1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015 QLogic Corporation 3 * 4 * This software is available under the terms of the GNU General Public License 5 * (GPL) Version 2, available from the file COPYING in the main directory of 6 * this source tree. 7 */ 8 9 #include <linux/etherdevice.h> 10 #include <linux/crc32.h> 11 #include <linux/qed/qed_iov_if.h> 12 #include "qed_cxt.h" 13 #include "qed_hsi.h" 14 #include "qed_hw.h" 15 #include "qed_init_ops.h" 16 #include "qed_int.h" 17 #include "qed_mcp.h" 18 #include "qed_reg_addr.h" 19 #include "qed_sp.h" 20 #include "qed_sriov.h" 21 #include "qed_vf.h" 22 23 /* IOV ramrods */ 24 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 25 { 26 struct vf_start_ramrod_data *p_ramrod = NULL; 27 struct qed_spq_entry *p_ent = NULL; 28 struct qed_sp_init_data init_data; 29 int rc = -EINVAL; 30 u8 fp_minor; 31 32 /* Get SPQ entry */ 33 memset(&init_data, 0, sizeof(init_data)); 34 init_data.cid = qed_spq_get_cid(p_hwfn); 35 init_data.opaque_fid = p_vf->opaque_fid; 36 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 37 38 rc = qed_sp_init_request(p_hwfn, &p_ent, 39 COMMON_RAMROD_VF_START, 40 PROTOCOLID_COMMON, &init_data); 41 if (rc) 42 return rc; 43 44 p_ramrod = &p_ent->ramrod.vf_start; 45 46 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 47 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 48 49 switch (p_hwfn->hw_info.personality) { 50 case QED_PCI_ETH: 51 p_ramrod->personality = PERSONALITY_ETH; 52 break; 53 case QED_PCI_ETH_ROCE: 54 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 55 break; 56 default: 57 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 58 p_hwfn->hw_info.personality); 59 return -EINVAL; 60 } 61 62 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 63 if (fp_minor > ETH_HSI_VER_MINOR && 64 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 65 DP_VERBOSE(p_hwfn, 66 QED_MSG_IOV, 67 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 68 p_vf->abs_vf_id, 69 ETH_HSI_VER_MAJOR, 70 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 71 fp_minor = ETH_HSI_VER_MINOR; 72 } 73 74 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 75 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 76 77 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 78 "VF[%d] - Starting using HSI %02x.%02x\n", 79 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 80 81 return qed_spq_post(p_hwfn, p_ent, NULL); 82 } 83 84 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 85 u32 concrete_vfid, u16 opaque_vfid) 86 { 87 struct vf_stop_ramrod_data *p_ramrod = NULL; 88 struct qed_spq_entry *p_ent = NULL; 89 struct qed_sp_init_data init_data; 90 int rc = -EINVAL; 91 92 /* Get SPQ entry */ 93 memset(&init_data, 0, sizeof(init_data)); 94 init_data.cid = qed_spq_get_cid(p_hwfn); 95 init_data.opaque_fid = opaque_vfid; 96 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 97 98 rc = qed_sp_init_request(p_hwfn, &p_ent, 99 COMMON_RAMROD_VF_STOP, 100 PROTOCOLID_COMMON, &init_data); 101 if (rc) 102 return rc; 103 104 p_ramrod = &p_ent->ramrod.vf_stop; 105 106 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 107 108 return qed_spq_post(p_hwfn, p_ent, NULL); 109 } 110 111 static bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 112 int rel_vf_id, 113 bool b_enabled_only, bool b_non_malicious) 114 { 115 if (!p_hwfn->pf_iov_info) { 116 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 117 return false; 118 } 119 120 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 121 (rel_vf_id < 0)) 122 return false; 123 124 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 125 b_enabled_only) 126 return false; 127 128 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 129 b_non_malicious) 130 return false; 131 132 return true; 133 } 134 135 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 136 u16 relative_vf_id, 137 bool b_enabled_only) 138 { 139 struct qed_vf_info *vf = NULL; 140 141 if (!p_hwfn->pf_iov_info) { 142 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 143 return NULL; 144 } 145 146 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 147 b_enabled_only, false)) 148 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 149 else 150 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 151 relative_vf_id); 152 153 return vf; 154 } 155 156 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 157 struct qed_vf_info *p_vf, u16 rx_qid) 158 { 159 if (rx_qid >= p_vf->num_rxqs) 160 DP_VERBOSE(p_hwfn, 161 QED_MSG_IOV, 162 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 163 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 164 return rx_qid < p_vf->num_rxqs; 165 } 166 167 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 168 struct qed_vf_info *p_vf, u16 tx_qid) 169 { 170 if (tx_qid >= p_vf->num_txqs) 171 DP_VERBOSE(p_hwfn, 172 QED_MSG_IOV, 173 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 174 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 175 return tx_qid < p_vf->num_txqs; 176 } 177 178 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 179 struct qed_vf_info *p_vf, u16 sb_idx) 180 { 181 int i; 182 183 for (i = 0; i < p_vf->num_sbs; i++) 184 if (p_vf->igu_sbs[i] == sb_idx) 185 return true; 186 187 DP_VERBOSE(p_hwfn, 188 QED_MSG_IOV, 189 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 190 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 191 192 return false; 193 } 194 195 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 196 int vfid, struct qed_ptt *p_ptt) 197 { 198 struct qed_bulletin_content *p_bulletin; 199 int crc_size = sizeof(p_bulletin->crc); 200 struct qed_dmae_params params; 201 struct qed_vf_info *p_vf; 202 203 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 204 if (!p_vf) 205 return -EINVAL; 206 207 if (!p_vf->vf_bulletin) 208 return -EINVAL; 209 210 p_bulletin = p_vf->bulletin.p_virt; 211 212 /* Increment bulletin board version and compute crc */ 213 p_bulletin->version++; 214 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 215 p_vf->bulletin.size - crc_size); 216 217 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 218 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 219 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 220 221 /* propagate bulletin board via dmae to vm memory */ 222 memset(¶ms, 0, sizeof(params)); 223 params.flags = QED_DMAE_FLAG_VF_DST; 224 params.dst_vfid = p_vf->abs_vf_id; 225 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 226 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 227 ¶ms); 228 } 229 230 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 231 { 232 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 233 int pos = iov->pos; 234 235 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 236 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 237 238 pci_read_config_word(cdev->pdev, 239 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 240 pci_read_config_word(cdev->pdev, 241 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 242 243 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 244 if (iov->num_vfs) { 245 DP_VERBOSE(cdev, 246 QED_MSG_IOV, 247 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 248 iov->num_vfs = 0; 249 } 250 251 pci_read_config_word(cdev->pdev, 252 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 253 254 pci_read_config_word(cdev->pdev, 255 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 256 257 pci_read_config_word(cdev->pdev, 258 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 259 260 pci_read_config_dword(cdev->pdev, 261 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 262 263 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 264 265 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 266 267 DP_VERBOSE(cdev, 268 QED_MSG_IOV, 269 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 270 iov->nres, 271 iov->cap, 272 iov->ctrl, 273 iov->total_vfs, 274 iov->initial_vfs, 275 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 276 277 /* Some sanity checks */ 278 if (iov->num_vfs > NUM_OF_VFS(cdev) || 279 iov->total_vfs > NUM_OF_VFS(cdev)) { 280 /* This can happen only due to a bug. In this case we set 281 * num_vfs to zero to avoid memory corruption in the code that 282 * assumes max number of vfs 283 */ 284 DP_NOTICE(cdev, 285 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 286 iov->num_vfs); 287 288 iov->num_vfs = 0; 289 iov->total_vfs = 0; 290 } 291 292 return 0; 293 } 294 295 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn, 296 struct qed_ptt *p_ptt) 297 { 298 struct qed_igu_block *p_sb; 299 u16 sb_id; 300 u32 val; 301 302 if (!p_hwfn->hw_info.p_igu_info) { 303 DP_ERR(p_hwfn, 304 "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n"); 305 return; 306 } 307 308 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 309 sb_id++) { 310 p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id]; 311 if ((p_sb->status & QED_IGU_STATUS_FREE) && 312 !(p_sb->status & QED_IGU_STATUS_PF)) { 313 val = qed_rd(p_hwfn, p_ptt, 314 IGU_REG_MAPPING_MEMORY + sb_id * 4); 315 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 316 qed_wr(p_hwfn, p_ptt, 317 IGU_REG_MAPPING_MEMORY + 4 * sb_id, val); 318 } 319 } 320 } 321 322 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 323 { 324 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 325 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 326 struct qed_bulletin_content *p_bulletin_virt; 327 dma_addr_t req_p, rply_p, bulletin_p; 328 union pfvf_tlvs *p_reply_virt_addr; 329 union vfpf_tlvs *p_req_virt_addr; 330 u8 idx = 0; 331 332 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 333 334 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 335 req_p = p_iov_info->mbx_msg_phys_addr; 336 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 337 rply_p = p_iov_info->mbx_reply_phys_addr; 338 p_bulletin_virt = p_iov_info->p_bulletins; 339 bulletin_p = p_iov_info->bulletins_phys; 340 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 341 DP_ERR(p_hwfn, 342 "qed_iov_setup_vfdb called without allocating mem first\n"); 343 return; 344 } 345 346 for (idx = 0; idx < p_iov->total_vfs; idx++) { 347 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 348 u32 concrete; 349 350 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 351 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 352 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 353 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 354 355 vf->state = VF_STOPPED; 356 vf->b_init = false; 357 358 vf->bulletin.phys = idx * 359 sizeof(struct qed_bulletin_content) + 360 bulletin_p; 361 vf->bulletin.p_virt = p_bulletin_virt + idx; 362 vf->bulletin.size = sizeof(struct qed_bulletin_content); 363 364 vf->relative_vf_id = idx; 365 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 366 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 367 vf->concrete_fid = concrete; 368 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 369 (vf->abs_vf_id << 8); 370 vf->vport_id = idx + 1; 371 372 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 373 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 374 } 375 } 376 377 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 378 { 379 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 380 void **p_v_addr; 381 u16 num_vfs = 0; 382 383 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 384 385 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 386 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 387 388 /* Allocate PF Mailbox buffer (per-VF) */ 389 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 390 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 391 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 392 p_iov_info->mbx_msg_size, 393 &p_iov_info->mbx_msg_phys_addr, 394 GFP_KERNEL); 395 if (!*p_v_addr) 396 return -ENOMEM; 397 398 /* Allocate PF Mailbox Reply buffer (per-VF) */ 399 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 400 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 401 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 402 p_iov_info->mbx_reply_size, 403 &p_iov_info->mbx_reply_phys_addr, 404 GFP_KERNEL); 405 if (!*p_v_addr) 406 return -ENOMEM; 407 408 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 409 num_vfs; 410 p_v_addr = &p_iov_info->p_bulletins; 411 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 412 p_iov_info->bulletins_size, 413 &p_iov_info->bulletins_phys, 414 GFP_KERNEL); 415 if (!*p_v_addr) 416 return -ENOMEM; 417 418 DP_VERBOSE(p_hwfn, 419 QED_MSG_IOV, 420 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 421 p_iov_info->mbx_msg_virt_addr, 422 (u64) p_iov_info->mbx_msg_phys_addr, 423 p_iov_info->mbx_reply_virt_addr, 424 (u64) p_iov_info->mbx_reply_phys_addr, 425 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 426 427 return 0; 428 } 429 430 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 431 { 432 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 433 434 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 435 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 436 p_iov_info->mbx_msg_size, 437 p_iov_info->mbx_msg_virt_addr, 438 p_iov_info->mbx_msg_phys_addr); 439 440 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 441 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 442 p_iov_info->mbx_reply_size, 443 p_iov_info->mbx_reply_virt_addr, 444 p_iov_info->mbx_reply_phys_addr); 445 446 if (p_iov_info->p_bulletins) 447 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 448 p_iov_info->bulletins_size, 449 p_iov_info->p_bulletins, 450 p_iov_info->bulletins_phys); 451 } 452 453 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 454 { 455 struct qed_pf_iov *p_sriov; 456 457 if (!IS_PF_SRIOV(p_hwfn)) { 458 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 459 "No SR-IOV - no need for IOV db\n"); 460 return 0; 461 } 462 463 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 464 if (!p_sriov) 465 return -ENOMEM; 466 467 p_hwfn->pf_iov_info = p_sriov; 468 469 return qed_iov_allocate_vfdb(p_hwfn); 470 } 471 472 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 473 { 474 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 475 return; 476 477 qed_iov_setup_vfdb(p_hwfn); 478 qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt); 479 } 480 481 void qed_iov_free(struct qed_hwfn *p_hwfn) 482 { 483 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 484 qed_iov_free_vfdb(p_hwfn); 485 kfree(p_hwfn->pf_iov_info); 486 } 487 } 488 489 void qed_iov_free_hw_info(struct qed_dev *cdev) 490 { 491 kfree(cdev->p_iov_info); 492 cdev->p_iov_info = NULL; 493 } 494 495 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 496 { 497 struct qed_dev *cdev = p_hwfn->cdev; 498 int pos; 499 int rc; 500 501 if (IS_VF(p_hwfn->cdev)) 502 return 0; 503 504 /* Learn the PCI configuration */ 505 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 506 PCI_EXT_CAP_ID_SRIOV); 507 if (!pos) { 508 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 509 return 0; 510 } 511 512 /* Allocate a new struct for IOV information */ 513 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 514 if (!cdev->p_iov_info) 515 return -ENOMEM; 516 517 cdev->p_iov_info->pos = pos; 518 519 rc = qed_iov_pci_cfg_info(cdev); 520 if (rc) 521 return rc; 522 523 /* We want PF IOV to be synonemous with the existance of p_iov_info; 524 * In case the capability is published but there are no VFs, simply 525 * de-allocate the struct. 526 */ 527 if (!cdev->p_iov_info->total_vfs) { 528 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 529 "IOV capabilities, but no VFs are published\n"); 530 kfree(cdev->p_iov_info); 531 cdev->p_iov_info = NULL; 532 return 0; 533 } 534 535 /* Calculate the first VF index - this is a bit tricky; Basically, 536 * VFs start at offset 16 relative to PF0, and 2nd engine VFs begin 537 * after the first engine's VFs. 538 */ 539 cdev->p_iov_info->first_vf_in_pf = p_hwfn->cdev->p_iov_info->offset + 540 p_hwfn->abs_pf_id - 16; 541 if (QED_PATH_ID(p_hwfn)) 542 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 543 544 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 545 "First VF in hwfn 0x%08x\n", 546 cdev->p_iov_info->first_vf_in_pf); 547 548 return 0; 549 } 550 551 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 552 int vfid, bool b_fail_malicious) 553 { 554 /* Check PF supports sriov */ 555 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 556 !IS_PF_SRIOV_ALLOC(p_hwfn)) 557 return false; 558 559 /* Check VF validity */ 560 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 561 return false; 562 563 return true; 564 } 565 566 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 567 { 568 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 569 } 570 571 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 572 u16 rel_vf_id, u8 to_disable) 573 { 574 struct qed_vf_info *vf; 575 int i; 576 577 for_each_hwfn(cdev, i) { 578 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 579 580 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 581 if (!vf) 582 continue; 583 584 vf->to_disable = to_disable; 585 } 586 } 587 588 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 589 { 590 u16 i; 591 592 if (!IS_QED_SRIOV(cdev)) 593 return; 594 595 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 596 qed_iov_set_vf_to_disable(cdev, i, to_disable); 597 } 598 599 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 600 struct qed_ptt *p_ptt, u8 abs_vfid) 601 { 602 qed_wr(p_hwfn, p_ptt, 603 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 604 1 << (abs_vfid & 0x1f)); 605 } 606 607 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 608 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 609 { 610 int i; 611 612 /* Set VF masks and configuration - pretend */ 613 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 614 615 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 616 617 /* unpretend */ 618 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 619 620 /* iterate over all queues, clear sb consumer */ 621 for (i = 0; i < vf->num_sbs; i++) 622 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 623 vf->igu_sbs[i], 624 vf->opaque_fid, true); 625 } 626 627 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 628 struct qed_ptt *p_ptt, 629 struct qed_vf_info *vf, bool enable) 630 { 631 u32 igu_vf_conf; 632 633 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 634 635 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 636 637 if (enable) 638 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 639 else 640 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 641 642 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 643 644 /* unpretend */ 645 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 646 } 647 648 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 649 struct qed_ptt *p_ptt, 650 struct qed_vf_info *vf) 651 { 652 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 653 int rc; 654 655 if (vf->to_disable) 656 return 0; 657 658 DP_VERBOSE(p_hwfn, 659 QED_MSG_IOV, 660 "Enable internal access for vf %x [abs %x]\n", 661 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 662 663 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 664 665 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 666 667 /* It's possible VF was previously considered malicious */ 668 vf->b_malicious = false; 669 670 rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs); 671 if (rc) 672 return rc; 673 674 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 675 676 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 677 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 678 679 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 680 p_hwfn->hw_info.hw_mode); 681 682 /* unpretend */ 683 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 684 685 vf->state = VF_FREE; 686 687 return rc; 688 } 689 690 /** 691 * @brief qed_iov_config_perm_table - configure the permission 692 * zone table. 693 * In E4, queue zone permission table size is 320x9. There 694 * are 320 VF queues for single engine device (256 for dual 695 * engine device), and each entry has the following format: 696 * {Valid, VF[7:0]} 697 * @param p_hwfn 698 * @param p_ptt 699 * @param vf 700 * @param enable 701 */ 702 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 703 struct qed_ptt *p_ptt, 704 struct qed_vf_info *vf, u8 enable) 705 { 706 u32 reg_addr, val; 707 u16 qzone_id = 0; 708 int qid; 709 710 for (qid = 0; qid < vf->num_rxqs; qid++) { 711 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 712 &qzone_id); 713 714 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 715 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 716 qed_wr(p_hwfn, p_ptt, reg_addr, val); 717 } 718 } 719 720 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 721 struct qed_ptt *p_ptt, 722 struct qed_vf_info *vf) 723 { 724 /* Reset vf in IGU - interrupts are still disabled */ 725 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 726 727 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 728 729 /* Permission Table */ 730 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 731 } 732 733 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 734 struct qed_ptt *p_ptt, 735 struct qed_vf_info *vf, u16 num_rx_queues) 736 { 737 struct qed_igu_block *igu_blocks; 738 int qid = 0, igu_id = 0; 739 u32 val = 0; 740 741 igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks; 742 743 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks) 744 num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks; 745 p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues; 746 747 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 748 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 749 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 750 751 while ((qid < num_rx_queues) && 752 (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) { 753 if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) { 754 struct cau_sb_entry sb_entry; 755 756 vf->igu_sbs[qid] = (u16)igu_id; 757 igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE; 758 759 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 760 761 qed_wr(p_hwfn, p_ptt, 762 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id, 763 val); 764 765 /* Configure igu sb in CAU which were marked valid */ 766 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 767 p_hwfn->rel_pf_id, 768 vf->abs_vf_id, 1); 769 qed_dmae_host2grc(p_hwfn, p_ptt, 770 (u64)(uintptr_t)&sb_entry, 771 CAU_REG_SB_VAR_MEMORY + 772 igu_id * sizeof(u64), 2, 0); 773 qid++; 774 } 775 igu_id++; 776 } 777 778 vf->num_sbs = (u8) num_rx_queues; 779 780 return vf->num_sbs; 781 } 782 783 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 784 struct qed_ptt *p_ptt, 785 struct qed_vf_info *vf) 786 { 787 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 788 int idx, igu_id; 789 u32 addr, val; 790 791 /* Invalidate igu CAM lines and mark them as free */ 792 for (idx = 0; idx < vf->num_sbs; idx++) { 793 igu_id = vf->igu_sbs[idx]; 794 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 795 796 val = qed_rd(p_hwfn, p_ptt, addr); 797 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 798 qed_wr(p_hwfn, p_ptt, addr, val); 799 800 p_info->igu_map.igu_blocks[igu_id].status |= 801 QED_IGU_STATUS_FREE; 802 803 p_hwfn->hw_info.p_igu_info->free_blks++; 804 } 805 806 vf->num_sbs = 0; 807 } 808 809 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 810 struct qed_ptt *p_ptt, 811 struct qed_iov_vf_init_params *p_params) 812 { 813 u8 num_of_vf_avaiable_chains = 0; 814 struct qed_vf_info *vf = NULL; 815 u16 qid, num_irqs; 816 int rc = 0; 817 u32 cids; 818 u8 i; 819 820 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 821 if (!vf) { 822 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 823 return -EINVAL; 824 } 825 826 if (vf->b_init) { 827 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 828 p_params->rel_vf_id); 829 return -EINVAL; 830 } 831 832 /* Perform sanity checking on the requested queue_id */ 833 for (i = 0; i < p_params->num_queues; i++) { 834 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 835 u16 max_vf_qzone = min_vf_qzone + 836 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 837 838 qid = p_params->req_rx_queue[i]; 839 if (qid < min_vf_qzone || qid > max_vf_qzone) { 840 DP_NOTICE(p_hwfn, 841 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 842 qid, 843 p_params->rel_vf_id, 844 min_vf_qzone, max_vf_qzone); 845 return -EINVAL; 846 } 847 848 qid = p_params->req_tx_queue[i]; 849 if (qid > max_vf_qzone) { 850 DP_NOTICE(p_hwfn, 851 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 852 qid, p_params->rel_vf_id, max_vf_qzone); 853 return -EINVAL; 854 } 855 856 /* If client *really* wants, Tx qid can be shared with PF */ 857 if (qid < min_vf_qzone) 858 DP_VERBOSE(p_hwfn, 859 QED_MSG_IOV, 860 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 861 p_params->rel_vf_id, qid, i); 862 } 863 864 /* Limit number of queues according to number of CIDs */ 865 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 866 DP_VERBOSE(p_hwfn, 867 QED_MSG_IOV, 868 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 869 vf->relative_vf_id, p_params->num_queues, (u16)cids); 870 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 871 872 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 873 p_ptt, 874 vf, num_irqs); 875 if (!num_of_vf_avaiable_chains) { 876 DP_ERR(p_hwfn, "no available igu sbs\n"); 877 return -ENOMEM; 878 } 879 880 /* Choose queue number and index ranges */ 881 vf->num_rxqs = num_of_vf_avaiable_chains; 882 vf->num_txqs = num_of_vf_avaiable_chains; 883 884 for (i = 0; i < vf->num_rxqs; i++) { 885 struct qed_vf_q_info *p_queue = &vf->vf_queues[i]; 886 887 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 888 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 889 890 /* CIDs are per-VF, so no problem having them 0-based. */ 891 p_queue->fw_cid = i; 892 893 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 894 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x] CID %04x\n", 895 vf->relative_vf_id, 896 i, vf->igu_sbs[i], 897 p_queue->fw_rx_qid, 898 p_queue->fw_tx_qid, p_queue->fw_cid); 899 } 900 901 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 902 if (!rc) { 903 vf->b_init = true; 904 905 if (IS_LEAD_HWFN(p_hwfn)) 906 p_hwfn->cdev->p_iov_info->num_vfs++; 907 } 908 909 return rc; 910 } 911 912 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 913 u16 vfid, 914 struct qed_mcp_link_params *params, 915 struct qed_mcp_link_state *link, 916 struct qed_mcp_link_capabilities *p_caps) 917 { 918 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 919 vfid, 920 false); 921 struct qed_bulletin_content *p_bulletin; 922 923 if (!p_vf) 924 return; 925 926 p_bulletin = p_vf->bulletin.p_virt; 927 p_bulletin->req_autoneg = params->speed.autoneg; 928 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 929 p_bulletin->req_forced_speed = params->speed.forced_speed; 930 p_bulletin->req_autoneg_pause = params->pause.autoneg; 931 p_bulletin->req_forced_rx = params->pause.forced_rx; 932 p_bulletin->req_forced_tx = params->pause.forced_tx; 933 p_bulletin->req_loopback = params->loopback_mode; 934 935 p_bulletin->link_up = link->link_up; 936 p_bulletin->speed = link->speed; 937 p_bulletin->full_duplex = link->full_duplex; 938 p_bulletin->autoneg = link->an; 939 p_bulletin->autoneg_complete = link->an_complete; 940 p_bulletin->parallel_detection = link->parallel_detection; 941 p_bulletin->pfc_enabled = link->pfc_enabled; 942 p_bulletin->partner_adv_speed = link->partner_adv_speed; 943 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 944 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 945 p_bulletin->partner_adv_pause = link->partner_adv_pause; 946 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 947 948 p_bulletin->capability_speed = p_caps->speed_capabilities; 949 } 950 951 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 952 struct qed_ptt *p_ptt, u16 rel_vf_id) 953 { 954 struct qed_mcp_link_capabilities caps; 955 struct qed_mcp_link_params params; 956 struct qed_mcp_link_state link; 957 struct qed_vf_info *vf = NULL; 958 959 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 960 if (!vf) { 961 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 962 return -EINVAL; 963 } 964 965 if (vf->bulletin.p_virt) 966 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 967 968 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 969 970 /* Get the link configuration back in bulletin so 971 * that when VFs are re-enabled they get the actual 972 * link configuration. 973 */ 974 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 975 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 976 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 977 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 978 979 /* Forget the VF's acquisition message */ 980 memset(&vf->acquire, 0, sizeof(vf->acquire)); 981 982 /* disablng interrupts and resetting permission table was done during 983 * vf-close, however, we could get here without going through vf_close 984 */ 985 /* Disable Interrupts for VF */ 986 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 987 988 /* Reset Permission table */ 989 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 990 991 vf->num_rxqs = 0; 992 vf->num_txqs = 0; 993 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 994 995 if (vf->b_init) { 996 vf->b_init = false; 997 998 if (IS_LEAD_HWFN(p_hwfn)) 999 p_hwfn->cdev->p_iov_info->num_vfs--; 1000 } 1001 1002 return 0; 1003 } 1004 1005 static bool qed_iov_tlv_supported(u16 tlvtype) 1006 { 1007 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1008 } 1009 1010 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1011 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1012 { 1013 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1014 1015 tl->type = type; 1016 tl->length = length; 1017 1018 /* Offset should keep pointing to next TLV (the end of the last) */ 1019 *offset += length; 1020 1021 /* Return a pointer to the start of the added tlv */ 1022 return *offset - length; 1023 } 1024 1025 /* list the types and lengths of the tlvs on the buffer */ 1026 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1027 { 1028 u16 i = 1, total_length = 0; 1029 struct channel_tlv *tlv; 1030 1031 do { 1032 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1033 1034 /* output tlv */ 1035 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1036 "TLV number %d: type %d, length %d\n", 1037 i, tlv->type, tlv->length); 1038 1039 if (tlv->type == CHANNEL_TLV_LIST_END) 1040 return; 1041 1042 /* Validate entry - protect against malicious VFs */ 1043 if (!tlv->length) { 1044 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1045 return; 1046 } 1047 1048 total_length += tlv->length; 1049 1050 if (total_length >= sizeof(struct tlv_buffer_size)) { 1051 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1052 return; 1053 } 1054 1055 i++; 1056 } while (1); 1057 } 1058 1059 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1060 struct qed_ptt *p_ptt, 1061 struct qed_vf_info *p_vf, 1062 u16 length, u8 status) 1063 { 1064 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1065 struct qed_dmae_params params; 1066 u8 eng_vf_id; 1067 1068 mbx->reply_virt->default_resp.hdr.status = status; 1069 1070 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1071 1072 eng_vf_id = p_vf->abs_vf_id; 1073 1074 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 1075 params.flags = QED_DMAE_FLAG_VF_DST; 1076 params.dst_vfid = eng_vf_id; 1077 1078 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1079 mbx->req_virt->first_tlv.reply_address + 1080 sizeof(u64), 1081 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1082 ¶ms); 1083 1084 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1085 mbx->req_virt->first_tlv.reply_address, 1086 sizeof(u64) / 4, ¶ms); 1087 1088 REG_WR(p_hwfn, 1089 GTT_BAR0_MAP_REG_USDM_RAM + 1090 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1091 } 1092 1093 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1094 enum qed_iov_vport_update_flag flag) 1095 { 1096 switch (flag) { 1097 case QED_IOV_VP_UPDATE_ACTIVATE: 1098 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1099 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1100 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1101 case QED_IOV_VP_UPDATE_TX_SWITCH: 1102 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1103 case QED_IOV_VP_UPDATE_MCAST: 1104 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1105 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1106 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1107 case QED_IOV_VP_UPDATE_RSS: 1108 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1109 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1110 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1111 case QED_IOV_VP_UPDATE_SGE_TPA: 1112 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1113 default: 1114 return 0; 1115 } 1116 } 1117 1118 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1119 struct qed_vf_info *p_vf, 1120 struct qed_iov_vf_mbx *p_mbx, 1121 u8 status, 1122 u16 tlvs_mask, u16 tlvs_accepted) 1123 { 1124 struct pfvf_def_resp_tlv *resp; 1125 u16 size, total_len, i; 1126 1127 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1128 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1129 size = sizeof(struct pfvf_def_resp_tlv); 1130 total_len = size; 1131 1132 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1133 1134 /* Prepare response for all extended tlvs if they are found by PF */ 1135 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1136 if (!(tlvs_mask & BIT(i))) 1137 continue; 1138 1139 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1140 qed_iov_vport_to_tlv(p_hwfn, i), size); 1141 1142 if (tlvs_accepted & BIT(i)) 1143 resp->hdr.status = status; 1144 else 1145 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1146 1147 DP_VERBOSE(p_hwfn, 1148 QED_MSG_IOV, 1149 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1150 p_vf->relative_vf_id, 1151 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1152 1153 total_len += size; 1154 } 1155 1156 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1157 sizeof(struct channel_list_end_tlv)); 1158 1159 return total_len; 1160 } 1161 1162 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1163 struct qed_ptt *p_ptt, 1164 struct qed_vf_info *vf_info, 1165 u16 type, u16 length, u8 status) 1166 { 1167 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1168 1169 mbx->offset = (u8 *)mbx->reply_virt; 1170 1171 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1172 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1173 sizeof(struct channel_list_end_tlv)); 1174 1175 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1176 } 1177 1178 static struct 1179 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1180 u16 relative_vf_id, 1181 bool b_enabled_only) 1182 { 1183 struct qed_vf_info *vf = NULL; 1184 1185 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1186 if (!vf) 1187 return NULL; 1188 1189 return &vf->p_vf_info; 1190 } 1191 1192 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1193 { 1194 struct qed_public_vf_info *vf_info; 1195 1196 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1197 1198 if (!vf_info) 1199 return; 1200 1201 /* Clear the VF mac */ 1202 memset(vf_info->mac, 0, ETH_ALEN); 1203 } 1204 1205 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1206 struct qed_vf_info *p_vf) 1207 { 1208 u32 i; 1209 1210 p_vf->vf_bulletin = 0; 1211 p_vf->vport_instance = 0; 1212 p_vf->configured_features = 0; 1213 1214 /* If VF previously requested less resources, go back to default */ 1215 p_vf->num_rxqs = p_vf->num_sbs; 1216 p_vf->num_txqs = p_vf->num_sbs; 1217 1218 p_vf->num_active_rxqs = 0; 1219 1220 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1221 struct qed_vf_q_info *p_queue = &p_vf->vf_queues[i]; 1222 1223 if (p_queue->p_rx_cid) { 1224 qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid); 1225 p_queue->p_rx_cid = NULL; 1226 } 1227 1228 if (p_queue->p_tx_cid) { 1229 qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid); 1230 p_queue->p_tx_cid = NULL; 1231 } 1232 } 1233 1234 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1235 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1236 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1237 } 1238 1239 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1240 struct qed_ptt *p_ptt, 1241 struct qed_vf_info *p_vf, 1242 struct vf_pf_resc_request *p_req, 1243 struct pf_vf_resc *p_resp) 1244 { 1245 int i; 1246 1247 /* Queue related information */ 1248 p_resp->num_rxqs = p_vf->num_rxqs; 1249 p_resp->num_txqs = p_vf->num_txqs; 1250 p_resp->num_sbs = p_vf->num_sbs; 1251 1252 for (i = 0; i < p_resp->num_sbs; i++) { 1253 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1254 p_resp->hw_sbs[i].sb_qid = 0; 1255 } 1256 1257 /* These fields are filled for backward compatibility. 1258 * Unused by modern vfs. 1259 */ 1260 for (i = 0; i < p_resp->num_rxqs; i++) { 1261 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1262 (u16 *)&p_resp->hw_qid[i]); 1263 p_resp->cid[i] = p_vf->vf_queues[i].fw_cid; 1264 } 1265 1266 /* Filter related information */ 1267 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1268 p_req->num_mac_filters); 1269 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1270 p_req->num_vlan_filters); 1271 1272 /* This isn't really needed/enforced, but some legacy VFs might depend 1273 * on the correct filling of this field. 1274 */ 1275 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1276 1277 /* Validate sufficient resources for VF */ 1278 if (p_resp->num_rxqs < p_req->num_rxqs || 1279 p_resp->num_txqs < p_req->num_txqs || 1280 p_resp->num_sbs < p_req->num_sbs || 1281 p_resp->num_mac_filters < p_req->num_mac_filters || 1282 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1283 p_resp->num_mc_filters < p_req->num_mc_filters) { 1284 DP_VERBOSE(p_hwfn, 1285 QED_MSG_IOV, 1286 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x]\n", 1287 p_vf->abs_vf_id, 1288 p_req->num_rxqs, 1289 p_resp->num_rxqs, 1290 p_req->num_rxqs, 1291 p_resp->num_txqs, 1292 p_req->num_sbs, 1293 p_resp->num_sbs, 1294 p_req->num_mac_filters, 1295 p_resp->num_mac_filters, 1296 p_req->num_vlan_filters, 1297 p_resp->num_vlan_filters, 1298 p_req->num_mc_filters, p_resp->num_mc_filters); 1299 1300 /* Some legacy OSes are incapable of correctly handling this 1301 * failure. 1302 */ 1303 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1304 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1305 (p_vf->acquire.vfdev_info.os_type == 1306 VFPF_ACQUIRE_OS_WINDOWS)) 1307 return PFVF_STATUS_SUCCESS; 1308 1309 return PFVF_STATUS_NO_RESOURCE; 1310 } 1311 1312 return PFVF_STATUS_SUCCESS; 1313 } 1314 1315 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1316 struct pfvf_stats_info *p_stats) 1317 { 1318 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1319 offsetof(struct mstorm_vf_zone, 1320 non_trigger.eth_queue_stat); 1321 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1322 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1323 offsetof(struct ustorm_vf_zone, 1324 non_trigger.eth_queue_stat); 1325 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1326 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1327 offsetof(struct pstorm_vf_zone, 1328 non_trigger.eth_queue_stat); 1329 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1330 p_stats->tstats.address = 0; 1331 p_stats->tstats.len = 0; 1332 } 1333 1334 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1335 struct qed_ptt *p_ptt, 1336 struct qed_vf_info *vf) 1337 { 1338 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1339 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1340 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1341 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1342 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1343 struct pf_vf_resc *resc = &resp->resc; 1344 int rc; 1345 1346 memset(resp, 0, sizeof(*resp)); 1347 1348 /* Write the PF version so that VF would know which version 1349 * is supported - might be later overriden. This guarantees that 1350 * VF could recognize legacy PF based on lack of versions in reply. 1351 */ 1352 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1353 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1354 1355 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1356 DP_VERBOSE(p_hwfn, 1357 QED_MSG_IOV, 1358 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1359 vf->abs_vf_id, vf->state); 1360 goto out; 1361 } 1362 1363 /* Validate FW compatibility */ 1364 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1365 if (req->vfdev_info.capabilities & 1366 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1367 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1368 1369 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1370 "VF[%d] is pre-fastpath HSI\n", 1371 vf->abs_vf_id); 1372 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1373 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1374 } else { 1375 DP_INFO(p_hwfn, 1376 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1377 vf->abs_vf_id, 1378 req->vfdev_info.eth_fp_hsi_major, 1379 req->vfdev_info.eth_fp_hsi_minor, 1380 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1381 1382 goto out; 1383 } 1384 } 1385 1386 /* On 100g PFs, prevent old VFs from loading */ 1387 if ((p_hwfn->cdev->num_hwfns > 1) && 1388 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1389 DP_INFO(p_hwfn, 1390 "VF[%d] is running an old driver that doesn't support 100g\n", 1391 vf->abs_vf_id); 1392 goto out; 1393 } 1394 1395 /* Store the acquire message */ 1396 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1397 1398 vf->opaque_fid = req->vfdev_info.opaque_fid; 1399 1400 vf->vf_bulletin = req->bulletin_addr; 1401 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1402 vf->bulletin.size : req->bulletin_size; 1403 1404 /* fill in pfdev info */ 1405 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1406 pfdev_info->db_size = 0; 1407 pfdev_info->indices_per_sb = PIS_PER_SB; 1408 1409 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1410 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1411 if (p_hwfn->cdev->num_hwfns > 1) 1412 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1413 1414 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1415 1416 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1417 1418 pfdev_info->fw_major = FW_MAJOR_VERSION; 1419 pfdev_info->fw_minor = FW_MINOR_VERSION; 1420 pfdev_info->fw_rev = FW_REVISION_VERSION; 1421 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1422 1423 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1424 * this field. 1425 */ 1426 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1427 req->vfdev_info.eth_fp_hsi_minor); 1428 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1429 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1430 1431 pfdev_info->dev_type = p_hwfn->cdev->type; 1432 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1433 1434 /* Fill resources available to VF; Make sure there are enough to 1435 * satisfy the VF's request. 1436 */ 1437 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1438 &req->resc_request, resc); 1439 if (vfpf_status != PFVF_STATUS_SUCCESS) 1440 goto out; 1441 1442 /* Start the VF in FW */ 1443 rc = qed_sp_vf_start(p_hwfn, vf); 1444 if (rc) { 1445 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1446 vfpf_status = PFVF_STATUS_FAILURE; 1447 goto out; 1448 } 1449 1450 /* Fill agreed size of bulletin board in response */ 1451 resp->bulletin_size = vf->bulletin.size; 1452 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1453 1454 DP_VERBOSE(p_hwfn, 1455 QED_MSG_IOV, 1456 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1457 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1458 vf->abs_vf_id, 1459 resp->pfdev_info.chip_num, 1460 resp->pfdev_info.db_size, 1461 resp->pfdev_info.indices_per_sb, 1462 resp->pfdev_info.capabilities, 1463 resc->num_rxqs, 1464 resc->num_txqs, 1465 resc->num_sbs, 1466 resc->num_mac_filters, 1467 resc->num_vlan_filters); 1468 vf->state = VF_ACQUIRED; 1469 1470 /* Prepare Response */ 1471 out: 1472 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1473 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1474 } 1475 1476 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1477 struct qed_vf_info *p_vf, bool val) 1478 { 1479 struct qed_sp_vport_update_params params; 1480 int rc; 1481 1482 if (val == p_vf->spoof_chk) { 1483 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1484 "Spoofchk value[%d] is already configured\n", val); 1485 return 0; 1486 } 1487 1488 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1489 params.opaque_fid = p_vf->opaque_fid; 1490 params.vport_id = p_vf->vport_id; 1491 params.update_anti_spoofing_en_flg = 1; 1492 params.anti_spoofing_en = val; 1493 1494 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1495 if (!rc) { 1496 p_vf->spoof_chk = val; 1497 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1498 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1499 "Spoofchk val[%d] configured\n", val); 1500 } else { 1501 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1502 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1503 val, p_vf->relative_vf_id); 1504 } 1505 1506 return rc; 1507 } 1508 1509 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1510 struct qed_vf_info *p_vf) 1511 { 1512 struct qed_filter_ucast filter; 1513 int rc = 0; 1514 int i; 1515 1516 memset(&filter, 0, sizeof(filter)); 1517 filter.is_rx_filter = 1; 1518 filter.is_tx_filter = 1; 1519 filter.vport_to_add_to = p_vf->vport_id; 1520 filter.opcode = QED_FILTER_ADD; 1521 1522 /* Reconfigure vlans */ 1523 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1524 if (!p_vf->shadow_config.vlans[i].used) 1525 continue; 1526 1527 filter.type = QED_FILTER_VLAN; 1528 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1529 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1530 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1531 filter.vlan, p_vf->relative_vf_id); 1532 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1533 &filter, QED_SPQ_MODE_CB, NULL); 1534 if (rc) { 1535 DP_NOTICE(p_hwfn, 1536 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1537 filter.vlan, p_vf->relative_vf_id); 1538 break; 1539 } 1540 } 1541 1542 return rc; 1543 } 1544 1545 static int 1546 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1547 struct qed_vf_info *p_vf, u64 events) 1548 { 1549 int rc = 0; 1550 1551 if ((events & BIT(VLAN_ADDR_FORCED)) && 1552 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1553 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1554 1555 return rc; 1556 } 1557 1558 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1559 struct qed_vf_info *p_vf, u64 events) 1560 { 1561 int rc = 0; 1562 struct qed_filter_ucast filter; 1563 1564 if (!p_vf->vport_instance) 1565 return -EINVAL; 1566 1567 if (events & BIT(MAC_ADDR_FORCED)) { 1568 /* Since there's no way [currently] of removing the MAC, 1569 * we can always assume this means we need to force it. 1570 */ 1571 memset(&filter, 0, sizeof(filter)); 1572 filter.type = QED_FILTER_MAC; 1573 filter.opcode = QED_FILTER_REPLACE; 1574 filter.is_rx_filter = 1; 1575 filter.is_tx_filter = 1; 1576 filter.vport_to_add_to = p_vf->vport_id; 1577 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1578 1579 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1580 &filter, QED_SPQ_MODE_CB, NULL); 1581 if (rc) { 1582 DP_NOTICE(p_hwfn, 1583 "PF failed to configure MAC for VF\n"); 1584 return rc; 1585 } 1586 1587 p_vf->configured_features |= 1 << MAC_ADDR_FORCED; 1588 } 1589 1590 if (events & BIT(VLAN_ADDR_FORCED)) { 1591 struct qed_sp_vport_update_params vport_update; 1592 u8 removal; 1593 int i; 1594 1595 memset(&filter, 0, sizeof(filter)); 1596 filter.type = QED_FILTER_VLAN; 1597 filter.is_rx_filter = 1; 1598 filter.is_tx_filter = 1; 1599 filter.vport_to_add_to = p_vf->vport_id; 1600 filter.vlan = p_vf->bulletin.p_virt->pvid; 1601 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1602 QED_FILTER_FLUSH; 1603 1604 /* Send the ramrod */ 1605 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1606 &filter, QED_SPQ_MODE_CB, NULL); 1607 if (rc) { 1608 DP_NOTICE(p_hwfn, 1609 "PF failed to configure VLAN for VF\n"); 1610 return rc; 1611 } 1612 1613 /* Update the default-vlan & silent vlan stripping */ 1614 memset(&vport_update, 0, sizeof(vport_update)); 1615 vport_update.opaque_fid = p_vf->opaque_fid; 1616 vport_update.vport_id = p_vf->vport_id; 1617 vport_update.update_default_vlan_enable_flg = 1; 1618 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1619 vport_update.update_default_vlan_flg = 1; 1620 vport_update.default_vlan = filter.vlan; 1621 1622 vport_update.update_inner_vlan_removal_flg = 1; 1623 removal = filter.vlan ? 1 1624 : p_vf->shadow_config.inner_vlan_removal; 1625 vport_update.inner_vlan_removal_flg = removal; 1626 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1627 rc = qed_sp_vport_update(p_hwfn, 1628 &vport_update, 1629 QED_SPQ_MODE_EBLOCK, NULL); 1630 if (rc) { 1631 DP_NOTICE(p_hwfn, 1632 "PF failed to configure VF vport for vlan\n"); 1633 return rc; 1634 } 1635 1636 /* Update all the Rx queues */ 1637 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1638 struct qed_queue_cid *p_cid; 1639 1640 p_cid = p_vf->vf_queues[i].p_rx_cid; 1641 if (!p_cid) 1642 continue; 1643 1644 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1645 (void **)&p_cid, 1646 1, 0, 1, 1647 QED_SPQ_MODE_EBLOCK, 1648 NULL); 1649 if (rc) { 1650 DP_NOTICE(p_hwfn, 1651 "Failed to send Rx update fo queue[0x%04x]\n", 1652 p_cid->rel.queue_id); 1653 return rc; 1654 } 1655 } 1656 1657 if (filter.vlan) 1658 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1659 else 1660 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1661 } 1662 1663 /* If forced features are terminated, we need to configure the shadow 1664 * configuration back again. 1665 */ 1666 if (events) 1667 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1668 1669 return rc; 1670 } 1671 1672 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1673 struct qed_ptt *p_ptt, 1674 struct qed_vf_info *vf) 1675 { 1676 struct qed_sp_vport_start_params params = { 0 }; 1677 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1678 struct vfpf_vport_start_tlv *start; 1679 u8 status = PFVF_STATUS_SUCCESS; 1680 struct qed_vf_info *vf_info; 1681 u64 *p_bitmap; 1682 int sb_id; 1683 int rc; 1684 1685 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1686 if (!vf_info) { 1687 DP_NOTICE(p_hwfn->cdev, 1688 "Failed to get VF info, invalid vfid [%d]\n", 1689 vf->relative_vf_id); 1690 return; 1691 } 1692 1693 vf->state = VF_ENABLED; 1694 start = &mbx->req_virt->start_vport; 1695 1696 /* Initialize Status block in CAU */ 1697 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1698 if (!start->sb_addr[sb_id]) { 1699 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1700 "VF[%d] did not fill the address of SB %d\n", 1701 vf->relative_vf_id, sb_id); 1702 break; 1703 } 1704 1705 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1706 start->sb_addr[sb_id], 1707 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1708 } 1709 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1710 1711 vf->mtu = start->mtu; 1712 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1713 1714 /* Take into consideration configuration forced by hypervisor; 1715 * If none is configured, use the supplied VF values [for old 1716 * vfs that would still be fine, since they passed '0' as padding]. 1717 */ 1718 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1719 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1720 u8 vf_req = start->only_untagged; 1721 1722 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1723 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1724 } 1725 1726 params.tpa_mode = start->tpa_mode; 1727 params.remove_inner_vlan = start->inner_vlan_removal; 1728 params.tx_switching = true; 1729 1730 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1731 params.drop_ttl0 = false; 1732 params.concrete_fid = vf->concrete_fid; 1733 params.opaque_fid = vf->opaque_fid; 1734 params.vport_id = vf->vport_id; 1735 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1736 params.mtu = vf->mtu; 1737 params.check_mac = true; 1738 1739 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1740 if (rc) { 1741 DP_ERR(p_hwfn, 1742 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1743 status = PFVF_STATUS_FAILURE; 1744 } else { 1745 vf->vport_instance++; 1746 1747 /* Force configuration if needed on the newly opened vport */ 1748 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1749 1750 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1751 } 1752 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1753 sizeof(struct pfvf_def_resp_tlv), status); 1754 } 1755 1756 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1757 struct qed_ptt *p_ptt, 1758 struct qed_vf_info *vf) 1759 { 1760 u8 status = PFVF_STATUS_SUCCESS; 1761 int rc; 1762 1763 vf->vport_instance--; 1764 vf->spoof_chk = false; 1765 1766 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 1767 if (rc) { 1768 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 1769 rc); 1770 status = PFVF_STATUS_FAILURE; 1771 } 1772 1773 /* Forget the configuration on the vport */ 1774 vf->configured_features = 0; 1775 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 1776 1777 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 1778 sizeof(struct pfvf_def_resp_tlv), status); 1779 } 1780 1781 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 1782 struct qed_ptt *p_ptt, 1783 struct qed_vf_info *vf, 1784 u8 status, bool b_legacy) 1785 { 1786 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1787 struct pfvf_start_queue_resp_tlv *p_tlv; 1788 struct vfpf_start_rxq_tlv *req; 1789 u16 length; 1790 1791 mbx->offset = (u8 *)mbx->reply_virt; 1792 1793 /* Taking a bigger struct instead of adding a TLV to list was a 1794 * mistake, but one which we're now stuck with, as some older 1795 * clients assume the size of the previous response. 1796 */ 1797 if (!b_legacy) 1798 length = sizeof(*p_tlv); 1799 else 1800 length = sizeof(struct pfvf_def_resp_tlv); 1801 1802 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 1803 length); 1804 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1805 sizeof(struct channel_list_end_tlv)); 1806 1807 /* Update the TLV with the response */ 1808 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 1809 req = &mbx->req_virt->start_rxq; 1810 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 1811 offsetof(struct mstorm_vf_zone, 1812 non_trigger.eth_rx_queue_producers) + 1813 sizeof(struct eth_rx_prod_data) * req->rx_qid; 1814 } 1815 1816 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 1817 } 1818 1819 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 1820 struct qed_ptt *p_ptt, 1821 struct qed_vf_info *vf) 1822 { 1823 struct qed_queue_start_common_params params; 1824 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1825 u8 status = PFVF_STATUS_NO_RESOURCE; 1826 struct qed_vf_q_info *p_queue; 1827 struct vfpf_start_rxq_tlv *req; 1828 bool b_legacy_vf = false; 1829 int rc; 1830 1831 req = &mbx->req_virt->start_rxq; 1832 1833 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid) || 1834 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 1835 goto out; 1836 1837 /* Acquire a new queue-cid */ 1838 p_queue = &vf->vf_queues[req->rx_qid]; 1839 1840 memset(¶ms, 0, sizeof(params)); 1841 params.queue_id = p_queue->fw_rx_qid; 1842 params.vport_id = vf->vport_id; 1843 params.stats_id = vf->abs_vf_id + 0x10; 1844 params.sb = req->hw_sb; 1845 params.sb_idx = req->sb_index; 1846 1847 p_queue->p_rx_cid = _qed_eth_queue_to_cid(p_hwfn, 1848 vf->opaque_fid, 1849 p_queue->fw_cid, 1850 req->rx_qid, ¶ms); 1851 if (!p_queue->p_rx_cid) 1852 goto out; 1853 1854 /* Legacy VFs have their Producers in a different location, which they 1855 * calculate on their own and clean the producer prior to this. 1856 */ 1857 if (vf->acquire.vfdev_info.eth_fp_hsi_minor == 1858 ETH_HSI_VER_NO_PKT_LEN_TUNN) { 1859 b_legacy_vf = true; 1860 } else { 1861 REG_WR(p_hwfn, 1862 GTT_BAR0_MAP_REG_MSDM_RAM + 1863 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 1864 0); 1865 } 1866 p_queue->p_rx_cid->b_legacy_vf = b_legacy_vf; 1867 1868 rc = qed_eth_rxq_start_ramrod(p_hwfn, 1869 p_queue->p_rx_cid, 1870 req->bd_max_bytes, 1871 req->rxq_addr, 1872 req->cqe_pbl_addr, req->cqe_pbl_size); 1873 if (rc) { 1874 status = PFVF_STATUS_FAILURE; 1875 qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid); 1876 p_queue->p_rx_cid = NULL; 1877 } else { 1878 status = PFVF_STATUS_SUCCESS; 1879 vf->num_active_rxqs++; 1880 } 1881 1882 out: 1883 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, b_legacy_vf); 1884 } 1885 1886 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 1887 struct qed_ptt *p_ptt, 1888 struct qed_vf_info *p_vf, u8 status) 1889 { 1890 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1891 struct pfvf_start_queue_resp_tlv *p_tlv; 1892 bool b_legacy = false; 1893 u16 length; 1894 1895 mbx->offset = (u8 *)mbx->reply_virt; 1896 1897 /* Taking a bigger struct instead of adding a TLV to list was a 1898 * mistake, but one which we're now stuck with, as some older 1899 * clients assume the size of the previous response. 1900 */ 1901 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1902 ETH_HSI_VER_NO_PKT_LEN_TUNN) 1903 b_legacy = true; 1904 1905 if (!b_legacy) 1906 length = sizeof(*p_tlv); 1907 else 1908 length = sizeof(struct pfvf_def_resp_tlv); 1909 1910 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 1911 length); 1912 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1913 sizeof(struct channel_list_end_tlv)); 1914 1915 /* Update the TLV with the response */ 1916 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 1917 u16 qid = mbx->req_virt->start_txq.tx_qid; 1918 1919 p_tlv->offset = qed_db_addr_vf(p_vf->vf_queues[qid].fw_cid, 1920 DQ_DEMS_LEGACY); 1921 } 1922 1923 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 1924 } 1925 1926 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 1927 struct qed_ptt *p_ptt, 1928 struct qed_vf_info *vf) 1929 { 1930 struct qed_queue_start_common_params params; 1931 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1932 u8 status = PFVF_STATUS_NO_RESOURCE; 1933 union qed_qm_pq_params pq_params; 1934 struct vfpf_start_txq_tlv *req; 1935 struct qed_vf_q_info *p_queue; 1936 int rc; 1937 u16 pq; 1938 1939 /* Prepare the parameters which would choose the right PQ */ 1940 memset(&pq_params, 0, sizeof(pq_params)); 1941 pq_params.eth.is_vf = 1; 1942 pq_params.eth.vf_id = vf->relative_vf_id; 1943 1944 memset(¶ms, 0, sizeof(params)); 1945 req = &mbx->req_virt->start_txq; 1946 1947 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid) || 1948 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 1949 goto out; 1950 1951 /* Acquire a new queue-cid */ 1952 p_queue = &vf->vf_queues[req->tx_qid]; 1953 1954 params.queue_id = p_queue->fw_tx_qid; 1955 params.vport_id = vf->vport_id; 1956 params.stats_id = vf->abs_vf_id + 0x10; 1957 params.sb = req->hw_sb; 1958 params.sb_idx = req->sb_index; 1959 1960 p_queue->p_tx_cid = _qed_eth_queue_to_cid(p_hwfn, 1961 vf->opaque_fid, 1962 p_queue->fw_cid, 1963 req->tx_qid, ¶ms); 1964 if (!p_queue->p_tx_cid) 1965 goto out; 1966 1967 pq = qed_get_qm_pq(p_hwfn, PROTOCOLID_ETH, &pq_params); 1968 rc = qed_eth_txq_start_ramrod(p_hwfn, p_queue->p_tx_cid, 1969 req->pbl_addr, req->pbl_size, pq); 1970 if (rc) { 1971 status = PFVF_STATUS_FAILURE; 1972 qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid); 1973 p_queue->p_tx_cid = NULL; 1974 } else { 1975 status = PFVF_STATUS_SUCCESS; 1976 } 1977 1978 out: 1979 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, status); 1980 } 1981 1982 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 1983 struct qed_vf_info *vf, 1984 u16 rxq_id, u8 num_rxqs, bool cqe_completion) 1985 { 1986 struct qed_vf_q_info *p_queue; 1987 int rc = 0; 1988 int qid; 1989 1990 if (rxq_id + num_rxqs > ARRAY_SIZE(vf->vf_queues)) 1991 return -EINVAL; 1992 1993 for (qid = rxq_id; qid < rxq_id + num_rxqs; qid++) { 1994 p_queue = &vf->vf_queues[qid]; 1995 1996 if (!p_queue->p_rx_cid) 1997 continue; 1998 1999 rc = qed_eth_rx_queue_stop(p_hwfn, 2000 p_queue->p_rx_cid, 2001 false, cqe_completion); 2002 if (rc) 2003 return rc; 2004 2005 vf->vf_queues[qid].p_rx_cid = NULL; 2006 vf->num_active_rxqs--; 2007 } 2008 2009 return rc; 2010 } 2011 2012 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2013 struct qed_vf_info *vf, u16 txq_id, u8 num_txqs) 2014 { 2015 int rc = 0; 2016 struct qed_vf_q_info *p_queue; 2017 int qid; 2018 2019 if (txq_id + num_txqs > ARRAY_SIZE(vf->vf_queues)) 2020 return -EINVAL; 2021 2022 for (qid = txq_id; qid < txq_id + num_txqs; qid++) { 2023 p_queue = &vf->vf_queues[qid]; 2024 if (!p_queue->p_tx_cid) 2025 continue; 2026 2027 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->p_tx_cid); 2028 if (rc) 2029 return rc; 2030 2031 p_queue->p_tx_cid = NULL; 2032 } 2033 2034 return rc; 2035 } 2036 2037 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2038 struct qed_ptt *p_ptt, 2039 struct qed_vf_info *vf) 2040 { 2041 u16 length = sizeof(struct pfvf_def_resp_tlv); 2042 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2043 u8 status = PFVF_STATUS_SUCCESS; 2044 struct vfpf_stop_rxqs_tlv *req; 2045 int rc; 2046 2047 /* We give the option of starting from qid != 0, in this case we 2048 * need to make sure that qid + num_qs doesn't exceed the actual 2049 * amount of queues that exist. 2050 */ 2051 req = &mbx->req_virt->stop_rxqs; 2052 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2053 req->num_rxqs, req->cqe_completion); 2054 if (rc) 2055 status = PFVF_STATUS_FAILURE; 2056 2057 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2058 length, status); 2059 } 2060 2061 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2062 struct qed_ptt *p_ptt, 2063 struct qed_vf_info *vf) 2064 { 2065 u16 length = sizeof(struct pfvf_def_resp_tlv); 2066 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2067 u8 status = PFVF_STATUS_SUCCESS; 2068 struct vfpf_stop_txqs_tlv *req; 2069 int rc; 2070 2071 /* We give the option of starting from qid != 0, in this case we 2072 * need to make sure that qid + num_qs doesn't exceed the actual 2073 * amount of queues that exist. 2074 */ 2075 req = &mbx->req_virt->stop_txqs; 2076 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, req->num_txqs); 2077 if (rc) 2078 status = PFVF_STATUS_FAILURE; 2079 2080 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2081 length, status); 2082 } 2083 2084 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2085 struct qed_ptt *p_ptt, 2086 struct qed_vf_info *vf) 2087 { 2088 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2089 u16 length = sizeof(struct pfvf_def_resp_tlv); 2090 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2091 struct vfpf_update_rxq_tlv *req; 2092 u8 status = PFVF_STATUS_FAILURE; 2093 u8 complete_event_flg; 2094 u8 complete_cqe_flg; 2095 u16 qid; 2096 int rc; 2097 u8 i; 2098 2099 req = &mbx->req_virt->update_rxq; 2100 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2101 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2102 2103 /* Validate inputs */ 2104 if (req->num_rxqs + req->rx_qid > QED_MAX_VF_CHAINS_PER_PF || 2105 !qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid)) { 2106 DP_INFO(p_hwfn, "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2107 vf->relative_vf_id, req->rx_qid, req->num_rxqs); 2108 goto out; 2109 } 2110 2111 for (i = 0; i < req->num_rxqs; i++) { 2112 qid = req->rx_qid + i; 2113 if (!vf->vf_queues[qid].p_rx_cid) { 2114 DP_INFO(p_hwfn, 2115 "VF[%d] rx_qid = %d isn`t active!\n", 2116 vf->relative_vf_id, qid); 2117 goto out; 2118 } 2119 2120 handlers[i] = vf->vf_queues[qid].p_rx_cid; 2121 } 2122 2123 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2124 req->num_rxqs, 2125 complete_cqe_flg, 2126 complete_event_flg, 2127 QED_SPQ_MODE_EBLOCK, NULL); 2128 if (rc) 2129 goto out; 2130 2131 status = PFVF_STATUS_SUCCESS; 2132 out: 2133 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2134 length, status); 2135 } 2136 2137 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2138 void *p_tlvs_list, u16 req_type) 2139 { 2140 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2141 int len = 0; 2142 2143 do { 2144 if (!p_tlv->length) { 2145 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2146 return NULL; 2147 } 2148 2149 if (p_tlv->type == req_type) { 2150 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2151 "Extended tlv type %d, length %d found\n", 2152 p_tlv->type, p_tlv->length); 2153 return p_tlv; 2154 } 2155 2156 len += p_tlv->length; 2157 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2158 2159 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2160 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2161 return NULL; 2162 } 2163 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2164 2165 return NULL; 2166 } 2167 2168 static void 2169 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2170 struct qed_sp_vport_update_params *p_data, 2171 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2172 { 2173 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2174 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2175 2176 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2177 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2178 if (!p_act_tlv) 2179 return; 2180 2181 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2182 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2183 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2184 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2185 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2186 } 2187 2188 static void 2189 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2190 struct qed_sp_vport_update_params *p_data, 2191 struct qed_vf_info *p_vf, 2192 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2193 { 2194 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2195 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2196 2197 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2198 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2199 if (!p_vlan_tlv) 2200 return; 2201 2202 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2203 2204 /* Ignore the VF request if we're forcing a vlan */ 2205 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2206 p_data->update_inner_vlan_removal_flg = 1; 2207 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2208 } 2209 2210 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2211 } 2212 2213 static void 2214 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2215 struct qed_sp_vport_update_params *p_data, 2216 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2217 { 2218 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2219 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2220 2221 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2222 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2223 tlv); 2224 if (!p_tx_switch_tlv) 2225 return; 2226 2227 p_data->update_tx_switching_flg = 1; 2228 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2229 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2230 } 2231 2232 static void 2233 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2234 struct qed_sp_vport_update_params *p_data, 2235 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2236 { 2237 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2238 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2239 2240 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2241 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2242 if (!p_mcast_tlv) 2243 return; 2244 2245 p_data->update_approx_mcast_flg = 1; 2246 memcpy(p_data->bins, p_mcast_tlv->bins, 2247 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2248 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2249 } 2250 2251 static void 2252 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2253 struct qed_sp_vport_update_params *p_data, 2254 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2255 { 2256 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2257 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2258 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2259 2260 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2261 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2262 if (!p_accept_tlv) 2263 return; 2264 2265 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2266 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2267 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2268 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2269 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2270 } 2271 2272 static void 2273 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2274 struct qed_sp_vport_update_params *p_data, 2275 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2276 { 2277 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2278 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2279 2280 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2281 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2282 tlv); 2283 if (!p_accept_any_vlan) 2284 return; 2285 2286 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2287 p_data->update_accept_any_vlan_flg = 2288 p_accept_any_vlan->update_accept_any_vlan_flg; 2289 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2290 } 2291 2292 static void 2293 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2294 struct qed_vf_info *vf, 2295 struct qed_sp_vport_update_params *p_data, 2296 struct qed_rss_params *p_rss, 2297 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2298 { 2299 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2300 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2301 u16 i, q_idx, max_q_idx; 2302 u16 table_size; 2303 2304 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2305 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2306 if (!p_rss_tlv) { 2307 p_data->rss_params = NULL; 2308 return; 2309 } 2310 2311 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2312 2313 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2314 VFPF_UPDATE_RSS_CONFIG_FLAG); 2315 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2316 VFPF_UPDATE_RSS_CAPS_FLAG); 2317 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2318 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2319 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2320 VFPF_UPDATE_RSS_KEY_FLAG); 2321 2322 p_rss->rss_enable = p_rss_tlv->rss_enable; 2323 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2324 p_rss->rss_caps = p_rss_tlv->rss_caps; 2325 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2326 memcpy(p_rss->rss_ind_table, p_rss_tlv->rss_ind_table, 2327 sizeof(p_rss->rss_ind_table)); 2328 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2329 2330 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2331 (1 << p_rss_tlv->rss_table_size_log)); 2332 2333 max_q_idx = ARRAY_SIZE(vf->vf_queues); 2334 2335 for (i = 0; i < table_size; i++) { 2336 u16 index = vf->vf_queues[0].fw_rx_qid; 2337 2338 q_idx = p_rss->rss_ind_table[i]; 2339 if (q_idx >= max_q_idx) 2340 DP_NOTICE(p_hwfn, 2341 "rss_ind_table[%d] = %d, rxq is out of range\n", 2342 i, q_idx); 2343 else if (!vf->vf_queues[q_idx].p_rx_cid) 2344 DP_NOTICE(p_hwfn, 2345 "rss_ind_table[%d] = %d, rxq is not active\n", 2346 i, q_idx); 2347 else 2348 index = vf->vf_queues[q_idx].fw_rx_qid; 2349 p_rss->rss_ind_table[i] = index; 2350 } 2351 2352 p_data->rss_params = p_rss; 2353 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2354 } 2355 2356 static void 2357 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2358 struct qed_vf_info *vf, 2359 struct qed_sp_vport_update_params *p_data, 2360 struct qed_sge_tpa_params *p_sge_tpa, 2361 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2362 { 2363 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2364 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2365 2366 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2367 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2368 2369 if (!p_sge_tpa_tlv) { 2370 p_data->sge_tpa_params = NULL; 2371 return; 2372 } 2373 2374 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2375 2376 p_sge_tpa->update_tpa_en_flg = 2377 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2378 p_sge_tpa->update_tpa_param_flg = 2379 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2380 VFPF_UPDATE_TPA_PARAM_FLAG); 2381 2382 p_sge_tpa->tpa_ipv4_en_flg = 2383 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2384 p_sge_tpa->tpa_ipv6_en_flg = 2385 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2386 p_sge_tpa->tpa_pkt_split_flg = 2387 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2388 p_sge_tpa->tpa_hdr_data_split_flg = 2389 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2390 p_sge_tpa->tpa_gro_consistent_flg = 2391 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2392 2393 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2394 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2395 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2396 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2397 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2398 2399 p_data->sge_tpa_params = p_sge_tpa; 2400 2401 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2402 } 2403 2404 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 2405 struct qed_ptt *p_ptt, 2406 struct qed_vf_info *vf) 2407 { 2408 struct qed_sp_vport_update_params params; 2409 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2410 struct qed_sge_tpa_params sge_tpa_params; 2411 struct qed_rss_params rss_params; 2412 u8 status = PFVF_STATUS_SUCCESS; 2413 u16 tlvs_mask = 0; 2414 u16 length; 2415 int rc; 2416 2417 /* Valiate PF can send such a request */ 2418 if (!vf->vport_instance) { 2419 DP_VERBOSE(p_hwfn, 2420 QED_MSG_IOV, 2421 "No VPORT instance available for VF[%d], failing vport update\n", 2422 vf->abs_vf_id); 2423 status = PFVF_STATUS_FAILURE; 2424 goto out; 2425 } 2426 2427 memset(¶ms, 0, sizeof(params)); 2428 params.opaque_fid = vf->opaque_fid; 2429 params.vport_id = vf->vport_id; 2430 params.rss_params = NULL; 2431 2432 /* Search for extended tlvs list and update values 2433 * from VF in struct qed_sp_vport_update_params. 2434 */ 2435 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2436 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 2437 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 2438 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2439 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 2440 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, &rss_params, 2441 mbx, &tlvs_mask); 2442 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 2443 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 2444 &sge_tpa_params, mbx, &tlvs_mask); 2445 2446 /* Just log a message if there is no single extended tlv in buffer. 2447 * When all features of vport update ramrod would be requested by VF 2448 * as extended TLVs in buffer then an error can be returned in response 2449 * if there is no extended TLV present in buffer. 2450 */ 2451 if (!tlvs_mask) { 2452 DP_NOTICE(p_hwfn, 2453 "No feature tlvs found for vport update\n"); 2454 status = PFVF_STATUS_NOT_SUPPORTED; 2455 goto out; 2456 } 2457 2458 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 2459 2460 if (rc) 2461 status = PFVF_STATUS_FAILURE; 2462 2463 out: 2464 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 2465 tlvs_mask, tlvs_mask); 2466 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2467 } 2468 2469 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 2470 struct qed_vf_info *p_vf, 2471 struct qed_filter_ucast *p_params) 2472 { 2473 int i; 2474 2475 /* First remove entries and then add new ones */ 2476 if (p_params->opcode == QED_FILTER_REMOVE) { 2477 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2478 if (p_vf->shadow_config.vlans[i].used && 2479 p_vf->shadow_config.vlans[i].vid == 2480 p_params->vlan) { 2481 p_vf->shadow_config.vlans[i].used = false; 2482 break; 2483 } 2484 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2485 DP_VERBOSE(p_hwfn, 2486 QED_MSG_IOV, 2487 "VF [%d] - Tries to remove a non-existing vlan\n", 2488 p_vf->relative_vf_id); 2489 return -EINVAL; 2490 } 2491 } else if (p_params->opcode == QED_FILTER_REPLACE || 2492 p_params->opcode == QED_FILTER_FLUSH) { 2493 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2494 p_vf->shadow_config.vlans[i].used = false; 2495 } 2496 2497 /* In forced mode, we're willing to remove entries - but we don't add 2498 * new ones. 2499 */ 2500 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 2501 return 0; 2502 2503 if (p_params->opcode == QED_FILTER_ADD || 2504 p_params->opcode == QED_FILTER_REPLACE) { 2505 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 2506 if (p_vf->shadow_config.vlans[i].used) 2507 continue; 2508 2509 p_vf->shadow_config.vlans[i].used = true; 2510 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 2511 break; 2512 } 2513 2514 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2515 DP_VERBOSE(p_hwfn, 2516 QED_MSG_IOV, 2517 "VF [%d] - Tries to configure more than %d vlan filters\n", 2518 p_vf->relative_vf_id, 2519 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 2520 return -EINVAL; 2521 } 2522 } 2523 2524 return 0; 2525 } 2526 2527 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 2528 struct qed_vf_info *p_vf, 2529 struct qed_filter_ucast *p_params) 2530 { 2531 int i; 2532 2533 /* If we're in forced-mode, we don't allow any change */ 2534 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 2535 return 0; 2536 2537 /* First remove entries and then add new ones */ 2538 if (p_params->opcode == QED_FILTER_REMOVE) { 2539 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 2540 if (ether_addr_equal(p_vf->shadow_config.macs[i], 2541 p_params->mac)) { 2542 memset(p_vf->shadow_config.macs[i], 0, 2543 ETH_ALEN); 2544 break; 2545 } 2546 } 2547 2548 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 2549 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2550 "MAC isn't configured\n"); 2551 return -EINVAL; 2552 } 2553 } else if (p_params->opcode == QED_FILTER_REPLACE || 2554 p_params->opcode == QED_FILTER_FLUSH) { 2555 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 2556 memset(p_vf->shadow_config.macs[i], 0, ETH_ALEN); 2557 } 2558 2559 /* List the new MAC address */ 2560 if (p_params->opcode != QED_FILTER_ADD && 2561 p_params->opcode != QED_FILTER_REPLACE) 2562 return 0; 2563 2564 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 2565 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 2566 ether_addr_copy(p_vf->shadow_config.macs[i], 2567 p_params->mac); 2568 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2569 "Added MAC at %d entry in shadow\n", i); 2570 break; 2571 } 2572 } 2573 2574 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 2575 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 2576 return -EINVAL; 2577 } 2578 2579 return 0; 2580 } 2581 2582 static int 2583 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 2584 struct qed_vf_info *p_vf, 2585 struct qed_filter_ucast *p_params) 2586 { 2587 int rc = 0; 2588 2589 if (p_params->type == QED_FILTER_MAC) { 2590 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 2591 if (rc) 2592 return rc; 2593 } 2594 2595 if (p_params->type == QED_FILTER_VLAN) 2596 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 2597 2598 return rc; 2599 } 2600 2601 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 2602 int vfid, struct qed_filter_ucast *params) 2603 { 2604 struct qed_public_vf_info *vf; 2605 2606 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 2607 if (!vf) 2608 return -EINVAL; 2609 2610 /* No real decision to make; Store the configured MAC */ 2611 if (params->type == QED_FILTER_MAC || 2612 params->type == QED_FILTER_MAC_VLAN) 2613 ether_addr_copy(vf->mac, params->mac); 2614 2615 return 0; 2616 } 2617 2618 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 2619 struct qed_ptt *p_ptt, 2620 struct qed_vf_info *vf) 2621 { 2622 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 2623 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2624 struct vfpf_ucast_filter_tlv *req; 2625 u8 status = PFVF_STATUS_SUCCESS; 2626 struct qed_filter_ucast params; 2627 int rc; 2628 2629 /* Prepare the unicast filter params */ 2630 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 2631 req = &mbx->req_virt->ucast_filter; 2632 params.opcode = (enum qed_filter_opcode)req->opcode; 2633 params.type = (enum qed_filter_ucast_type)req->type; 2634 2635 params.is_rx_filter = 1; 2636 params.is_tx_filter = 1; 2637 params.vport_to_remove_from = vf->vport_id; 2638 params.vport_to_add_to = vf->vport_id; 2639 memcpy(params.mac, req->mac, ETH_ALEN); 2640 params.vlan = req->vlan; 2641 2642 DP_VERBOSE(p_hwfn, 2643 QED_MSG_IOV, 2644 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 2645 vf->abs_vf_id, params.opcode, params.type, 2646 params.is_rx_filter ? "RX" : "", 2647 params.is_tx_filter ? "TX" : "", 2648 params.vport_to_add_to, 2649 params.mac[0], params.mac[1], 2650 params.mac[2], params.mac[3], 2651 params.mac[4], params.mac[5], params.vlan); 2652 2653 if (!vf->vport_instance) { 2654 DP_VERBOSE(p_hwfn, 2655 QED_MSG_IOV, 2656 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 2657 vf->abs_vf_id); 2658 status = PFVF_STATUS_FAILURE; 2659 goto out; 2660 } 2661 2662 /* Update shadow copy of the VF configuration */ 2663 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 2664 status = PFVF_STATUS_FAILURE; 2665 goto out; 2666 } 2667 2668 /* Determine if the unicast filtering is acceptible by PF */ 2669 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 2670 (params.type == QED_FILTER_VLAN || 2671 params.type == QED_FILTER_MAC_VLAN)) { 2672 /* Once VLAN is forced or PVID is set, do not allow 2673 * to add/replace any further VLANs. 2674 */ 2675 if (params.opcode == QED_FILTER_ADD || 2676 params.opcode == QED_FILTER_REPLACE) 2677 status = PFVF_STATUS_FORCED; 2678 goto out; 2679 } 2680 2681 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 2682 (params.type == QED_FILTER_MAC || 2683 params.type == QED_FILTER_MAC_VLAN)) { 2684 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 2685 (params.opcode != QED_FILTER_ADD && 2686 params.opcode != QED_FILTER_REPLACE)) 2687 status = PFVF_STATUS_FORCED; 2688 goto out; 2689 } 2690 2691 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 2692 if (rc) { 2693 status = PFVF_STATUS_FAILURE; 2694 goto out; 2695 } 2696 2697 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 2698 QED_SPQ_MODE_CB, NULL); 2699 if (rc) 2700 status = PFVF_STATUS_FAILURE; 2701 2702 out: 2703 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 2704 sizeof(struct pfvf_def_resp_tlv), status); 2705 } 2706 2707 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 2708 struct qed_ptt *p_ptt, 2709 struct qed_vf_info *vf) 2710 { 2711 int i; 2712 2713 /* Reset the SBs */ 2714 for (i = 0; i < vf->num_sbs; i++) 2715 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 2716 vf->igu_sbs[i], 2717 vf->opaque_fid, false); 2718 2719 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 2720 sizeof(struct pfvf_def_resp_tlv), 2721 PFVF_STATUS_SUCCESS); 2722 } 2723 2724 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 2725 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 2726 { 2727 u16 length = sizeof(struct pfvf_def_resp_tlv); 2728 u8 status = PFVF_STATUS_SUCCESS; 2729 2730 /* Disable Interrupts for VF */ 2731 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 2732 2733 /* Reset Permission table */ 2734 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 2735 2736 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 2737 length, status); 2738 } 2739 2740 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 2741 struct qed_ptt *p_ptt, 2742 struct qed_vf_info *p_vf) 2743 { 2744 u16 length = sizeof(struct pfvf_def_resp_tlv); 2745 u8 status = PFVF_STATUS_SUCCESS; 2746 int rc = 0; 2747 2748 qed_iov_vf_cleanup(p_hwfn, p_vf); 2749 2750 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 2751 /* Stopping the VF */ 2752 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 2753 p_vf->opaque_fid); 2754 2755 if (rc) { 2756 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 2757 rc); 2758 status = PFVF_STATUS_FAILURE; 2759 } 2760 2761 p_vf->state = VF_STOPPED; 2762 } 2763 2764 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 2765 length, status); 2766 } 2767 2768 static int 2769 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 2770 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2771 { 2772 int cnt; 2773 u32 val; 2774 2775 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 2776 2777 for (cnt = 0; cnt < 50; cnt++) { 2778 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 2779 if (!val) 2780 break; 2781 msleep(20); 2782 } 2783 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 2784 2785 if (cnt == 50) { 2786 DP_ERR(p_hwfn, 2787 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 2788 p_vf->abs_vf_id, val); 2789 return -EBUSY; 2790 } 2791 2792 return 0; 2793 } 2794 2795 static int 2796 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 2797 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2798 { 2799 u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS]; 2800 int i, cnt; 2801 2802 /* Read initial consumers & producers */ 2803 for (i = 0; i < MAX_NUM_VOQS; i++) { 2804 u32 prod; 2805 2806 cons[i] = qed_rd(p_hwfn, p_ptt, 2807 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 2808 i * 0x40); 2809 prod = qed_rd(p_hwfn, p_ptt, 2810 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 2811 i * 0x40); 2812 distance[i] = prod - cons[i]; 2813 } 2814 2815 /* Wait for consumers to pass the producers */ 2816 i = 0; 2817 for (cnt = 0; cnt < 50; cnt++) { 2818 for (; i < MAX_NUM_VOQS; i++) { 2819 u32 tmp; 2820 2821 tmp = qed_rd(p_hwfn, p_ptt, 2822 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 2823 i * 0x40); 2824 if (distance[i] > tmp - cons[i]) 2825 break; 2826 } 2827 2828 if (i == MAX_NUM_VOQS) 2829 break; 2830 2831 msleep(20); 2832 } 2833 2834 if (cnt == 50) { 2835 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 2836 p_vf->abs_vf_id, i); 2837 return -EBUSY; 2838 } 2839 2840 return 0; 2841 } 2842 2843 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 2844 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2845 { 2846 int rc; 2847 2848 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 2849 if (rc) 2850 return rc; 2851 2852 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 2853 if (rc) 2854 return rc; 2855 2856 return 0; 2857 } 2858 2859 static int 2860 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 2861 struct qed_ptt *p_ptt, 2862 u16 rel_vf_id, u32 *ack_vfs) 2863 { 2864 struct qed_vf_info *p_vf; 2865 int rc = 0; 2866 2867 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 2868 if (!p_vf) 2869 return 0; 2870 2871 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 2872 (1ULL << (rel_vf_id % 64))) { 2873 u16 vfid = p_vf->abs_vf_id; 2874 2875 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2876 "VF[%d] - Handling FLR\n", vfid); 2877 2878 qed_iov_vf_cleanup(p_hwfn, p_vf); 2879 2880 /* If VF isn't active, no need for anything but SW */ 2881 if (!p_vf->b_init) 2882 goto cleanup; 2883 2884 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 2885 if (rc) 2886 goto cleanup; 2887 2888 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 2889 if (rc) { 2890 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 2891 return rc; 2892 } 2893 2894 /* Workaround to make VF-PF channel ready, as FW 2895 * doesn't do that as a part of FLR. 2896 */ 2897 REG_WR(p_hwfn, 2898 GTT_BAR0_MAP_REG_USDM_RAM + 2899 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 2900 2901 /* VF_STOPPED has to be set only after final cleanup 2902 * but prior to re-enabling the VF. 2903 */ 2904 p_vf->state = VF_STOPPED; 2905 2906 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 2907 if (rc) { 2908 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 2909 vfid); 2910 return rc; 2911 } 2912 cleanup: 2913 /* Mark VF for ack and clean pending state */ 2914 if (p_vf->state == VF_RESET) 2915 p_vf->state = VF_STOPPED; 2916 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 2917 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 2918 ~(1ULL << (rel_vf_id % 64)); 2919 p_hwfn->pf_iov_info->pending_events[rel_vf_id / 64] &= 2920 ~(1ULL << (rel_vf_id % 64)); 2921 } 2922 2923 return rc; 2924 } 2925 2926 static int 2927 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2928 { 2929 u32 ack_vfs[VF_MAX_STATIC / 32]; 2930 int rc = 0; 2931 u16 i; 2932 2933 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 2934 2935 /* Since BRB <-> PRS interface can't be tested as part of the flr 2936 * polling due to HW limitations, simply sleep a bit. And since 2937 * there's no need to wait per-vf, do it before looping. 2938 */ 2939 msleep(100); 2940 2941 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 2942 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 2943 2944 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 2945 return rc; 2946 } 2947 2948 int qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 2949 { 2950 u16 i, found = 0; 2951 2952 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 2953 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 2954 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2955 "[%08x,...,%08x]: %08x\n", 2956 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 2957 2958 if (!p_hwfn->cdev->p_iov_info) { 2959 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 2960 return 0; 2961 } 2962 2963 /* Mark VFs */ 2964 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 2965 struct qed_vf_info *p_vf; 2966 u8 vfid; 2967 2968 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 2969 if (!p_vf) 2970 continue; 2971 2972 vfid = p_vf->abs_vf_id; 2973 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 2974 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 2975 u16 rel_vf_id = p_vf->relative_vf_id; 2976 2977 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2978 "VF[%d] [rel %d] got FLR-ed\n", 2979 vfid, rel_vf_id); 2980 2981 p_vf->state = VF_RESET; 2982 2983 /* No need to lock here, since pending_flr should 2984 * only change here and before ACKing MFw. Since 2985 * MFW will not trigger an additional attention for 2986 * VF flr until ACKs, we're safe. 2987 */ 2988 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 2989 found = 1; 2990 } 2991 } 2992 2993 return found; 2994 } 2995 2996 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 2997 u16 vfid, 2998 struct qed_mcp_link_params *p_params, 2999 struct qed_mcp_link_state *p_link, 3000 struct qed_mcp_link_capabilities *p_caps) 3001 { 3002 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3003 vfid, 3004 false); 3005 struct qed_bulletin_content *p_bulletin; 3006 3007 if (!p_vf) 3008 return; 3009 3010 p_bulletin = p_vf->bulletin.p_virt; 3011 3012 if (p_params) 3013 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3014 if (p_link) 3015 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3016 if (p_caps) 3017 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3018 } 3019 3020 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3021 struct qed_ptt *p_ptt, int vfid) 3022 { 3023 struct qed_iov_vf_mbx *mbx; 3024 struct qed_vf_info *p_vf; 3025 3026 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3027 if (!p_vf) 3028 return; 3029 3030 mbx = &p_vf->vf_mbx; 3031 3032 /* qed_iov_process_mbx_request */ 3033 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3034 "VF[%02x]: Processing mailbox message\n", p_vf->abs_vf_id); 3035 3036 mbx->first_tlv = mbx->req_virt->first_tlv; 3037 3038 /* check if tlv type is known */ 3039 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3040 !p_vf->b_malicious) { 3041 switch (mbx->first_tlv.tl.type) { 3042 case CHANNEL_TLV_ACQUIRE: 3043 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3044 break; 3045 case CHANNEL_TLV_VPORT_START: 3046 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3047 break; 3048 case CHANNEL_TLV_VPORT_TEARDOWN: 3049 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3050 break; 3051 case CHANNEL_TLV_START_RXQ: 3052 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3053 break; 3054 case CHANNEL_TLV_START_TXQ: 3055 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3056 break; 3057 case CHANNEL_TLV_STOP_RXQS: 3058 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3059 break; 3060 case CHANNEL_TLV_STOP_TXQS: 3061 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3062 break; 3063 case CHANNEL_TLV_UPDATE_RXQ: 3064 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3065 break; 3066 case CHANNEL_TLV_VPORT_UPDATE: 3067 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3068 break; 3069 case CHANNEL_TLV_UCAST_FILTER: 3070 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3071 break; 3072 case CHANNEL_TLV_CLOSE: 3073 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3074 break; 3075 case CHANNEL_TLV_INT_CLEANUP: 3076 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3077 break; 3078 case CHANNEL_TLV_RELEASE: 3079 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3080 break; 3081 } 3082 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3083 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3084 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3085 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3086 3087 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3088 mbx->first_tlv.tl.type, 3089 sizeof(struct pfvf_def_resp_tlv), 3090 PFVF_STATUS_MALICIOUS); 3091 } else { 3092 /* unknown TLV - this may belong to a VF driver from the future 3093 * - a version written after this PF driver was written, which 3094 * supports features unknown as of yet. Too bad since we don't 3095 * support them. Or this may be because someone wrote a crappy 3096 * VF driver and is sending garbage over the channel. 3097 */ 3098 DP_NOTICE(p_hwfn, 3099 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3100 p_vf->abs_vf_id, 3101 mbx->first_tlv.tl.type, 3102 mbx->first_tlv.tl.length, 3103 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3104 3105 /* Try replying in case reply address matches the acquisition's 3106 * posted address. 3107 */ 3108 if (p_vf->acquire.first_tlv.reply_address && 3109 (mbx->first_tlv.reply_address == 3110 p_vf->acquire.first_tlv.reply_address)) { 3111 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3112 mbx->first_tlv.tl.type, 3113 sizeof(struct pfvf_def_resp_tlv), 3114 PFVF_STATUS_NOT_SUPPORTED); 3115 } else { 3116 DP_VERBOSE(p_hwfn, 3117 QED_MSG_IOV, 3118 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3119 p_vf->abs_vf_id); 3120 } 3121 } 3122 } 3123 3124 static void qed_iov_pf_add_pending_events(struct qed_hwfn *p_hwfn, u8 vfid) 3125 { 3126 u64 add_bit = 1ULL << (vfid % 64); 3127 3128 p_hwfn->pf_iov_info->pending_events[vfid / 64] |= add_bit; 3129 } 3130 3131 static void qed_iov_pf_get_and_clear_pending_events(struct qed_hwfn *p_hwfn, 3132 u64 *events) 3133 { 3134 u64 *p_pending_events = p_hwfn->pf_iov_info->pending_events; 3135 3136 memcpy(events, p_pending_events, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3137 memset(p_pending_events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3138 } 3139 3140 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3141 u16 abs_vfid) 3142 { 3143 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 3144 3145 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 3146 DP_VERBOSE(p_hwfn, 3147 QED_MSG_IOV, 3148 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 3149 abs_vfid); 3150 return NULL; 3151 } 3152 3153 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 3154 } 3155 3156 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 3157 u16 abs_vfid, struct regpair *vf_msg) 3158 { 3159 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 3160 abs_vfid); 3161 3162 if (!p_vf) 3163 return 0; 3164 3165 /* List the physical address of the request so that handler 3166 * could later on copy the message from it. 3167 */ 3168 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 3169 3170 /* Mark the event and schedule the workqueue */ 3171 qed_iov_pf_add_pending_events(p_hwfn, p_vf->relative_vf_id); 3172 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 3173 3174 return 0; 3175 } 3176 3177 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 3178 struct malicious_vf_eqe_data *p_data) 3179 { 3180 struct qed_vf_info *p_vf; 3181 3182 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 3183 3184 if (!p_vf) 3185 return; 3186 3187 DP_INFO(p_hwfn, 3188 "VF [%d] - Malicious behavior [%02x]\n", 3189 p_vf->abs_vf_id, p_data->err_id); 3190 3191 p_vf->b_malicious = true; 3192 } 3193 3194 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 3195 u8 opcode, __le16 echo, union event_ring_data *data) 3196 { 3197 switch (opcode) { 3198 case COMMON_EVENT_VF_PF_CHANNEL: 3199 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 3200 &data->vf_pf_channel.msg_addr); 3201 case COMMON_EVENT_MALICIOUS_VF: 3202 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 3203 return 0; 3204 default: 3205 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 3206 opcode); 3207 return -EINVAL; 3208 } 3209 } 3210 3211 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 3212 { 3213 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 3214 u16 i; 3215 3216 if (!p_iov) 3217 goto out; 3218 3219 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 3220 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 3221 return i; 3222 3223 out: 3224 return MAX_NUM_VFS; 3225 } 3226 3227 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 3228 int vfid) 3229 { 3230 struct qed_dmae_params params; 3231 struct qed_vf_info *vf_info; 3232 3233 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3234 if (!vf_info) 3235 return -EINVAL; 3236 3237 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 3238 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 3239 params.src_vfid = vf_info->abs_vf_id; 3240 3241 if (qed_dmae_host2host(p_hwfn, ptt, 3242 vf_info->vf_mbx.pending_req, 3243 vf_info->vf_mbx.req_phys, 3244 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 3245 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3246 "Failed to copy message from VF 0x%02x\n", vfid); 3247 3248 return -EIO; 3249 } 3250 3251 return 0; 3252 } 3253 3254 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 3255 u8 *mac, int vfid) 3256 { 3257 struct qed_vf_info *vf_info; 3258 u64 feature; 3259 3260 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3261 if (!vf_info) { 3262 DP_NOTICE(p_hwfn->cdev, 3263 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 3264 return; 3265 } 3266 3267 if (vf_info->b_malicious) { 3268 DP_NOTICE(p_hwfn->cdev, 3269 "Can't set forced MAC to malicious VF [%d]\n", vfid); 3270 return; 3271 } 3272 3273 feature = 1 << MAC_ADDR_FORCED; 3274 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 3275 3276 vf_info->bulletin.p_virt->valid_bitmap |= feature; 3277 /* Forced MAC will disable MAC_ADDR */ 3278 vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR); 3279 3280 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 3281 } 3282 3283 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 3284 u16 pvid, int vfid) 3285 { 3286 struct qed_vf_info *vf_info; 3287 u64 feature; 3288 3289 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3290 if (!vf_info) { 3291 DP_NOTICE(p_hwfn->cdev, 3292 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 3293 return; 3294 } 3295 3296 if (vf_info->b_malicious) { 3297 DP_NOTICE(p_hwfn->cdev, 3298 "Can't set forced vlan to malicious VF [%d]\n", vfid); 3299 return; 3300 } 3301 3302 feature = 1 << VLAN_ADDR_FORCED; 3303 vf_info->bulletin.p_virt->pvid = pvid; 3304 if (pvid) 3305 vf_info->bulletin.p_virt->valid_bitmap |= feature; 3306 else 3307 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 3308 3309 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 3310 } 3311 3312 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 3313 { 3314 struct qed_vf_info *p_vf_info; 3315 3316 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3317 if (!p_vf_info) 3318 return false; 3319 3320 return !!p_vf_info->vport_instance; 3321 } 3322 3323 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 3324 { 3325 struct qed_vf_info *p_vf_info; 3326 3327 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3328 if (!p_vf_info) 3329 return true; 3330 3331 return p_vf_info->state == VF_STOPPED; 3332 } 3333 3334 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 3335 { 3336 struct qed_vf_info *vf_info; 3337 3338 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3339 if (!vf_info) 3340 return false; 3341 3342 return vf_info->spoof_chk; 3343 } 3344 3345 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 3346 { 3347 struct qed_vf_info *vf; 3348 int rc = -EINVAL; 3349 3350 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3351 DP_NOTICE(p_hwfn, 3352 "SR-IOV sanity check failed, can't set spoofchk\n"); 3353 goto out; 3354 } 3355 3356 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3357 if (!vf) 3358 goto out; 3359 3360 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 3361 /* After VF VPORT start PF will configure spoof check */ 3362 vf->req_spoofchk_val = val; 3363 rc = 0; 3364 goto out; 3365 } 3366 3367 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 3368 3369 out: 3370 return rc; 3371 } 3372 3373 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 3374 u16 rel_vf_id) 3375 { 3376 struct qed_vf_info *p_vf; 3377 3378 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 3379 if (!p_vf || !p_vf->bulletin.p_virt) 3380 return NULL; 3381 3382 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 3383 return NULL; 3384 3385 return p_vf->bulletin.p_virt->mac; 3386 } 3387 3388 static u16 3389 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 3390 { 3391 struct qed_vf_info *p_vf; 3392 3393 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 3394 if (!p_vf || !p_vf->bulletin.p_virt) 3395 return 0; 3396 3397 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 3398 return 0; 3399 3400 return p_vf->bulletin.p_virt->pvid; 3401 } 3402 3403 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 3404 struct qed_ptt *p_ptt, int vfid, int val) 3405 { 3406 struct qed_vf_info *vf; 3407 u8 abs_vp_id = 0; 3408 int rc; 3409 3410 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3411 if (!vf) 3412 return -EINVAL; 3413 3414 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 3415 if (rc) 3416 return rc; 3417 3418 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val); 3419 } 3420 3421 static int 3422 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 3423 { 3424 struct qed_vf_info *vf; 3425 u8 vport_id; 3426 int i; 3427 3428 for_each_hwfn(cdev, i) { 3429 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3430 3431 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3432 DP_NOTICE(p_hwfn, 3433 "SR-IOV sanity check failed, can't set min rate\n"); 3434 return -EINVAL; 3435 } 3436 } 3437 3438 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 3439 vport_id = vf->vport_id; 3440 3441 return qed_configure_vport_wfq(cdev, vport_id, rate); 3442 } 3443 3444 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 3445 { 3446 struct qed_wfq_data *vf_vp_wfq; 3447 struct qed_vf_info *vf_info; 3448 3449 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3450 if (!vf_info) 3451 return 0; 3452 3453 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 3454 3455 if (vf_vp_wfq->configured) 3456 return vf_vp_wfq->min_speed; 3457 else 3458 return 0; 3459 } 3460 3461 /** 3462 * qed_schedule_iov - schedules IOV task for VF and PF 3463 * @hwfn: hardware function pointer 3464 * @flag: IOV flag for VF/PF 3465 */ 3466 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 3467 { 3468 smp_mb__before_atomic(); 3469 set_bit(flag, &hwfn->iov_task_flags); 3470 smp_mb__after_atomic(); 3471 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3472 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 3473 } 3474 3475 void qed_vf_start_iov_wq(struct qed_dev *cdev) 3476 { 3477 int i; 3478 3479 for_each_hwfn(cdev, i) 3480 queue_delayed_work(cdev->hwfns[i].iov_wq, 3481 &cdev->hwfns[i].iov_task, 0); 3482 } 3483 3484 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 3485 { 3486 int i, j; 3487 3488 for_each_hwfn(cdev, i) 3489 if (cdev->hwfns[i].iov_wq) 3490 flush_workqueue(cdev->hwfns[i].iov_wq); 3491 3492 /* Mark VFs for disablement */ 3493 qed_iov_set_vfs_to_disable(cdev, true); 3494 3495 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 3496 pci_disable_sriov(cdev->pdev); 3497 3498 for_each_hwfn(cdev, i) { 3499 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3500 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3501 3502 /* Failure to acquire the ptt in 100g creates an odd error 3503 * where the first engine has already relased IOV. 3504 */ 3505 if (!ptt) { 3506 DP_ERR(hwfn, "Failed to acquire ptt\n"); 3507 return -EBUSY; 3508 } 3509 3510 /* Clean WFQ db and configure equal weight for all vports */ 3511 qed_clean_wfq_db(hwfn, ptt); 3512 3513 qed_for_each_vf(hwfn, j) { 3514 int k; 3515 3516 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 3517 continue; 3518 3519 /* Wait until VF is disabled before releasing */ 3520 for (k = 0; k < 100; k++) { 3521 if (!qed_iov_is_vf_stopped(hwfn, j)) 3522 msleep(20); 3523 else 3524 break; 3525 } 3526 3527 if (k < 100) 3528 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 3529 ptt, j); 3530 else 3531 DP_ERR(hwfn, 3532 "Timeout waiting for VF's FLR to end\n"); 3533 } 3534 3535 qed_ptt_release(hwfn, ptt); 3536 } 3537 3538 qed_iov_set_vfs_to_disable(cdev, false); 3539 3540 return 0; 3541 } 3542 3543 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 3544 u16 vfid, 3545 struct qed_iov_vf_init_params *params) 3546 { 3547 u16 base, i; 3548 3549 /* Since we have an equal resource distribution per-VF, and we assume 3550 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 3551 * sequentially from there. 3552 */ 3553 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 3554 3555 params->rel_vf_id = vfid; 3556 for (i = 0; i < params->num_queues; i++) { 3557 params->req_rx_queue[i] = base + i; 3558 params->req_tx_queue[i] = base + i; 3559 } 3560 } 3561 3562 static int qed_sriov_enable(struct qed_dev *cdev, int num) 3563 { 3564 struct qed_iov_vf_init_params params; 3565 int i, j, rc; 3566 3567 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 3568 DP_NOTICE(cdev, "Can start at most %d VFs\n", 3569 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 3570 return -EINVAL; 3571 } 3572 3573 memset(¶ms, 0, sizeof(params)); 3574 3575 /* Initialize HW for VF access */ 3576 for_each_hwfn(cdev, j) { 3577 struct qed_hwfn *hwfn = &cdev->hwfns[j]; 3578 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3579 3580 /* Make sure not to use more than 16 queues per VF */ 3581 params.num_queues = min_t(int, 3582 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 3583 16); 3584 3585 if (!ptt) { 3586 DP_ERR(hwfn, "Failed to acquire ptt\n"); 3587 rc = -EBUSY; 3588 goto err; 3589 } 3590 3591 for (i = 0; i < num; i++) { 3592 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 3593 continue; 3594 3595 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 3596 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 3597 if (rc) { 3598 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 3599 qed_ptt_release(hwfn, ptt); 3600 goto err; 3601 } 3602 } 3603 3604 qed_ptt_release(hwfn, ptt); 3605 } 3606 3607 /* Enable SRIOV PCIe functions */ 3608 rc = pci_enable_sriov(cdev->pdev, num); 3609 if (rc) { 3610 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 3611 goto err; 3612 } 3613 3614 return num; 3615 3616 err: 3617 qed_sriov_disable(cdev, false); 3618 return rc; 3619 } 3620 3621 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 3622 { 3623 if (!IS_QED_SRIOV(cdev)) { 3624 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 3625 return -EOPNOTSUPP; 3626 } 3627 3628 if (num_vfs_param) 3629 return qed_sriov_enable(cdev, num_vfs_param); 3630 else 3631 return qed_sriov_disable(cdev, true); 3632 } 3633 3634 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 3635 { 3636 int i; 3637 3638 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 3639 DP_VERBOSE(cdev, QED_MSG_IOV, 3640 "Cannot set a VF MAC; Sriov is not enabled\n"); 3641 return -EINVAL; 3642 } 3643 3644 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 3645 DP_VERBOSE(cdev, QED_MSG_IOV, 3646 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 3647 return -EINVAL; 3648 } 3649 3650 for_each_hwfn(cdev, i) { 3651 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3652 struct qed_public_vf_info *vf_info; 3653 3654 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3655 if (!vf_info) 3656 continue; 3657 3658 /* Set the forced MAC, and schedule the IOV task */ 3659 ether_addr_copy(vf_info->forced_mac, mac); 3660 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 3661 } 3662 3663 return 0; 3664 } 3665 3666 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 3667 { 3668 int i; 3669 3670 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 3671 DP_VERBOSE(cdev, QED_MSG_IOV, 3672 "Cannot set a VF MAC; Sriov is not enabled\n"); 3673 return -EINVAL; 3674 } 3675 3676 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 3677 DP_VERBOSE(cdev, QED_MSG_IOV, 3678 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 3679 return -EINVAL; 3680 } 3681 3682 for_each_hwfn(cdev, i) { 3683 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3684 struct qed_public_vf_info *vf_info; 3685 3686 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3687 if (!vf_info) 3688 continue; 3689 3690 /* Set the forced vlan, and schedule the IOV task */ 3691 vf_info->forced_vlan = vid; 3692 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 3693 } 3694 3695 return 0; 3696 } 3697 3698 static int qed_get_vf_config(struct qed_dev *cdev, 3699 int vf_id, struct ifla_vf_info *ivi) 3700 { 3701 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 3702 struct qed_public_vf_info *vf_info; 3703 struct qed_mcp_link_state link; 3704 u32 tx_rate; 3705 3706 /* Sanitize request */ 3707 if (IS_VF(cdev)) 3708 return -EINVAL; 3709 3710 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 3711 DP_VERBOSE(cdev, QED_MSG_IOV, 3712 "VF index [%d] isn't active\n", vf_id); 3713 return -EINVAL; 3714 } 3715 3716 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 3717 3718 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 3719 3720 /* Fill information about VF */ 3721 ivi->vf = vf_id; 3722 3723 if (is_valid_ether_addr(vf_info->forced_mac)) 3724 ether_addr_copy(ivi->mac, vf_info->forced_mac); 3725 else 3726 ether_addr_copy(ivi->mac, vf_info->mac); 3727 3728 ivi->vlan = vf_info->forced_vlan; 3729 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 3730 ivi->linkstate = vf_info->link_state; 3731 tx_rate = vf_info->tx_rate; 3732 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 3733 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 3734 3735 return 0; 3736 } 3737 3738 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 3739 { 3740 struct qed_mcp_link_capabilities caps; 3741 struct qed_mcp_link_params params; 3742 struct qed_mcp_link_state link; 3743 int i; 3744 3745 if (!hwfn->pf_iov_info) 3746 return; 3747 3748 /* Update bulletin of all future possible VFs with link configuration */ 3749 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 3750 struct qed_public_vf_info *vf_info; 3751 3752 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 3753 if (!vf_info) 3754 continue; 3755 3756 memcpy(¶ms, qed_mcp_get_link_params(hwfn), sizeof(params)); 3757 memcpy(&link, qed_mcp_get_link_state(hwfn), sizeof(link)); 3758 memcpy(&caps, qed_mcp_get_link_capabilities(hwfn), 3759 sizeof(caps)); 3760 3761 /* Modify link according to the VF's configured link state */ 3762 switch (vf_info->link_state) { 3763 case IFLA_VF_LINK_STATE_DISABLE: 3764 link.link_up = false; 3765 break; 3766 case IFLA_VF_LINK_STATE_ENABLE: 3767 link.link_up = true; 3768 /* Set speed according to maximum supported by HW. 3769 * that is 40G for regular devices and 100G for CMT 3770 * mode devices. 3771 */ 3772 link.speed = (hwfn->cdev->num_hwfns > 1) ? 3773 100000 : 40000; 3774 default: 3775 /* In auto mode pass PF link image to VF */ 3776 break; 3777 } 3778 3779 if (link.link_up && vf_info->tx_rate) { 3780 struct qed_ptt *ptt; 3781 int rate; 3782 3783 rate = min_t(int, vf_info->tx_rate, link.speed); 3784 3785 ptt = qed_ptt_acquire(hwfn); 3786 if (!ptt) { 3787 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 3788 return; 3789 } 3790 3791 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 3792 vf_info->tx_rate = rate; 3793 link.speed = rate; 3794 } 3795 3796 qed_ptt_release(hwfn, ptt); 3797 } 3798 3799 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 3800 } 3801 3802 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3803 } 3804 3805 static int qed_set_vf_link_state(struct qed_dev *cdev, 3806 int vf_id, int link_state) 3807 { 3808 int i; 3809 3810 /* Sanitize request */ 3811 if (IS_VF(cdev)) 3812 return -EINVAL; 3813 3814 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 3815 DP_VERBOSE(cdev, QED_MSG_IOV, 3816 "VF index [%d] isn't active\n", vf_id); 3817 return -EINVAL; 3818 } 3819 3820 /* Handle configuration of link state */ 3821 for_each_hwfn(cdev, i) { 3822 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3823 struct qed_public_vf_info *vf; 3824 3825 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 3826 if (!vf) 3827 continue; 3828 3829 if (vf->link_state == link_state) 3830 continue; 3831 3832 vf->link_state = link_state; 3833 qed_inform_vf_link_state(&cdev->hwfns[i]); 3834 } 3835 3836 return 0; 3837 } 3838 3839 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 3840 { 3841 int i, rc = -EINVAL; 3842 3843 for_each_hwfn(cdev, i) { 3844 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3845 3846 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 3847 if (rc) 3848 break; 3849 } 3850 3851 return rc; 3852 } 3853 3854 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 3855 { 3856 int i; 3857 3858 for_each_hwfn(cdev, i) { 3859 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3860 struct qed_public_vf_info *vf; 3861 3862 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3863 DP_NOTICE(p_hwfn, 3864 "SR-IOV sanity check failed, can't set tx rate\n"); 3865 return -EINVAL; 3866 } 3867 3868 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 3869 3870 vf->tx_rate = rate; 3871 3872 qed_inform_vf_link_state(p_hwfn); 3873 } 3874 3875 return 0; 3876 } 3877 3878 static int qed_set_vf_rate(struct qed_dev *cdev, 3879 int vfid, u32 min_rate, u32 max_rate) 3880 { 3881 int rc_min = 0, rc_max = 0; 3882 3883 if (max_rate) 3884 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 3885 3886 if (min_rate) 3887 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 3888 3889 if (rc_max | rc_min) 3890 return -EINVAL; 3891 3892 return 0; 3893 } 3894 3895 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 3896 { 3897 u64 events[QED_VF_ARRAY_LENGTH]; 3898 struct qed_ptt *ptt; 3899 int i; 3900 3901 ptt = qed_ptt_acquire(hwfn); 3902 if (!ptt) { 3903 DP_VERBOSE(hwfn, QED_MSG_IOV, 3904 "Can't acquire PTT; re-scheduling\n"); 3905 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 3906 return; 3907 } 3908 3909 qed_iov_pf_get_and_clear_pending_events(hwfn, events); 3910 3911 DP_VERBOSE(hwfn, QED_MSG_IOV, 3912 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 3913 events[0], events[1], events[2]); 3914 3915 qed_for_each_vf(hwfn, i) { 3916 /* Skip VFs with no pending messages */ 3917 if (!(events[i / 64] & (1ULL << (i % 64)))) 3918 continue; 3919 3920 DP_VERBOSE(hwfn, QED_MSG_IOV, 3921 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 3922 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 3923 3924 /* Copy VF's message to PF's request buffer for that VF */ 3925 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 3926 continue; 3927 3928 qed_iov_process_mbx_req(hwfn, ptt, i); 3929 } 3930 3931 qed_ptt_release(hwfn, ptt); 3932 } 3933 3934 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 3935 { 3936 int i; 3937 3938 qed_for_each_vf(hwfn, i) { 3939 struct qed_public_vf_info *info; 3940 bool update = false; 3941 u8 *mac; 3942 3943 info = qed_iov_get_public_vf_info(hwfn, i, true); 3944 if (!info) 3945 continue; 3946 3947 /* Update data on bulletin board */ 3948 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 3949 if (is_valid_ether_addr(info->forced_mac) && 3950 (!mac || !ether_addr_equal(mac, info->forced_mac))) { 3951 DP_VERBOSE(hwfn, 3952 QED_MSG_IOV, 3953 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 3954 i, 3955 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 3956 3957 /* Update bulletin board with forced MAC */ 3958 qed_iov_bulletin_set_forced_mac(hwfn, 3959 info->forced_mac, i); 3960 update = true; 3961 } 3962 3963 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 3964 info->forced_vlan) { 3965 DP_VERBOSE(hwfn, 3966 QED_MSG_IOV, 3967 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 3968 info->forced_vlan, 3969 i, 3970 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 3971 qed_iov_bulletin_set_forced_vlan(hwfn, 3972 info->forced_vlan, i); 3973 update = true; 3974 } 3975 3976 if (update) 3977 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3978 } 3979 } 3980 3981 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 3982 { 3983 struct qed_ptt *ptt; 3984 int i; 3985 3986 ptt = qed_ptt_acquire(hwfn); 3987 if (!ptt) { 3988 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 3989 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3990 return; 3991 } 3992 3993 qed_for_each_vf(hwfn, i) 3994 qed_iov_post_vf_bulletin(hwfn, i, ptt); 3995 3996 qed_ptt_release(hwfn, ptt); 3997 } 3998 3999 static void qed_iov_pf_task(struct work_struct *work) 4000 4001 { 4002 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 4003 iov_task.work); 4004 int rc; 4005 4006 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 4007 return; 4008 4009 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 4010 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4011 4012 if (!ptt) { 4013 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4014 return; 4015 } 4016 4017 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 4018 if (rc) 4019 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4020 4021 qed_ptt_release(hwfn, ptt); 4022 } 4023 4024 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 4025 qed_handle_vf_msg(hwfn); 4026 4027 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 4028 &hwfn->iov_task_flags)) 4029 qed_handle_pf_set_vf_unicast(hwfn); 4030 4031 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 4032 &hwfn->iov_task_flags)) 4033 qed_handle_bulletin_post(hwfn); 4034 } 4035 4036 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 4037 { 4038 int i; 4039 4040 for_each_hwfn(cdev, i) { 4041 if (!cdev->hwfns[i].iov_wq) 4042 continue; 4043 4044 if (schedule_first) { 4045 qed_schedule_iov(&cdev->hwfns[i], 4046 QED_IOV_WQ_STOP_WQ_FLAG); 4047 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 4048 } 4049 4050 flush_workqueue(cdev->hwfns[i].iov_wq); 4051 destroy_workqueue(cdev->hwfns[i].iov_wq); 4052 } 4053 } 4054 4055 int qed_iov_wq_start(struct qed_dev *cdev) 4056 { 4057 char name[NAME_SIZE]; 4058 int i; 4059 4060 for_each_hwfn(cdev, i) { 4061 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4062 4063 /* PFs needs a dedicated workqueue only if they support IOV. 4064 * VFs always require one. 4065 */ 4066 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 4067 continue; 4068 4069 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 4070 cdev->pdev->bus->number, 4071 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 4072 4073 p_hwfn->iov_wq = create_singlethread_workqueue(name); 4074 if (!p_hwfn->iov_wq) { 4075 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 4076 return -ENOMEM; 4077 } 4078 4079 if (IS_PF(cdev)) 4080 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 4081 else 4082 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 4083 } 4084 4085 return 0; 4086 } 4087 4088 const struct qed_iov_hv_ops qed_iov_ops_pass = { 4089 .configure = &qed_sriov_configure, 4090 .set_mac = &qed_sriov_pf_set_mac, 4091 .set_vlan = &qed_sriov_pf_set_vlan, 4092 .get_config = &qed_get_vf_config, 4093 .set_link_state = &qed_set_vf_link_state, 4094 .set_spoof = &qed_spoof_configure, 4095 .set_rate = &qed_set_vf_rate, 4096 }; 4097