1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bpf_trace.h>
36 #include <net/udp_tunnel.h>
37 #include <linux/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tcp.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <net/ip6_checksum.h>
43 #include "qede_ptp.h"
44 
45 #include <linux/qed/qed_if.h>
46 #include "qede.h"
47 /*********************************
48  * Content also used by slowpath *
49  *********************************/
50 
51 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
52 {
53 	struct sw_rx_data *sw_rx_data;
54 	struct eth_rx_bd *rx_bd;
55 	dma_addr_t mapping;
56 	struct page *data;
57 
58 	/* In case lazy-allocation is allowed, postpone allocation until the
59 	 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 	 * sufficient buffers to guarantee an additional Rx interrupt.
61 	 */
62 	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 		rxq->filled_buffers--;
64 		return 0;
65 	}
66 
67 	data = alloc_pages(GFP_ATOMIC, 0);
68 	if (unlikely(!data))
69 		return -ENOMEM;
70 
71 	/* Map the entire page as it would be used
72 	 * for multiple RX buffer segment size mapping.
73 	 */
74 	mapping = dma_map_page(rxq->dev, data, 0,
75 			       PAGE_SIZE, rxq->data_direction);
76 	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 		__free_page(data);
78 		return -ENOMEM;
79 	}
80 
81 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 	sw_rx_data->page_offset = 0;
83 	sw_rx_data->data = data;
84 	sw_rx_data->mapping = mapping;
85 
86 	/* Advance PROD and get BD pointer */
87 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 	WARN_ON(!rx_bd);
89 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
90 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
91 				     rxq->rx_headroom);
92 
93 	rxq->sw_rx_prod++;
94 	rxq->filled_buffers++;
95 
96 	return 0;
97 }
98 
99 /* Unmap the data and free skb */
100 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
101 {
102 	u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
103 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
104 	struct eth_tx_1st_bd *first_bd;
105 	struct eth_tx_bd *tx_data_bd;
106 	int bds_consumed = 0;
107 	int nbds;
108 	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
109 	int i, split_bd_len = 0;
110 
111 	if (unlikely(!skb)) {
112 		DP_ERR(edev,
113 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
114 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
115 		return -1;
116 	}
117 
118 	*len = skb->len;
119 
120 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
121 
122 	bds_consumed++;
123 
124 	nbds = first_bd->data.nbds;
125 
126 	if (data_split) {
127 		struct eth_tx_bd *split = (struct eth_tx_bd *)
128 			qed_chain_consume(&txq->tx_pbl);
129 		split_bd_len = BD_UNMAP_LEN(split);
130 		bds_consumed++;
131 	}
132 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
133 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
134 
135 	/* Unmap the data of the skb frags */
136 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
137 		tx_data_bd = (struct eth_tx_bd *)
138 			qed_chain_consume(&txq->tx_pbl);
139 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
140 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
141 	}
142 
143 	while (bds_consumed++ < nbds)
144 		qed_chain_consume(&txq->tx_pbl);
145 
146 	/* Free skb */
147 	dev_kfree_skb_any(skb);
148 	txq->sw_tx_ring.skbs[idx].skb = NULL;
149 	txq->sw_tx_ring.skbs[idx].flags = 0;
150 
151 	return 0;
152 }
153 
154 /* Unmap the data and free skb when mapping failed during start_xmit */
155 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
156 				    struct eth_tx_1st_bd *first_bd,
157 				    int nbd, bool data_split)
158 {
159 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
160 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
161 	struct eth_tx_bd *tx_data_bd;
162 	int i, split_bd_len = 0;
163 
164 	/* Return prod to its position before this skb was handled */
165 	qed_chain_set_prod(&txq->tx_pbl,
166 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
167 
168 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
169 
170 	if (data_split) {
171 		struct eth_tx_bd *split = (struct eth_tx_bd *)
172 					  qed_chain_produce(&txq->tx_pbl);
173 		split_bd_len = BD_UNMAP_LEN(split);
174 		nbd--;
175 	}
176 
177 	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
178 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
179 
180 	/* Unmap the data of the skb frags */
181 	for (i = 0; i < nbd; i++) {
182 		tx_data_bd = (struct eth_tx_bd *)
183 			qed_chain_produce(&txq->tx_pbl);
184 		if (tx_data_bd->nbytes)
185 			dma_unmap_page(txq->dev,
186 				       BD_UNMAP_ADDR(tx_data_bd),
187 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
188 	}
189 
190 	/* Return again prod to its position before this skb was handled */
191 	qed_chain_set_prod(&txq->tx_pbl,
192 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
193 
194 	/* Free skb */
195 	dev_kfree_skb_any(skb);
196 	txq->sw_tx_ring.skbs[idx].skb = NULL;
197 	txq->sw_tx_ring.skbs[idx].flags = 0;
198 }
199 
200 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
201 {
202 	u32 rc = XMIT_L4_CSUM;
203 	__be16 l3_proto;
204 
205 	if (skb->ip_summed != CHECKSUM_PARTIAL)
206 		return XMIT_PLAIN;
207 
208 	l3_proto = vlan_get_protocol(skb);
209 	if (l3_proto == htons(ETH_P_IPV6) &&
210 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
211 		*ipv6_ext = 1;
212 
213 	if (skb->encapsulation) {
214 		rc |= XMIT_ENC;
215 		if (skb_is_gso(skb)) {
216 			unsigned short gso_type = skb_shinfo(skb)->gso_type;
217 
218 			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
219 			    (gso_type & SKB_GSO_GRE_CSUM))
220 				rc |= XMIT_ENC_GSO_L4_CSUM;
221 
222 			rc |= XMIT_LSO;
223 			return rc;
224 		}
225 	}
226 
227 	if (skb_is_gso(skb))
228 		rc |= XMIT_LSO;
229 
230 	return rc;
231 }
232 
233 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
234 					 struct eth_tx_2nd_bd *second_bd,
235 					 struct eth_tx_3rd_bd *third_bd)
236 {
237 	u8 l4_proto;
238 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
239 
240 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
241 
242 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
243 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
244 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
245 
246 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
247 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
248 
249 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
250 		l4_proto = ipv6_hdr(skb)->nexthdr;
251 	else
252 		l4_proto = ip_hdr(skb)->protocol;
253 
254 	if (l4_proto == IPPROTO_UDP)
255 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
256 
257 	if (third_bd)
258 		third_bd->data.bitfields |=
259 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
260 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
261 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
262 
263 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
264 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
265 }
266 
267 static int map_frag_to_bd(struct qede_tx_queue *txq,
268 			  skb_frag_t *frag, struct eth_tx_bd *bd)
269 {
270 	dma_addr_t mapping;
271 
272 	/* Map skb non-linear frag data for DMA */
273 	mapping = skb_frag_dma_map(txq->dev, frag, 0,
274 				   skb_frag_size(frag), DMA_TO_DEVICE);
275 	if (unlikely(dma_mapping_error(txq->dev, mapping)))
276 		return -ENOMEM;
277 
278 	/* Setup the data pointer of the frag data */
279 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
280 
281 	return 0;
282 }
283 
284 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
285 {
286 	if (is_encap_pkt)
287 		return (skb_inner_transport_header(skb) +
288 			inner_tcp_hdrlen(skb) - skb->data);
289 	else
290 		return (skb_transport_header(skb) +
291 			tcp_hdrlen(skb) - skb->data);
292 }
293 
294 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
295 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
296 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
297 {
298 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
299 
300 	if (xmit_type & XMIT_LSO) {
301 		int hlen;
302 
303 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
304 
305 		/* linear payload would require its own BD */
306 		if (skb_headlen(skb) > hlen)
307 			allowed_frags--;
308 	}
309 
310 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
311 }
312 #endif
313 
314 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
315 {
316 	/* wmb makes sure that the BDs data is updated before updating the
317 	 * producer, otherwise FW may read old data from the BDs.
318 	 */
319 	wmb();
320 	barrier();
321 	writel(txq->tx_db.raw, txq->doorbell_addr);
322 
323 	/* mmiowb is needed to synchronize doorbell writes from more than one
324 	 * processor. It guarantees that the write arrives to the device before
325 	 * the queue lock is released and another start_xmit is called (possibly
326 	 * on another CPU). Without this barrier, the next doorbell can bypass
327 	 * this doorbell. This is applicable to IA64/Altix systems.
328 	 */
329 	mmiowb();
330 }
331 
332 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
333 			 struct sw_rx_data *metadata, u16 padding, u16 length)
334 {
335 	struct qede_tx_queue *txq = fp->xdp_tx;
336 	u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
337 	struct eth_tx_1st_bd *first_bd;
338 
339 	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
340 		txq->stopped_cnt++;
341 		return -ENOMEM;
342 	}
343 
344 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
345 
346 	memset(first_bd, 0, sizeof(*first_bd));
347 	first_bd->data.bd_flags.bitfields =
348 	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
349 	first_bd->data.bitfields |=
350 	    (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
351 	    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
352 	first_bd->data.nbds = 1;
353 
354 	/* We can safely ignore the offset, as it's 0 for XDP */
355 	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
356 
357 	/* Synchronize the buffer back to device, as program [probably]
358 	 * has changed it.
359 	 */
360 	dma_sync_single_for_device(&edev->pdev->dev,
361 				   metadata->mapping + padding,
362 				   length, PCI_DMA_TODEVICE);
363 
364 	txq->sw_tx_ring.xdp[idx].page = metadata->data;
365 	txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
366 	txq->sw_tx_prod++;
367 
368 	/* Mark the fastpath for future XDP doorbell */
369 	fp->xdp_xmit = 1;
370 
371 	return 0;
372 }
373 
374 int qede_txq_has_work(struct qede_tx_queue *txq)
375 {
376 	u16 hw_bd_cons;
377 
378 	/* Tell compiler that consumer and producer can change */
379 	barrier();
380 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
381 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
382 		return 0;
383 
384 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
385 }
386 
387 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
388 {
389 	u16 hw_bd_cons, idx;
390 
391 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
392 	barrier();
393 
394 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
395 		qed_chain_consume(&txq->tx_pbl);
396 		idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
397 
398 		dma_unmap_page(&edev->pdev->dev,
399 			       txq->sw_tx_ring.xdp[idx].mapping,
400 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
401 		__free_page(txq->sw_tx_ring.xdp[idx].page);
402 
403 		txq->sw_tx_cons++;
404 		txq->xmit_pkts++;
405 	}
406 }
407 
408 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
409 {
410 	struct netdev_queue *netdev_txq;
411 	u16 hw_bd_cons;
412 	unsigned int pkts_compl = 0, bytes_compl = 0;
413 	int rc;
414 
415 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
416 
417 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
418 	barrier();
419 
420 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
421 		int len = 0;
422 
423 		rc = qede_free_tx_pkt(edev, txq, &len);
424 		if (rc) {
425 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
426 				  hw_bd_cons,
427 				  qed_chain_get_cons_idx(&txq->tx_pbl));
428 			break;
429 		}
430 
431 		bytes_compl += len;
432 		pkts_compl++;
433 		txq->sw_tx_cons++;
434 		txq->xmit_pkts++;
435 	}
436 
437 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
438 
439 	/* Need to make the tx_bd_cons update visible to start_xmit()
440 	 * before checking for netif_tx_queue_stopped().  Without the
441 	 * memory barrier, there is a small possibility that
442 	 * start_xmit() will miss it and cause the queue to be stopped
443 	 * forever.
444 	 * On the other hand we need an rmb() here to ensure the proper
445 	 * ordering of bit testing in the following
446 	 * netif_tx_queue_stopped(txq) call.
447 	 */
448 	smp_mb();
449 
450 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
451 		/* Taking tx_lock is needed to prevent reenabling the queue
452 		 * while it's empty. This could have happen if rx_action() gets
453 		 * suspended in qede_tx_int() after the condition before
454 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
455 		 *
456 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
457 		 * sends some packets consuming the whole queue again->
458 		 * stops the queue
459 		 */
460 
461 		__netif_tx_lock(netdev_txq, smp_processor_id());
462 
463 		if ((netif_tx_queue_stopped(netdev_txq)) &&
464 		    (edev->state == QEDE_STATE_OPEN) &&
465 		    (qed_chain_get_elem_left(&txq->tx_pbl)
466 		      >= (MAX_SKB_FRAGS + 1))) {
467 			netif_tx_wake_queue(netdev_txq);
468 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
469 				   "Wake queue was called\n");
470 		}
471 
472 		__netif_tx_unlock(netdev_txq);
473 	}
474 
475 	return 0;
476 }
477 
478 bool qede_has_rx_work(struct qede_rx_queue *rxq)
479 {
480 	u16 hw_comp_cons, sw_comp_cons;
481 
482 	/* Tell compiler that status block fields can change */
483 	barrier();
484 
485 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
486 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
487 
488 	return hw_comp_cons != sw_comp_cons;
489 }
490 
491 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
492 {
493 	qed_chain_consume(&rxq->rx_bd_ring);
494 	rxq->sw_rx_cons++;
495 }
496 
497 /* This function reuses the buffer(from an offset) from
498  * consumer index to producer index in the bd ring
499  */
500 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
501 				   struct sw_rx_data *curr_cons)
502 {
503 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
504 	struct sw_rx_data *curr_prod;
505 	dma_addr_t new_mapping;
506 
507 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
508 	*curr_prod = *curr_cons;
509 
510 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
511 
512 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
513 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
514 					  rxq->rx_headroom);
515 
516 	rxq->sw_rx_prod++;
517 	curr_cons->data = NULL;
518 }
519 
520 /* In case of allocation failures reuse buffers
521  * from consumer index to produce buffers for firmware
522  */
523 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
524 {
525 	struct sw_rx_data *curr_cons;
526 
527 	for (; count > 0; count--) {
528 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
529 		qede_reuse_page(rxq, curr_cons);
530 		qede_rx_bd_ring_consume(rxq);
531 	}
532 }
533 
534 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
535 					 struct sw_rx_data *curr_cons)
536 {
537 	/* Move to the next segment in the page */
538 	curr_cons->page_offset += rxq->rx_buf_seg_size;
539 
540 	if (curr_cons->page_offset == PAGE_SIZE) {
541 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
542 			/* Since we failed to allocate new buffer
543 			 * current buffer can be used again.
544 			 */
545 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
546 
547 			return -ENOMEM;
548 		}
549 
550 		dma_unmap_page(rxq->dev, curr_cons->mapping,
551 			       PAGE_SIZE, rxq->data_direction);
552 	} else {
553 		/* Increment refcount of the page as we don't want
554 		 * network stack to take the ownership of the page
555 		 * which can be recycled multiple times by the driver.
556 		 */
557 		page_ref_inc(curr_cons->data);
558 		qede_reuse_page(rxq, curr_cons);
559 	}
560 
561 	return 0;
562 }
563 
564 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
565 {
566 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
567 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
568 	struct eth_rx_prod_data rx_prods = {0};
569 
570 	/* Update producers */
571 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
572 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
573 
574 	/* Make sure that the BD and SGE data is updated before updating the
575 	 * producers since FW might read the BD/SGE right after the producer
576 	 * is updated.
577 	 */
578 	wmb();
579 
580 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
581 			(u32 *)&rx_prods);
582 
583 	/* mmiowb is needed to synchronize doorbell writes from more than one
584 	 * processor. It guarantees that the write arrives to the device before
585 	 * the napi lock is released and another qede_poll is called (possibly
586 	 * on another CPU). Without this barrier, the next doorbell can bypass
587 	 * this doorbell. This is applicable to IA64/Altix systems.
588 	 */
589 	mmiowb();
590 }
591 
592 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
593 {
594 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
595 	enum rss_hash_type htype;
596 	u32 hash = 0;
597 
598 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
599 	if (htype) {
600 		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
601 			     (htype == RSS_HASH_TYPE_IPV6)) ?
602 			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
603 		hash = le32_to_cpu(rss_hash);
604 	}
605 	skb_set_hash(skb, hash, hash_type);
606 }
607 
608 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
609 {
610 	skb_checksum_none_assert(skb);
611 
612 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
613 		skb->ip_summed = CHECKSUM_UNNECESSARY;
614 
615 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
616 		skb->csum_level = 1;
617 		skb->encapsulation = 1;
618 	}
619 }
620 
621 static inline void qede_skb_receive(struct qede_dev *edev,
622 				    struct qede_fastpath *fp,
623 				    struct qede_rx_queue *rxq,
624 				    struct sk_buff *skb, u16 vlan_tag)
625 {
626 	if (vlan_tag)
627 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
628 
629 	napi_gro_receive(&fp->napi, skb);
630 }
631 
632 static void qede_set_gro_params(struct qede_dev *edev,
633 				struct sk_buff *skb,
634 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
635 {
636 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
637 
638 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
639 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
640 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
641 	else
642 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
643 
644 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
645 				    cqe->header_len;
646 }
647 
648 static int qede_fill_frag_skb(struct qede_dev *edev,
649 			      struct qede_rx_queue *rxq,
650 			      u8 tpa_agg_index, u16 len_on_bd)
651 {
652 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
653 							 NUM_RX_BDS_MAX];
654 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
655 	struct sk_buff *skb = tpa_info->skb;
656 
657 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
658 		goto out;
659 
660 	/* Add one frag and update the appropriate fields in the skb */
661 	skb_fill_page_desc(skb, tpa_info->frag_id++,
662 			   current_bd->data, current_bd->page_offset,
663 			   len_on_bd);
664 
665 	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
666 		/* Incr page ref count to reuse on allocation failure
667 		 * so that it doesn't get freed while freeing SKB.
668 		 */
669 		page_ref_inc(current_bd->data);
670 		goto out;
671 	}
672 
673 	qed_chain_consume(&rxq->rx_bd_ring);
674 	rxq->sw_rx_cons++;
675 
676 	skb->data_len += len_on_bd;
677 	skb->truesize += rxq->rx_buf_seg_size;
678 	skb->len += len_on_bd;
679 
680 	return 0;
681 
682 out:
683 	tpa_info->state = QEDE_AGG_STATE_ERROR;
684 	qede_recycle_rx_bd_ring(rxq, 1);
685 
686 	return -ENOMEM;
687 }
688 
689 static bool qede_tunn_exist(u16 flag)
690 {
691 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
692 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
693 }
694 
695 static u8 qede_check_tunn_csum(u16 flag)
696 {
697 	u16 csum_flag = 0;
698 	u8 tcsum = 0;
699 
700 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
701 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
702 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
703 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
704 
705 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
706 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
707 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
708 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
709 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
710 	}
711 
712 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
713 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
714 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
715 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
716 
717 	if (csum_flag & flag)
718 		return QEDE_CSUM_ERROR;
719 
720 	return QEDE_CSUM_UNNECESSARY | tcsum;
721 }
722 
723 static void qede_tpa_start(struct qede_dev *edev,
724 			   struct qede_rx_queue *rxq,
725 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
726 {
727 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
728 	struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
729 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
730 	struct sw_rx_data *replace_buf = &tpa_info->buffer;
731 	dma_addr_t mapping = tpa_info->buffer_mapping;
732 	struct sw_rx_data *sw_rx_data_cons;
733 	struct sw_rx_data *sw_rx_data_prod;
734 
735 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
736 	sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
737 
738 	/* Use pre-allocated replacement buffer - we can't release the agg.
739 	 * start until its over and we don't want to risk allocation failing
740 	 * here, so re-allocate when aggregation will be over.
741 	 */
742 	sw_rx_data_prod->mapping = replace_buf->mapping;
743 
744 	sw_rx_data_prod->data = replace_buf->data;
745 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
746 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
747 	sw_rx_data_prod->page_offset = replace_buf->page_offset;
748 
749 	rxq->sw_rx_prod++;
750 
751 	/* move partial skb from cons to pool (don't unmap yet)
752 	 * save mapping, incase we drop the packet later on.
753 	 */
754 	tpa_info->buffer = *sw_rx_data_cons;
755 	mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
756 			   le32_to_cpu(rx_bd_cons->addr.lo));
757 
758 	tpa_info->buffer_mapping = mapping;
759 	rxq->sw_rx_cons++;
760 
761 	/* set tpa state to start only if we are able to allocate skb
762 	 * for this aggregation, otherwise mark as error and aggregation will
763 	 * be dropped
764 	 */
765 	tpa_info->skb = netdev_alloc_skb(edev->ndev,
766 					 le16_to_cpu(cqe->len_on_first_bd));
767 	if (unlikely(!tpa_info->skb)) {
768 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
769 		tpa_info->state = QEDE_AGG_STATE_ERROR;
770 		goto cons_buf;
771 	}
772 
773 	/* Start filling in the aggregation info */
774 	skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
775 	tpa_info->frag_id = 0;
776 	tpa_info->state = QEDE_AGG_STATE_START;
777 
778 	/* Store some information from first CQE */
779 	tpa_info->start_cqe_placement_offset = cqe->placement_offset;
780 	tpa_info->start_cqe_bd_len = le16_to_cpu(cqe->len_on_first_bd);
781 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
782 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
783 	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
784 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
785 	else
786 		tpa_info->vlan_tag = 0;
787 
788 	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
789 
790 	/* This is needed in order to enable forwarding support */
791 	qede_set_gro_params(edev, tpa_info->skb, cqe);
792 
793 cons_buf: /* We still need to handle bd_len_list to consume buffers */
794 	if (likely(cqe->ext_bd_len_list[0]))
795 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
796 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
797 
798 	if (unlikely(cqe->ext_bd_len_list[1])) {
799 		DP_ERR(edev,
800 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
801 		tpa_info->state = QEDE_AGG_STATE_ERROR;
802 	}
803 }
804 
805 #ifdef CONFIG_INET
806 static void qede_gro_ip_csum(struct sk_buff *skb)
807 {
808 	const struct iphdr *iph = ip_hdr(skb);
809 	struct tcphdr *th;
810 
811 	skb_set_transport_header(skb, sizeof(struct iphdr));
812 	th = tcp_hdr(skb);
813 
814 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
815 				  iph->saddr, iph->daddr, 0);
816 
817 	tcp_gro_complete(skb);
818 }
819 
820 static void qede_gro_ipv6_csum(struct sk_buff *skb)
821 {
822 	struct ipv6hdr *iph = ipv6_hdr(skb);
823 	struct tcphdr *th;
824 
825 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
826 	th = tcp_hdr(skb);
827 
828 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
829 				  &iph->saddr, &iph->daddr, 0);
830 	tcp_gro_complete(skb);
831 }
832 #endif
833 
834 static void qede_gro_receive(struct qede_dev *edev,
835 			     struct qede_fastpath *fp,
836 			     struct sk_buff *skb,
837 			     u16 vlan_tag)
838 {
839 	/* FW can send a single MTU sized packet from gro flow
840 	 * due to aggregation timeout/last segment etc. which
841 	 * is not expected to be a gro packet. If a skb has zero
842 	 * frags then simply push it in the stack as non gso skb.
843 	 */
844 	if (unlikely(!skb->data_len)) {
845 		skb_shinfo(skb)->gso_type = 0;
846 		skb_shinfo(skb)->gso_size = 0;
847 		goto send_skb;
848 	}
849 
850 #ifdef CONFIG_INET
851 	if (skb_shinfo(skb)->gso_size) {
852 		skb_reset_network_header(skb);
853 
854 		switch (skb->protocol) {
855 		case htons(ETH_P_IP):
856 			qede_gro_ip_csum(skb);
857 			break;
858 		case htons(ETH_P_IPV6):
859 			qede_gro_ipv6_csum(skb);
860 			break;
861 		default:
862 			DP_ERR(edev,
863 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
864 			       ntohs(skb->protocol));
865 		}
866 	}
867 #endif
868 
869 send_skb:
870 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
871 	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
872 }
873 
874 static inline void qede_tpa_cont(struct qede_dev *edev,
875 				 struct qede_rx_queue *rxq,
876 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
877 {
878 	int i;
879 
880 	for (i = 0; cqe->len_list[i]; i++)
881 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
882 				   le16_to_cpu(cqe->len_list[i]));
883 
884 	if (unlikely(i > 1))
885 		DP_ERR(edev,
886 		       "Strange - TPA cont with more than a single len_list entry\n");
887 }
888 
889 static int qede_tpa_end(struct qede_dev *edev,
890 			struct qede_fastpath *fp,
891 			struct eth_fast_path_rx_tpa_end_cqe *cqe)
892 {
893 	struct qede_rx_queue *rxq = fp->rxq;
894 	struct qede_agg_info *tpa_info;
895 	struct sk_buff *skb;
896 	int i;
897 
898 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
899 	skb = tpa_info->skb;
900 
901 	for (i = 0; cqe->len_list[i]; i++)
902 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
903 				   le16_to_cpu(cqe->len_list[i]));
904 	if (unlikely(i > 1))
905 		DP_ERR(edev,
906 		       "Strange - TPA emd with more than a single len_list entry\n");
907 
908 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
909 		goto err;
910 
911 	/* Sanity */
912 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
913 		DP_ERR(edev,
914 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
915 		       cqe->num_of_bds, tpa_info->frag_id);
916 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
917 		DP_ERR(edev,
918 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
919 		       le16_to_cpu(cqe->total_packet_len), skb->len);
920 
921 	memcpy(skb->data,
922 	       page_address(tpa_info->buffer.data) +
923 	       tpa_info->start_cqe_placement_offset +
924 	       tpa_info->buffer.page_offset, tpa_info->start_cqe_bd_len);
925 
926 	/* Finalize the SKB */
927 	skb->protocol = eth_type_trans(skb, edev->ndev);
928 	skb->ip_summed = CHECKSUM_UNNECESSARY;
929 
930 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
931 	 * to skb_shinfo(skb)->gso_segs
932 	 */
933 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
934 
935 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
936 
937 	tpa_info->state = QEDE_AGG_STATE_NONE;
938 
939 	return 1;
940 err:
941 	tpa_info->state = QEDE_AGG_STATE_NONE;
942 	dev_kfree_skb_any(tpa_info->skb);
943 	tpa_info->skb = NULL;
944 	return 0;
945 }
946 
947 static u8 qede_check_notunn_csum(u16 flag)
948 {
949 	u16 csum_flag = 0;
950 	u8 csum = 0;
951 
952 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
953 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
954 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
955 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
956 		csum = QEDE_CSUM_UNNECESSARY;
957 	}
958 
959 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
960 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
961 
962 	if (csum_flag & flag)
963 		return QEDE_CSUM_ERROR;
964 
965 	return csum;
966 }
967 
968 static u8 qede_check_csum(u16 flag)
969 {
970 	if (!qede_tunn_exist(flag))
971 		return qede_check_notunn_csum(flag);
972 	else
973 		return qede_check_tunn_csum(flag);
974 }
975 
976 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
977 				      u16 flag)
978 {
979 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
980 
981 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
982 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
983 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
984 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
985 		return true;
986 
987 	return false;
988 }
989 
990 /* Return true iff packet is to be passed to stack */
991 static bool qede_rx_xdp(struct qede_dev *edev,
992 			struct qede_fastpath *fp,
993 			struct qede_rx_queue *rxq,
994 			struct bpf_prog *prog,
995 			struct sw_rx_data *bd,
996 			struct eth_fast_path_rx_reg_cqe *cqe,
997 			u16 *data_offset, u16 *len)
998 {
999 	struct xdp_buff xdp;
1000 	enum xdp_action act;
1001 
1002 	xdp.data_hard_start = page_address(bd->data);
1003 	xdp.data = xdp.data_hard_start + *data_offset;
1004 	xdp.data_end = xdp.data + *len;
1005 
1006 	/* Queues always have a full reset currently, so for the time
1007 	 * being until there's atomic program replace just mark read
1008 	 * side for map helpers.
1009 	 */
1010 	rcu_read_lock();
1011 	act = bpf_prog_run_xdp(prog, &xdp);
1012 	rcu_read_unlock();
1013 
1014 	/* Recalculate, as XDP might have changed the headers */
1015 	*data_offset = xdp.data - xdp.data_hard_start;
1016 	*len = xdp.data_end - xdp.data;
1017 
1018 	if (act == XDP_PASS)
1019 		return true;
1020 
1021 	/* Count number of packets not to be passed to stack */
1022 	rxq->xdp_no_pass++;
1023 
1024 	switch (act) {
1025 	case XDP_TX:
1026 		/* We need the replacement buffer before transmit. */
1027 		if (qede_alloc_rx_buffer(rxq, true)) {
1028 			qede_recycle_rx_bd_ring(rxq, 1);
1029 			trace_xdp_exception(edev->ndev, prog, act);
1030 			return false;
1031 		}
1032 
1033 		/* Now if there's a transmission problem, we'd still have to
1034 		 * throw current buffer, as replacement was already allocated.
1035 		 */
1036 		if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
1037 			dma_unmap_page(rxq->dev, bd->mapping,
1038 				       PAGE_SIZE, DMA_BIDIRECTIONAL);
1039 			__free_page(bd->data);
1040 			trace_xdp_exception(edev->ndev, prog, act);
1041 		}
1042 
1043 		/* Regardless, we've consumed an Rx BD */
1044 		qede_rx_bd_ring_consume(rxq);
1045 		return false;
1046 
1047 	default:
1048 		bpf_warn_invalid_xdp_action(act);
1049 	case XDP_ABORTED:
1050 		trace_xdp_exception(edev->ndev, prog, act);
1051 	case XDP_DROP:
1052 		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1053 	}
1054 
1055 	return false;
1056 }
1057 
1058 static struct sk_buff *qede_rx_allocate_skb(struct qede_dev *edev,
1059 					    struct qede_rx_queue *rxq,
1060 					    struct sw_rx_data *bd, u16 len,
1061 					    u16 pad)
1062 {
1063 	unsigned int offset = bd->page_offset + pad;
1064 	struct skb_frag_struct *frag;
1065 	struct page *page = bd->data;
1066 	unsigned int pull_len;
1067 	struct sk_buff *skb;
1068 	unsigned char *va;
1069 
1070 	/* Allocate a new SKB with a sufficient large header len */
1071 	skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1072 	if (unlikely(!skb))
1073 		return NULL;
1074 
1075 	/* Copy data into SKB - if it's small, we can simply copy it and
1076 	 * re-use the already allcoated & mapped memory.
1077 	 */
1078 	if (len + pad <= edev->rx_copybreak) {
1079 		memcpy(skb_put(skb, len),
1080 		       page_address(page) + offset, len);
1081 		qede_reuse_page(rxq, bd);
1082 		goto out;
1083 	}
1084 
1085 	frag = &skb_shinfo(skb)->frags[0];
1086 
1087 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1088 			page, offset, len, rxq->rx_buf_seg_size);
1089 
1090 	va = skb_frag_address(frag);
1091 	pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1092 
1093 	/* Align the pull_len to optimize memcpy */
1094 	memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1095 
1096 	/* Correct the skb & frag sizes offset after the pull */
1097 	skb_frag_size_sub(frag, pull_len);
1098 	frag->page_offset += pull_len;
1099 	skb->data_len -= pull_len;
1100 	skb->tail += pull_len;
1101 
1102 	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
1103 		/* Incr page ref count to reuse on allocation failure so
1104 		 * that it doesn't get freed while freeing SKB [as its
1105 		 * already mapped there].
1106 		 */
1107 		page_ref_inc(page);
1108 		dev_kfree_skb_any(skb);
1109 		return NULL;
1110 	}
1111 
1112 out:
1113 	/* We've consumed the first BD and prepared an SKB */
1114 	qede_rx_bd_ring_consume(rxq);
1115 	return skb;
1116 }
1117 
1118 static int qede_rx_build_jumbo(struct qede_dev *edev,
1119 			       struct qede_rx_queue *rxq,
1120 			       struct sk_buff *skb,
1121 			       struct eth_fast_path_rx_reg_cqe *cqe,
1122 			       u16 first_bd_len)
1123 {
1124 	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1125 	struct sw_rx_data *bd;
1126 	u16 bd_cons_idx;
1127 	u8 num_frags;
1128 
1129 	pkt_len -= first_bd_len;
1130 
1131 	/* We've already used one BD for the SKB. Now take care of the rest */
1132 	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1133 		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1134 		    pkt_len;
1135 
1136 		if (unlikely(!cur_size)) {
1137 			DP_ERR(edev,
1138 			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1139 			       num_frags);
1140 			goto out;
1141 		}
1142 
1143 		/* We need a replacement buffer for each BD */
1144 		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1145 			goto out;
1146 
1147 		/* Now that we've allocated the replacement buffer,
1148 		 * we can safely consume the next BD and map it to the SKB.
1149 		 */
1150 		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1151 		bd = &rxq->sw_rx_ring[bd_cons_idx];
1152 		qede_rx_bd_ring_consume(rxq);
1153 
1154 		dma_unmap_page(rxq->dev, bd->mapping,
1155 			       PAGE_SIZE, DMA_FROM_DEVICE);
1156 
1157 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1158 				   bd->data, 0, cur_size);
1159 
1160 		skb->truesize += PAGE_SIZE;
1161 		skb->data_len += cur_size;
1162 		skb->len += cur_size;
1163 		pkt_len -= cur_size;
1164 	}
1165 
1166 	if (unlikely(pkt_len))
1167 		DP_ERR(edev,
1168 		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1169 		       pkt_len);
1170 
1171 out:
1172 	return num_frags;
1173 }
1174 
1175 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1176 				   struct qede_fastpath *fp,
1177 				   struct qede_rx_queue *rxq,
1178 				   union eth_rx_cqe *cqe,
1179 				   enum eth_rx_cqe_type type)
1180 {
1181 	switch (type) {
1182 	case ETH_RX_CQE_TYPE_TPA_START:
1183 		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1184 		return 0;
1185 	case ETH_RX_CQE_TYPE_TPA_CONT:
1186 		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1187 		return 0;
1188 	case ETH_RX_CQE_TYPE_TPA_END:
1189 		return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1190 	default:
1191 		return 0;
1192 	}
1193 }
1194 
1195 static int qede_rx_process_cqe(struct qede_dev *edev,
1196 			       struct qede_fastpath *fp,
1197 			       struct qede_rx_queue *rxq)
1198 {
1199 	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1200 	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1201 	u16 len, pad, bd_cons_idx, parse_flag;
1202 	enum eth_rx_cqe_type cqe_type;
1203 	union eth_rx_cqe *cqe;
1204 	struct sw_rx_data *bd;
1205 	struct sk_buff *skb;
1206 	__le16 flags;
1207 	u8 csum_flag;
1208 
1209 	/* Get the CQE from the completion ring */
1210 	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1211 	cqe_type = cqe->fast_path_regular.type;
1212 
1213 	/* Process an unlikely slowpath event */
1214 	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1215 		struct eth_slow_path_rx_cqe *sp_cqe;
1216 
1217 		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1218 		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1219 		return 0;
1220 	}
1221 
1222 	/* Handle TPA cqes */
1223 	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1224 		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1225 
1226 	/* Get the data from the SW ring; Consume it only after it's evident
1227 	 * we wouldn't recycle it.
1228 	 */
1229 	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1230 	bd = &rxq->sw_rx_ring[bd_cons_idx];
1231 
1232 	fp_cqe = &cqe->fast_path_regular;
1233 	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1234 	pad = fp_cqe->placement_offset + rxq->rx_headroom;
1235 
1236 	/* Run eBPF program if one is attached */
1237 	if (xdp_prog)
1238 		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1239 				 &pad, &len))
1240 			return 0;
1241 
1242 	/* If this is an error packet then drop it */
1243 	flags = cqe->fast_path_regular.pars_flags.flags;
1244 	parse_flag = le16_to_cpu(flags);
1245 
1246 	csum_flag = qede_check_csum(parse_flag);
1247 	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1248 		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag)) {
1249 			rxq->rx_ip_frags++;
1250 		} else {
1251 			DP_NOTICE(edev,
1252 				  "CQE has error, flags = %x, dropping incoming packet\n",
1253 				  parse_flag);
1254 			rxq->rx_hw_errors++;
1255 			qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1256 			return 0;
1257 		}
1258 	}
1259 
1260 	/* Basic validation passed; Need to prepare an SKB. This would also
1261 	 * guarantee to finally consume the first BD upon success.
1262 	 */
1263 	skb = qede_rx_allocate_skb(edev, rxq, bd, len, pad);
1264 	if (!skb) {
1265 		rxq->rx_alloc_errors++;
1266 		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1267 		return 0;
1268 	}
1269 
1270 	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1271 	 * by a single cqe.
1272 	 */
1273 	if (fp_cqe->bd_num > 1) {
1274 		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1275 							 fp_cqe, len);
1276 
1277 		if (unlikely(unmapped_frags > 0)) {
1278 			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1279 			dev_kfree_skb_any(skb);
1280 			return 0;
1281 		}
1282 	}
1283 
1284 	/* The SKB contains all the data. Now prepare meta-magic */
1285 	skb->protocol = eth_type_trans(skb, edev->ndev);
1286 	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1287 	qede_set_skb_csum(skb, csum_flag);
1288 	skb_record_rx_queue(skb, rxq->rxq_id);
1289 	qede_ptp_record_rx_ts(edev, cqe, skb);
1290 
1291 	/* SKB is prepared - pass it to stack */
1292 	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1293 
1294 	return 1;
1295 }
1296 
1297 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1298 {
1299 	struct qede_rx_queue *rxq = fp->rxq;
1300 	struct qede_dev *edev = fp->edev;
1301 	int work_done = 0, rcv_pkts = 0;
1302 	u16 hw_comp_cons, sw_comp_cons;
1303 
1304 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1305 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1306 
1307 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1308 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1309 	 * read before it is written by FW, then FW writes CQE and SB, and then
1310 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1311 	 */
1312 	rmb();
1313 
1314 	/* Loop to complete all indicated BDs */
1315 	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1316 		rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1317 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1318 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1319 		work_done++;
1320 	}
1321 
1322 	rxq->rcv_pkts += rcv_pkts;
1323 
1324 	/* Allocate replacement buffers */
1325 	while (rxq->num_rx_buffers - rxq->filled_buffers)
1326 		if (qede_alloc_rx_buffer(rxq, false))
1327 			break;
1328 
1329 	/* Update producers */
1330 	qede_update_rx_prod(edev, rxq);
1331 
1332 	return work_done;
1333 }
1334 
1335 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1336 {
1337 	qed_sb_update_sb_idx(fp->sb_info);
1338 
1339 	/* *_has_*_work() reads the status block, thus we need to ensure that
1340 	 * status block indices have been actually read (qed_sb_update_sb_idx)
1341 	 * prior to this check (*_has_*_work) so that we won't write the
1342 	 * "newer" value of the status block to HW (if there was a DMA right
1343 	 * after qede_has_rx_work and if there is no rmb, the memory reading
1344 	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1345 	 * In this case there will never be another interrupt until there is
1346 	 * another update of the status block, while there is still unhandled
1347 	 * work.
1348 	 */
1349 	rmb();
1350 
1351 	if (likely(fp->type & QEDE_FASTPATH_RX))
1352 		if (qede_has_rx_work(fp->rxq))
1353 			return true;
1354 
1355 	if (fp->type & QEDE_FASTPATH_XDP)
1356 		if (qede_txq_has_work(fp->xdp_tx))
1357 			return true;
1358 
1359 	if (likely(fp->type & QEDE_FASTPATH_TX))
1360 		if (qede_txq_has_work(fp->txq))
1361 			return true;
1362 
1363 	return false;
1364 }
1365 
1366 /*********************
1367  * NDO & API related *
1368  *********************/
1369 int qede_poll(struct napi_struct *napi, int budget)
1370 {
1371 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1372 						napi);
1373 	struct qede_dev *edev = fp->edev;
1374 	int rx_work_done = 0;
1375 
1376 	if (likely(fp->type & QEDE_FASTPATH_TX) && qede_txq_has_work(fp->txq))
1377 		qede_tx_int(edev, fp->txq);
1378 
1379 	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1380 		qede_xdp_tx_int(edev, fp->xdp_tx);
1381 
1382 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1383 			qede_has_rx_work(fp->rxq)) ?
1384 			qede_rx_int(fp, budget) : 0;
1385 	if (rx_work_done < budget) {
1386 		if (!qede_poll_is_more_work(fp)) {
1387 			napi_complete_done(napi, rx_work_done);
1388 
1389 			/* Update and reenable interrupts */
1390 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1391 		} else {
1392 			rx_work_done = budget;
1393 		}
1394 	}
1395 
1396 	if (fp->xdp_xmit) {
1397 		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1398 
1399 		fp->xdp_xmit = 0;
1400 		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1401 		qede_update_tx_producer(fp->xdp_tx);
1402 	}
1403 
1404 	return rx_work_done;
1405 }
1406 
1407 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1408 {
1409 	struct qede_fastpath *fp = fp_cookie;
1410 
1411 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1412 
1413 	napi_schedule_irqoff(&fp->napi);
1414 	return IRQ_HANDLED;
1415 }
1416 
1417 /* Main transmit function */
1418 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1419 {
1420 	struct qede_dev *edev = netdev_priv(ndev);
1421 	struct netdev_queue *netdev_txq;
1422 	struct qede_tx_queue *txq;
1423 	struct eth_tx_1st_bd *first_bd;
1424 	struct eth_tx_2nd_bd *second_bd = NULL;
1425 	struct eth_tx_3rd_bd *third_bd = NULL;
1426 	struct eth_tx_bd *tx_data_bd = NULL;
1427 	u16 txq_index;
1428 	u8 nbd = 0;
1429 	dma_addr_t mapping;
1430 	int rc, frag_idx = 0, ipv6_ext = 0;
1431 	u8 xmit_type;
1432 	u16 idx;
1433 	u16 hlen;
1434 	bool data_split = false;
1435 
1436 	/* Get tx-queue context and netdev index */
1437 	txq_index = skb_get_queue_mapping(skb);
1438 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev));
1439 	txq = edev->fp_array[edev->fp_num_rx + txq_index].txq;
1440 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1441 
1442 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1443 
1444 	xmit_type = qede_xmit_type(skb, &ipv6_ext);
1445 
1446 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1447 	if (qede_pkt_req_lin(skb, xmit_type)) {
1448 		if (skb_linearize(skb)) {
1449 			DP_NOTICE(edev,
1450 				  "SKB linearization failed - silently dropping this SKB\n");
1451 			dev_kfree_skb_any(skb);
1452 			return NETDEV_TX_OK;
1453 		}
1454 	}
1455 #endif
1456 
1457 	/* Fill the entry in the SW ring and the BDs in the FW ring */
1458 	idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
1459 	txq->sw_tx_ring.skbs[idx].skb = skb;
1460 	first_bd = (struct eth_tx_1st_bd *)
1461 		   qed_chain_produce(&txq->tx_pbl);
1462 	memset(first_bd, 0, sizeof(*first_bd));
1463 	first_bd->data.bd_flags.bitfields =
1464 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1465 
1466 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1467 		qede_ptp_tx_ts(edev, skb);
1468 
1469 	/* Map skb linear data for DMA and set in the first BD */
1470 	mapping = dma_map_single(txq->dev, skb->data,
1471 				 skb_headlen(skb), DMA_TO_DEVICE);
1472 	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1473 		DP_NOTICE(edev, "SKB mapping failed\n");
1474 		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1475 		qede_update_tx_producer(txq);
1476 		return NETDEV_TX_OK;
1477 	}
1478 	nbd++;
1479 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1480 
1481 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
1482 	 * 3rd BDs.
1483 	 */
1484 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1485 		second_bd = (struct eth_tx_2nd_bd *)
1486 			qed_chain_produce(&txq->tx_pbl);
1487 		memset(second_bd, 0, sizeof(*second_bd));
1488 
1489 		nbd++;
1490 		third_bd = (struct eth_tx_3rd_bd *)
1491 			qed_chain_produce(&txq->tx_pbl);
1492 		memset(third_bd, 0, sizeof(*third_bd));
1493 
1494 		nbd++;
1495 		/* We need to fill in additional data in second_bd... */
1496 		tx_data_bd = (struct eth_tx_bd *)second_bd;
1497 	}
1498 
1499 	if (skb_vlan_tag_present(skb)) {
1500 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1501 		first_bd->data.bd_flags.bitfields |=
1502 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1503 	}
1504 
1505 	/* Fill the parsing flags & params according to the requested offload */
1506 	if (xmit_type & XMIT_L4_CSUM) {
1507 		/* We don't re-calculate IP checksum as it is already done by
1508 		 * the upper stack
1509 		 */
1510 		first_bd->data.bd_flags.bitfields |=
1511 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1512 
1513 		if (xmit_type & XMIT_ENC) {
1514 			first_bd->data.bd_flags.bitfields |=
1515 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1516 			first_bd->data.bitfields |=
1517 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1518 		}
1519 
1520 		/* Legacy FW had flipped behavior in regard to this bit -
1521 		 * I.e., needed to set to prevent FW from touching encapsulated
1522 		 * packets when it didn't need to.
1523 		 */
1524 		if (unlikely(txq->is_legacy))
1525 			first_bd->data.bitfields ^=
1526 			    1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
1527 
1528 		/* If the packet is IPv6 with extension header, indicate that
1529 		 * to FW and pass few params, since the device cracker doesn't
1530 		 * support parsing IPv6 with extension header/s.
1531 		 */
1532 		if (unlikely(ipv6_ext))
1533 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1534 	}
1535 
1536 	if (xmit_type & XMIT_LSO) {
1537 		first_bd->data.bd_flags.bitfields |=
1538 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1539 		third_bd->data.lso_mss =
1540 			cpu_to_le16(skb_shinfo(skb)->gso_size);
1541 
1542 		if (unlikely(xmit_type & XMIT_ENC)) {
1543 			first_bd->data.bd_flags.bitfields |=
1544 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1545 
1546 			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1547 				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1548 
1549 				first_bd->data.bd_flags.bitfields |= 1 << tmp;
1550 			}
1551 			hlen = qede_get_skb_hlen(skb, true);
1552 		} else {
1553 			first_bd->data.bd_flags.bitfields |=
1554 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1555 			hlen = qede_get_skb_hlen(skb, false);
1556 		}
1557 
1558 		/* @@@TBD - if will not be removed need to check */
1559 		third_bd->data.bitfields |=
1560 			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1561 
1562 		/* Make life easier for FW guys who can't deal with header and
1563 		 * data on same BD. If we need to split, use the second bd...
1564 		 */
1565 		if (unlikely(skb_headlen(skb) > hlen)) {
1566 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1567 				   "TSO split header size is %d (%x:%x)\n",
1568 				   first_bd->nbytes, first_bd->addr.hi,
1569 				   first_bd->addr.lo);
1570 
1571 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1572 					   le32_to_cpu(first_bd->addr.lo)) +
1573 					   hlen;
1574 
1575 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1576 					      le16_to_cpu(first_bd->nbytes) -
1577 					      hlen);
1578 
1579 			/* this marks the BD as one that has no
1580 			 * individual mapping
1581 			 */
1582 			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1583 
1584 			first_bd->nbytes = cpu_to_le16(hlen);
1585 
1586 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1587 			data_split = true;
1588 		}
1589 	} else {
1590 		first_bd->data.bitfields |=
1591 		    (skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1592 		    ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
1593 	}
1594 
1595 	/* Handle fragmented skb */
1596 	/* special handle for frags inside 2nd and 3rd bds.. */
1597 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1598 		rc = map_frag_to_bd(txq,
1599 				    &skb_shinfo(skb)->frags[frag_idx],
1600 				    tx_data_bd);
1601 		if (rc) {
1602 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1603 			qede_update_tx_producer(txq);
1604 			return NETDEV_TX_OK;
1605 		}
1606 
1607 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1608 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1609 		else
1610 			tx_data_bd = NULL;
1611 
1612 		frag_idx++;
1613 	}
1614 
1615 	/* map last frags into 4th, 5th .... */
1616 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1617 		tx_data_bd = (struct eth_tx_bd *)
1618 			     qed_chain_produce(&txq->tx_pbl);
1619 
1620 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1621 
1622 		rc = map_frag_to_bd(txq,
1623 				    &skb_shinfo(skb)->frags[frag_idx],
1624 				    tx_data_bd);
1625 		if (rc) {
1626 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1627 			qede_update_tx_producer(txq);
1628 			return NETDEV_TX_OK;
1629 		}
1630 	}
1631 
1632 	/* update the first BD with the actual num BDs */
1633 	first_bd->data.nbds = nbd;
1634 
1635 	netdev_tx_sent_queue(netdev_txq, skb->len);
1636 
1637 	skb_tx_timestamp(skb);
1638 
1639 	/* Advance packet producer only before sending the packet since mapping
1640 	 * of pages may fail.
1641 	 */
1642 	txq->sw_tx_prod++;
1643 
1644 	/* 'next page' entries are counted in the producer value */
1645 	txq->tx_db.data.bd_prod =
1646 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1647 
1648 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
1649 		qede_update_tx_producer(txq);
1650 
1651 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1652 		      < (MAX_SKB_FRAGS + 1))) {
1653 		if (skb->xmit_more)
1654 			qede_update_tx_producer(txq);
1655 
1656 		netif_tx_stop_queue(netdev_txq);
1657 		txq->stopped_cnt++;
1658 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1659 			   "Stop queue was called\n");
1660 		/* paired memory barrier is in qede_tx_int(), we have to keep
1661 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
1662 		 * fp->bd_tx_cons
1663 		 */
1664 		smp_mb();
1665 
1666 		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1667 		     (MAX_SKB_FRAGS + 1)) &&
1668 		    (edev->state == QEDE_STATE_OPEN)) {
1669 			netif_tx_wake_queue(netdev_txq);
1670 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1671 				   "Wake queue was called\n");
1672 		}
1673 	}
1674 
1675 	return NETDEV_TX_OK;
1676 }
1677 
1678 /* 8B udp header + 8B base tunnel header + 32B option length */
1679 #define QEDE_MAX_TUN_HDR_LEN 48
1680 
1681 netdev_features_t qede_features_check(struct sk_buff *skb,
1682 				      struct net_device *dev,
1683 				      netdev_features_t features)
1684 {
1685 	if (skb->encapsulation) {
1686 		u8 l4_proto = 0;
1687 
1688 		switch (vlan_get_protocol(skb)) {
1689 		case htons(ETH_P_IP):
1690 			l4_proto = ip_hdr(skb)->protocol;
1691 			break;
1692 		case htons(ETH_P_IPV6):
1693 			l4_proto = ipv6_hdr(skb)->nexthdr;
1694 			break;
1695 		default:
1696 			return features;
1697 		}
1698 
1699 		/* Disable offloads for geneve tunnels, as HW can't parse
1700 		 * the geneve header which has option length greater than 32b
1701 		 * and disable offloads for the ports which are not offloaded.
1702 		 */
1703 		if (l4_proto == IPPROTO_UDP) {
1704 			struct qede_dev *edev = netdev_priv(dev);
1705 			u16 hdrlen, vxln_port, gnv_port;
1706 
1707 			hdrlen = QEDE_MAX_TUN_HDR_LEN;
1708 			vxln_port = edev->vxlan_dst_port;
1709 			gnv_port = edev->geneve_dst_port;
1710 
1711 			if ((skb_inner_mac_header(skb) -
1712 			     skb_transport_header(skb)) > hdrlen ||
1713 			     (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1714 			      ntohs(udp_hdr(skb)->dest) != gnv_port))
1715 				return features & ~(NETIF_F_CSUM_MASK |
1716 						    NETIF_F_GSO_MASK);
1717 		}
1718 	}
1719 
1720 	return features;
1721 }
1722