1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/etherdevice.h> 8 #include <linux/crc32.h> 9 #include <linux/vmalloc.h> 10 #include <linux/crash_dump.h> 11 #include <linux/qed/qed_iov_if.h> 12 #include "qed_cxt.h" 13 #include "qed_hsi.h" 14 #include "qed_iro_hsi.h" 15 #include "qed_hw.h" 16 #include "qed_init_ops.h" 17 #include "qed_int.h" 18 #include "qed_mcp.h" 19 #include "qed_reg_addr.h" 20 #include "qed_sp.h" 21 #include "qed_sriov.h" 22 #include "qed_vf.h" 23 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid); 24 25 static u16 qed_vf_from_entity_id(__le16 entity_id) 26 { 27 return le16_to_cpu(entity_id) - MAX_NUM_PFS; 28 } 29 30 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) 31 { 32 u8 legacy = 0; 33 34 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 35 ETH_HSI_VER_NO_PKT_LEN_TUNN) 36 legacy |= QED_QCID_LEGACY_VF_RX_PROD; 37 38 if (!(p_vf->acquire.vfdev_info.capabilities & 39 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 40 legacy |= QED_QCID_LEGACY_VF_CID; 41 42 return legacy; 43 } 44 45 /* IOV ramrods */ 46 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 47 { 48 struct vf_start_ramrod_data *p_ramrod = NULL; 49 struct qed_spq_entry *p_ent = NULL; 50 struct qed_sp_init_data init_data; 51 int rc = -EINVAL; 52 u8 fp_minor; 53 54 /* Get SPQ entry */ 55 memset(&init_data, 0, sizeof(init_data)); 56 init_data.cid = qed_spq_get_cid(p_hwfn); 57 init_data.opaque_fid = p_vf->opaque_fid; 58 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 59 60 rc = qed_sp_init_request(p_hwfn, &p_ent, 61 COMMON_RAMROD_VF_START, 62 PROTOCOLID_COMMON, &init_data); 63 if (rc) 64 return rc; 65 66 p_ramrod = &p_ent->ramrod.vf_start; 67 68 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 69 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 70 71 switch (p_hwfn->hw_info.personality) { 72 case QED_PCI_ETH: 73 p_ramrod->personality = PERSONALITY_ETH; 74 break; 75 case QED_PCI_ETH_ROCE: 76 case QED_PCI_ETH_IWARP: 77 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 78 break; 79 default: 80 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 81 p_hwfn->hw_info.personality); 82 qed_sp_destroy_request(p_hwfn, p_ent); 83 return -EINVAL; 84 } 85 86 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 87 if (fp_minor > ETH_HSI_VER_MINOR && 88 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 89 DP_VERBOSE(p_hwfn, 90 QED_MSG_IOV, 91 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 92 p_vf->abs_vf_id, 93 ETH_HSI_VER_MAJOR, 94 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 95 fp_minor = ETH_HSI_VER_MINOR; 96 } 97 98 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 99 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 100 101 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 102 "VF[%d] - Starting using HSI %02x.%02x\n", 103 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 104 105 return qed_spq_post(p_hwfn, p_ent, NULL); 106 } 107 108 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 109 u32 concrete_vfid, u16 opaque_vfid) 110 { 111 struct vf_stop_ramrod_data *p_ramrod = NULL; 112 struct qed_spq_entry *p_ent = NULL; 113 struct qed_sp_init_data init_data; 114 int rc = -EINVAL; 115 116 /* Get SPQ entry */ 117 memset(&init_data, 0, sizeof(init_data)); 118 init_data.cid = qed_spq_get_cid(p_hwfn); 119 init_data.opaque_fid = opaque_vfid; 120 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 121 122 rc = qed_sp_init_request(p_hwfn, &p_ent, 123 COMMON_RAMROD_VF_STOP, 124 PROTOCOLID_COMMON, &init_data); 125 if (rc) 126 return rc; 127 128 p_ramrod = &p_ent->ramrod.vf_stop; 129 130 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 131 132 return qed_spq_post(p_hwfn, p_ent, NULL); 133 } 134 135 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 136 int rel_vf_id, 137 bool b_enabled_only, bool b_non_malicious) 138 { 139 if (!p_hwfn->pf_iov_info) { 140 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 141 return false; 142 } 143 144 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 145 (rel_vf_id < 0)) 146 return false; 147 148 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 149 b_enabled_only) 150 return false; 151 152 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 153 b_non_malicious) 154 return false; 155 156 return true; 157 } 158 159 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 160 u16 relative_vf_id, 161 bool b_enabled_only) 162 { 163 struct qed_vf_info *vf = NULL; 164 165 if (!p_hwfn->pf_iov_info) { 166 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 167 return NULL; 168 } 169 170 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 171 b_enabled_only, false)) 172 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 173 else 174 DP_ERR(p_hwfn, "%s: VF[%d] is not enabled\n", 175 __func__, relative_vf_id); 176 177 return vf; 178 } 179 180 static struct qed_queue_cid * 181 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) 182 { 183 int i; 184 185 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 186 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) 187 return p_queue->cids[i].p_cid; 188 } 189 190 return NULL; 191 } 192 193 enum qed_iov_validate_q_mode { 194 QED_IOV_VALIDATE_Q_NA, 195 QED_IOV_VALIDATE_Q_ENABLE, 196 QED_IOV_VALIDATE_Q_DISABLE, 197 }; 198 199 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 200 struct qed_vf_info *p_vf, 201 u16 qid, 202 enum qed_iov_validate_q_mode mode, 203 bool b_is_tx) 204 { 205 int i; 206 207 if (mode == QED_IOV_VALIDATE_Q_NA) 208 return true; 209 210 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 211 struct qed_vf_queue_cid *p_qcid; 212 213 p_qcid = &p_vf->vf_queues[qid].cids[i]; 214 215 if (!p_qcid->p_cid) 216 continue; 217 218 if (p_qcid->b_is_tx != b_is_tx) 219 continue; 220 221 return mode == QED_IOV_VALIDATE_Q_ENABLE; 222 } 223 224 /* In case we haven't found any valid cid, then its disabled */ 225 return mode == QED_IOV_VALIDATE_Q_DISABLE; 226 } 227 228 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 229 struct qed_vf_info *p_vf, 230 u16 rx_qid, 231 enum qed_iov_validate_q_mode mode) 232 { 233 if (rx_qid >= p_vf->num_rxqs) { 234 DP_VERBOSE(p_hwfn, 235 QED_MSG_IOV, 236 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 237 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 238 return false; 239 } 240 241 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 242 } 243 244 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 245 struct qed_vf_info *p_vf, 246 u16 tx_qid, 247 enum qed_iov_validate_q_mode mode) 248 { 249 if (tx_qid >= p_vf->num_txqs) { 250 DP_VERBOSE(p_hwfn, 251 QED_MSG_IOV, 252 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 253 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 254 return false; 255 } 256 257 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 258 } 259 260 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 261 struct qed_vf_info *p_vf, u16 sb_idx) 262 { 263 int i; 264 265 for (i = 0; i < p_vf->num_sbs; i++) 266 if (p_vf->igu_sbs[i] == sb_idx) 267 return true; 268 269 DP_VERBOSE(p_hwfn, 270 QED_MSG_IOV, 271 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 272 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 273 274 return false; 275 } 276 277 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 278 struct qed_vf_info *p_vf) 279 { 280 u8 i; 281 282 for (i = 0; i < p_vf->num_rxqs; i++) 283 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 284 QED_IOV_VALIDATE_Q_ENABLE, 285 false)) 286 return true; 287 288 return false; 289 } 290 291 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 292 struct qed_vf_info *p_vf) 293 { 294 u8 i; 295 296 for (i = 0; i < p_vf->num_txqs; i++) 297 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 298 QED_IOV_VALIDATE_Q_ENABLE, 299 true)) 300 return true; 301 302 return false; 303 } 304 305 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 306 int vfid, struct qed_ptt *p_ptt) 307 { 308 struct qed_bulletin_content *p_bulletin; 309 int crc_size = sizeof(p_bulletin->crc); 310 struct qed_dmae_params params; 311 struct qed_vf_info *p_vf; 312 313 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 314 if (!p_vf) 315 return -EINVAL; 316 317 if (!p_vf->vf_bulletin) 318 return -EINVAL; 319 320 p_bulletin = p_vf->bulletin.p_virt; 321 322 /* Increment bulletin board version and compute crc */ 323 p_bulletin->version++; 324 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 325 p_vf->bulletin.size - crc_size); 326 327 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 328 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 329 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 330 331 /* propagate bulletin board via dmae to vm memory */ 332 memset(¶ms, 0, sizeof(params)); 333 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); 334 params.dst_vfid = p_vf->abs_vf_id; 335 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 336 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 337 ¶ms); 338 } 339 340 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 341 { 342 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 343 int pos = iov->pos; 344 345 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 346 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 347 348 pci_read_config_word(cdev->pdev, 349 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 350 pci_read_config_word(cdev->pdev, 351 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 352 353 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 354 if (iov->num_vfs) { 355 DP_VERBOSE(cdev, 356 QED_MSG_IOV, 357 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 358 iov->num_vfs = 0; 359 } 360 361 pci_read_config_word(cdev->pdev, 362 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 363 364 pci_read_config_word(cdev->pdev, 365 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 366 367 pci_read_config_word(cdev->pdev, 368 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 369 370 pci_read_config_dword(cdev->pdev, 371 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 372 373 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 374 375 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 376 377 DP_VERBOSE(cdev, 378 QED_MSG_IOV, 379 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 380 iov->nres, 381 iov->cap, 382 iov->ctrl, 383 iov->total_vfs, 384 iov->initial_vfs, 385 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 386 387 /* Some sanity checks */ 388 if (iov->num_vfs > NUM_OF_VFS(cdev) || 389 iov->total_vfs > NUM_OF_VFS(cdev)) { 390 /* This can happen only due to a bug. In this case we set 391 * num_vfs to zero to avoid memory corruption in the code that 392 * assumes max number of vfs 393 */ 394 DP_NOTICE(cdev, 395 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 396 iov->num_vfs); 397 398 iov->num_vfs = 0; 399 iov->total_vfs = 0; 400 } 401 402 return 0; 403 } 404 405 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 406 { 407 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 408 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 409 struct qed_bulletin_content *p_bulletin_virt; 410 dma_addr_t req_p, rply_p, bulletin_p; 411 union pfvf_tlvs *p_reply_virt_addr; 412 union vfpf_tlvs *p_req_virt_addr; 413 u8 idx = 0; 414 415 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 416 417 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 418 req_p = p_iov_info->mbx_msg_phys_addr; 419 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 420 rply_p = p_iov_info->mbx_reply_phys_addr; 421 p_bulletin_virt = p_iov_info->p_bulletins; 422 bulletin_p = p_iov_info->bulletins_phys; 423 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 424 DP_ERR(p_hwfn, 425 "%s called without allocating mem first\n", __func__); 426 return; 427 } 428 429 for (idx = 0; idx < p_iov->total_vfs; idx++) { 430 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 431 u32 concrete; 432 433 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 434 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 435 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 436 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 437 438 vf->state = VF_STOPPED; 439 vf->b_init = false; 440 441 vf->bulletin.phys = idx * 442 sizeof(struct qed_bulletin_content) + 443 bulletin_p; 444 vf->bulletin.p_virt = p_bulletin_virt + idx; 445 vf->bulletin.size = sizeof(struct qed_bulletin_content); 446 447 vf->relative_vf_id = idx; 448 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 449 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 450 vf->concrete_fid = concrete; 451 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 452 (vf->abs_vf_id << 8); 453 vf->vport_id = idx + 1; 454 455 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 456 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 457 } 458 } 459 460 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 461 { 462 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 463 void **p_v_addr; 464 u16 num_vfs = 0; 465 466 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 467 468 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 469 "%s for %d VFs\n", __func__, num_vfs); 470 471 /* Allocate PF Mailbox buffer (per-VF) */ 472 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 473 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 474 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 475 p_iov_info->mbx_msg_size, 476 &p_iov_info->mbx_msg_phys_addr, 477 GFP_KERNEL); 478 if (!*p_v_addr) 479 return -ENOMEM; 480 481 /* Allocate PF Mailbox Reply buffer (per-VF) */ 482 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 483 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 484 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 485 p_iov_info->mbx_reply_size, 486 &p_iov_info->mbx_reply_phys_addr, 487 GFP_KERNEL); 488 if (!*p_v_addr) 489 return -ENOMEM; 490 491 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 492 num_vfs; 493 p_v_addr = &p_iov_info->p_bulletins; 494 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 495 p_iov_info->bulletins_size, 496 &p_iov_info->bulletins_phys, 497 GFP_KERNEL); 498 if (!*p_v_addr) 499 return -ENOMEM; 500 501 DP_VERBOSE(p_hwfn, 502 QED_MSG_IOV, 503 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 504 p_iov_info->mbx_msg_virt_addr, 505 (u64)p_iov_info->mbx_msg_phys_addr, 506 p_iov_info->mbx_reply_virt_addr, 507 (u64)p_iov_info->mbx_reply_phys_addr, 508 p_iov_info->p_bulletins, (u64)p_iov_info->bulletins_phys); 509 510 return 0; 511 } 512 513 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 514 { 515 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 516 517 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 518 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 519 p_iov_info->mbx_msg_size, 520 p_iov_info->mbx_msg_virt_addr, 521 p_iov_info->mbx_msg_phys_addr); 522 523 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 524 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 525 p_iov_info->mbx_reply_size, 526 p_iov_info->mbx_reply_virt_addr, 527 p_iov_info->mbx_reply_phys_addr); 528 529 if (p_iov_info->p_bulletins) 530 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 531 p_iov_info->bulletins_size, 532 p_iov_info->p_bulletins, 533 p_iov_info->bulletins_phys); 534 } 535 536 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 537 { 538 struct qed_pf_iov *p_sriov; 539 540 if (!IS_PF_SRIOV(p_hwfn)) { 541 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 542 "No SR-IOV - no need for IOV db\n"); 543 return 0; 544 } 545 546 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 547 if (!p_sriov) 548 return -ENOMEM; 549 550 p_hwfn->pf_iov_info = p_sriov; 551 552 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 553 qed_sriov_eqe_event); 554 555 return qed_iov_allocate_vfdb(p_hwfn); 556 } 557 558 void qed_iov_setup(struct qed_hwfn *p_hwfn) 559 { 560 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 561 return; 562 563 qed_iov_setup_vfdb(p_hwfn); 564 } 565 566 void qed_iov_free(struct qed_hwfn *p_hwfn) 567 { 568 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 569 570 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 571 qed_iov_free_vfdb(p_hwfn); 572 kfree(p_hwfn->pf_iov_info); 573 } 574 } 575 576 void qed_iov_free_hw_info(struct qed_dev *cdev) 577 { 578 kfree(cdev->p_iov_info); 579 cdev->p_iov_info = NULL; 580 } 581 582 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 583 { 584 struct qed_dev *cdev = p_hwfn->cdev; 585 int pos; 586 int rc; 587 588 if (is_kdump_kernel()) 589 return 0; 590 591 if (IS_VF(p_hwfn->cdev)) 592 return 0; 593 594 /* Learn the PCI configuration */ 595 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 596 PCI_EXT_CAP_ID_SRIOV); 597 if (!pos) { 598 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 599 return 0; 600 } 601 602 /* Allocate a new struct for IOV information */ 603 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 604 if (!cdev->p_iov_info) 605 return -ENOMEM; 606 607 cdev->p_iov_info->pos = pos; 608 609 rc = qed_iov_pci_cfg_info(cdev); 610 if (rc) 611 return rc; 612 613 /* We want PF IOV to be synonemous with the existence of p_iov_info; 614 * In case the capability is published but there are no VFs, simply 615 * de-allocate the struct. 616 */ 617 if (!cdev->p_iov_info->total_vfs) { 618 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 619 "IOV capabilities, but no VFs are published\n"); 620 kfree(cdev->p_iov_info); 621 cdev->p_iov_info = NULL; 622 return 0; 623 } 624 625 /* First VF index based on offset is tricky: 626 * - If ARI is supported [likely], offset - (16 - pf_id) would 627 * provide the number for eng0. 2nd engine Vfs would begin 628 * after the first engine's VFs. 629 * - If !ARI, VFs would start on next device. 630 * so offset - (256 - pf_id) would provide the number. 631 * Utilize the fact that (256 - pf_id) is achieved only by later 632 * to differentiate between the two. 633 */ 634 635 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 636 u32 first = p_hwfn->cdev->p_iov_info->offset + 637 p_hwfn->abs_pf_id - 16; 638 639 cdev->p_iov_info->first_vf_in_pf = first; 640 641 if (QED_PATH_ID(p_hwfn)) 642 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 643 } else { 644 u32 first = p_hwfn->cdev->p_iov_info->offset + 645 p_hwfn->abs_pf_id - 256; 646 647 cdev->p_iov_info->first_vf_in_pf = first; 648 } 649 650 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 651 "First VF in hwfn 0x%08x\n", 652 cdev->p_iov_info->first_vf_in_pf); 653 654 return 0; 655 } 656 657 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 658 int vfid, bool b_fail_malicious) 659 { 660 /* Check PF supports sriov */ 661 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 662 !IS_PF_SRIOV_ALLOC(p_hwfn)) 663 return false; 664 665 /* Check VF validity */ 666 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 667 return false; 668 669 return true; 670 } 671 672 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 673 { 674 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 675 } 676 677 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 678 u16 rel_vf_id, u8 to_disable) 679 { 680 struct qed_vf_info *vf; 681 int i; 682 683 for_each_hwfn(cdev, i) { 684 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 685 686 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 687 if (!vf) 688 continue; 689 690 vf->to_disable = to_disable; 691 } 692 } 693 694 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 695 { 696 u16 i; 697 698 if (!IS_QED_SRIOV(cdev)) 699 return; 700 701 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 702 qed_iov_set_vf_to_disable(cdev, i, to_disable); 703 } 704 705 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 706 struct qed_ptt *p_ptt, u8 abs_vfid) 707 { 708 qed_wr(p_hwfn, p_ptt, 709 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 710 1 << (abs_vfid & 0x1f)); 711 } 712 713 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 714 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 715 { 716 int i; 717 718 /* Set VF masks and configuration - pretend */ 719 qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); 720 721 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 722 723 /* unpretend */ 724 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 725 726 /* iterate over all queues, clear sb consumer */ 727 for (i = 0; i < vf->num_sbs; i++) 728 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 729 vf->igu_sbs[i], 730 vf->opaque_fid, true); 731 } 732 733 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 734 struct qed_ptt *p_ptt, 735 struct qed_vf_info *vf, bool enable) 736 { 737 u32 igu_vf_conf; 738 739 qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); 740 741 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 742 743 if (enable) 744 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 745 else 746 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 747 748 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 749 750 /* unpretend */ 751 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 752 } 753 754 static int 755 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, 756 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) 757 { 758 u8 current_max = 0; 759 int i; 760 761 /* For AH onward, configuration is per-PF. Find maximum of all 762 * the currently enabled child VFs, and set the number to be that. 763 */ 764 if (!QED_IS_BB(p_hwfn->cdev)) { 765 qed_for_each_vf(p_hwfn, i) { 766 struct qed_vf_info *p_vf; 767 768 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); 769 if (!p_vf) 770 continue; 771 772 current_max = max_t(u8, current_max, p_vf->num_sbs); 773 } 774 } 775 776 if (num_sbs > current_max) 777 return qed_mcp_config_vf_msix(p_hwfn, p_ptt, 778 abs_vf_id, num_sbs); 779 780 return 0; 781 } 782 783 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 784 struct qed_ptt *p_ptt, 785 struct qed_vf_info *vf) 786 { 787 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 788 int rc; 789 790 /* It's possible VF was previously considered malicious - 791 * clear the indication even if we're only going to disable VF. 792 */ 793 vf->b_malicious = false; 794 795 if (vf->to_disable) 796 return 0; 797 798 DP_VERBOSE(p_hwfn, 799 QED_MSG_IOV, 800 "Enable internal access for vf %x [abs %x]\n", 801 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 802 803 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 804 805 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 806 807 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, 808 vf->abs_vf_id, vf->num_sbs); 809 if (rc) 810 return rc; 811 812 qed_fid_pretend(p_hwfn, p_ptt, (u16)vf->concrete_fid); 813 814 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 815 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 816 817 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 818 p_hwfn->hw_info.hw_mode); 819 820 /* unpretend */ 821 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 822 823 vf->state = VF_FREE; 824 825 return rc; 826 } 827 828 /** 829 * qed_iov_config_perm_table() - Configure the permission zone table. 830 * 831 * @p_hwfn: HW device data. 832 * @p_ptt: PTT window for writing the registers. 833 * @vf: VF info data. 834 * @enable: The actual permision for this VF. 835 * 836 * In E4, queue zone permission table size is 320x9. There 837 * are 320 VF queues for single engine device (256 for dual 838 * engine device), and each entry has the following format: 839 * {Valid, VF[7:0]} 840 */ 841 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 842 struct qed_ptt *p_ptt, 843 struct qed_vf_info *vf, u8 enable) 844 { 845 u32 reg_addr, val; 846 u16 qzone_id = 0; 847 int qid; 848 849 for (qid = 0; qid < vf->num_rxqs; qid++) { 850 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 851 &qzone_id); 852 853 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 854 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 855 qed_wr(p_hwfn, p_ptt, reg_addr, val); 856 } 857 } 858 859 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 860 struct qed_ptt *p_ptt, 861 struct qed_vf_info *vf) 862 { 863 /* Reset vf in IGU - interrupts are still disabled */ 864 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 865 866 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 867 868 /* Permission Table */ 869 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 870 } 871 872 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 873 struct qed_ptt *p_ptt, 874 struct qed_vf_info *vf, u16 num_rx_queues) 875 { 876 struct qed_igu_block *p_block; 877 struct cau_sb_entry sb_entry; 878 int qid = 0; 879 u32 val = 0; 880 881 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 882 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 883 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 884 885 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 886 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 887 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 888 889 for (qid = 0; qid < num_rx_queues; qid++) { 890 p_block = qed_get_igu_free_sb(p_hwfn, false); 891 vf->igu_sbs[qid] = p_block->igu_sb_id; 892 p_block->status &= ~QED_IGU_STATUS_FREE; 893 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 894 895 qed_wr(p_hwfn, p_ptt, 896 IGU_REG_MAPPING_MEMORY + 897 sizeof(u32) * p_block->igu_sb_id, val); 898 899 /* Configure igu sb in CAU which were marked valid */ 900 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 901 p_hwfn->rel_pf_id, vf->abs_vf_id, 1); 902 903 qed_dmae_host2grc(p_hwfn, p_ptt, 904 (u64)(uintptr_t)&sb_entry, 905 CAU_REG_SB_VAR_MEMORY + 906 p_block->igu_sb_id * sizeof(u64), 2, NULL); 907 } 908 909 vf->num_sbs = (u8)num_rx_queues; 910 911 return vf->num_sbs; 912 } 913 914 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 915 struct qed_ptt *p_ptt, 916 struct qed_vf_info *vf) 917 { 918 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 919 int idx, igu_id; 920 u32 addr, val; 921 922 /* Invalidate igu CAM lines and mark them as free */ 923 for (idx = 0; idx < vf->num_sbs; idx++) { 924 igu_id = vf->igu_sbs[idx]; 925 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 926 927 val = qed_rd(p_hwfn, p_ptt, addr); 928 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 929 qed_wr(p_hwfn, p_ptt, addr, val); 930 931 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; 932 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 933 } 934 935 vf->num_sbs = 0; 936 } 937 938 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 939 u16 vfid, 940 struct qed_mcp_link_params *params, 941 struct qed_mcp_link_state *link, 942 struct qed_mcp_link_capabilities *p_caps) 943 { 944 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 945 vfid, 946 false); 947 struct qed_bulletin_content *p_bulletin; 948 949 if (!p_vf) 950 return; 951 952 p_bulletin = p_vf->bulletin.p_virt; 953 p_bulletin->req_autoneg = params->speed.autoneg; 954 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 955 p_bulletin->req_forced_speed = params->speed.forced_speed; 956 p_bulletin->req_autoneg_pause = params->pause.autoneg; 957 p_bulletin->req_forced_rx = params->pause.forced_rx; 958 p_bulletin->req_forced_tx = params->pause.forced_tx; 959 p_bulletin->req_loopback = params->loopback_mode; 960 961 p_bulletin->link_up = link->link_up; 962 p_bulletin->speed = link->speed; 963 p_bulletin->full_duplex = link->full_duplex; 964 p_bulletin->autoneg = link->an; 965 p_bulletin->autoneg_complete = link->an_complete; 966 p_bulletin->parallel_detection = link->parallel_detection; 967 p_bulletin->pfc_enabled = link->pfc_enabled; 968 p_bulletin->partner_adv_speed = link->partner_adv_speed; 969 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 970 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 971 p_bulletin->partner_adv_pause = link->partner_adv_pause; 972 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 973 974 p_bulletin->capability_speed = p_caps->speed_capabilities; 975 } 976 977 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 978 struct qed_ptt *p_ptt, 979 struct qed_iov_vf_init_params *p_params) 980 { 981 struct qed_mcp_link_capabilities link_caps; 982 struct qed_mcp_link_params link_params; 983 struct qed_mcp_link_state link_state; 984 u8 num_of_vf_avaiable_chains = 0; 985 struct qed_vf_info *vf = NULL; 986 u16 qid, num_irqs; 987 int rc = 0; 988 u32 cids; 989 u8 i; 990 991 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 992 if (!vf) { 993 DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__); 994 return -EINVAL; 995 } 996 997 if (vf->b_init) { 998 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 999 p_params->rel_vf_id); 1000 return -EINVAL; 1001 } 1002 1003 /* Perform sanity checking on the requested queue_id */ 1004 for (i = 0; i < p_params->num_queues; i++) { 1005 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 1006 u16 max_vf_qzone = min_vf_qzone + 1007 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 1008 1009 qid = p_params->req_rx_queue[i]; 1010 if (qid < min_vf_qzone || qid > max_vf_qzone) { 1011 DP_NOTICE(p_hwfn, 1012 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 1013 qid, 1014 p_params->rel_vf_id, 1015 min_vf_qzone, max_vf_qzone); 1016 return -EINVAL; 1017 } 1018 1019 qid = p_params->req_tx_queue[i]; 1020 if (qid > max_vf_qzone) { 1021 DP_NOTICE(p_hwfn, 1022 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 1023 qid, p_params->rel_vf_id, max_vf_qzone); 1024 return -EINVAL; 1025 } 1026 1027 /* If client *really* wants, Tx qid can be shared with PF */ 1028 if (qid < min_vf_qzone) 1029 DP_VERBOSE(p_hwfn, 1030 QED_MSG_IOV, 1031 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1032 p_params->rel_vf_id, qid, i); 1033 } 1034 1035 /* Limit number of queues according to number of CIDs */ 1036 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1037 DP_VERBOSE(p_hwfn, 1038 QED_MSG_IOV, 1039 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1040 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1041 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1042 1043 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1044 p_ptt, 1045 vf, num_irqs); 1046 if (!num_of_vf_avaiable_chains) { 1047 DP_ERR(p_hwfn, "no available igu sbs\n"); 1048 return -ENOMEM; 1049 } 1050 1051 /* Choose queue number and index ranges */ 1052 vf->num_rxqs = num_of_vf_avaiable_chains; 1053 vf->num_txqs = num_of_vf_avaiable_chains; 1054 1055 for (i = 0; i < vf->num_rxqs; i++) { 1056 struct qed_vf_queue *p_queue = &vf->vf_queues[i]; 1057 1058 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1059 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1060 1061 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1062 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1063 vf->relative_vf_id, i, vf->igu_sbs[i], 1064 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1065 } 1066 1067 /* Update the link configuration in bulletin */ 1068 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1069 sizeof(link_params)); 1070 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1071 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1072 sizeof(link_caps)); 1073 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1074 &link_params, &link_state, &link_caps); 1075 1076 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1077 if (!rc) { 1078 vf->b_init = true; 1079 1080 if (IS_LEAD_HWFN(p_hwfn)) 1081 p_hwfn->cdev->p_iov_info->num_vfs++; 1082 } 1083 1084 return rc; 1085 } 1086 1087 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1088 struct qed_ptt *p_ptt, u16 rel_vf_id) 1089 { 1090 struct qed_mcp_link_capabilities caps; 1091 struct qed_mcp_link_params params; 1092 struct qed_mcp_link_state link; 1093 struct qed_vf_info *vf = NULL; 1094 1095 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1096 if (!vf) { 1097 DP_ERR(p_hwfn, "%s : vf is NULL\n", __func__); 1098 return -EINVAL; 1099 } 1100 1101 if (vf->bulletin.p_virt) 1102 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1103 1104 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1105 1106 /* Get the link configuration back in bulletin so 1107 * that when VFs are re-enabled they get the actual 1108 * link configuration. 1109 */ 1110 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1111 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1112 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1113 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1114 1115 /* Forget the VF's acquisition message */ 1116 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1117 1118 /* disablng interrupts and resetting permission table was done during 1119 * vf-close, however, we could get here without going through vf_close 1120 */ 1121 /* Disable Interrupts for VF */ 1122 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1123 1124 /* Reset Permission table */ 1125 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1126 1127 vf->num_rxqs = 0; 1128 vf->num_txqs = 0; 1129 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1130 1131 if (vf->b_init) { 1132 vf->b_init = false; 1133 1134 if (IS_LEAD_HWFN(p_hwfn)) 1135 p_hwfn->cdev->p_iov_info->num_vfs--; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static bool qed_iov_tlv_supported(u16 tlvtype) 1142 { 1143 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1144 } 1145 1146 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1147 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1148 { 1149 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1150 1151 tl->type = type; 1152 tl->length = length; 1153 1154 /* Offset should keep pointing to next TLV (the end of the last) */ 1155 *offset += length; 1156 1157 /* Return a pointer to the start of the added tlv */ 1158 return *offset - length; 1159 } 1160 1161 /* list the types and lengths of the tlvs on the buffer */ 1162 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1163 { 1164 u16 i = 1, total_length = 0; 1165 struct channel_tlv *tlv; 1166 1167 do { 1168 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1169 1170 /* output tlv */ 1171 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1172 "TLV number %d: type %d, length %d\n", 1173 i, tlv->type, tlv->length); 1174 1175 if (tlv->type == CHANNEL_TLV_LIST_END) 1176 return; 1177 1178 /* Validate entry - protect against malicious VFs */ 1179 if (!tlv->length) { 1180 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1181 return; 1182 } 1183 1184 total_length += tlv->length; 1185 1186 if (total_length >= sizeof(struct tlv_buffer_size)) { 1187 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1188 return; 1189 } 1190 1191 i++; 1192 } while (1); 1193 } 1194 1195 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1196 struct qed_ptt *p_ptt, 1197 struct qed_vf_info *p_vf, 1198 u16 length, u8 status) 1199 { 1200 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1201 struct qed_dmae_params params; 1202 u8 eng_vf_id; 1203 1204 mbx->reply_virt->default_resp.hdr.status = status; 1205 1206 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1207 1208 eng_vf_id = p_vf->abs_vf_id; 1209 1210 memset(¶ms, 0, sizeof(params)); 1211 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); 1212 params.dst_vfid = eng_vf_id; 1213 1214 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1215 mbx->req_virt->first_tlv.reply_address + 1216 sizeof(u64), 1217 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1218 ¶ms); 1219 1220 /* Once PF copies the rc to the VF, the latter can continue 1221 * and send an additional message. So we have to make sure the 1222 * channel would be re-set to ready prior to that. 1223 */ 1224 REG_WR(p_hwfn, 1225 GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM, 1226 USTORM_VF_PF_CHANNEL_READY, eng_vf_id), 1); 1227 1228 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1229 mbx->req_virt->first_tlv.reply_address, 1230 sizeof(u64) / 4, ¶ms); 1231 } 1232 1233 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1234 enum qed_iov_vport_update_flag flag) 1235 { 1236 switch (flag) { 1237 case QED_IOV_VP_UPDATE_ACTIVATE: 1238 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1239 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1240 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1241 case QED_IOV_VP_UPDATE_TX_SWITCH: 1242 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1243 case QED_IOV_VP_UPDATE_MCAST: 1244 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1245 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1246 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1247 case QED_IOV_VP_UPDATE_RSS: 1248 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1249 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1250 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1251 case QED_IOV_VP_UPDATE_SGE_TPA: 1252 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1253 default: 1254 return 0; 1255 } 1256 } 1257 1258 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1259 struct qed_vf_info *p_vf, 1260 struct qed_iov_vf_mbx *p_mbx, 1261 u8 status, 1262 u16 tlvs_mask, u16 tlvs_accepted) 1263 { 1264 struct pfvf_def_resp_tlv *resp; 1265 u16 size, total_len, i; 1266 1267 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1268 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1269 size = sizeof(struct pfvf_def_resp_tlv); 1270 total_len = size; 1271 1272 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1273 1274 /* Prepare response for all extended tlvs if they are found by PF */ 1275 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1276 if (!(tlvs_mask & BIT(i))) 1277 continue; 1278 1279 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1280 qed_iov_vport_to_tlv(p_hwfn, i), size); 1281 1282 if (tlvs_accepted & BIT(i)) 1283 resp->hdr.status = status; 1284 else 1285 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1286 1287 DP_VERBOSE(p_hwfn, 1288 QED_MSG_IOV, 1289 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1290 p_vf->relative_vf_id, 1291 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1292 1293 total_len += size; 1294 } 1295 1296 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1297 sizeof(struct channel_list_end_tlv)); 1298 1299 return total_len; 1300 } 1301 1302 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1303 struct qed_ptt *p_ptt, 1304 struct qed_vf_info *vf_info, 1305 u16 type, u16 length, u8 status) 1306 { 1307 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1308 1309 mbx->offset = (u8 *)mbx->reply_virt; 1310 1311 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1312 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1313 sizeof(struct channel_list_end_tlv)); 1314 1315 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1316 } 1317 1318 static struct 1319 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1320 u16 relative_vf_id, 1321 bool b_enabled_only) 1322 { 1323 struct qed_vf_info *vf = NULL; 1324 1325 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1326 if (!vf) 1327 return NULL; 1328 1329 return &vf->p_vf_info; 1330 } 1331 1332 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1333 { 1334 struct qed_public_vf_info *vf_info; 1335 1336 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1337 1338 if (!vf_info) 1339 return; 1340 1341 /* Clear the VF mac */ 1342 eth_zero_addr(vf_info->mac); 1343 1344 vf_info->rx_accept_mode = 0; 1345 vf_info->tx_accept_mode = 0; 1346 } 1347 1348 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1349 struct qed_vf_info *p_vf) 1350 { 1351 u32 i, j; 1352 1353 p_vf->vf_bulletin = 0; 1354 p_vf->vport_instance = 0; 1355 p_vf->configured_features = 0; 1356 1357 /* If VF previously requested less resources, go back to default */ 1358 p_vf->num_rxqs = p_vf->num_sbs; 1359 p_vf->num_txqs = p_vf->num_sbs; 1360 1361 p_vf->num_active_rxqs = 0; 1362 1363 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1364 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1365 1366 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1367 if (!p_queue->cids[j].p_cid) 1368 continue; 1369 1370 qed_eth_queue_cid_release(p_hwfn, 1371 p_queue->cids[j].p_cid); 1372 p_queue->cids[j].p_cid = NULL; 1373 } 1374 } 1375 1376 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1377 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1378 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1379 } 1380 1381 /* Returns either 0, or log(size) */ 1382 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, 1383 struct qed_ptt *p_ptt) 1384 { 1385 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1386 1387 if (val) 1388 return val + 11; 1389 return 0; 1390 } 1391 1392 static void 1393 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, 1394 struct qed_ptt *p_ptt, 1395 struct qed_vf_info *p_vf, 1396 struct vf_pf_resc_request *p_req, 1397 struct pf_vf_resc *p_resp) 1398 { 1399 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1400 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - 1401 qed_db_addr_vf(0, DQ_DEMS_LEGACY); 1402 u32 bar_size; 1403 1404 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); 1405 1406 /* If VF didn't bother asking for QIDs than don't bother limiting 1407 * number of CIDs. The VF doesn't care about the number, and this 1408 * has the likely result of causing an additional acquisition. 1409 */ 1410 if (!(p_vf->acquire.vfdev_info.capabilities & 1411 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1412 return; 1413 1414 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1415 * that would make sure doorbells for all CIDs fall within the bar. 1416 * If it doesn't, make sure regview window is sufficient. 1417 */ 1418 if (p_vf->acquire.vfdev_info.capabilities & 1419 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1420 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1421 if (bar_size) 1422 bar_size = 1 << bar_size; 1423 1424 if (p_hwfn->cdev->num_hwfns > 1) 1425 bar_size /= 2; 1426 } else { 1427 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1428 } 1429 1430 if (bar_size / db_size < 256) 1431 p_resp->num_cids = min_t(u8, p_resp->num_cids, 1432 (u8)(bar_size / db_size)); 1433 } 1434 1435 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1436 struct qed_ptt *p_ptt, 1437 struct qed_vf_info *p_vf, 1438 struct vf_pf_resc_request *p_req, 1439 struct pf_vf_resc *p_resp) 1440 { 1441 u8 i; 1442 1443 /* Queue related information */ 1444 p_resp->num_rxqs = p_vf->num_rxqs; 1445 p_resp->num_txqs = p_vf->num_txqs; 1446 p_resp->num_sbs = p_vf->num_sbs; 1447 1448 for (i = 0; i < p_resp->num_sbs; i++) { 1449 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1450 p_resp->hw_sbs[i].sb_qid = 0; 1451 } 1452 1453 /* These fields are filled for backward compatibility. 1454 * Unused by modern vfs. 1455 */ 1456 for (i = 0; i < p_resp->num_rxqs; i++) { 1457 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1458 (u16 *)&p_resp->hw_qid[i]); 1459 p_resp->cid[i] = i; 1460 } 1461 1462 /* Filter related information */ 1463 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1464 p_req->num_mac_filters); 1465 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1466 p_req->num_vlan_filters); 1467 1468 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1469 1470 /* This isn't really needed/enforced, but some legacy VFs might depend 1471 * on the correct filling of this field. 1472 */ 1473 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1474 1475 /* Validate sufficient resources for VF */ 1476 if (p_resp->num_rxqs < p_req->num_rxqs || 1477 p_resp->num_txqs < p_req->num_txqs || 1478 p_resp->num_sbs < p_req->num_sbs || 1479 p_resp->num_mac_filters < p_req->num_mac_filters || 1480 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1481 p_resp->num_mc_filters < p_req->num_mc_filters || 1482 p_resp->num_cids < p_req->num_cids) { 1483 DP_VERBOSE(p_hwfn, 1484 QED_MSG_IOV, 1485 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1486 p_vf->abs_vf_id, 1487 p_req->num_rxqs, 1488 p_resp->num_rxqs, 1489 p_req->num_rxqs, 1490 p_resp->num_txqs, 1491 p_req->num_sbs, 1492 p_resp->num_sbs, 1493 p_req->num_mac_filters, 1494 p_resp->num_mac_filters, 1495 p_req->num_vlan_filters, 1496 p_resp->num_vlan_filters, 1497 p_req->num_mc_filters, 1498 p_resp->num_mc_filters, 1499 p_req->num_cids, p_resp->num_cids); 1500 1501 /* Some legacy OSes are incapable of correctly handling this 1502 * failure. 1503 */ 1504 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1505 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1506 (p_vf->acquire.vfdev_info.os_type == 1507 VFPF_ACQUIRE_OS_WINDOWS)) 1508 return PFVF_STATUS_SUCCESS; 1509 1510 return PFVF_STATUS_NO_RESOURCE; 1511 } 1512 1513 return PFVF_STATUS_SUCCESS; 1514 } 1515 1516 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1517 struct pfvf_stats_info *p_stats) 1518 { 1519 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1520 offsetof(struct mstorm_vf_zone, 1521 non_trigger.eth_queue_stat); 1522 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1523 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1524 offsetof(struct ustorm_vf_zone, 1525 non_trigger.eth_queue_stat); 1526 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1527 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1528 offsetof(struct pstorm_vf_zone, 1529 non_trigger.eth_queue_stat); 1530 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1531 p_stats->tstats.address = 0; 1532 p_stats->tstats.len = 0; 1533 } 1534 1535 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1536 struct qed_ptt *p_ptt, 1537 struct qed_vf_info *vf) 1538 { 1539 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1540 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1541 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1542 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1543 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1544 struct pf_vf_resc *resc = &resp->resc; 1545 int rc; 1546 1547 memset(resp, 0, sizeof(*resp)); 1548 1549 /* Write the PF version so that VF would know which version 1550 * is supported - might be later overridden. This guarantees that 1551 * VF could recognize legacy PF based on lack of versions in reply. 1552 */ 1553 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1554 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1555 1556 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1557 DP_VERBOSE(p_hwfn, 1558 QED_MSG_IOV, 1559 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1560 vf->abs_vf_id, vf->state); 1561 goto out; 1562 } 1563 1564 /* Validate FW compatibility */ 1565 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1566 if (req->vfdev_info.capabilities & 1567 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1568 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1569 1570 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1571 "VF[%d] is pre-fastpath HSI\n", 1572 vf->abs_vf_id); 1573 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1574 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1575 } else { 1576 DP_INFO(p_hwfn, 1577 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n", 1578 vf->abs_vf_id, 1579 req->vfdev_info.eth_fp_hsi_major, 1580 req->vfdev_info.eth_fp_hsi_minor, 1581 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1582 1583 goto out; 1584 } 1585 } 1586 1587 /* On 100g PFs, prevent old VFs from loading */ 1588 if ((p_hwfn->cdev->num_hwfns > 1) && 1589 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1590 DP_INFO(p_hwfn, 1591 "VF[%d] is running an old driver that doesn't support 100g\n", 1592 vf->abs_vf_id); 1593 goto out; 1594 } 1595 1596 /* Store the acquire message */ 1597 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1598 1599 vf->opaque_fid = req->vfdev_info.opaque_fid; 1600 1601 vf->vf_bulletin = req->bulletin_addr; 1602 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1603 vf->bulletin.size : req->bulletin_size; 1604 1605 /* fill in pfdev info */ 1606 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1607 pfdev_info->db_size = 0; 1608 pfdev_info->indices_per_sb = PIS_PER_SB; 1609 1610 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1611 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1612 if (p_hwfn->cdev->num_hwfns > 1) 1613 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1614 1615 /* Share our ability to use multiple queue-ids only with VFs 1616 * that request it. 1617 */ 1618 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1619 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1620 1621 /* Share the sizes of the bars with VF */ 1622 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1623 1624 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1625 1626 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1627 1628 pfdev_info->fw_major = FW_MAJOR_VERSION; 1629 pfdev_info->fw_minor = FW_MINOR_VERSION; 1630 pfdev_info->fw_rev = FW_REVISION_VERSION; 1631 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1632 1633 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1634 * this field. 1635 */ 1636 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1637 req->vfdev_info.eth_fp_hsi_minor); 1638 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1639 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1640 1641 pfdev_info->dev_type = p_hwfn->cdev->type; 1642 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1643 1644 /* Fill resources available to VF; Make sure there are enough to 1645 * satisfy the VF's request. 1646 */ 1647 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1648 &req->resc_request, resc); 1649 if (vfpf_status != PFVF_STATUS_SUCCESS) 1650 goto out; 1651 1652 /* Start the VF in FW */ 1653 rc = qed_sp_vf_start(p_hwfn, vf); 1654 if (rc) { 1655 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1656 vfpf_status = PFVF_STATUS_FAILURE; 1657 goto out; 1658 } 1659 1660 /* Fill agreed size of bulletin board in response */ 1661 resp->bulletin_size = vf->bulletin.size; 1662 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1663 1664 DP_VERBOSE(p_hwfn, 1665 QED_MSG_IOV, 1666 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1667 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1668 vf->abs_vf_id, 1669 resp->pfdev_info.chip_num, 1670 resp->pfdev_info.db_size, 1671 resp->pfdev_info.indices_per_sb, 1672 resp->pfdev_info.capabilities, 1673 resc->num_rxqs, 1674 resc->num_txqs, 1675 resc->num_sbs, 1676 resc->num_mac_filters, 1677 resc->num_vlan_filters); 1678 vf->state = VF_ACQUIRED; 1679 1680 /* Prepare Response */ 1681 out: 1682 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1683 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1684 } 1685 1686 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1687 struct qed_vf_info *p_vf, bool val) 1688 { 1689 struct qed_sp_vport_update_params params; 1690 int rc; 1691 1692 if (val == p_vf->spoof_chk) { 1693 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1694 "Spoofchk value[%d] is already configured\n", val); 1695 return 0; 1696 } 1697 1698 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1699 params.opaque_fid = p_vf->opaque_fid; 1700 params.vport_id = p_vf->vport_id; 1701 params.update_anti_spoofing_en_flg = 1; 1702 params.anti_spoofing_en = val; 1703 1704 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1705 if (!rc) { 1706 p_vf->spoof_chk = val; 1707 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1708 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1709 "Spoofchk val[%d] configured\n", val); 1710 } else { 1711 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1712 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1713 val, p_vf->relative_vf_id); 1714 } 1715 1716 return rc; 1717 } 1718 1719 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1720 struct qed_vf_info *p_vf) 1721 { 1722 struct qed_filter_ucast filter; 1723 int rc = 0; 1724 int i; 1725 1726 memset(&filter, 0, sizeof(filter)); 1727 filter.is_rx_filter = 1; 1728 filter.is_tx_filter = 1; 1729 filter.vport_to_add_to = p_vf->vport_id; 1730 filter.opcode = QED_FILTER_ADD; 1731 1732 /* Reconfigure vlans */ 1733 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1734 if (!p_vf->shadow_config.vlans[i].used) 1735 continue; 1736 1737 filter.type = QED_FILTER_VLAN; 1738 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1739 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1740 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1741 filter.vlan, p_vf->relative_vf_id); 1742 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1743 &filter, QED_SPQ_MODE_CB, NULL); 1744 if (rc) { 1745 DP_NOTICE(p_hwfn, 1746 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1747 filter.vlan, p_vf->relative_vf_id); 1748 break; 1749 } 1750 } 1751 1752 return rc; 1753 } 1754 1755 static int 1756 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1757 struct qed_vf_info *p_vf, u64 events) 1758 { 1759 int rc = 0; 1760 1761 if ((events & BIT(VLAN_ADDR_FORCED)) && 1762 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1763 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1764 1765 return rc; 1766 } 1767 1768 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1769 struct qed_vf_info *p_vf, u64 events) 1770 { 1771 int rc = 0; 1772 struct qed_filter_ucast filter; 1773 1774 if (!p_vf->vport_instance) 1775 return -EINVAL; 1776 1777 if ((events & BIT(MAC_ADDR_FORCED)) || 1778 p_vf->p_vf_info.is_trusted_configured) { 1779 /* Since there's no way [currently] of removing the MAC, 1780 * we can always assume this means we need to force it. 1781 */ 1782 memset(&filter, 0, sizeof(filter)); 1783 filter.type = QED_FILTER_MAC; 1784 filter.opcode = QED_FILTER_REPLACE; 1785 filter.is_rx_filter = 1; 1786 filter.is_tx_filter = 1; 1787 filter.vport_to_add_to = p_vf->vport_id; 1788 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1789 1790 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1791 &filter, QED_SPQ_MODE_CB, NULL); 1792 if (rc) { 1793 DP_NOTICE(p_hwfn, 1794 "PF failed to configure MAC for VF\n"); 1795 return rc; 1796 } 1797 if (p_vf->p_vf_info.is_trusted_configured) 1798 p_vf->configured_features |= 1799 BIT(VFPF_BULLETIN_MAC_ADDR); 1800 else 1801 p_vf->configured_features |= 1802 BIT(MAC_ADDR_FORCED); 1803 } 1804 1805 if (events & BIT(VLAN_ADDR_FORCED)) { 1806 struct qed_sp_vport_update_params vport_update; 1807 u8 removal; 1808 int i; 1809 1810 memset(&filter, 0, sizeof(filter)); 1811 filter.type = QED_FILTER_VLAN; 1812 filter.is_rx_filter = 1; 1813 filter.is_tx_filter = 1; 1814 filter.vport_to_add_to = p_vf->vport_id; 1815 filter.vlan = p_vf->bulletin.p_virt->pvid; 1816 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1817 QED_FILTER_FLUSH; 1818 1819 /* Send the ramrod */ 1820 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1821 &filter, QED_SPQ_MODE_CB, NULL); 1822 if (rc) { 1823 DP_NOTICE(p_hwfn, 1824 "PF failed to configure VLAN for VF\n"); 1825 return rc; 1826 } 1827 1828 /* Update the default-vlan & silent vlan stripping */ 1829 memset(&vport_update, 0, sizeof(vport_update)); 1830 vport_update.opaque_fid = p_vf->opaque_fid; 1831 vport_update.vport_id = p_vf->vport_id; 1832 vport_update.update_default_vlan_enable_flg = 1; 1833 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1834 vport_update.update_default_vlan_flg = 1; 1835 vport_update.default_vlan = filter.vlan; 1836 1837 vport_update.update_inner_vlan_removal_flg = 1; 1838 removal = filter.vlan ? 1 1839 : p_vf->shadow_config.inner_vlan_removal; 1840 vport_update.inner_vlan_removal_flg = removal; 1841 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1842 rc = qed_sp_vport_update(p_hwfn, 1843 &vport_update, 1844 QED_SPQ_MODE_EBLOCK, NULL); 1845 if (rc) { 1846 DP_NOTICE(p_hwfn, 1847 "PF failed to configure VF vport for vlan\n"); 1848 return rc; 1849 } 1850 1851 /* Update all the Rx queues */ 1852 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1853 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1854 struct qed_queue_cid *p_cid = NULL; 1855 1856 /* There can be at most 1 Rx queue on qzone. Find it */ 1857 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 1858 if (!p_cid) 1859 continue; 1860 1861 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1862 (void **)&p_cid, 1863 1, 0, 1, 1864 QED_SPQ_MODE_EBLOCK, 1865 NULL); 1866 if (rc) { 1867 DP_NOTICE(p_hwfn, 1868 "Failed to send Rx update fo queue[0x%04x]\n", 1869 p_cid->rel.queue_id); 1870 return rc; 1871 } 1872 } 1873 1874 if (filter.vlan) 1875 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1876 else 1877 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1878 } 1879 1880 /* If forced features are terminated, we need to configure the shadow 1881 * configuration back again. 1882 */ 1883 if (events) 1884 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1885 1886 return rc; 1887 } 1888 1889 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1890 struct qed_ptt *p_ptt, 1891 struct qed_vf_info *vf) 1892 { 1893 struct qed_sp_vport_start_params params = { 0 }; 1894 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1895 struct vfpf_vport_start_tlv *start; 1896 u8 status = PFVF_STATUS_SUCCESS; 1897 struct qed_vf_info *vf_info; 1898 u64 *p_bitmap; 1899 int sb_id; 1900 int rc; 1901 1902 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vf->relative_vf_id, true); 1903 if (!vf_info) { 1904 DP_NOTICE(p_hwfn->cdev, 1905 "Failed to get VF info, invalid vfid [%d]\n", 1906 vf->relative_vf_id); 1907 return; 1908 } 1909 1910 vf->state = VF_ENABLED; 1911 start = &mbx->req_virt->start_vport; 1912 1913 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1914 1915 /* Initialize Status block in CAU */ 1916 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1917 if (!start->sb_addr[sb_id]) { 1918 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1919 "VF[%d] did not fill the address of SB %d\n", 1920 vf->relative_vf_id, sb_id); 1921 break; 1922 } 1923 1924 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1925 start->sb_addr[sb_id], 1926 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1927 } 1928 1929 vf->mtu = start->mtu; 1930 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1931 1932 /* Take into consideration configuration forced by hypervisor; 1933 * If none is configured, use the supplied VF values [for old 1934 * vfs that would still be fine, since they passed '0' as padding]. 1935 */ 1936 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1937 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1938 u8 vf_req = start->only_untagged; 1939 1940 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1941 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1942 } 1943 1944 params.tpa_mode = start->tpa_mode; 1945 params.remove_inner_vlan = start->inner_vlan_removal; 1946 params.tx_switching = true; 1947 1948 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1949 params.drop_ttl0 = false; 1950 params.concrete_fid = vf->concrete_fid; 1951 params.opaque_fid = vf->opaque_fid; 1952 params.vport_id = vf->vport_id; 1953 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1954 params.mtu = vf->mtu; 1955 1956 /* Non trusted VFs should enable control frame filtering */ 1957 params.check_mac = !vf->p_vf_info.is_trusted_configured; 1958 1959 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1960 if (rc) { 1961 DP_ERR(p_hwfn, 1962 "%s returned error %d\n", __func__, rc); 1963 status = PFVF_STATUS_FAILURE; 1964 } else { 1965 vf->vport_instance++; 1966 1967 /* Force configuration if needed on the newly opened vport */ 1968 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1969 1970 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1971 } 1972 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1973 sizeof(struct pfvf_def_resp_tlv), status); 1974 } 1975 1976 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1977 struct qed_ptt *p_ptt, 1978 struct qed_vf_info *vf) 1979 { 1980 u8 status = PFVF_STATUS_SUCCESS; 1981 int rc; 1982 1983 vf->vport_instance--; 1984 vf->spoof_chk = false; 1985 1986 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 1987 (qed_iov_validate_active_txq(p_hwfn, vf))) { 1988 vf->b_malicious = true; 1989 DP_NOTICE(p_hwfn, 1990 "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n", 1991 vf->abs_vf_id); 1992 status = PFVF_STATUS_MALICIOUS; 1993 goto out; 1994 } 1995 1996 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 1997 if (rc) { 1998 DP_ERR(p_hwfn, "%s returned error %d\n", 1999 __func__, rc); 2000 status = PFVF_STATUS_FAILURE; 2001 } 2002 2003 /* Forget the configuration on the vport */ 2004 vf->configured_features = 0; 2005 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2006 2007 out: 2008 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2009 sizeof(struct pfvf_def_resp_tlv), status); 2010 } 2011 2012 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 2013 struct qed_ptt *p_ptt, 2014 struct qed_vf_info *vf, 2015 u8 status, bool b_legacy) 2016 { 2017 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2018 struct pfvf_start_queue_resp_tlv *p_tlv; 2019 struct vfpf_start_rxq_tlv *req; 2020 u16 length; 2021 2022 mbx->offset = (u8 *)mbx->reply_virt; 2023 2024 /* Taking a bigger struct instead of adding a TLV to list was a 2025 * mistake, but one which we're now stuck with, as some older 2026 * clients assume the size of the previous response. 2027 */ 2028 if (!b_legacy) 2029 length = sizeof(*p_tlv); 2030 else 2031 length = sizeof(struct pfvf_def_resp_tlv); 2032 2033 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 2034 length); 2035 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2036 sizeof(struct channel_list_end_tlv)); 2037 2038 /* Update the TLV with the response */ 2039 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2040 req = &mbx->req_virt->start_rxq; 2041 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2042 offsetof(struct mstorm_vf_zone, 2043 non_trigger.eth_rx_queue_producers) + 2044 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2045 } 2046 2047 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2048 } 2049 2050 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, 2051 struct qed_vf_info *p_vf, bool b_is_tx) 2052 { 2053 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2054 struct vfpf_qid_tlv *p_qid_tlv; 2055 2056 /* Search for the qid if the VF published its going to provide it */ 2057 if (!(p_vf->acquire.vfdev_info.capabilities & 2058 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2059 if (b_is_tx) 2060 return QED_IOV_LEGACY_QID_TX; 2061 else 2062 return QED_IOV_LEGACY_QID_RX; 2063 } 2064 2065 p_qid_tlv = (struct vfpf_qid_tlv *) 2066 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2067 CHANNEL_TLV_QID); 2068 if (!p_qid_tlv) { 2069 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2070 "VF[%2x]: Failed to provide qid\n", 2071 p_vf->relative_vf_id); 2072 2073 return QED_IOV_QID_INVALID; 2074 } 2075 2076 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2077 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2078 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2079 p_vf->relative_vf_id, p_qid_tlv->qid); 2080 return QED_IOV_QID_INVALID; 2081 } 2082 2083 return p_qid_tlv->qid; 2084 } 2085 2086 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 2087 struct qed_ptt *p_ptt, 2088 struct qed_vf_info *vf) 2089 { 2090 struct qed_queue_start_common_params params; 2091 struct qed_queue_cid_vf_params vf_params; 2092 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2093 u8 status = PFVF_STATUS_NO_RESOURCE; 2094 u8 qid_usage_idx, vf_legacy = 0; 2095 struct vfpf_start_rxq_tlv *req; 2096 struct qed_vf_queue *p_queue; 2097 struct qed_queue_cid *p_cid; 2098 struct qed_sb_info sb_dummy; 2099 int rc; 2100 2101 req = &mbx->req_virt->start_rxq; 2102 2103 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2104 QED_IOV_VALIDATE_Q_DISABLE) || 2105 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2106 goto out; 2107 2108 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2109 if (qid_usage_idx == QED_IOV_QID_INVALID) 2110 goto out; 2111 2112 p_queue = &vf->vf_queues[req->rx_qid]; 2113 if (p_queue->cids[qid_usage_idx].p_cid) 2114 goto out; 2115 2116 vf_legacy = qed_vf_calculate_legacy(vf); 2117 2118 /* Acquire a new queue-cid */ 2119 memset(¶ms, 0, sizeof(params)); 2120 params.queue_id = p_queue->fw_rx_qid; 2121 params.vport_id = vf->vport_id; 2122 params.stats_id = vf->abs_vf_id + 0x10; 2123 /* Since IGU index is passed via sb_info, construct a dummy one */ 2124 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2125 sb_dummy.igu_sb_id = req->hw_sb; 2126 params.p_sb = &sb_dummy; 2127 params.sb_idx = req->sb_index; 2128 2129 memset(&vf_params, 0, sizeof(vf_params)); 2130 vf_params.vfid = vf->relative_vf_id; 2131 vf_params.vf_qid = (u8)req->rx_qid; 2132 vf_params.vf_legacy = vf_legacy; 2133 vf_params.qid_usage_idx = qid_usage_idx; 2134 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2135 ¶ms, true, &vf_params); 2136 if (!p_cid) 2137 goto out; 2138 2139 /* Legacy VFs have their Producers in a different location, which they 2140 * calculate on their own and clean the producer prior to this. 2141 */ 2142 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) 2143 qed_wr(p_hwfn, p_ptt, MSEM_REG_FAST_MEMORY + 2144 SEM_FAST_REG_INT_RAM + 2145 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, 2146 req->rx_qid), 0); 2147 2148 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, 2149 req->bd_max_bytes, 2150 req->rxq_addr, 2151 req->cqe_pbl_addr, req->cqe_pbl_size); 2152 if (rc) { 2153 status = PFVF_STATUS_FAILURE; 2154 qed_eth_queue_cid_release(p_hwfn, p_cid); 2155 } else { 2156 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2157 p_queue->cids[qid_usage_idx].b_is_tx = false; 2158 status = PFVF_STATUS_SUCCESS; 2159 vf->num_active_rxqs++; 2160 } 2161 2162 out: 2163 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2164 !!(vf_legacy & 2165 QED_QCID_LEGACY_VF_RX_PROD)); 2166 } 2167 2168 static void 2169 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2170 struct qed_tunnel_info *p_tun, 2171 u16 tunn_feature_mask) 2172 { 2173 p_resp->tunn_feature_mask = tunn_feature_mask; 2174 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2175 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2176 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2177 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2178 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2179 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2180 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2181 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2182 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2183 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2184 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2185 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2186 } 2187 2188 static void 2189 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2190 struct qed_tunn_update_type *p_tun, 2191 enum qed_tunn_mode mask, u8 tun_cls) 2192 { 2193 if (p_req->tun_mode_update_mask & BIT(mask)) { 2194 p_tun->b_update_mode = true; 2195 2196 if (p_req->tunn_mode & BIT(mask)) 2197 p_tun->b_mode_enabled = true; 2198 } 2199 2200 p_tun->tun_cls = tun_cls; 2201 } 2202 2203 static void 2204 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2205 struct qed_tunn_update_type *p_tun, 2206 struct qed_tunn_update_udp_port *p_port, 2207 enum qed_tunn_mode mask, 2208 u8 tun_cls, u8 update_port, u16 port) 2209 { 2210 if (update_port) { 2211 p_port->b_update_port = true; 2212 p_port->port = port; 2213 } 2214 2215 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2216 } 2217 2218 static bool 2219 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2220 { 2221 bool b_update_requested = false; 2222 2223 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2224 p_req->update_geneve_port || p_req->update_vxlan_port) 2225 b_update_requested = true; 2226 2227 return b_update_requested; 2228 } 2229 2230 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2231 { 2232 if (tun->b_update_mode && !tun->b_mode_enabled) { 2233 tun->b_update_mode = false; 2234 *rc = -EINVAL; 2235 } 2236 } 2237 2238 static int 2239 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2240 u16 *tun_features, bool *update, 2241 struct qed_tunnel_info *tun_src) 2242 { 2243 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2244 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2245 u16 bultn_vxlan_port, bultn_geneve_port; 2246 void *cookie = p_hwfn->cdev->ops_cookie; 2247 int i, rc = 0; 2248 2249 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2250 bultn_vxlan_port = tun->vxlan_port.port; 2251 bultn_geneve_port = tun->geneve_port.port; 2252 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2253 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2254 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2255 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2256 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2257 2258 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2259 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2260 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2261 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2262 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2263 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2264 tun_src->b_update_rx_cls = false; 2265 tun_src->b_update_tx_cls = false; 2266 rc = -EINVAL; 2267 } 2268 2269 if (tun_src->vxlan_port.b_update_port) { 2270 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2271 tun_src->vxlan_port.b_update_port = false; 2272 } else { 2273 *update = true; 2274 bultn_vxlan_port = tun_src->vxlan_port.port; 2275 } 2276 } 2277 2278 if (tun_src->geneve_port.b_update_port) { 2279 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2280 tun_src->geneve_port.b_update_port = false; 2281 } else { 2282 *update = true; 2283 bultn_geneve_port = tun_src->geneve_port.port; 2284 } 2285 } 2286 2287 qed_for_each_vf(p_hwfn, i) { 2288 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2289 bultn_geneve_port); 2290 } 2291 2292 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2293 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2294 2295 return rc; 2296 } 2297 2298 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2299 struct qed_ptt *p_ptt, 2300 struct qed_vf_info *p_vf) 2301 { 2302 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2303 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2304 struct pfvf_update_tunn_param_tlv *p_resp; 2305 struct vfpf_update_tunn_param_tlv *p_req; 2306 u8 status = PFVF_STATUS_SUCCESS; 2307 bool b_update_required = false; 2308 struct qed_tunnel_info tunn; 2309 u16 tunn_feature_mask = 0; 2310 int i, rc = 0; 2311 2312 mbx->offset = (u8 *)mbx->reply_virt; 2313 2314 memset(&tunn, 0, sizeof(tunn)); 2315 p_req = &mbx->req_virt->tunn_param_update; 2316 2317 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2318 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2319 "No tunnel update requested by VF\n"); 2320 status = PFVF_STATUS_FAILURE; 2321 goto send_resp; 2322 } 2323 2324 tunn.b_update_rx_cls = p_req->update_tun_cls; 2325 tunn.b_update_tx_cls = p_req->update_tun_cls; 2326 2327 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2328 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2329 p_req->update_vxlan_port, 2330 p_req->vxlan_port); 2331 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2332 QED_MODE_L2GENEVE_TUNN, 2333 p_req->l2geneve_clss, 2334 p_req->update_geneve_port, 2335 p_req->geneve_port); 2336 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2337 QED_MODE_IPGENEVE_TUNN, 2338 p_req->ipgeneve_clss); 2339 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2340 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2341 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2342 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2343 2344 /* If PF modifies VF's req then it should 2345 * still return an error in case of partial configuration 2346 * or modified configuration as opposed to requested one. 2347 */ 2348 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2349 &b_update_required, &tunn); 2350 2351 if (rc) 2352 status = PFVF_STATUS_FAILURE; 2353 2354 /* If QED client is willing to update anything ? */ 2355 if (b_update_required) { 2356 u16 geneve_port; 2357 2358 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2359 QED_SPQ_MODE_EBLOCK, NULL); 2360 if (rc) 2361 status = PFVF_STATUS_FAILURE; 2362 2363 geneve_port = p_tun->geneve_port.port; 2364 qed_for_each_vf(p_hwfn, i) { 2365 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2366 p_tun->vxlan_port.port, 2367 geneve_port); 2368 } 2369 } 2370 2371 send_resp: 2372 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2373 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2374 2375 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2376 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2377 sizeof(struct channel_list_end_tlv)); 2378 2379 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2380 } 2381 2382 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2383 struct qed_ptt *p_ptt, 2384 struct qed_vf_info *p_vf, 2385 u32 cid, u8 status) 2386 { 2387 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2388 struct pfvf_start_queue_resp_tlv *p_tlv; 2389 bool b_legacy = false; 2390 u16 length; 2391 2392 mbx->offset = (u8 *)mbx->reply_virt; 2393 2394 /* Taking a bigger struct instead of adding a TLV to list was a 2395 * mistake, but one which we're now stuck with, as some older 2396 * clients assume the size of the previous response. 2397 */ 2398 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2399 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2400 b_legacy = true; 2401 2402 if (!b_legacy) 2403 length = sizeof(*p_tlv); 2404 else 2405 length = sizeof(struct pfvf_def_resp_tlv); 2406 2407 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2408 length); 2409 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2410 sizeof(struct channel_list_end_tlv)); 2411 2412 /* Update the TLV with the response */ 2413 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2414 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); 2415 2416 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2417 } 2418 2419 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2420 struct qed_ptt *p_ptt, 2421 struct qed_vf_info *vf) 2422 { 2423 struct qed_queue_start_common_params params; 2424 struct qed_queue_cid_vf_params vf_params; 2425 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2426 u8 status = PFVF_STATUS_NO_RESOURCE; 2427 struct vfpf_start_txq_tlv *req; 2428 struct qed_vf_queue *p_queue; 2429 struct qed_queue_cid *p_cid; 2430 struct qed_sb_info sb_dummy; 2431 u8 qid_usage_idx, vf_legacy; 2432 u32 cid = 0; 2433 int rc; 2434 u16 pq; 2435 2436 memset(¶ms, 0, sizeof(params)); 2437 req = &mbx->req_virt->start_txq; 2438 2439 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2440 QED_IOV_VALIDATE_Q_NA) || 2441 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2442 goto out; 2443 2444 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2445 if (qid_usage_idx == QED_IOV_QID_INVALID) 2446 goto out; 2447 2448 p_queue = &vf->vf_queues[req->tx_qid]; 2449 if (p_queue->cids[qid_usage_idx].p_cid) 2450 goto out; 2451 2452 vf_legacy = qed_vf_calculate_legacy(vf); 2453 2454 /* Acquire a new queue-cid */ 2455 params.queue_id = p_queue->fw_tx_qid; 2456 params.vport_id = vf->vport_id; 2457 params.stats_id = vf->abs_vf_id + 0x10; 2458 2459 /* Since IGU index is passed via sb_info, construct a dummy one */ 2460 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2461 sb_dummy.igu_sb_id = req->hw_sb; 2462 params.p_sb = &sb_dummy; 2463 params.sb_idx = req->sb_index; 2464 2465 memset(&vf_params, 0, sizeof(vf_params)); 2466 vf_params.vfid = vf->relative_vf_id; 2467 vf_params.vf_qid = (u8)req->tx_qid; 2468 vf_params.vf_legacy = vf_legacy; 2469 vf_params.qid_usage_idx = qid_usage_idx; 2470 2471 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2472 ¶ms, false, &vf_params); 2473 if (!p_cid) 2474 goto out; 2475 2476 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2477 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, 2478 req->pbl_addr, req->pbl_size, pq); 2479 if (rc) { 2480 status = PFVF_STATUS_FAILURE; 2481 qed_eth_queue_cid_release(p_hwfn, p_cid); 2482 } else { 2483 status = PFVF_STATUS_SUCCESS; 2484 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2485 p_queue->cids[qid_usage_idx].b_is_tx = true; 2486 cid = p_cid->cid; 2487 } 2488 2489 out: 2490 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); 2491 } 2492 2493 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2494 struct qed_vf_info *vf, 2495 u16 rxq_id, 2496 u8 qid_usage_idx, bool cqe_completion) 2497 { 2498 struct qed_vf_queue *p_queue; 2499 int rc = 0; 2500 2501 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { 2502 DP_VERBOSE(p_hwfn, 2503 QED_MSG_IOV, 2504 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2505 vf->relative_vf_id, rxq_id, qid_usage_idx); 2506 return -EINVAL; 2507 } 2508 2509 p_queue = &vf->vf_queues[rxq_id]; 2510 2511 /* We've validated the index and the existence of the active RXQ - 2512 * now we need to make sure that it's using the correct qid. 2513 */ 2514 if (!p_queue->cids[qid_usage_idx].p_cid || 2515 p_queue->cids[qid_usage_idx].b_is_tx) { 2516 struct qed_queue_cid *p_cid; 2517 2518 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 2519 DP_VERBOSE(p_hwfn, 2520 QED_MSG_IOV, 2521 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2522 vf->relative_vf_id, 2523 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); 2524 return -EINVAL; 2525 } 2526 2527 /* Now that we know we have a valid Rx-queue - close it */ 2528 rc = qed_eth_rx_queue_stop(p_hwfn, 2529 p_queue->cids[qid_usage_idx].p_cid, 2530 false, cqe_completion); 2531 if (rc) 2532 return rc; 2533 2534 p_queue->cids[qid_usage_idx].p_cid = NULL; 2535 vf->num_active_rxqs--; 2536 2537 return 0; 2538 } 2539 2540 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2541 struct qed_vf_info *vf, 2542 u16 txq_id, u8 qid_usage_idx) 2543 { 2544 struct qed_vf_queue *p_queue; 2545 int rc = 0; 2546 2547 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) 2548 return -EINVAL; 2549 2550 p_queue = &vf->vf_queues[txq_id]; 2551 if (!p_queue->cids[qid_usage_idx].p_cid || 2552 !p_queue->cids[qid_usage_idx].b_is_tx) 2553 return -EINVAL; 2554 2555 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); 2556 if (rc) 2557 return rc; 2558 2559 p_queue->cids[qid_usage_idx].p_cid = NULL; 2560 return 0; 2561 } 2562 2563 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2564 struct qed_ptt *p_ptt, 2565 struct qed_vf_info *vf) 2566 { 2567 u16 length = sizeof(struct pfvf_def_resp_tlv); 2568 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2569 u8 status = PFVF_STATUS_FAILURE; 2570 struct vfpf_stop_rxqs_tlv *req; 2571 u8 qid_usage_idx; 2572 int rc; 2573 2574 /* There has never been an official driver that used this interface 2575 * for stopping multiple queues, and it is now considered deprecated. 2576 * Validate this isn't used here. 2577 */ 2578 req = &mbx->req_virt->stop_rxqs; 2579 if (req->num_rxqs != 1) { 2580 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2581 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2582 vf->relative_vf_id); 2583 status = PFVF_STATUS_NOT_SUPPORTED; 2584 goto out; 2585 } 2586 2587 /* Find which qid-index is associated with the queue */ 2588 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2589 if (qid_usage_idx == QED_IOV_QID_INVALID) 2590 goto out; 2591 2592 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2593 qid_usage_idx, req->cqe_completion); 2594 if (!rc) 2595 status = PFVF_STATUS_SUCCESS; 2596 out: 2597 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2598 length, status); 2599 } 2600 2601 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2602 struct qed_ptt *p_ptt, 2603 struct qed_vf_info *vf) 2604 { 2605 u16 length = sizeof(struct pfvf_def_resp_tlv); 2606 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2607 u8 status = PFVF_STATUS_FAILURE; 2608 struct vfpf_stop_txqs_tlv *req; 2609 u8 qid_usage_idx; 2610 int rc; 2611 2612 /* There has never been an official driver that used this interface 2613 * for stopping multiple queues, and it is now considered deprecated. 2614 * Validate this isn't used here. 2615 */ 2616 req = &mbx->req_virt->stop_txqs; 2617 if (req->num_txqs != 1) { 2618 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2619 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2620 vf->relative_vf_id); 2621 status = PFVF_STATUS_NOT_SUPPORTED; 2622 goto out; 2623 } 2624 2625 /* Find which qid-index is associated with the queue */ 2626 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2627 if (qid_usage_idx == QED_IOV_QID_INVALID) 2628 goto out; 2629 2630 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); 2631 if (!rc) 2632 status = PFVF_STATUS_SUCCESS; 2633 2634 out: 2635 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2636 length, status); 2637 } 2638 2639 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2640 struct qed_ptt *p_ptt, 2641 struct qed_vf_info *vf) 2642 { 2643 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2644 u16 length = sizeof(struct pfvf_def_resp_tlv); 2645 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2646 struct vfpf_update_rxq_tlv *req; 2647 u8 status = PFVF_STATUS_FAILURE; 2648 u8 complete_event_flg; 2649 u8 complete_cqe_flg; 2650 u8 qid_usage_idx; 2651 int rc; 2652 u8 i; 2653 2654 req = &mbx->req_virt->update_rxq; 2655 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2656 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2657 2658 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2659 if (qid_usage_idx == QED_IOV_QID_INVALID) 2660 goto out; 2661 2662 /* There shouldn't exist a VF that uses queue-qids yet uses this 2663 * API with multiple Rx queues. Validate this. 2664 */ 2665 if ((vf->acquire.vfdev_info.capabilities & 2666 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { 2667 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2668 "VF[%d] supports QIDs but sends multiple queues\n", 2669 vf->relative_vf_id); 2670 goto out; 2671 } 2672 2673 /* Validate inputs - for the legacy case this is still true since 2674 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2675 */ 2676 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2677 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2678 QED_IOV_VALIDATE_Q_NA) || 2679 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2680 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2681 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2682 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2683 vf->relative_vf_id, req->rx_qid, 2684 req->num_rxqs); 2685 goto out; 2686 } 2687 } 2688 2689 /* Prepare the handlers */ 2690 for (i = 0; i < req->num_rxqs; i++) { 2691 u16 qid = req->rx_qid + i; 2692 2693 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2694 } 2695 2696 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2697 req->num_rxqs, 2698 complete_cqe_flg, 2699 complete_event_flg, 2700 QED_SPQ_MODE_EBLOCK, NULL); 2701 if (rc) 2702 goto out; 2703 2704 status = PFVF_STATUS_SUCCESS; 2705 out: 2706 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2707 length, status); 2708 } 2709 2710 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2711 void *p_tlvs_list, u16 req_type) 2712 { 2713 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2714 int len = 0; 2715 2716 do { 2717 if (!p_tlv->length) { 2718 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2719 return NULL; 2720 } 2721 2722 if (p_tlv->type == req_type) { 2723 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2724 "Extended tlv type %d, length %d found\n", 2725 p_tlv->type, p_tlv->length); 2726 return p_tlv; 2727 } 2728 2729 len += p_tlv->length; 2730 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2731 2732 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2733 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2734 return NULL; 2735 } 2736 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2737 2738 return NULL; 2739 } 2740 2741 static void 2742 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2743 struct qed_sp_vport_update_params *p_data, 2744 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2745 { 2746 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2747 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2748 2749 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2750 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2751 if (!p_act_tlv) 2752 return; 2753 2754 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2755 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2756 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2757 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2758 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2759 } 2760 2761 static void 2762 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2763 struct qed_sp_vport_update_params *p_data, 2764 struct qed_vf_info *p_vf, 2765 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2766 { 2767 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2768 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2769 2770 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2771 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2772 if (!p_vlan_tlv) 2773 return; 2774 2775 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2776 2777 /* Ignore the VF request if we're forcing a vlan */ 2778 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2779 p_data->update_inner_vlan_removal_flg = 1; 2780 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2781 } 2782 2783 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2784 } 2785 2786 static void 2787 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2788 struct qed_sp_vport_update_params *p_data, 2789 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2790 { 2791 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2792 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2793 2794 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2795 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2796 tlv); 2797 if (!p_tx_switch_tlv) 2798 return; 2799 2800 p_data->update_tx_switching_flg = 1; 2801 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2802 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2803 } 2804 2805 static void 2806 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2807 struct qed_sp_vport_update_params *p_data, 2808 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2809 { 2810 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2811 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2812 2813 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2814 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2815 if (!p_mcast_tlv) 2816 return; 2817 2818 p_data->update_approx_mcast_flg = 1; 2819 memcpy(p_data->bins, p_mcast_tlv->bins, 2820 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2821 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2822 } 2823 2824 static void 2825 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2826 struct qed_sp_vport_update_params *p_data, 2827 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2828 { 2829 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2830 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2831 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2832 2833 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2834 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2835 if (!p_accept_tlv) 2836 return; 2837 2838 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2839 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2840 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2841 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2842 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2843 } 2844 2845 static void 2846 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2847 struct qed_sp_vport_update_params *p_data, 2848 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2849 { 2850 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2851 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2852 2853 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2854 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2855 tlv); 2856 if (!p_accept_any_vlan) 2857 return; 2858 2859 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2860 p_data->update_accept_any_vlan_flg = 2861 p_accept_any_vlan->update_accept_any_vlan_flg; 2862 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2863 } 2864 2865 static void 2866 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2867 struct qed_vf_info *vf, 2868 struct qed_sp_vport_update_params *p_data, 2869 struct qed_rss_params *p_rss, 2870 struct qed_iov_vf_mbx *p_mbx, 2871 u16 *tlvs_mask, u16 *tlvs_accepted) 2872 { 2873 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2874 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2875 bool b_reject = false; 2876 u16 table_size; 2877 u16 i, q_idx; 2878 2879 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2880 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2881 if (!p_rss_tlv) { 2882 p_data->rss_params = NULL; 2883 return; 2884 } 2885 2886 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2887 2888 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2889 VFPF_UPDATE_RSS_CONFIG_FLAG); 2890 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2891 VFPF_UPDATE_RSS_CAPS_FLAG); 2892 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2893 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2894 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2895 VFPF_UPDATE_RSS_KEY_FLAG); 2896 2897 p_rss->rss_enable = p_rss_tlv->rss_enable; 2898 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2899 p_rss->rss_caps = p_rss_tlv->rss_caps; 2900 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2901 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2902 2903 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2904 (1 << p_rss_tlv->rss_table_size_log)); 2905 2906 for (i = 0; i < table_size; i++) { 2907 struct qed_queue_cid *p_cid; 2908 2909 q_idx = p_rss_tlv->rss_ind_table[i]; 2910 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2911 QED_IOV_VALIDATE_Q_ENABLE)) { 2912 DP_VERBOSE(p_hwfn, 2913 QED_MSG_IOV, 2914 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2915 vf->relative_vf_id, q_idx); 2916 b_reject = true; 2917 goto out; 2918 } 2919 2920 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 2921 p_rss->rss_ind_table[i] = p_cid; 2922 } 2923 2924 p_data->rss_params = p_rss; 2925 out: 2926 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2927 if (!b_reject) 2928 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2929 } 2930 2931 static void 2932 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2933 struct qed_vf_info *vf, 2934 struct qed_sp_vport_update_params *p_data, 2935 struct qed_sge_tpa_params *p_sge_tpa, 2936 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2937 { 2938 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2939 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2940 2941 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2942 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2943 2944 if (!p_sge_tpa_tlv) { 2945 p_data->sge_tpa_params = NULL; 2946 return; 2947 } 2948 2949 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2950 2951 p_sge_tpa->update_tpa_en_flg = 2952 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2953 p_sge_tpa->update_tpa_param_flg = 2954 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2955 VFPF_UPDATE_TPA_PARAM_FLAG); 2956 2957 p_sge_tpa->tpa_ipv4_en_flg = 2958 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2959 p_sge_tpa->tpa_ipv6_en_flg = 2960 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2961 p_sge_tpa->tpa_pkt_split_flg = 2962 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2963 p_sge_tpa->tpa_hdr_data_split_flg = 2964 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2965 p_sge_tpa->tpa_gro_consistent_flg = 2966 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2967 2968 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2969 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2970 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2971 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2972 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2973 2974 p_data->sge_tpa_params = p_sge_tpa; 2975 2976 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2977 } 2978 2979 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2980 u8 vfid, 2981 struct qed_sp_vport_update_params *params, 2982 u16 *tlvs) 2983 { 2984 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 2985 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 2986 struct qed_public_vf_info *vf_info; 2987 2988 /* Untrusted VFs can't even be trusted to know that fact. 2989 * Simply indicate everything is configured fine, and trace 2990 * configuration 'behind their back'. 2991 */ 2992 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 2993 return 0; 2994 2995 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 2996 2997 if (flags->update_rx_mode_config) { 2998 vf_info->rx_accept_mode = flags->rx_accept_filter; 2999 if (!vf_info->is_trusted_configured) 3000 flags->rx_accept_filter &= ~mask; 3001 } 3002 3003 if (flags->update_tx_mode_config) { 3004 vf_info->tx_accept_mode = flags->tx_accept_filter; 3005 if (!vf_info->is_trusted_configured) 3006 flags->tx_accept_filter &= ~mask; 3007 } 3008 3009 return 0; 3010 } 3011 3012 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 3013 struct qed_ptt *p_ptt, 3014 struct qed_vf_info *vf) 3015 { 3016 struct qed_rss_params *p_rss_params = NULL; 3017 struct qed_sp_vport_update_params params; 3018 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3019 struct qed_sge_tpa_params sge_tpa_params; 3020 u16 tlvs_mask = 0, tlvs_accepted = 0; 3021 u8 status = PFVF_STATUS_SUCCESS; 3022 u16 length; 3023 int rc; 3024 3025 /* Valiate PF can send such a request */ 3026 if (!vf->vport_instance) { 3027 DP_VERBOSE(p_hwfn, 3028 QED_MSG_IOV, 3029 "No VPORT instance available for VF[%d], failing vport update\n", 3030 vf->abs_vf_id); 3031 status = PFVF_STATUS_FAILURE; 3032 goto out; 3033 } 3034 p_rss_params = vzalloc(sizeof(*p_rss_params)); 3035 if (!p_rss_params) { 3036 status = PFVF_STATUS_FAILURE; 3037 goto out; 3038 } 3039 3040 memset(¶ms, 0, sizeof(params)); 3041 params.opaque_fid = vf->opaque_fid; 3042 params.vport_id = vf->vport_id; 3043 params.rss_params = NULL; 3044 3045 /* Search for extended tlvs list and update values 3046 * from VF in struct qed_sp_vport_update_params. 3047 */ 3048 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3049 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3050 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3051 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3052 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3053 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3054 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 3055 &sge_tpa_params, mbx, &tlvs_mask); 3056 3057 tlvs_accepted = tlvs_mask; 3058 3059 /* Some of the extended TLVs need to be validated first; In that case, 3060 * they can update the mask without updating the accepted [so that 3061 * PF could communicate to VF it has rejected request]. 3062 */ 3063 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3064 mbx, &tlvs_mask, &tlvs_accepted); 3065 3066 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 3067 ¶ms, &tlvs_accepted)) { 3068 tlvs_accepted = 0; 3069 status = PFVF_STATUS_NOT_SUPPORTED; 3070 goto out; 3071 } 3072 3073 if (!tlvs_accepted) { 3074 if (tlvs_mask) 3075 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3076 "Upper-layer prevents VF vport configuration\n"); 3077 else 3078 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3079 "No feature tlvs found for vport update\n"); 3080 status = PFVF_STATUS_NOT_SUPPORTED; 3081 goto out; 3082 } 3083 3084 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 3085 3086 if (rc) 3087 status = PFVF_STATUS_FAILURE; 3088 3089 out: 3090 vfree(p_rss_params); 3091 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3092 tlvs_mask, tlvs_accepted); 3093 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3094 } 3095 3096 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 3097 struct qed_vf_info *p_vf, 3098 struct qed_filter_ucast *p_params) 3099 { 3100 int i; 3101 3102 /* First remove entries and then add new ones */ 3103 if (p_params->opcode == QED_FILTER_REMOVE) { 3104 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3105 if (p_vf->shadow_config.vlans[i].used && 3106 p_vf->shadow_config.vlans[i].vid == 3107 p_params->vlan) { 3108 p_vf->shadow_config.vlans[i].used = false; 3109 break; 3110 } 3111 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3112 DP_VERBOSE(p_hwfn, 3113 QED_MSG_IOV, 3114 "VF [%d] - Tries to remove a non-existing vlan\n", 3115 p_vf->relative_vf_id); 3116 return -EINVAL; 3117 } 3118 } else if (p_params->opcode == QED_FILTER_REPLACE || 3119 p_params->opcode == QED_FILTER_FLUSH) { 3120 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3121 p_vf->shadow_config.vlans[i].used = false; 3122 } 3123 3124 /* In forced mode, we're willing to remove entries - but we don't add 3125 * new ones. 3126 */ 3127 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 3128 return 0; 3129 3130 if (p_params->opcode == QED_FILTER_ADD || 3131 p_params->opcode == QED_FILTER_REPLACE) { 3132 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3133 if (p_vf->shadow_config.vlans[i].used) 3134 continue; 3135 3136 p_vf->shadow_config.vlans[i].used = true; 3137 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3138 break; 3139 } 3140 3141 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3142 DP_VERBOSE(p_hwfn, 3143 QED_MSG_IOV, 3144 "VF [%d] - Tries to configure more than %d vlan filters\n", 3145 p_vf->relative_vf_id, 3146 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 3147 return -EINVAL; 3148 } 3149 } 3150 3151 return 0; 3152 } 3153 3154 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 3155 struct qed_vf_info *p_vf, 3156 struct qed_filter_ucast *p_params) 3157 { 3158 int i; 3159 3160 /* If we're in forced-mode, we don't allow any change */ 3161 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 3162 return 0; 3163 3164 /* Don't keep track of shadow copy since we don't intend to restore. */ 3165 if (p_vf->p_vf_info.is_trusted_configured) 3166 return 0; 3167 3168 /* First remove entries and then add new ones */ 3169 if (p_params->opcode == QED_FILTER_REMOVE) { 3170 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3171 if (ether_addr_equal(p_vf->shadow_config.macs[i], 3172 p_params->mac)) { 3173 eth_zero_addr(p_vf->shadow_config.macs[i]); 3174 break; 3175 } 3176 } 3177 3178 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3179 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3180 "MAC isn't configured\n"); 3181 return -EINVAL; 3182 } 3183 } else if (p_params->opcode == QED_FILTER_REPLACE || 3184 p_params->opcode == QED_FILTER_FLUSH) { 3185 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 3186 eth_zero_addr(p_vf->shadow_config.macs[i]); 3187 } 3188 3189 /* List the new MAC address */ 3190 if (p_params->opcode != QED_FILTER_ADD && 3191 p_params->opcode != QED_FILTER_REPLACE) 3192 return 0; 3193 3194 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3195 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 3196 ether_addr_copy(p_vf->shadow_config.macs[i], 3197 p_params->mac); 3198 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3199 "Added MAC at %d entry in shadow\n", i); 3200 break; 3201 } 3202 } 3203 3204 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3205 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 3206 return -EINVAL; 3207 } 3208 3209 return 0; 3210 } 3211 3212 static int 3213 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 3214 struct qed_vf_info *p_vf, 3215 struct qed_filter_ucast *p_params) 3216 { 3217 int rc = 0; 3218 3219 if (p_params->type == QED_FILTER_MAC) { 3220 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3221 if (rc) 3222 return rc; 3223 } 3224 3225 if (p_params->type == QED_FILTER_VLAN) 3226 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3227 3228 return rc; 3229 } 3230 3231 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3232 int vfid, struct qed_filter_ucast *params) 3233 { 3234 struct qed_public_vf_info *vf; 3235 3236 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3237 if (!vf) 3238 return -EINVAL; 3239 3240 /* No real decision to make; Store the configured MAC */ 3241 if (params->type == QED_FILTER_MAC || 3242 params->type == QED_FILTER_MAC_VLAN) { 3243 ether_addr_copy(vf->mac, params->mac); 3244 3245 if (vf->is_trusted_configured) { 3246 qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid); 3247 3248 /* Update and post bulleitin again */ 3249 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3250 } 3251 } 3252 3253 return 0; 3254 } 3255 3256 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3257 struct qed_ptt *p_ptt, 3258 struct qed_vf_info *vf) 3259 { 3260 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3261 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3262 struct vfpf_ucast_filter_tlv *req; 3263 u8 status = PFVF_STATUS_SUCCESS; 3264 struct qed_filter_ucast params; 3265 int rc; 3266 3267 /* Prepare the unicast filter params */ 3268 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3269 req = &mbx->req_virt->ucast_filter; 3270 params.opcode = (enum qed_filter_opcode)req->opcode; 3271 params.type = (enum qed_filter_ucast_type)req->type; 3272 3273 params.is_rx_filter = 1; 3274 params.is_tx_filter = 1; 3275 params.vport_to_remove_from = vf->vport_id; 3276 params.vport_to_add_to = vf->vport_id; 3277 memcpy(params.mac, req->mac, ETH_ALEN); 3278 params.vlan = req->vlan; 3279 3280 DP_VERBOSE(p_hwfn, 3281 QED_MSG_IOV, 3282 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %pM, vlan 0x%04x\n", 3283 vf->abs_vf_id, params.opcode, params.type, 3284 params.is_rx_filter ? "RX" : "", 3285 params.is_tx_filter ? "TX" : "", 3286 params.vport_to_add_to, 3287 params.mac, params.vlan); 3288 3289 if (!vf->vport_instance) { 3290 DP_VERBOSE(p_hwfn, 3291 QED_MSG_IOV, 3292 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3293 vf->abs_vf_id); 3294 status = PFVF_STATUS_FAILURE; 3295 goto out; 3296 } 3297 3298 /* Update shadow copy of the VF configuration */ 3299 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3300 status = PFVF_STATUS_FAILURE; 3301 goto out; 3302 } 3303 3304 /* Determine if the unicast filtering is acceptible by PF */ 3305 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3306 (params.type == QED_FILTER_VLAN || 3307 params.type == QED_FILTER_MAC_VLAN)) { 3308 /* Once VLAN is forced or PVID is set, do not allow 3309 * to add/replace any further VLANs. 3310 */ 3311 if (params.opcode == QED_FILTER_ADD || 3312 params.opcode == QED_FILTER_REPLACE) 3313 status = PFVF_STATUS_FORCED; 3314 goto out; 3315 } 3316 3317 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3318 (params.type == QED_FILTER_MAC || 3319 params.type == QED_FILTER_MAC_VLAN)) { 3320 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3321 (params.opcode != QED_FILTER_ADD && 3322 params.opcode != QED_FILTER_REPLACE)) 3323 status = PFVF_STATUS_FORCED; 3324 goto out; 3325 } 3326 3327 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3328 if (rc) { 3329 status = PFVF_STATUS_FAILURE; 3330 goto out; 3331 } 3332 3333 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3334 QED_SPQ_MODE_CB, NULL); 3335 if (rc) 3336 status = PFVF_STATUS_FAILURE; 3337 3338 out: 3339 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3340 sizeof(struct pfvf_def_resp_tlv), status); 3341 } 3342 3343 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3344 struct qed_ptt *p_ptt, 3345 struct qed_vf_info *vf) 3346 { 3347 int i; 3348 3349 /* Reset the SBs */ 3350 for (i = 0; i < vf->num_sbs; i++) 3351 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3352 vf->igu_sbs[i], 3353 vf->opaque_fid, false); 3354 3355 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3356 sizeof(struct pfvf_def_resp_tlv), 3357 PFVF_STATUS_SUCCESS); 3358 } 3359 3360 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3361 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3362 { 3363 u16 length = sizeof(struct pfvf_def_resp_tlv); 3364 u8 status = PFVF_STATUS_SUCCESS; 3365 3366 /* Disable Interrupts for VF */ 3367 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3368 3369 /* Reset Permission table */ 3370 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3371 3372 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3373 length, status); 3374 } 3375 3376 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3377 struct qed_ptt *p_ptt, 3378 struct qed_vf_info *p_vf) 3379 { 3380 u16 length = sizeof(struct pfvf_def_resp_tlv); 3381 u8 status = PFVF_STATUS_SUCCESS; 3382 int rc = 0; 3383 3384 qed_iov_vf_cleanup(p_hwfn, p_vf); 3385 3386 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3387 /* Stopping the VF */ 3388 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3389 p_vf->opaque_fid); 3390 3391 if (rc) { 3392 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3393 rc); 3394 status = PFVF_STATUS_FAILURE; 3395 } 3396 3397 p_vf->state = VF_STOPPED; 3398 } 3399 3400 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3401 length, status); 3402 } 3403 3404 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, 3405 struct qed_ptt *p_ptt, 3406 struct qed_vf_info *p_vf) 3407 { 3408 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3409 struct pfvf_read_coal_resp_tlv *p_resp; 3410 struct vfpf_read_coal_req_tlv *req; 3411 u8 status = PFVF_STATUS_FAILURE; 3412 struct qed_vf_queue *p_queue; 3413 struct qed_queue_cid *p_cid; 3414 u16 coal = 0, qid, i; 3415 bool b_is_rx; 3416 int rc = 0; 3417 3418 mbx->offset = (u8 *)mbx->reply_virt; 3419 req = &mbx->req_virt->read_coal_req; 3420 3421 qid = req->qid; 3422 b_is_rx = req->is_rx ? true : false; 3423 3424 if (b_is_rx) { 3425 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, 3426 QED_IOV_VALIDATE_Q_ENABLE)) { 3427 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3428 "VF[%d]: Invalid Rx queue_id = %d\n", 3429 p_vf->abs_vf_id, qid); 3430 goto send_resp; 3431 } 3432 3433 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3434 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3435 if (rc) 3436 goto send_resp; 3437 } else { 3438 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, 3439 QED_IOV_VALIDATE_Q_ENABLE)) { 3440 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3441 "VF[%d]: Invalid Tx queue_id = %d\n", 3442 p_vf->abs_vf_id, qid); 3443 goto send_resp; 3444 } 3445 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3446 p_queue = &p_vf->vf_queues[qid]; 3447 if ((!p_queue->cids[i].p_cid) || 3448 (!p_queue->cids[i].b_is_tx)) 3449 continue; 3450 3451 p_cid = p_queue->cids[i].p_cid; 3452 3453 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3454 if (rc) 3455 goto send_resp; 3456 break; 3457 } 3458 } 3459 3460 status = PFVF_STATUS_SUCCESS; 3461 3462 send_resp: 3463 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, 3464 sizeof(*p_resp)); 3465 p_resp->coal = coal; 3466 3467 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 3468 sizeof(struct channel_list_end_tlv)); 3469 3470 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3471 } 3472 3473 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, 3474 struct qed_ptt *p_ptt, 3475 struct qed_vf_info *vf) 3476 { 3477 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3478 struct vfpf_update_coalesce *req; 3479 u8 status = PFVF_STATUS_FAILURE; 3480 struct qed_queue_cid *p_cid; 3481 u16 rx_coal, tx_coal; 3482 int rc = 0, i; 3483 u16 qid; 3484 3485 req = &mbx->req_virt->update_coalesce; 3486 3487 rx_coal = req->rx_coal; 3488 tx_coal = req->tx_coal; 3489 qid = req->qid; 3490 3491 if (!qed_iov_validate_rxq(p_hwfn, vf, qid, 3492 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { 3493 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3494 "VF[%d]: Invalid Rx queue_id = %d\n", 3495 vf->abs_vf_id, qid); 3496 goto out; 3497 } 3498 3499 if (!qed_iov_validate_txq(p_hwfn, vf, qid, 3500 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { 3501 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3502 "VF[%d]: Invalid Tx queue_id = %d\n", 3503 vf->abs_vf_id, qid); 3504 goto out; 3505 } 3506 3507 DP_VERBOSE(p_hwfn, 3508 QED_MSG_IOV, 3509 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3510 vf->abs_vf_id, rx_coal, tx_coal, qid); 3511 3512 if (rx_coal) { 3513 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3514 3515 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3516 if (rc) { 3517 DP_VERBOSE(p_hwfn, 3518 QED_MSG_IOV, 3519 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3520 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3521 goto out; 3522 } 3523 vf->rx_coal = rx_coal; 3524 } 3525 3526 if (tx_coal) { 3527 struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; 3528 3529 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3530 if (!p_queue->cids[i].p_cid) 3531 continue; 3532 3533 if (!p_queue->cids[i].b_is_tx) 3534 continue; 3535 3536 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3537 p_queue->cids[i].p_cid); 3538 3539 if (rc) { 3540 DP_VERBOSE(p_hwfn, 3541 QED_MSG_IOV, 3542 "VF[%d]: Unable to set tx queue coalesce\n", 3543 vf->abs_vf_id); 3544 goto out; 3545 } 3546 } 3547 vf->tx_coal = tx_coal; 3548 } 3549 3550 status = PFVF_STATUS_SUCCESS; 3551 out: 3552 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3553 sizeof(struct pfvf_def_resp_tlv), status); 3554 } 3555 3556 static int 3557 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3558 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3559 { 3560 int cnt; 3561 u32 val; 3562 3563 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_vf->concrete_fid); 3564 3565 for (cnt = 0; cnt < 50; cnt++) { 3566 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3567 if (!val) 3568 break; 3569 msleep(20); 3570 } 3571 qed_fid_pretend(p_hwfn, p_ptt, (u16)p_hwfn->hw_info.concrete_fid); 3572 3573 if (cnt == 50) { 3574 DP_ERR(p_hwfn, 3575 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3576 p_vf->abs_vf_id, val); 3577 return -EBUSY; 3578 } 3579 3580 return 0; 3581 } 3582 3583 #define MAX_NUM_EXT_VOQS (MAX_NUM_PORTS * NUM_OF_TCS) 3584 3585 static int 3586 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3587 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3588 { 3589 u32 prod, cons[MAX_NUM_EXT_VOQS], distance[MAX_NUM_EXT_VOQS], tmp; 3590 u8 max_phys_tcs_per_port = p_hwfn->qm_info.max_phys_tcs_per_port; 3591 u8 max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; 3592 u32 prod_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0; 3593 u32 cons_voq0_addr = PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0; 3594 u8 port_id, tc, tc_id = 0, voq = 0; 3595 int cnt; 3596 3597 memset(cons, 0, MAX_NUM_EXT_VOQS * sizeof(u32)); 3598 memset(distance, 0, MAX_NUM_EXT_VOQS * sizeof(u32)); 3599 3600 /* Read initial consumers & producers */ 3601 for (port_id = 0; port_id < max_ports_per_engine; port_id++) { 3602 /* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */ 3603 for (tc = 0; tc < max_phys_tcs_per_port + 1; tc++) { 3604 tc_id = (tc < max_phys_tcs_per_port) ? tc : PURE_LB_TC; 3605 voq = VOQ(port_id, tc_id, max_phys_tcs_per_port); 3606 cons[voq] = qed_rd(p_hwfn, p_ptt, 3607 cons_voq0_addr + voq * 0x40); 3608 prod = qed_rd(p_hwfn, p_ptt, 3609 prod_voq0_addr + voq * 0x40); 3610 distance[voq] = prod - cons[voq]; 3611 } 3612 } 3613 3614 /* Wait for consumers to pass the producers */ 3615 port_id = 0; 3616 tc = 0; 3617 for (cnt = 0; cnt < 50; cnt++) { 3618 for (; port_id < max_ports_per_engine; port_id++) { 3619 /* "max_phys_tcs_per_port" active TCs + 1 pure LB TC */ 3620 for (; tc < max_phys_tcs_per_port + 1; tc++) { 3621 tc_id = (tc < max_phys_tcs_per_port) ? 3622 tc : PURE_LB_TC; 3623 voq = VOQ(port_id, 3624 tc_id, max_phys_tcs_per_port); 3625 tmp = qed_rd(p_hwfn, p_ptt, 3626 cons_voq0_addr + voq * 0x40); 3627 if (distance[voq] > tmp - cons[voq]) 3628 break; 3629 } 3630 3631 if (tc == max_phys_tcs_per_port + 1) 3632 tc = 0; 3633 else 3634 break; 3635 } 3636 3637 if (port_id == max_ports_per_engine) 3638 break; 3639 3640 msleep(20); 3641 } 3642 3643 if (cnt == 50) { 3644 DP_ERR(p_hwfn, "VF[%d]: pbf poll failed on VOQ%d\n", 3645 p_vf->abs_vf_id, (int)voq); 3646 3647 DP_ERR(p_hwfn, "VOQ %d has port_id as %d and tc_id as %d]\n", 3648 (int)voq, (int)port_id, (int)tc_id); 3649 3650 return -EBUSY; 3651 } 3652 3653 return 0; 3654 } 3655 3656 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3657 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3658 { 3659 int rc; 3660 3661 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3662 if (rc) 3663 return rc; 3664 3665 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3666 if (rc) 3667 return rc; 3668 3669 return 0; 3670 } 3671 3672 static int 3673 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3674 struct qed_ptt *p_ptt, 3675 u16 rel_vf_id, u32 *ack_vfs) 3676 { 3677 struct qed_vf_info *p_vf; 3678 int rc = 0; 3679 3680 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3681 if (!p_vf) 3682 return 0; 3683 3684 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3685 (1ULL << (rel_vf_id % 64))) { 3686 u16 vfid = p_vf->abs_vf_id; 3687 3688 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3689 "VF[%d] - Handling FLR\n", vfid); 3690 3691 qed_iov_vf_cleanup(p_hwfn, p_vf); 3692 3693 /* If VF isn't active, no need for anything but SW */ 3694 if (!p_vf->b_init) 3695 goto cleanup; 3696 3697 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3698 if (rc) 3699 goto cleanup; 3700 3701 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3702 if (rc) { 3703 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3704 return rc; 3705 } 3706 3707 /* Workaround to make VF-PF channel ready, as FW 3708 * doesn't do that as a part of FLR. 3709 */ 3710 REG_WR(p_hwfn, 3711 GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM, 3712 USTORM_VF_PF_CHANNEL_READY, vfid), 1); 3713 3714 /* VF_STOPPED has to be set only after final cleanup 3715 * but prior to re-enabling the VF. 3716 */ 3717 p_vf->state = VF_STOPPED; 3718 3719 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3720 if (rc) { 3721 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3722 vfid); 3723 return rc; 3724 } 3725 cleanup: 3726 /* Mark VF for ack and clean pending state */ 3727 if (p_vf->state == VF_RESET) 3728 p_vf->state = VF_STOPPED; 3729 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3730 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3731 ~(1ULL << (rel_vf_id % 64)); 3732 p_vf->vf_mbx.b_pending_msg = false; 3733 } 3734 3735 return rc; 3736 } 3737 3738 static int 3739 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3740 { 3741 u32 ack_vfs[VF_MAX_STATIC / 32]; 3742 int rc = 0; 3743 u16 i; 3744 3745 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3746 3747 /* Since BRB <-> PRS interface can't be tested as part of the flr 3748 * polling due to HW limitations, simply sleep a bit. And since 3749 * there's no need to wait per-vf, do it before looping. 3750 */ 3751 msleep(100); 3752 3753 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3754 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3755 3756 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3757 return rc; 3758 } 3759 3760 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3761 { 3762 bool found = false; 3763 u16 i; 3764 3765 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3766 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3767 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3768 "[%08x,...,%08x]: %08x\n", 3769 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3770 3771 if (!p_hwfn->cdev->p_iov_info) { 3772 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3773 return false; 3774 } 3775 3776 /* Mark VFs */ 3777 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3778 struct qed_vf_info *p_vf; 3779 u8 vfid; 3780 3781 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3782 if (!p_vf) 3783 continue; 3784 3785 vfid = p_vf->abs_vf_id; 3786 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3787 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3788 u16 rel_vf_id = p_vf->relative_vf_id; 3789 3790 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3791 "VF[%d] [rel %d] got FLR-ed\n", 3792 vfid, rel_vf_id); 3793 3794 p_vf->state = VF_RESET; 3795 3796 /* No need to lock here, since pending_flr should 3797 * only change here and before ACKing MFw. Since 3798 * MFW will not trigger an additional attention for 3799 * VF flr until ACKs, we're safe. 3800 */ 3801 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3802 found = true; 3803 } 3804 } 3805 3806 return found; 3807 } 3808 3809 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3810 u16 vfid, 3811 struct qed_mcp_link_params *p_params, 3812 struct qed_mcp_link_state *p_link, 3813 struct qed_mcp_link_capabilities *p_caps) 3814 { 3815 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3816 vfid, 3817 false); 3818 struct qed_bulletin_content *p_bulletin; 3819 3820 if (!p_vf) 3821 return; 3822 3823 p_bulletin = p_vf->bulletin.p_virt; 3824 3825 if (p_params) 3826 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3827 if (p_link) 3828 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3829 if (p_caps) 3830 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3831 } 3832 3833 static int 3834 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn, 3835 struct qed_ptt *p_ptt, 3836 struct qed_vf_info *p_vf) 3837 { 3838 struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt; 3839 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3840 struct vfpf_bulletin_update_mac_tlv *p_req; 3841 u8 status = PFVF_STATUS_SUCCESS; 3842 int rc = 0; 3843 3844 if (!p_vf->p_vf_info.is_trusted_configured) { 3845 DP_VERBOSE(p_hwfn, 3846 QED_MSG_IOV, 3847 "Blocking bulletin update request from untrusted VF[%d]\n", 3848 p_vf->abs_vf_id); 3849 status = PFVF_STATUS_NOT_SUPPORTED; 3850 rc = -EINVAL; 3851 goto send_status; 3852 } 3853 3854 p_req = &mbx->req_virt->bulletin_update_mac; 3855 ether_addr_copy(p_bulletin->mac, p_req->mac); 3856 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3857 "Updated bulletin of VF[%d] with requested MAC[%pM]\n", 3858 p_vf->abs_vf_id, p_req->mac); 3859 3860 send_status: 3861 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3862 CHANNEL_TLV_BULLETIN_UPDATE_MAC, 3863 sizeof(struct pfvf_def_resp_tlv), status); 3864 return rc; 3865 } 3866 3867 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3868 struct qed_ptt *p_ptt, int vfid) 3869 { 3870 struct qed_iov_vf_mbx *mbx; 3871 struct qed_vf_info *p_vf; 3872 3873 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3874 if (!p_vf) 3875 return; 3876 3877 mbx = &p_vf->vf_mbx; 3878 3879 /* qed_iov_process_mbx_request */ 3880 if (!mbx->b_pending_msg) { 3881 DP_NOTICE(p_hwfn, 3882 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3883 p_vf->abs_vf_id); 3884 return; 3885 } 3886 mbx->b_pending_msg = false; 3887 3888 mbx->first_tlv = mbx->req_virt->first_tlv; 3889 3890 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3891 "VF[%02x]: Processing mailbox message [type %04x]\n", 3892 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3893 3894 /* check if tlv type is known */ 3895 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3896 !p_vf->b_malicious) { 3897 switch (mbx->first_tlv.tl.type) { 3898 case CHANNEL_TLV_ACQUIRE: 3899 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3900 break; 3901 case CHANNEL_TLV_VPORT_START: 3902 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3903 break; 3904 case CHANNEL_TLV_VPORT_TEARDOWN: 3905 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3906 break; 3907 case CHANNEL_TLV_START_RXQ: 3908 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3909 break; 3910 case CHANNEL_TLV_START_TXQ: 3911 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3912 break; 3913 case CHANNEL_TLV_STOP_RXQS: 3914 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3915 break; 3916 case CHANNEL_TLV_STOP_TXQS: 3917 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3918 break; 3919 case CHANNEL_TLV_UPDATE_RXQ: 3920 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3921 break; 3922 case CHANNEL_TLV_VPORT_UPDATE: 3923 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3924 break; 3925 case CHANNEL_TLV_UCAST_FILTER: 3926 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3927 break; 3928 case CHANNEL_TLV_CLOSE: 3929 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3930 break; 3931 case CHANNEL_TLV_INT_CLEANUP: 3932 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3933 break; 3934 case CHANNEL_TLV_RELEASE: 3935 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3936 break; 3937 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3938 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3939 break; 3940 case CHANNEL_TLV_COALESCE_UPDATE: 3941 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 3942 break; 3943 case CHANNEL_TLV_COALESCE_READ: 3944 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 3945 break; 3946 case CHANNEL_TLV_BULLETIN_UPDATE_MAC: 3947 qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf); 3948 break; 3949 } 3950 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3951 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3952 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3953 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3954 3955 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3956 mbx->first_tlv.tl.type, 3957 sizeof(struct pfvf_def_resp_tlv), 3958 PFVF_STATUS_MALICIOUS); 3959 } else { 3960 /* unknown TLV - this may belong to a VF driver from the future 3961 * - a version written after this PF driver was written, which 3962 * supports features unknown as of yet. Too bad since we don't 3963 * support them. Or this may be because someone wrote a crappy 3964 * VF driver and is sending garbage over the channel. 3965 */ 3966 DP_NOTICE(p_hwfn, 3967 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3968 p_vf->abs_vf_id, 3969 mbx->first_tlv.tl.type, 3970 mbx->first_tlv.tl.length, 3971 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3972 3973 /* Try replying in case reply address matches the acquisition's 3974 * posted address. 3975 */ 3976 if (p_vf->acquire.first_tlv.reply_address && 3977 (mbx->first_tlv.reply_address == 3978 p_vf->acquire.first_tlv.reply_address)) { 3979 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3980 mbx->first_tlv.tl.type, 3981 sizeof(struct pfvf_def_resp_tlv), 3982 PFVF_STATUS_NOT_SUPPORTED); 3983 } else { 3984 DP_VERBOSE(p_hwfn, 3985 QED_MSG_IOV, 3986 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3987 p_vf->abs_vf_id); 3988 } 3989 } 3990 } 3991 3992 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3993 { 3994 int i; 3995 3996 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3997 3998 qed_for_each_vf(p_hwfn, i) { 3999 struct qed_vf_info *p_vf; 4000 4001 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 4002 if (p_vf->vf_mbx.b_pending_msg) 4003 events[i / 64] |= 1ULL << (i % 64); 4004 } 4005 } 4006 4007 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 4008 u16 abs_vfid) 4009 { 4010 u8 min = (u8)p_hwfn->cdev->p_iov_info->first_vf_in_pf; 4011 4012 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 4013 DP_VERBOSE(p_hwfn, 4014 QED_MSG_IOV, 4015 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 4016 abs_vfid); 4017 return NULL; 4018 } 4019 4020 return &p_hwfn->pf_iov_info->vfs_array[(u8)abs_vfid - min]; 4021 } 4022 4023 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 4024 u16 abs_vfid, struct regpair *vf_msg) 4025 { 4026 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 4027 abs_vfid); 4028 4029 if (!p_vf) 4030 return 0; 4031 4032 /* List the physical address of the request so that handler 4033 * could later on copy the message from it. 4034 */ 4035 p_vf->vf_mbx.pending_req = HILO_64(vf_msg->hi, vf_msg->lo); 4036 4037 /* Mark the event and schedule the workqueue */ 4038 p_vf->vf_mbx.b_pending_msg = true; 4039 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 4040 4041 return 0; 4042 } 4043 4044 void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 4045 struct fw_err_data *p_data) 4046 { 4047 struct qed_vf_info *p_vf; 4048 4049 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, qed_vf_from_entity_id 4050 (p_data->entity_id)); 4051 if (!p_vf) 4052 return; 4053 4054 if (!p_vf->b_malicious) { 4055 DP_NOTICE(p_hwfn, 4056 "VF [%d] - Malicious behavior [%02x]\n", 4057 p_vf->abs_vf_id, p_data->err_id); 4058 4059 p_vf->b_malicious = true; 4060 } else { 4061 DP_INFO(p_hwfn, 4062 "VF [%d] - Malicious behavior [%02x]\n", 4063 p_vf->abs_vf_id, p_data->err_id); 4064 } 4065 } 4066 4067 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo, 4068 union event_ring_data *data, u8 fw_return_code) 4069 { 4070 switch (opcode) { 4071 case COMMON_EVENT_VF_PF_CHANNEL: 4072 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 4073 &data->vf_pf_channel.msg_addr); 4074 default: 4075 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 4076 opcode); 4077 return -EINVAL; 4078 } 4079 } 4080 4081 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4082 { 4083 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 4084 u16 i; 4085 4086 if (!p_iov) 4087 goto out; 4088 4089 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4090 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4091 return i; 4092 4093 out: 4094 return MAX_NUM_VFS; 4095 } 4096 4097 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 4098 int vfid) 4099 { 4100 struct qed_dmae_params params; 4101 struct qed_vf_info *vf_info; 4102 4103 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4104 if (!vf_info) 4105 return -EINVAL; 4106 4107 memset(¶ms, 0, sizeof(params)); 4108 SET_FIELD(params.flags, QED_DMAE_PARAMS_SRC_VF_VALID, 0x1); 4109 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 0x1); 4110 params.src_vfid = vf_info->abs_vf_id; 4111 4112 if (qed_dmae_host2host(p_hwfn, ptt, 4113 vf_info->vf_mbx.pending_req, 4114 vf_info->vf_mbx.req_phys, 4115 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 4116 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4117 "Failed to copy message from VF 0x%02x\n", vfid); 4118 4119 return -EIO; 4120 } 4121 4122 return 0; 4123 } 4124 4125 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 4126 u8 *mac, int vfid) 4127 { 4128 struct qed_vf_info *vf_info; 4129 u64 feature; 4130 4131 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4132 if (!vf_info) { 4133 DP_NOTICE(p_hwfn->cdev, 4134 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4135 return; 4136 } 4137 4138 if (vf_info->b_malicious) { 4139 DP_NOTICE(p_hwfn->cdev, 4140 "Can't set forced MAC to malicious VF [%d]\n", vfid); 4141 return; 4142 } 4143 4144 if (vf_info->p_vf_info.is_trusted_configured) { 4145 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4146 /* Trust mode will disable Forced MAC */ 4147 vf_info->bulletin.p_virt->valid_bitmap &= 4148 ~BIT(MAC_ADDR_FORCED); 4149 } else { 4150 feature = BIT(MAC_ADDR_FORCED); 4151 /* Forced MAC will disable MAC_ADDR */ 4152 vf_info->bulletin.p_virt->valid_bitmap &= 4153 ~BIT(VFPF_BULLETIN_MAC_ADDR); 4154 } 4155 4156 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 4157 4158 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4159 4160 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4161 } 4162 4163 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) 4164 { 4165 struct qed_vf_info *vf_info; 4166 u64 feature; 4167 4168 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4169 if (!vf_info) { 4170 DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n", 4171 vfid); 4172 return -EINVAL; 4173 } 4174 4175 if (vf_info->b_malicious) { 4176 DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n", 4177 vfid); 4178 return -EINVAL; 4179 } 4180 4181 if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) { 4182 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4183 "Can not set MAC, Forced MAC is configured\n"); 4184 return -EINVAL; 4185 } 4186 4187 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4188 ether_addr_copy(vf_info->bulletin.p_virt->mac, mac); 4189 4190 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4191 4192 if (vf_info->p_vf_info.is_trusted_configured) 4193 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4194 4195 return 0; 4196 } 4197 4198 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 4199 u16 pvid, int vfid) 4200 { 4201 struct qed_vf_info *vf_info; 4202 u64 feature; 4203 4204 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4205 if (!vf_info) { 4206 DP_NOTICE(p_hwfn->cdev, 4207 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4208 return; 4209 } 4210 4211 if (vf_info->b_malicious) { 4212 DP_NOTICE(p_hwfn->cdev, 4213 "Can't set forced vlan to malicious VF [%d]\n", vfid); 4214 return; 4215 } 4216 4217 feature = 1 << VLAN_ADDR_FORCED; 4218 vf_info->bulletin.p_virt->pvid = pvid; 4219 if (pvid) 4220 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4221 else 4222 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4223 4224 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4225 } 4226 4227 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 4228 int vfid, u16 vxlan_port, u16 geneve_port) 4229 { 4230 struct qed_vf_info *vf_info; 4231 4232 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4233 if (!vf_info) { 4234 DP_NOTICE(p_hwfn->cdev, 4235 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4236 return; 4237 } 4238 4239 if (vf_info->b_malicious) { 4240 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4241 "Can not set udp ports to malicious VF [%d]\n", 4242 vfid); 4243 return; 4244 } 4245 4246 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4247 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4248 } 4249 4250 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 4251 { 4252 struct qed_vf_info *p_vf_info; 4253 4254 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4255 if (!p_vf_info) 4256 return false; 4257 4258 return !!p_vf_info->vport_instance; 4259 } 4260 4261 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 4262 { 4263 struct qed_vf_info *p_vf_info; 4264 4265 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4266 if (!p_vf_info) 4267 return true; 4268 4269 return p_vf_info->state == VF_STOPPED; 4270 } 4271 4272 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 4273 { 4274 struct qed_vf_info *vf_info; 4275 4276 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4277 if (!vf_info) 4278 return false; 4279 4280 return vf_info->spoof_chk; 4281 } 4282 4283 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 4284 { 4285 struct qed_vf_info *vf; 4286 int rc = -EINVAL; 4287 4288 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4289 DP_NOTICE(p_hwfn, 4290 "SR-IOV sanity check failed, can't set spoofchk\n"); 4291 goto out; 4292 } 4293 4294 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4295 if (!vf) 4296 goto out; 4297 4298 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4299 /* After VF VPORT start PF will configure spoof check */ 4300 vf->req_spoofchk_val = val; 4301 rc = 0; 4302 goto out; 4303 } 4304 4305 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 4306 4307 out: 4308 return rc; 4309 } 4310 4311 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4312 { 4313 struct qed_vf_info *p_vf; 4314 4315 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4316 if (!p_vf || !p_vf->bulletin.p_virt) 4317 return NULL; 4318 4319 if (!(p_vf->bulletin.p_virt->valid_bitmap & 4320 BIT(VFPF_BULLETIN_MAC_ADDR))) 4321 return NULL; 4322 4323 return p_vf->bulletin.p_virt->mac; 4324 } 4325 4326 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 4327 u16 rel_vf_id) 4328 { 4329 struct qed_vf_info *p_vf; 4330 4331 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4332 if (!p_vf || !p_vf->bulletin.p_virt) 4333 return NULL; 4334 4335 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 4336 return NULL; 4337 4338 return p_vf->bulletin.p_virt->mac; 4339 } 4340 4341 static u16 4342 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4343 { 4344 struct qed_vf_info *p_vf; 4345 4346 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4347 if (!p_vf || !p_vf->bulletin.p_virt) 4348 return 0; 4349 4350 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 4351 return 0; 4352 4353 return p_vf->bulletin.p_virt->pvid; 4354 } 4355 4356 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 4357 struct qed_ptt *p_ptt, int vfid, int val) 4358 { 4359 struct qed_vf_info *vf; 4360 u8 abs_vp_id = 0; 4361 u16 rl_id; 4362 int rc; 4363 4364 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4365 if (!vf) 4366 return -EINVAL; 4367 4368 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4369 if (rc) 4370 return rc; 4371 4372 rl_id = abs_vp_id; /* The "rl_id" is set as the "vport_id" */ 4373 return qed_init_global_rl(p_hwfn, p_ptt, rl_id, (u32)val, 4374 QM_RL_TYPE_NORMAL); 4375 } 4376 4377 static int 4378 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 4379 { 4380 struct qed_vf_info *vf; 4381 u8 vport_id; 4382 int i; 4383 4384 for_each_hwfn(cdev, i) { 4385 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4386 4387 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4388 DP_NOTICE(p_hwfn, 4389 "SR-IOV sanity check failed, can't set min rate\n"); 4390 return -EINVAL; 4391 } 4392 } 4393 4394 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 4395 vport_id = vf->vport_id; 4396 4397 return qed_configure_vport_wfq(cdev, vport_id, rate); 4398 } 4399 4400 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 4401 { 4402 struct qed_wfq_data *vf_vp_wfq; 4403 struct qed_vf_info *vf_info; 4404 4405 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4406 if (!vf_info) 4407 return 0; 4408 4409 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4410 4411 if (vf_vp_wfq->configured) 4412 return vf_vp_wfq->min_speed; 4413 else 4414 return 0; 4415 } 4416 4417 /** 4418 * qed_schedule_iov - schedules IOV task for VF and PF 4419 * @hwfn: hardware function pointer 4420 * @flag: IOV flag for VF/PF 4421 */ 4422 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 4423 { 4424 /* Memory barrier for setting atomic bit */ 4425 smp_mb__before_atomic(); 4426 set_bit(flag, &hwfn->iov_task_flags); 4427 /* Memory barrier after setting atomic bit */ 4428 smp_mb__after_atomic(); 4429 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 4430 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 4431 } 4432 4433 void qed_vf_start_iov_wq(struct qed_dev *cdev) 4434 { 4435 int i; 4436 4437 for_each_hwfn(cdev, i) 4438 queue_delayed_work(cdev->hwfns[i].iov_wq, 4439 &cdev->hwfns[i].iov_task, 0); 4440 } 4441 4442 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 4443 { 4444 int i, j; 4445 4446 for_each_hwfn(cdev, i) 4447 if (cdev->hwfns[i].iov_wq) 4448 flush_workqueue(cdev->hwfns[i].iov_wq); 4449 4450 /* Mark VFs for disablement */ 4451 qed_iov_set_vfs_to_disable(cdev, true); 4452 4453 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 4454 pci_disable_sriov(cdev->pdev); 4455 4456 if (cdev->recov_in_prog) { 4457 DP_VERBOSE(cdev, 4458 QED_MSG_IOV, 4459 "Skip SRIOV disable operations in the device since a recovery is in progress\n"); 4460 goto out; 4461 } 4462 4463 for_each_hwfn(cdev, i) { 4464 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4465 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4466 4467 /* Failure to acquire the ptt in 100g creates an odd error 4468 * where the first engine has already relased IOV. 4469 */ 4470 if (!ptt) { 4471 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4472 return -EBUSY; 4473 } 4474 4475 /* Clean WFQ db and configure equal weight for all vports */ 4476 qed_clean_wfq_db(hwfn, ptt); 4477 4478 qed_for_each_vf(hwfn, j) { 4479 int k; 4480 4481 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 4482 continue; 4483 4484 /* Wait until VF is disabled before releasing */ 4485 for (k = 0; k < 100; k++) { 4486 if (!qed_iov_is_vf_stopped(hwfn, j)) 4487 msleep(20); 4488 else 4489 break; 4490 } 4491 4492 if (k < 100) 4493 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 4494 ptt, j); 4495 else 4496 DP_ERR(hwfn, 4497 "Timeout waiting for VF's FLR to end\n"); 4498 } 4499 4500 qed_ptt_release(hwfn, ptt); 4501 } 4502 out: 4503 qed_iov_set_vfs_to_disable(cdev, false); 4504 4505 return 0; 4506 } 4507 4508 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 4509 u16 vfid, 4510 struct qed_iov_vf_init_params *params) 4511 { 4512 u16 base, i; 4513 4514 /* Since we have an equal resource distribution per-VF, and we assume 4515 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 4516 * sequentially from there. 4517 */ 4518 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 4519 4520 params->rel_vf_id = vfid; 4521 for (i = 0; i < params->num_queues; i++) { 4522 params->req_rx_queue[i] = base + i; 4523 params->req_tx_queue[i] = base + i; 4524 } 4525 } 4526 4527 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4528 { 4529 struct qed_iov_vf_init_params params; 4530 struct qed_hwfn *hwfn; 4531 struct qed_ptt *ptt; 4532 int i, j, rc; 4533 4534 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4535 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4536 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4537 return -EINVAL; 4538 } 4539 4540 memset(¶ms, 0, sizeof(params)); 4541 4542 /* Initialize HW for VF access */ 4543 for_each_hwfn(cdev, j) { 4544 hwfn = &cdev->hwfns[j]; 4545 ptt = qed_ptt_acquire(hwfn); 4546 4547 /* Make sure not to use more than 16 queues per VF */ 4548 params.num_queues = min_t(int, 4549 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4550 16); 4551 4552 if (!ptt) { 4553 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4554 rc = -EBUSY; 4555 goto err; 4556 } 4557 4558 for (i = 0; i < num; i++) { 4559 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4560 continue; 4561 4562 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4563 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4564 if (rc) { 4565 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4566 qed_ptt_release(hwfn, ptt); 4567 goto err; 4568 } 4569 } 4570 4571 qed_ptt_release(hwfn, ptt); 4572 } 4573 4574 /* Enable SRIOV PCIe functions */ 4575 rc = pci_enable_sriov(cdev->pdev, num); 4576 if (rc) { 4577 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4578 goto err; 4579 } 4580 4581 hwfn = QED_LEADING_HWFN(cdev); 4582 ptt = qed_ptt_acquire(hwfn); 4583 if (!ptt) { 4584 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4585 rc = -EBUSY; 4586 goto err; 4587 } 4588 4589 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB); 4590 if (rc) 4591 DP_INFO(cdev, "Failed to update eswitch mode\n"); 4592 qed_ptt_release(hwfn, ptt); 4593 4594 return num; 4595 4596 err: 4597 qed_sriov_disable(cdev, false); 4598 return rc; 4599 } 4600 4601 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4602 { 4603 if (!IS_QED_SRIOV(cdev)) { 4604 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4605 return -EOPNOTSUPP; 4606 } 4607 4608 if (num_vfs_param) 4609 return qed_sriov_enable(cdev, num_vfs_param); 4610 else 4611 return qed_sriov_disable(cdev, true); 4612 } 4613 4614 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4615 { 4616 int i; 4617 4618 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4619 DP_VERBOSE(cdev, QED_MSG_IOV, 4620 "Cannot set a VF MAC; Sriov is not enabled\n"); 4621 return -EINVAL; 4622 } 4623 4624 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4625 DP_VERBOSE(cdev, QED_MSG_IOV, 4626 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4627 return -EINVAL; 4628 } 4629 4630 for_each_hwfn(cdev, i) { 4631 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4632 struct qed_public_vf_info *vf_info; 4633 4634 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4635 if (!vf_info) 4636 continue; 4637 4638 /* Set the MAC, and schedule the IOV task */ 4639 if (vf_info->is_trusted_configured) 4640 ether_addr_copy(vf_info->mac, mac); 4641 else 4642 ether_addr_copy(vf_info->forced_mac, mac); 4643 4644 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4645 } 4646 4647 return 0; 4648 } 4649 4650 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4651 { 4652 int i; 4653 4654 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4655 DP_VERBOSE(cdev, QED_MSG_IOV, 4656 "Cannot set a VF MAC; Sriov is not enabled\n"); 4657 return -EINVAL; 4658 } 4659 4660 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4661 DP_VERBOSE(cdev, QED_MSG_IOV, 4662 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4663 return -EINVAL; 4664 } 4665 4666 for_each_hwfn(cdev, i) { 4667 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4668 struct qed_public_vf_info *vf_info; 4669 4670 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4671 if (!vf_info) 4672 continue; 4673 4674 /* Set the forced vlan, and schedule the IOV task */ 4675 vf_info->forced_vlan = vid; 4676 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4677 } 4678 4679 return 0; 4680 } 4681 4682 static int qed_get_vf_config(struct qed_dev *cdev, 4683 int vf_id, struct ifla_vf_info *ivi) 4684 { 4685 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4686 struct qed_public_vf_info *vf_info; 4687 struct qed_mcp_link_state link; 4688 u32 tx_rate; 4689 4690 /* Sanitize request */ 4691 if (IS_VF(cdev)) 4692 return -EINVAL; 4693 4694 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4695 DP_VERBOSE(cdev, QED_MSG_IOV, 4696 "VF index [%d] isn't active\n", vf_id); 4697 return -EINVAL; 4698 } 4699 4700 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4701 4702 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4703 4704 /* Fill information about VF */ 4705 ivi->vf = vf_id; 4706 4707 if (is_valid_ether_addr(vf_info->forced_mac)) 4708 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4709 else 4710 ether_addr_copy(ivi->mac, vf_info->mac); 4711 4712 ivi->vlan = vf_info->forced_vlan; 4713 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4714 ivi->linkstate = vf_info->link_state; 4715 tx_rate = vf_info->tx_rate; 4716 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4717 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4718 4719 return 0; 4720 } 4721 4722 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4723 { 4724 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4725 struct qed_mcp_link_capabilities caps; 4726 struct qed_mcp_link_params params; 4727 struct qed_mcp_link_state link; 4728 int i; 4729 4730 if (!hwfn->pf_iov_info) 4731 return; 4732 4733 /* Update bulletin of all future possible VFs with link configuration */ 4734 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4735 struct qed_public_vf_info *vf_info; 4736 4737 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4738 if (!vf_info) 4739 continue; 4740 4741 /* Only hwfn0 is actually interested in the link speed. 4742 * But since only it would receive an MFW indication of link, 4743 * need to take configuration from it - otherwise things like 4744 * rate limiting for hwfn1 VF would not work. 4745 */ 4746 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4747 sizeof(params)); 4748 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4749 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4750 sizeof(caps)); 4751 4752 /* Modify link according to the VF's configured link state */ 4753 switch (vf_info->link_state) { 4754 case IFLA_VF_LINK_STATE_DISABLE: 4755 link.link_up = false; 4756 break; 4757 case IFLA_VF_LINK_STATE_ENABLE: 4758 link.link_up = true; 4759 /* Set speed according to maximum supported by HW. 4760 * that is 40G for regular devices and 100G for CMT 4761 * mode devices. 4762 */ 4763 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4764 100000 : 40000; 4765 break; 4766 default: 4767 /* In auto mode pass PF link image to VF */ 4768 break; 4769 } 4770 4771 if (link.link_up && vf_info->tx_rate) { 4772 struct qed_ptt *ptt; 4773 int rate; 4774 4775 rate = min_t(int, vf_info->tx_rate, link.speed); 4776 4777 ptt = qed_ptt_acquire(hwfn); 4778 if (!ptt) { 4779 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4780 return; 4781 } 4782 4783 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4784 vf_info->tx_rate = rate; 4785 link.speed = rate; 4786 } 4787 4788 qed_ptt_release(hwfn, ptt); 4789 } 4790 4791 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4792 } 4793 4794 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4795 } 4796 4797 static int qed_set_vf_link_state(struct qed_dev *cdev, 4798 int vf_id, int link_state) 4799 { 4800 int i; 4801 4802 /* Sanitize request */ 4803 if (IS_VF(cdev)) 4804 return -EINVAL; 4805 4806 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4807 DP_VERBOSE(cdev, QED_MSG_IOV, 4808 "VF index [%d] isn't active\n", vf_id); 4809 return -EINVAL; 4810 } 4811 4812 /* Handle configuration of link state */ 4813 for_each_hwfn(cdev, i) { 4814 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4815 struct qed_public_vf_info *vf; 4816 4817 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4818 if (!vf) 4819 continue; 4820 4821 if (vf->link_state == link_state) 4822 continue; 4823 4824 vf->link_state = link_state; 4825 qed_inform_vf_link_state(&cdev->hwfns[i]); 4826 } 4827 4828 return 0; 4829 } 4830 4831 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4832 { 4833 int i, rc = -EINVAL; 4834 4835 for_each_hwfn(cdev, i) { 4836 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4837 4838 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4839 if (rc) 4840 break; 4841 } 4842 4843 return rc; 4844 } 4845 4846 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4847 { 4848 int i; 4849 4850 for_each_hwfn(cdev, i) { 4851 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4852 struct qed_public_vf_info *vf; 4853 4854 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4855 DP_NOTICE(p_hwfn, 4856 "SR-IOV sanity check failed, can't set tx rate\n"); 4857 return -EINVAL; 4858 } 4859 4860 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4861 4862 vf->tx_rate = rate; 4863 4864 qed_inform_vf_link_state(p_hwfn); 4865 } 4866 4867 return 0; 4868 } 4869 4870 static int qed_set_vf_rate(struct qed_dev *cdev, 4871 int vfid, u32 min_rate, u32 max_rate) 4872 { 4873 int rc_min = 0, rc_max = 0; 4874 4875 if (max_rate) 4876 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4877 4878 if (min_rate) 4879 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4880 4881 if (rc_max | rc_min) 4882 return -EINVAL; 4883 4884 return 0; 4885 } 4886 4887 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4888 { 4889 int i; 4890 4891 for_each_hwfn(cdev, i) { 4892 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4893 struct qed_public_vf_info *vf; 4894 4895 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4896 DP_NOTICE(hwfn, 4897 "SR-IOV sanity check failed, can't set trust\n"); 4898 return -EINVAL; 4899 } 4900 4901 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4902 4903 if (vf->is_trusted_request == trust) 4904 return 0; 4905 vf->is_trusted_request = trust; 4906 4907 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4908 } 4909 4910 return 0; 4911 } 4912 4913 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4914 { 4915 u64 events[QED_VF_ARRAY_LENGTH]; 4916 struct qed_ptt *ptt; 4917 int i; 4918 4919 ptt = qed_ptt_acquire(hwfn); 4920 if (!ptt) { 4921 DP_VERBOSE(hwfn, QED_MSG_IOV, 4922 "Can't acquire PTT; re-scheduling\n"); 4923 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4924 return; 4925 } 4926 4927 qed_iov_pf_get_pending_events(hwfn, events); 4928 4929 DP_VERBOSE(hwfn, QED_MSG_IOV, 4930 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4931 events[0], events[1], events[2]); 4932 4933 qed_for_each_vf(hwfn, i) { 4934 /* Skip VFs with no pending messages */ 4935 if (!(events[i / 64] & (1ULL << (i % 64)))) 4936 continue; 4937 4938 DP_VERBOSE(hwfn, QED_MSG_IOV, 4939 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4940 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4941 4942 /* Copy VF's message to PF's request buffer for that VF */ 4943 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4944 continue; 4945 4946 qed_iov_process_mbx_req(hwfn, ptt, i); 4947 } 4948 4949 qed_ptt_release(hwfn, ptt); 4950 } 4951 4952 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn, 4953 u8 *mac, 4954 struct qed_public_vf_info *info) 4955 { 4956 if (info->is_trusted_configured) { 4957 if (is_valid_ether_addr(info->mac) && 4958 (!mac || !ether_addr_equal(mac, info->mac))) 4959 return true; 4960 } else { 4961 if (is_valid_ether_addr(info->forced_mac) && 4962 (!mac || !ether_addr_equal(mac, info->forced_mac))) 4963 return true; 4964 } 4965 4966 return false; 4967 } 4968 4969 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn, 4970 struct qed_public_vf_info *info, 4971 int vfid) 4972 { 4973 if (info->is_trusted_configured) 4974 qed_iov_bulletin_set_mac(hwfn, info->mac, vfid); 4975 else 4976 qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid); 4977 } 4978 4979 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4980 { 4981 int i; 4982 4983 qed_for_each_vf(hwfn, i) { 4984 struct qed_public_vf_info *info; 4985 bool update = false; 4986 u8 *mac; 4987 4988 info = qed_iov_get_public_vf_info(hwfn, i, true); 4989 if (!info) 4990 continue; 4991 4992 /* Update data on bulletin board */ 4993 if (info->is_trusted_configured) 4994 mac = qed_iov_bulletin_get_mac(hwfn, i); 4995 else 4996 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4997 4998 if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) { 4999 DP_VERBOSE(hwfn, 5000 QED_MSG_IOV, 5001 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 5002 i, 5003 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 5004 5005 /* Update bulletin board with MAC */ 5006 qed_set_bulletin_mac(hwfn, info, i); 5007 update = true; 5008 } 5009 5010 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 5011 info->forced_vlan) { 5012 DP_VERBOSE(hwfn, 5013 QED_MSG_IOV, 5014 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 5015 info->forced_vlan, 5016 i, 5017 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 5018 qed_iov_bulletin_set_forced_vlan(hwfn, 5019 info->forced_vlan, i); 5020 update = true; 5021 } 5022 5023 if (update) 5024 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5025 } 5026 } 5027 5028 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 5029 { 5030 struct qed_ptt *ptt; 5031 int i; 5032 5033 ptt = qed_ptt_acquire(hwfn); 5034 if (!ptt) { 5035 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 5036 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5037 return; 5038 } 5039 5040 qed_for_each_vf(hwfn, i) 5041 qed_iov_post_vf_bulletin(hwfn, i, ptt); 5042 5043 qed_ptt_release(hwfn, ptt); 5044 } 5045 5046 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id) 5047 { 5048 struct qed_public_vf_info *vf_info; 5049 struct qed_vf_info *vf; 5050 u8 *force_mac; 5051 int i; 5052 5053 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 5054 vf = qed_iov_get_vf_info(hwfn, vf_id, true); 5055 5056 if (!vf_info || !vf) 5057 return; 5058 5059 /* Force MAC converted to generic MAC in case of VF trust on */ 5060 if (vf_info->is_trusted_configured && 5061 (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) { 5062 force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id); 5063 5064 if (force_mac) { 5065 /* Clear existing shadow copy of MAC to have a clean 5066 * slate. 5067 */ 5068 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5069 if (ether_addr_equal(vf->shadow_config.macs[i], 5070 vf_info->mac)) { 5071 eth_zero_addr(vf->shadow_config.macs[i]); 5072 DP_VERBOSE(hwfn, QED_MSG_IOV, 5073 "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n", 5074 vf_info->mac, vf_id); 5075 break; 5076 } 5077 } 5078 5079 ether_addr_copy(vf_info->mac, force_mac); 5080 eth_zero_addr(vf_info->forced_mac); 5081 vf->bulletin.p_virt->valid_bitmap &= 5082 ~BIT(MAC_ADDR_FORCED); 5083 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5084 } 5085 } 5086 5087 /* Update shadow copy with VF MAC when trust mode is turned off */ 5088 if (!vf_info->is_trusted_configured) { 5089 u8 empty_mac[ETH_ALEN]; 5090 5091 eth_zero_addr(empty_mac); 5092 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5093 if (ether_addr_equal(vf->shadow_config.macs[i], 5094 empty_mac)) { 5095 ether_addr_copy(vf->shadow_config.macs[i], 5096 vf_info->mac); 5097 DP_VERBOSE(hwfn, QED_MSG_IOV, 5098 "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n", 5099 vf_info->mac, vf_id); 5100 break; 5101 } 5102 } 5103 /* Clear bulletin when trust mode is turned off, 5104 * to have a clean slate for next (normal) operations. 5105 */ 5106 qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id); 5107 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5108 } 5109 } 5110 5111 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 5112 { 5113 struct qed_sp_vport_update_params params; 5114 struct qed_filter_accept_flags *flags; 5115 struct qed_public_vf_info *vf_info; 5116 struct qed_vf_info *vf; 5117 u8 mask; 5118 int i; 5119 5120 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 5121 flags = ¶ms.accept_flags; 5122 5123 qed_for_each_vf(hwfn, i) { 5124 /* Need to make sure current requested configuration didn't 5125 * flip so that we'll end up configuring something that's not 5126 * needed. 5127 */ 5128 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 5129 if (vf_info->is_trusted_configured == 5130 vf_info->is_trusted_request) 5131 continue; 5132 vf_info->is_trusted_configured = vf_info->is_trusted_request; 5133 5134 /* Handle forced MAC mode */ 5135 qed_update_mac_for_vf_trust_change(hwfn, i); 5136 5137 /* Validate that the VF has a configured vport */ 5138 vf = qed_iov_get_vf_info(hwfn, i, true); 5139 if (!vf->vport_instance) 5140 continue; 5141 5142 memset(¶ms, 0, sizeof(params)); 5143 params.opaque_fid = vf->opaque_fid; 5144 params.vport_id = vf->vport_id; 5145 5146 params.update_ctl_frame_check = 1; 5147 params.mac_chk_en = !vf_info->is_trusted_configured; 5148 5149 if (vf_info->rx_accept_mode & mask) { 5150 flags->update_rx_mode_config = 1; 5151 flags->rx_accept_filter = vf_info->rx_accept_mode; 5152 } 5153 5154 if (vf_info->tx_accept_mode & mask) { 5155 flags->update_tx_mode_config = 1; 5156 flags->tx_accept_filter = vf_info->tx_accept_mode; 5157 } 5158 5159 /* Remove if needed; Otherwise this would set the mask */ 5160 if (!vf_info->is_trusted_configured) { 5161 flags->rx_accept_filter &= ~mask; 5162 flags->tx_accept_filter &= ~mask; 5163 } 5164 5165 if (flags->update_rx_mode_config || 5166 flags->update_tx_mode_config || 5167 params.update_ctl_frame_check) 5168 qed_sp_vport_update(hwfn, ¶ms, 5169 QED_SPQ_MODE_EBLOCK, NULL); 5170 } 5171 } 5172 5173 static void qed_iov_pf_task(struct work_struct *work) 5174 5175 { 5176 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 5177 iov_task.work); 5178 int rc; 5179 5180 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 5181 return; 5182 5183 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 5184 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 5185 5186 if (!ptt) { 5187 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5188 return; 5189 } 5190 5191 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 5192 if (rc) 5193 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5194 5195 qed_ptt_release(hwfn, ptt); 5196 } 5197 5198 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 5199 qed_handle_vf_msg(hwfn); 5200 5201 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 5202 &hwfn->iov_task_flags)) 5203 qed_handle_pf_set_vf_unicast(hwfn); 5204 5205 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 5206 &hwfn->iov_task_flags)) 5207 qed_handle_bulletin_post(hwfn); 5208 5209 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 5210 qed_iov_handle_trust_change(hwfn); 5211 } 5212 5213 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 5214 { 5215 int i; 5216 5217 for_each_hwfn(cdev, i) { 5218 if (!cdev->hwfns[i].iov_wq) 5219 continue; 5220 5221 if (schedule_first) { 5222 qed_schedule_iov(&cdev->hwfns[i], 5223 QED_IOV_WQ_STOP_WQ_FLAG); 5224 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 5225 } 5226 5227 destroy_workqueue(cdev->hwfns[i].iov_wq); 5228 } 5229 } 5230 5231 int qed_iov_wq_start(struct qed_dev *cdev) 5232 { 5233 char name[NAME_SIZE]; 5234 int i; 5235 5236 for_each_hwfn(cdev, i) { 5237 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 5238 5239 /* PFs needs a dedicated workqueue only if they support IOV. 5240 * VFs always require one. 5241 */ 5242 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 5243 continue; 5244 5245 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 5246 cdev->pdev->bus->number, 5247 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 5248 5249 p_hwfn->iov_wq = create_singlethread_workqueue(name); 5250 if (!p_hwfn->iov_wq) { 5251 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 5252 return -ENOMEM; 5253 } 5254 5255 if (IS_PF(cdev)) 5256 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 5257 else 5258 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 5259 } 5260 5261 return 0; 5262 } 5263 5264 const struct qed_iov_hv_ops qed_iov_ops_pass = { 5265 .configure = &qed_sriov_configure, 5266 .set_mac = &qed_sriov_pf_set_mac, 5267 .set_vlan = &qed_sriov_pf_set_vlan, 5268 .get_config = &qed_get_vf_config, 5269 .set_link_state = &qed_set_vf_link_state, 5270 .set_spoof = &qed_spoof_configure, 5271 .set_rate = &qed_set_vf_rate, 5272 .set_trust = &qed_set_vf_trust, 5273 }; 5274