1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/etherdevice.h> 34 #include <linux/crc32.h> 35 #include <linux/vmalloc.h> 36 #include <linux/qed/qed_iov_if.h> 37 #include "qed_cxt.h" 38 #include "qed_hsi.h" 39 #include "qed_hw.h" 40 #include "qed_init_ops.h" 41 #include "qed_int.h" 42 #include "qed_mcp.h" 43 #include "qed_reg_addr.h" 44 #include "qed_sp.h" 45 #include "qed_sriov.h" 46 #include "qed_vf.h" 47 48 /* IOV ramrods */ 49 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 50 { 51 struct vf_start_ramrod_data *p_ramrod = NULL; 52 struct qed_spq_entry *p_ent = NULL; 53 struct qed_sp_init_data init_data; 54 int rc = -EINVAL; 55 u8 fp_minor; 56 57 /* Get SPQ entry */ 58 memset(&init_data, 0, sizeof(init_data)); 59 init_data.cid = qed_spq_get_cid(p_hwfn); 60 init_data.opaque_fid = p_vf->opaque_fid; 61 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 62 63 rc = qed_sp_init_request(p_hwfn, &p_ent, 64 COMMON_RAMROD_VF_START, 65 PROTOCOLID_COMMON, &init_data); 66 if (rc) 67 return rc; 68 69 p_ramrod = &p_ent->ramrod.vf_start; 70 71 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 72 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 73 74 switch (p_hwfn->hw_info.personality) { 75 case QED_PCI_ETH: 76 p_ramrod->personality = PERSONALITY_ETH; 77 break; 78 case QED_PCI_ETH_ROCE: 79 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 80 break; 81 default: 82 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 83 p_hwfn->hw_info.personality); 84 return -EINVAL; 85 } 86 87 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 88 if (fp_minor > ETH_HSI_VER_MINOR && 89 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 90 DP_VERBOSE(p_hwfn, 91 QED_MSG_IOV, 92 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 93 p_vf->abs_vf_id, 94 ETH_HSI_VER_MAJOR, 95 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 96 fp_minor = ETH_HSI_VER_MINOR; 97 } 98 99 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 100 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 101 102 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 103 "VF[%d] - Starting using HSI %02x.%02x\n", 104 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 105 106 return qed_spq_post(p_hwfn, p_ent, NULL); 107 } 108 109 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 110 u32 concrete_vfid, u16 opaque_vfid) 111 { 112 struct vf_stop_ramrod_data *p_ramrod = NULL; 113 struct qed_spq_entry *p_ent = NULL; 114 struct qed_sp_init_data init_data; 115 int rc = -EINVAL; 116 117 /* Get SPQ entry */ 118 memset(&init_data, 0, sizeof(init_data)); 119 init_data.cid = qed_spq_get_cid(p_hwfn); 120 init_data.opaque_fid = opaque_vfid; 121 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 122 123 rc = qed_sp_init_request(p_hwfn, &p_ent, 124 COMMON_RAMROD_VF_STOP, 125 PROTOCOLID_COMMON, &init_data); 126 if (rc) 127 return rc; 128 129 p_ramrod = &p_ent->ramrod.vf_stop; 130 131 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 132 133 return qed_spq_post(p_hwfn, p_ent, NULL); 134 } 135 136 static bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 137 int rel_vf_id, 138 bool b_enabled_only, bool b_non_malicious) 139 { 140 if (!p_hwfn->pf_iov_info) { 141 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 142 return false; 143 } 144 145 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 146 (rel_vf_id < 0)) 147 return false; 148 149 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 150 b_enabled_only) 151 return false; 152 153 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 154 b_non_malicious) 155 return false; 156 157 return true; 158 } 159 160 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 161 u16 relative_vf_id, 162 bool b_enabled_only) 163 { 164 struct qed_vf_info *vf = NULL; 165 166 if (!p_hwfn->pf_iov_info) { 167 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 168 return NULL; 169 } 170 171 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 172 b_enabled_only, false)) 173 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 174 else 175 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 176 relative_vf_id); 177 178 return vf; 179 } 180 181 enum qed_iov_validate_q_mode { 182 QED_IOV_VALIDATE_Q_NA, 183 QED_IOV_VALIDATE_Q_ENABLE, 184 QED_IOV_VALIDATE_Q_DISABLE, 185 }; 186 187 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 188 struct qed_vf_info *p_vf, 189 u16 qid, 190 enum qed_iov_validate_q_mode mode, 191 bool b_is_tx) 192 { 193 if (mode == QED_IOV_VALIDATE_Q_NA) 194 return true; 195 196 if ((b_is_tx && p_vf->vf_queues[qid].p_tx_cid) || 197 (!b_is_tx && p_vf->vf_queues[qid].p_rx_cid)) 198 return mode == QED_IOV_VALIDATE_Q_ENABLE; 199 200 /* In case we haven't found any valid cid, then its disabled */ 201 return mode == QED_IOV_VALIDATE_Q_DISABLE; 202 } 203 204 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 205 struct qed_vf_info *p_vf, 206 u16 rx_qid, 207 enum qed_iov_validate_q_mode mode) 208 { 209 if (rx_qid >= p_vf->num_rxqs) { 210 DP_VERBOSE(p_hwfn, 211 QED_MSG_IOV, 212 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 213 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 214 return false; 215 } 216 217 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 218 } 219 220 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 221 struct qed_vf_info *p_vf, 222 u16 tx_qid, 223 enum qed_iov_validate_q_mode mode) 224 { 225 if (tx_qid >= p_vf->num_txqs) { 226 DP_VERBOSE(p_hwfn, 227 QED_MSG_IOV, 228 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 229 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 230 return false; 231 } 232 233 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 234 } 235 236 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 237 struct qed_vf_info *p_vf, u16 sb_idx) 238 { 239 int i; 240 241 for (i = 0; i < p_vf->num_sbs; i++) 242 if (p_vf->igu_sbs[i] == sb_idx) 243 return true; 244 245 DP_VERBOSE(p_hwfn, 246 QED_MSG_IOV, 247 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 248 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 249 250 return false; 251 } 252 253 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 254 struct qed_vf_info *p_vf) 255 { 256 u8 i; 257 258 for (i = 0; i < p_vf->num_rxqs; i++) 259 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 260 QED_IOV_VALIDATE_Q_ENABLE, 261 false)) 262 return true; 263 264 return false; 265 } 266 267 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 268 struct qed_vf_info *p_vf) 269 { 270 u8 i; 271 272 for (i = 0; i < p_vf->num_txqs; i++) 273 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 274 QED_IOV_VALIDATE_Q_ENABLE, 275 true)) 276 return true; 277 278 return false; 279 } 280 281 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 282 int vfid, struct qed_ptt *p_ptt) 283 { 284 struct qed_bulletin_content *p_bulletin; 285 int crc_size = sizeof(p_bulletin->crc); 286 struct qed_dmae_params params; 287 struct qed_vf_info *p_vf; 288 289 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 290 if (!p_vf) 291 return -EINVAL; 292 293 if (!p_vf->vf_bulletin) 294 return -EINVAL; 295 296 p_bulletin = p_vf->bulletin.p_virt; 297 298 /* Increment bulletin board version and compute crc */ 299 p_bulletin->version++; 300 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 301 p_vf->bulletin.size - crc_size); 302 303 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 304 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 305 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 306 307 /* propagate bulletin board via dmae to vm memory */ 308 memset(¶ms, 0, sizeof(params)); 309 params.flags = QED_DMAE_FLAG_VF_DST; 310 params.dst_vfid = p_vf->abs_vf_id; 311 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 312 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 313 ¶ms); 314 } 315 316 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 317 { 318 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 319 int pos = iov->pos; 320 321 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 322 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 323 324 pci_read_config_word(cdev->pdev, 325 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 326 pci_read_config_word(cdev->pdev, 327 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 328 329 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 330 if (iov->num_vfs) { 331 DP_VERBOSE(cdev, 332 QED_MSG_IOV, 333 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 334 iov->num_vfs = 0; 335 } 336 337 pci_read_config_word(cdev->pdev, 338 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 339 340 pci_read_config_word(cdev->pdev, 341 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 342 343 pci_read_config_word(cdev->pdev, 344 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 345 346 pci_read_config_dword(cdev->pdev, 347 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 348 349 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 350 351 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 352 353 DP_VERBOSE(cdev, 354 QED_MSG_IOV, 355 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 356 iov->nres, 357 iov->cap, 358 iov->ctrl, 359 iov->total_vfs, 360 iov->initial_vfs, 361 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 362 363 /* Some sanity checks */ 364 if (iov->num_vfs > NUM_OF_VFS(cdev) || 365 iov->total_vfs > NUM_OF_VFS(cdev)) { 366 /* This can happen only due to a bug. In this case we set 367 * num_vfs to zero to avoid memory corruption in the code that 368 * assumes max number of vfs 369 */ 370 DP_NOTICE(cdev, 371 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 372 iov->num_vfs); 373 374 iov->num_vfs = 0; 375 iov->total_vfs = 0; 376 } 377 378 return 0; 379 } 380 381 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn, 382 struct qed_ptt *p_ptt) 383 { 384 struct qed_igu_block *p_sb; 385 u16 sb_id; 386 u32 val; 387 388 if (!p_hwfn->hw_info.p_igu_info) { 389 DP_ERR(p_hwfn, 390 "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n"); 391 return; 392 } 393 394 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 395 sb_id++) { 396 p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id]; 397 if ((p_sb->status & QED_IGU_STATUS_FREE) && 398 !(p_sb->status & QED_IGU_STATUS_PF)) { 399 val = qed_rd(p_hwfn, p_ptt, 400 IGU_REG_MAPPING_MEMORY + sb_id * 4); 401 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 402 qed_wr(p_hwfn, p_ptt, 403 IGU_REG_MAPPING_MEMORY + 4 * sb_id, val); 404 } 405 } 406 } 407 408 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 409 { 410 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 411 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 412 struct qed_bulletin_content *p_bulletin_virt; 413 dma_addr_t req_p, rply_p, bulletin_p; 414 union pfvf_tlvs *p_reply_virt_addr; 415 union vfpf_tlvs *p_req_virt_addr; 416 u8 idx = 0; 417 418 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 419 420 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 421 req_p = p_iov_info->mbx_msg_phys_addr; 422 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 423 rply_p = p_iov_info->mbx_reply_phys_addr; 424 p_bulletin_virt = p_iov_info->p_bulletins; 425 bulletin_p = p_iov_info->bulletins_phys; 426 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 427 DP_ERR(p_hwfn, 428 "qed_iov_setup_vfdb called without allocating mem first\n"); 429 return; 430 } 431 432 for (idx = 0; idx < p_iov->total_vfs; idx++) { 433 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 434 u32 concrete; 435 436 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 437 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 438 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 439 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 440 441 vf->state = VF_STOPPED; 442 vf->b_init = false; 443 444 vf->bulletin.phys = idx * 445 sizeof(struct qed_bulletin_content) + 446 bulletin_p; 447 vf->bulletin.p_virt = p_bulletin_virt + idx; 448 vf->bulletin.size = sizeof(struct qed_bulletin_content); 449 450 vf->relative_vf_id = idx; 451 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 452 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 453 vf->concrete_fid = concrete; 454 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 455 (vf->abs_vf_id << 8); 456 vf->vport_id = idx + 1; 457 458 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 459 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 460 } 461 } 462 463 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 464 { 465 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 466 void **p_v_addr; 467 u16 num_vfs = 0; 468 469 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 470 471 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 472 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 473 474 /* Allocate PF Mailbox buffer (per-VF) */ 475 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 476 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 477 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 478 p_iov_info->mbx_msg_size, 479 &p_iov_info->mbx_msg_phys_addr, 480 GFP_KERNEL); 481 if (!*p_v_addr) 482 return -ENOMEM; 483 484 /* Allocate PF Mailbox Reply buffer (per-VF) */ 485 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 486 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 487 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 488 p_iov_info->mbx_reply_size, 489 &p_iov_info->mbx_reply_phys_addr, 490 GFP_KERNEL); 491 if (!*p_v_addr) 492 return -ENOMEM; 493 494 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 495 num_vfs; 496 p_v_addr = &p_iov_info->p_bulletins; 497 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 498 p_iov_info->bulletins_size, 499 &p_iov_info->bulletins_phys, 500 GFP_KERNEL); 501 if (!*p_v_addr) 502 return -ENOMEM; 503 504 DP_VERBOSE(p_hwfn, 505 QED_MSG_IOV, 506 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 507 p_iov_info->mbx_msg_virt_addr, 508 (u64) p_iov_info->mbx_msg_phys_addr, 509 p_iov_info->mbx_reply_virt_addr, 510 (u64) p_iov_info->mbx_reply_phys_addr, 511 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 512 513 return 0; 514 } 515 516 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 517 { 518 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 519 520 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 521 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 522 p_iov_info->mbx_msg_size, 523 p_iov_info->mbx_msg_virt_addr, 524 p_iov_info->mbx_msg_phys_addr); 525 526 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 527 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 528 p_iov_info->mbx_reply_size, 529 p_iov_info->mbx_reply_virt_addr, 530 p_iov_info->mbx_reply_phys_addr); 531 532 if (p_iov_info->p_bulletins) 533 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 534 p_iov_info->bulletins_size, 535 p_iov_info->p_bulletins, 536 p_iov_info->bulletins_phys); 537 } 538 539 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 540 { 541 struct qed_pf_iov *p_sriov; 542 543 if (!IS_PF_SRIOV(p_hwfn)) { 544 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 545 "No SR-IOV - no need for IOV db\n"); 546 return 0; 547 } 548 549 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 550 if (!p_sriov) 551 return -ENOMEM; 552 553 p_hwfn->pf_iov_info = p_sriov; 554 555 return qed_iov_allocate_vfdb(p_hwfn); 556 } 557 558 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 559 { 560 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 561 return; 562 563 qed_iov_setup_vfdb(p_hwfn); 564 qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt); 565 } 566 567 void qed_iov_free(struct qed_hwfn *p_hwfn) 568 { 569 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 570 qed_iov_free_vfdb(p_hwfn); 571 kfree(p_hwfn->pf_iov_info); 572 } 573 } 574 575 void qed_iov_free_hw_info(struct qed_dev *cdev) 576 { 577 kfree(cdev->p_iov_info); 578 cdev->p_iov_info = NULL; 579 } 580 581 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 582 { 583 struct qed_dev *cdev = p_hwfn->cdev; 584 int pos; 585 int rc; 586 587 if (IS_VF(p_hwfn->cdev)) 588 return 0; 589 590 /* Learn the PCI configuration */ 591 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 592 PCI_EXT_CAP_ID_SRIOV); 593 if (!pos) { 594 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 595 return 0; 596 } 597 598 /* Allocate a new struct for IOV information */ 599 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 600 if (!cdev->p_iov_info) 601 return -ENOMEM; 602 603 cdev->p_iov_info->pos = pos; 604 605 rc = qed_iov_pci_cfg_info(cdev); 606 if (rc) 607 return rc; 608 609 /* We want PF IOV to be synonemous with the existance of p_iov_info; 610 * In case the capability is published but there are no VFs, simply 611 * de-allocate the struct. 612 */ 613 if (!cdev->p_iov_info->total_vfs) { 614 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 615 "IOV capabilities, but no VFs are published\n"); 616 kfree(cdev->p_iov_info); 617 cdev->p_iov_info = NULL; 618 return 0; 619 } 620 621 /* First VF index based on offset is tricky: 622 * - If ARI is supported [likely], offset - (16 - pf_id) would 623 * provide the number for eng0. 2nd engine Vfs would begin 624 * after the first engine's VFs. 625 * - If !ARI, VFs would start on next device. 626 * so offset - (256 - pf_id) would provide the number. 627 * Utilize the fact that (256 - pf_id) is achieved only by later 628 * to differentiate between the two. 629 */ 630 631 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 632 u32 first = p_hwfn->cdev->p_iov_info->offset + 633 p_hwfn->abs_pf_id - 16; 634 635 cdev->p_iov_info->first_vf_in_pf = first; 636 637 if (QED_PATH_ID(p_hwfn)) 638 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 639 } else { 640 u32 first = p_hwfn->cdev->p_iov_info->offset + 641 p_hwfn->abs_pf_id - 256; 642 643 cdev->p_iov_info->first_vf_in_pf = first; 644 } 645 646 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 647 "First VF in hwfn 0x%08x\n", 648 cdev->p_iov_info->first_vf_in_pf); 649 650 return 0; 651 } 652 653 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 654 int vfid, bool b_fail_malicious) 655 { 656 /* Check PF supports sriov */ 657 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 658 !IS_PF_SRIOV_ALLOC(p_hwfn)) 659 return false; 660 661 /* Check VF validity */ 662 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 663 return false; 664 665 return true; 666 } 667 668 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 669 { 670 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 671 } 672 673 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 674 u16 rel_vf_id, u8 to_disable) 675 { 676 struct qed_vf_info *vf; 677 int i; 678 679 for_each_hwfn(cdev, i) { 680 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 681 682 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 683 if (!vf) 684 continue; 685 686 vf->to_disable = to_disable; 687 } 688 } 689 690 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 691 { 692 u16 i; 693 694 if (!IS_QED_SRIOV(cdev)) 695 return; 696 697 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 698 qed_iov_set_vf_to_disable(cdev, i, to_disable); 699 } 700 701 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 702 struct qed_ptt *p_ptt, u8 abs_vfid) 703 { 704 qed_wr(p_hwfn, p_ptt, 705 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 706 1 << (abs_vfid & 0x1f)); 707 } 708 709 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 710 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 711 { 712 int i; 713 714 /* Set VF masks and configuration - pretend */ 715 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 716 717 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 718 719 /* unpretend */ 720 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 721 722 /* iterate over all queues, clear sb consumer */ 723 for (i = 0; i < vf->num_sbs; i++) 724 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 725 vf->igu_sbs[i], 726 vf->opaque_fid, true); 727 } 728 729 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 730 struct qed_ptt *p_ptt, 731 struct qed_vf_info *vf, bool enable) 732 { 733 u32 igu_vf_conf; 734 735 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 736 737 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 738 739 if (enable) 740 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 741 else 742 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 743 744 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 745 746 /* unpretend */ 747 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 748 } 749 750 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 751 struct qed_ptt *p_ptt, 752 struct qed_vf_info *vf) 753 { 754 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 755 int rc; 756 757 /* It's possible VF was previously considered malicious - 758 * clear the indication even if we're only going to disable VF. 759 */ 760 vf->b_malicious = false; 761 762 if (vf->to_disable) 763 return 0; 764 765 DP_VERBOSE(p_hwfn, 766 QED_MSG_IOV, 767 "Enable internal access for vf %x [abs %x]\n", 768 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 769 770 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 771 772 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 773 774 rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs); 775 if (rc) 776 return rc; 777 778 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 779 780 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 781 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 782 783 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 784 p_hwfn->hw_info.hw_mode); 785 786 /* unpretend */ 787 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 788 789 vf->state = VF_FREE; 790 791 return rc; 792 } 793 794 /** 795 * @brief qed_iov_config_perm_table - configure the permission 796 * zone table. 797 * In E4, queue zone permission table size is 320x9. There 798 * are 320 VF queues for single engine device (256 for dual 799 * engine device), and each entry has the following format: 800 * {Valid, VF[7:0]} 801 * @param p_hwfn 802 * @param p_ptt 803 * @param vf 804 * @param enable 805 */ 806 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 807 struct qed_ptt *p_ptt, 808 struct qed_vf_info *vf, u8 enable) 809 { 810 u32 reg_addr, val; 811 u16 qzone_id = 0; 812 int qid; 813 814 for (qid = 0; qid < vf->num_rxqs; qid++) { 815 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 816 &qzone_id); 817 818 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 819 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 820 qed_wr(p_hwfn, p_ptt, reg_addr, val); 821 } 822 } 823 824 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 825 struct qed_ptt *p_ptt, 826 struct qed_vf_info *vf) 827 { 828 /* Reset vf in IGU - interrupts are still disabled */ 829 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 830 831 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 832 833 /* Permission Table */ 834 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 835 } 836 837 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 838 struct qed_ptt *p_ptt, 839 struct qed_vf_info *vf, u16 num_rx_queues) 840 { 841 struct qed_igu_block *igu_blocks; 842 int qid = 0, igu_id = 0; 843 u32 val = 0; 844 845 igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks; 846 847 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks) 848 num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks; 849 p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues; 850 851 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 852 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 853 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 854 855 while ((qid < num_rx_queues) && 856 (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) { 857 if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) { 858 struct cau_sb_entry sb_entry; 859 860 vf->igu_sbs[qid] = (u16)igu_id; 861 igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE; 862 863 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 864 865 qed_wr(p_hwfn, p_ptt, 866 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id, 867 val); 868 869 /* Configure igu sb in CAU which were marked valid */ 870 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 871 p_hwfn->rel_pf_id, 872 vf->abs_vf_id, 1); 873 qed_dmae_host2grc(p_hwfn, p_ptt, 874 (u64)(uintptr_t)&sb_entry, 875 CAU_REG_SB_VAR_MEMORY + 876 igu_id * sizeof(u64), 2, 0); 877 qid++; 878 } 879 igu_id++; 880 } 881 882 vf->num_sbs = (u8) num_rx_queues; 883 884 return vf->num_sbs; 885 } 886 887 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 888 struct qed_ptt *p_ptt, 889 struct qed_vf_info *vf) 890 { 891 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 892 int idx, igu_id; 893 u32 addr, val; 894 895 /* Invalidate igu CAM lines and mark them as free */ 896 for (idx = 0; idx < vf->num_sbs; idx++) { 897 igu_id = vf->igu_sbs[idx]; 898 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 899 900 val = qed_rd(p_hwfn, p_ptt, addr); 901 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 902 qed_wr(p_hwfn, p_ptt, addr, val); 903 904 p_info->igu_map.igu_blocks[igu_id].status |= 905 QED_IGU_STATUS_FREE; 906 907 p_hwfn->hw_info.p_igu_info->free_blks++; 908 } 909 910 vf->num_sbs = 0; 911 } 912 913 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 914 u16 vfid, 915 struct qed_mcp_link_params *params, 916 struct qed_mcp_link_state *link, 917 struct qed_mcp_link_capabilities *p_caps) 918 { 919 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 920 vfid, 921 false); 922 struct qed_bulletin_content *p_bulletin; 923 924 if (!p_vf) 925 return; 926 927 p_bulletin = p_vf->bulletin.p_virt; 928 p_bulletin->req_autoneg = params->speed.autoneg; 929 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 930 p_bulletin->req_forced_speed = params->speed.forced_speed; 931 p_bulletin->req_autoneg_pause = params->pause.autoneg; 932 p_bulletin->req_forced_rx = params->pause.forced_rx; 933 p_bulletin->req_forced_tx = params->pause.forced_tx; 934 p_bulletin->req_loopback = params->loopback_mode; 935 936 p_bulletin->link_up = link->link_up; 937 p_bulletin->speed = link->speed; 938 p_bulletin->full_duplex = link->full_duplex; 939 p_bulletin->autoneg = link->an; 940 p_bulletin->autoneg_complete = link->an_complete; 941 p_bulletin->parallel_detection = link->parallel_detection; 942 p_bulletin->pfc_enabled = link->pfc_enabled; 943 p_bulletin->partner_adv_speed = link->partner_adv_speed; 944 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 945 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 946 p_bulletin->partner_adv_pause = link->partner_adv_pause; 947 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 948 949 p_bulletin->capability_speed = p_caps->speed_capabilities; 950 } 951 952 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 953 struct qed_ptt *p_ptt, 954 struct qed_iov_vf_init_params *p_params) 955 { 956 struct qed_mcp_link_capabilities link_caps; 957 struct qed_mcp_link_params link_params; 958 struct qed_mcp_link_state link_state; 959 u8 num_of_vf_avaiable_chains = 0; 960 struct qed_vf_info *vf = NULL; 961 u16 qid, num_irqs; 962 int rc = 0; 963 u32 cids; 964 u8 i; 965 966 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 967 if (!vf) { 968 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 969 return -EINVAL; 970 } 971 972 if (vf->b_init) { 973 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 974 p_params->rel_vf_id); 975 return -EINVAL; 976 } 977 978 /* Perform sanity checking on the requested queue_id */ 979 for (i = 0; i < p_params->num_queues; i++) { 980 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 981 u16 max_vf_qzone = min_vf_qzone + 982 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 983 984 qid = p_params->req_rx_queue[i]; 985 if (qid < min_vf_qzone || qid > max_vf_qzone) { 986 DP_NOTICE(p_hwfn, 987 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 988 qid, 989 p_params->rel_vf_id, 990 min_vf_qzone, max_vf_qzone); 991 return -EINVAL; 992 } 993 994 qid = p_params->req_tx_queue[i]; 995 if (qid > max_vf_qzone) { 996 DP_NOTICE(p_hwfn, 997 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 998 qid, p_params->rel_vf_id, max_vf_qzone); 999 return -EINVAL; 1000 } 1001 1002 /* If client *really* wants, Tx qid can be shared with PF */ 1003 if (qid < min_vf_qzone) 1004 DP_VERBOSE(p_hwfn, 1005 QED_MSG_IOV, 1006 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1007 p_params->rel_vf_id, qid, i); 1008 } 1009 1010 /* Limit number of queues according to number of CIDs */ 1011 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1012 DP_VERBOSE(p_hwfn, 1013 QED_MSG_IOV, 1014 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1015 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1016 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1017 1018 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1019 p_ptt, 1020 vf, num_irqs); 1021 if (!num_of_vf_avaiable_chains) { 1022 DP_ERR(p_hwfn, "no available igu sbs\n"); 1023 return -ENOMEM; 1024 } 1025 1026 /* Choose queue number and index ranges */ 1027 vf->num_rxqs = num_of_vf_avaiable_chains; 1028 vf->num_txqs = num_of_vf_avaiable_chains; 1029 1030 for (i = 0; i < vf->num_rxqs; i++) { 1031 struct qed_vf_q_info *p_queue = &vf->vf_queues[i]; 1032 1033 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1034 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1035 1036 /* CIDs are per-VF, so no problem having them 0-based. */ 1037 p_queue->fw_cid = i; 1038 1039 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1040 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x] CID %04x\n", 1041 vf->relative_vf_id, 1042 i, vf->igu_sbs[i], 1043 p_queue->fw_rx_qid, 1044 p_queue->fw_tx_qid, p_queue->fw_cid); 1045 } 1046 1047 /* Update the link configuration in bulletin */ 1048 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1049 sizeof(link_params)); 1050 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1051 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1052 sizeof(link_caps)); 1053 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1054 &link_params, &link_state, &link_caps); 1055 1056 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1057 if (!rc) { 1058 vf->b_init = true; 1059 1060 if (IS_LEAD_HWFN(p_hwfn)) 1061 p_hwfn->cdev->p_iov_info->num_vfs++; 1062 } 1063 1064 return rc; 1065 } 1066 1067 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1068 struct qed_ptt *p_ptt, u16 rel_vf_id) 1069 { 1070 struct qed_mcp_link_capabilities caps; 1071 struct qed_mcp_link_params params; 1072 struct qed_mcp_link_state link; 1073 struct qed_vf_info *vf = NULL; 1074 1075 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1076 if (!vf) { 1077 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1078 return -EINVAL; 1079 } 1080 1081 if (vf->bulletin.p_virt) 1082 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1083 1084 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1085 1086 /* Get the link configuration back in bulletin so 1087 * that when VFs are re-enabled they get the actual 1088 * link configuration. 1089 */ 1090 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1091 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1092 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1093 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1094 1095 /* Forget the VF's acquisition message */ 1096 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1097 1098 /* disablng interrupts and resetting permission table was done during 1099 * vf-close, however, we could get here without going through vf_close 1100 */ 1101 /* Disable Interrupts for VF */ 1102 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1103 1104 /* Reset Permission table */ 1105 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1106 1107 vf->num_rxqs = 0; 1108 vf->num_txqs = 0; 1109 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1110 1111 if (vf->b_init) { 1112 vf->b_init = false; 1113 1114 if (IS_LEAD_HWFN(p_hwfn)) 1115 p_hwfn->cdev->p_iov_info->num_vfs--; 1116 } 1117 1118 return 0; 1119 } 1120 1121 static bool qed_iov_tlv_supported(u16 tlvtype) 1122 { 1123 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1124 } 1125 1126 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1127 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1128 { 1129 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1130 1131 tl->type = type; 1132 tl->length = length; 1133 1134 /* Offset should keep pointing to next TLV (the end of the last) */ 1135 *offset += length; 1136 1137 /* Return a pointer to the start of the added tlv */ 1138 return *offset - length; 1139 } 1140 1141 /* list the types and lengths of the tlvs on the buffer */ 1142 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1143 { 1144 u16 i = 1, total_length = 0; 1145 struct channel_tlv *tlv; 1146 1147 do { 1148 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1149 1150 /* output tlv */ 1151 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1152 "TLV number %d: type %d, length %d\n", 1153 i, tlv->type, tlv->length); 1154 1155 if (tlv->type == CHANNEL_TLV_LIST_END) 1156 return; 1157 1158 /* Validate entry - protect against malicious VFs */ 1159 if (!tlv->length) { 1160 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1161 return; 1162 } 1163 1164 total_length += tlv->length; 1165 1166 if (total_length >= sizeof(struct tlv_buffer_size)) { 1167 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1168 return; 1169 } 1170 1171 i++; 1172 } while (1); 1173 } 1174 1175 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1176 struct qed_ptt *p_ptt, 1177 struct qed_vf_info *p_vf, 1178 u16 length, u8 status) 1179 { 1180 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1181 struct qed_dmae_params params; 1182 u8 eng_vf_id; 1183 1184 mbx->reply_virt->default_resp.hdr.status = status; 1185 1186 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1187 1188 eng_vf_id = p_vf->abs_vf_id; 1189 1190 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 1191 params.flags = QED_DMAE_FLAG_VF_DST; 1192 params.dst_vfid = eng_vf_id; 1193 1194 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1195 mbx->req_virt->first_tlv.reply_address + 1196 sizeof(u64), 1197 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1198 ¶ms); 1199 1200 /* Once PF copies the rc to the VF, the latter can continue 1201 * and send an additional message. So we have to make sure the 1202 * channel would be re-set to ready prior to that. 1203 */ 1204 REG_WR(p_hwfn, 1205 GTT_BAR0_MAP_REG_USDM_RAM + 1206 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1207 1208 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1209 mbx->req_virt->first_tlv.reply_address, 1210 sizeof(u64) / 4, ¶ms); 1211 } 1212 1213 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1214 enum qed_iov_vport_update_flag flag) 1215 { 1216 switch (flag) { 1217 case QED_IOV_VP_UPDATE_ACTIVATE: 1218 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1219 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1220 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1221 case QED_IOV_VP_UPDATE_TX_SWITCH: 1222 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1223 case QED_IOV_VP_UPDATE_MCAST: 1224 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1225 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1226 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1227 case QED_IOV_VP_UPDATE_RSS: 1228 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1229 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1230 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1231 case QED_IOV_VP_UPDATE_SGE_TPA: 1232 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1233 default: 1234 return 0; 1235 } 1236 } 1237 1238 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1239 struct qed_vf_info *p_vf, 1240 struct qed_iov_vf_mbx *p_mbx, 1241 u8 status, 1242 u16 tlvs_mask, u16 tlvs_accepted) 1243 { 1244 struct pfvf_def_resp_tlv *resp; 1245 u16 size, total_len, i; 1246 1247 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1248 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1249 size = sizeof(struct pfvf_def_resp_tlv); 1250 total_len = size; 1251 1252 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1253 1254 /* Prepare response for all extended tlvs if they are found by PF */ 1255 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1256 if (!(tlvs_mask & BIT(i))) 1257 continue; 1258 1259 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1260 qed_iov_vport_to_tlv(p_hwfn, i), size); 1261 1262 if (tlvs_accepted & BIT(i)) 1263 resp->hdr.status = status; 1264 else 1265 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1266 1267 DP_VERBOSE(p_hwfn, 1268 QED_MSG_IOV, 1269 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1270 p_vf->relative_vf_id, 1271 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1272 1273 total_len += size; 1274 } 1275 1276 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1277 sizeof(struct channel_list_end_tlv)); 1278 1279 return total_len; 1280 } 1281 1282 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1283 struct qed_ptt *p_ptt, 1284 struct qed_vf_info *vf_info, 1285 u16 type, u16 length, u8 status) 1286 { 1287 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1288 1289 mbx->offset = (u8 *)mbx->reply_virt; 1290 1291 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1292 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1293 sizeof(struct channel_list_end_tlv)); 1294 1295 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1296 } 1297 1298 static struct 1299 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1300 u16 relative_vf_id, 1301 bool b_enabled_only) 1302 { 1303 struct qed_vf_info *vf = NULL; 1304 1305 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1306 if (!vf) 1307 return NULL; 1308 1309 return &vf->p_vf_info; 1310 } 1311 1312 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1313 { 1314 struct qed_public_vf_info *vf_info; 1315 1316 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1317 1318 if (!vf_info) 1319 return; 1320 1321 /* Clear the VF mac */ 1322 eth_zero_addr(vf_info->mac); 1323 1324 vf_info->rx_accept_mode = 0; 1325 vf_info->tx_accept_mode = 0; 1326 } 1327 1328 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1329 struct qed_vf_info *p_vf) 1330 { 1331 u32 i; 1332 1333 p_vf->vf_bulletin = 0; 1334 p_vf->vport_instance = 0; 1335 p_vf->configured_features = 0; 1336 1337 /* If VF previously requested less resources, go back to default */ 1338 p_vf->num_rxqs = p_vf->num_sbs; 1339 p_vf->num_txqs = p_vf->num_sbs; 1340 1341 p_vf->num_active_rxqs = 0; 1342 1343 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1344 struct qed_vf_q_info *p_queue = &p_vf->vf_queues[i]; 1345 1346 if (p_queue->p_rx_cid) { 1347 qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid); 1348 p_queue->p_rx_cid = NULL; 1349 } 1350 1351 if (p_queue->p_tx_cid) { 1352 qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid); 1353 p_queue->p_tx_cid = NULL; 1354 } 1355 } 1356 1357 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1358 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1359 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1360 } 1361 1362 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1363 struct qed_ptt *p_ptt, 1364 struct qed_vf_info *p_vf, 1365 struct vf_pf_resc_request *p_req, 1366 struct pf_vf_resc *p_resp) 1367 { 1368 int i; 1369 1370 /* Queue related information */ 1371 p_resp->num_rxqs = p_vf->num_rxqs; 1372 p_resp->num_txqs = p_vf->num_txqs; 1373 p_resp->num_sbs = p_vf->num_sbs; 1374 1375 for (i = 0; i < p_resp->num_sbs; i++) { 1376 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1377 p_resp->hw_sbs[i].sb_qid = 0; 1378 } 1379 1380 /* These fields are filled for backward compatibility. 1381 * Unused by modern vfs. 1382 */ 1383 for (i = 0; i < p_resp->num_rxqs; i++) { 1384 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1385 (u16 *)&p_resp->hw_qid[i]); 1386 p_resp->cid[i] = p_vf->vf_queues[i].fw_cid; 1387 } 1388 1389 /* Filter related information */ 1390 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1391 p_req->num_mac_filters); 1392 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1393 p_req->num_vlan_filters); 1394 1395 /* This isn't really needed/enforced, but some legacy VFs might depend 1396 * on the correct filling of this field. 1397 */ 1398 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1399 1400 /* Validate sufficient resources for VF */ 1401 if (p_resp->num_rxqs < p_req->num_rxqs || 1402 p_resp->num_txqs < p_req->num_txqs || 1403 p_resp->num_sbs < p_req->num_sbs || 1404 p_resp->num_mac_filters < p_req->num_mac_filters || 1405 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1406 p_resp->num_mc_filters < p_req->num_mc_filters) { 1407 DP_VERBOSE(p_hwfn, 1408 QED_MSG_IOV, 1409 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x]\n", 1410 p_vf->abs_vf_id, 1411 p_req->num_rxqs, 1412 p_resp->num_rxqs, 1413 p_req->num_rxqs, 1414 p_resp->num_txqs, 1415 p_req->num_sbs, 1416 p_resp->num_sbs, 1417 p_req->num_mac_filters, 1418 p_resp->num_mac_filters, 1419 p_req->num_vlan_filters, 1420 p_resp->num_vlan_filters, 1421 p_req->num_mc_filters, p_resp->num_mc_filters); 1422 1423 /* Some legacy OSes are incapable of correctly handling this 1424 * failure. 1425 */ 1426 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1427 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1428 (p_vf->acquire.vfdev_info.os_type == 1429 VFPF_ACQUIRE_OS_WINDOWS)) 1430 return PFVF_STATUS_SUCCESS; 1431 1432 return PFVF_STATUS_NO_RESOURCE; 1433 } 1434 1435 return PFVF_STATUS_SUCCESS; 1436 } 1437 1438 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1439 struct pfvf_stats_info *p_stats) 1440 { 1441 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1442 offsetof(struct mstorm_vf_zone, 1443 non_trigger.eth_queue_stat); 1444 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1445 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1446 offsetof(struct ustorm_vf_zone, 1447 non_trigger.eth_queue_stat); 1448 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1449 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1450 offsetof(struct pstorm_vf_zone, 1451 non_trigger.eth_queue_stat); 1452 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1453 p_stats->tstats.address = 0; 1454 p_stats->tstats.len = 0; 1455 } 1456 1457 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1458 struct qed_ptt *p_ptt, 1459 struct qed_vf_info *vf) 1460 { 1461 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1462 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1463 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1464 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1465 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1466 struct pf_vf_resc *resc = &resp->resc; 1467 int rc; 1468 1469 memset(resp, 0, sizeof(*resp)); 1470 1471 /* Write the PF version so that VF would know which version 1472 * is supported - might be later overriden. This guarantees that 1473 * VF could recognize legacy PF based on lack of versions in reply. 1474 */ 1475 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1476 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1477 1478 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1479 DP_VERBOSE(p_hwfn, 1480 QED_MSG_IOV, 1481 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1482 vf->abs_vf_id, vf->state); 1483 goto out; 1484 } 1485 1486 /* Validate FW compatibility */ 1487 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1488 if (req->vfdev_info.capabilities & 1489 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1490 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1491 1492 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1493 "VF[%d] is pre-fastpath HSI\n", 1494 vf->abs_vf_id); 1495 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1496 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1497 } else { 1498 DP_INFO(p_hwfn, 1499 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1500 vf->abs_vf_id, 1501 req->vfdev_info.eth_fp_hsi_major, 1502 req->vfdev_info.eth_fp_hsi_minor, 1503 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1504 1505 goto out; 1506 } 1507 } 1508 1509 /* On 100g PFs, prevent old VFs from loading */ 1510 if ((p_hwfn->cdev->num_hwfns > 1) && 1511 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1512 DP_INFO(p_hwfn, 1513 "VF[%d] is running an old driver that doesn't support 100g\n", 1514 vf->abs_vf_id); 1515 goto out; 1516 } 1517 1518 /* Store the acquire message */ 1519 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1520 1521 vf->opaque_fid = req->vfdev_info.opaque_fid; 1522 1523 vf->vf_bulletin = req->bulletin_addr; 1524 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1525 vf->bulletin.size : req->bulletin_size; 1526 1527 /* fill in pfdev info */ 1528 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1529 pfdev_info->db_size = 0; 1530 pfdev_info->indices_per_sb = PIS_PER_SB; 1531 1532 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1533 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1534 if (p_hwfn->cdev->num_hwfns > 1) 1535 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1536 1537 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1538 1539 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1540 1541 pfdev_info->fw_major = FW_MAJOR_VERSION; 1542 pfdev_info->fw_minor = FW_MINOR_VERSION; 1543 pfdev_info->fw_rev = FW_REVISION_VERSION; 1544 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1545 1546 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1547 * this field. 1548 */ 1549 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1550 req->vfdev_info.eth_fp_hsi_minor); 1551 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1552 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1553 1554 pfdev_info->dev_type = p_hwfn->cdev->type; 1555 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1556 1557 /* Fill resources available to VF; Make sure there are enough to 1558 * satisfy the VF's request. 1559 */ 1560 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1561 &req->resc_request, resc); 1562 if (vfpf_status != PFVF_STATUS_SUCCESS) 1563 goto out; 1564 1565 /* Start the VF in FW */ 1566 rc = qed_sp_vf_start(p_hwfn, vf); 1567 if (rc) { 1568 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1569 vfpf_status = PFVF_STATUS_FAILURE; 1570 goto out; 1571 } 1572 1573 /* Fill agreed size of bulletin board in response */ 1574 resp->bulletin_size = vf->bulletin.size; 1575 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1576 1577 DP_VERBOSE(p_hwfn, 1578 QED_MSG_IOV, 1579 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1580 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1581 vf->abs_vf_id, 1582 resp->pfdev_info.chip_num, 1583 resp->pfdev_info.db_size, 1584 resp->pfdev_info.indices_per_sb, 1585 resp->pfdev_info.capabilities, 1586 resc->num_rxqs, 1587 resc->num_txqs, 1588 resc->num_sbs, 1589 resc->num_mac_filters, 1590 resc->num_vlan_filters); 1591 vf->state = VF_ACQUIRED; 1592 1593 /* Prepare Response */ 1594 out: 1595 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1596 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1597 } 1598 1599 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1600 struct qed_vf_info *p_vf, bool val) 1601 { 1602 struct qed_sp_vport_update_params params; 1603 int rc; 1604 1605 if (val == p_vf->spoof_chk) { 1606 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1607 "Spoofchk value[%d] is already configured\n", val); 1608 return 0; 1609 } 1610 1611 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1612 params.opaque_fid = p_vf->opaque_fid; 1613 params.vport_id = p_vf->vport_id; 1614 params.update_anti_spoofing_en_flg = 1; 1615 params.anti_spoofing_en = val; 1616 1617 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1618 if (!rc) { 1619 p_vf->spoof_chk = val; 1620 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1621 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1622 "Spoofchk val[%d] configured\n", val); 1623 } else { 1624 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1625 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1626 val, p_vf->relative_vf_id); 1627 } 1628 1629 return rc; 1630 } 1631 1632 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1633 struct qed_vf_info *p_vf) 1634 { 1635 struct qed_filter_ucast filter; 1636 int rc = 0; 1637 int i; 1638 1639 memset(&filter, 0, sizeof(filter)); 1640 filter.is_rx_filter = 1; 1641 filter.is_tx_filter = 1; 1642 filter.vport_to_add_to = p_vf->vport_id; 1643 filter.opcode = QED_FILTER_ADD; 1644 1645 /* Reconfigure vlans */ 1646 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1647 if (!p_vf->shadow_config.vlans[i].used) 1648 continue; 1649 1650 filter.type = QED_FILTER_VLAN; 1651 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1652 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1653 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1654 filter.vlan, p_vf->relative_vf_id); 1655 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1656 &filter, QED_SPQ_MODE_CB, NULL); 1657 if (rc) { 1658 DP_NOTICE(p_hwfn, 1659 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1660 filter.vlan, p_vf->relative_vf_id); 1661 break; 1662 } 1663 } 1664 1665 return rc; 1666 } 1667 1668 static int 1669 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1670 struct qed_vf_info *p_vf, u64 events) 1671 { 1672 int rc = 0; 1673 1674 if ((events & BIT(VLAN_ADDR_FORCED)) && 1675 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1676 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1677 1678 return rc; 1679 } 1680 1681 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1682 struct qed_vf_info *p_vf, u64 events) 1683 { 1684 int rc = 0; 1685 struct qed_filter_ucast filter; 1686 1687 if (!p_vf->vport_instance) 1688 return -EINVAL; 1689 1690 if (events & BIT(MAC_ADDR_FORCED)) { 1691 /* Since there's no way [currently] of removing the MAC, 1692 * we can always assume this means we need to force it. 1693 */ 1694 memset(&filter, 0, sizeof(filter)); 1695 filter.type = QED_FILTER_MAC; 1696 filter.opcode = QED_FILTER_REPLACE; 1697 filter.is_rx_filter = 1; 1698 filter.is_tx_filter = 1; 1699 filter.vport_to_add_to = p_vf->vport_id; 1700 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1701 1702 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1703 &filter, QED_SPQ_MODE_CB, NULL); 1704 if (rc) { 1705 DP_NOTICE(p_hwfn, 1706 "PF failed to configure MAC for VF\n"); 1707 return rc; 1708 } 1709 1710 p_vf->configured_features |= 1 << MAC_ADDR_FORCED; 1711 } 1712 1713 if (events & BIT(VLAN_ADDR_FORCED)) { 1714 struct qed_sp_vport_update_params vport_update; 1715 u8 removal; 1716 int i; 1717 1718 memset(&filter, 0, sizeof(filter)); 1719 filter.type = QED_FILTER_VLAN; 1720 filter.is_rx_filter = 1; 1721 filter.is_tx_filter = 1; 1722 filter.vport_to_add_to = p_vf->vport_id; 1723 filter.vlan = p_vf->bulletin.p_virt->pvid; 1724 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1725 QED_FILTER_FLUSH; 1726 1727 /* Send the ramrod */ 1728 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1729 &filter, QED_SPQ_MODE_CB, NULL); 1730 if (rc) { 1731 DP_NOTICE(p_hwfn, 1732 "PF failed to configure VLAN for VF\n"); 1733 return rc; 1734 } 1735 1736 /* Update the default-vlan & silent vlan stripping */ 1737 memset(&vport_update, 0, sizeof(vport_update)); 1738 vport_update.opaque_fid = p_vf->opaque_fid; 1739 vport_update.vport_id = p_vf->vport_id; 1740 vport_update.update_default_vlan_enable_flg = 1; 1741 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1742 vport_update.update_default_vlan_flg = 1; 1743 vport_update.default_vlan = filter.vlan; 1744 1745 vport_update.update_inner_vlan_removal_flg = 1; 1746 removal = filter.vlan ? 1 1747 : p_vf->shadow_config.inner_vlan_removal; 1748 vport_update.inner_vlan_removal_flg = removal; 1749 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1750 rc = qed_sp_vport_update(p_hwfn, 1751 &vport_update, 1752 QED_SPQ_MODE_EBLOCK, NULL); 1753 if (rc) { 1754 DP_NOTICE(p_hwfn, 1755 "PF failed to configure VF vport for vlan\n"); 1756 return rc; 1757 } 1758 1759 /* Update all the Rx queues */ 1760 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1761 struct qed_queue_cid *p_cid; 1762 1763 p_cid = p_vf->vf_queues[i].p_rx_cid; 1764 if (!p_cid) 1765 continue; 1766 1767 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1768 (void **)&p_cid, 1769 1, 0, 1, 1770 QED_SPQ_MODE_EBLOCK, 1771 NULL); 1772 if (rc) { 1773 DP_NOTICE(p_hwfn, 1774 "Failed to send Rx update fo queue[0x%04x]\n", 1775 p_cid->rel.queue_id); 1776 return rc; 1777 } 1778 } 1779 1780 if (filter.vlan) 1781 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1782 else 1783 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1784 } 1785 1786 /* If forced features are terminated, we need to configure the shadow 1787 * configuration back again. 1788 */ 1789 if (events) 1790 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1791 1792 return rc; 1793 } 1794 1795 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1796 struct qed_ptt *p_ptt, 1797 struct qed_vf_info *vf) 1798 { 1799 struct qed_sp_vport_start_params params = { 0 }; 1800 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1801 struct vfpf_vport_start_tlv *start; 1802 u8 status = PFVF_STATUS_SUCCESS; 1803 struct qed_vf_info *vf_info; 1804 u64 *p_bitmap; 1805 int sb_id; 1806 int rc; 1807 1808 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1809 if (!vf_info) { 1810 DP_NOTICE(p_hwfn->cdev, 1811 "Failed to get VF info, invalid vfid [%d]\n", 1812 vf->relative_vf_id); 1813 return; 1814 } 1815 1816 vf->state = VF_ENABLED; 1817 start = &mbx->req_virt->start_vport; 1818 1819 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1820 1821 /* Initialize Status block in CAU */ 1822 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1823 if (!start->sb_addr[sb_id]) { 1824 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1825 "VF[%d] did not fill the address of SB %d\n", 1826 vf->relative_vf_id, sb_id); 1827 break; 1828 } 1829 1830 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1831 start->sb_addr[sb_id], 1832 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1833 } 1834 1835 vf->mtu = start->mtu; 1836 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1837 1838 /* Take into consideration configuration forced by hypervisor; 1839 * If none is configured, use the supplied VF values [for old 1840 * vfs that would still be fine, since they passed '0' as padding]. 1841 */ 1842 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1843 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1844 u8 vf_req = start->only_untagged; 1845 1846 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1847 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1848 } 1849 1850 params.tpa_mode = start->tpa_mode; 1851 params.remove_inner_vlan = start->inner_vlan_removal; 1852 params.tx_switching = true; 1853 1854 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1855 params.drop_ttl0 = false; 1856 params.concrete_fid = vf->concrete_fid; 1857 params.opaque_fid = vf->opaque_fid; 1858 params.vport_id = vf->vport_id; 1859 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1860 params.mtu = vf->mtu; 1861 params.check_mac = true; 1862 1863 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1864 if (rc) { 1865 DP_ERR(p_hwfn, 1866 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1867 status = PFVF_STATUS_FAILURE; 1868 } else { 1869 vf->vport_instance++; 1870 1871 /* Force configuration if needed on the newly opened vport */ 1872 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1873 1874 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1875 } 1876 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1877 sizeof(struct pfvf_def_resp_tlv), status); 1878 } 1879 1880 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1881 struct qed_ptt *p_ptt, 1882 struct qed_vf_info *vf) 1883 { 1884 u8 status = PFVF_STATUS_SUCCESS; 1885 int rc; 1886 1887 vf->vport_instance--; 1888 vf->spoof_chk = false; 1889 1890 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 1891 (qed_iov_validate_active_txq(p_hwfn, vf))) { 1892 vf->b_malicious = true; 1893 DP_NOTICE(p_hwfn, 1894 "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n", 1895 vf->abs_vf_id); 1896 status = PFVF_STATUS_MALICIOUS; 1897 goto out; 1898 } 1899 1900 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 1901 if (rc) { 1902 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 1903 rc); 1904 status = PFVF_STATUS_FAILURE; 1905 } 1906 1907 /* Forget the configuration on the vport */ 1908 vf->configured_features = 0; 1909 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 1910 1911 out: 1912 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 1913 sizeof(struct pfvf_def_resp_tlv), status); 1914 } 1915 1916 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 1917 struct qed_ptt *p_ptt, 1918 struct qed_vf_info *vf, 1919 u8 status, bool b_legacy) 1920 { 1921 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1922 struct pfvf_start_queue_resp_tlv *p_tlv; 1923 struct vfpf_start_rxq_tlv *req; 1924 u16 length; 1925 1926 mbx->offset = (u8 *)mbx->reply_virt; 1927 1928 /* Taking a bigger struct instead of adding a TLV to list was a 1929 * mistake, but one which we're now stuck with, as some older 1930 * clients assume the size of the previous response. 1931 */ 1932 if (!b_legacy) 1933 length = sizeof(*p_tlv); 1934 else 1935 length = sizeof(struct pfvf_def_resp_tlv); 1936 1937 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 1938 length); 1939 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1940 sizeof(struct channel_list_end_tlv)); 1941 1942 /* Update the TLV with the response */ 1943 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 1944 req = &mbx->req_virt->start_rxq; 1945 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 1946 offsetof(struct mstorm_vf_zone, 1947 non_trigger.eth_rx_queue_producers) + 1948 sizeof(struct eth_rx_prod_data) * req->rx_qid; 1949 } 1950 1951 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 1952 } 1953 1954 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 1955 struct qed_ptt *p_ptt, 1956 struct qed_vf_info *vf) 1957 { 1958 struct qed_queue_start_common_params params; 1959 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1960 u8 status = PFVF_STATUS_NO_RESOURCE; 1961 struct qed_vf_q_info *p_queue; 1962 struct vfpf_start_rxq_tlv *req; 1963 bool b_legacy_vf = false; 1964 int rc; 1965 1966 req = &mbx->req_virt->start_rxq; 1967 1968 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 1969 QED_IOV_VALIDATE_Q_DISABLE) || 1970 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 1971 goto out; 1972 1973 /* Acquire a new queue-cid */ 1974 p_queue = &vf->vf_queues[req->rx_qid]; 1975 1976 memset(¶ms, 0, sizeof(params)); 1977 params.queue_id = p_queue->fw_rx_qid; 1978 params.vport_id = vf->vport_id; 1979 params.stats_id = vf->abs_vf_id + 0x10; 1980 params.sb = req->hw_sb; 1981 params.sb_idx = req->sb_index; 1982 1983 p_queue->p_rx_cid = _qed_eth_queue_to_cid(p_hwfn, 1984 vf->opaque_fid, 1985 p_queue->fw_cid, 1986 req->rx_qid, ¶ms); 1987 if (!p_queue->p_rx_cid) 1988 goto out; 1989 1990 /* Legacy VFs have their Producers in a different location, which they 1991 * calculate on their own and clean the producer prior to this. 1992 */ 1993 if (vf->acquire.vfdev_info.eth_fp_hsi_minor == 1994 ETH_HSI_VER_NO_PKT_LEN_TUNN) { 1995 b_legacy_vf = true; 1996 } else { 1997 REG_WR(p_hwfn, 1998 GTT_BAR0_MAP_REG_MSDM_RAM + 1999 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2000 0); 2001 } 2002 p_queue->p_rx_cid->b_legacy_vf = b_legacy_vf; 2003 2004 rc = qed_eth_rxq_start_ramrod(p_hwfn, 2005 p_queue->p_rx_cid, 2006 req->bd_max_bytes, 2007 req->rxq_addr, 2008 req->cqe_pbl_addr, req->cqe_pbl_size); 2009 if (rc) { 2010 status = PFVF_STATUS_FAILURE; 2011 qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid); 2012 p_queue->p_rx_cid = NULL; 2013 } else { 2014 status = PFVF_STATUS_SUCCESS; 2015 vf->num_active_rxqs++; 2016 } 2017 2018 out: 2019 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, b_legacy_vf); 2020 } 2021 2022 static void 2023 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2024 struct qed_tunnel_info *p_tun, 2025 u16 tunn_feature_mask) 2026 { 2027 p_resp->tunn_feature_mask = tunn_feature_mask; 2028 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2029 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2030 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2031 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2032 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2033 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2034 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2035 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2036 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2037 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2038 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2039 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2040 } 2041 2042 static void 2043 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2044 struct qed_tunn_update_type *p_tun, 2045 enum qed_tunn_mode mask, u8 tun_cls) 2046 { 2047 if (p_req->tun_mode_update_mask & BIT(mask)) { 2048 p_tun->b_update_mode = true; 2049 2050 if (p_req->tunn_mode & BIT(mask)) 2051 p_tun->b_mode_enabled = true; 2052 } 2053 2054 p_tun->tun_cls = tun_cls; 2055 } 2056 2057 static void 2058 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2059 struct qed_tunn_update_type *p_tun, 2060 struct qed_tunn_update_udp_port *p_port, 2061 enum qed_tunn_mode mask, 2062 u8 tun_cls, u8 update_port, u16 port) 2063 { 2064 if (update_port) { 2065 p_port->b_update_port = true; 2066 p_port->port = port; 2067 } 2068 2069 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2070 } 2071 2072 static bool 2073 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2074 { 2075 bool b_update_requested = false; 2076 2077 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2078 p_req->update_geneve_port || p_req->update_vxlan_port) 2079 b_update_requested = true; 2080 2081 return b_update_requested; 2082 } 2083 2084 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2085 { 2086 if (tun->b_update_mode && !tun->b_mode_enabled) { 2087 tun->b_update_mode = false; 2088 *rc = -EINVAL; 2089 } 2090 } 2091 2092 static int 2093 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2094 u16 *tun_features, bool *update, 2095 struct qed_tunnel_info *tun_src) 2096 { 2097 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2098 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2099 u16 bultn_vxlan_port, bultn_geneve_port; 2100 void *cookie = p_hwfn->cdev->ops_cookie; 2101 int i, rc = 0; 2102 2103 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2104 bultn_vxlan_port = tun->vxlan_port.port; 2105 bultn_geneve_port = tun->geneve_port.port; 2106 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2107 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2108 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2109 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2110 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2111 2112 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2113 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2114 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2115 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2116 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2117 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2118 tun_src->b_update_rx_cls = false; 2119 tun_src->b_update_tx_cls = false; 2120 rc = -EINVAL; 2121 } 2122 2123 if (tun_src->vxlan_port.b_update_port) { 2124 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2125 tun_src->vxlan_port.b_update_port = false; 2126 } else { 2127 *update = true; 2128 bultn_vxlan_port = tun_src->vxlan_port.port; 2129 } 2130 } 2131 2132 if (tun_src->geneve_port.b_update_port) { 2133 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2134 tun_src->geneve_port.b_update_port = false; 2135 } else { 2136 *update = true; 2137 bultn_geneve_port = tun_src->geneve_port.port; 2138 } 2139 } 2140 2141 qed_for_each_vf(p_hwfn, i) { 2142 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2143 bultn_geneve_port); 2144 } 2145 2146 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2147 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2148 2149 return rc; 2150 } 2151 2152 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2153 struct qed_ptt *p_ptt, 2154 struct qed_vf_info *p_vf) 2155 { 2156 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2157 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2158 struct pfvf_update_tunn_param_tlv *p_resp; 2159 struct vfpf_update_tunn_param_tlv *p_req; 2160 u8 status = PFVF_STATUS_SUCCESS; 2161 bool b_update_required = false; 2162 struct qed_tunnel_info tunn; 2163 u16 tunn_feature_mask = 0; 2164 int i, rc = 0; 2165 2166 mbx->offset = (u8 *)mbx->reply_virt; 2167 2168 memset(&tunn, 0, sizeof(tunn)); 2169 p_req = &mbx->req_virt->tunn_param_update; 2170 2171 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2172 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2173 "No tunnel update requested by VF\n"); 2174 status = PFVF_STATUS_FAILURE; 2175 goto send_resp; 2176 } 2177 2178 tunn.b_update_rx_cls = p_req->update_tun_cls; 2179 tunn.b_update_tx_cls = p_req->update_tun_cls; 2180 2181 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2182 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2183 p_req->update_vxlan_port, 2184 p_req->vxlan_port); 2185 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2186 QED_MODE_L2GENEVE_TUNN, 2187 p_req->l2geneve_clss, 2188 p_req->update_geneve_port, 2189 p_req->geneve_port); 2190 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2191 QED_MODE_IPGENEVE_TUNN, 2192 p_req->ipgeneve_clss); 2193 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2194 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2195 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2196 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2197 2198 /* If PF modifies VF's req then it should 2199 * still return an error in case of partial configuration 2200 * or modified configuration as opposed to requested one. 2201 */ 2202 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2203 &b_update_required, &tunn); 2204 2205 if (rc) 2206 status = PFVF_STATUS_FAILURE; 2207 2208 /* If QED client is willing to update anything ? */ 2209 if (b_update_required) { 2210 u16 geneve_port; 2211 2212 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, &tunn, 2213 QED_SPQ_MODE_EBLOCK, NULL); 2214 if (rc) 2215 status = PFVF_STATUS_FAILURE; 2216 2217 geneve_port = p_tun->geneve_port.port; 2218 qed_for_each_vf(p_hwfn, i) { 2219 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2220 p_tun->vxlan_port.port, 2221 geneve_port); 2222 } 2223 } 2224 2225 send_resp: 2226 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2227 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2228 2229 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2230 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2231 sizeof(struct channel_list_end_tlv)); 2232 2233 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2234 } 2235 2236 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2237 struct qed_ptt *p_ptt, 2238 struct qed_vf_info *p_vf, u8 status) 2239 { 2240 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2241 struct pfvf_start_queue_resp_tlv *p_tlv; 2242 bool b_legacy = false; 2243 u16 length; 2244 2245 mbx->offset = (u8 *)mbx->reply_virt; 2246 2247 /* Taking a bigger struct instead of adding a TLV to list was a 2248 * mistake, but one which we're now stuck with, as some older 2249 * clients assume the size of the previous response. 2250 */ 2251 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2252 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2253 b_legacy = true; 2254 2255 if (!b_legacy) 2256 length = sizeof(*p_tlv); 2257 else 2258 length = sizeof(struct pfvf_def_resp_tlv); 2259 2260 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2261 length); 2262 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2263 sizeof(struct channel_list_end_tlv)); 2264 2265 /* Update the TLV with the response */ 2266 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2267 u16 qid = mbx->req_virt->start_txq.tx_qid; 2268 2269 p_tlv->offset = qed_db_addr_vf(p_vf->vf_queues[qid].fw_cid, 2270 DQ_DEMS_LEGACY); 2271 } 2272 2273 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2274 } 2275 2276 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2277 struct qed_ptt *p_ptt, 2278 struct qed_vf_info *vf) 2279 { 2280 struct qed_queue_start_common_params params; 2281 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2282 u8 status = PFVF_STATUS_NO_RESOURCE; 2283 struct vfpf_start_txq_tlv *req; 2284 struct qed_vf_q_info *p_queue; 2285 int rc; 2286 u16 pq; 2287 2288 memset(¶ms, 0, sizeof(params)); 2289 req = &mbx->req_virt->start_txq; 2290 2291 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2292 QED_IOV_VALIDATE_Q_DISABLE) || 2293 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2294 goto out; 2295 2296 /* Acquire a new queue-cid */ 2297 p_queue = &vf->vf_queues[req->tx_qid]; 2298 2299 params.queue_id = p_queue->fw_tx_qid; 2300 params.vport_id = vf->vport_id; 2301 params.stats_id = vf->abs_vf_id + 0x10; 2302 params.sb = req->hw_sb; 2303 params.sb_idx = req->sb_index; 2304 2305 p_queue->p_tx_cid = _qed_eth_queue_to_cid(p_hwfn, 2306 vf->opaque_fid, 2307 p_queue->fw_cid, 2308 req->tx_qid, ¶ms); 2309 if (!p_queue->p_tx_cid) 2310 goto out; 2311 2312 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2313 rc = qed_eth_txq_start_ramrod(p_hwfn, p_queue->p_tx_cid, 2314 req->pbl_addr, req->pbl_size, pq); 2315 if (rc) { 2316 status = PFVF_STATUS_FAILURE; 2317 qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid); 2318 p_queue->p_tx_cid = NULL; 2319 } else { 2320 status = PFVF_STATUS_SUCCESS; 2321 } 2322 2323 out: 2324 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, status); 2325 } 2326 2327 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2328 struct qed_vf_info *vf, 2329 u16 rxq_id, bool cqe_completion) 2330 { 2331 struct qed_vf_q_info *p_queue; 2332 int rc = 0; 2333 2334 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, 2335 QED_IOV_VALIDATE_Q_ENABLE)) { 2336 DP_VERBOSE(p_hwfn, 2337 QED_MSG_IOV, 2338 "VF[%d] Tried Closing Rx 0x%04x which is inactive\n", 2339 vf->relative_vf_id, rxq_id); 2340 return -EINVAL; 2341 } 2342 2343 p_queue = &vf->vf_queues[rxq_id]; 2344 2345 rc = qed_eth_rx_queue_stop(p_hwfn, 2346 p_queue->p_rx_cid, 2347 false, cqe_completion); 2348 if (rc) 2349 return rc; 2350 2351 p_queue->p_rx_cid = NULL; 2352 vf->num_active_rxqs--; 2353 2354 return 0; 2355 } 2356 2357 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2358 struct qed_vf_info *vf, u16 txq_id) 2359 { 2360 struct qed_vf_q_info *p_queue; 2361 int rc = 0; 2362 2363 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, 2364 QED_IOV_VALIDATE_Q_ENABLE)) 2365 return -EINVAL; 2366 2367 p_queue = &vf->vf_queues[txq_id]; 2368 2369 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->p_tx_cid); 2370 if (rc) 2371 return rc; 2372 2373 p_queue->p_tx_cid = NULL; 2374 2375 return 0; 2376 } 2377 2378 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2379 struct qed_ptt *p_ptt, 2380 struct qed_vf_info *vf) 2381 { 2382 u16 length = sizeof(struct pfvf_def_resp_tlv); 2383 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2384 u8 status = PFVF_STATUS_FAILURE; 2385 struct vfpf_stop_rxqs_tlv *req; 2386 int rc; 2387 2388 /* There has never been an official driver that used this interface 2389 * for stopping multiple queues, and it is now considered deprecated. 2390 * Validate this isn't used here. 2391 */ 2392 req = &mbx->req_virt->stop_rxqs; 2393 if (req->num_rxqs != 1) { 2394 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2395 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2396 vf->relative_vf_id); 2397 status = PFVF_STATUS_NOT_SUPPORTED; 2398 goto out; 2399 } 2400 2401 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2402 req->cqe_completion); 2403 if (!rc) 2404 status = PFVF_STATUS_SUCCESS; 2405 out: 2406 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2407 length, status); 2408 } 2409 2410 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2411 struct qed_ptt *p_ptt, 2412 struct qed_vf_info *vf) 2413 { 2414 u16 length = sizeof(struct pfvf_def_resp_tlv); 2415 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2416 u8 status = PFVF_STATUS_FAILURE; 2417 struct vfpf_stop_txqs_tlv *req; 2418 int rc; 2419 2420 /* There has never been an official driver that used this interface 2421 * for stopping multiple queues, and it is now considered deprecated. 2422 * Validate this isn't used here. 2423 */ 2424 req = &mbx->req_virt->stop_txqs; 2425 if (req->num_txqs != 1) { 2426 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2427 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2428 vf->relative_vf_id); 2429 status = PFVF_STATUS_NOT_SUPPORTED; 2430 goto out; 2431 } 2432 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid); 2433 if (!rc) 2434 status = PFVF_STATUS_SUCCESS; 2435 2436 out: 2437 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2438 length, status); 2439 } 2440 2441 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2442 struct qed_ptt *p_ptt, 2443 struct qed_vf_info *vf) 2444 { 2445 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2446 u16 length = sizeof(struct pfvf_def_resp_tlv); 2447 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2448 struct vfpf_update_rxq_tlv *req; 2449 u8 status = PFVF_STATUS_FAILURE; 2450 u8 complete_event_flg; 2451 u8 complete_cqe_flg; 2452 u16 qid; 2453 int rc; 2454 u8 i; 2455 2456 req = &mbx->req_virt->update_rxq; 2457 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2458 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2459 2460 /* Validate inputs */ 2461 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) 2462 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2463 QED_IOV_VALIDATE_Q_ENABLE)) { 2464 DP_INFO(p_hwfn, "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2465 vf->relative_vf_id, req->rx_qid, req->num_rxqs); 2466 goto out; 2467 } 2468 2469 /* Prepare the handlers */ 2470 for (i = 0; i < req->num_rxqs; i++) { 2471 qid = req->rx_qid + i; 2472 handlers[i] = vf->vf_queues[qid].p_rx_cid; 2473 } 2474 2475 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2476 req->num_rxqs, 2477 complete_cqe_flg, 2478 complete_event_flg, 2479 QED_SPQ_MODE_EBLOCK, NULL); 2480 if (rc) 2481 goto out; 2482 2483 status = PFVF_STATUS_SUCCESS; 2484 out: 2485 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2486 length, status); 2487 } 2488 2489 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2490 void *p_tlvs_list, u16 req_type) 2491 { 2492 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2493 int len = 0; 2494 2495 do { 2496 if (!p_tlv->length) { 2497 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2498 return NULL; 2499 } 2500 2501 if (p_tlv->type == req_type) { 2502 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2503 "Extended tlv type %d, length %d found\n", 2504 p_tlv->type, p_tlv->length); 2505 return p_tlv; 2506 } 2507 2508 len += p_tlv->length; 2509 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2510 2511 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2512 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2513 return NULL; 2514 } 2515 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2516 2517 return NULL; 2518 } 2519 2520 static void 2521 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2522 struct qed_sp_vport_update_params *p_data, 2523 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2524 { 2525 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2526 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2527 2528 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2529 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2530 if (!p_act_tlv) 2531 return; 2532 2533 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2534 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2535 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2536 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2537 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2538 } 2539 2540 static void 2541 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2542 struct qed_sp_vport_update_params *p_data, 2543 struct qed_vf_info *p_vf, 2544 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2545 { 2546 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2547 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2548 2549 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2550 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2551 if (!p_vlan_tlv) 2552 return; 2553 2554 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2555 2556 /* Ignore the VF request if we're forcing a vlan */ 2557 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2558 p_data->update_inner_vlan_removal_flg = 1; 2559 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2560 } 2561 2562 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2563 } 2564 2565 static void 2566 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2567 struct qed_sp_vport_update_params *p_data, 2568 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2569 { 2570 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2571 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2572 2573 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2574 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2575 tlv); 2576 if (!p_tx_switch_tlv) 2577 return; 2578 2579 p_data->update_tx_switching_flg = 1; 2580 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2581 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2582 } 2583 2584 static void 2585 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2586 struct qed_sp_vport_update_params *p_data, 2587 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2588 { 2589 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2590 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2591 2592 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2593 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2594 if (!p_mcast_tlv) 2595 return; 2596 2597 p_data->update_approx_mcast_flg = 1; 2598 memcpy(p_data->bins, p_mcast_tlv->bins, 2599 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2600 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2601 } 2602 2603 static void 2604 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2605 struct qed_sp_vport_update_params *p_data, 2606 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2607 { 2608 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2609 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2610 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2611 2612 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2613 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2614 if (!p_accept_tlv) 2615 return; 2616 2617 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2618 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2619 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2620 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2621 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2622 } 2623 2624 static void 2625 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2626 struct qed_sp_vport_update_params *p_data, 2627 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2628 { 2629 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2630 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2631 2632 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2633 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2634 tlv); 2635 if (!p_accept_any_vlan) 2636 return; 2637 2638 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2639 p_data->update_accept_any_vlan_flg = 2640 p_accept_any_vlan->update_accept_any_vlan_flg; 2641 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2642 } 2643 2644 static void 2645 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2646 struct qed_vf_info *vf, 2647 struct qed_sp_vport_update_params *p_data, 2648 struct qed_rss_params *p_rss, 2649 struct qed_iov_vf_mbx *p_mbx, 2650 u16 *tlvs_mask, u16 *tlvs_accepted) 2651 { 2652 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2653 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2654 bool b_reject = false; 2655 u16 table_size; 2656 u16 i, q_idx; 2657 2658 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2659 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2660 if (!p_rss_tlv) { 2661 p_data->rss_params = NULL; 2662 return; 2663 } 2664 2665 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2666 2667 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2668 VFPF_UPDATE_RSS_CONFIG_FLAG); 2669 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2670 VFPF_UPDATE_RSS_CAPS_FLAG); 2671 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2672 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2673 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2674 VFPF_UPDATE_RSS_KEY_FLAG); 2675 2676 p_rss->rss_enable = p_rss_tlv->rss_enable; 2677 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2678 p_rss->rss_caps = p_rss_tlv->rss_caps; 2679 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2680 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2681 2682 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2683 (1 << p_rss_tlv->rss_table_size_log)); 2684 2685 for (i = 0; i < table_size; i++) { 2686 q_idx = p_rss_tlv->rss_ind_table[i]; 2687 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2688 QED_IOV_VALIDATE_Q_ENABLE)) { 2689 DP_VERBOSE(p_hwfn, 2690 QED_MSG_IOV, 2691 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2692 vf->relative_vf_id, q_idx); 2693 b_reject = true; 2694 goto out; 2695 } 2696 2697 p_rss->rss_ind_table[i] = vf->vf_queues[q_idx].p_rx_cid; 2698 } 2699 2700 p_data->rss_params = p_rss; 2701 out: 2702 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2703 if (!b_reject) 2704 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2705 } 2706 2707 static void 2708 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2709 struct qed_vf_info *vf, 2710 struct qed_sp_vport_update_params *p_data, 2711 struct qed_sge_tpa_params *p_sge_tpa, 2712 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2713 { 2714 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2715 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2716 2717 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2718 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2719 2720 if (!p_sge_tpa_tlv) { 2721 p_data->sge_tpa_params = NULL; 2722 return; 2723 } 2724 2725 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2726 2727 p_sge_tpa->update_tpa_en_flg = 2728 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2729 p_sge_tpa->update_tpa_param_flg = 2730 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2731 VFPF_UPDATE_TPA_PARAM_FLAG); 2732 2733 p_sge_tpa->tpa_ipv4_en_flg = 2734 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2735 p_sge_tpa->tpa_ipv6_en_flg = 2736 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2737 p_sge_tpa->tpa_pkt_split_flg = 2738 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2739 p_sge_tpa->tpa_hdr_data_split_flg = 2740 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2741 p_sge_tpa->tpa_gro_consistent_flg = 2742 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2743 2744 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2745 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2746 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2747 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2748 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2749 2750 p_data->sge_tpa_params = p_sge_tpa; 2751 2752 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2753 } 2754 2755 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2756 u8 vfid, 2757 struct qed_sp_vport_update_params *params, 2758 u16 *tlvs) 2759 { 2760 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 2761 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 2762 struct qed_public_vf_info *vf_info; 2763 2764 /* Untrusted VFs can't even be trusted to know that fact. 2765 * Simply indicate everything is configured fine, and trace 2766 * configuration 'behind their back'. 2767 */ 2768 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 2769 return 0; 2770 2771 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 2772 2773 if (flags->update_rx_mode_config) { 2774 vf_info->rx_accept_mode = flags->rx_accept_filter; 2775 if (!vf_info->is_trusted_configured) 2776 flags->rx_accept_filter &= ~mask; 2777 } 2778 2779 if (flags->update_tx_mode_config) { 2780 vf_info->tx_accept_mode = flags->tx_accept_filter; 2781 if (!vf_info->is_trusted_configured) 2782 flags->tx_accept_filter &= ~mask; 2783 } 2784 2785 return 0; 2786 } 2787 2788 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 2789 struct qed_ptt *p_ptt, 2790 struct qed_vf_info *vf) 2791 { 2792 struct qed_rss_params *p_rss_params = NULL; 2793 struct qed_sp_vport_update_params params; 2794 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2795 struct qed_sge_tpa_params sge_tpa_params; 2796 u16 tlvs_mask = 0, tlvs_accepted = 0; 2797 u8 status = PFVF_STATUS_SUCCESS; 2798 u16 length; 2799 int rc; 2800 2801 /* Valiate PF can send such a request */ 2802 if (!vf->vport_instance) { 2803 DP_VERBOSE(p_hwfn, 2804 QED_MSG_IOV, 2805 "No VPORT instance available for VF[%d], failing vport update\n", 2806 vf->abs_vf_id); 2807 status = PFVF_STATUS_FAILURE; 2808 goto out; 2809 } 2810 p_rss_params = vzalloc(sizeof(*p_rss_params)); 2811 if (p_rss_params == NULL) { 2812 status = PFVF_STATUS_FAILURE; 2813 goto out; 2814 } 2815 2816 memset(¶ms, 0, sizeof(params)); 2817 params.opaque_fid = vf->opaque_fid; 2818 params.vport_id = vf->vport_id; 2819 params.rss_params = NULL; 2820 2821 /* Search for extended tlvs list and update values 2822 * from VF in struct qed_sp_vport_update_params. 2823 */ 2824 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2825 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 2826 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 2827 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2828 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 2829 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 2830 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 2831 &sge_tpa_params, mbx, &tlvs_mask); 2832 2833 tlvs_accepted = tlvs_mask; 2834 2835 /* Some of the extended TLVs need to be validated first; In that case, 2836 * they can update the mask without updating the accepted [so that 2837 * PF could communicate to VF it has rejected request]. 2838 */ 2839 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 2840 mbx, &tlvs_mask, &tlvs_accepted); 2841 2842 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 2843 ¶ms, &tlvs_accepted)) { 2844 tlvs_accepted = 0; 2845 status = PFVF_STATUS_NOT_SUPPORTED; 2846 goto out; 2847 } 2848 2849 if (!tlvs_accepted) { 2850 if (tlvs_mask) 2851 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2852 "Upper-layer prevents VF vport configuration\n"); 2853 else 2854 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2855 "No feature tlvs found for vport update\n"); 2856 status = PFVF_STATUS_NOT_SUPPORTED; 2857 goto out; 2858 } 2859 2860 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 2861 2862 if (rc) 2863 status = PFVF_STATUS_FAILURE; 2864 2865 out: 2866 vfree(p_rss_params); 2867 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 2868 tlvs_mask, tlvs_accepted); 2869 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2870 } 2871 2872 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 2873 struct qed_vf_info *p_vf, 2874 struct qed_filter_ucast *p_params) 2875 { 2876 int i; 2877 2878 /* First remove entries and then add new ones */ 2879 if (p_params->opcode == QED_FILTER_REMOVE) { 2880 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2881 if (p_vf->shadow_config.vlans[i].used && 2882 p_vf->shadow_config.vlans[i].vid == 2883 p_params->vlan) { 2884 p_vf->shadow_config.vlans[i].used = false; 2885 break; 2886 } 2887 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2888 DP_VERBOSE(p_hwfn, 2889 QED_MSG_IOV, 2890 "VF [%d] - Tries to remove a non-existing vlan\n", 2891 p_vf->relative_vf_id); 2892 return -EINVAL; 2893 } 2894 } else if (p_params->opcode == QED_FILTER_REPLACE || 2895 p_params->opcode == QED_FILTER_FLUSH) { 2896 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2897 p_vf->shadow_config.vlans[i].used = false; 2898 } 2899 2900 /* In forced mode, we're willing to remove entries - but we don't add 2901 * new ones. 2902 */ 2903 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 2904 return 0; 2905 2906 if (p_params->opcode == QED_FILTER_ADD || 2907 p_params->opcode == QED_FILTER_REPLACE) { 2908 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 2909 if (p_vf->shadow_config.vlans[i].used) 2910 continue; 2911 2912 p_vf->shadow_config.vlans[i].used = true; 2913 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 2914 break; 2915 } 2916 2917 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2918 DP_VERBOSE(p_hwfn, 2919 QED_MSG_IOV, 2920 "VF [%d] - Tries to configure more than %d vlan filters\n", 2921 p_vf->relative_vf_id, 2922 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 2923 return -EINVAL; 2924 } 2925 } 2926 2927 return 0; 2928 } 2929 2930 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 2931 struct qed_vf_info *p_vf, 2932 struct qed_filter_ucast *p_params) 2933 { 2934 int i; 2935 2936 /* If we're in forced-mode, we don't allow any change */ 2937 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 2938 return 0; 2939 2940 /* First remove entries and then add new ones */ 2941 if (p_params->opcode == QED_FILTER_REMOVE) { 2942 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 2943 if (ether_addr_equal(p_vf->shadow_config.macs[i], 2944 p_params->mac)) { 2945 eth_zero_addr(p_vf->shadow_config.macs[i]); 2946 break; 2947 } 2948 } 2949 2950 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 2951 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2952 "MAC isn't configured\n"); 2953 return -EINVAL; 2954 } 2955 } else if (p_params->opcode == QED_FILTER_REPLACE || 2956 p_params->opcode == QED_FILTER_FLUSH) { 2957 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 2958 eth_zero_addr(p_vf->shadow_config.macs[i]); 2959 } 2960 2961 /* List the new MAC address */ 2962 if (p_params->opcode != QED_FILTER_ADD && 2963 p_params->opcode != QED_FILTER_REPLACE) 2964 return 0; 2965 2966 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 2967 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 2968 ether_addr_copy(p_vf->shadow_config.macs[i], 2969 p_params->mac); 2970 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2971 "Added MAC at %d entry in shadow\n", i); 2972 break; 2973 } 2974 } 2975 2976 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 2977 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 2978 return -EINVAL; 2979 } 2980 2981 return 0; 2982 } 2983 2984 static int 2985 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 2986 struct qed_vf_info *p_vf, 2987 struct qed_filter_ucast *p_params) 2988 { 2989 int rc = 0; 2990 2991 if (p_params->type == QED_FILTER_MAC) { 2992 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 2993 if (rc) 2994 return rc; 2995 } 2996 2997 if (p_params->type == QED_FILTER_VLAN) 2998 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 2999 3000 return rc; 3001 } 3002 3003 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3004 int vfid, struct qed_filter_ucast *params) 3005 { 3006 struct qed_public_vf_info *vf; 3007 3008 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3009 if (!vf) 3010 return -EINVAL; 3011 3012 /* No real decision to make; Store the configured MAC */ 3013 if (params->type == QED_FILTER_MAC || 3014 params->type == QED_FILTER_MAC_VLAN) 3015 ether_addr_copy(vf->mac, params->mac); 3016 3017 return 0; 3018 } 3019 3020 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3021 struct qed_ptt *p_ptt, 3022 struct qed_vf_info *vf) 3023 { 3024 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3025 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3026 struct vfpf_ucast_filter_tlv *req; 3027 u8 status = PFVF_STATUS_SUCCESS; 3028 struct qed_filter_ucast params; 3029 int rc; 3030 3031 /* Prepare the unicast filter params */ 3032 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3033 req = &mbx->req_virt->ucast_filter; 3034 params.opcode = (enum qed_filter_opcode)req->opcode; 3035 params.type = (enum qed_filter_ucast_type)req->type; 3036 3037 params.is_rx_filter = 1; 3038 params.is_tx_filter = 1; 3039 params.vport_to_remove_from = vf->vport_id; 3040 params.vport_to_add_to = vf->vport_id; 3041 memcpy(params.mac, req->mac, ETH_ALEN); 3042 params.vlan = req->vlan; 3043 3044 DP_VERBOSE(p_hwfn, 3045 QED_MSG_IOV, 3046 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 3047 vf->abs_vf_id, params.opcode, params.type, 3048 params.is_rx_filter ? "RX" : "", 3049 params.is_tx_filter ? "TX" : "", 3050 params.vport_to_add_to, 3051 params.mac[0], params.mac[1], 3052 params.mac[2], params.mac[3], 3053 params.mac[4], params.mac[5], params.vlan); 3054 3055 if (!vf->vport_instance) { 3056 DP_VERBOSE(p_hwfn, 3057 QED_MSG_IOV, 3058 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3059 vf->abs_vf_id); 3060 status = PFVF_STATUS_FAILURE; 3061 goto out; 3062 } 3063 3064 /* Update shadow copy of the VF configuration */ 3065 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3066 status = PFVF_STATUS_FAILURE; 3067 goto out; 3068 } 3069 3070 /* Determine if the unicast filtering is acceptible by PF */ 3071 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3072 (params.type == QED_FILTER_VLAN || 3073 params.type == QED_FILTER_MAC_VLAN)) { 3074 /* Once VLAN is forced or PVID is set, do not allow 3075 * to add/replace any further VLANs. 3076 */ 3077 if (params.opcode == QED_FILTER_ADD || 3078 params.opcode == QED_FILTER_REPLACE) 3079 status = PFVF_STATUS_FORCED; 3080 goto out; 3081 } 3082 3083 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3084 (params.type == QED_FILTER_MAC || 3085 params.type == QED_FILTER_MAC_VLAN)) { 3086 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3087 (params.opcode != QED_FILTER_ADD && 3088 params.opcode != QED_FILTER_REPLACE)) 3089 status = PFVF_STATUS_FORCED; 3090 goto out; 3091 } 3092 3093 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3094 if (rc) { 3095 status = PFVF_STATUS_FAILURE; 3096 goto out; 3097 } 3098 3099 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3100 QED_SPQ_MODE_CB, NULL); 3101 if (rc) 3102 status = PFVF_STATUS_FAILURE; 3103 3104 out: 3105 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3106 sizeof(struct pfvf_def_resp_tlv), status); 3107 } 3108 3109 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3110 struct qed_ptt *p_ptt, 3111 struct qed_vf_info *vf) 3112 { 3113 int i; 3114 3115 /* Reset the SBs */ 3116 for (i = 0; i < vf->num_sbs; i++) 3117 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3118 vf->igu_sbs[i], 3119 vf->opaque_fid, false); 3120 3121 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3122 sizeof(struct pfvf_def_resp_tlv), 3123 PFVF_STATUS_SUCCESS); 3124 } 3125 3126 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3127 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3128 { 3129 u16 length = sizeof(struct pfvf_def_resp_tlv); 3130 u8 status = PFVF_STATUS_SUCCESS; 3131 3132 /* Disable Interrupts for VF */ 3133 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3134 3135 /* Reset Permission table */ 3136 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3137 3138 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3139 length, status); 3140 } 3141 3142 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3143 struct qed_ptt *p_ptt, 3144 struct qed_vf_info *p_vf) 3145 { 3146 u16 length = sizeof(struct pfvf_def_resp_tlv); 3147 u8 status = PFVF_STATUS_SUCCESS; 3148 int rc = 0; 3149 3150 qed_iov_vf_cleanup(p_hwfn, p_vf); 3151 3152 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3153 /* Stopping the VF */ 3154 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3155 p_vf->opaque_fid); 3156 3157 if (rc) { 3158 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3159 rc); 3160 status = PFVF_STATUS_FAILURE; 3161 } 3162 3163 p_vf->state = VF_STOPPED; 3164 } 3165 3166 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3167 length, status); 3168 } 3169 3170 static int 3171 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3172 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3173 { 3174 int cnt; 3175 u32 val; 3176 3177 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 3178 3179 for (cnt = 0; cnt < 50; cnt++) { 3180 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3181 if (!val) 3182 break; 3183 msleep(20); 3184 } 3185 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 3186 3187 if (cnt == 50) { 3188 DP_ERR(p_hwfn, 3189 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3190 p_vf->abs_vf_id, val); 3191 return -EBUSY; 3192 } 3193 3194 return 0; 3195 } 3196 3197 static int 3198 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3199 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3200 { 3201 u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS]; 3202 int i, cnt; 3203 3204 /* Read initial consumers & producers */ 3205 for (i = 0; i < MAX_NUM_VOQS; i++) { 3206 u32 prod; 3207 3208 cons[i] = qed_rd(p_hwfn, p_ptt, 3209 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3210 i * 0x40); 3211 prod = qed_rd(p_hwfn, p_ptt, 3212 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3213 i * 0x40); 3214 distance[i] = prod - cons[i]; 3215 } 3216 3217 /* Wait for consumers to pass the producers */ 3218 i = 0; 3219 for (cnt = 0; cnt < 50; cnt++) { 3220 for (; i < MAX_NUM_VOQS; i++) { 3221 u32 tmp; 3222 3223 tmp = qed_rd(p_hwfn, p_ptt, 3224 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3225 i * 0x40); 3226 if (distance[i] > tmp - cons[i]) 3227 break; 3228 } 3229 3230 if (i == MAX_NUM_VOQS) 3231 break; 3232 3233 msleep(20); 3234 } 3235 3236 if (cnt == 50) { 3237 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3238 p_vf->abs_vf_id, i); 3239 return -EBUSY; 3240 } 3241 3242 return 0; 3243 } 3244 3245 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3246 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3247 { 3248 int rc; 3249 3250 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3251 if (rc) 3252 return rc; 3253 3254 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3255 if (rc) 3256 return rc; 3257 3258 return 0; 3259 } 3260 3261 static int 3262 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3263 struct qed_ptt *p_ptt, 3264 u16 rel_vf_id, u32 *ack_vfs) 3265 { 3266 struct qed_vf_info *p_vf; 3267 int rc = 0; 3268 3269 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3270 if (!p_vf) 3271 return 0; 3272 3273 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3274 (1ULL << (rel_vf_id % 64))) { 3275 u16 vfid = p_vf->abs_vf_id; 3276 3277 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3278 "VF[%d] - Handling FLR\n", vfid); 3279 3280 qed_iov_vf_cleanup(p_hwfn, p_vf); 3281 3282 /* If VF isn't active, no need for anything but SW */ 3283 if (!p_vf->b_init) 3284 goto cleanup; 3285 3286 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3287 if (rc) 3288 goto cleanup; 3289 3290 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3291 if (rc) { 3292 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3293 return rc; 3294 } 3295 3296 /* Workaround to make VF-PF channel ready, as FW 3297 * doesn't do that as a part of FLR. 3298 */ 3299 REG_WR(p_hwfn, 3300 GTT_BAR0_MAP_REG_USDM_RAM + 3301 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3302 3303 /* VF_STOPPED has to be set only after final cleanup 3304 * but prior to re-enabling the VF. 3305 */ 3306 p_vf->state = VF_STOPPED; 3307 3308 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3309 if (rc) { 3310 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3311 vfid); 3312 return rc; 3313 } 3314 cleanup: 3315 /* Mark VF for ack and clean pending state */ 3316 if (p_vf->state == VF_RESET) 3317 p_vf->state = VF_STOPPED; 3318 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3319 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3320 ~(1ULL << (rel_vf_id % 64)); 3321 p_vf->vf_mbx.b_pending_msg = false; 3322 } 3323 3324 return rc; 3325 } 3326 3327 static int 3328 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3329 { 3330 u32 ack_vfs[VF_MAX_STATIC / 32]; 3331 int rc = 0; 3332 u16 i; 3333 3334 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3335 3336 /* Since BRB <-> PRS interface can't be tested as part of the flr 3337 * polling due to HW limitations, simply sleep a bit. And since 3338 * there's no need to wait per-vf, do it before looping. 3339 */ 3340 msleep(100); 3341 3342 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3343 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3344 3345 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3346 return rc; 3347 } 3348 3349 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3350 { 3351 bool found = false; 3352 u16 i; 3353 3354 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3355 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3356 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3357 "[%08x,...,%08x]: %08x\n", 3358 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3359 3360 if (!p_hwfn->cdev->p_iov_info) { 3361 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3362 return false; 3363 } 3364 3365 /* Mark VFs */ 3366 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3367 struct qed_vf_info *p_vf; 3368 u8 vfid; 3369 3370 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3371 if (!p_vf) 3372 continue; 3373 3374 vfid = p_vf->abs_vf_id; 3375 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3376 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3377 u16 rel_vf_id = p_vf->relative_vf_id; 3378 3379 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3380 "VF[%d] [rel %d] got FLR-ed\n", 3381 vfid, rel_vf_id); 3382 3383 p_vf->state = VF_RESET; 3384 3385 /* No need to lock here, since pending_flr should 3386 * only change here and before ACKing MFw. Since 3387 * MFW will not trigger an additional attention for 3388 * VF flr until ACKs, we're safe. 3389 */ 3390 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3391 found = true; 3392 } 3393 } 3394 3395 return found; 3396 } 3397 3398 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3399 u16 vfid, 3400 struct qed_mcp_link_params *p_params, 3401 struct qed_mcp_link_state *p_link, 3402 struct qed_mcp_link_capabilities *p_caps) 3403 { 3404 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3405 vfid, 3406 false); 3407 struct qed_bulletin_content *p_bulletin; 3408 3409 if (!p_vf) 3410 return; 3411 3412 p_bulletin = p_vf->bulletin.p_virt; 3413 3414 if (p_params) 3415 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3416 if (p_link) 3417 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3418 if (p_caps) 3419 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3420 } 3421 3422 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3423 struct qed_ptt *p_ptt, int vfid) 3424 { 3425 struct qed_iov_vf_mbx *mbx; 3426 struct qed_vf_info *p_vf; 3427 3428 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3429 if (!p_vf) 3430 return; 3431 3432 mbx = &p_vf->vf_mbx; 3433 3434 /* qed_iov_process_mbx_request */ 3435 if (!mbx->b_pending_msg) { 3436 DP_NOTICE(p_hwfn, 3437 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3438 p_vf->abs_vf_id); 3439 return; 3440 } 3441 mbx->b_pending_msg = false; 3442 3443 mbx->first_tlv = mbx->req_virt->first_tlv; 3444 3445 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3446 "VF[%02x]: Processing mailbox message [type %04x]\n", 3447 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3448 3449 /* check if tlv type is known */ 3450 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3451 !p_vf->b_malicious) { 3452 switch (mbx->first_tlv.tl.type) { 3453 case CHANNEL_TLV_ACQUIRE: 3454 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3455 break; 3456 case CHANNEL_TLV_VPORT_START: 3457 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3458 break; 3459 case CHANNEL_TLV_VPORT_TEARDOWN: 3460 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3461 break; 3462 case CHANNEL_TLV_START_RXQ: 3463 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3464 break; 3465 case CHANNEL_TLV_START_TXQ: 3466 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3467 break; 3468 case CHANNEL_TLV_STOP_RXQS: 3469 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3470 break; 3471 case CHANNEL_TLV_STOP_TXQS: 3472 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3473 break; 3474 case CHANNEL_TLV_UPDATE_RXQ: 3475 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3476 break; 3477 case CHANNEL_TLV_VPORT_UPDATE: 3478 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3479 break; 3480 case CHANNEL_TLV_UCAST_FILTER: 3481 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3482 break; 3483 case CHANNEL_TLV_CLOSE: 3484 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3485 break; 3486 case CHANNEL_TLV_INT_CLEANUP: 3487 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3488 break; 3489 case CHANNEL_TLV_RELEASE: 3490 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3491 break; 3492 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3493 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3494 break; 3495 } 3496 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3497 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3498 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3499 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3500 3501 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3502 mbx->first_tlv.tl.type, 3503 sizeof(struct pfvf_def_resp_tlv), 3504 PFVF_STATUS_MALICIOUS); 3505 } else { 3506 /* unknown TLV - this may belong to a VF driver from the future 3507 * - a version written after this PF driver was written, which 3508 * supports features unknown as of yet. Too bad since we don't 3509 * support them. Or this may be because someone wrote a crappy 3510 * VF driver and is sending garbage over the channel. 3511 */ 3512 DP_NOTICE(p_hwfn, 3513 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3514 p_vf->abs_vf_id, 3515 mbx->first_tlv.tl.type, 3516 mbx->first_tlv.tl.length, 3517 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3518 3519 /* Try replying in case reply address matches the acquisition's 3520 * posted address. 3521 */ 3522 if (p_vf->acquire.first_tlv.reply_address && 3523 (mbx->first_tlv.reply_address == 3524 p_vf->acquire.first_tlv.reply_address)) { 3525 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3526 mbx->first_tlv.tl.type, 3527 sizeof(struct pfvf_def_resp_tlv), 3528 PFVF_STATUS_NOT_SUPPORTED); 3529 } else { 3530 DP_VERBOSE(p_hwfn, 3531 QED_MSG_IOV, 3532 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3533 p_vf->abs_vf_id); 3534 } 3535 } 3536 } 3537 3538 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3539 { 3540 int i; 3541 3542 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3543 3544 qed_for_each_vf(p_hwfn, i) { 3545 struct qed_vf_info *p_vf; 3546 3547 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3548 if (p_vf->vf_mbx.b_pending_msg) 3549 events[i / 64] |= 1ULL << (i % 64); 3550 } 3551 } 3552 3553 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3554 u16 abs_vfid) 3555 { 3556 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 3557 3558 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 3559 DP_VERBOSE(p_hwfn, 3560 QED_MSG_IOV, 3561 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 3562 abs_vfid); 3563 return NULL; 3564 } 3565 3566 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 3567 } 3568 3569 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 3570 u16 abs_vfid, struct regpair *vf_msg) 3571 { 3572 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 3573 abs_vfid); 3574 3575 if (!p_vf) 3576 return 0; 3577 3578 /* List the physical address of the request so that handler 3579 * could later on copy the message from it. 3580 */ 3581 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 3582 3583 /* Mark the event and schedule the workqueue */ 3584 p_vf->vf_mbx.b_pending_msg = true; 3585 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 3586 3587 return 0; 3588 } 3589 3590 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 3591 struct malicious_vf_eqe_data *p_data) 3592 { 3593 struct qed_vf_info *p_vf; 3594 3595 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 3596 3597 if (!p_vf) 3598 return; 3599 3600 if (!p_vf->b_malicious) { 3601 DP_NOTICE(p_hwfn, 3602 "VF [%d] - Malicious behavior [%02x]\n", 3603 p_vf->abs_vf_id, p_data->err_id); 3604 3605 p_vf->b_malicious = true; 3606 } else { 3607 DP_INFO(p_hwfn, 3608 "VF [%d] - Malicious behavior [%02x]\n", 3609 p_vf->abs_vf_id, p_data->err_id); 3610 } 3611 } 3612 3613 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 3614 u8 opcode, __le16 echo, union event_ring_data *data) 3615 { 3616 switch (opcode) { 3617 case COMMON_EVENT_VF_PF_CHANNEL: 3618 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 3619 &data->vf_pf_channel.msg_addr); 3620 case COMMON_EVENT_MALICIOUS_VF: 3621 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 3622 return 0; 3623 default: 3624 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 3625 opcode); 3626 return -EINVAL; 3627 } 3628 } 3629 3630 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 3631 { 3632 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 3633 u16 i; 3634 3635 if (!p_iov) 3636 goto out; 3637 3638 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 3639 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 3640 return i; 3641 3642 out: 3643 return MAX_NUM_VFS; 3644 } 3645 3646 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 3647 int vfid) 3648 { 3649 struct qed_dmae_params params; 3650 struct qed_vf_info *vf_info; 3651 3652 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3653 if (!vf_info) 3654 return -EINVAL; 3655 3656 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 3657 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 3658 params.src_vfid = vf_info->abs_vf_id; 3659 3660 if (qed_dmae_host2host(p_hwfn, ptt, 3661 vf_info->vf_mbx.pending_req, 3662 vf_info->vf_mbx.req_phys, 3663 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 3664 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3665 "Failed to copy message from VF 0x%02x\n", vfid); 3666 3667 return -EIO; 3668 } 3669 3670 return 0; 3671 } 3672 3673 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 3674 u8 *mac, int vfid) 3675 { 3676 struct qed_vf_info *vf_info; 3677 u64 feature; 3678 3679 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3680 if (!vf_info) { 3681 DP_NOTICE(p_hwfn->cdev, 3682 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 3683 return; 3684 } 3685 3686 if (vf_info->b_malicious) { 3687 DP_NOTICE(p_hwfn->cdev, 3688 "Can't set forced MAC to malicious VF [%d]\n", vfid); 3689 return; 3690 } 3691 3692 feature = 1 << MAC_ADDR_FORCED; 3693 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 3694 3695 vf_info->bulletin.p_virt->valid_bitmap |= feature; 3696 /* Forced MAC will disable MAC_ADDR */ 3697 vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR); 3698 3699 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 3700 } 3701 3702 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 3703 u16 pvid, int vfid) 3704 { 3705 struct qed_vf_info *vf_info; 3706 u64 feature; 3707 3708 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3709 if (!vf_info) { 3710 DP_NOTICE(p_hwfn->cdev, 3711 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 3712 return; 3713 } 3714 3715 if (vf_info->b_malicious) { 3716 DP_NOTICE(p_hwfn->cdev, 3717 "Can't set forced vlan to malicious VF [%d]\n", vfid); 3718 return; 3719 } 3720 3721 feature = 1 << VLAN_ADDR_FORCED; 3722 vf_info->bulletin.p_virt->pvid = pvid; 3723 if (pvid) 3724 vf_info->bulletin.p_virt->valid_bitmap |= feature; 3725 else 3726 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 3727 3728 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 3729 } 3730 3731 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 3732 int vfid, u16 vxlan_port, u16 geneve_port) 3733 { 3734 struct qed_vf_info *vf_info; 3735 3736 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3737 if (!vf_info) { 3738 DP_NOTICE(p_hwfn->cdev, 3739 "Can not set udp ports, invalid vfid [%d]\n", vfid); 3740 return; 3741 } 3742 3743 if (vf_info->b_malicious) { 3744 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3745 "Can not set udp ports to malicious VF [%d]\n", 3746 vfid); 3747 return; 3748 } 3749 3750 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 3751 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 3752 } 3753 3754 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 3755 { 3756 struct qed_vf_info *p_vf_info; 3757 3758 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3759 if (!p_vf_info) 3760 return false; 3761 3762 return !!p_vf_info->vport_instance; 3763 } 3764 3765 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 3766 { 3767 struct qed_vf_info *p_vf_info; 3768 3769 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3770 if (!p_vf_info) 3771 return true; 3772 3773 return p_vf_info->state == VF_STOPPED; 3774 } 3775 3776 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 3777 { 3778 struct qed_vf_info *vf_info; 3779 3780 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3781 if (!vf_info) 3782 return false; 3783 3784 return vf_info->spoof_chk; 3785 } 3786 3787 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 3788 { 3789 struct qed_vf_info *vf; 3790 int rc = -EINVAL; 3791 3792 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3793 DP_NOTICE(p_hwfn, 3794 "SR-IOV sanity check failed, can't set spoofchk\n"); 3795 goto out; 3796 } 3797 3798 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3799 if (!vf) 3800 goto out; 3801 3802 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 3803 /* After VF VPORT start PF will configure spoof check */ 3804 vf->req_spoofchk_val = val; 3805 rc = 0; 3806 goto out; 3807 } 3808 3809 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 3810 3811 out: 3812 return rc; 3813 } 3814 3815 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 3816 u16 rel_vf_id) 3817 { 3818 struct qed_vf_info *p_vf; 3819 3820 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 3821 if (!p_vf || !p_vf->bulletin.p_virt) 3822 return NULL; 3823 3824 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 3825 return NULL; 3826 3827 return p_vf->bulletin.p_virt->mac; 3828 } 3829 3830 static u16 3831 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 3832 { 3833 struct qed_vf_info *p_vf; 3834 3835 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 3836 if (!p_vf || !p_vf->bulletin.p_virt) 3837 return 0; 3838 3839 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 3840 return 0; 3841 3842 return p_vf->bulletin.p_virt->pvid; 3843 } 3844 3845 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 3846 struct qed_ptt *p_ptt, int vfid, int val) 3847 { 3848 struct qed_vf_info *vf; 3849 u8 abs_vp_id = 0; 3850 int rc; 3851 3852 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3853 if (!vf) 3854 return -EINVAL; 3855 3856 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 3857 if (rc) 3858 return rc; 3859 3860 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val); 3861 } 3862 3863 static int 3864 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 3865 { 3866 struct qed_vf_info *vf; 3867 u8 vport_id; 3868 int i; 3869 3870 for_each_hwfn(cdev, i) { 3871 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3872 3873 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3874 DP_NOTICE(p_hwfn, 3875 "SR-IOV sanity check failed, can't set min rate\n"); 3876 return -EINVAL; 3877 } 3878 } 3879 3880 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 3881 vport_id = vf->vport_id; 3882 3883 return qed_configure_vport_wfq(cdev, vport_id, rate); 3884 } 3885 3886 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 3887 { 3888 struct qed_wfq_data *vf_vp_wfq; 3889 struct qed_vf_info *vf_info; 3890 3891 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3892 if (!vf_info) 3893 return 0; 3894 3895 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 3896 3897 if (vf_vp_wfq->configured) 3898 return vf_vp_wfq->min_speed; 3899 else 3900 return 0; 3901 } 3902 3903 /** 3904 * qed_schedule_iov - schedules IOV task for VF and PF 3905 * @hwfn: hardware function pointer 3906 * @flag: IOV flag for VF/PF 3907 */ 3908 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 3909 { 3910 smp_mb__before_atomic(); 3911 set_bit(flag, &hwfn->iov_task_flags); 3912 smp_mb__after_atomic(); 3913 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3914 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 3915 } 3916 3917 void qed_vf_start_iov_wq(struct qed_dev *cdev) 3918 { 3919 int i; 3920 3921 for_each_hwfn(cdev, i) 3922 queue_delayed_work(cdev->hwfns[i].iov_wq, 3923 &cdev->hwfns[i].iov_task, 0); 3924 } 3925 3926 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 3927 { 3928 int i, j; 3929 3930 for_each_hwfn(cdev, i) 3931 if (cdev->hwfns[i].iov_wq) 3932 flush_workqueue(cdev->hwfns[i].iov_wq); 3933 3934 /* Mark VFs for disablement */ 3935 qed_iov_set_vfs_to_disable(cdev, true); 3936 3937 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 3938 pci_disable_sriov(cdev->pdev); 3939 3940 for_each_hwfn(cdev, i) { 3941 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3942 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3943 3944 /* Failure to acquire the ptt in 100g creates an odd error 3945 * where the first engine has already relased IOV. 3946 */ 3947 if (!ptt) { 3948 DP_ERR(hwfn, "Failed to acquire ptt\n"); 3949 return -EBUSY; 3950 } 3951 3952 /* Clean WFQ db and configure equal weight for all vports */ 3953 qed_clean_wfq_db(hwfn, ptt); 3954 3955 qed_for_each_vf(hwfn, j) { 3956 int k; 3957 3958 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 3959 continue; 3960 3961 /* Wait until VF is disabled before releasing */ 3962 for (k = 0; k < 100; k++) { 3963 if (!qed_iov_is_vf_stopped(hwfn, j)) 3964 msleep(20); 3965 else 3966 break; 3967 } 3968 3969 if (k < 100) 3970 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 3971 ptt, j); 3972 else 3973 DP_ERR(hwfn, 3974 "Timeout waiting for VF's FLR to end\n"); 3975 } 3976 3977 qed_ptt_release(hwfn, ptt); 3978 } 3979 3980 qed_iov_set_vfs_to_disable(cdev, false); 3981 3982 return 0; 3983 } 3984 3985 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 3986 u16 vfid, 3987 struct qed_iov_vf_init_params *params) 3988 { 3989 u16 base, i; 3990 3991 /* Since we have an equal resource distribution per-VF, and we assume 3992 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 3993 * sequentially from there. 3994 */ 3995 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 3996 3997 params->rel_vf_id = vfid; 3998 for (i = 0; i < params->num_queues; i++) { 3999 params->req_rx_queue[i] = base + i; 4000 params->req_tx_queue[i] = base + i; 4001 } 4002 } 4003 4004 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4005 { 4006 struct qed_iov_vf_init_params params; 4007 int i, j, rc; 4008 4009 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4010 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4011 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4012 return -EINVAL; 4013 } 4014 4015 memset(¶ms, 0, sizeof(params)); 4016 4017 /* Initialize HW for VF access */ 4018 for_each_hwfn(cdev, j) { 4019 struct qed_hwfn *hwfn = &cdev->hwfns[j]; 4020 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4021 4022 /* Make sure not to use more than 16 queues per VF */ 4023 params.num_queues = min_t(int, 4024 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4025 16); 4026 4027 if (!ptt) { 4028 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4029 rc = -EBUSY; 4030 goto err; 4031 } 4032 4033 for (i = 0; i < num; i++) { 4034 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4035 continue; 4036 4037 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4038 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4039 if (rc) { 4040 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4041 qed_ptt_release(hwfn, ptt); 4042 goto err; 4043 } 4044 } 4045 4046 qed_ptt_release(hwfn, ptt); 4047 } 4048 4049 /* Enable SRIOV PCIe functions */ 4050 rc = pci_enable_sriov(cdev->pdev, num); 4051 if (rc) { 4052 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4053 goto err; 4054 } 4055 4056 return num; 4057 4058 err: 4059 qed_sriov_disable(cdev, false); 4060 return rc; 4061 } 4062 4063 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4064 { 4065 if (!IS_QED_SRIOV(cdev)) { 4066 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4067 return -EOPNOTSUPP; 4068 } 4069 4070 if (num_vfs_param) 4071 return qed_sriov_enable(cdev, num_vfs_param); 4072 else 4073 return qed_sriov_disable(cdev, true); 4074 } 4075 4076 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4077 { 4078 int i; 4079 4080 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4081 DP_VERBOSE(cdev, QED_MSG_IOV, 4082 "Cannot set a VF MAC; Sriov is not enabled\n"); 4083 return -EINVAL; 4084 } 4085 4086 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4087 DP_VERBOSE(cdev, QED_MSG_IOV, 4088 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4089 return -EINVAL; 4090 } 4091 4092 for_each_hwfn(cdev, i) { 4093 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4094 struct qed_public_vf_info *vf_info; 4095 4096 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4097 if (!vf_info) 4098 continue; 4099 4100 /* Set the forced MAC, and schedule the IOV task */ 4101 ether_addr_copy(vf_info->forced_mac, mac); 4102 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4103 } 4104 4105 return 0; 4106 } 4107 4108 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4109 { 4110 int i; 4111 4112 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4113 DP_VERBOSE(cdev, QED_MSG_IOV, 4114 "Cannot set a VF MAC; Sriov is not enabled\n"); 4115 return -EINVAL; 4116 } 4117 4118 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4119 DP_VERBOSE(cdev, QED_MSG_IOV, 4120 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4121 return -EINVAL; 4122 } 4123 4124 for_each_hwfn(cdev, i) { 4125 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4126 struct qed_public_vf_info *vf_info; 4127 4128 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4129 if (!vf_info) 4130 continue; 4131 4132 /* Set the forced vlan, and schedule the IOV task */ 4133 vf_info->forced_vlan = vid; 4134 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4135 } 4136 4137 return 0; 4138 } 4139 4140 static int qed_get_vf_config(struct qed_dev *cdev, 4141 int vf_id, struct ifla_vf_info *ivi) 4142 { 4143 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4144 struct qed_public_vf_info *vf_info; 4145 struct qed_mcp_link_state link; 4146 u32 tx_rate; 4147 4148 /* Sanitize request */ 4149 if (IS_VF(cdev)) 4150 return -EINVAL; 4151 4152 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4153 DP_VERBOSE(cdev, QED_MSG_IOV, 4154 "VF index [%d] isn't active\n", vf_id); 4155 return -EINVAL; 4156 } 4157 4158 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4159 4160 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4161 4162 /* Fill information about VF */ 4163 ivi->vf = vf_id; 4164 4165 if (is_valid_ether_addr(vf_info->forced_mac)) 4166 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4167 else 4168 ether_addr_copy(ivi->mac, vf_info->mac); 4169 4170 ivi->vlan = vf_info->forced_vlan; 4171 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4172 ivi->linkstate = vf_info->link_state; 4173 tx_rate = vf_info->tx_rate; 4174 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4175 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4176 4177 return 0; 4178 } 4179 4180 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4181 { 4182 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4183 struct qed_mcp_link_capabilities caps; 4184 struct qed_mcp_link_params params; 4185 struct qed_mcp_link_state link; 4186 int i; 4187 4188 if (!hwfn->pf_iov_info) 4189 return; 4190 4191 /* Update bulletin of all future possible VFs with link configuration */ 4192 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4193 struct qed_public_vf_info *vf_info; 4194 4195 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4196 if (!vf_info) 4197 continue; 4198 4199 /* Only hwfn0 is actually interested in the link speed. 4200 * But since only it would receive an MFW indication of link, 4201 * need to take configuration from it - otherwise things like 4202 * rate limiting for hwfn1 VF would not work. 4203 */ 4204 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4205 sizeof(params)); 4206 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4207 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4208 sizeof(caps)); 4209 4210 /* Modify link according to the VF's configured link state */ 4211 switch (vf_info->link_state) { 4212 case IFLA_VF_LINK_STATE_DISABLE: 4213 link.link_up = false; 4214 break; 4215 case IFLA_VF_LINK_STATE_ENABLE: 4216 link.link_up = true; 4217 /* Set speed according to maximum supported by HW. 4218 * that is 40G for regular devices and 100G for CMT 4219 * mode devices. 4220 */ 4221 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4222 100000 : 40000; 4223 default: 4224 /* In auto mode pass PF link image to VF */ 4225 break; 4226 } 4227 4228 if (link.link_up && vf_info->tx_rate) { 4229 struct qed_ptt *ptt; 4230 int rate; 4231 4232 rate = min_t(int, vf_info->tx_rate, link.speed); 4233 4234 ptt = qed_ptt_acquire(hwfn); 4235 if (!ptt) { 4236 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4237 return; 4238 } 4239 4240 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4241 vf_info->tx_rate = rate; 4242 link.speed = rate; 4243 } 4244 4245 qed_ptt_release(hwfn, ptt); 4246 } 4247 4248 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4249 } 4250 4251 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4252 } 4253 4254 static int qed_set_vf_link_state(struct qed_dev *cdev, 4255 int vf_id, int link_state) 4256 { 4257 int i; 4258 4259 /* Sanitize request */ 4260 if (IS_VF(cdev)) 4261 return -EINVAL; 4262 4263 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4264 DP_VERBOSE(cdev, QED_MSG_IOV, 4265 "VF index [%d] isn't active\n", vf_id); 4266 return -EINVAL; 4267 } 4268 4269 /* Handle configuration of link state */ 4270 for_each_hwfn(cdev, i) { 4271 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4272 struct qed_public_vf_info *vf; 4273 4274 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4275 if (!vf) 4276 continue; 4277 4278 if (vf->link_state == link_state) 4279 continue; 4280 4281 vf->link_state = link_state; 4282 qed_inform_vf_link_state(&cdev->hwfns[i]); 4283 } 4284 4285 return 0; 4286 } 4287 4288 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4289 { 4290 int i, rc = -EINVAL; 4291 4292 for_each_hwfn(cdev, i) { 4293 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4294 4295 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4296 if (rc) 4297 break; 4298 } 4299 4300 return rc; 4301 } 4302 4303 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4304 { 4305 int i; 4306 4307 for_each_hwfn(cdev, i) { 4308 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4309 struct qed_public_vf_info *vf; 4310 4311 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4312 DP_NOTICE(p_hwfn, 4313 "SR-IOV sanity check failed, can't set tx rate\n"); 4314 return -EINVAL; 4315 } 4316 4317 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4318 4319 vf->tx_rate = rate; 4320 4321 qed_inform_vf_link_state(p_hwfn); 4322 } 4323 4324 return 0; 4325 } 4326 4327 static int qed_set_vf_rate(struct qed_dev *cdev, 4328 int vfid, u32 min_rate, u32 max_rate) 4329 { 4330 int rc_min = 0, rc_max = 0; 4331 4332 if (max_rate) 4333 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4334 4335 if (min_rate) 4336 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4337 4338 if (rc_max | rc_min) 4339 return -EINVAL; 4340 4341 return 0; 4342 } 4343 4344 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4345 { 4346 int i; 4347 4348 for_each_hwfn(cdev, i) { 4349 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4350 struct qed_public_vf_info *vf; 4351 4352 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4353 DP_NOTICE(hwfn, 4354 "SR-IOV sanity check failed, can't set trust\n"); 4355 return -EINVAL; 4356 } 4357 4358 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4359 4360 if (vf->is_trusted_request == trust) 4361 return 0; 4362 vf->is_trusted_request = trust; 4363 4364 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4365 } 4366 4367 return 0; 4368 } 4369 4370 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4371 { 4372 u64 events[QED_VF_ARRAY_LENGTH]; 4373 struct qed_ptt *ptt; 4374 int i; 4375 4376 ptt = qed_ptt_acquire(hwfn); 4377 if (!ptt) { 4378 DP_VERBOSE(hwfn, QED_MSG_IOV, 4379 "Can't acquire PTT; re-scheduling\n"); 4380 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4381 return; 4382 } 4383 4384 qed_iov_pf_get_pending_events(hwfn, events); 4385 4386 DP_VERBOSE(hwfn, QED_MSG_IOV, 4387 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4388 events[0], events[1], events[2]); 4389 4390 qed_for_each_vf(hwfn, i) { 4391 /* Skip VFs with no pending messages */ 4392 if (!(events[i / 64] & (1ULL << (i % 64)))) 4393 continue; 4394 4395 DP_VERBOSE(hwfn, QED_MSG_IOV, 4396 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4397 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4398 4399 /* Copy VF's message to PF's request buffer for that VF */ 4400 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4401 continue; 4402 4403 qed_iov_process_mbx_req(hwfn, ptt, i); 4404 } 4405 4406 qed_ptt_release(hwfn, ptt); 4407 } 4408 4409 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4410 { 4411 int i; 4412 4413 qed_for_each_vf(hwfn, i) { 4414 struct qed_public_vf_info *info; 4415 bool update = false; 4416 u8 *mac; 4417 4418 info = qed_iov_get_public_vf_info(hwfn, i, true); 4419 if (!info) 4420 continue; 4421 4422 /* Update data on bulletin board */ 4423 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4424 if (is_valid_ether_addr(info->forced_mac) && 4425 (!mac || !ether_addr_equal(mac, info->forced_mac))) { 4426 DP_VERBOSE(hwfn, 4427 QED_MSG_IOV, 4428 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4429 i, 4430 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4431 4432 /* Update bulletin board with forced MAC */ 4433 qed_iov_bulletin_set_forced_mac(hwfn, 4434 info->forced_mac, i); 4435 update = true; 4436 } 4437 4438 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 4439 info->forced_vlan) { 4440 DP_VERBOSE(hwfn, 4441 QED_MSG_IOV, 4442 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 4443 info->forced_vlan, 4444 i, 4445 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4446 qed_iov_bulletin_set_forced_vlan(hwfn, 4447 info->forced_vlan, i); 4448 update = true; 4449 } 4450 4451 if (update) 4452 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4453 } 4454 } 4455 4456 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 4457 { 4458 struct qed_ptt *ptt; 4459 int i; 4460 4461 ptt = qed_ptt_acquire(hwfn); 4462 if (!ptt) { 4463 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 4464 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4465 return; 4466 } 4467 4468 qed_for_each_vf(hwfn, i) 4469 qed_iov_post_vf_bulletin(hwfn, i, ptt); 4470 4471 qed_ptt_release(hwfn, ptt); 4472 } 4473 4474 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 4475 { 4476 struct qed_sp_vport_update_params params; 4477 struct qed_filter_accept_flags *flags; 4478 struct qed_public_vf_info *vf_info; 4479 struct qed_vf_info *vf; 4480 u8 mask; 4481 int i; 4482 4483 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 4484 flags = ¶ms.accept_flags; 4485 4486 qed_for_each_vf(hwfn, i) { 4487 /* Need to make sure current requested configuration didn't 4488 * flip so that we'll end up configuring something that's not 4489 * needed. 4490 */ 4491 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 4492 if (vf_info->is_trusted_configured == 4493 vf_info->is_trusted_request) 4494 continue; 4495 vf_info->is_trusted_configured = vf_info->is_trusted_request; 4496 4497 /* Validate that the VF has a configured vport */ 4498 vf = qed_iov_get_vf_info(hwfn, i, true); 4499 if (!vf->vport_instance) 4500 continue; 4501 4502 memset(¶ms, 0, sizeof(params)); 4503 params.opaque_fid = vf->opaque_fid; 4504 params.vport_id = vf->vport_id; 4505 4506 if (vf_info->rx_accept_mode & mask) { 4507 flags->update_rx_mode_config = 1; 4508 flags->rx_accept_filter = vf_info->rx_accept_mode; 4509 } 4510 4511 if (vf_info->tx_accept_mode & mask) { 4512 flags->update_tx_mode_config = 1; 4513 flags->tx_accept_filter = vf_info->tx_accept_mode; 4514 } 4515 4516 /* Remove if needed; Otherwise this would set the mask */ 4517 if (!vf_info->is_trusted_configured) { 4518 flags->rx_accept_filter &= ~mask; 4519 flags->tx_accept_filter &= ~mask; 4520 } 4521 4522 if (flags->update_rx_mode_config || 4523 flags->update_tx_mode_config) 4524 qed_sp_vport_update(hwfn, ¶ms, 4525 QED_SPQ_MODE_EBLOCK, NULL); 4526 } 4527 } 4528 4529 static void qed_iov_pf_task(struct work_struct *work) 4530 4531 { 4532 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 4533 iov_task.work); 4534 int rc; 4535 4536 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 4537 return; 4538 4539 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 4540 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4541 4542 if (!ptt) { 4543 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4544 return; 4545 } 4546 4547 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 4548 if (rc) 4549 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4550 4551 qed_ptt_release(hwfn, ptt); 4552 } 4553 4554 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 4555 qed_handle_vf_msg(hwfn); 4556 4557 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 4558 &hwfn->iov_task_flags)) 4559 qed_handle_pf_set_vf_unicast(hwfn); 4560 4561 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 4562 &hwfn->iov_task_flags)) 4563 qed_handle_bulletin_post(hwfn); 4564 4565 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 4566 qed_iov_handle_trust_change(hwfn); 4567 } 4568 4569 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 4570 { 4571 int i; 4572 4573 for_each_hwfn(cdev, i) { 4574 if (!cdev->hwfns[i].iov_wq) 4575 continue; 4576 4577 if (schedule_first) { 4578 qed_schedule_iov(&cdev->hwfns[i], 4579 QED_IOV_WQ_STOP_WQ_FLAG); 4580 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 4581 } 4582 4583 flush_workqueue(cdev->hwfns[i].iov_wq); 4584 destroy_workqueue(cdev->hwfns[i].iov_wq); 4585 } 4586 } 4587 4588 int qed_iov_wq_start(struct qed_dev *cdev) 4589 { 4590 char name[NAME_SIZE]; 4591 int i; 4592 4593 for_each_hwfn(cdev, i) { 4594 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4595 4596 /* PFs needs a dedicated workqueue only if they support IOV. 4597 * VFs always require one. 4598 */ 4599 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 4600 continue; 4601 4602 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 4603 cdev->pdev->bus->number, 4604 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 4605 4606 p_hwfn->iov_wq = create_singlethread_workqueue(name); 4607 if (!p_hwfn->iov_wq) { 4608 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 4609 return -ENOMEM; 4610 } 4611 4612 if (IS_PF(cdev)) 4613 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 4614 else 4615 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 4616 } 4617 4618 return 0; 4619 } 4620 4621 const struct qed_iov_hv_ops qed_iov_ops_pass = { 4622 .configure = &qed_sriov_configure, 4623 .set_mac = &qed_sriov_pf_set_mac, 4624 .set_vlan = &qed_sriov_pf_set_vlan, 4625 .get_config = &qed_get_vf_config, 4626 .set_link_state = &qed_set_vf_link_state, 4627 .set_spoof = &qed_spoof_configure, 4628 .set_rate = &qed_set_vf_rate, 4629 .set_trust = &qed_set_vf_trust, 4630 }; 4631