1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qede NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/netdevice.h> 8 #include <linux/etherdevice.h> 9 #include <linux/skbuff.h> 10 #include <linux/bpf_trace.h> 11 #include <net/udp_tunnel.h> 12 #include <linux/ip.h> 13 #include <net/ipv6.h> 14 #include <net/tcp.h> 15 #include <linux/if_ether.h> 16 #include <linux/if_vlan.h> 17 #include <net/ip6_checksum.h> 18 #include "qede_ptp.h" 19 20 #include <linux/qed/qed_if.h> 21 #include "qede.h" 22 /********************************* 23 * Content also used by slowpath * 24 *********************************/ 25 26 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy) 27 { 28 struct sw_rx_data *sw_rx_data; 29 struct eth_rx_bd *rx_bd; 30 dma_addr_t mapping; 31 struct page *data; 32 33 /* In case lazy-allocation is allowed, postpone allocation until the 34 * end of the NAPI run. We'd still need to make sure the Rx ring has 35 * sufficient buffers to guarantee an additional Rx interrupt. 36 */ 37 if (allow_lazy && likely(rxq->filled_buffers > 12)) { 38 rxq->filled_buffers--; 39 return 0; 40 } 41 42 data = alloc_pages(GFP_ATOMIC, 0); 43 if (unlikely(!data)) 44 return -ENOMEM; 45 46 /* Map the entire page as it would be used 47 * for multiple RX buffer segment size mapping. 48 */ 49 mapping = dma_map_page(rxq->dev, data, 0, 50 PAGE_SIZE, rxq->data_direction); 51 if (unlikely(dma_mapping_error(rxq->dev, mapping))) { 52 __free_page(data); 53 return -ENOMEM; 54 } 55 56 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 57 sw_rx_data->page_offset = 0; 58 sw_rx_data->data = data; 59 sw_rx_data->mapping = mapping; 60 61 /* Advance PROD and get BD pointer */ 62 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); 63 WARN_ON(!rx_bd); 64 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); 65 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) + 66 rxq->rx_headroom); 67 68 rxq->sw_rx_prod++; 69 rxq->filled_buffers++; 70 71 return 0; 72 } 73 74 /* Unmap the data and free skb */ 75 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len) 76 { 77 u16 idx = txq->sw_tx_cons; 78 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 79 struct eth_tx_1st_bd *first_bd; 80 struct eth_tx_bd *tx_data_bd; 81 int bds_consumed = 0; 82 int nbds; 83 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD; 84 int i, split_bd_len = 0; 85 86 if (unlikely(!skb)) { 87 DP_ERR(edev, 88 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", 89 idx, txq->sw_tx_cons, txq->sw_tx_prod); 90 return -1; 91 } 92 93 *len = skb->len; 94 95 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); 96 97 bds_consumed++; 98 99 nbds = first_bd->data.nbds; 100 101 if (data_split) { 102 struct eth_tx_bd *split = (struct eth_tx_bd *) 103 qed_chain_consume(&txq->tx_pbl); 104 split_bd_len = BD_UNMAP_LEN(split); 105 bds_consumed++; 106 } 107 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), 108 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 109 110 /* Unmap the data of the skb frags */ 111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { 112 tx_data_bd = (struct eth_tx_bd *) 113 qed_chain_consume(&txq->tx_pbl); 114 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 115 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 116 } 117 118 while (bds_consumed++ < nbds) 119 qed_chain_consume(&txq->tx_pbl); 120 121 /* Free skb */ 122 dev_kfree_skb_any(skb); 123 txq->sw_tx_ring.skbs[idx].skb = NULL; 124 txq->sw_tx_ring.skbs[idx].flags = 0; 125 126 return 0; 127 } 128 129 /* Unmap the data and free skb when mapping failed during start_xmit */ 130 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq, 131 struct eth_tx_1st_bd *first_bd, 132 int nbd, bool data_split) 133 { 134 u16 idx = txq->sw_tx_prod; 135 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb; 136 struct eth_tx_bd *tx_data_bd; 137 int i, split_bd_len = 0; 138 139 /* Return prod to its position before this skb was handled */ 140 qed_chain_set_prod(&txq->tx_pbl, 141 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 142 143 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); 144 145 if (data_split) { 146 struct eth_tx_bd *split = (struct eth_tx_bd *) 147 qed_chain_produce(&txq->tx_pbl); 148 split_bd_len = BD_UNMAP_LEN(split); 149 nbd--; 150 } 151 152 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd), 153 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); 154 155 /* Unmap the data of the skb frags */ 156 for (i = 0; i < nbd; i++) { 157 tx_data_bd = (struct eth_tx_bd *) 158 qed_chain_produce(&txq->tx_pbl); 159 if (tx_data_bd->nbytes) 160 dma_unmap_page(txq->dev, 161 BD_UNMAP_ADDR(tx_data_bd), 162 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 163 } 164 165 /* Return again prod to its position before this skb was handled */ 166 qed_chain_set_prod(&txq->tx_pbl, 167 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd); 168 169 /* Free skb */ 170 dev_kfree_skb_any(skb); 171 txq->sw_tx_ring.skbs[idx].skb = NULL; 172 txq->sw_tx_ring.skbs[idx].flags = 0; 173 } 174 175 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext) 176 { 177 u32 rc = XMIT_L4_CSUM; 178 __be16 l3_proto; 179 180 if (skb->ip_summed != CHECKSUM_PARTIAL) 181 return XMIT_PLAIN; 182 183 l3_proto = vlan_get_protocol(skb); 184 if (l3_proto == htons(ETH_P_IPV6) && 185 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) 186 *ipv6_ext = 1; 187 188 if (skb->encapsulation) { 189 rc |= XMIT_ENC; 190 if (skb_is_gso(skb)) { 191 unsigned short gso_type = skb_shinfo(skb)->gso_type; 192 193 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) || 194 (gso_type & SKB_GSO_GRE_CSUM)) 195 rc |= XMIT_ENC_GSO_L4_CSUM; 196 197 rc |= XMIT_LSO; 198 return rc; 199 } 200 } 201 202 if (skb_is_gso(skb)) 203 rc |= XMIT_LSO; 204 205 return rc; 206 } 207 208 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, 209 struct eth_tx_2nd_bd *second_bd, 210 struct eth_tx_3rd_bd *third_bd) 211 { 212 u8 l4_proto; 213 u16 bd2_bits1 = 0, bd2_bits2 = 0; 214 215 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); 216 217 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & 218 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) 219 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; 220 221 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << 222 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); 223 224 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) 225 l4_proto = ipv6_hdr(skb)->nexthdr; 226 else 227 l4_proto = ip_hdr(skb)->protocol; 228 229 if (l4_proto == IPPROTO_UDP) 230 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; 231 232 if (third_bd) 233 third_bd->data.bitfields |= 234 cpu_to_le16(((tcp_hdrlen(skb) / 4) & 235 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << 236 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT); 237 238 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1); 239 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); 240 } 241 242 static int map_frag_to_bd(struct qede_tx_queue *txq, 243 skb_frag_t *frag, struct eth_tx_bd *bd) 244 { 245 dma_addr_t mapping; 246 247 /* Map skb non-linear frag data for DMA */ 248 mapping = skb_frag_dma_map(txq->dev, frag, 0, 249 skb_frag_size(frag), DMA_TO_DEVICE); 250 if (unlikely(dma_mapping_error(txq->dev, mapping))) 251 return -ENOMEM; 252 253 /* Setup the data pointer of the frag data */ 254 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); 255 256 return 0; 257 } 258 259 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt) 260 { 261 if (is_encap_pkt) 262 return (skb_inner_transport_header(skb) + 263 inner_tcp_hdrlen(skb) - skb->data); 264 else 265 return (skb_transport_header(skb) + 266 tcp_hdrlen(skb) - skb->data); 267 } 268 269 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */ 270 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 271 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type) 272 { 273 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1; 274 275 if (xmit_type & XMIT_LSO) { 276 int hlen; 277 278 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC); 279 280 /* linear payload would require its own BD */ 281 if (skb_headlen(skb) > hlen) 282 allowed_frags--; 283 } 284 285 return (skb_shinfo(skb)->nr_frags > allowed_frags); 286 } 287 #endif 288 289 static inline void qede_update_tx_producer(struct qede_tx_queue *txq) 290 { 291 /* wmb makes sure that the BDs data is updated before updating the 292 * producer, otherwise FW may read old data from the BDs. 293 */ 294 wmb(); 295 barrier(); 296 writel(txq->tx_db.raw, txq->doorbell_addr); 297 298 /* Fence required to flush the write combined buffer, since another 299 * CPU may write to the same doorbell address and data may be lost 300 * due to relaxed order nature of write combined bar. 301 */ 302 wmb(); 303 } 304 305 static int qede_xdp_xmit(struct qede_tx_queue *txq, dma_addr_t dma, u16 pad, 306 u16 len, struct page *page, struct xdp_frame *xdpf) 307 { 308 struct eth_tx_1st_bd *bd; 309 struct sw_tx_xdp *xdp; 310 u16 val; 311 312 if (unlikely(qed_chain_get_elem_used(&txq->tx_pbl) >= 313 txq->num_tx_buffers)) { 314 txq->stopped_cnt++; 315 return -ENOMEM; 316 } 317 318 bd = qed_chain_produce(&txq->tx_pbl); 319 bd->data.nbds = 1; 320 bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT); 321 322 val = (len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 323 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT; 324 325 bd->data.bitfields = cpu_to_le16(val); 326 327 /* We can safely ignore the offset, as it's 0 for XDP */ 328 BD_SET_UNMAP_ADDR_LEN(bd, dma + pad, len); 329 330 xdp = txq->sw_tx_ring.xdp + txq->sw_tx_prod; 331 xdp->mapping = dma; 332 xdp->page = page; 333 xdp->xdpf = xdpf; 334 335 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; 336 337 return 0; 338 } 339 340 int qede_xdp_transmit(struct net_device *dev, int n_frames, 341 struct xdp_frame **frames, u32 flags) 342 { 343 struct qede_dev *edev = netdev_priv(dev); 344 struct device *dmadev = &edev->pdev->dev; 345 struct qede_tx_queue *xdp_tx; 346 struct xdp_frame *xdpf; 347 dma_addr_t mapping; 348 int i, drops = 0; 349 u16 xdp_prod; 350 351 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 352 return -EINVAL; 353 354 if (unlikely(!netif_running(dev))) 355 return -ENETDOWN; 356 357 i = smp_processor_id() % edev->total_xdp_queues; 358 xdp_tx = edev->fp_array[i].xdp_tx; 359 360 spin_lock(&xdp_tx->xdp_tx_lock); 361 362 for (i = 0; i < n_frames; i++) { 363 xdpf = frames[i]; 364 365 mapping = dma_map_single(dmadev, xdpf->data, xdpf->len, 366 DMA_TO_DEVICE); 367 if (unlikely(dma_mapping_error(dmadev, mapping))) { 368 xdp_return_frame_rx_napi(xdpf); 369 drops++; 370 371 continue; 372 } 373 374 if (unlikely(qede_xdp_xmit(xdp_tx, mapping, 0, xdpf->len, 375 NULL, xdpf))) { 376 xdp_return_frame_rx_napi(xdpf); 377 drops++; 378 } 379 } 380 381 if (flags & XDP_XMIT_FLUSH) { 382 xdp_prod = qed_chain_get_prod_idx(&xdp_tx->tx_pbl); 383 384 xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); 385 qede_update_tx_producer(xdp_tx); 386 } 387 388 spin_unlock(&xdp_tx->xdp_tx_lock); 389 390 return n_frames - drops; 391 } 392 393 int qede_txq_has_work(struct qede_tx_queue *txq) 394 { 395 u16 hw_bd_cons; 396 397 /* Tell compiler that consumer and producer can change */ 398 barrier(); 399 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 400 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) 401 return 0; 402 403 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); 404 } 405 406 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 407 { 408 struct sw_tx_xdp *xdp_info, *xdp_arr = txq->sw_tx_ring.xdp; 409 struct device *dev = &edev->pdev->dev; 410 struct xdp_frame *xdpf; 411 u16 hw_bd_cons; 412 413 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 414 barrier(); 415 416 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 417 xdp_info = xdp_arr + txq->sw_tx_cons; 418 xdpf = xdp_info->xdpf; 419 420 if (xdpf) { 421 dma_unmap_single(dev, xdp_info->mapping, xdpf->len, 422 DMA_TO_DEVICE); 423 xdp_return_frame(xdpf); 424 425 xdp_info->xdpf = NULL; 426 } else { 427 dma_unmap_page(dev, xdp_info->mapping, PAGE_SIZE, 428 DMA_BIDIRECTIONAL); 429 __free_page(xdp_info->page); 430 } 431 432 qed_chain_consume(&txq->tx_pbl); 433 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; 434 txq->xmit_pkts++; 435 } 436 } 437 438 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq) 439 { 440 unsigned int pkts_compl = 0, bytes_compl = 0; 441 struct netdev_queue *netdev_txq; 442 u16 hw_bd_cons; 443 int rc; 444 445 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id); 446 447 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); 448 barrier(); 449 450 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { 451 int len = 0; 452 453 rc = qede_free_tx_pkt(edev, txq, &len); 454 if (rc) { 455 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", 456 hw_bd_cons, 457 qed_chain_get_cons_idx(&txq->tx_pbl)); 458 break; 459 } 460 461 bytes_compl += len; 462 pkts_compl++; 463 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers; 464 txq->xmit_pkts++; 465 } 466 467 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); 468 469 /* Need to make the tx_bd_cons update visible to start_xmit() 470 * before checking for netif_tx_queue_stopped(). Without the 471 * memory barrier, there is a small possibility that 472 * start_xmit() will miss it and cause the queue to be stopped 473 * forever. 474 * On the other hand we need an rmb() here to ensure the proper 475 * ordering of bit testing in the following 476 * netif_tx_queue_stopped(txq) call. 477 */ 478 smp_mb(); 479 480 if (unlikely(netif_tx_queue_stopped(netdev_txq))) { 481 /* Taking tx_lock is needed to prevent reenabling the queue 482 * while it's empty. This could have happen if rx_action() gets 483 * suspended in qede_tx_int() after the condition before 484 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): 485 * 486 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 487 * sends some packets consuming the whole queue again-> 488 * stops the queue 489 */ 490 491 __netif_tx_lock(netdev_txq, smp_processor_id()); 492 493 if ((netif_tx_queue_stopped(netdev_txq)) && 494 (edev->state == QEDE_STATE_OPEN) && 495 (qed_chain_get_elem_left(&txq->tx_pbl) 496 >= (MAX_SKB_FRAGS + 1))) { 497 netif_tx_wake_queue(netdev_txq); 498 DP_VERBOSE(edev, NETIF_MSG_TX_DONE, 499 "Wake queue was called\n"); 500 } 501 502 __netif_tx_unlock(netdev_txq); 503 } 504 505 return 0; 506 } 507 508 bool qede_has_rx_work(struct qede_rx_queue *rxq) 509 { 510 u16 hw_comp_cons, sw_comp_cons; 511 512 /* Tell compiler that status block fields can change */ 513 barrier(); 514 515 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 516 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 517 518 return hw_comp_cons != sw_comp_cons; 519 } 520 521 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq) 522 { 523 qed_chain_consume(&rxq->rx_bd_ring); 524 rxq->sw_rx_cons++; 525 } 526 527 /* This function reuses the buffer(from an offset) from 528 * consumer index to producer index in the bd ring 529 */ 530 static inline void qede_reuse_page(struct qede_rx_queue *rxq, 531 struct sw_rx_data *curr_cons) 532 { 533 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); 534 struct sw_rx_data *curr_prod; 535 dma_addr_t new_mapping; 536 537 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; 538 *curr_prod = *curr_cons; 539 540 new_mapping = curr_prod->mapping + curr_prod->page_offset; 541 542 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping)); 543 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) + 544 rxq->rx_headroom); 545 546 rxq->sw_rx_prod++; 547 curr_cons->data = NULL; 548 } 549 550 /* In case of allocation failures reuse buffers 551 * from consumer index to produce buffers for firmware 552 */ 553 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count) 554 { 555 struct sw_rx_data *curr_cons; 556 557 for (; count > 0; count--) { 558 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 559 qede_reuse_page(rxq, curr_cons); 560 qede_rx_bd_ring_consume(rxq); 561 } 562 } 563 564 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq, 565 struct sw_rx_data *curr_cons) 566 { 567 /* Move to the next segment in the page */ 568 curr_cons->page_offset += rxq->rx_buf_seg_size; 569 570 if (curr_cons->page_offset == PAGE_SIZE) { 571 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 572 /* Since we failed to allocate new buffer 573 * current buffer can be used again. 574 */ 575 curr_cons->page_offset -= rxq->rx_buf_seg_size; 576 577 return -ENOMEM; 578 } 579 580 dma_unmap_page(rxq->dev, curr_cons->mapping, 581 PAGE_SIZE, rxq->data_direction); 582 } else { 583 /* Increment refcount of the page as we don't want 584 * network stack to take the ownership of the page 585 * which can be recycled multiple times by the driver. 586 */ 587 page_ref_inc(curr_cons->data); 588 qede_reuse_page(rxq, curr_cons); 589 } 590 591 return 0; 592 } 593 594 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq) 595 { 596 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); 597 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); 598 struct eth_rx_prod_data rx_prods = {0}; 599 600 /* Update producers */ 601 rx_prods.bd_prod = cpu_to_le16(bd_prod); 602 rx_prods.cqe_prod = cpu_to_le16(cqe_prod); 603 604 /* Make sure that the BD and SGE data is updated before updating the 605 * producers since FW might read the BD/SGE right after the producer 606 * is updated. 607 */ 608 wmb(); 609 610 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), 611 (u32 *)&rx_prods); 612 } 613 614 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash) 615 { 616 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; 617 enum rss_hash_type htype; 618 u32 hash = 0; 619 620 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); 621 if (htype) { 622 hash_type = ((htype == RSS_HASH_TYPE_IPV4) || 623 (htype == RSS_HASH_TYPE_IPV6)) ? 624 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; 625 hash = le32_to_cpu(rss_hash); 626 } 627 skb_set_hash(skb, hash, hash_type); 628 } 629 630 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) 631 { 632 skb_checksum_none_assert(skb); 633 634 if (csum_flag & QEDE_CSUM_UNNECESSARY) 635 skb->ip_summed = CHECKSUM_UNNECESSARY; 636 637 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) { 638 skb->csum_level = 1; 639 skb->encapsulation = 1; 640 } 641 } 642 643 static inline void qede_skb_receive(struct qede_dev *edev, 644 struct qede_fastpath *fp, 645 struct qede_rx_queue *rxq, 646 struct sk_buff *skb, u16 vlan_tag) 647 { 648 if (vlan_tag) 649 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 650 651 napi_gro_receive(&fp->napi, skb); 652 } 653 654 static void qede_set_gro_params(struct qede_dev *edev, 655 struct sk_buff *skb, 656 struct eth_fast_path_rx_tpa_start_cqe *cqe) 657 { 658 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags); 659 660 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) & 661 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2) 662 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 663 else 664 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 665 666 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) - 667 cqe->header_len; 668 } 669 670 static int qede_fill_frag_skb(struct qede_dev *edev, 671 struct qede_rx_queue *rxq, 672 u8 tpa_agg_index, u16 len_on_bd) 673 { 674 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons & 675 NUM_RX_BDS_MAX]; 676 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index]; 677 struct sk_buff *skb = tpa_info->skb; 678 679 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 680 goto out; 681 682 /* Add one frag and update the appropriate fields in the skb */ 683 skb_fill_page_desc(skb, tpa_info->frag_id++, 684 current_bd->data, 685 current_bd->page_offset + rxq->rx_headroom, 686 len_on_bd); 687 688 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) { 689 /* Incr page ref count to reuse on allocation failure 690 * so that it doesn't get freed while freeing SKB. 691 */ 692 page_ref_inc(current_bd->data); 693 goto out; 694 } 695 696 qede_rx_bd_ring_consume(rxq); 697 698 skb->data_len += len_on_bd; 699 skb->truesize += rxq->rx_buf_seg_size; 700 skb->len += len_on_bd; 701 702 return 0; 703 704 out: 705 tpa_info->state = QEDE_AGG_STATE_ERROR; 706 qede_recycle_rx_bd_ring(rxq, 1); 707 708 return -ENOMEM; 709 } 710 711 static bool qede_tunn_exist(u16 flag) 712 { 713 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK << 714 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT)); 715 } 716 717 static u8 qede_check_tunn_csum(u16 flag) 718 { 719 u16 csum_flag = 0; 720 u8 tcsum = 0; 721 722 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK << 723 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT)) 724 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK << 725 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT; 726 727 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 728 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 729 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 730 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 731 tcsum = QEDE_TUNN_CSUM_UNNECESSARY; 732 } 733 734 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK << 735 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT | 736 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 737 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 738 739 if (csum_flag & flag) 740 return QEDE_CSUM_ERROR; 741 742 return QEDE_CSUM_UNNECESSARY | tcsum; 743 } 744 745 static inline struct sk_buff * 746 qede_build_skb(struct qede_rx_queue *rxq, 747 struct sw_rx_data *bd, u16 len, u16 pad) 748 { 749 struct sk_buff *skb; 750 void *buf; 751 752 buf = page_address(bd->data) + bd->page_offset; 753 skb = build_skb(buf, rxq->rx_buf_seg_size); 754 755 skb_reserve(skb, pad); 756 skb_put(skb, len); 757 758 return skb; 759 } 760 761 static struct sk_buff * 762 qede_tpa_rx_build_skb(struct qede_dev *edev, 763 struct qede_rx_queue *rxq, 764 struct sw_rx_data *bd, u16 len, u16 pad, 765 bool alloc_skb) 766 { 767 struct sk_buff *skb; 768 769 skb = qede_build_skb(rxq, bd, len, pad); 770 bd->page_offset += rxq->rx_buf_seg_size; 771 772 if (bd->page_offset == PAGE_SIZE) { 773 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 774 DP_NOTICE(edev, 775 "Failed to allocate RX buffer for tpa start\n"); 776 bd->page_offset -= rxq->rx_buf_seg_size; 777 page_ref_inc(bd->data); 778 dev_kfree_skb_any(skb); 779 return NULL; 780 } 781 } else { 782 page_ref_inc(bd->data); 783 qede_reuse_page(rxq, bd); 784 } 785 786 /* We've consumed the first BD and prepared an SKB */ 787 qede_rx_bd_ring_consume(rxq); 788 789 return skb; 790 } 791 792 static struct sk_buff * 793 qede_rx_build_skb(struct qede_dev *edev, 794 struct qede_rx_queue *rxq, 795 struct sw_rx_data *bd, u16 len, u16 pad) 796 { 797 struct sk_buff *skb = NULL; 798 799 /* For smaller frames still need to allocate skb, memcpy 800 * data and benefit in reusing the page segment instead of 801 * un-mapping it. 802 */ 803 if ((len + pad <= edev->rx_copybreak)) { 804 unsigned int offset = bd->page_offset + pad; 805 806 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE); 807 if (unlikely(!skb)) 808 return NULL; 809 810 skb_reserve(skb, pad); 811 skb_put_data(skb, page_address(bd->data) + offset, len); 812 qede_reuse_page(rxq, bd); 813 goto out; 814 } 815 816 skb = qede_build_skb(rxq, bd, len, pad); 817 818 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) { 819 /* Incr page ref count to reuse on allocation failure so 820 * that it doesn't get freed while freeing SKB [as its 821 * already mapped there]. 822 */ 823 page_ref_inc(bd->data); 824 dev_kfree_skb_any(skb); 825 return NULL; 826 } 827 out: 828 /* We've consumed the first BD and prepared an SKB */ 829 qede_rx_bd_ring_consume(rxq); 830 831 return skb; 832 } 833 834 static void qede_tpa_start(struct qede_dev *edev, 835 struct qede_rx_queue *rxq, 836 struct eth_fast_path_rx_tpa_start_cqe *cqe) 837 { 838 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 839 struct sw_rx_data *sw_rx_data_cons; 840 u16 pad; 841 842 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; 843 pad = cqe->placement_offset + rxq->rx_headroom; 844 845 tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons, 846 le16_to_cpu(cqe->len_on_first_bd), 847 pad, false); 848 tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset; 849 tpa_info->buffer.mapping = sw_rx_data_cons->mapping; 850 851 if (unlikely(!tpa_info->skb)) { 852 DP_NOTICE(edev, "Failed to allocate SKB for gro\n"); 853 854 /* Consume from ring but do not produce since 855 * this might be used by FW still, it will be re-used 856 * at TPA end. 857 */ 858 tpa_info->tpa_start_fail = true; 859 qede_rx_bd_ring_consume(rxq); 860 tpa_info->state = QEDE_AGG_STATE_ERROR; 861 goto cons_buf; 862 } 863 864 tpa_info->frag_id = 0; 865 tpa_info->state = QEDE_AGG_STATE_START; 866 867 if ((le16_to_cpu(cqe->pars_flags.flags) >> 868 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) & 869 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK) 870 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 871 else 872 tpa_info->vlan_tag = 0; 873 874 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash); 875 876 /* This is needed in order to enable forwarding support */ 877 qede_set_gro_params(edev, tpa_info->skb, cqe); 878 879 cons_buf: /* We still need to handle bd_len_list to consume buffers */ 880 if (likely(cqe->bw_ext_bd_len_list[0])) 881 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 882 le16_to_cpu(cqe->bw_ext_bd_len_list[0])); 883 884 if (unlikely(cqe->bw_ext_bd_len_list[1])) { 885 DP_ERR(edev, 886 "Unlikely - got a TPA aggregation with more than one bw_ext_bd_len_list entry in the TPA start\n"); 887 tpa_info->state = QEDE_AGG_STATE_ERROR; 888 } 889 } 890 891 #ifdef CONFIG_INET 892 static void qede_gro_ip_csum(struct sk_buff *skb) 893 { 894 const struct iphdr *iph = ip_hdr(skb); 895 struct tcphdr *th; 896 897 skb_set_transport_header(skb, sizeof(struct iphdr)); 898 th = tcp_hdr(skb); 899 900 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 901 iph->saddr, iph->daddr, 0); 902 903 tcp_gro_complete(skb); 904 } 905 906 static void qede_gro_ipv6_csum(struct sk_buff *skb) 907 { 908 struct ipv6hdr *iph = ipv6_hdr(skb); 909 struct tcphdr *th; 910 911 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 912 th = tcp_hdr(skb); 913 914 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 915 &iph->saddr, &iph->daddr, 0); 916 tcp_gro_complete(skb); 917 } 918 #endif 919 920 static void qede_gro_receive(struct qede_dev *edev, 921 struct qede_fastpath *fp, 922 struct sk_buff *skb, 923 u16 vlan_tag) 924 { 925 /* FW can send a single MTU sized packet from gro flow 926 * due to aggregation timeout/last segment etc. which 927 * is not expected to be a gro packet. If a skb has zero 928 * frags then simply push it in the stack as non gso skb. 929 */ 930 if (unlikely(!skb->data_len)) { 931 skb_shinfo(skb)->gso_type = 0; 932 skb_shinfo(skb)->gso_size = 0; 933 goto send_skb; 934 } 935 936 #ifdef CONFIG_INET 937 if (skb_shinfo(skb)->gso_size) { 938 skb_reset_network_header(skb); 939 940 switch (skb->protocol) { 941 case htons(ETH_P_IP): 942 qede_gro_ip_csum(skb); 943 break; 944 case htons(ETH_P_IPV6): 945 qede_gro_ipv6_csum(skb); 946 break; 947 default: 948 DP_ERR(edev, 949 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 950 ntohs(skb->protocol)); 951 } 952 } 953 #endif 954 955 send_skb: 956 skb_record_rx_queue(skb, fp->rxq->rxq_id); 957 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag); 958 } 959 960 static inline void qede_tpa_cont(struct qede_dev *edev, 961 struct qede_rx_queue *rxq, 962 struct eth_fast_path_rx_tpa_cont_cqe *cqe) 963 { 964 int i; 965 966 for (i = 0; cqe->len_list[i]; i++) 967 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 968 le16_to_cpu(cqe->len_list[i])); 969 970 if (unlikely(i > 1)) 971 DP_ERR(edev, 972 "Strange - TPA cont with more than a single len_list entry\n"); 973 } 974 975 static int qede_tpa_end(struct qede_dev *edev, 976 struct qede_fastpath *fp, 977 struct eth_fast_path_rx_tpa_end_cqe *cqe) 978 { 979 struct qede_rx_queue *rxq = fp->rxq; 980 struct qede_agg_info *tpa_info; 981 struct sk_buff *skb; 982 int i; 983 984 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index]; 985 skb = tpa_info->skb; 986 987 if (tpa_info->buffer.page_offset == PAGE_SIZE) 988 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping, 989 PAGE_SIZE, rxq->data_direction); 990 991 for (i = 0; cqe->len_list[i]; i++) 992 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index, 993 le16_to_cpu(cqe->len_list[i])); 994 if (unlikely(i > 1)) 995 DP_ERR(edev, 996 "Strange - TPA emd with more than a single len_list entry\n"); 997 998 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START)) 999 goto err; 1000 1001 /* Sanity */ 1002 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1)) 1003 DP_ERR(edev, 1004 "Strange - TPA had %02x BDs, but SKB has only %d frags\n", 1005 cqe->num_of_bds, tpa_info->frag_id); 1006 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len))) 1007 DP_ERR(edev, 1008 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n", 1009 le16_to_cpu(cqe->total_packet_len), skb->len); 1010 1011 /* Finalize the SKB */ 1012 skb->protocol = eth_type_trans(skb, edev->ndev); 1013 skb->ip_summed = CHECKSUM_UNNECESSARY; 1014 1015 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 1016 * to skb_shinfo(skb)->gso_segs 1017 */ 1018 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs); 1019 1020 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag); 1021 1022 tpa_info->state = QEDE_AGG_STATE_NONE; 1023 1024 return 1; 1025 err: 1026 tpa_info->state = QEDE_AGG_STATE_NONE; 1027 1028 if (tpa_info->tpa_start_fail) { 1029 qede_reuse_page(rxq, &tpa_info->buffer); 1030 tpa_info->tpa_start_fail = false; 1031 } 1032 1033 dev_kfree_skb_any(tpa_info->skb); 1034 tpa_info->skb = NULL; 1035 return 0; 1036 } 1037 1038 static u8 qede_check_notunn_csum(u16 flag) 1039 { 1040 u16 csum_flag = 0; 1041 u8 csum = 0; 1042 1043 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << 1044 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) { 1045 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << 1046 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; 1047 csum = QEDE_CSUM_UNNECESSARY; 1048 } 1049 1050 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << 1051 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; 1052 1053 if (csum_flag & flag) 1054 return QEDE_CSUM_ERROR; 1055 1056 return csum; 1057 } 1058 1059 static u8 qede_check_csum(u16 flag) 1060 { 1061 if (!qede_tunn_exist(flag)) 1062 return qede_check_notunn_csum(flag); 1063 else 1064 return qede_check_tunn_csum(flag); 1065 } 1066 1067 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe, 1068 u16 flag) 1069 { 1070 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags; 1071 1072 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK << 1073 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) || 1074 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK << 1075 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT))) 1076 return true; 1077 1078 return false; 1079 } 1080 1081 /* Return true iff packet is to be passed to stack */ 1082 static bool qede_rx_xdp(struct qede_dev *edev, 1083 struct qede_fastpath *fp, 1084 struct qede_rx_queue *rxq, 1085 struct bpf_prog *prog, 1086 struct sw_rx_data *bd, 1087 struct eth_fast_path_rx_reg_cqe *cqe, 1088 u16 *data_offset, u16 *len) 1089 { 1090 struct xdp_buff xdp; 1091 enum xdp_action act; 1092 1093 xdp.data_hard_start = page_address(bd->data); 1094 xdp.data = xdp.data_hard_start + *data_offset; 1095 xdp_set_data_meta_invalid(&xdp); 1096 xdp.data_end = xdp.data + *len; 1097 xdp.rxq = &rxq->xdp_rxq; 1098 xdp.frame_sz = rxq->rx_buf_seg_size; /* PAGE_SIZE when XDP enabled */ 1099 1100 /* Queues always have a full reset currently, so for the time 1101 * being until there's atomic program replace just mark read 1102 * side for map helpers. 1103 */ 1104 rcu_read_lock(); 1105 act = bpf_prog_run_xdp(prog, &xdp); 1106 rcu_read_unlock(); 1107 1108 /* Recalculate, as XDP might have changed the headers */ 1109 *data_offset = xdp.data - xdp.data_hard_start; 1110 *len = xdp.data_end - xdp.data; 1111 1112 if (act == XDP_PASS) 1113 return true; 1114 1115 /* Count number of packets not to be passed to stack */ 1116 rxq->xdp_no_pass++; 1117 1118 switch (act) { 1119 case XDP_TX: 1120 /* We need the replacement buffer before transmit. */ 1121 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 1122 qede_recycle_rx_bd_ring(rxq, 1); 1123 1124 trace_xdp_exception(edev->ndev, prog, act); 1125 break; 1126 } 1127 1128 /* Now if there's a transmission problem, we'd still have to 1129 * throw current buffer, as replacement was already allocated. 1130 */ 1131 if (unlikely(qede_xdp_xmit(fp->xdp_tx, bd->mapping, 1132 *data_offset, *len, bd->data, 1133 NULL))) { 1134 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE, 1135 rxq->data_direction); 1136 __free_page(bd->data); 1137 1138 trace_xdp_exception(edev->ndev, prog, act); 1139 } else { 1140 dma_sync_single_for_device(rxq->dev, 1141 bd->mapping + *data_offset, 1142 *len, rxq->data_direction); 1143 fp->xdp_xmit |= QEDE_XDP_TX; 1144 } 1145 1146 /* Regardless, we've consumed an Rx BD */ 1147 qede_rx_bd_ring_consume(rxq); 1148 break; 1149 case XDP_REDIRECT: 1150 /* We need the replacement buffer before transmit. */ 1151 if (unlikely(qede_alloc_rx_buffer(rxq, true))) { 1152 qede_recycle_rx_bd_ring(rxq, 1); 1153 1154 trace_xdp_exception(edev->ndev, prog, act); 1155 break; 1156 } 1157 1158 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE, 1159 rxq->data_direction); 1160 1161 if (unlikely(xdp_do_redirect(edev->ndev, &xdp, prog))) 1162 DP_NOTICE(edev, "Failed to redirect the packet\n"); 1163 else 1164 fp->xdp_xmit |= QEDE_XDP_REDIRECT; 1165 1166 qede_rx_bd_ring_consume(rxq); 1167 break; 1168 default: 1169 bpf_warn_invalid_xdp_action(act); 1170 fallthrough; 1171 case XDP_ABORTED: 1172 trace_xdp_exception(edev->ndev, prog, act); 1173 fallthrough; 1174 case XDP_DROP: 1175 qede_recycle_rx_bd_ring(rxq, cqe->bd_num); 1176 } 1177 1178 return false; 1179 } 1180 1181 static int qede_rx_build_jumbo(struct qede_dev *edev, 1182 struct qede_rx_queue *rxq, 1183 struct sk_buff *skb, 1184 struct eth_fast_path_rx_reg_cqe *cqe, 1185 u16 first_bd_len) 1186 { 1187 u16 pkt_len = le16_to_cpu(cqe->pkt_len); 1188 struct sw_rx_data *bd; 1189 u16 bd_cons_idx; 1190 u8 num_frags; 1191 1192 pkt_len -= first_bd_len; 1193 1194 /* We've already used one BD for the SKB. Now take care of the rest */ 1195 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) { 1196 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size : 1197 pkt_len; 1198 1199 if (unlikely(!cur_size)) { 1200 DP_ERR(edev, 1201 "Still got %d BDs for mapping jumbo, but length became 0\n", 1202 num_frags); 1203 goto out; 1204 } 1205 1206 /* We need a replacement buffer for each BD */ 1207 if (unlikely(qede_alloc_rx_buffer(rxq, true))) 1208 goto out; 1209 1210 /* Now that we've allocated the replacement buffer, 1211 * we can safely consume the next BD and map it to the SKB. 1212 */ 1213 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1214 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1215 qede_rx_bd_ring_consume(rxq); 1216 1217 dma_unmap_page(rxq->dev, bd->mapping, 1218 PAGE_SIZE, DMA_FROM_DEVICE); 1219 1220 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, 1221 bd->data, rxq->rx_headroom, cur_size); 1222 1223 skb->truesize += PAGE_SIZE; 1224 skb->data_len += cur_size; 1225 skb->len += cur_size; 1226 pkt_len -= cur_size; 1227 } 1228 1229 if (unlikely(pkt_len)) 1230 DP_ERR(edev, 1231 "Mapped all BDs of jumbo, but still have %d bytes\n", 1232 pkt_len); 1233 1234 out: 1235 return num_frags; 1236 } 1237 1238 static int qede_rx_process_tpa_cqe(struct qede_dev *edev, 1239 struct qede_fastpath *fp, 1240 struct qede_rx_queue *rxq, 1241 union eth_rx_cqe *cqe, 1242 enum eth_rx_cqe_type type) 1243 { 1244 switch (type) { 1245 case ETH_RX_CQE_TYPE_TPA_START: 1246 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start); 1247 return 0; 1248 case ETH_RX_CQE_TYPE_TPA_CONT: 1249 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont); 1250 return 0; 1251 case ETH_RX_CQE_TYPE_TPA_END: 1252 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end); 1253 default: 1254 return 0; 1255 } 1256 } 1257 1258 static int qede_rx_process_cqe(struct qede_dev *edev, 1259 struct qede_fastpath *fp, 1260 struct qede_rx_queue *rxq) 1261 { 1262 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog); 1263 struct eth_fast_path_rx_reg_cqe *fp_cqe; 1264 u16 len, pad, bd_cons_idx, parse_flag; 1265 enum eth_rx_cqe_type cqe_type; 1266 union eth_rx_cqe *cqe; 1267 struct sw_rx_data *bd; 1268 struct sk_buff *skb; 1269 __le16 flags; 1270 u8 csum_flag; 1271 1272 /* Get the CQE from the completion ring */ 1273 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring); 1274 cqe_type = cqe->fast_path_regular.type; 1275 1276 /* Process an unlikely slowpath event */ 1277 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { 1278 struct eth_slow_path_rx_cqe *sp_cqe; 1279 1280 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe; 1281 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe); 1282 return 0; 1283 } 1284 1285 /* Handle TPA cqes */ 1286 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) 1287 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type); 1288 1289 /* Get the data from the SW ring; Consume it only after it's evident 1290 * we wouldn't recycle it. 1291 */ 1292 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX; 1293 bd = &rxq->sw_rx_ring[bd_cons_idx]; 1294 1295 fp_cqe = &cqe->fast_path_regular; 1296 len = le16_to_cpu(fp_cqe->len_on_first_bd); 1297 pad = fp_cqe->placement_offset + rxq->rx_headroom; 1298 1299 /* Run eBPF program if one is attached */ 1300 if (xdp_prog) 1301 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe, 1302 &pad, &len)) 1303 return 0; 1304 1305 /* If this is an error packet then drop it */ 1306 flags = cqe->fast_path_regular.pars_flags.flags; 1307 parse_flag = le16_to_cpu(flags); 1308 1309 csum_flag = qede_check_csum(parse_flag); 1310 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) { 1311 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) 1312 rxq->rx_ip_frags++; 1313 else 1314 rxq->rx_hw_errors++; 1315 } 1316 1317 /* Basic validation passed; Need to prepare an SKB. This would also 1318 * guarantee to finally consume the first BD upon success. 1319 */ 1320 skb = qede_rx_build_skb(edev, rxq, bd, len, pad); 1321 if (!skb) { 1322 rxq->rx_alloc_errors++; 1323 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num); 1324 return 0; 1325 } 1326 1327 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed 1328 * by a single cqe. 1329 */ 1330 if (fp_cqe->bd_num > 1) { 1331 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb, 1332 fp_cqe, len); 1333 1334 if (unlikely(unmapped_frags > 0)) { 1335 qede_recycle_rx_bd_ring(rxq, unmapped_frags); 1336 dev_kfree_skb_any(skb); 1337 return 0; 1338 } 1339 } 1340 1341 /* The SKB contains all the data. Now prepare meta-magic */ 1342 skb->protocol = eth_type_trans(skb, edev->ndev); 1343 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash); 1344 qede_set_skb_csum(skb, csum_flag); 1345 skb_record_rx_queue(skb, rxq->rxq_id); 1346 qede_ptp_record_rx_ts(edev, cqe, skb); 1347 1348 /* SKB is prepared - pass it to stack */ 1349 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag)); 1350 1351 return 1; 1352 } 1353 1354 static int qede_rx_int(struct qede_fastpath *fp, int budget) 1355 { 1356 struct qede_rx_queue *rxq = fp->rxq; 1357 struct qede_dev *edev = fp->edev; 1358 int work_done = 0, rcv_pkts = 0; 1359 u16 hw_comp_cons, sw_comp_cons; 1360 1361 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); 1362 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1363 1364 /* Memory barrier to prevent the CPU from doing speculative reads of CQE 1365 * / BD in the while-loop before reading hw_comp_cons. If the CQE is 1366 * read before it is written by FW, then FW writes CQE and SB, and then 1367 * the CPU reads the hw_comp_cons, it will use an old CQE. 1368 */ 1369 rmb(); 1370 1371 /* Loop to complete all indicated BDs */ 1372 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) { 1373 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq); 1374 qed_chain_recycle_consumed(&rxq->rx_comp_ring); 1375 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); 1376 work_done++; 1377 } 1378 1379 rxq->rcv_pkts += rcv_pkts; 1380 1381 /* Allocate replacement buffers */ 1382 while (rxq->num_rx_buffers - rxq->filled_buffers) 1383 if (qede_alloc_rx_buffer(rxq, false)) 1384 break; 1385 1386 /* Update producers */ 1387 qede_update_rx_prod(edev, rxq); 1388 1389 return work_done; 1390 } 1391 1392 static bool qede_poll_is_more_work(struct qede_fastpath *fp) 1393 { 1394 qed_sb_update_sb_idx(fp->sb_info); 1395 1396 /* *_has_*_work() reads the status block, thus we need to ensure that 1397 * status block indices have been actually read (qed_sb_update_sb_idx) 1398 * prior to this check (*_has_*_work) so that we won't write the 1399 * "newer" value of the status block to HW (if there was a DMA right 1400 * after qede_has_rx_work and if there is no rmb, the memory reading 1401 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb). 1402 * In this case there will never be another interrupt until there is 1403 * another update of the status block, while there is still unhandled 1404 * work. 1405 */ 1406 rmb(); 1407 1408 if (likely(fp->type & QEDE_FASTPATH_RX)) 1409 if (qede_has_rx_work(fp->rxq)) 1410 return true; 1411 1412 if (fp->type & QEDE_FASTPATH_XDP) 1413 if (qede_txq_has_work(fp->xdp_tx)) 1414 return true; 1415 1416 if (likely(fp->type & QEDE_FASTPATH_TX)) { 1417 int cos; 1418 1419 for_each_cos_in_txq(fp->edev, cos) { 1420 if (qede_txq_has_work(&fp->txq[cos])) 1421 return true; 1422 } 1423 } 1424 1425 return false; 1426 } 1427 1428 /********************* 1429 * NDO & API related * 1430 *********************/ 1431 int qede_poll(struct napi_struct *napi, int budget) 1432 { 1433 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, 1434 napi); 1435 struct qede_dev *edev = fp->edev; 1436 int rx_work_done = 0; 1437 u16 xdp_prod; 1438 1439 fp->xdp_xmit = 0; 1440 1441 if (likely(fp->type & QEDE_FASTPATH_TX)) { 1442 int cos; 1443 1444 for_each_cos_in_txq(fp->edev, cos) { 1445 if (qede_txq_has_work(&fp->txq[cos])) 1446 qede_tx_int(edev, &fp->txq[cos]); 1447 } 1448 } 1449 1450 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx)) 1451 qede_xdp_tx_int(edev, fp->xdp_tx); 1452 1453 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) && 1454 qede_has_rx_work(fp->rxq)) ? 1455 qede_rx_int(fp, budget) : 0; 1456 if (rx_work_done < budget) { 1457 if (!qede_poll_is_more_work(fp)) { 1458 napi_complete_done(napi, rx_work_done); 1459 1460 /* Update and reenable interrupts */ 1461 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1); 1462 } else { 1463 rx_work_done = budget; 1464 } 1465 } 1466 1467 if (fp->xdp_xmit & QEDE_XDP_TX) { 1468 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl); 1469 1470 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod); 1471 qede_update_tx_producer(fp->xdp_tx); 1472 } 1473 1474 if (fp->xdp_xmit & QEDE_XDP_REDIRECT) 1475 xdp_do_flush_map(); 1476 1477 return rx_work_done; 1478 } 1479 1480 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) 1481 { 1482 struct qede_fastpath *fp = fp_cookie; 1483 1484 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); 1485 1486 napi_schedule_irqoff(&fp->napi); 1487 return IRQ_HANDLED; 1488 } 1489 1490 /* Main transmit function */ 1491 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev) 1492 { 1493 struct qede_dev *edev = netdev_priv(ndev); 1494 struct netdev_queue *netdev_txq; 1495 struct qede_tx_queue *txq; 1496 struct eth_tx_1st_bd *first_bd; 1497 struct eth_tx_2nd_bd *second_bd = NULL; 1498 struct eth_tx_3rd_bd *third_bd = NULL; 1499 struct eth_tx_bd *tx_data_bd = NULL; 1500 u16 txq_index, val = 0; 1501 u8 nbd = 0; 1502 dma_addr_t mapping; 1503 int rc, frag_idx = 0, ipv6_ext = 0; 1504 u8 xmit_type; 1505 u16 idx; 1506 u16 hlen; 1507 bool data_split = false; 1508 1509 /* Get tx-queue context and netdev index */ 1510 txq_index = skb_get_queue_mapping(skb); 1511 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc); 1512 txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index); 1513 netdev_txq = netdev_get_tx_queue(ndev, txq_index); 1514 1515 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1)); 1516 1517 xmit_type = qede_xmit_type(skb, &ipv6_ext); 1518 1519 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) 1520 if (qede_pkt_req_lin(skb, xmit_type)) { 1521 if (skb_linearize(skb)) { 1522 txq->tx_mem_alloc_err++; 1523 1524 dev_kfree_skb_any(skb); 1525 return NETDEV_TX_OK; 1526 } 1527 } 1528 #endif 1529 1530 /* Fill the entry in the SW ring and the BDs in the FW ring */ 1531 idx = txq->sw_tx_prod; 1532 txq->sw_tx_ring.skbs[idx].skb = skb; 1533 first_bd = (struct eth_tx_1st_bd *) 1534 qed_chain_produce(&txq->tx_pbl); 1535 memset(first_bd, 0, sizeof(*first_bd)); 1536 first_bd->data.bd_flags.bitfields = 1537 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; 1538 1539 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) 1540 qede_ptp_tx_ts(edev, skb); 1541 1542 /* Map skb linear data for DMA and set in the first BD */ 1543 mapping = dma_map_single(txq->dev, skb->data, 1544 skb_headlen(skb), DMA_TO_DEVICE); 1545 if (unlikely(dma_mapping_error(txq->dev, mapping))) { 1546 DP_NOTICE(edev, "SKB mapping failed\n"); 1547 qede_free_failed_tx_pkt(txq, first_bd, 0, false); 1548 qede_update_tx_producer(txq); 1549 return NETDEV_TX_OK; 1550 } 1551 nbd++; 1552 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); 1553 1554 /* In case there is IPv6 with extension headers or LSO we need 2nd and 1555 * 3rd BDs. 1556 */ 1557 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { 1558 second_bd = (struct eth_tx_2nd_bd *) 1559 qed_chain_produce(&txq->tx_pbl); 1560 memset(second_bd, 0, sizeof(*second_bd)); 1561 1562 nbd++; 1563 third_bd = (struct eth_tx_3rd_bd *) 1564 qed_chain_produce(&txq->tx_pbl); 1565 memset(third_bd, 0, sizeof(*third_bd)); 1566 1567 nbd++; 1568 /* We need to fill in additional data in second_bd... */ 1569 tx_data_bd = (struct eth_tx_bd *)second_bd; 1570 } 1571 1572 if (skb_vlan_tag_present(skb)) { 1573 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); 1574 first_bd->data.bd_flags.bitfields |= 1575 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; 1576 } 1577 1578 /* Fill the parsing flags & params according to the requested offload */ 1579 if (xmit_type & XMIT_L4_CSUM) { 1580 /* We don't re-calculate IP checksum as it is already done by 1581 * the upper stack 1582 */ 1583 first_bd->data.bd_flags.bitfields |= 1584 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; 1585 1586 if (xmit_type & XMIT_ENC) { 1587 first_bd->data.bd_flags.bitfields |= 1588 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 1589 1590 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); 1591 } 1592 1593 /* Legacy FW had flipped behavior in regard to this bit - 1594 * I.e., needed to set to prevent FW from touching encapsulated 1595 * packets when it didn't need to. 1596 */ 1597 if (unlikely(txq->is_legacy)) 1598 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT); 1599 1600 /* If the packet is IPv6 with extension header, indicate that 1601 * to FW and pass few params, since the device cracker doesn't 1602 * support parsing IPv6 with extension header/s. 1603 */ 1604 if (unlikely(ipv6_ext)) 1605 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); 1606 } 1607 1608 if (xmit_type & XMIT_LSO) { 1609 first_bd->data.bd_flags.bitfields |= 1610 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); 1611 third_bd->data.lso_mss = 1612 cpu_to_le16(skb_shinfo(skb)->gso_size); 1613 1614 if (unlikely(xmit_type & XMIT_ENC)) { 1615 first_bd->data.bd_flags.bitfields |= 1616 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT; 1617 1618 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) { 1619 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT; 1620 1621 first_bd->data.bd_flags.bitfields |= 1 << tmp; 1622 } 1623 hlen = qede_get_skb_hlen(skb, true); 1624 } else { 1625 first_bd->data.bd_flags.bitfields |= 1626 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; 1627 hlen = qede_get_skb_hlen(skb, false); 1628 } 1629 1630 /* @@@TBD - if will not be removed need to check */ 1631 third_bd->data.bitfields |= 1632 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); 1633 1634 /* Make life easier for FW guys who can't deal with header and 1635 * data on same BD. If we need to split, use the second bd... 1636 */ 1637 if (unlikely(skb_headlen(skb) > hlen)) { 1638 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1639 "TSO split header size is %d (%x:%x)\n", 1640 first_bd->nbytes, first_bd->addr.hi, 1641 first_bd->addr.lo); 1642 1643 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), 1644 le32_to_cpu(first_bd->addr.lo)) + 1645 hlen; 1646 1647 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, 1648 le16_to_cpu(first_bd->nbytes) - 1649 hlen); 1650 1651 /* this marks the BD as one that has no 1652 * individual mapping 1653 */ 1654 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD; 1655 1656 first_bd->nbytes = cpu_to_le16(hlen); 1657 1658 tx_data_bd = (struct eth_tx_bd *)third_bd; 1659 data_split = true; 1660 } 1661 } else { 1662 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) << 1663 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT); 1664 } 1665 1666 first_bd->data.bitfields = cpu_to_le16(val); 1667 1668 /* Handle fragmented skb */ 1669 /* special handle for frags inside 2nd and 3rd bds.. */ 1670 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { 1671 rc = map_frag_to_bd(txq, 1672 &skb_shinfo(skb)->frags[frag_idx], 1673 tx_data_bd); 1674 if (rc) { 1675 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 1676 qede_update_tx_producer(txq); 1677 return NETDEV_TX_OK; 1678 } 1679 1680 if (tx_data_bd == (struct eth_tx_bd *)second_bd) 1681 tx_data_bd = (struct eth_tx_bd *)third_bd; 1682 else 1683 tx_data_bd = NULL; 1684 1685 frag_idx++; 1686 } 1687 1688 /* map last frags into 4th, 5th .... */ 1689 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { 1690 tx_data_bd = (struct eth_tx_bd *) 1691 qed_chain_produce(&txq->tx_pbl); 1692 1693 memset(tx_data_bd, 0, sizeof(*tx_data_bd)); 1694 1695 rc = map_frag_to_bd(txq, 1696 &skb_shinfo(skb)->frags[frag_idx], 1697 tx_data_bd); 1698 if (rc) { 1699 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split); 1700 qede_update_tx_producer(txq); 1701 return NETDEV_TX_OK; 1702 } 1703 } 1704 1705 /* update the first BD with the actual num BDs */ 1706 first_bd->data.nbds = nbd; 1707 1708 netdev_tx_sent_queue(netdev_txq, skb->len); 1709 1710 skb_tx_timestamp(skb); 1711 1712 /* Advance packet producer only before sending the packet since mapping 1713 * of pages may fail. 1714 */ 1715 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers; 1716 1717 /* 'next page' entries are counted in the producer value */ 1718 txq->tx_db.data.bd_prod = 1719 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); 1720 1721 if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq)) 1722 qede_update_tx_producer(txq); 1723 1724 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) 1725 < (MAX_SKB_FRAGS + 1))) { 1726 if (netdev_xmit_more()) 1727 qede_update_tx_producer(txq); 1728 1729 netif_tx_stop_queue(netdev_txq); 1730 txq->stopped_cnt++; 1731 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1732 "Stop queue was called\n"); 1733 /* paired memory barrier is in qede_tx_int(), we have to keep 1734 * ordering of set_bit() in netif_tx_stop_queue() and read of 1735 * fp->bd_tx_cons 1736 */ 1737 smp_mb(); 1738 1739 if ((qed_chain_get_elem_left(&txq->tx_pbl) >= 1740 (MAX_SKB_FRAGS + 1)) && 1741 (edev->state == QEDE_STATE_OPEN)) { 1742 netif_tx_wake_queue(netdev_txq); 1743 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, 1744 "Wake queue was called\n"); 1745 } 1746 } 1747 1748 return NETDEV_TX_OK; 1749 } 1750 1751 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb, 1752 struct net_device *sb_dev) 1753 { 1754 struct qede_dev *edev = netdev_priv(dev); 1755 int total_txq; 1756 1757 total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc; 1758 1759 return QEDE_TSS_COUNT(edev) ? 1760 netdev_pick_tx(dev, skb, NULL) % total_txq : 0; 1761 } 1762 1763 /* 8B udp header + 8B base tunnel header + 32B option length */ 1764 #define QEDE_MAX_TUN_HDR_LEN 48 1765 1766 netdev_features_t qede_features_check(struct sk_buff *skb, 1767 struct net_device *dev, 1768 netdev_features_t features) 1769 { 1770 if (skb->encapsulation) { 1771 u8 l4_proto = 0; 1772 1773 switch (vlan_get_protocol(skb)) { 1774 case htons(ETH_P_IP): 1775 l4_proto = ip_hdr(skb)->protocol; 1776 break; 1777 case htons(ETH_P_IPV6): 1778 l4_proto = ipv6_hdr(skb)->nexthdr; 1779 break; 1780 default: 1781 return features; 1782 } 1783 1784 /* Disable offloads for geneve tunnels, as HW can't parse 1785 * the geneve header which has option length greater than 32b 1786 * and disable offloads for the ports which are not offloaded. 1787 */ 1788 if (l4_proto == IPPROTO_UDP) { 1789 struct qede_dev *edev = netdev_priv(dev); 1790 u16 hdrlen, vxln_port, gnv_port; 1791 1792 hdrlen = QEDE_MAX_TUN_HDR_LEN; 1793 vxln_port = edev->vxlan_dst_port; 1794 gnv_port = edev->geneve_dst_port; 1795 1796 if ((skb_inner_mac_header(skb) - 1797 skb_transport_header(skb)) > hdrlen || 1798 (ntohs(udp_hdr(skb)->dest) != vxln_port && 1799 ntohs(udp_hdr(skb)->dest) != gnv_port)) 1800 return features & ~(NETIF_F_CSUM_MASK | 1801 NETIF_F_GSO_MASK); 1802 } 1803 } 1804 1805 return features; 1806 } 1807