xref: /openbmc/linux/drivers/net/ethernet/qlogic/qede/qede_fp.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bpf_trace.h>
36 #include <net/udp_tunnel.h>
37 #include <linux/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tcp.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <net/ip6_checksum.h>
43 #include "qede_ptp.h"
44 
45 #include <linux/qed/qed_if.h>
46 #include "qede.h"
47 /*********************************
48  * Content also used by slowpath *
49  *********************************/
50 
51 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
52 {
53 	struct sw_rx_data *sw_rx_data;
54 	struct eth_rx_bd *rx_bd;
55 	dma_addr_t mapping;
56 	struct page *data;
57 
58 	/* In case lazy-allocation is allowed, postpone allocation until the
59 	 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 	 * sufficient buffers to guarantee an additional Rx interrupt.
61 	 */
62 	if (allow_lazy && likely(rxq->filled_buffers > 12)) {
63 		rxq->filled_buffers--;
64 		return 0;
65 	}
66 
67 	data = alloc_pages(GFP_ATOMIC, 0);
68 	if (unlikely(!data))
69 		return -ENOMEM;
70 
71 	/* Map the entire page as it would be used
72 	 * for multiple RX buffer segment size mapping.
73 	 */
74 	mapping = dma_map_page(rxq->dev, data, 0,
75 			       PAGE_SIZE, rxq->data_direction);
76 	if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
77 		__free_page(data);
78 		return -ENOMEM;
79 	}
80 
81 	sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
82 	sw_rx_data->page_offset = 0;
83 	sw_rx_data->data = data;
84 	sw_rx_data->mapping = mapping;
85 
86 	/* Advance PROD and get BD pointer */
87 	rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
88 	WARN_ON(!rx_bd);
89 	rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
90 	rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
91 				     rxq->rx_headroom);
92 
93 	rxq->sw_rx_prod++;
94 	rxq->filled_buffers++;
95 
96 	return 0;
97 }
98 
99 /* Unmap the data and free skb */
100 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
101 {
102 	u16 idx = txq->sw_tx_cons;
103 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
104 	struct eth_tx_1st_bd *first_bd;
105 	struct eth_tx_bd *tx_data_bd;
106 	int bds_consumed = 0;
107 	int nbds;
108 	bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
109 	int i, split_bd_len = 0;
110 
111 	if (unlikely(!skb)) {
112 		DP_ERR(edev,
113 		       "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
114 		       idx, txq->sw_tx_cons, txq->sw_tx_prod);
115 		return -1;
116 	}
117 
118 	*len = skb->len;
119 
120 	first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
121 
122 	bds_consumed++;
123 
124 	nbds = first_bd->data.nbds;
125 
126 	if (data_split) {
127 		struct eth_tx_bd *split = (struct eth_tx_bd *)
128 			qed_chain_consume(&txq->tx_pbl);
129 		split_bd_len = BD_UNMAP_LEN(split);
130 		bds_consumed++;
131 	}
132 	dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
133 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
134 
135 	/* Unmap the data of the skb frags */
136 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
137 		tx_data_bd = (struct eth_tx_bd *)
138 			qed_chain_consume(&txq->tx_pbl);
139 		dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
140 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
141 	}
142 
143 	while (bds_consumed++ < nbds)
144 		qed_chain_consume(&txq->tx_pbl);
145 
146 	/* Free skb */
147 	dev_kfree_skb_any(skb);
148 	txq->sw_tx_ring.skbs[idx].skb = NULL;
149 	txq->sw_tx_ring.skbs[idx].flags = 0;
150 
151 	return 0;
152 }
153 
154 /* Unmap the data and free skb when mapping failed during start_xmit */
155 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
156 				    struct eth_tx_1st_bd *first_bd,
157 				    int nbd, bool data_split)
158 {
159 	u16 idx = txq->sw_tx_prod;
160 	struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
161 	struct eth_tx_bd *tx_data_bd;
162 	int i, split_bd_len = 0;
163 
164 	/* Return prod to its position before this skb was handled */
165 	qed_chain_set_prod(&txq->tx_pbl,
166 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
167 
168 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
169 
170 	if (data_split) {
171 		struct eth_tx_bd *split = (struct eth_tx_bd *)
172 					  qed_chain_produce(&txq->tx_pbl);
173 		split_bd_len = BD_UNMAP_LEN(split);
174 		nbd--;
175 	}
176 
177 	dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
178 			 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
179 
180 	/* Unmap the data of the skb frags */
181 	for (i = 0; i < nbd; i++) {
182 		tx_data_bd = (struct eth_tx_bd *)
183 			qed_chain_produce(&txq->tx_pbl);
184 		if (tx_data_bd->nbytes)
185 			dma_unmap_page(txq->dev,
186 				       BD_UNMAP_ADDR(tx_data_bd),
187 				       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
188 	}
189 
190 	/* Return again prod to its position before this skb was handled */
191 	qed_chain_set_prod(&txq->tx_pbl,
192 			   le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
193 
194 	/* Free skb */
195 	dev_kfree_skb_any(skb);
196 	txq->sw_tx_ring.skbs[idx].skb = NULL;
197 	txq->sw_tx_ring.skbs[idx].flags = 0;
198 }
199 
200 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
201 {
202 	u32 rc = XMIT_L4_CSUM;
203 	__be16 l3_proto;
204 
205 	if (skb->ip_summed != CHECKSUM_PARTIAL)
206 		return XMIT_PLAIN;
207 
208 	l3_proto = vlan_get_protocol(skb);
209 	if (l3_proto == htons(ETH_P_IPV6) &&
210 	    (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
211 		*ipv6_ext = 1;
212 
213 	if (skb->encapsulation) {
214 		rc |= XMIT_ENC;
215 		if (skb_is_gso(skb)) {
216 			unsigned short gso_type = skb_shinfo(skb)->gso_type;
217 
218 			if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
219 			    (gso_type & SKB_GSO_GRE_CSUM))
220 				rc |= XMIT_ENC_GSO_L4_CSUM;
221 
222 			rc |= XMIT_LSO;
223 			return rc;
224 		}
225 	}
226 
227 	if (skb_is_gso(skb))
228 		rc |= XMIT_LSO;
229 
230 	return rc;
231 }
232 
233 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
234 					 struct eth_tx_2nd_bd *second_bd,
235 					 struct eth_tx_3rd_bd *third_bd)
236 {
237 	u8 l4_proto;
238 	u16 bd2_bits1 = 0, bd2_bits2 = 0;
239 
240 	bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
241 
242 	bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
243 		     ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
244 		    << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
245 
246 	bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
247 		      ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
248 
249 	if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
250 		l4_proto = ipv6_hdr(skb)->nexthdr;
251 	else
252 		l4_proto = ip_hdr(skb)->protocol;
253 
254 	if (l4_proto == IPPROTO_UDP)
255 		bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
256 
257 	if (third_bd)
258 		third_bd->data.bitfields |=
259 			cpu_to_le16(((tcp_hdrlen(skb) / 4) &
260 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
261 				ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
262 
263 	second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
264 	second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
265 }
266 
267 static int map_frag_to_bd(struct qede_tx_queue *txq,
268 			  skb_frag_t *frag, struct eth_tx_bd *bd)
269 {
270 	dma_addr_t mapping;
271 
272 	/* Map skb non-linear frag data for DMA */
273 	mapping = skb_frag_dma_map(txq->dev, frag, 0,
274 				   skb_frag_size(frag), DMA_TO_DEVICE);
275 	if (unlikely(dma_mapping_error(txq->dev, mapping)))
276 		return -ENOMEM;
277 
278 	/* Setup the data pointer of the frag data */
279 	BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
280 
281 	return 0;
282 }
283 
284 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
285 {
286 	if (is_encap_pkt)
287 		return (skb_inner_transport_header(skb) +
288 			inner_tcp_hdrlen(skb) - skb->data);
289 	else
290 		return (skb_transport_header(skb) +
291 			tcp_hdrlen(skb) - skb->data);
292 }
293 
294 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
295 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
296 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
297 {
298 	int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
299 
300 	if (xmit_type & XMIT_LSO) {
301 		int hlen;
302 
303 		hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
304 
305 		/* linear payload would require its own BD */
306 		if (skb_headlen(skb) > hlen)
307 			allowed_frags--;
308 	}
309 
310 	return (skb_shinfo(skb)->nr_frags > allowed_frags);
311 }
312 #endif
313 
314 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
315 {
316 	/* wmb makes sure that the BDs data is updated before updating the
317 	 * producer, otherwise FW may read old data from the BDs.
318 	 */
319 	wmb();
320 	barrier();
321 	writel(txq->tx_db.raw, txq->doorbell_addr);
322 
323 	/* Fence required to flush the write combined buffer, since another
324 	 * CPU may write to the same doorbell address and data may be lost
325 	 * due to relaxed order nature of write combined bar.
326 	 */
327 	wmb();
328 }
329 
330 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
331 			 struct sw_rx_data *metadata, u16 padding, u16 length)
332 {
333 	struct qede_tx_queue *txq = fp->xdp_tx;
334 	struct eth_tx_1st_bd *first_bd;
335 	u16 idx = txq->sw_tx_prod;
336 	u16 val;
337 
338 	if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
339 		txq->stopped_cnt++;
340 		return -ENOMEM;
341 	}
342 
343 	first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
344 
345 	memset(first_bd, 0, sizeof(*first_bd));
346 	first_bd->data.bd_flags.bitfields =
347 	    BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
348 
349 	val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
350 	       ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
351 
352 	first_bd->data.bitfields |= cpu_to_le16(val);
353 	first_bd->data.nbds = 1;
354 
355 	/* We can safely ignore the offset, as it's 0 for XDP */
356 	BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
357 
358 	/* Synchronize the buffer back to device, as program [probably]
359 	 * has changed it.
360 	 */
361 	dma_sync_single_for_device(&edev->pdev->dev,
362 				   metadata->mapping + padding,
363 				   length, PCI_DMA_TODEVICE);
364 
365 	txq->sw_tx_ring.xdp[idx].page = metadata->data;
366 	txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
367 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
368 
369 	/* Mark the fastpath for future XDP doorbell */
370 	fp->xdp_xmit = 1;
371 
372 	return 0;
373 }
374 
375 int qede_txq_has_work(struct qede_tx_queue *txq)
376 {
377 	u16 hw_bd_cons;
378 
379 	/* Tell compiler that consumer and producer can change */
380 	barrier();
381 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
382 	if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
383 		return 0;
384 
385 	return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
386 }
387 
388 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
389 {
390 	u16 hw_bd_cons, idx;
391 
392 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
393 	barrier();
394 
395 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
396 		qed_chain_consume(&txq->tx_pbl);
397 		idx = txq->sw_tx_cons;
398 
399 		dma_unmap_page(&edev->pdev->dev,
400 			       txq->sw_tx_ring.xdp[idx].mapping,
401 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
402 		__free_page(txq->sw_tx_ring.xdp[idx].page);
403 
404 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
405 		txq->xmit_pkts++;
406 	}
407 }
408 
409 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
410 {
411 	unsigned int pkts_compl = 0, bytes_compl = 0;
412 	struct netdev_queue *netdev_txq;
413 	u16 hw_bd_cons;
414 	int rc;
415 
416 	netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
417 
418 	hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
419 	barrier();
420 
421 	while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
422 		int len = 0;
423 
424 		rc = qede_free_tx_pkt(edev, txq, &len);
425 		if (rc) {
426 			DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
427 				  hw_bd_cons,
428 				  qed_chain_get_cons_idx(&txq->tx_pbl));
429 			break;
430 		}
431 
432 		bytes_compl += len;
433 		pkts_compl++;
434 		txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
435 		txq->xmit_pkts++;
436 	}
437 
438 	netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
439 
440 	/* Need to make the tx_bd_cons update visible to start_xmit()
441 	 * before checking for netif_tx_queue_stopped().  Without the
442 	 * memory barrier, there is a small possibility that
443 	 * start_xmit() will miss it and cause the queue to be stopped
444 	 * forever.
445 	 * On the other hand we need an rmb() here to ensure the proper
446 	 * ordering of bit testing in the following
447 	 * netif_tx_queue_stopped(txq) call.
448 	 */
449 	smp_mb();
450 
451 	if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
452 		/* Taking tx_lock is needed to prevent reenabling the queue
453 		 * while it's empty. This could have happen if rx_action() gets
454 		 * suspended in qede_tx_int() after the condition before
455 		 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
456 		 *
457 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
458 		 * sends some packets consuming the whole queue again->
459 		 * stops the queue
460 		 */
461 
462 		__netif_tx_lock(netdev_txq, smp_processor_id());
463 
464 		if ((netif_tx_queue_stopped(netdev_txq)) &&
465 		    (edev->state == QEDE_STATE_OPEN) &&
466 		    (qed_chain_get_elem_left(&txq->tx_pbl)
467 		      >= (MAX_SKB_FRAGS + 1))) {
468 			netif_tx_wake_queue(netdev_txq);
469 			DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
470 				   "Wake queue was called\n");
471 		}
472 
473 		__netif_tx_unlock(netdev_txq);
474 	}
475 
476 	return 0;
477 }
478 
479 bool qede_has_rx_work(struct qede_rx_queue *rxq)
480 {
481 	u16 hw_comp_cons, sw_comp_cons;
482 
483 	/* Tell compiler that status block fields can change */
484 	barrier();
485 
486 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
487 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
488 
489 	return hw_comp_cons != sw_comp_cons;
490 }
491 
492 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
493 {
494 	qed_chain_consume(&rxq->rx_bd_ring);
495 	rxq->sw_rx_cons++;
496 }
497 
498 /* This function reuses the buffer(from an offset) from
499  * consumer index to producer index in the bd ring
500  */
501 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
502 				   struct sw_rx_data *curr_cons)
503 {
504 	struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
505 	struct sw_rx_data *curr_prod;
506 	dma_addr_t new_mapping;
507 
508 	curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
509 	*curr_prod = *curr_cons;
510 
511 	new_mapping = curr_prod->mapping + curr_prod->page_offset;
512 
513 	rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
514 	rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
515 					  rxq->rx_headroom);
516 
517 	rxq->sw_rx_prod++;
518 	curr_cons->data = NULL;
519 }
520 
521 /* In case of allocation failures reuse buffers
522  * from consumer index to produce buffers for firmware
523  */
524 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
525 {
526 	struct sw_rx_data *curr_cons;
527 
528 	for (; count > 0; count--) {
529 		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
530 		qede_reuse_page(rxq, curr_cons);
531 		qede_rx_bd_ring_consume(rxq);
532 	}
533 }
534 
535 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
536 					 struct sw_rx_data *curr_cons)
537 {
538 	/* Move to the next segment in the page */
539 	curr_cons->page_offset += rxq->rx_buf_seg_size;
540 
541 	if (curr_cons->page_offset == PAGE_SIZE) {
542 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
543 			/* Since we failed to allocate new buffer
544 			 * current buffer can be used again.
545 			 */
546 			curr_cons->page_offset -= rxq->rx_buf_seg_size;
547 
548 			return -ENOMEM;
549 		}
550 
551 		dma_unmap_page(rxq->dev, curr_cons->mapping,
552 			       PAGE_SIZE, rxq->data_direction);
553 	} else {
554 		/* Increment refcount of the page as we don't want
555 		 * network stack to take the ownership of the page
556 		 * which can be recycled multiple times by the driver.
557 		 */
558 		page_ref_inc(curr_cons->data);
559 		qede_reuse_page(rxq, curr_cons);
560 	}
561 
562 	return 0;
563 }
564 
565 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
566 {
567 	u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
568 	u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
569 	struct eth_rx_prod_data rx_prods = {0};
570 
571 	/* Update producers */
572 	rx_prods.bd_prod = cpu_to_le16(bd_prod);
573 	rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
574 
575 	/* Make sure that the BD and SGE data is updated before updating the
576 	 * producers since FW might read the BD/SGE right after the producer
577 	 * is updated.
578 	 */
579 	wmb();
580 
581 	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
582 			(u32 *)&rx_prods);
583 
584 	/* mmiowb is needed to synchronize doorbell writes from more than one
585 	 * processor. It guarantees that the write arrives to the device before
586 	 * the napi lock is released and another qede_poll is called (possibly
587 	 * on another CPU). Without this barrier, the next doorbell can bypass
588 	 * this doorbell. This is applicable to IA64/Altix systems.
589 	 */
590 	mmiowb();
591 }
592 
593 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
594 {
595 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
596 	enum rss_hash_type htype;
597 	u32 hash = 0;
598 
599 	htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
600 	if (htype) {
601 		hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
602 			     (htype == RSS_HASH_TYPE_IPV6)) ?
603 			    PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
604 		hash = le32_to_cpu(rss_hash);
605 	}
606 	skb_set_hash(skb, hash, hash_type);
607 }
608 
609 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
610 {
611 	skb_checksum_none_assert(skb);
612 
613 	if (csum_flag & QEDE_CSUM_UNNECESSARY)
614 		skb->ip_summed = CHECKSUM_UNNECESSARY;
615 
616 	if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
617 		skb->csum_level = 1;
618 		skb->encapsulation = 1;
619 	}
620 }
621 
622 static inline void qede_skb_receive(struct qede_dev *edev,
623 				    struct qede_fastpath *fp,
624 				    struct qede_rx_queue *rxq,
625 				    struct sk_buff *skb, u16 vlan_tag)
626 {
627 	if (vlan_tag)
628 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
629 
630 	napi_gro_receive(&fp->napi, skb);
631 }
632 
633 static void qede_set_gro_params(struct qede_dev *edev,
634 				struct sk_buff *skb,
635 				struct eth_fast_path_rx_tpa_start_cqe *cqe)
636 {
637 	u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
638 
639 	if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
640 	    PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
641 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
642 	else
643 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
644 
645 	skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
646 				    cqe->header_len;
647 }
648 
649 static int qede_fill_frag_skb(struct qede_dev *edev,
650 			      struct qede_rx_queue *rxq,
651 			      u8 tpa_agg_index, u16 len_on_bd)
652 {
653 	struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
654 							 NUM_RX_BDS_MAX];
655 	struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
656 	struct sk_buff *skb = tpa_info->skb;
657 
658 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
659 		goto out;
660 
661 	/* Add one frag and update the appropriate fields in the skb */
662 	skb_fill_page_desc(skb, tpa_info->frag_id++,
663 			   current_bd->data,
664 			   current_bd->page_offset + rxq->rx_headroom,
665 			   len_on_bd);
666 
667 	if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
668 		/* Incr page ref count to reuse on allocation failure
669 		 * so that it doesn't get freed while freeing SKB.
670 		 */
671 		page_ref_inc(current_bd->data);
672 		goto out;
673 	}
674 
675 	qede_rx_bd_ring_consume(rxq);
676 
677 	skb->data_len += len_on_bd;
678 	skb->truesize += rxq->rx_buf_seg_size;
679 	skb->len += len_on_bd;
680 
681 	return 0;
682 
683 out:
684 	tpa_info->state = QEDE_AGG_STATE_ERROR;
685 	qede_recycle_rx_bd_ring(rxq, 1);
686 
687 	return -ENOMEM;
688 }
689 
690 static bool qede_tunn_exist(u16 flag)
691 {
692 	return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
693 			  PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
694 }
695 
696 static u8 qede_check_tunn_csum(u16 flag)
697 {
698 	u16 csum_flag = 0;
699 	u8 tcsum = 0;
700 
701 	if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
702 		    PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
703 		csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
704 			     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
705 
706 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
707 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
708 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
709 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
710 		tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
711 	}
712 
713 	csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
714 		     PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
715 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
716 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
717 
718 	if (csum_flag & flag)
719 		return QEDE_CSUM_ERROR;
720 
721 	return QEDE_CSUM_UNNECESSARY | tcsum;
722 }
723 
724 static inline struct sk_buff *
725 qede_build_skb(struct qede_rx_queue *rxq,
726 	       struct sw_rx_data *bd, u16 len, u16 pad)
727 {
728 	struct sk_buff *skb;
729 	void *buf;
730 
731 	buf = page_address(bd->data) + bd->page_offset;
732 	skb = build_skb(buf, rxq->rx_buf_seg_size);
733 
734 	skb_reserve(skb, pad);
735 	skb_put(skb, len);
736 
737 	return skb;
738 }
739 
740 static struct sk_buff *
741 qede_tpa_rx_build_skb(struct qede_dev *edev,
742 		      struct qede_rx_queue *rxq,
743 		      struct sw_rx_data *bd, u16 len, u16 pad,
744 		      bool alloc_skb)
745 {
746 	struct sk_buff *skb;
747 
748 	skb = qede_build_skb(rxq, bd, len, pad);
749 	bd->page_offset += rxq->rx_buf_seg_size;
750 
751 	if (bd->page_offset == PAGE_SIZE) {
752 		if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
753 			DP_NOTICE(edev,
754 				  "Failed to allocate RX buffer for tpa start\n");
755 			bd->page_offset -= rxq->rx_buf_seg_size;
756 			page_ref_inc(bd->data);
757 			dev_kfree_skb_any(skb);
758 			return NULL;
759 		}
760 	} else {
761 		page_ref_inc(bd->data);
762 		qede_reuse_page(rxq, bd);
763 	}
764 
765 	/* We've consumed the first BD and prepared an SKB */
766 	qede_rx_bd_ring_consume(rxq);
767 
768 	return skb;
769 }
770 
771 static struct sk_buff *
772 qede_rx_build_skb(struct qede_dev *edev,
773 		  struct qede_rx_queue *rxq,
774 		  struct sw_rx_data *bd, u16 len, u16 pad)
775 {
776 	struct sk_buff *skb = NULL;
777 
778 	/* For smaller frames still need to allocate skb, memcpy
779 	 * data and benefit in reusing the page segment instead of
780 	 * un-mapping it.
781 	 */
782 	if ((len + pad <= edev->rx_copybreak)) {
783 		unsigned int offset = bd->page_offset + pad;
784 
785 		skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
786 		if (unlikely(!skb))
787 			return NULL;
788 
789 		skb_reserve(skb, pad);
790 		memcpy(skb_put(skb, len),
791 		       page_address(bd->data) + offset, len);
792 		qede_reuse_page(rxq, bd);
793 		goto out;
794 	}
795 
796 	skb = qede_build_skb(rxq, bd, len, pad);
797 
798 	if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
799 		/* Incr page ref count to reuse on allocation failure so
800 		 * that it doesn't get freed while freeing SKB [as its
801 		 * already mapped there].
802 		 */
803 		page_ref_inc(bd->data);
804 		dev_kfree_skb_any(skb);
805 		return NULL;
806 	}
807 out:
808 	/* We've consumed the first BD and prepared an SKB */
809 	qede_rx_bd_ring_consume(rxq);
810 
811 	return skb;
812 }
813 
814 static void qede_tpa_start(struct qede_dev *edev,
815 			   struct qede_rx_queue *rxq,
816 			   struct eth_fast_path_rx_tpa_start_cqe *cqe)
817 {
818 	struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
819 	struct sw_rx_data *sw_rx_data_cons;
820 	u16 pad;
821 
822 	sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
823 	pad = cqe->placement_offset + rxq->rx_headroom;
824 
825 	tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
826 					      le16_to_cpu(cqe->len_on_first_bd),
827 					      pad, false);
828 	tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
829 	tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
830 
831 	if (unlikely(!tpa_info->skb)) {
832 		DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
833 
834 		/* Consume from ring but do not produce since
835 		 * this might be used by FW still, it will be re-used
836 		 * at TPA end.
837 		 */
838 		tpa_info->tpa_start_fail = true;
839 		qede_rx_bd_ring_consume(rxq);
840 		tpa_info->state = QEDE_AGG_STATE_ERROR;
841 		goto cons_buf;
842 	}
843 
844 	tpa_info->frag_id = 0;
845 	tpa_info->state = QEDE_AGG_STATE_START;
846 
847 	if ((le16_to_cpu(cqe->pars_flags.flags) >>
848 	     PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
849 	    PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
850 		tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
851 	else
852 		tpa_info->vlan_tag = 0;
853 
854 	qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
855 
856 	/* This is needed in order to enable forwarding support */
857 	qede_set_gro_params(edev, tpa_info->skb, cqe);
858 
859 cons_buf: /* We still need to handle bd_len_list to consume buffers */
860 	if (likely(cqe->ext_bd_len_list[0]))
861 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
862 				   le16_to_cpu(cqe->ext_bd_len_list[0]));
863 
864 	if (unlikely(cqe->ext_bd_len_list[1])) {
865 		DP_ERR(edev,
866 		       "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
867 		tpa_info->state = QEDE_AGG_STATE_ERROR;
868 	}
869 }
870 
871 #ifdef CONFIG_INET
872 static void qede_gro_ip_csum(struct sk_buff *skb)
873 {
874 	const struct iphdr *iph = ip_hdr(skb);
875 	struct tcphdr *th;
876 
877 	skb_set_transport_header(skb, sizeof(struct iphdr));
878 	th = tcp_hdr(skb);
879 
880 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
881 				  iph->saddr, iph->daddr, 0);
882 
883 	tcp_gro_complete(skb);
884 }
885 
886 static void qede_gro_ipv6_csum(struct sk_buff *skb)
887 {
888 	struct ipv6hdr *iph = ipv6_hdr(skb);
889 	struct tcphdr *th;
890 
891 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
892 	th = tcp_hdr(skb);
893 
894 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
895 				  &iph->saddr, &iph->daddr, 0);
896 	tcp_gro_complete(skb);
897 }
898 #endif
899 
900 static void qede_gro_receive(struct qede_dev *edev,
901 			     struct qede_fastpath *fp,
902 			     struct sk_buff *skb,
903 			     u16 vlan_tag)
904 {
905 	/* FW can send a single MTU sized packet from gro flow
906 	 * due to aggregation timeout/last segment etc. which
907 	 * is not expected to be a gro packet. If a skb has zero
908 	 * frags then simply push it in the stack as non gso skb.
909 	 */
910 	if (unlikely(!skb->data_len)) {
911 		skb_shinfo(skb)->gso_type = 0;
912 		skb_shinfo(skb)->gso_size = 0;
913 		goto send_skb;
914 	}
915 
916 #ifdef CONFIG_INET
917 	if (skb_shinfo(skb)->gso_size) {
918 		skb_reset_network_header(skb);
919 
920 		switch (skb->protocol) {
921 		case htons(ETH_P_IP):
922 			qede_gro_ip_csum(skb);
923 			break;
924 		case htons(ETH_P_IPV6):
925 			qede_gro_ipv6_csum(skb);
926 			break;
927 		default:
928 			DP_ERR(edev,
929 			       "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
930 			       ntohs(skb->protocol));
931 		}
932 	}
933 #endif
934 
935 send_skb:
936 	skb_record_rx_queue(skb, fp->rxq->rxq_id);
937 	qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
938 }
939 
940 static inline void qede_tpa_cont(struct qede_dev *edev,
941 				 struct qede_rx_queue *rxq,
942 				 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
943 {
944 	int i;
945 
946 	for (i = 0; cqe->len_list[i]; i++)
947 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
948 				   le16_to_cpu(cqe->len_list[i]));
949 
950 	if (unlikely(i > 1))
951 		DP_ERR(edev,
952 		       "Strange - TPA cont with more than a single len_list entry\n");
953 }
954 
955 static int qede_tpa_end(struct qede_dev *edev,
956 			struct qede_fastpath *fp,
957 			struct eth_fast_path_rx_tpa_end_cqe *cqe)
958 {
959 	struct qede_rx_queue *rxq = fp->rxq;
960 	struct qede_agg_info *tpa_info;
961 	struct sk_buff *skb;
962 	int i;
963 
964 	tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
965 	skb = tpa_info->skb;
966 
967 	if (tpa_info->buffer.page_offset == PAGE_SIZE)
968 		dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
969 			       PAGE_SIZE, rxq->data_direction);
970 
971 	for (i = 0; cqe->len_list[i]; i++)
972 		qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
973 				   le16_to_cpu(cqe->len_list[i]));
974 	if (unlikely(i > 1))
975 		DP_ERR(edev,
976 		       "Strange - TPA emd with more than a single len_list entry\n");
977 
978 	if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
979 		goto err;
980 
981 	/* Sanity */
982 	if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
983 		DP_ERR(edev,
984 		       "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
985 		       cqe->num_of_bds, tpa_info->frag_id);
986 	if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
987 		DP_ERR(edev,
988 		       "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
989 		       le16_to_cpu(cqe->total_packet_len), skb->len);
990 
991 	/* Finalize the SKB */
992 	skb->protocol = eth_type_trans(skb, edev->ndev);
993 	skb->ip_summed = CHECKSUM_UNNECESSARY;
994 
995 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
996 	 * to skb_shinfo(skb)->gso_segs
997 	 */
998 	NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
999 
1000 	qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1001 
1002 	tpa_info->state = QEDE_AGG_STATE_NONE;
1003 
1004 	return 1;
1005 err:
1006 	tpa_info->state = QEDE_AGG_STATE_NONE;
1007 
1008 	if (tpa_info->tpa_start_fail) {
1009 		qede_reuse_page(rxq, &tpa_info->buffer);
1010 		tpa_info->tpa_start_fail = false;
1011 	}
1012 
1013 	dev_kfree_skb_any(tpa_info->skb);
1014 	tpa_info->skb = NULL;
1015 	return 0;
1016 }
1017 
1018 static u8 qede_check_notunn_csum(u16 flag)
1019 {
1020 	u16 csum_flag = 0;
1021 	u8 csum = 0;
1022 
1023 	if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1024 		    PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1025 		csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1026 			     PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1027 		csum = QEDE_CSUM_UNNECESSARY;
1028 	}
1029 
1030 	csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1031 		     PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1032 
1033 	if (csum_flag & flag)
1034 		return QEDE_CSUM_ERROR;
1035 
1036 	return csum;
1037 }
1038 
1039 static u8 qede_check_csum(u16 flag)
1040 {
1041 	if (!qede_tunn_exist(flag))
1042 		return qede_check_notunn_csum(flag);
1043 	else
1044 		return qede_check_tunn_csum(flag);
1045 }
1046 
1047 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1048 				      u16 flag)
1049 {
1050 	u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1051 
1052 	if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1053 			     ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1054 	    (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1055 		     PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1056 		return true;
1057 
1058 	return false;
1059 }
1060 
1061 /* Return true iff packet is to be passed to stack */
1062 static bool qede_rx_xdp(struct qede_dev *edev,
1063 			struct qede_fastpath *fp,
1064 			struct qede_rx_queue *rxq,
1065 			struct bpf_prog *prog,
1066 			struct sw_rx_data *bd,
1067 			struct eth_fast_path_rx_reg_cqe *cqe,
1068 			u16 *data_offset, u16 *len)
1069 {
1070 	struct xdp_buff xdp;
1071 	enum xdp_action act;
1072 
1073 	xdp.data_hard_start = page_address(bd->data);
1074 	xdp.data = xdp.data_hard_start + *data_offset;
1075 	xdp_set_data_meta_invalid(&xdp);
1076 	xdp.data_end = xdp.data + *len;
1077 	xdp.rxq = &rxq->xdp_rxq;
1078 
1079 	/* Queues always have a full reset currently, so for the time
1080 	 * being until there's atomic program replace just mark read
1081 	 * side for map helpers.
1082 	 */
1083 	rcu_read_lock();
1084 	act = bpf_prog_run_xdp(prog, &xdp);
1085 	rcu_read_unlock();
1086 
1087 	/* Recalculate, as XDP might have changed the headers */
1088 	*data_offset = xdp.data - xdp.data_hard_start;
1089 	*len = xdp.data_end - xdp.data;
1090 
1091 	if (act == XDP_PASS)
1092 		return true;
1093 
1094 	/* Count number of packets not to be passed to stack */
1095 	rxq->xdp_no_pass++;
1096 
1097 	switch (act) {
1098 	case XDP_TX:
1099 		/* We need the replacement buffer before transmit. */
1100 		if (qede_alloc_rx_buffer(rxq, true)) {
1101 			qede_recycle_rx_bd_ring(rxq, 1);
1102 			trace_xdp_exception(edev->ndev, prog, act);
1103 			return false;
1104 		}
1105 
1106 		/* Now if there's a transmission problem, we'd still have to
1107 		 * throw current buffer, as replacement was already allocated.
1108 		 */
1109 		if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
1110 			dma_unmap_page(rxq->dev, bd->mapping,
1111 				       PAGE_SIZE, DMA_BIDIRECTIONAL);
1112 			__free_page(bd->data);
1113 			trace_xdp_exception(edev->ndev, prog, act);
1114 		}
1115 
1116 		/* Regardless, we've consumed an Rx BD */
1117 		qede_rx_bd_ring_consume(rxq);
1118 		return false;
1119 
1120 	default:
1121 		bpf_warn_invalid_xdp_action(act);
1122 		/* Fall through */
1123 	case XDP_ABORTED:
1124 		trace_xdp_exception(edev->ndev, prog, act);
1125 		/* Fall through */
1126 	case XDP_DROP:
1127 		qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1128 	}
1129 
1130 	return false;
1131 }
1132 
1133 static int qede_rx_build_jumbo(struct qede_dev *edev,
1134 			       struct qede_rx_queue *rxq,
1135 			       struct sk_buff *skb,
1136 			       struct eth_fast_path_rx_reg_cqe *cqe,
1137 			       u16 first_bd_len)
1138 {
1139 	u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1140 	struct sw_rx_data *bd;
1141 	u16 bd_cons_idx;
1142 	u8 num_frags;
1143 
1144 	pkt_len -= first_bd_len;
1145 
1146 	/* We've already used one BD for the SKB. Now take care of the rest */
1147 	for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1148 		u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1149 		    pkt_len;
1150 
1151 		if (unlikely(!cur_size)) {
1152 			DP_ERR(edev,
1153 			       "Still got %d BDs for mapping jumbo, but length became 0\n",
1154 			       num_frags);
1155 			goto out;
1156 		}
1157 
1158 		/* We need a replacement buffer for each BD */
1159 		if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1160 			goto out;
1161 
1162 		/* Now that we've allocated the replacement buffer,
1163 		 * we can safely consume the next BD and map it to the SKB.
1164 		 */
1165 		bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1166 		bd = &rxq->sw_rx_ring[bd_cons_idx];
1167 		qede_rx_bd_ring_consume(rxq);
1168 
1169 		dma_unmap_page(rxq->dev, bd->mapping,
1170 			       PAGE_SIZE, DMA_FROM_DEVICE);
1171 
1172 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1173 				   bd->data, rxq->rx_headroom, cur_size);
1174 
1175 		skb->truesize += PAGE_SIZE;
1176 		skb->data_len += cur_size;
1177 		skb->len += cur_size;
1178 		pkt_len -= cur_size;
1179 	}
1180 
1181 	if (unlikely(pkt_len))
1182 		DP_ERR(edev,
1183 		       "Mapped all BDs of jumbo, but still have %d bytes\n",
1184 		       pkt_len);
1185 
1186 out:
1187 	return num_frags;
1188 }
1189 
1190 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1191 				   struct qede_fastpath *fp,
1192 				   struct qede_rx_queue *rxq,
1193 				   union eth_rx_cqe *cqe,
1194 				   enum eth_rx_cqe_type type)
1195 {
1196 	switch (type) {
1197 	case ETH_RX_CQE_TYPE_TPA_START:
1198 		qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1199 		return 0;
1200 	case ETH_RX_CQE_TYPE_TPA_CONT:
1201 		qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1202 		return 0;
1203 	case ETH_RX_CQE_TYPE_TPA_END:
1204 		return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1205 	default:
1206 		return 0;
1207 	}
1208 }
1209 
1210 static int qede_rx_process_cqe(struct qede_dev *edev,
1211 			       struct qede_fastpath *fp,
1212 			       struct qede_rx_queue *rxq)
1213 {
1214 	struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1215 	struct eth_fast_path_rx_reg_cqe *fp_cqe;
1216 	u16 len, pad, bd_cons_idx, parse_flag;
1217 	enum eth_rx_cqe_type cqe_type;
1218 	union eth_rx_cqe *cqe;
1219 	struct sw_rx_data *bd;
1220 	struct sk_buff *skb;
1221 	__le16 flags;
1222 	u8 csum_flag;
1223 
1224 	/* Get the CQE from the completion ring */
1225 	cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1226 	cqe_type = cqe->fast_path_regular.type;
1227 
1228 	/* Process an unlikely slowpath event */
1229 	if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1230 		struct eth_slow_path_rx_cqe *sp_cqe;
1231 
1232 		sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1233 		edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1234 		return 0;
1235 	}
1236 
1237 	/* Handle TPA cqes */
1238 	if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1239 		return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1240 
1241 	/* Get the data from the SW ring; Consume it only after it's evident
1242 	 * we wouldn't recycle it.
1243 	 */
1244 	bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1245 	bd = &rxq->sw_rx_ring[bd_cons_idx];
1246 
1247 	fp_cqe = &cqe->fast_path_regular;
1248 	len = le16_to_cpu(fp_cqe->len_on_first_bd);
1249 	pad = fp_cqe->placement_offset + rxq->rx_headroom;
1250 
1251 	/* Run eBPF program if one is attached */
1252 	if (xdp_prog)
1253 		if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1254 				 &pad, &len))
1255 			return 0;
1256 
1257 	/* If this is an error packet then drop it */
1258 	flags = cqe->fast_path_regular.pars_flags.flags;
1259 	parse_flag = le16_to_cpu(flags);
1260 
1261 	csum_flag = qede_check_csum(parse_flag);
1262 	if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1263 		if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1264 			rxq->rx_ip_frags++;
1265 		else
1266 			rxq->rx_hw_errors++;
1267 	}
1268 
1269 	/* Basic validation passed; Need to prepare an SKB. This would also
1270 	 * guarantee to finally consume the first BD upon success.
1271 	 */
1272 	skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1273 	if (!skb) {
1274 		rxq->rx_alloc_errors++;
1275 		qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1276 		return 0;
1277 	}
1278 
1279 	/* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1280 	 * by a single cqe.
1281 	 */
1282 	if (fp_cqe->bd_num > 1) {
1283 		u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1284 							 fp_cqe, len);
1285 
1286 		if (unlikely(unmapped_frags > 0)) {
1287 			qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1288 			dev_kfree_skb_any(skb);
1289 			return 0;
1290 		}
1291 	}
1292 
1293 	/* The SKB contains all the data. Now prepare meta-magic */
1294 	skb->protocol = eth_type_trans(skb, edev->ndev);
1295 	qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1296 	qede_set_skb_csum(skb, csum_flag);
1297 	skb_record_rx_queue(skb, rxq->rxq_id);
1298 	qede_ptp_record_rx_ts(edev, cqe, skb);
1299 
1300 	/* SKB is prepared - pass it to stack */
1301 	qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1302 
1303 	return 1;
1304 }
1305 
1306 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1307 {
1308 	struct qede_rx_queue *rxq = fp->rxq;
1309 	struct qede_dev *edev = fp->edev;
1310 	int work_done = 0, rcv_pkts = 0;
1311 	u16 hw_comp_cons, sw_comp_cons;
1312 
1313 	hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1314 	sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1315 
1316 	/* Memory barrier to prevent the CPU from doing speculative reads of CQE
1317 	 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1318 	 * read before it is written by FW, then FW writes CQE and SB, and then
1319 	 * the CPU reads the hw_comp_cons, it will use an old CQE.
1320 	 */
1321 	rmb();
1322 
1323 	/* Loop to complete all indicated BDs */
1324 	while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1325 		rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1326 		qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1327 		sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1328 		work_done++;
1329 	}
1330 
1331 	rxq->rcv_pkts += rcv_pkts;
1332 
1333 	/* Allocate replacement buffers */
1334 	while (rxq->num_rx_buffers - rxq->filled_buffers)
1335 		if (qede_alloc_rx_buffer(rxq, false))
1336 			break;
1337 
1338 	/* Update producers */
1339 	qede_update_rx_prod(edev, rxq);
1340 
1341 	return work_done;
1342 }
1343 
1344 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1345 {
1346 	qed_sb_update_sb_idx(fp->sb_info);
1347 
1348 	/* *_has_*_work() reads the status block, thus we need to ensure that
1349 	 * status block indices have been actually read (qed_sb_update_sb_idx)
1350 	 * prior to this check (*_has_*_work) so that we won't write the
1351 	 * "newer" value of the status block to HW (if there was a DMA right
1352 	 * after qede_has_rx_work and if there is no rmb, the memory reading
1353 	 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1354 	 * In this case there will never be another interrupt until there is
1355 	 * another update of the status block, while there is still unhandled
1356 	 * work.
1357 	 */
1358 	rmb();
1359 
1360 	if (likely(fp->type & QEDE_FASTPATH_RX))
1361 		if (qede_has_rx_work(fp->rxq))
1362 			return true;
1363 
1364 	if (fp->type & QEDE_FASTPATH_XDP)
1365 		if (qede_txq_has_work(fp->xdp_tx))
1366 			return true;
1367 
1368 	if (likely(fp->type & QEDE_FASTPATH_TX)) {
1369 		int cos;
1370 
1371 		for_each_cos_in_txq(fp->edev, cos) {
1372 			if (qede_txq_has_work(&fp->txq[cos]))
1373 				return true;
1374 		}
1375 	}
1376 
1377 	return false;
1378 }
1379 
1380 /*********************
1381  * NDO & API related *
1382  *********************/
1383 int qede_poll(struct napi_struct *napi, int budget)
1384 {
1385 	struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1386 						napi);
1387 	struct qede_dev *edev = fp->edev;
1388 	int rx_work_done = 0;
1389 
1390 	if (likely(fp->type & QEDE_FASTPATH_TX)) {
1391 		int cos;
1392 
1393 		for_each_cos_in_txq(fp->edev, cos) {
1394 			if (qede_txq_has_work(&fp->txq[cos]))
1395 				qede_tx_int(edev, &fp->txq[cos]);
1396 		}
1397 	}
1398 
1399 	if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1400 		qede_xdp_tx_int(edev, fp->xdp_tx);
1401 
1402 	rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1403 			qede_has_rx_work(fp->rxq)) ?
1404 			qede_rx_int(fp, budget) : 0;
1405 	if (rx_work_done < budget) {
1406 		if (!qede_poll_is_more_work(fp)) {
1407 			napi_complete_done(napi, rx_work_done);
1408 
1409 			/* Update and reenable interrupts */
1410 			qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1411 		} else {
1412 			rx_work_done = budget;
1413 		}
1414 	}
1415 
1416 	if (fp->xdp_xmit) {
1417 		u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1418 
1419 		fp->xdp_xmit = 0;
1420 		fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1421 		qede_update_tx_producer(fp->xdp_tx);
1422 	}
1423 
1424 	return rx_work_done;
1425 }
1426 
1427 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1428 {
1429 	struct qede_fastpath *fp = fp_cookie;
1430 
1431 	qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1432 
1433 	napi_schedule_irqoff(&fp->napi);
1434 	return IRQ_HANDLED;
1435 }
1436 
1437 /* Main transmit function */
1438 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1439 {
1440 	struct qede_dev *edev = netdev_priv(ndev);
1441 	struct netdev_queue *netdev_txq;
1442 	struct qede_tx_queue *txq;
1443 	struct eth_tx_1st_bd *first_bd;
1444 	struct eth_tx_2nd_bd *second_bd = NULL;
1445 	struct eth_tx_3rd_bd *third_bd = NULL;
1446 	struct eth_tx_bd *tx_data_bd = NULL;
1447 	u16 txq_index, val = 0;
1448 	u8 nbd = 0;
1449 	dma_addr_t mapping;
1450 	int rc, frag_idx = 0, ipv6_ext = 0;
1451 	u8 xmit_type;
1452 	u16 idx;
1453 	u16 hlen;
1454 	bool data_split = false;
1455 
1456 	/* Get tx-queue context and netdev index */
1457 	txq_index = skb_get_queue_mapping(skb);
1458 	WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1459 	txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1460 	netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1461 
1462 	WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1463 
1464 	xmit_type = qede_xmit_type(skb, &ipv6_ext);
1465 
1466 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1467 	if (qede_pkt_req_lin(skb, xmit_type)) {
1468 		if (skb_linearize(skb)) {
1469 			txq->tx_mem_alloc_err++;
1470 
1471 			dev_kfree_skb_any(skb);
1472 			return NETDEV_TX_OK;
1473 		}
1474 	}
1475 #endif
1476 
1477 	/* Fill the entry in the SW ring and the BDs in the FW ring */
1478 	idx = txq->sw_tx_prod;
1479 	txq->sw_tx_ring.skbs[idx].skb = skb;
1480 	first_bd = (struct eth_tx_1st_bd *)
1481 		   qed_chain_produce(&txq->tx_pbl);
1482 	memset(first_bd, 0, sizeof(*first_bd));
1483 	first_bd->data.bd_flags.bitfields =
1484 		1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1485 
1486 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1487 		qede_ptp_tx_ts(edev, skb);
1488 
1489 	/* Map skb linear data for DMA and set in the first BD */
1490 	mapping = dma_map_single(txq->dev, skb->data,
1491 				 skb_headlen(skb), DMA_TO_DEVICE);
1492 	if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1493 		DP_NOTICE(edev, "SKB mapping failed\n");
1494 		qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1495 		qede_update_tx_producer(txq);
1496 		return NETDEV_TX_OK;
1497 	}
1498 	nbd++;
1499 	BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1500 
1501 	/* In case there is IPv6 with extension headers or LSO we need 2nd and
1502 	 * 3rd BDs.
1503 	 */
1504 	if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1505 		second_bd = (struct eth_tx_2nd_bd *)
1506 			qed_chain_produce(&txq->tx_pbl);
1507 		memset(second_bd, 0, sizeof(*second_bd));
1508 
1509 		nbd++;
1510 		third_bd = (struct eth_tx_3rd_bd *)
1511 			qed_chain_produce(&txq->tx_pbl);
1512 		memset(third_bd, 0, sizeof(*third_bd));
1513 
1514 		nbd++;
1515 		/* We need to fill in additional data in second_bd... */
1516 		tx_data_bd = (struct eth_tx_bd *)second_bd;
1517 	}
1518 
1519 	if (skb_vlan_tag_present(skb)) {
1520 		first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1521 		first_bd->data.bd_flags.bitfields |=
1522 			1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1523 	}
1524 
1525 	/* Fill the parsing flags & params according to the requested offload */
1526 	if (xmit_type & XMIT_L4_CSUM) {
1527 		/* We don't re-calculate IP checksum as it is already done by
1528 		 * the upper stack
1529 		 */
1530 		first_bd->data.bd_flags.bitfields |=
1531 			1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1532 
1533 		if (xmit_type & XMIT_ENC) {
1534 			first_bd->data.bd_flags.bitfields |=
1535 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1536 
1537 			val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1538 		}
1539 
1540 		/* Legacy FW had flipped behavior in regard to this bit -
1541 		 * I.e., needed to set to prevent FW from touching encapsulated
1542 		 * packets when it didn't need to.
1543 		 */
1544 		if (unlikely(txq->is_legacy))
1545 			val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1546 
1547 		/* If the packet is IPv6 with extension header, indicate that
1548 		 * to FW and pass few params, since the device cracker doesn't
1549 		 * support parsing IPv6 with extension header/s.
1550 		 */
1551 		if (unlikely(ipv6_ext))
1552 			qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1553 	}
1554 
1555 	if (xmit_type & XMIT_LSO) {
1556 		first_bd->data.bd_flags.bitfields |=
1557 			(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1558 		third_bd->data.lso_mss =
1559 			cpu_to_le16(skb_shinfo(skb)->gso_size);
1560 
1561 		if (unlikely(xmit_type & XMIT_ENC)) {
1562 			first_bd->data.bd_flags.bitfields |=
1563 				1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1564 
1565 			if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1566 				u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1567 
1568 				first_bd->data.bd_flags.bitfields |= 1 << tmp;
1569 			}
1570 			hlen = qede_get_skb_hlen(skb, true);
1571 		} else {
1572 			first_bd->data.bd_flags.bitfields |=
1573 				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1574 			hlen = qede_get_skb_hlen(skb, false);
1575 		}
1576 
1577 		/* @@@TBD - if will not be removed need to check */
1578 		third_bd->data.bitfields |=
1579 			cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1580 
1581 		/* Make life easier for FW guys who can't deal with header and
1582 		 * data on same BD. If we need to split, use the second bd...
1583 		 */
1584 		if (unlikely(skb_headlen(skb) > hlen)) {
1585 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1586 				   "TSO split header size is %d (%x:%x)\n",
1587 				   first_bd->nbytes, first_bd->addr.hi,
1588 				   first_bd->addr.lo);
1589 
1590 			mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1591 					   le32_to_cpu(first_bd->addr.lo)) +
1592 					   hlen;
1593 
1594 			BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1595 					      le16_to_cpu(first_bd->nbytes) -
1596 					      hlen);
1597 
1598 			/* this marks the BD as one that has no
1599 			 * individual mapping
1600 			 */
1601 			txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1602 
1603 			first_bd->nbytes = cpu_to_le16(hlen);
1604 
1605 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1606 			data_split = true;
1607 		}
1608 	} else {
1609 		val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1610 			 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1611 	}
1612 
1613 	first_bd->data.bitfields = cpu_to_le16(val);
1614 
1615 	/* Handle fragmented skb */
1616 	/* special handle for frags inside 2nd and 3rd bds.. */
1617 	while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1618 		rc = map_frag_to_bd(txq,
1619 				    &skb_shinfo(skb)->frags[frag_idx],
1620 				    tx_data_bd);
1621 		if (rc) {
1622 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1623 			qede_update_tx_producer(txq);
1624 			return NETDEV_TX_OK;
1625 		}
1626 
1627 		if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1628 			tx_data_bd = (struct eth_tx_bd *)third_bd;
1629 		else
1630 			tx_data_bd = NULL;
1631 
1632 		frag_idx++;
1633 	}
1634 
1635 	/* map last frags into 4th, 5th .... */
1636 	for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1637 		tx_data_bd = (struct eth_tx_bd *)
1638 			     qed_chain_produce(&txq->tx_pbl);
1639 
1640 		memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1641 
1642 		rc = map_frag_to_bd(txq,
1643 				    &skb_shinfo(skb)->frags[frag_idx],
1644 				    tx_data_bd);
1645 		if (rc) {
1646 			qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1647 			qede_update_tx_producer(txq);
1648 			return NETDEV_TX_OK;
1649 		}
1650 	}
1651 
1652 	/* update the first BD with the actual num BDs */
1653 	first_bd->data.nbds = nbd;
1654 
1655 	netdev_tx_sent_queue(netdev_txq, skb->len);
1656 
1657 	skb_tx_timestamp(skb);
1658 
1659 	/* Advance packet producer only before sending the packet since mapping
1660 	 * of pages may fail.
1661 	 */
1662 	txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1663 
1664 	/* 'next page' entries are counted in the producer value */
1665 	txq->tx_db.data.bd_prod =
1666 		cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1667 
1668 	if (!skb->xmit_more || netif_xmit_stopped(netdev_txq))
1669 		qede_update_tx_producer(txq);
1670 
1671 	if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1672 		      < (MAX_SKB_FRAGS + 1))) {
1673 		if (skb->xmit_more)
1674 			qede_update_tx_producer(txq);
1675 
1676 		netif_tx_stop_queue(netdev_txq);
1677 		txq->stopped_cnt++;
1678 		DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1679 			   "Stop queue was called\n");
1680 		/* paired memory barrier is in qede_tx_int(), we have to keep
1681 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
1682 		 * fp->bd_tx_cons
1683 		 */
1684 		smp_mb();
1685 
1686 		if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1687 		     (MAX_SKB_FRAGS + 1)) &&
1688 		    (edev->state == QEDE_STATE_OPEN)) {
1689 			netif_tx_wake_queue(netdev_txq);
1690 			DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1691 				   "Wake queue was called\n");
1692 		}
1693 	}
1694 
1695 	return NETDEV_TX_OK;
1696 }
1697 
1698 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1699 		      struct net_device *sb_dev,
1700 		      select_queue_fallback_t fallback)
1701 {
1702 	struct qede_dev *edev = netdev_priv(dev);
1703 	int total_txq;
1704 
1705 	total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1706 
1707 	return QEDE_TSS_COUNT(edev) ?
1708 		fallback(dev, skb, NULL) % total_txq :  0;
1709 }
1710 
1711 /* 8B udp header + 8B base tunnel header + 32B option length */
1712 #define QEDE_MAX_TUN_HDR_LEN 48
1713 
1714 netdev_features_t qede_features_check(struct sk_buff *skb,
1715 				      struct net_device *dev,
1716 				      netdev_features_t features)
1717 {
1718 	if (skb->encapsulation) {
1719 		u8 l4_proto = 0;
1720 
1721 		switch (vlan_get_protocol(skb)) {
1722 		case htons(ETH_P_IP):
1723 			l4_proto = ip_hdr(skb)->protocol;
1724 			break;
1725 		case htons(ETH_P_IPV6):
1726 			l4_proto = ipv6_hdr(skb)->nexthdr;
1727 			break;
1728 		default:
1729 			return features;
1730 		}
1731 
1732 		/* Disable offloads for geneve tunnels, as HW can't parse
1733 		 * the geneve header which has option length greater than 32b
1734 		 * and disable offloads for the ports which are not offloaded.
1735 		 */
1736 		if (l4_proto == IPPROTO_UDP) {
1737 			struct qede_dev *edev = netdev_priv(dev);
1738 			u16 hdrlen, vxln_port, gnv_port;
1739 
1740 			hdrlen = QEDE_MAX_TUN_HDR_LEN;
1741 			vxln_port = edev->vxlan_dst_port;
1742 			gnv_port = edev->geneve_dst_port;
1743 
1744 			if ((skb_inner_mac_header(skb) -
1745 			     skb_transport_header(skb)) > hdrlen ||
1746 			     (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1747 			      ntohs(udp_hdr(skb)->dest) != gnv_port))
1748 				return features & ~(NETIF_F_CSUM_MASK |
1749 						    NETIF_F_GSO_MASK);
1750 		}
1751 	}
1752 
1753 	return features;
1754 }
1755