede_reuse_page(rxq, curr_cons); 525 qede_rx_bd_ring_consume(rxq); 526 } 527 } 528 529 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq, 530 struct sw_rx_data *curr_cons) 531 { 532 /* Move to the next segment in the page */ 533 curr_cons->page_offset += rxq->rx_buf_seg_size; 534 535 if (curr_cons->page_offset == PAGE_SIZE) { 536 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 537 /* Since we failed to allocate new buffer 538 * current buffer can be used again. 539 */ 540 curr_cons->page_offset -= rxq->rx_buf_seg_size; 541 542 return -ENOMEM; 543 } 544 545 dma_unmap_page(rxq->dev, curr_cons->mapping, 546 PAGE_SIZE, rxq->data_direction); 547 } else { 548 /* Increment refcount of the page as we don't want 549 * network stack to take the ownership of the page 550 * which can be recycled multiple times by the driver. 551 */ 552 page_ref_inc(curr_cons->data); 553 qede_reuse_page(rxq, curr_cons); 554 } 555 556 return 0; 557 } 558 559 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) 560 { 561 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); 562 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); 563 struct eth_rx_prod_data rx_prods = {0}; 564 565 /* Update producers */ 566 rx_prods.bd_prod = cpu_to_le16(bd_prod); 567 rx_prods.cqe_prod = cpu_to_le16(cqe_prod); 568 569 /* Make sure that the BD and SGE data is updated before updating the 570 * producers since FW might read the BD/SGE right after the producer 571 * is updated. 572 */ 573 wmb(); 574 575 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 576 (u32 *)&rx_prods); 577 578 /* mmiowb is needed to synchronize doorbell writes from more than one 579 * processor. It guarantees that the write arrives to the device before 580 * the napi lock is released and another qede_poll is called (possibly 581 * on another CPU). Without this barrier, the next doorbell can bypass 582 * this doorbell. This is applicable to IA64/Altix systems. 583 */ 584 mmiowb(); 585 } 586 587 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash) 588 { 589 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; 590 enum rss_hash_type htype; 591 u32 hash = 0; 592 593 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); 594 if (htype) { 595 hash_type = ((htype == RSS_HASH_TYPE_IPV4) || 596 (htype == RSS_HASH_TYPE_IPV6)) ? 597 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; 598 hash = le32_to_cpu(rss_hash); 599 } 600 skb_set_hash(skb, hash, hash_type); 601 } 602 603 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) 604 { 605 skb_checksum_none_assert(skb); 606 607 if (csum_flag & QEDE_CSUM_UNNECESSARY) 608 skb->ip_summed = CHECKSUM_UNNECESSARY; 609 610 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) { 611 skb->csum_level = 1; 612 skb->encapsulation = 1; 613 } 614 } 615 616 static inline void qede_skb_receive(struct qede_dev *edev, 617 struct qede_fastpath *fp, 618 struct qede_rx_queue *rxq, 619 struct sk_buff *skb, u16 vlan_tag) 620 { 621 if (vlan_tag) 622 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 623 624 napi_gro_receive(&fp->napi, skb); 625 rxq->rcv_pkts++; 626 } 627 628 static void qede_set_gro_params(struct qede_dev *edev, 629 struct sk_buff *skb, 630 struct eth_fast_path_rx_tpa_start_cqe *cqe) 631 { 632 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); 633 634 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & 635 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) 636 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 637 else 638 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 639 640 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - 641 cqe->header_len; 642 } 643 644 static int qede_fill_frag_skb(struct qede_dev *edev, 645 struct qede_rx_queue *rxq, 646 u8 tpa_agg_index, u16 len_on_bd) 647 { 648 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & 649 NUM_RX_BDS_MAX]; 650 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; 651 struct sk_buff *skb = tpa_info->skb; 652 653 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 654 goto out; 655 656 /* Add one frag and update the appropriate fields in the skb */ 657 skb_fill_page_desc(skb, tpa_info->frag_id++, 658 current_bd->data, current_bd->page_offset, 659 len_on_bd); 660 661 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) { 662 /* Incr page ref count to reuse on allocation failure 663 * so that it doesn't get freed while freeing SKB. 664 */ 665 page_ref_inc(current_bd->data); 666 goto out; 667 } 668 669 qed_chain_consume(&rxq->rx_bd_ring); 670 rxq->sw_rx_cons++; 671 672 skb->data_len += len_on_bd; 673 skb->truesize += rxq->rx_buf_seg_size; 674 skb->len += len_on_bd; 675 676 return 0; 677 678 out: 679 tpa_info->state = QEDE_AGG_STATE_ERROR; 680 qede_recycle_rx_bd_ring(rxq, 1); 681 682 return -ENOMEM; 683 } 684 685 static bool qede_tunn_exist(u16 flag) 686 { 687 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << 688 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); 689 } 690 691 static u8 qede_check_tunn_csum(u16 flag) 692 { 693 u16 csum_flag = 0; 694 u8 tcsum = 0; 695 696 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << 697 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) 698 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << 699 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; 700 701 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 702 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 703 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 704 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 705 tcsum = QEDE_TUNN_CSUM_UNNECESSARY; 706 } 707 708 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << 709 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | 710 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 711 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 712 713 if (csum_flag & flag) 714 return QEDE_CSUM_ERROR; 715 716 return QEDE_CSUM_UNNECESSARY | tcsum; 717 } 718 719 static void qede_tpa_start(struct qede_dev *edev, 720 struct qede_rx_queue *rxq, 721 struct eth_fast_path_rx_tpa_start_cqe *cqe) 722 { 723 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 724 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); 725 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 726 struct sw_rx_data *replace_buf = &tpa_info->buffer; 727 dma_addr_t mapping = tpa_info->buffer_mapping; 728 struct sw_rx_data *sw_rx_data_cons; 729 struct sw_rx_data *sw_rx_data_prod; 730 731 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 732 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 733 734 /* Use pre-allocated replacement buffer - we can't release the agg. 735 * start until its over and we don't want to risk allocation failing 736 * here, so re-allocate when aggregation will be over. 737 */ 738 sw_rx_data_prod->mapping = replace_buf->mapping; 739 740 sw_rx_data_prod->data = replace_buf->data; 741 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 742 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping)); 743 sw_rx_data_prod->page_offset = replace_buf->page_offset; 744 745 rxq->sw_rx_prod++; 746 747 /* move partial skb from cons to pool (don't unmap yet) 748 * save mapping, incase we drop the packet later on. 749 */ 750 tpa_info->buffer = *sw_rx_data_cons; 751 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi), 752 le32_to_cpu(rx_bd_cons->addr.lo)); 753 754 tpa_info->buffer_mapping = mapping; 755 rxq->sw_rx_cons++; 756 757 /* set tpa state to start only if we are able to allocate skb 758 * for this aggregation, otherwise mark as error and aggregation will 759 * be dropped 760 */ 761 tpa_info->skb = netdev_alloc_skb(edev->ndev, 762 le16_to_cpu(cqe->len_on_first_bd)); 763 if (unlikely(!tpa_info->skb)) { 764 DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); 765 tpa_info->state = QEDE_AGG_STATE_ERROR; 766 goto cons_buf; 767 } 768 769 /* Start filling in the aggregation info */ 770 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd)); 771 tpa_info->frag_id = 0; 772 tpa_info->state = QEDE_AGG_STATE_START; 773 774 /* Store some information from first CQE */ 775 tpa_info->start_cqe_placement_offset = cqe->placement_offset; 776 tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd); 777 if ((le16_to_cpu(cqe->pars_flags.flags) >> 778 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & 779 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) 780 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 781 else 782 tpa_info->vlan_tag = 0; 783 784 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash); 785 786 /* This is needed in order to enable forwarding support */ 787 qede_set_gro_params(edev, tpa_info->skb, cqe); 788 789 cons_buf: /* We still need to handle bd_len_list to consume buffers */ 790 if (likely(cqe->ext_bd_len_list[0])) 791 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 792 le16_to_cpu(cqe->ext_bd_len_list[0])); 793 794 if (unlikely(cqe->ext_bd_len_list[1])) { 795 DP_ERR(edev, 796 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n"); 797 tpa_info->state = QEDE_AGG_STATE_ERROR; 798 } 799 } 800 801 #ifdef CONFIG_INET 802 static void qede_gro_ip_csum(struct sk_buff *skb) 803 { 804 const struct iphdr *iph = ip_hdr(skb); 805 struct tcphdr *th; 806 807 skb_set_transport_header(skb, sizeof(struct iphdr)); 808 th = tcp_hdr(skb); 809 810 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 811 iph->saddr, iph->daddr, 0); 812 813 tcp_gro_complete(skb); 814 } 815 816 static void qede_gro_ipv6_csum(struct sk_buff *skb) 817 { 818 struct ipv6hdr *iph = ipv6_hdr(skb); 819 struct tcphdr *th; 820 821 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 822 th = tcp_hdr(skb); 823 824 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 825 &iph->saddr, &iph->daddr, 0); 826 tcp_gro_complete(skb); 827 } 828 #endif 829 830 static void qede_gro_receive(struct qede_dev *edev, 831 struct qede_fastpath *fp, 832 struct sk_buff *skb, 833 u16 vlan_tag) 834 { 835 /* FW can send a single MTU sized packet from gro flow 836 * due to aggregation timeout/last segment etc. which 837 * is not expected to be a gro packet. If a skb has zero 838 * frags then simply push it in the stack as non gso skb. 839 */ 840 if (unlikely(!skb->data_len)) { 841 skb_shinfo(skb)->gso_type = 0; 842 skb_shinfo(skb)->gso_size = 0; 843 goto send_skb; 844 } 845 846 #ifdef CONFIG_INET 847 if (skb_shinfo(skb)->gso_size) { 848 skb_reset_network_header(skb); 849 850 switch (skb->protocol) { 851 case htons(ETH_P_IP): 852 qede_gro_ip_csum(skb); 853 break; 854 case htons(ETH_P_IPV6): 855 qede_gro_ipv6_csum(skb); 856 break; 857 default: 858 DP_ERR(edev, 859 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 860 ntohs(skb->protocol)); 861 } 862 } 863 #endif 864 865 send_skb: 866 skb_record_rx_queue(skb, fp->rxq->rxq_id); 867 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag); 868 } 869 870 static inline void qede_tpa_cont(struct qede_dev *edev, 871 struct qede_rx_queue *rxq, 872 struct eth_fast_path_rx_tpa_cont_cqe *cqe) 873 { 874 int i; 875 876 for (i = 0; cqe->len_list[i]; i++) 877 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 878 le16_to_cpu(cqe->len_list[i])); 879 880 if (unlikely(i > 1)) 881 DP_ERR(edev, 882 "Strange - TPA cont with more than a single len_list entry\n"); 883 } 884 885 static void qede_tpa_end(struct qede_dev *edev, 886 struct qede_fastpath *fp, 887 struct eth_fast_path_rx_tpa_end_cqe *cqe) 888 { 889 struct qede_rx_queue *rxq = fp->rxq; 890 struct qede_agg_info *tpa_info; 891 struct sk_buff *skb; 892 int i; 893 894 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 895 skb = tpa_info->skb; 896 897 for (i = 0; cqe->len_list[i]; i++) 898 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 899 le16_to_cpu(cqe->len_list[i])); 900 if (unlikely(i > 1)) 901 DP_ERR(edev, 902 "Strange - TPA emd with more than a single len_list entry\n"); 903 904 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 905 goto err; 906 907 /* Sanity */ 908 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) 909 DP_ERR(edev, 910 "Strange - TPA had %02x BDs, but SKB has only %d frags\n", 911 cqe->num_of_bds, tpa_info->frag_id); 912 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) 913 DP_ERR(edev, 914 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", 915 le16_to_cpu(cqe->total_packet_len), skb->len); 916 917 memcpy(skb->data, 918 page_address(tpa_info->buffer.data) + 919 tpa_info->start_cqe_placement_offset + 920 tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len); 921 922 /* Finalize the SKB */ 923 skb->protocol = eth_type_trans(skb, edev->ndev); 924 skb->ip_summed = CHECKSUM_UNNECESSARY; 925 926 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 927 * to skb_shinfo(skb)->gso_segs 928 */ 929 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); 930 931 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); 932 933 tpa_info->state = QEDE_AGG_STATE_NONE; 934 935 return; 936 err: 937 tpa_info->state = QEDE_AGG_STATE_NONE; 938 dev_kfree_skb_any(tpa_info->skb); 939 tpa_info->skb = NULL; 940 } 941 942 static u8 qede_check_notunn_csum(u16 flag) 943 { 944 u16 csum_flag = 0; 945 u8 csum = 0; 946 947 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 948 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 949 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 950 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 951 csum = QEDE_CSUM_UNNECESSARY; 952 } 953 954 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 955 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 956 957 if (csum_flag & flag) 958 return QEDE_CSUM_ERROR; 959 960 return csum; 961 } 962 963 static u8 qede_check_csum(u16 flag) 964 { 965 if (!qede_tunn_exist(flag)) 966 return qede_check_notunn_csum(flag); 967 else 968 return qede_check_tunn_csum(flag); 969 } 970 971 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, 972 u16 flag) 973 { 974 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; 975 976 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << 977 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || 978 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << 979 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) 980 return true; 981 982 return false; 983 } 984 985 /* Return true iff packet is to be passed to stack */ 986 static bool qede_rx_xdp(struct qede_dev *edev, 987 struct qede_fastpath *fp, 988 struct qede_rx_queue *rxq, 989 struct bpf_prog *prog, 990 struct sw_rx_data *bd, 991 struct eth_fast_path_rx_reg_cqe *cqe) 992 { 993 u16 len = le16_to_cpu(cqe->len_on_first_bd); 994 struct xdp_buff xdp; 995 enum xdp_action act; 996 997 xdp.data = page_address(bd->data) + cqe->placement_offset; 998 xdp.data_end = xdp.data + len; 999 1000 /* Queues always have a full reset currently, so for the time 1001 * being until there's atomic program replace just mark read 1002 * side for map helpers. 1003 */ 1004 rcu_read_lock(); 1005 act = bpf_prog_run_xdp(prog, &xdp); 1006 rcu_read_unlock(); 1007 1008 if (act == XDP_PASS) 1009 return true; 1010 1011 /* Count number of packets not to be passed to stack */ 1012 rxq->xdp_no_pass++; 1013 1014 switch (act) { 1015 case XDP_TX: 1016 /* We need the replacement buffer before transmit. */ 1017 if (qede_alloc_rx_buffer(rxq, true)) { 1018 qede_recycle_rx_bd_ring(rxq, 1); 1019 return false; 1020 } 1021 1022 /* Now if there's a transmission problem, we'd still have to 1023 * throw current buffer, as replacement was already allocated. 1024 */ 1025 if (qede_xdp_xmit(edev, fp, bd, cqe->placement_offset, len)) { 1026 dma_unmap_page(rxq->dev, bd->mapping, 1027 PAGE_SIZE, DMA_BIDIRECTIONAL); 1028 __free_page(bd->data); 1029 } 1030 1031 /* Regardless, we've consumed an Rx BD */ 1032 qede_rx_bd_ring_consume(rxq); 1033 return false; 1034 1035 default: 1036 bpf_warn_invalid_xdp_action(act); 1037 case XDP_ABORTED: 1038 case XDP_DROP: 1039 qede_recycle_rx_bd_ring(rxq, cqe->bd_num); 1040 } 1041 1042 return false; 1043 } 1044 1045 static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev, 1046 struct qede_rx_queue *rxq, 1047 struct sw_rx_data *bd, u16 len, 1048 u16 pad) 1049 { 1050 unsigned int offset = bd->page_offset; 1051 struct skb_frag_struct *frag; 1052 struct page *page = bd->data; 1053 unsigned int pull_len; 1054 struct sk_buff *skb; 1055 unsigned char *va; 1056 1057 /* Allocate a new SKB with a sufficient large header len */ 1058 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); 1059 if (unlikely(!skb)) 1060 return NULL; 1061 1062 /* Copy data into SKB - if it's small, we can simply copy it and 1063 * re-use the already allcoated & mapped memory. 1064 */ 1065 if (len + pad <= edev->rx_copybreak) { 1066 memcpy(skb_put(skb, len), 1067 page_address(page) + pad + offset, len); 1068 qede_reuse_page(rxq, bd); 1069 goto out; 1070 } 1071 1072 frag = &skb_shinfo(skb)->frags[0]; 1073 1074 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 1075 page, pad + offset, len, rxq->rx_buf_seg_size); 1076 1077 va = skb_frag_address(frag); 1078 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE); 1079 1080 /* Align the pull_len to optimize memcpy */ 1081 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long))); 1082 1083 /* Correct the skb & frag sizes offset after the pull */ 1084 skb_frag_size_sub(frag, pull_len); 1085 frag->page_offset += pull_len; 1086 skb->data_len -= pull_len; 1087 skb->tail += pull_len; 1088 1089 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) { 1090 /* Incr page ref count to reuse on allocation failure so 1091 * that it doesn't get freed while freeing SKB [as its 1092 * already mapped there]. 1093 */ 1094 page_ref_inc(page); 1095 dev_kfree_skb_any(skb); 1096 return NULL; 1097 } 1098 1099 out: 1100 /* We've consumed the first BD and prepared an SKB */ 1101 qede_rx_bd_ring_consume(rxq); 1102 return skb; 1103 } 1104 1105 static int qede_rx_build_jumbo(struct qede_dev *edev, 1106 struct qede_rx_queue *rxq, 1107 struct sk_buff *skb, 1108 struct eth_fast_path_rx_reg_cqe *cqe, 1109 u16 first_bd_len) 1110 { 1111 u16 pkt_len = le16_to_cpu(cqe->pkt_len); 1112 struct sw_rx_data *bd; 1113 u16 bd_cons_idx; 1114 u8 num_frags; 1115 1116 pkt_len -= first_bd_len; 1117 1118 /* We've already used one BD for the SKB. Now take care of the rest */ 1119 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) { 1120 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : 1121 pkt_len; 1122 1123 if (unlikely(!cur_size)) { 1124 DP_ERR(edev, 1125 "Still got %d BDs for mapping jumbo, but length became 0\n", 1126 num_frags); 1127 goto out; 1128 } 1129 1130 /* We need a replacement buffer for each BD */ 1131 if (unlikely(qede_alloc_rx_buffer(rxq, true))) 1132 goto out; 1133 1134 /* Now that we've allocated the replacement buffer, 1135 * we can safely consume the next BD and map it to the SKB. 1136 */ 1137 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1138 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1139 qede_rx_bd_ring_consume(rxq); 1140 1141 dma_unmap_page(rxq->dev, bd->mapping, 1142 PAGE_SIZE, DMA_FROM_DEVICE); 1143 1144 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, 1145 bd->data, 0, cur_size); 1146 1147 skb->truesize += PAGE_SIZE; 1148 skb->data_len += cur_size; 1149 skb->len += cur_size; 1150 pkt_len -= cur_size; 1151 } 1152 1153 if (unlikely(pkt_len)) 1154 DP_ERR(edev, 1155 "Mapped all BDs of jumbo, but still have %d bytes\n", 1156 pkt_len); 1157 1158 out: 1159 return num_frags; 1160 } 1161 1162 static int qede_rx_process_tpa_cqe(struct qede_dev *edev, 1163 struct qede_fastpath *fp, 1164 struct qede_rx_queue *rxq, 1165 union eth_rx_cqe *cqe, 1166 enum eth_rx_cqe_type type) 1167 { 1168 switch (type) { 1169 case ETH_RX_CQE_TYPE_TPA_START: 1170 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start); 1171 return 0; 1172 case ETH_RX_CQE_TYPE_TPA_CONT: 1173 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont); 1174 return 0; 1175 case ETH_RX_CQE_TYPE_TPA_END: 1176 qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end); 1177 return 1; 1178 default: 1179 return 0; 1180 } 1181 } 1182 1183 static int qede_rx_process_cqe(struct qede_dev *edev, 1184 struct qede_fastpath *fp, 1185 struct qede_rx_queue *rxq) 1186 { 1187 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog); 1188 struct eth_fast_path_rx_reg_cqe *fp_cqe; 1189 u16 len, pad, bd_cons_idx, parse_flag; 1190 enum eth_rx_cqe_type cqe_type; 1191 union eth_rx_cqe *cqe; 1192 struct sw_rx_data *bd; 1193 struct sk_buff *skb; 1194 __le16 flags; 1195 u8 csum_flag; 1196 1197 /* Get the CQE from the completion ring */ 1198 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring); 1199 cqe_type = cqe->fast_path_regular.type; 1200 1201 /* Process an unlikely slowpath event */ 1202 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { 1203 struct eth_slow_path_rx_cqe *sp_cqe; 1204 1205 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe; 1206 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe); 1207 return 0; 1208 } 1209 1210 /* Handle TPA cqes */ 1211 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) 1212 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type); 1213 1214 /* Get the data from the SW ring; Consume it only after it's evident 1215 * we wouldn't recycle it. 1216 */ 1217 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1218 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1219 1220 fp_cqe = &cqe->fast_path_regular; 1221 len = le16_to_cpu(fp_cqe->len_on_first_bd); 1222 pad = fp_cqe->placement_offset; 1223 1224 /* Run eBPF program if one is attached */ 1225 if (xdp_prog) 1226 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe)) 1227 return 1; 1228 1229 /* If this is an error packet then drop it */ 1230 flags = cqe->fast_path_regular.pars_flags.flags; 1231 parse_flag = le16_to_cpu(flags); 1232 1233 csum_flag = qede_check_csum(parse_flag); 1234 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { 1235 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) { 1236 rxq->rx_ip_frags++; 1237 } else { 1238 DP_NOTICE(edev, 1239 "CQE has error, flags = %x, dropping incoming packet\n", 1240 parse_flag); 1241 rxq->rx_hw_errors++; 1242 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); 1243 return 0; 1244 } 1245 } 1246 1247 /* Basic validation passed; Need to prepare an SKB. This would also 1248 * guarantee to finally consume the first BD upon success. 1249 */ 1250 skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad); 1251 if (!skb) { 1252 rxq->rx_alloc_errors++; 1253 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); 1254 return 0; 1255 } 1256 1257 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed 1258 * by a single cqe. 1259 */ 1260 if (fp_cqe->bd_num > 1) { 1261 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb, 1262 fp_cqe, len); 1263 1264 if (unlikely(unmapped_frags > 0)) { 1265 qede_recycle_rx_bd_ring(rxq, unmapped_frags); 1266 dev_kfree_skb_any(skb); 1267 return 0; 1268 } 1269 } 1270 1271 /* The SKB contains all the data. Now prepare meta-magic */ 1272 skb->protocol = eth_type_trans(skb, edev->ndev); 1273 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash); 1274 qede_set_skb_csum(skb, csum_flag); 1275 skb_record_rx_queue(skb, rxq->rxq_id); 1276 1277 /* SKB is prepared - pass it to stack */ 1278 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag)); 1279 1280 return 1; 1281 } 1282 1283 static int qede_rx_int(struct qede_fastpath *fp, int budget) 1284 { 1285 struct qede_rx_queue *rxq = fp->rxq; 1286 struct qede_dev *edev = fp->edev; 1287 u16 hw_comp_cons, sw_comp_cons; 1288 int work_done = 0; 1289 1290 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 1291 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1292 1293 /* Memory barrier to prevent the CPU from doing speculative reads of CQE 1294 * / BD in the while-loop before reading hw_comp_cons. If the CQE is 1295 * read before it is written by FW, then FW writes CQE and SB, and then 1296 * the CPU reads the hw_comp_cons, it will use an old CQE. 1297 */ 1298 rmb(); 1299 1300 /* Loop to complete all indicated BDs */ 1301 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) { 1302 qede_rx_process_cqe(edev, fp, rxq); 1303 qed_chain_recycle_consumed(&rxq->rx_comp_ring); 1304 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1305 work_done++; 1306 } 1307 1308 /* Allocate replacement buffers */ 1309 while (rxq->num_rx_buffers - rxq->filled_buffers) 1310 if (qede_alloc_rx_buffer(rxq, false)) 1311 break; 1312 1313 /* Update producers */ 1314 qede_update_rx_prod(edev, rxq); 1315 1316 return work_done; 1317 } 1318 1319 static bool qede_poll_is_more_work(struct qede_fastpath *fp) 1320 { 1321 qed_sb_update_sb_idx(fp->sb_info); 1322 1323 /* *_has_*_work() reads the status block, thus we need to ensure that 1324 * status block indices have been actually read (qed_sb_update_sb_idx) 1325 * prior to this check (*_has_*_work) so that we won't write the 1326 * "newer" value of the status block to HW (if there was a DMA right 1327 * after qede_has_rx_work and if there is no rmb, the memory reading 1328 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb). 1329 * In this case there will never be another interrupt until there is 1330 * another update of the status block, while there is still unhandled 1331 * work. 1332 */ 1333 rmb(); 1334 1335 if (likely(fp->type & QEDE_FASTPATH_RX)) 1336 if (qede_has_rx_work(fp->rxq)) 1337 return true; 1338 1339 if (fp->type & QEDE_FASTPATH_XDP) 1340 if (qede_txq_has_work(fp->xdp_tx)) 1341 return true; 1342 1343 if (likely(fp->type & QEDE_FASTPATH_TX)) 1344 if (qede_txq_has_work(fp->txq)) 1345 return true; 1346 1347 return false; 1348 } 1349 1350 /********************* 1351 * NDO & API related * 1352 *********************/ 1353 int qede_poll(struct napi_struct *napi, int budget) 1354 { 1355 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, 1356 napi); 1357 struct qede_dev *edev = fp->edev; 1358 int rx_work_done = 0; 1359 1360 if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq)) 1361 qede_tx_int(edev, fp->txq); 1362 1363 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx)) 1364 qede_xdp_tx_int(edev, fp->xdp_tx); 1365 1366 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) && 1367 qede_has_rx_work(fp->rxq)) ? 1368 qede_rx_int(fp, budget) : 0; 1369 if (rx_work_done < budget) { 1370 if (!qede_poll_is_more_work(fp)) { 1371 napi_complete(napi); 1372 1373 /* Update and reenable interrupts */ 1374 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1); 1375 } else { 1376 rx_work_done = budget; 1377 } 1378 } 1379 1380 if (fp->xdp_xmit) { 1381 u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl); 1382 1383 fp->xdp_xmit = 0; 1384 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); 1385 qede_update_tx_producer(fp->xdp_tx); 1386 } 1387 1388 return rx_work_done; 1389 } 1390 1391 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) 1392 { 1393 struct qede_fastpath *fp = fp_cookie; 1394 1395 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); 1396 1397 napi_schedule_irqoff(&fp->napi); 1398 return IRQ_HANDLED; 1399 } 1400 1401 /* Main transmit function */ 1402 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1403 { 1404 struct qede_dev *edev = netdev_priv(ndev); 1405 struct netdev_queue *netdev_txq; 1406 struct qede_tx_queue *txq; 1407 struct eth_tx_1st_bd *first_bd; 1408 struct eth_tx_2nd_bd *second_bd = NULL; 1409 struct eth_tx_3rd_bd *third_bd = NULL; 1410 struct eth_tx_bd *tx_data_bd = NULL; 1411 u16 txq_index; 1412 u8 nbd = 0; 1413 dma_addr_t mapping; 1414 int rc, frag_idx = 0, ipv6_ext = 0; 1415 u8 xmit_type; 1416 u16 idx; 1417 u16 hlen; 1418 bool data_split = false; 1419 1420 /* Get tx-queue context and netdev index */ 1421 txq_index = skb_get_queue_mapping(skb); 1422 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev)); 1423 txq = edev->fp_array[edev->fp_num_rx + txq_index].txq; 1424 netdev_txq = netdev_get_tx_queue(ndev, txq_index); 1425 1426 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); 1427 1428 xmit_type = qede_xmit_type(skb, &ipv6_ext); 1429 1430 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 1431 if (qede_pkt_req_lin(skb, xmit_type)) { 1432 if (skb_linearize(skb)) { 1433 DP_NOTICE(edev, 1434 "SKB linearization failed - silently dropping this SKB\n"); 1435 dev_kfree_skb_any(skb); 1436 return NETDEV_TX_OK; 1437 } 1438 } 1439 #endif 1440 1441 /* Fill the entry in the SW ring and the BDs in the FW ring */ 1442 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; 1443 txq->sw_tx_ring.skbs[idx].skb = skb; 1444 first_bd = (struct eth_tx_1st_bd *) 1445 qed_chain_produce(&txq->tx_pbl); 1446 memset(first_bd, 0, sizeof(*first_bd)); 1447 first_bd->data.bd_flags.bitfields = 1448 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 1449 1450 /* Map skb linear data for DMA and set in the first BD */ 1451 mapping = dma_map_single(txq->dev, skb->data, 1452 skb_headlen(skb), DMA_TO_DEVICE); 1453 if (unlikely(dma_mapping_error(txq->dev, mapping))) { 1454 DP_NOTICE(edev, "SKB mapping failed\n"); 1455 qede_free_failed_tx_pkt(txq, first_bd, 0, false); 1456 qede_update_tx_producer(txq); 1457 return NETDEV_TX_OK; 1458 } 1459 nbd++; 1460 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); 1461 1462 /* In case there is IPv6 with extension headers or LSO we need 2nd and 1463 * 3rd BDs. 1464 */ 1465 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { 1466 second_bd = (struct eth_tx_2nd_bd *) 1467 qed_chain_produce(&txq->tx_pbl); 1468 memset(second_bd, 0, sizeof(*second_bd)); 1469 1470 nbd++; 1471 third_bd = (struct eth_tx_3rd_bd *) 1472 qed_chain_produce(&txq->tx_pbl); 1473 memset(third_bd, 0, sizeof(*third_bd)); 1474 1475 nbd++; 1476 /* We need to fill in additional data in second_bd... */ 1477 tx_data_bd = (struct eth_tx_bd *)second_bd; 1478 } 1479 1480 if (skb_vlan_tag_present(skb)) { 1481 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1482 first_bd->data.bd_flags.bitfields |= 1483 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 1484 } 1485 1486 /* Fill the parsing flags & params according to the requested offload */ 1487 if (xmit_type & XMIT_L4_CSUM) { 1488 /* We don't re-calculate IP checksum as it is already done by 1489 * the upper stack 1490 */ 1491 first_bd->data.bd_flags.bitfields |= 1492 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 1493 1494 if (xmit_type & XMIT_ENC) { 1495 first_bd->data.bd_flags.bitfields |= 1496 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 1497 first_bd->data.bitfields |= 1498 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; 1499 } 1500 1501 /* Legacy FW had flipped behavior in regard to this bit - 1502 * I.e., needed to set to prevent FW from touching encapsulated 1503 * packets when it didn't need to. 1504 */ 1505 if (unlikely(txq->is_legacy)) 1506 first_bd->data.bitfields ^= 1507 1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT; 1508 1509 /* If the packet is IPv6 with extension header, indicate that 1510 * to FW and pass few params, since the device cracker doesn't 1511 * support parsing IPv6 with extension header/s. 1512 */ 1513 if (unlikely(ipv6_ext)) 1514 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); 1515 } 1516 1517 if (xmit_type & XMIT_LSO) { 1518 first_bd->data.bd_flags.bitfields |= 1519 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); 1520 third_bd->data.lso_mss = 1521 cpu_to_le16(skb_shinfo(skb)->gso_size); 1522 1523 if (unlikely(xmit_type & XMIT_ENC)) { 1524 first_bd->data.bd_flags.bitfields |= 1525 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; 1526 1527 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) { 1528 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; 1529 1530 first_bd->data.bd_flags.bitfields |= 1 << tmp; 1531 } 1532 hlen = qede_get_skb_hlen(skb, true); 1533 } else { 1534 first_bd->data.bd_flags.bitfields |= 1535 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 1536 hlen = qede_get_skb_hlen(skb, false); 1537 } 1538 1539 /* @@@TBD - if will not be removed need to check */ 1540 third_bd->data.bitfields |= 1541 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); 1542 1543 /* Make life easier for FW guys who can't deal with header and 1544 * data on same BD. If we need to split, use the second bd... 1545 */ 1546 if (unlikely(skb_headlen(skb) > hlen)) { 1547 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1548 "TSO split header size is %d (%x:%x)\n", 1549 first_bd->nbytes, first_bd->addr.hi, 1550 first_bd->addr.lo); 1551 1552 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), 1553 le32_to_cpu(first_bd->addr.lo)) + 1554 hlen; 1555 1556 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, 1557 le16_to_cpu(first_bd->nbytes) - 1558 hlen); 1559 1560 /* this marks the BD as one that has no 1561 * individual mapping 1562 */ 1563 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD; 1564 1565 first_bd->nbytes = cpu_to_le16(hlen); 1566 1567 tx_data_bd = (struct eth_tx_bd *)third_bd; 1568 data_split = true; 1569 } 1570 } else { 1571 first_bd->data.bitfields |= 1572 (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 1573 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 1574 } 1575 1576 /* Handle fragmented skb */ 1577 /* special handle for frags inside 2nd and 3rd bds.. */ 1578 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { 1579 rc = map_frag_to_bd(txq, 1580 &skb_shinfo(skb)->frags[frag_idx], 1581 tx_data_bd); 1582 if (rc) { 1583 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 1584 qede_update_tx_producer(txq); 1585 return NETDEV_TX_OK; 1586 } 1587 1588 if (tx_data_bd == (struct eth_tx_bd *)second_bd) 1589 tx_data_bd = (struct eth_tx_bd *)third_bd; 1590 else 1591 tx_data_bd = NULL; 1592 1593 frag_idx++; 1594 } 1595 1596 /* map last frags into 4th, 5th .... */ 1597 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { 1598 tx_data_bd = (struct eth_tx_bd *) 1599 qed_chain_produce(&txq->tx_pbl); 1600 1601 memset(tx_data_bd, 0, sizeof(*tx_data_bd)); 1602 1603 rc = map_frag_to_bd(txq, 1604 &skb_shinfo(skb)->frags[frag_idx], 1605 tx_data_bd); 1606 if (rc) { 1607 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 1608 qede_update_tx_producer(txq); 1609 return NETDEV_TX_OK; 1610 } 1611 } 1612 1613 /* update the first BD with the actual num BDs */ 1614 first_bd->data.nbds = nbd; 1615 1616 netdev_tx_sent_queue(netdev_txq, skb->len); 1617 1618 skb_tx_timestamp(skb); 1619 1620 /* Advance packet producer only before sending the packet since mapping 1621 * of pages may fail. 1622 */ 1623 txq->sw_tx_prod++; 1624 1625 /* 'next page' entries are counted in the producer value */ 1626 txq->tx_db.data.bd_prod = 1627 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); 1628 1629 if (!skb->xmit_more || netif_xmit_stopped(netdev_txq)) 1630 qede_update_tx_producer(txq); 1631 1632 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) 1633 < (MAX_SKB_FRAGS + 1))) { 1634 if (skb->xmit_more) 1635 qede_update_tx_producer(txq); 1636 1637 netif_tx_stop_queue(netdev_txq); 1638 txq->stopped_cnt++; 1639 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1640 "Stop queue was called\n"); 1641 /* paired memory barrier is in qede_tx_int(), we have to keep 1642 * ordering of set_bit() in netif_tx_stop_queue() and read of 1643 * fp->bd_tx_cons 1644 */ 1645 smp_mb(); 1646 1647 if ((qed_chain_get_elem_left(&txq->tx_pbl) >= 1648 (MAX_SKB_FRAGS + 1)) && 1649 (edev->state == QEDE_STATE_OPEN)) { 1650 netif_tx_wake_queue(netdev_txq); 1651 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1652 "Wake queue was called\n"); 1653 } 1654 } 1655 1656 return NETDEV_TX_OK; 1657 } 1658 1659 /* 8B udp header + 8B base tunnel header + 32B option length */ 1660 #define QEDE_MAX_TUN_HDR_LEN 48 1661 1662 netdev_features_t qede_features_check(struct sk_buff *skb, 1663 struct net_device *dev, 1664 netdev_features_t features) 1665 { 1666 if (skb->encapsulation) { 1667 u8 l4_proto = 0; 1668 1669 switch (vlan_get_protocol(skb)) { 1670 case htons(ETH_P_IP): 1671 l4_proto = ip_hdr(skb)->protocol; 1672 break; 1673 case htons(ETH_P_IPV6): 1674 l4_proto = ipv6_hdr(skb)->nexthdr; 1675 break; 1676 default: 1677 return features; 1678 } 1679 1680 /* Disable offloads for geneve tunnels, as HW can't parse 1681 * the geneve header which has option length greater than 32B. 1682 */ 1683 if ((l4_proto == IPPROTO_UDP) && 1684 ((skb_inner_mac_header(skb) - 1685 skb_transport_header(skb)) > QEDE_MAX_TUN_HDR_LEN)) 1686 return features & ~(NETIF_F_CSUM_MASK | 1687 NETIF_F_GSO_MASK); 1688 } 1689 1690 return features; 1691 } 1692