xref: /openbmc/linux/drivers/net/ethernet/qlogic/qede/qede_fp.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bpf_trace.h>
36 #include <net/udp_tunnel.h>
37 #include <linux/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tcp.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <net/ip6_checksum.h>
43 #include "qede_ptp.h"
44 
45 #include <linux/qed/qed_if.h>
46 #include "qede.h"
47 /*********************************
48  * Content also used by slowpath *
49  *********************************/
50 
51 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
52 {
53 	struct sw_rx_data *sw_rx_data;
54 	struct eth_rx_bd *rx_bd;
55 	dma_addr_t mapping;
56 	struct page *data;
57 
58 	/* In case lazy-allocation is allowed, postpone allocation until the
59 	 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 	 * sufficient buffers to guarantee an additional Rx interrupt.
61 	 */
62 	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 		rxq->filled_buffers--;
64 		return 0;
65 	}
66 
67 	data = alloc_pages(GFP_ATOMIC, 0);
68 	if (unlikely(!data))
69 		return -ENOMEM;
70 
71 	/* Map the entire page as it would be used
72 	 * for multiple RX buffer segment size mapping.
73 	 */
74 	mapping = dma_map_page(rxq->dev, data, 0,
75 			       PAGE_SIZE, rxq->data_direction);
76 	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 		__free_page(data);
78 		return -ENOMEM;
79 	}
80 
81 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 	sw_rx_data->page_offset = 0;
83 	sw_rx_data->data = data;
84 	sw_rx_data->mapping = mapping;
85 
86 	/* Advance PROD and get BD pointer */
87 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 	WARN_ON(!rx_bd);
89 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
90 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
91 				     rxq->rx_headroom);
92 
93 	rxq->sw_rx_prod++;
94 	rxq->filled_buffers++;
95 
96 	return 0;
97 }
98 
99 /* Unmap the data and free skb */
100 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
101 {
102 	u16 idx = txq->sw_tx_cons;
103 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
104 	struct eth_tx_1st_bd *first_bd;
105 	struct eth_tx_bd *tx_data_bd;
106 	int bds_consumed = 0;
107 	int nbds;
108 	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
109 	int i, split_bd_len = 0;
110 
111 	if (unlikely(!skb)) {
112 		DP_ERR(edev,
113 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
114 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
115 		return -1;
116 	}
117 
118 	*len = skb->len;
119 
120 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
121 
122 	bds_consumed++;
123 
124 	nbds = first_bd->data.nbds;
125 
126 	if (data_split) {
127 		struct eth_tx_bd *split = (struct eth_tx_bd *)
128 			qed_chain_consume(&txq->tx_pbl);
129 		split_bd_len = BD_UNMAP_LEN(split);
130 		bds_consumed++;
131 	}
132 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
133 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
134 
135 	/* Unmap the data of the skb frags */
136 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
137 		tx_data_bd = (struct eth_tx_bd *)
138 			qed_chain_consume(&txq->tx_pbl);
139 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
140 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
141 	}
142 
143 	while (bds_consumed++ < nbds)
144 		qed_chain_consume(&txq->tx_pbl);
145 
146 	/* Free skb */
147 	dev_kfree_skb_any(skb);
148 	txq->sw_tx_ring.skbs[idx].skb = NULL;
149 	txq->sw_tx_ring.skbs[idx].flags = 0;
150 
151 	return 0;
152 }
153 
154 /* Unmap the data and free skb when mapping failed during start_xmit */
155 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
156 				    struct eth_tx_1st_bd *first_bd,
157 				    int nbd, bool data_split)
158 {
159 	u16 idx = txq->sw_tx_prod;
160 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
161 	struct eth_tx_bd *tx_data_bd;
162 	int i, split_bd_len = 0;
163 
164 	/* Return prod to its position before this skb was handled */
165 	qed_chain_set_prod(&txq->tx_pbl,
166 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
167 
168 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
169 
170 	if (data_split) {
171 		struct eth_tx_bd *split = (struct eth_tx_bd *)
172 					  qed_chain_produce(&txq->tx_pbl);
173 		split_bd_len = BD_UNMAP_LEN(split);
174 		nbd--;
175 	}
176 
177 	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
178 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
179 
180 	/* Unmap the data of the skb frags */
181 	for (i = 0; i < nbd; i++) {
182 		tx_data_bd = (struct eth_tx_bd *)
183 			qed_chain_produce(&txq->tx_pbl);
184 		if (tx_data_bd->nbytes)
185 			dma_unmap_page(txq->dev,
186 				       BD_UNMAP_ADDR(tx_data_bd),
187 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
188 	}
189 
190 	/* Return again prod to its position before this skb was handled */
191 	qed_chain_set_prod(&txq->tx_pbl,
192 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
193 
194 	/* Free skb */
195 	dev_kfree_skb_any(skb);
196 	txq->sw_tx_ring.skbs[idx].skb = NULL;
197 	txq->sw_tx_ring.skbs[idx].flags = 0;
198 }
199 
200 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
201 {
202 	u32 rc = XMIT_L4_CSUM;
203 	__be16 l3_proto;
204 
205 	if (skb->ip_summed != CHECKSUM_PARTIAL)
206 		return XMIT_PLAIN;
207 
208 	l3_proto = vlan_get_protocol(skb);
209 	if (l3_proto == htons(ETH_P_IPV6) &&
210 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
211 		*ipv6_ext = 1;
212 
213 	if (skb->encapsulation) {
214 		rc |= XMIT_ENC;
215 		if (skb_is_gso(skb)) {
216 			unsigned short gso_type = skb_shinfo(skb)->gso_type;
217 
218 			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
219 			    (gso_type & SKB_GSO_GRE_CSUM))
220 				rc |= XMIT_ENC_GSO_L4_CSUM;
221 
222 			rc |= XMIT_LSO;
223 			return rc;
224 		}
225 	}
226 
227 	if (skb_is_gso(skb))
228 		rc |= XMIT_LSO;
229 
230 	return rc;
231 }
232 
233 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
234 					 struct eth_tx_2nd_bd *second_bd,
235 					 struct eth_tx_3rd_bd *third_bd)
236 {
237 	u8 l4_proto;
238 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
239 
240 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
241 
242 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
243 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
244 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
245 
246 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
247 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
248 
249 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
250 		l4_proto = ipv6_hdr(skb)->nexthdr;
251 	else
252 		l4_proto = ip_hdr(skb)->protocol;
253 
254 	if (l4_proto == IPPROTO_UDP)
255 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
256 
257 	if (third_bd)
258 		third_bd->data.bitfields |=
259 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
260 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
261 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
262 
263 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
264 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
265 }
266 
267 static int map_frag_to_bd(struct qede_tx_queue *txq,
268 			  skb_frag_t *frag, struct eth_tx_bd *bd)
269 {
270 	dma_addr_t mapping;
271 
272 	/* Map skb non-linear frag data for DMA */
273 	mapping = skb_frag_dma_map(txq->dev, frag, 0,
274 				   skb_frag_size(frag), DMA_TO_DEVICE);
275 	if (unlikely(dma_mapping_error(txq->dev, mapping)))
276 		return -ENOMEM;
277 
278 	/* Setup the data pointer of the frag data */
279 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
280 
281 	return 0;
282 }
283 
284 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
285 {
286 	if (is_encap_pkt)
287 		return (skb_inner_transport_header(skb) +
288 			inner_tcp_hdrlen(skb) - skb->data);
289 	else
290 		return (skb_transport_header(skb) +
291 			tcp_hdrlen(skb) - skb->data);
292 }
293 
294 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
295 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
296 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
297 {
298 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
299 
300 	if (xmit_type & XMIT_LSO) {
301 		int hlen;
302 
303 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
304 
305 		/* linear payload would require its own BD */
306 		if (skb_headlen(skb) > hlen)
307 			allowed_frags--;
308 	}
309 
310 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
311 }
312 #endif
313 
314 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
315 {
316 	/* wmb makes sure that the BDs data is updated before updating the
317 	 * producer, otherwise FW may read old data from the BDs.
318 	 */
319 	wmb();
320 	barrier();
321 	writel(txq->tx_db.raw, txq->doorbell_addr);
322 
323 	/* mmiowb is needed to synchronize doorbell writes from more than one
324 	 * processor. It guarantees that the write arrives to the device before
325 	 * the queue lock is released and another start_xmit is called (possibly
326 	 * on another CPU). Without this barrier, the next doorbell can bypass
327 	 * this doorbell. This is applicable to IA64/Altix systems.
328 	 */
329 	mmiowb();
330 }
331 
332 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
333 			 struct sw_rx_data *metadata, u16 padding, u16 length)
334 {
335 	struct qede_tx_queue *txq = fp->xdp_tx;
336 	struct eth_tx_1st_bd *first_bd;
337 	u16 idx = txq->sw_tx_prod;
338 	u16 val;
339 
340 	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
341 		txq->stopped_cnt++;
342 		return -ENOMEM;
343 	}
344 
345 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
346 
347 	memset(first_bd, 0, sizeof(*first_bd));
348 	first_bd->data.bd_flags.bitfields =
349 	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
350 
351 	val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
352 	       ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
353 
354 	first_bd->data.bitfields |= cpu_to_le16(val);
355 	first_bd->data.nbds = 1;
356 
357 	/* We can safely ignore the offset, as it's 0 for XDP */
358 	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
359 
360 	/* Synchronize the buffer back to device, as program [probably]
361 	 * has changed it.
362 	 */
363 	dma_sync_single_for_device(&edev->pdev->dev,
364 				   metadata->mapping + padding,
365 				   length, PCI_DMA_TODEVICE);
366 
367 	txq->sw_tx_ring.xdp[idx].page = metadata->data;
368 	txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
369 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
370 
371 	/* Mark the fastpath for future XDP doorbell */
372 	fp->xdp_xmit = 1;
373 
374 	return 0;
375 }
376 
377 int qede_txq_has_work(struct qede_tx_queue *txq)
378 {
379 	u16 hw_bd_cons;
380 
381 	/* Tell compiler that consumer and producer can change */
382 	barrier();
383 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
384 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
385 		return 0;
386 
387 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
388 }
389 
390 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
391 {
392 	u16 hw_bd_cons, idx;
393 
394 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
395 	barrier();
396 
397 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
398 		qed_chain_consume(&txq->tx_pbl);
399 		idx = txq->sw_tx_cons;
400 
401 		dma_unmap_page(&edev->pdev->dev,
402 			       txq->sw_tx_ring.xdp[idx].mapping,
403 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
404 		__free_page(txq->sw_tx_ring.xdp[idx].page);
405 
406 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
407 		txq->xmit_pkts++;
408 	}
409 }
410 
411 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
412 {
413 	struct netdev_queue *netdev_txq;
414 	u16 hw_bd_cons;
415 	unsigned int pkts_compl = 0, bytes_compl = 0;
416 	int rc;
417 
418 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
419 
420 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
421 	barrier();
422 
423 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
424 		int len = 0;
425 
426 		rc = qede_free_tx_pkt(edev, txq, &len);
427 		if (rc) {
428 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
429 				  hw_bd_cons,
430 				  qed_chain_get_cons_idx(&txq->tx_pbl));
431 			break;
432 		}
433 
434 		bytes_compl += len;
435 		pkts_compl++;
436 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
437 		txq->xmit_pkts++;
438 	}
439 
440 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
441 
442 	/* Need to make the tx_bd_cons update visible to start_xmit()
443 	 * before checking for netif_tx_queue_stopped().  Without the
444 	 * memory barrier, there is a small possibility that
445 	 * start_xmit() will miss it and cause the queue to be stopped
446 	 * forever.
447 	 * On the other hand we need an rmb() here to ensure the proper
448 	 * ordering of bit testing in the following
449 	 * netif_tx_queue_stopped(txq) call.
450 	 */
451 	smp_mb();
452 
453 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
454 		/* Taking tx_lock is needed to prevent reenabling the queue
455 		 * while it's empty. This could have happen if rx_action() gets
456 		 * suspended in qede_tx_int() after the condition before
457 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
458 		 *
459 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
460 		 * sends some packets consuming the whole queue again->
461 		 * stops the queue
462 		 */
463 
464 		__netif_tx_lock(netdev_txq, smp_processor_id());
465 
466 		if ((netif_tx_queue_stopped(netdev_txq)) &&
467 		    (edev->state == QEDE_STATE_OPEN) &&
468 		    (qed_chain_get_elem_left(&txq->tx_pbl)
469 		      >= (MAX_SKB_FRAGS + 1))) {
470 			netif_tx_wake_queue(netdev_txq);
471 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
472 				   "Wake queue was called\n");
473 		}
474 
475 		__netif_tx_unlock(netdev_txq);
476 	}
477 
478 	return 0;
479 }
480 
481 bool qede_has_rx_work(struct qede_rx_queue *rxq)
482 {
483 	u16 hw_comp_cons, sw_comp_cons;
484 
485 	/* Tell compiler that status block fields can change */
486 	barrier();
487 
488 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
489 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
490 
491 	return hw_comp_cons != sw_comp_cons;
492 }
493 
494 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
495 {
496 	qed_chain_consume(&rxq->rx_bd_ring);
497 	rxq->sw_rx_cons++;
498 }
499 
500 /* This function reuses the buffer(from an offset) from
501  * consumer index to producer index in the bd ring
502  */
503 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
504 				   struct sw_rx_data *curr_cons)
505 {
506 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
507 	struct sw_rx_data *curr_prod;
508 	dma_addr_t new_mapping;
509 
510 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
511 	*curr_prod = *curr_cons;
512 
513 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
514 
515 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
516 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
517 					  rxq->rx_headroom);
518 
519 	rxq->sw_rx_prod++;
520 	curr_cons->data = NULL;
521 }
522 
523 /* In case of allocation failures reuse buffers
524  * from consumer index to produce buffers for firmware
525  */
526 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
527 {
528 	struct sw_rx_data *curr_cons;
529 
530 	for (; count > 0; count--) {
531 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
532 		qede_reuse_page(rxq, curr_cons);
533 		qede_rx_bd_ring_consume(rxq);
534 	}
535 }
536 
537 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
538 					 struct sw_rx_data *curr_cons)
539 {
540 	/* Move to the next segment in the page */
541 	curr_cons->page_offset += rxq->rx_buf_seg_size;
542 
543 	if (curr_cons->page_offset == PAGE_SIZE) {
544 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
545 			/* Since we failed to allocate new buffer
546 			 * current buffer can be used again.
547 			 */
548 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
549 
550 			return -ENOMEM;
551 		}
552 
553 		dma_unmap_page(rxq->dev, curr_cons->mapping,
554 			       PAGE_SIZE, rxq->data_direction);
555 	} else {
556 		/* Increment refcount of the page as we don't want
557 		 * network stack to take the ownership of the page
558 		 * which can be recycled multiple times by the driver.
559 		 */
560 		page_ref_inc(curr_cons->data);
561 		qede_reuse_page(rxq, curr_cons);
562 	}
563 
564 	return 0;
565 }
566 
567 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
568 {
569 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
570 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
571 	struct eth_rx_prod_data rx_prods = {0};
572 
573 	/* Update producers */
574 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
575 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
576 
577 	/* Make sure that the BD and SGE data is updated before updating the
578 	 * producers since FW might read the BD/SGE right after the producer
579 	 * is updated.
580 	 */
581 	wmb();
582 
583 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
584 			(u32 *)&rx_prods);
585 
586 	/* mmiowb is needed to synchronize doorbell writes from more than one
587 	 * processor. It guarantees that the write arrives to the device before
588 	 * the napi lock is released and another qede_poll is called (possibly
589 	 * on another CPU). Without this barrier, the next doorbell can bypass
590 	 * this doorbell. This is applicable to IA64/Altix systems.
591 	 */
592 	mmiowb();
593 }
594 
595 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
596 {
597 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
598 	enum rss_hash_type htype;
599 	u32 hash = 0;
600 
601 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
602 	if (htype) {
603 		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
604 			     (htype == RSS_HASH_TYPE_IPV6)) ?
605 			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
606 		hash = le32_to_cpu(rss_hash);
607 	}
608 	skb_set_hash(skb, hash, hash_type);
609 }
610 
611 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
612 {
613 	skb_checksum_none_assert(skb);
614 
615 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
616 		skb->ip_summed = CHECKSUM_UNNECESSARY;
617 
618 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
619 		skb->csum_level = 1;
620 		skb->encapsulation = 1;
621 	}
622 }
623 
624 static inline void qede_skb_receive(struct qede_dev *edev,
625 				    struct qede_fastpath *fp,
626 				    struct qede_rx_queue *rxq,
627 				    struct sk_buff *skb, u16 vlan_tag)
628 {
629 	if (vlan_tag)
630 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
631 
632 	napi_gro_receive(&fp->napi, skb);
633 }
634 
635 static void qede_set_gro_params(struct qede_dev *edev,
636 				struct sk_buff *skb,
637 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
638 {
639 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
640 
641 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
642 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
643 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
644 	else
645 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
646 
647 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
648 				    cqe->header_len;
649 }
650 
651 static int qede_fill_frag_skb(struct qede_dev *edev,
652 			      struct qede_rx_queue *rxq,
653 			      u8 tpa_agg_index, u16 len_on_bd)
654 {
655 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
656 							 NUM_RX_BDS_MAX];
657 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
658 	struct sk_buff *skb = tpa_info->skb;
659 
660 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
661 		goto out;
662 
663 	/* Add one frag and update the appropriate fields in the skb */
664 	skb_fill_page_desc(skb, tpa_info->frag_id++,
665 			   current_bd->data, current_bd->page_offset,
666 			   len_on_bd);
667 
668 	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
669 		/* Incr page ref count to reuse on allocation failure
670 		 * so that it doesn't get freed while freeing SKB.
671 		 */
672 		page_ref_inc(current_bd->data);
673 		goto out;
674 	}
675 
676 	qed_chain_consume(&rxq->rx_bd_ring);
677 	rxq->sw_rx_cons++;
678 
679 	skb->data_len += len_on_bd;
680 	skb->truesize += rxq->rx_buf_seg_size;
681 	skb->len += len_on_bd;
682 
683 	return 0;
684 
685 out:
686 	tpa_info->state = QEDE_AGG_STATE_ERROR;
687 	qede_recycle_rx_bd_ring(rxq, 1);
688 
689 	return -ENOMEM;
690 }
691 
692 static bool qede_tunn_exist(u16 flag)
693 {
694 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
695 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
696 }
697 
698 static u8 qede_check_tunn_csum(u16 flag)
699 {
700 	u16 csum_flag = 0;
701 	u8 tcsum = 0;
702 
703 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
704 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
705 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
706 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
707 
708 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
709 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
710 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
711 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
712 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
713 	}
714 
715 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
716 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
717 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
718 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
719 
720 	if (csum_flag & flag)
721 		return QEDE_CSUM_ERROR;
722 
723 	return QEDE_CSUM_UNNECESSARY | tcsum;
724 }
725 
726 static void qede_tpa_start(struct qede_dev *edev,
727 			   struct qede_rx_queue *rxq,
728 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
729 {
730 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
731 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
732 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
733 	struct sw_rx_data *replace_buf = &tpa_info->buffer;
734 	dma_addr_t mapping = tpa_info->buffer_mapping;
735 	struct sw_rx_data *sw_rx_data_cons;
736 	struct sw_rx_data *sw_rx_data_prod;
737 
738 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
739 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
740 
741 	/* Use pre-allocated replacement buffer - we can't release the agg.
742 	 * start until its over and we don't want to risk allocation failing
743 	 * here, so re-allocate when aggregation will be over.
744 	 */
745 	sw_rx_data_prod->mapping = replace_buf->mapping;
746 
747 	sw_rx_data_prod->data = replace_buf->data;
748 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
749 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
750 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
751 
752 	rxq->sw_rx_prod++;
753 
754 	/* move partial skb from cons to pool (don't unmap yet)
755 	 * save mapping, incase we drop the packet later on.
756 	 */
757 	tpa_info->buffer = *sw_rx_data_cons;
758 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
759 			   le32_to_cpu(rx_bd_cons->addr.lo));
760 
761 	tpa_info->buffer_mapping = mapping;
762 	rxq->sw_rx_cons++;
763 
764 	/* set tpa state to start only if we are able to allocate skb
765 	 * for this aggregation, otherwise mark as error and aggregation will
766 	 * be dropped
767 	 */
768 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
769 					 le16_to_cpu(cqe->len_on_first_bd));
770 	if (unlikely(!tpa_info->skb)) {
771 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
772 		tpa_info->state = QEDE_AGG_STATE_ERROR;
773 		goto cons_buf;
774 	}
775 
776 	/* Start filling in the aggregation info */
777 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
778 	tpa_info->frag_id = 0;
779 	tpa_info->state = QEDE_AGG_STATE_START;
780 
781 	/* Store some information from first CQE */
782 	tpa_info->start_cqe_placement_offset = cqe->placement_offset;
783 	tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
784 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
785 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
786 	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
787 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
788 	else
789 		tpa_info->vlan_tag = 0;
790 
791 	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
792 
793 	/* This is needed in order to enable forwarding support */
794 	qede_set_gro_params(edev, tpa_info->skb, cqe);
795 
796 cons_buf: /* We still need to handle bd_len_list to consume buffers */
797 	if (likely(cqe->ext_bd_len_list[0]))
798 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
799 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
800 
801 	if (unlikely(cqe->ext_bd_len_list[1])) {
802 		DP_ERR(edev,
803 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
804 		tpa_info->state = QEDE_AGG_STATE_ERROR;
805 	}
806 }
807 
808 #ifdef CONFIG_INET
809 static void qede_gro_ip_csum(struct sk_buff *skb)
810 {
811 	const struct iphdr *iph = ip_hdr(skb);
812 	struct tcphdr *th;
813 
814 	skb_set_transport_header(skb, sizeof(struct iphdr));
815 	th = tcp_hdr(skb);
816 
817 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
818 				  iph->saddr, iph->daddr, 0);
819 
820 	tcp_gro_complete(skb);
821 }
822 
823 static void qede_gro_ipv6_csum(struct sk_buff *skb)
824 {
825 	struct ipv6hdr *iph = ipv6_hdr(skb);
826 	struct tcphdr *th;
827 
828 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
829 	th = tcp_hdr(skb);
830 
831 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
832 				  &iph->saddr, &iph->daddr, 0);
833 	tcp_gro_complete(skb);
834 }
835 #endif
836 
837 static void qede_gro_receive(struct qede_dev *edev,
838 			     struct qede_fastpath *fp,
839 			     struct sk_buff *skb,
840 			     u16 vlan_tag)
841 {
842 	/* FW can send a single MTU sized packet from gro flow
843 	 * due to aggregation timeout/last segment etc. which
844 	 * is not expected to be a gro packet. If a skb has zero
845 	 * frags then simply push it in the stack as non gso skb.
846 	 */
847 	if (unlikely(!skb->data_len)) {
848 		skb_shinfo(skb)->gso_type = 0;
849 		skb_shinfo(skb)->gso_size = 0;
850 		goto send_skb;
851 	}
852 
853 #ifdef CONFIG_INET
854 	if (skb_shinfo(skb)->gso_size) {
855 		skb_reset_network_header(skb);
856 
857 		switch (skb->protocol) {
858 		case htons(ETH_P_IP):
859 			qede_gro_ip_csum(skb);
860 			break;
861 		case htons(ETH_P_IPV6):
862 			qede_gro_ipv6_csum(skb);
863 			break;
864 		default:
865 			DP_ERR(edev,
866 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
867 			       ntohs(skb->protocol));
868 		}
869 	}
870 #endif
871 
872 send_skb:
873 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
874 	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
875 }
876 
877 static inline void qede_tpa_cont(struct qede_dev *edev,
878 				 struct qede_rx_queue *rxq,
879 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
880 {
881 	int i;
882 
883 	for (i = 0; cqe->len_list[i]; i++)
884 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
885 				   le16_to_cpu(cqe->len_list[i]));
886 
887 	if (unlikely(i > 1))
888 		DP_ERR(edev,
889 		       "Strange - TPA cont with more than a single len_list entry\n");
890 }
891 
892 static int qede_tpa_end(struct qede_dev *edev,
893 			struct qede_fastpath *fp,
894 			struct eth_fast_path_rx_tpa_end_cqe *cqe)
895 {
896 	struct qede_rx_queue *rxq = fp->rxq;
897 	struct qede_agg_info *tpa_info;
898 	struct sk_buff *skb;
899 	int i;
900 
901 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
902 	skb = tpa_info->skb;
903 
904 	for (i = 0; cqe->len_list[i]; i++)
905 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
906 				   le16_to_cpu(cqe->len_list[i]));
907 	if (unlikely(i > 1))
908 		DP_ERR(edev,
909 		       "Strange - TPA emd with more than a single len_list entry\n");
910 
911 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
912 		goto err;
913 
914 	/* Sanity */
915 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
916 		DP_ERR(edev,
917 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
918 		       cqe->num_of_bds, tpa_info->frag_id);
919 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
920 		DP_ERR(edev,
921 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
922 		       le16_to_cpu(cqe->total_packet_len), skb->len);
923 
924 	memcpy(skb->data,
925 	       page_address(tpa_info->buffer.data) +
926 	       tpa_info->start_cqe_placement_offset +
927 	       tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
928 
929 	/* Finalize the SKB */
930 	skb->protocol = eth_type_trans(skb, edev->ndev);
931 	skb->ip_summed = CHECKSUM_UNNECESSARY;
932 
933 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
934 	 * to skb_shinfo(skb)->gso_segs
935 	 */
936 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
937 
938 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
939 
940 	tpa_info->state = QEDE_AGG_STATE_NONE;
941 
942 	return 1;
943 err:
944 	tpa_info->state = QEDE_AGG_STATE_NONE;
945 	dev_kfree_skb_any(tpa_info->skb);
946 	tpa_info->skb = NULL;
947 	return 0;
948 }
949 
950 static u8 qede_check_notunn_csum(u16 flag)
951 {
952 	u16 csum_flag = 0;
953 	u8 csum = 0;
954 
955 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
956 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
957 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
958 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
959 		csum = QEDE_CSUM_UNNECESSARY;
960 	}
961 
962 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
963 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
964 
965 	if (csum_flag & flag)
966 		return QEDE_CSUM_ERROR;
967 
968 	return csum;
969 }
970 
971 static u8 qede_check_csum(u16 flag)
972 {
973 	if (!qede_tunn_exist(flag))
974 		return qede_check_notunn_csum(flag);
975 	else
976 		return qede_check_tunn_csum(flag);
977 }
978 
979 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
980 				      u16 flag)
981 {
982 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
983 
984 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
985 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
986 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
987 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
988 		return true;
989 
990 	return false;
991 }
992 
993 /* Return true iff packet is to be passed to stack */
994 static bool qede_rx_xdp(struct qede_dev *edev,
995 			struct qede_fastpath *fp,
996 			struct qede_rx_queue *rxq,
997 			struct bpf_prog *prog,
998 			struct sw_rx_data *bd,
999 			struct eth_fast_path_rx_reg_cqe *cqe,
1000 			u16 *data_offset, u16 *len)
1001 {
1002 	struct xdp_buff xdp;
1003 	enum xdp_action act;
1004 
1005 	xdp.data_hard_start = page_address(bd->data);
1006 	xdp.data = xdp.data_hard_start + *data_offset;
1007 	xdp_set_data_meta_invalid(&xdp);
1008 	xdp.data_end = xdp.data + *len;
1009 	xdp.rxq = &rxq->xdp_rxq;
1010 
1011 	/* Queues always have a full reset currently, so for the time
1012 	 * being until there's atomic program replace just mark read
1013 	 * side for map helpers.
1014 	 */
1015 	rcu_read_lock();
1016 	act = bpf_prog_run_xdp(prog, &xdp);
1017 	rcu_read_unlock();
1018 
1019 	/* Recalculate, as XDP might have changed the headers */
1020 	*data_offset = xdp.data - xdp.data_hard_start;
1021 	*len = xdp.data_end - xdp.data;
1022 
1023 	if (act == XDP_PASS)
1024 		return true;
1025 
1026 	/* Count number of packets not to be passed to stack */
1027 	rxq->xdp_no_pass++;
1028 
1029 	switch (act) {
1030 	case XDP_TX:
1031 		/* We need the replacement buffer before transmit. */
1032 		if (qede_alloc_rx_buffer(rxq, true)) {
1033 			qede_recycle_rx_bd_ring(rxq, 1);
1034 			trace_xdp_exception(edev->ndev, prog, act);
1035 			return false;
1036 		}
1037 
1038 		/* Now if there's a transmission problem, we'd still have to
1039 		 * throw current buffer, as replacement was already allocated.
1040 		 */
1041 		if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
1042 			dma_unmap_page(rxq->dev, bd->mapping,
1043 				       PAGE_SIZE, DMA_BIDIRECTIONAL);
1044 			__free_page(bd->data);
1045 			trace_xdp_exception(edev->ndev, prog, act);
1046 		}
1047 
1048 		/* Regardless, we've consumed an Rx BD */
1049 		qede_rx_bd_ring_consume(rxq);
1050 		return false;
1051 
1052 	default:
1053 		bpf_warn_invalid_xdp_action(act);
1054 	case XDP_ABORTED:
1055 		trace_xdp_exception(edev->ndev, prog, act);
1056 	case XDP_DROP:
1057 		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1058 	}
1059 
1060 	return false;
1061 }
1062 
1063 static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1064 					    struct qede_rx_queue *rxq,
1065 					    struct sw_rx_data *bd, u16 len,
1066 					    u16 pad)
1067 {
1068 	unsigned int offset = bd->page_offset + pad;
1069 	struct skb_frag_struct *frag;
1070 	struct page *page = bd->data;
1071 	unsigned int pull_len;
1072 	struct sk_buff *skb;
1073 	unsigned char *va;
1074 
1075 	/* Allocate a new SKB with a sufficient large header len */
1076 	skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1077 	if (unlikely(!skb))
1078 		return NULL;
1079 
1080 	/* Copy data into SKB - if it's small, we can simply copy it and
1081 	 * re-use the already allcoated & mapped memory.
1082 	 */
1083 	if (len + pad <= edev->rx_copybreak) {
1084 		skb_put_data(skb, page_address(page) + offset, len);
1085 		qede_reuse_page(rxq, bd);
1086 		goto out;
1087 	}
1088 
1089 	frag = &skb_shinfo(skb)->frags[0];
1090 
1091 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1092 			page, offset, len, rxq->rx_buf_seg_size);
1093 
1094 	va = skb_frag_address(frag);
1095 	pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1096 
1097 	/* Align the pull_len to optimize memcpy */
1098 	memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1099 
1100 	/* Correct the skb & frag sizes offset after the pull */
1101 	skb_frag_size_sub(frag, pull_len);
1102 	frag->page_offset += pull_len;
1103 	skb->data_len -= pull_len;
1104 	skb->tail += pull_len;
1105 
1106 	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1107 		/* Incr page ref count to reuse on allocation failure so
1108 		 * that it doesn't get freed while freeing SKB [as its
1109 		 * already mapped there].
1110 		 */
1111 		page_ref_inc(page);
1112 		dev_kfree_skb_any(skb);
1113 		return NULL;
1114 	}
1115 
1116 out:
1117 	/* We've consumed the first BD and prepared an SKB */
1118 	qede_rx_bd_ring_consume(rxq);
1119 	return skb;
1120 }
1121 
1122 static int qede_rx_build_jumbo(struct qede_dev *edev,
1123 			       struct qede_rx_queue *rxq,
1124 			       struct sk_buff *skb,
1125 			       struct eth_fast_path_rx_reg_cqe *cqe,
1126 			       u16 first_bd_len)
1127 {
1128 	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1129 	struct sw_rx_data *bd;
1130 	u16 bd_cons_idx;
1131 	u8 num_frags;
1132 
1133 	pkt_len -= first_bd_len;
1134 
1135 	/* We've already used one BD for the SKB. Now take care of the rest */
1136 	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1137 		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1138 		    pkt_len;
1139 
1140 		if (unlikely(!cur_size)) {
1141 			DP_ERR(edev,
1142 			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1143 			       num_frags);
1144 			goto out;
1145 		}
1146 
1147 		/* We need a replacement buffer for each BD */
1148 		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1149 			goto out;
1150 
1151 		/* Now that we've allocated the replacement buffer,
1152 		 * we can safely consume the next BD and map it to the SKB.
1153 		 */
1154 		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1155 		bd = &rxq->sw_rx_ring[bd_cons_idx];
1156 		qede_rx_bd_ring_consume(rxq);
1157 
1158 		dma_unmap_page(rxq->dev, bd->mapping,
1159 			       PAGE_SIZE, DMA_FROM_DEVICE);
1160 
1161 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1162 				   bd->data, 0, cur_size);
1163 
1164 		skb->truesize += PAGE_SIZE;
1165 		skb->data_len += cur_size;
1166 		skb->len += cur_size;
1167 		pkt_len -= cur_size;
1168 	}
1169 
1170 	if (unlikely(pkt_len))
1171 		DP_ERR(edev,
1172 		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1173 		       pkt_len);
1174 
1175 out:
1176 	return num_frags;
1177 }
1178 
1179 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1180 				   struct qede_fastpath *fp,
1181 				   struct qede_rx_queue *rxq,
1182 				   union eth_rx_cqe *cqe,
1183 				   enum eth_rx_cqe_type type)
1184 {
1185 	switch (type) {
1186 	case ETH_RX_CQE_TYPE_TPA_START:
1187 		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1188 		return 0;
1189 	case ETH_RX_CQE_TYPE_TPA_CONT:
1190 		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1191 		return 0;
1192 	case ETH_RX_CQE_TYPE_TPA_END:
1193 		return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1194 	default:
1195 		return 0;
1196 	}
1197 }
1198 
1199 static int qede_rx_process_cqe(struct qede_dev *edev,
1200 			       struct qede_fastpath *fp,
1201 			       struct qede_rx_queue *rxq)
1202 {
1203 	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1204 	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1205 	u16 len, pad, bd_cons_idx, parse_flag;
1206 	enum eth_rx_cqe_type cqe_type;
1207 	union eth_rx_cqe *cqe;
1208 	struct sw_rx_data *bd;
1209 	struct sk_buff *skb;
1210 	__le16 flags;
1211 	u8 csum_flag;
1212 
1213 	/* Get the CQE from the completion ring */
1214 	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1215 	cqe_type = cqe->fast_path_regular.type;
1216 
1217 	/* Process an unlikely slowpath event */
1218 	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1219 		struct eth_slow_path_rx_cqe *sp_cqe;
1220 
1221 		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1222 		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1223 		return 0;
1224 	}
1225 
1226 	/* Handle TPA cqes */
1227 	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1228 		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1229 
1230 	/* Get the data from the SW ring; Consume it only after it's evident
1231 	 * we wouldn't recycle it.
1232 	 */
1233 	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1234 	bd = &rxq->sw_rx_ring[bd_cons_idx];
1235 
1236 	fp_cqe = &cqe->fast_path_regular;
1237 	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1238 	pad = fp_cqe->placement_offset + rxq->rx_headroom;
1239 
1240 	/* Run eBPF program if one is attached */
1241 	if (xdp_prog)
1242 		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1243 				 &pad, &len))
1244 			return 0;
1245 
1246 	/* If this is an error packet then drop it */
1247 	flags = cqe->fast_path_regular.pars_flags.flags;
1248 	parse_flag = le16_to_cpu(flags);
1249 
1250 	csum_flag = qede_check_csum(parse_flag);
1251 	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1252 		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
1253 			rxq->rx_ip_frags++;
1254 		} else {
1255 			DP_NOTICE(edev,
1256 				  "CQE has error, flags = %x, dropping incoming packet\n",
1257 				  parse_flag);
1258 			rxq->rx_hw_errors++;
1259 			qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1260 			return 0;
1261 		}
1262 	}
1263 
1264 	/* Basic validation passed; Need to prepare an SKB. This would also
1265 	 * guarantee to finally consume the first BD upon success.
1266 	 */
1267 	skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1268 	if (!skb) {
1269 		rxq->rx_alloc_errors++;
1270 		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1271 		return 0;
1272 	}
1273 
1274 	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1275 	 * by a single cqe.
1276 	 */
1277 	if (fp_cqe->bd_num > 1) {
1278 		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1279 							 fp_cqe, len);
1280 
1281 		if (unlikely(unmapped_frags > 0)) {
1282 			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1283 			dev_kfree_skb_any(skb);
1284 			return 0;
1285 		}
1286 	}
1287 
1288 	/* The SKB contains all the data. Now prepare meta-magic */
1289 	skb->protocol = eth_type_trans(skb, edev->ndev);
1290 	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1291 	qede_set_skb_csum(skb, csum_flag);
1292 	skb_record_rx_queue(skb, rxq->rxq_id);
1293 	qede_ptp_record_rx_ts(edev, cqe, skb);
1294 
1295 	/* SKB is prepared - pass it to stack */
1296 	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1297 
1298 	return 1;
1299 }
1300 
1301 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1302 {
1303 	struct qede_rx_queue *rxq = fp->rxq;
1304 	struct qede_dev *edev = fp->edev;
1305 	int work_done = 0, rcv_pkts = 0;
1306 	u16 hw_comp_cons, sw_comp_cons;
1307 
1308 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1309 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1310 
1311 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1312 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1313 	 * read before it is written by FW, then FW writes CQE and SB, and then
1314 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1315 	 */
1316 	rmb();
1317 
1318 	/* Loop to complete all indicated BDs */
1319 	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1320 		rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1321 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1322 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1323 		work_done++;
1324 	}
1325 
1326 	rxq->rcv_pkts += rcv_pkts;
1327 
1328 	/* Allocate replacement buffers */
1329 	while (rxq->num_rx_buffers - rxq->filled_buffers)
1330 		if (qede_alloc_rx_buffer(rxq, false))
1331 			break;
1332 
1333 	/* Update producers */
1334 	qede_update_rx_prod(edev, rxq);
1335 
1336 	return work_done;
1337 }
1338 
1339 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1340 {
1341 	qed_sb_update_sb_idx(fp->sb_info);
1342 
1343 	/* *_has_*_work() reads the status block, thus we need to ensure that
1344 	 * status block indices have been actually read (qed_sb_update_sb_idx)
1345 	 * prior to this check (*_has_*_work) so that we won't write the
1346 	 * "newer" value of the status block to HW (if there was a DMA right
1347 	 * after qede_has_rx_work and if there is no rmb, the memory reading
1348 	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1349 	 * In this case there will never be another interrupt until there is
1350 	 * another update of the status block, while there is still unhandled
1351 	 * work.
1352 	 */
1353 	rmb();
1354 
1355 	if (likely(fp->type & QEDE_FASTPATH_RX))
1356 		if (qede_has_rx_work(fp->rxq))
1357 			return true;
1358 
1359 	if (fp->type & QEDE_FASTPATH_XDP)
1360 		if (qede_txq_has_work(fp->xdp_tx))
1361 			return true;
1362 
1363 	if (likely(fp->type & QEDE_FASTPATH_TX))
1364 		if (qede_txq_has_work(fp->txq))
1365 			return true;
1366 
1367 	return false;
1368 }
1369 
1370 /*********************
1371  * NDO & API related *
1372  *********************/
1373 int qede_poll(struct napi_struct *napi, int budget)
1374 {
1375 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1376 						napi);
1377 	struct qede_dev *edev = fp->edev;
1378 	int rx_work_done = 0;
1379 
1380 	if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1381 		qede_tx_int(edev, fp->txq);
1382 
1383 	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1384 		qede_xdp_tx_int(edev, fp->xdp_tx);
1385 
1386 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1387 			qede_has_rx_work(fp->rxq)) ?
1388 			qede_rx_int(fp, budget) : 0;
1389 	if (rx_work_done < budget) {
1390 		if (!qede_poll_is_more_work(fp)) {
1391 			napi_complete_done(napi, rx_work_done);
1392 
1393 			/* Update and reenable interrupts */
1394 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1395 		} else {
1396 			rx_work_done = budget;
1397 		}
1398 	}
1399 
1400 	if (fp->xdp_xmit) {
1401 		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1402 
1403 		fp->xdp_xmit = 0;
1404 		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1405 		qede_update_tx_producer(fp->xdp_tx);
1406 	}
1407 
1408 	return rx_work_done;
1409 }
1410 
1411 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1412 {
1413 	struct qede_fastpath *fp = fp_cookie;
1414 
1415 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1416 
1417 	napi_schedule_irqoff(&fp->napi);
1418 	return IRQ_HANDLED;
1419 }
1420 
1421 /* Main transmit function */
1422 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1423 {
1424 	struct qede_dev *edev = netdev_priv(ndev);
1425 	struct netdev_queue *netdev_txq;
1426 	struct qede_tx_queue *txq;
1427 	struct eth_tx_1st_bd *first_bd;
1428 	struct eth_tx_2nd_bd *second_bd = NULL;
1429 	struct eth_tx_3rd_bd *third_bd = NULL;
1430 	struct eth_tx_bd *tx_data_bd = NULL;
1431 	u16 txq_index, val = 0;
1432 	u8 nbd = 0;
1433 	dma_addr_t mapping;
1434 	int rc, frag_idx = 0, ipv6_ext = 0;
1435 	u8 xmit_type;
1436 	u16 idx;
1437 	u16 hlen;
1438 	bool data_split = false;
1439 
1440 	/* Get tx-queue context and netdev index */
1441 	txq_index = skb_get_queue_mapping(skb);
1442 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
1443 	txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
1444 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1445 
1446 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1447 
1448 	xmit_type = qede_xmit_type(skb, &ipv6_ext);
1449 
1450 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1451 	if (qede_pkt_req_lin(skb, xmit_type)) {
1452 		if (skb_linearize(skb)) {
1453 			DP_NOTICE(edev,
1454 				  "SKB linearization failed - silently dropping this SKB\n");
1455 			dev_kfree_skb_any(skb);
1456 			return NETDEV_TX_OK;
1457 		}
1458 	}
1459 #endif
1460 
1461 	/* Fill the entry in the SW ring and the BDs in the FW ring */
1462 	idx = txq->sw_tx_prod;
1463 	txq->sw_tx_ring.skbs[idx].skb = skb;
1464 	first_bd = (struct eth_tx_1st_bd *)
1465 		   qed_chain_produce(&txq->tx_pbl);
1466 	memset(first_bd, 0, sizeof(*first_bd));
1467 	first_bd->data.bd_flags.bitfields =
1468 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1469 
1470 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1471 		qede_ptp_tx_ts(edev, skb);
1472 
1473 	/* Map skb linear data for DMA and set in the first BD */
1474 	mapping = dma_map_single(txq->dev, skb->data,
1475 				 skb_headlen(skb), DMA_TO_DEVICE);
1476 	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1477 		DP_NOTICE(edev, "SKB mapping failed\n");
1478 		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1479 		qede_update_tx_producer(txq);
1480 		return NETDEV_TX_OK;
1481 	}
1482 	nbd++;
1483 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1484 
1485 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
1486 	 * 3rd BDs.
1487 	 */
1488 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1489 		second_bd = (struct eth_tx_2nd_bd *)
1490 			qed_chain_produce(&txq->tx_pbl);
1491 		memset(second_bd, 0, sizeof(*second_bd));
1492 
1493 		nbd++;
1494 		third_bd = (struct eth_tx_3rd_bd *)
1495 			qed_chain_produce(&txq->tx_pbl);
1496 		memset(third_bd, 0, sizeof(*third_bd));
1497 
1498 		nbd++;
1499 		/* We need to fill in additional data in second_bd... */
1500 		tx_data_bd = (struct eth_tx_bd *)second_bd;
1501 	}
1502 
1503 	if (skb_vlan_tag_present(skb)) {
1504 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1505 		first_bd->data.bd_flags.bitfields |=
1506 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1507 	}
1508 
1509 	/* Fill the parsing flags & params according to the requested offload */
1510 	if (xmit_type & XMIT_L4_CSUM) {
1511 		/* We don't re-calculate IP checksum as it is already done by
1512 		 * the upper stack
1513 		 */
1514 		first_bd->data.bd_flags.bitfields |=
1515 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1516 
1517 		if (xmit_type & XMIT_ENC) {
1518 			first_bd->data.bd_flags.bitfields |=
1519 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1520 
1521 			val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1522 		}
1523 
1524 		/* Legacy FW had flipped behavior in regard to this bit -
1525 		 * I.e., needed to set to prevent FW from touching encapsulated
1526 		 * packets when it didn't need to.
1527 		 */
1528 		if (unlikely(txq->is_legacy))
1529 			val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1530 
1531 		/* If the packet is IPv6 with extension header, indicate that
1532 		 * to FW and pass few params, since the device cracker doesn't
1533 		 * support parsing IPv6 with extension header/s.
1534 		 */
1535 		if (unlikely(ipv6_ext))
1536 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1537 	}
1538 
1539 	if (xmit_type & XMIT_LSO) {
1540 		first_bd->data.bd_flags.bitfields |=
1541 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1542 		third_bd->data.lso_mss =
1543 			cpu_to_le16(skb_shinfo(skb)->gso_size);
1544 
1545 		if (unlikely(xmit_type & XMIT_ENC)) {
1546 			first_bd->data.bd_flags.bitfields |=
1547 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1548 
1549 			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1550 				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1551 
1552 				first_bd->data.bd_flags.bitfields |= 1 << tmp;
1553 			}
1554 			hlen = qede_get_skb_hlen(skb, true);
1555 		} else {
1556 			first_bd->data.bd_flags.bitfields |=
1557 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1558 			hlen = qede_get_skb_hlen(skb, false);
1559 		}
1560 
1561 		/* @@@TBD - if will not be removed need to check */
1562 		third_bd->data.bitfields |=
1563 			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1564 
1565 		/* Make life easier for FW guys who can't deal with header and
1566 		 * data on same BD. If we need to split, use the second bd...
1567 		 */
1568 		if (unlikely(skb_headlen(skb) > hlen)) {
1569 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1570 				   "TSO split header size is %d (%x:%x)\n",
1571 				   first_bd->nbytes, first_bd->addr.hi,
1572 				   first_bd->addr.lo);
1573 
1574 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1575 					   le32_to_cpu(first_bd->addr.lo)) +
1576 					   hlen;
1577 
1578 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1579 					      le16_to_cpu(first_bd->nbytes) -
1580 					      hlen);
1581 
1582 			/* this marks the BD as one that has no
1583 			 * individual mapping
1584 			 */
1585 			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1586 
1587 			first_bd->nbytes = cpu_to_le16(hlen);
1588 
1589 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1590 			data_split = true;
1591 		}
1592 	} else {
1593 		val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1594 			 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1595 	}
1596 
1597 	first_bd->data.bitfields = cpu_to_le16(val);
1598 
1599 	/* Handle fragmented skb */
1600 	/* special handle for frags inside 2nd and 3rd bds.. */
1601 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1602 		rc = map_frag_to_bd(txq,
1603 				    &skb_shinfo(skb)->frags[frag_idx],
1604 				    tx_data_bd);
1605 		if (rc) {
1606 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1607 			qede_update_tx_producer(txq);
1608 			return NETDEV_TX_OK;
1609 		}
1610 
1611 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1612 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1613 		else
1614 			tx_data_bd = NULL;
1615 
1616 		frag_idx++;
1617 	}
1618 
1619 	/* map last frags into 4th, 5th .... */
1620 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1621 		tx_data_bd = (struct eth_tx_bd *)
1622 			     qed_chain_produce(&txq->tx_pbl);
1623 
1624 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1625 
1626 		rc = map_frag_to_bd(txq,
1627 				    &skb_shinfo(skb)->frags[frag_idx],
1628 				    tx_data_bd);
1629 		if (rc) {
1630 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1631 			qede_update_tx_producer(txq);
1632 			return NETDEV_TX_OK;
1633 		}
1634 	}
1635 
1636 	/* update the first BD with the actual num BDs */
1637 	first_bd->data.nbds = nbd;
1638 
1639 	netdev_tx_sent_queue(netdev_txq, skb->len);
1640 
1641 	skb_tx_timestamp(skb);
1642 
1643 	/* Advance packet producer only before sending the packet since mapping
1644 	 * of pages may fail.
1645 	 */
1646 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1647 
1648 	/* 'next page' entries are counted in the producer value */
1649 	txq->tx_db.data.bd_prod =
1650 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1651 
1652 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
1653 		qede_update_tx_producer(txq);
1654 
1655 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1656 		      < (MAX_SKB_FRAGS + 1))) {
1657 		if (skb->xmit_more)
1658 			qede_update_tx_producer(txq);
1659 
1660 		netif_tx_stop_queue(netdev_txq);
1661 		txq->stopped_cnt++;
1662 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1663 			   "Stop queue was called\n");
1664 		/* paired memory barrier is in qede_tx_int(), we have to keep
1665 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
1666 		 * fp->bd_tx_cons
1667 		 */
1668 		smp_mb();
1669 
1670 		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1671 		     (MAX_SKB_FRAGS + 1)) &&
1672 		    (edev->state == QEDE_STATE_OPEN)) {
1673 			netif_tx_wake_queue(netdev_txq);
1674 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1675 				   "Wake queue was called\n");
1676 		}
1677 	}
1678 
1679 	return NETDEV_TX_OK;
1680 }
1681 
1682 /* 8B udp header + 8B base tunnel header + 32B option length */
1683 #define QEDE_MAX_TUN_HDR_LEN 48
1684 
1685 netdev_features_t qede_features_check(struct sk_buff *skb,
1686 				      struct net_device *dev,
1687 				      netdev_features_t features)
1688 {
1689 	if (skb->encapsulation) {
1690 		u8 l4_proto = 0;
1691 
1692 		switch (vlan_get_protocol(skb)) {
1693 		case htons(ETH_P_IP):
1694 			l4_proto = ip_hdr(skb)->protocol;
1695 			break;
1696 		case htons(ETH_P_IPV6):
1697 			l4_proto = ipv6_hdr(skb)->nexthdr;
1698 			break;
1699 		default:
1700 			return features;
1701 		}
1702 
1703 		/* Disable offloads for geneve tunnels, as HW can't parse
1704 		 * the geneve header which has option length greater than 32b
1705 		 * and disable offloads for the ports which are not offloaded.
1706 		 */
1707 		if (l4_proto == IPPROTO_UDP) {
1708 			struct qede_dev *edev = netdev_priv(dev);
1709 			u16 hdrlen, vxln_port, gnv_port;
1710 
1711 			hdrlen = QEDE_MAX_TUN_HDR_LEN;
1712 			vxln_port = edev->vxlan_dst_port;
1713 			gnv_port = edev->geneve_dst_port;
1714 
1715 			if ((skb_inner_mac_header(skb) -
1716 			     skb_transport_header(skb)) > hdrlen ||
1717 			     (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1718 			      ntohs(udp_hdr(skb)->dest) != gnv_port))
1719 				return features & ~(NETIF_F_CSUM_MASK |
1720 						    NETIF_F_GSO_MASK);
1721 		}
1722 	}
1723 
1724 	return features;
1725 }
1726