1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/etherdevice.h> 34 #include <linux/crc32.h> 35 #include <linux/vmalloc.h> 36 #include <linux/qed/qed_iov_if.h> 37 #include "qed_cxt.h" 38 #include "qed_hsi.h" 39 #include "qed_hw.h" 40 #include "qed_init_ops.h" 41 #include "qed_int.h" 42 #include "qed_mcp.h" 43 #include "qed_reg_addr.h" 44 #include "qed_sp.h" 45 #include "qed_sriov.h" 46 #include "qed_vf.h" 47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 48 u8 opcode, 49 __le16 echo, 50 union event_ring_data *data, u8 fw_return_code); 51 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid); 52 53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) 54 { 55 u8 legacy = 0; 56 57 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 58 ETH_HSI_VER_NO_PKT_LEN_TUNN) 59 legacy |= QED_QCID_LEGACY_VF_RX_PROD; 60 61 if (!(p_vf->acquire.vfdev_info.capabilities & 62 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 63 legacy |= QED_QCID_LEGACY_VF_CID; 64 65 return legacy; 66 } 67 68 /* IOV ramrods */ 69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 70 { 71 struct vf_start_ramrod_data *p_ramrod = NULL; 72 struct qed_spq_entry *p_ent = NULL; 73 struct qed_sp_init_data init_data; 74 int rc = -EINVAL; 75 u8 fp_minor; 76 77 /* Get SPQ entry */ 78 memset(&init_data, 0, sizeof(init_data)); 79 init_data.cid = qed_spq_get_cid(p_hwfn); 80 init_data.opaque_fid = p_vf->opaque_fid; 81 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 82 83 rc = qed_sp_init_request(p_hwfn, &p_ent, 84 COMMON_RAMROD_VF_START, 85 PROTOCOLID_COMMON, &init_data); 86 if (rc) 87 return rc; 88 89 p_ramrod = &p_ent->ramrod.vf_start; 90 91 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 92 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 93 94 switch (p_hwfn->hw_info.personality) { 95 case QED_PCI_ETH: 96 p_ramrod->personality = PERSONALITY_ETH; 97 break; 98 case QED_PCI_ETH_ROCE: 99 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 100 break; 101 default: 102 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 103 p_hwfn->hw_info.personality); 104 qed_sp_destroy_request(p_hwfn, p_ent); 105 return -EINVAL; 106 } 107 108 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 109 if (fp_minor > ETH_HSI_VER_MINOR && 110 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 111 DP_VERBOSE(p_hwfn, 112 QED_MSG_IOV, 113 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 114 p_vf->abs_vf_id, 115 ETH_HSI_VER_MAJOR, 116 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 117 fp_minor = ETH_HSI_VER_MINOR; 118 } 119 120 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 121 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 122 123 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 124 "VF[%d] - Starting using HSI %02x.%02x\n", 125 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 126 127 return qed_spq_post(p_hwfn, p_ent, NULL); 128 } 129 130 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 131 u32 concrete_vfid, u16 opaque_vfid) 132 { 133 struct vf_stop_ramrod_data *p_ramrod = NULL; 134 struct qed_spq_entry *p_ent = NULL; 135 struct qed_sp_init_data init_data; 136 int rc = -EINVAL; 137 138 /* Get SPQ entry */ 139 memset(&init_data, 0, sizeof(init_data)); 140 init_data.cid = qed_spq_get_cid(p_hwfn); 141 init_data.opaque_fid = opaque_vfid; 142 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 143 144 rc = qed_sp_init_request(p_hwfn, &p_ent, 145 COMMON_RAMROD_VF_STOP, 146 PROTOCOLID_COMMON, &init_data); 147 if (rc) 148 return rc; 149 150 p_ramrod = &p_ent->ramrod.vf_stop; 151 152 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 153 154 return qed_spq_post(p_hwfn, p_ent, NULL); 155 } 156 157 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 158 int rel_vf_id, 159 bool b_enabled_only, bool b_non_malicious) 160 { 161 if (!p_hwfn->pf_iov_info) { 162 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 163 return false; 164 } 165 166 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 167 (rel_vf_id < 0)) 168 return false; 169 170 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 171 b_enabled_only) 172 return false; 173 174 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 175 b_non_malicious) 176 return false; 177 178 return true; 179 } 180 181 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 182 u16 relative_vf_id, 183 bool b_enabled_only) 184 { 185 struct qed_vf_info *vf = NULL; 186 187 if (!p_hwfn->pf_iov_info) { 188 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 189 return NULL; 190 } 191 192 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 193 b_enabled_only, false)) 194 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 195 else 196 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 197 relative_vf_id); 198 199 return vf; 200 } 201 202 static struct qed_queue_cid * 203 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) 204 { 205 int i; 206 207 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 208 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) 209 return p_queue->cids[i].p_cid; 210 } 211 212 return NULL; 213 } 214 215 enum qed_iov_validate_q_mode { 216 QED_IOV_VALIDATE_Q_NA, 217 QED_IOV_VALIDATE_Q_ENABLE, 218 QED_IOV_VALIDATE_Q_DISABLE, 219 }; 220 221 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 222 struct qed_vf_info *p_vf, 223 u16 qid, 224 enum qed_iov_validate_q_mode mode, 225 bool b_is_tx) 226 { 227 int i; 228 229 if (mode == QED_IOV_VALIDATE_Q_NA) 230 return true; 231 232 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 233 struct qed_vf_queue_cid *p_qcid; 234 235 p_qcid = &p_vf->vf_queues[qid].cids[i]; 236 237 if (!p_qcid->p_cid) 238 continue; 239 240 if (p_qcid->b_is_tx != b_is_tx) 241 continue; 242 243 return mode == QED_IOV_VALIDATE_Q_ENABLE; 244 } 245 246 /* In case we haven't found any valid cid, then its disabled */ 247 return mode == QED_IOV_VALIDATE_Q_DISABLE; 248 } 249 250 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 251 struct qed_vf_info *p_vf, 252 u16 rx_qid, 253 enum qed_iov_validate_q_mode mode) 254 { 255 if (rx_qid >= p_vf->num_rxqs) { 256 DP_VERBOSE(p_hwfn, 257 QED_MSG_IOV, 258 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 259 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 260 return false; 261 } 262 263 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 264 } 265 266 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 267 struct qed_vf_info *p_vf, 268 u16 tx_qid, 269 enum qed_iov_validate_q_mode mode) 270 { 271 if (tx_qid >= p_vf->num_txqs) { 272 DP_VERBOSE(p_hwfn, 273 QED_MSG_IOV, 274 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 275 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 276 return false; 277 } 278 279 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 280 } 281 282 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 283 struct qed_vf_info *p_vf, u16 sb_idx) 284 { 285 int i; 286 287 for (i = 0; i < p_vf->num_sbs; i++) 288 if (p_vf->igu_sbs[i] == sb_idx) 289 return true; 290 291 DP_VERBOSE(p_hwfn, 292 QED_MSG_IOV, 293 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 294 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 295 296 return false; 297 } 298 299 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 300 struct qed_vf_info *p_vf) 301 { 302 u8 i; 303 304 for (i = 0; i < p_vf->num_rxqs; i++) 305 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 306 QED_IOV_VALIDATE_Q_ENABLE, 307 false)) 308 return true; 309 310 return false; 311 } 312 313 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 314 struct qed_vf_info *p_vf) 315 { 316 u8 i; 317 318 for (i = 0; i < p_vf->num_txqs; i++) 319 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 320 QED_IOV_VALIDATE_Q_ENABLE, 321 true)) 322 return true; 323 324 return false; 325 } 326 327 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 328 int vfid, struct qed_ptt *p_ptt) 329 { 330 struct qed_bulletin_content *p_bulletin; 331 int crc_size = sizeof(p_bulletin->crc); 332 struct qed_dmae_params params; 333 struct qed_vf_info *p_vf; 334 335 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 336 if (!p_vf) 337 return -EINVAL; 338 339 if (!p_vf->vf_bulletin) 340 return -EINVAL; 341 342 p_bulletin = p_vf->bulletin.p_virt; 343 344 /* Increment bulletin board version and compute crc */ 345 p_bulletin->version++; 346 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 347 p_vf->bulletin.size - crc_size); 348 349 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 350 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 351 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 352 353 /* propagate bulletin board via dmae to vm memory */ 354 memset(¶ms, 0, sizeof(params)); 355 params.flags = QED_DMAE_FLAG_VF_DST; 356 params.dst_vfid = p_vf->abs_vf_id; 357 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 358 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 359 ¶ms); 360 } 361 362 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 363 { 364 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 365 int pos = iov->pos; 366 367 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 368 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 369 370 pci_read_config_word(cdev->pdev, 371 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 372 pci_read_config_word(cdev->pdev, 373 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 374 375 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 376 if (iov->num_vfs) { 377 DP_VERBOSE(cdev, 378 QED_MSG_IOV, 379 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 380 iov->num_vfs = 0; 381 } 382 383 pci_read_config_word(cdev->pdev, 384 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 385 386 pci_read_config_word(cdev->pdev, 387 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 388 389 pci_read_config_word(cdev->pdev, 390 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 391 392 pci_read_config_dword(cdev->pdev, 393 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 394 395 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 396 397 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 398 399 DP_VERBOSE(cdev, 400 QED_MSG_IOV, 401 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 402 iov->nres, 403 iov->cap, 404 iov->ctrl, 405 iov->total_vfs, 406 iov->initial_vfs, 407 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 408 409 /* Some sanity checks */ 410 if (iov->num_vfs > NUM_OF_VFS(cdev) || 411 iov->total_vfs > NUM_OF_VFS(cdev)) { 412 /* This can happen only due to a bug. In this case we set 413 * num_vfs to zero to avoid memory corruption in the code that 414 * assumes max number of vfs 415 */ 416 DP_NOTICE(cdev, 417 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 418 iov->num_vfs); 419 420 iov->num_vfs = 0; 421 iov->total_vfs = 0; 422 } 423 424 return 0; 425 } 426 427 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 428 { 429 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 430 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 431 struct qed_bulletin_content *p_bulletin_virt; 432 dma_addr_t req_p, rply_p, bulletin_p; 433 union pfvf_tlvs *p_reply_virt_addr; 434 union vfpf_tlvs *p_req_virt_addr; 435 u8 idx = 0; 436 437 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 438 439 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 440 req_p = p_iov_info->mbx_msg_phys_addr; 441 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 442 rply_p = p_iov_info->mbx_reply_phys_addr; 443 p_bulletin_virt = p_iov_info->p_bulletins; 444 bulletin_p = p_iov_info->bulletins_phys; 445 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 446 DP_ERR(p_hwfn, 447 "qed_iov_setup_vfdb called without allocating mem first\n"); 448 return; 449 } 450 451 for (idx = 0; idx < p_iov->total_vfs; idx++) { 452 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 453 u32 concrete; 454 455 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 456 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 457 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 458 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 459 460 vf->state = VF_STOPPED; 461 vf->b_init = false; 462 463 vf->bulletin.phys = idx * 464 sizeof(struct qed_bulletin_content) + 465 bulletin_p; 466 vf->bulletin.p_virt = p_bulletin_virt + idx; 467 vf->bulletin.size = sizeof(struct qed_bulletin_content); 468 469 vf->relative_vf_id = idx; 470 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 471 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 472 vf->concrete_fid = concrete; 473 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 474 (vf->abs_vf_id << 8); 475 vf->vport_id = idx + 1; 476 477 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 478 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 479 } 480 } 481 482 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 483 { 484 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 485 void **p_v_addr; 486 u16 num_vfs = 0; 487 488 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 489 490 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 491 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 492 493 /* Allocate PF Mailbox buffer (per-VF) */ 494 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 495 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 496 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 497 p_iov_info->mbx_msg_size, 498 &p_iov_info->mbx_msg_phys_addr, 499 GFP_KERNEL); 500 if (!*p_v_addr) 501 return -ENOMEM; 502 503 /* Allocate PF Mailbox Reply buffer (per-VF) */ 504 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 505 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 506 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 507 p_iov_info->mbx_reply_size, 508 &p_iov_info->mbx_reply_phys_addr, 509 GFP_KERNEL); 510 if (!*p_v_addr) 511 return -ENOMEM; 512 513 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 514 num_vfs; 515 p_v_addr = &p_iov_info->p_bulletins; 516 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 517 p_iov_info->bulletins_size, 518 &p_iov_info->bulletins_phys, 519 GFP_KERNEL); 520 if (!*p_v_addr) 521 return -ENOMEM; 522 523 DP_VERBOSE(p_hwfn, 524 QED_MSG_IOV, 525 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 526 p_iov_info->mbx_msg_virt_addr, 527 (u64) p_iov_info->mbx_msg_phys_addr, 528 p_iov_info->mbx_reply_virt_addr, 529 (u64) p_iov_info->mbx_reply_phys_addr, 530 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 531 532 return 0; 533 } 534 535 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 536 { 537 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 538 539 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 540 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 541 p_iov_info->mbx_msg_size, 542 p_iov_info->mbx_msg_virt_addr, 543 p_iov_info->mbx_msg_phys_addr); 544 545 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 546 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 547 p_iov_info->mbx_reply_size, 548 p_iov_info->mbx_reply_virt_addr, 549 p_iov_info->mbx_reply_phys_addr); 550 551 if (p_iov_info->p_bulletins) 552 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 553 p_iov_info->bulletins_size, 554 p_iov_info->p_bulletins, 555 p_iov_info->bulletins_phys); 556 } 557 558 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 559 { 560 struct qed_pf_iov *p_sriov; 561 562 if (!IS_PF_SRIOV(p_hwfn)) { 563 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 564 "No SR-IOV - no need for IOV db\n"); 565 return 0; 566 } 567 568 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 569 if (!p_sriov) 570 return -ENOMEM; 571 572 p_hwfn->pf_iov_info = p_sriov; 573 574 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 575 qed_sriov_eqe_event); 576 577 return qed_iov_allocate_vfdb(p_hwfn); 578 } 579 580 void qed_iov_setup(struct qed_hwfn *p_hwfn) 581 { 582 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 583 return; 584 585 qed_iov_setup_vfdb(p_hwfn); 586 } 587 588 void qed_iov_free(struct qed_hwfn *p_hwfn) 589 { 590 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 591 592 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 593 qed_iov_free_vfdb(p_hwfn); 594 kfree(p_hwfn->pf_iov_info); 595 } 596 } 597 598 void qed_iov_free_hw_info(struct qed_dev *cdev) 599 { 600 kfree(cdev->p_iov_info); 601 cdev->p_iov_info = NULL; 602 } 603 604 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 605 { 606 struct qed_dev *cdev = p_hwfn->cdev; 607 int pos; 608 int rc; 609 610 if (IS_VF(p_hwfn->cdev)) 611 return 0; 612 613 /* Learn the PCI configuration */ 614 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 615 PCI_EXT_CAP_ID_SRIOV); 616 if (!pos) { 617 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 618 return 0; 619 } 620 621 /* Allocate a new struct for IOV information */ 622 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 623 if (!cdev->p_iov_info) 624 return -ENOMEM; 625 626 cdev->p_iov_info->pos = pos; 627 628 rc = qed_iov_pci_cfg_info(cdev); 629 if (rc) 630 return rc; 631 632 /* We want PF IOV to be synonemous with the existance of p_iov_info; 633 * In case the capability is published but there are no VFs, simply 634 * de-allocate the struct. 635 */ 636 if (!cdev->p_iov_info->total_vfs) { 637 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 638 "IOV capabilities, but no VFs are published\n"); 639 kfree(cdev->p_iov_info); 640 cdev->p_iov_info = NULL; 641 return 0; 642 } 643 644 /* First VF index based on offset is tricky: 645 * - If ARI is supported [likely], offset - (16 - pf_id) would 646 * provide the number for eng0. 2nd engine Vfs would begin 647 * after the first engine's VFs. 648 * - If !ARI, VFs would start on next device. 649 * so offset - (256 - pf_id) would provide the number. 650 * Utilize the fact that (256 - pf_id) is achieved only by later 651 * to differentiate between the two. 652 */ 653 654 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 655 u32 first = p_hwfn->cdev->p_iov_info->offset + 656 p_hwfn->abs_pf_id - 16; 657 658 cdev->p_iov_info->first_vf_in_pf = first; 659 660 if (QED_PATH_ID(p_hwfn)) 661 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 662 } else { 663 u32 first = p_hwfn->cdev->p_iov_info->offset + 664 p_hwfn->abs_pf_id - 256; 665 666 cdev->p_iov_info->first_vf_in_pf = first; 667 } 668 669 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 670 "First VF in hwfn 0x%08x\n", 671 cdev->p_iov_info->first_vf_in_pf); 672 673 return 0; 674 } 675 676 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 677 int vfid, bool b_fail_malicious) 678 { 679 /* Check PF supports sriov */ 680 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 681 !IS_PF_SRIOV_ALLOC(p_hwfn)) 682 return false; 683 684 /* Check VF validity */ 685 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 686 return false; 687 688 return true; 689 } 690 691 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 692 { 693 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 694 } 695 696 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 697 u16 rel_vf_id, u8 to_disable) 698 { 699 struct qed_vf_info *vf; 700 int i; 701 702 for_each_hwfn(cdev, i) { 703 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 704 705 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 706 if (!vf) 707 continue; 708 709 vf->to_disable = to_disable; 710 } 711 } 712 713 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 714 { 715 u16 i; 716 717 if (!IS_QED_SRIOV(cdev)) 718 return; 719 720 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 721 qed_iov_set_vf_to_disable(cdev, i, to_disable); 722 } 723 724 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 725 struct qed_ptt *p_ptt, u8 abs_vfid) 726 { 727 qed_wr(p_hwfn, p_ptt, 728 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 729 1 << (abs_vfid & 0x1f)); 730 } 731 732 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 733 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 734 { 735 int i; 736 737 /* Set VF masks and configuration - pretend */ 738 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 739 740 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 741 742 /* unpretend */ 743 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 744 745 /* iterate over all queues, clear sb consumer */ 746 for (i = 0; i < vf->num_sbs; i++) 747 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 748 vf->igu_sbs[i], 749 vf->opaque_fid, true); 750 } 751 752 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 753 struct qed_ptt *p_ptt, 754 struct qed_vf_info *vf, bool enable) 755 { 756 u32 igu_vf_conf; 757 758 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 759 760 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 761 762 if (enable) 763 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 764 else 765 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 766 767 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 768 769 /* unpretend */ 770 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 771 } 772 773 static int 774 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, 775 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) 776 { 777 u8 current_max = 0; 778 int i; 779 780 /* For AH onward, configuration is per-PF. Find maximum of all 781 * the currently enabled child VFs, and set the number to be that. 782 */ 783 if (!QED_IS_BB(p_hwfn->cdev)) { 784 qed_for_each_vf(p_hwfn, i) { 785 struct qed_vf_info *p_vf; 786 787 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); 788 if (!p_vf) 789 continue; 790 791 current_max = max_t(u8, current_max, p_vf->num_sbs); 792 } 793 } 794 795 if (num_sbs > current_max) 796 return qed_mcp_config_vf_msix(p_hwfn, p_ptt, 797 abs_vf_id, num_sbs); 798 799 return 0; 800 } 801 802 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 803 struct qed_ptt *p_ptt, 804 struct qed_vf_info *vf) 805 { 806 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 807 int rc; 808 809 /* It's possible VF was previously considered malicious - 810 * clear the indication even if we're only going to disable VF. 811 */ 812 vf->b_malicious = false; 813 814 if (vf->to_disable) 815 return 0; 816 817 DP_VERBOSE(p_hwfn, 818 QED_MSG_IOV, 819 "Enable internal access for vf %x [abs %x]\n", 820 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 821 822 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 823 824 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 825 826 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, 827 vf->abs_vf_id, vf->num_sbs); 828 if (rc) 829 return rc; 830 831 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 832 833 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 834 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 835 836 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 837 p_hwfn->hw_info.hw_mode); 838 839 /* unpretend */ 840 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 841 842 vf->state = VF_FREE; 843 844 return rc; 845 } 846 847 /** 848 * @brief qed_iov_config_perm_table - configure the permission 849 * zone table. 850 * In E4, queue zone permission table size is 320x9. There 851 * are 320 VF queues for single engine device (256 for dual 852 * engine device), and each entry has the following format: 853 * {Valid, VF[7:0]} 854 * @param p_hwfn 855 * @param p_ptt 856 * @param vf 857 * @param enable 858 */ 859 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 860 struct qed_ptt *p_ptt, 861 struct qed_vf_info *vf, u8 enable) 862 { 863 u32 reg_addr, val; 864 u16 qzone_id = 0; 865 int qid; 866 867 for (qid = 0; qid < vf->num_rxqs; qid++) { 868 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 869 &qzone_id); 870 871 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 872 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 873 qed_wr(p_hwfn, p_ptt, reg_addr, val); 874 } 875 } 876 877 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 878 struct qed_ptt *p_ptt, 879 struct qed_vf_info *vf) 880 { 881 /* Reset vf in IGU - interrupts are still disabled */ 882 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 883 884 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 885 886 /* Permission Table */ 887 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 888 } 889 890 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 891 struct qed_ptt *p_ptt, 892 struct qed_vf_info *vf, u16 num_rx_queues) 893 { 894 struct qed_igu_block *p_block; 895 struct cau_sb_entry sb_entry; 896 int qid = 0; 897 u32 val = 0; 898 899 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 900 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 901 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 902 903 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 904 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 905 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 906 907 for (qid = 0; qid < num_rx_queues; qid++) { 908 p_block = qed_get_igu_free_sb(p_hwfn, false); 909 vf->igu_sbs[qid] = p_block->igu_sb_id; 910 p_block->status &= ~QED_IGU_STATUS_FREE; 911 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 912 913 qed_wr(p_hwfn, p_ptt, 914 IGU_REG_MAPPING_MEMORY + 915 sizeof(u32) * p_block->igu_sb_id, val); 916 917 /* Configure igu sb in CAU which were marked valid */ 918 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 919 p_hwfn->rel_pf_id, vf->abs_vf_id, 1); 920 qed_dmae_host2grc(p_hwfn, p_ptt, 921 (u64)(uintptr_t)&sb_entry, 922 CAU_REG_SB_VAR_MEMORY + 923 p_block->igu_sb_id * sizeof(u64), 2, 0); 924 } 925 926 vf->num_sbs = (u8) num_rx_queues; 927 928 return vf->num_sbs; 929 } 930 931 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 932 struct qed_ptt *p_ptt, 933 struct qed_vf_info *vf) 934 { 935 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 936 int idx, igu_id; 937 u32 addr, val; 938 939 /* Invalidate igu CAM lines and mark them as free */ 940 for (idx = 0; idx < vf->num_sbs; idx++) { 941 igu_id = vf->igu_sbs[idx]; 942 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 943 944 val = qed_rd(p_hwfn, p_ptt, addr); 945 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 946 qed_wr(p_hwfn, p_ptt, addr, val); 947 948 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; 949 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 950 } 951 952 vf->num_sbs = 0; 953 } 954 955 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 956 u16 vfid, 957 struct qed_mcp_link_params *params, 958 struct qed_mcp_link_state *link, 959 struct qed_mcp_link_capabilities *p_caps) 960 { 961 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 962 vfid, 963 false); 964 struct qed_bulletin_content *p_bulletin; 965 966 if (!p_vf) 967 return; 968 969 p_bulletin = p_vf->bulletin.p_virt; 970 p_bulletin->req_autoneg = params->speed.autoneg; 971 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 972 p_bulletin->req_forced_speed = params->speed.forced_speed; 973 p_bulletin->req_autoneg_pause = params->pause.autoneg; 974 p_bulletin->req_forced_rx = params->pause.forced_rx; 975 p_bulletin->req_forced_tx = params->pause.forced_tx; 976 p_bulletin->req_loopback = params->loopback_mode; 977 978 p_bulletin->link_up = link->link_up; 979 p_bulletin->speed = link->speed; 980 p_bulletin->full_duplex = link->full_duplex; 981 p_bulletin->autoneg = link->an; 982 p_bulletin->autoneg_complete = link->an_complete; 983 p_bulletin->parallel_detection = link->parallel_detection; 984 p_bulletin->pfc_enabled = link->pfc_enabled; 985 p_bulletin->partner_adv_speed = link->partner_adv_speed; 986 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 987 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 988 p_bulletin->partner_adv_pause = link->partner_adv_pause; 989 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 990 991 p_bulletin->capability_speed = p_caps->speed_capabilities; 992 } 993 994 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 995 struct qed_ptt *p_ptt, 996 struct qed_iov_vf_init_params *p_params) 997 { 998 struct qed_mcp_link_capabilities link_caps; 999 struct qed_mcp_link_params link_params; 1000 struct qed_mcp_link_state link_state; 1001 u8 num_of_vf_avaiable_chains = 0; 1002 struct qed_vf_info *vf = NULL; 1003 u16 qid, num_irqs; 1004 int rc = 0; 1005 u32 cids; 1006 u8 i; 1007 1008 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 1009 if (!vf) { 1010 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 1011 return -EINVAL; 1012 } 1013 1014 if (vf->b_init) { 1015 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 1016 p_params->rel_vf_id); 1017 return -EINVAL; 1018 } 1019 1020 /* Perform sanity checking on the requested queue_id */ 1021 for (i = 0; i < p_params->num_queues; i++) { 1022 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 1023 u16 max_vf_qzone = min_vf_qzone + 1024 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 1025 1026 qid = p_params->req_rx_queue[i]; 1027 if (qid < min_vf_qzone || qid > max_vf_qzone) { 1028 DP_NOTICE(p_hwfn, 1029 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 1030 qid, 1031 p_params->rel_vf_id, 1032 min_vf_qzone, max_vf_qzone); 1033 return -EINVAL; 1034 } 1035 1036 qid = p_params->req_tx_queue[i]; 1037 if (qid > max_vf_qzone) { 1038 DP_NOTICE(p_hwfn, 1039 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 1040 qid, p_params->rel_vf_id, max_vf_qzone); 1041 return -EINVAL; 1042 } 1043 1044 /* If client *really* wants, Tx qid can be shared with PF */ 1045 if (qid < min_vf_qzone) 1046 DP_VERBOSE(p_hwfn, 1047 QED_MSG_IOV, 1048 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1049 p_params->rel_vf_id, qid, i); 1050 } 1051 1052 /* Limit number of queues according to number of CIDs */ 1053 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1054 DP_VERBOSE(p_hwfn, 1055 QED_MSG_IOV, 1056 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1057 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1058 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1059 1060 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1061 p_ptt, 1062 vf, num_irqs); 1063 if (!num_of_vf_avaiable_chains) { 1064 DP_ERR(p_hwfn, "no available igu sbs\n"); 1065 return -ENOMEM; 1066 } 1067 1068 /* Choose queue number and index ranges */ 1069 vf->num_rxqs = num_of_vf_avaiable_chains; 1070 vf->num_txqs = num_of_vf_avaiable_chains; 1071 1072 for (i = 0; i < vf->num_rxqs; i++) { 1073 struct qed_vf_queue *p_queue = &vf->vf_queues[i]; 1074 1075 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1076 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1077 1078 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1079 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1080 vf->relative_vf_id, i, vf->igu_sbs[i], 1081 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1082 } 1083 1084 /* Update the link configuration in bulletin */ 1085 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1086 sizeof(link_params)); 1087 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1088 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1089 sizeof(link_caps)); 1090 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1091 &link_params, &link_state, &link_caps); 1092 1093 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1094 if (!rc) { 1095 vf->b_init = true; 1096 1097 if (IS_LEAD_HWFN(p_hwfn)) 1098 p_hwfn->cdev->p_iov_info->num_vfs++; 1099 } 1100 1101 return rc; 1102 } 1103 1104 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1105 struct qed_ptt *p_ptt, u16 rel_vf_id) 1106 { 1107 struct qed_mcp_link_capabilities caps; 1108 struct qed_mcp_link_params params; 1109 struct qed_mcp_link_state link; 1110 struct qed_vf_info *vf = NULL; 1111 1112 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1113 if (!vf) { 1114 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1115 return -EINVAL; 1116 } 1117 1118 if (vf->bulletin.p_virt) 1119 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1120 1121 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1122 1123 /* Get the link configuration back in bulletin so 1124 * that when VFs are re-enabled they get the actual 1125 * link configuration. 1126 */ 1127 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1128 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1129 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1130 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1131 1132 /* Forget the VF's acquisition message */ 1133 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1134 1135 /* disablng interrupts and resetting permission table was done during 1136 * vf-close, however, we could get here without going through vf_close 1137 */ 1138 /* Disable Interrupts for VF */ 1139 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1140 1141 /* Reset Permission table */ 1142 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1143 1144 vf->num_rxqs = 0; 1145 vf->num_txqs = 0; 1146 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1147 1148 if (vf->b_init) { 1149 vf->b_init = false; 1150 1151 if (IS_LEAD_HWFN(p_hwfn)) 1152 p_hwfn->cdev->p_iov_info->num_vfs--; 1153 } 1154 1155 return 0; 1156 } 1157 1158 static bool qed_iov_tlv_supported(u16 tlvtype) 1159 { 1160 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1161 } 1162 1163 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1164 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1165 { 1166 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1167 1168 tl->type = type; 1169 tl->length = length; 1170 1171 /* Offset should keep pointing to next TLV (the end of the last) */ 1172 *offset += length; 1173 1174 /* Return a pointer to the start of the added tlv */ 1175 return *offset - length; 1176 } 1177 1178 /* list the types and lengths of the tlvs on the buffer */ 1179 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1180 { 1181 u16 i = 1, total_length = 0; 1182 struct channel_tlv *tlv; 1183 1184 do { 1185 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1186 1187 /* output tlv */ 1188 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1189 "TLV number %d: type %d, length %d\n", 1190 i, tlv->type, tlv->length); 1191 1192 if (tlv->type == CHANNEL_TLV_LIST_END) 1193 return; 1194 1195 /* Validate entry - protect against malicious VFs */ 1196 if (!tlv->length) { 1197 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1198 return; 1199 } 1200 1201 total_length += tlv->length; 1202 1203 if (total_length >= sizeof(struct tlv_buffer_size)) { 1204 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1205 return; 1206 } 1207 1208 i++; 1209 } while (1); 1210 } 1211 1212 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1213 struct qed_ptt *p_ptt, 1214 struct qed_vf_info *p_vf, 1215 u16 length, u8 status) 1216 { 1217 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1218 struct qed_dmae_params params; 1219 u8 eng_vf_id; 1220 1221 mbx->reply_virt->default_resp.hdr.status = status; 1222 1223 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1224 1225 eng_vf_id = p_vf->abs_vf_id; 1226 1227 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 1228 params.flags = QED_DMAE_FLAG_VF_DST; 1229 params.dst_vfid = eng_vf_id; 1230 1231 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1232 mbx->req_virt->first_tlv.reply_address + 1233 sizeof(u64), 1234 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1235 ¶ms); 1236 1237 /* Once PF copies the rc to the VF, the latter can continue 1238 * and send an additional message. So we have to make sure the 1239 * channel would be re-set to ready prior to that. 1240 */ 1241 REG_WR(p_hwfn, 1242 GTT_BAR0_MAP_REG_USDM_RAM + 1243 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1244 1245 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1246 mbx->req_virt->first_tlv.reply_address, 1247 sizeof(u64) / 4, ¶ms); 1248 } 1249 1250 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1251 enum qed_iov_vport_update_flag flag) 1252 { 1253 switch (flag) { 1254 case QED_IOV_VP_UPDATE_ACTIVATE: 1255 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1256 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1257 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1258 case QED_IOV_VP_UPDATE_TX_SWITCH: 1259 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1260 case QED_IOV_VP_UPDATE_MCAST: 1261 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1262 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1263 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1264 case QED_IOV_VP_UPDATE_RSS: 1265 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1266 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1267 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1268 case QED_IOV_VP_UPDATE_SGE_TPA: 1269 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1270 default: 1271 return 0; 1272 } 1273 } 1274 1275 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1276 struct qed_vf_info *p_vf, 1277 struct qed_iov_vf_mbx *p_mbx, 1278 u8 status, 1279 u16 tlvs_mask, u16 tlvs_accepted) 1280 { 1281 struct pfvf_def_resp_tlv *resp; 1282 u16 size, total_len, i; 1283 1284 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1285 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1286 size = sizeof(struct pfvf_def_resp_tlv); 1287 total_len = size; 1288 1289 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1290 1291 /* Prepare response for all extended tlvs if they are found by PF */ 1292 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1293 if (!(tlvs_mask & BIT(i))) 1294 continue; 1295 1296 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1297 qed_iov_vport_to_tlv(p_hwfn, i), size); 1298 1299 if (tlvs_accepted & BIT(i)) 1300 resp->hdr.status = status; 1301 else 1302 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1303 1304 DP_VERBOSE(p_hwfn, 1305 QED_MSG_IOV, 1306 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1307 p_vf->relative_vf_id, 1308 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1309 1310 total_len += size; 1311 } 1312 1313 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1314 sizeof(struct channel_list_end_tlv)); 1315 1316 return total_len; 1317 } 1318 1319 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1320 struct qed_ptt *p_ptt, 1321 struct qed_vf_info *vf_info, 1322 u16 type, u16 length, u8 status) 1323 { 1324 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1325 1326 mbx->offset = (u8 *)mbx->reply_virt; 1327 1328 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1329 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1330 sizeof(struct channel_list_end_tlv)); 1331 1332 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1333 } 1334 1335 static struct 1336 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1337 u16 relative_vf_id, 1338 bool b_enabled_only) 1339 { 1340 struct qed_vf_info *vf = NULL; 1341 1342 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1343 if (!vf) 1344 return NULL; 1345 1346 return &vf->p_vf_info; 1347 } 1348 1349 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1350 { 1351 struct qed_public_vf_info *vf_info; 1352 1353 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1354 1355 if (!vf_info) 1356 return; 1357 1358 /* Clear the VF mac */ 1359 eth_zero_addr(vf_info->mac); 1360 1361 vf_info->rx_accept_mode = 0; 1362 vf_info->tx_accept_mode = 0; 1363 } 1364 1365 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1366 struct qed_vf_info *p_vf) 1367 { 1368 u32 i, j; 1369 1370 p_vf->vf_bulletin = 0; 1371 p_vf->vport_instance = 0; 1372 p_vf->configured_features = 0; 1373 1374 /* If VF previously requested less resources, go back to default */ 1375 p_vf->num_rxqs = p_vf->num_sbs; 1376 p_vf->num_txqs = p_vf->num_sbs; 1377 1378 p_vf->num_active_rxqs = 0; 1379 1380 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1381 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1382 1383 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1384 if (!p_queue->cids[j].p_cid) 1385 continue; 1386 1387 qed_eth_queue_cid_release(p_hwfn, 1388 p_queue->cids[j].p_cid); 1389 p_queue->cids[j].p_cid = NULL; 1390 } 1391 } 1392 1393 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1394 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1395 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1396 } 1397 1398 /* Returns either 0, or log(size) */ 1399 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, 1400 struct qed_ptt *p_ptt) 1401 { 1402 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1403 1404 if (val) 1405 return val + 11; 1406 return 0; 1407 } 1408 1409 static void 1410 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, 1411 struct qed_ptt *p_ptt, 1412 struct qed_vf_info *p_vf, 1413 struct vf_pf_resc_request *p_req, 1414 struct pf_vf_resc *p_resp) 1415 { 1416 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1417 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - 1418 qed_db_addr_vf(0, DQ_DEMS_LEGACY); 1419 u32 bar_size; 1420 1421 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); 1422 1423 /* If VF didn't bother asking for QIDs than don't bother limiting 1424 * number of CIDs. The VF doesn't care about the number, and this 1425 * has the likely result of causing an additional acquisition. 1426 */ 1427 if (!(p_vf->acquire.vfdev_info.capabilities & 1428 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1429 return; 1430 1431 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1432 * that would make sure doorbells for all CIDs fall within the bar. 1433 * If it doesn't, make sure regview window is sufficient. 1434 */ 1435 if (p_vf->acquire.vfdev_info.capabilities & 1436 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1437 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1438 if (bar_size) 1439 bar_size = 1 << bar_size; 1440 1441 if (p_hwfn->cdev->num_hwfns > 1) 1442 bar_size /= 2; 1443 } else { 1444 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1445 } 1446 1447 if (bar_size / db_size < 256) 1448 p_resp->num_cids = min_t(u8, p_resp->num_cids, 1449 (u8)(bar_size / db_size)); 1450 } 1451 1452 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1453 struct qed_ptt *p_ptt, 1454 struct qed_vf_info *p_vf, 1455 struct vf_pf_resc_request *p_req, 1456 struct pf_vf_resc *p_resp) 1457 { 1458 u8 i; 1459 1460 /* Queue related information */ 1461 p_resp->num_rxqs = p_vf->num_rxqs; 1462 p_resp->num_txqs = p_vf->num_txqs; 1463 p_resp->num_sbs = p_vf->num_sbs; 1464 1465 for (i = 0; i < p_resp->num_sbs; i++) { 1466 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1467 p_resp->hw_sbs[i].sb_qid = 0; 1468 } 1469 1470 /* These fields are filled for backward compatibility. 1471 * Unused by modern vfs. 1472 */ 1473 for (i = 0; i < p_resp->num_rxqs; i++) { 1474 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1475 (u16 *)&p_resp->hw_qid[i]); 1476 p_resp->cid[i] = i; 1477 } 1478 1479 /* Filter related information */ 1480 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1481 p_req->num_mac_filters); 1482 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1483 p_req->num_vlan_filters); 1484 1485 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1486 1487 /* This isn't really needed/enforced, but some legacy VFs might depend 1488 * on the correct filling of this field. 1489 */ 1490 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1491 1492 /* Validate sufficient resources for VF */ 1493 if (p_resp->num_rxqs < p_req->num_rxqs || 1494 p_resp->num_txqs < p_req->num_txqs || 1495 p_resp->num_sbs < p_req->num_sbs || 1496 p_resp->num_mac_filters < p_req->num_mac_filters || 1497 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1498 p_resp->num_mc_filters < p_req->num_mc_filters || 1499 p_resp->num_cids < p_req->num_cids) { 1500 DP_VERBOSE(p_hwfn, 1501 QED_MSG_IOV, 1502 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1503 p_vf->abs_vf_id, 1504 p_req->num_rxqs, 1505 p_resp->num_rxqs, 1506 p_req->num_rxqs, 1507 p_resp->num_txqs, 1508 p_req->num_sbs, 1509 p_resp->num_sbs, 1510 p_req->num_mac_filters, 1511 p_resp->num_mac_filters, 1512 p_req->num_vlan_filters, 1513 p_resp->num_vlan_filters, 1514 p_req->num_mc_filters, 1515 p_resp->num_mc_filters, 1516 p_req->num_cids, p_resp->num_cids); 1517 1518 /* Some legacy OSes are incapable of correctly handling this 1519 * failure. 1520 */ 1521 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1522 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1523 (p_vf->acquire.vfdev_info.os_type == 1524 VFPF_ACQUIRE_OS_WINDOWS)) 1525 return PFVF_STATUS_SUCCESS; 1526 1527 return PFVF_STATUS_NO_RESOURCE; 1528 } 1529 1530 return PFVF_STATUS_SUCCESS; 1531 } 1532 1533 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1534 struct pfvf_stats_info *p_stats) 1535 { 1536 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1537 offsetof(struct mstorm_vf_zone, 1538 non_trigger.eth_queue_stat); 1539 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1540 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1541 offsetof(struct ustorm_vf_zone, 1542 non_trigger.eth_queue_stat); 1543 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1544 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1545 offsetof(struct pstorm_vf_zone, 1546 non_trigger.eth_queue_stat); 1547 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1548 p_stats->tstats.address = 0; 1549 p_stats->tstats.len = 0; 1550 } 1551 1552 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1553 struct qed_ptt *p_ptt, 1554 struct qed_vf_info *vf) 1555 { 1556 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1557 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1558 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1559 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1560 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1561 struct pf_vf_resc *resc = &resp->resc; 1562 int rc; 1563 1564 memset(resp, 0, sizeof(*resp)); 1565 1566 /* Write the PF version so that VF would know which version 1567 * is supported - might be later overriden. This guarantees that 1568 * VF could recognize legacy PF based on lack of versions in reply. 1569 */ 1570 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1571 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1572 1573 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1574 DP_VERBOSE(p_hwfn, 1575 QED_MSG_IOV, 1576 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1577 vf->abs_vf_id, vf->state); 1578 goto out; 1579 } 1580 1581 /* Validate FW compatibility */ 1582 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1583 if (req->vfdev_info.capabilities & 1584 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1585 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1586 1587 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1588 "VF[%d] is pre-fastpath HSI\n", 1589 vf->abs_vf_id); 1590 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1591 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1592 } else { 1593 DP_INFO(p_hwfn, 1594 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1595 vf->abs_vf_id, 1596 req->vfdev_info.eth_fp_hsi_major, 1597 req->vfdev_info.eth_fp_hsi_minor, 1598 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1599 1600 goto out; 1601 } 1602 } 1603 1604 /* On 100g PFs, prevent old VFs from loading */ 1605 if ((p_hwfn->cdev->num_hwfns > 1) && 1606 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1607 DP_INFO(p_hwfn, 1608 "VF[%d] is running an old driver that doesn't support 100g\n", 1609 vf->abs_vf_id); 1610 goto out; 1611 } 1612 1613 /* Store the acquire message */ 1614 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1615 1616 vf->opaque_fid = req->vfdev_info.opaque_fid; 1617 1618 vf->vf_bulletin = req->bulletin_addr; 1619 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1620 vf->bulletin.size : req->bulletin_size; 1621 1622 /* fill in pfdev info */ 1623 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1624 pfdev_info->db_size = 0; 1625 pfdev_info->indices_per_sb = PIS_PER_SB_E4; 1626 1627 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1628 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1629 if (p_hwfn->cdev->num_hwfns > 1) 1630 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1631 1632 /* Share our ability to use multiple queue-ids only with VFs 1633 * that request it. 1634 */ 1635 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1636 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1637 1638 /* Share the sizes of the bars with VF */ 1639 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1640 1641 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1642 1643 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1644 1645 pfdev_info->fw_major = FW_MAJOR_VERSION; 1646 pfdev_info->fw_minor = FW_MINOR_VERSION; 1647 pfdev_info->fw_rev = FW_REVISION_VERSION; 1648 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1649 1650 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1651 * this field. 1652 */ 1653 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1654 req->vfdev_info.eth_fp_hsi_minor); 1655 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1656 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1657 1658 pfdev_info->dev_type = p_hwfn->cdev->type; 1659 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1660 1661 /* Fill resources available to VF; Make sure there are enough to 1662 * satisfy the VF's request. 1663 */ 1664 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1665 &req->resc_request, resc); 1666 if (vfpf_status != PFVF_STATUS_SUCCESS) 1667 goto out; 1668 1669 /* Start the VF in FW */ 1670 rc = qed_sp_vf_start(p_hwfn, vf); 1671 if (rc) { 1672 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1673 vfpf_status = PFVF_STATUS_FAILURE; 1674 goto out; 1675 } 1676 1677 /* Fill agreed size of bulletin board in response */ 1678 resp->bulletin_size = vf->bulletin.size; 1679 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1680 1681 DP_VERBOSE(p_hwfn, 1682 QED_MSG_IOV, 1683 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1684 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1685 vf->abs_vf_id, 1686 resp->pfdev_info.chip_num, 1687 resp->pfdev_info.db_size, 1688 resp->pfdev_info.indices_per_sb, 1689 resp->pfdev_info.capabilities, 1690 resc->num_rxqs, 1691 resc->num_txqs, 1692 resc->num_sbs, 1693 resc->num_mac_filters, 1694 resc->num_vlan_filters); 1695 vf->state = VF_ACQUIRED; 1696 1697 /* Prepare Response */ 1698 out: 1699 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1700 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1701 } 1702 1703 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1704 struct qed_vf_info *p_vf, bool val) 1705 { 1706 struct qed_sp_vport_update_params params; 1707 int rc; 1708 1709 if (val == p_vf->spoof_chk) { 1710 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1711 "Spoofchk value[%d] is already configured\n", val); 1712 return 0; 1713 } 1714 1715 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1716 params.opaque_fid = p_vf->opaque_fid; 1717 params.vport_id = p_vf->vport_id; 1718 params.update_anti_spoofing_en_flg = 1; 1719 params.anti_spoofing_en = val; 1720 1721 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1722 if (!rc) { 1723 p_vf->spoof_chk = val; 1724 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1725 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1726 "Spoofchk val[%d] configured\n", val); 1727 } else { 1728 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1729 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1730 val, p_vf->relative_vf_id); 1731 } 1732 1733 return rc; 1734 } 1735 1736 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1737 struct qed_vf_info *p_vf) 1738 { 1739 struct qed_filter_ucast filter; 1740 int rc = 0; 1741 int i; 1742 1743 memset(&filter, 0, sizeof(filter)); 1744 filter.is_rx_filter = 1; 1745 filter.is_tx_filter = 1; 1746 filter.vport_to_add_to = p_vf->vport_id; 1747 filter.opcode = QED_FILTER_ADD; 1748 1749 /* Reconfigure vlans */ 1750 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1751 if (!p_vf->shadow_config.vlans[i].used) 1752 continue; 1753 1754 filter.type = QED_FILTER_VLAN; 1755 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1756 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1757 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1758 filter.vlan, p_vf->relative_vf_id); 1759 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1760 &filter, QED_SPQ_MODE_CB, NULL); 1761 if (rc) { 1762 DP_NOTICE(p_hwfn, 1763 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1764 filter.vlan, p_vf->relative_vf_id); 1765 break; 1766 } 1767 } 1768 1769 return rc; 1770 } 1771 1772 static int 1773 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1774 struct qed_vf_info *p_vf, u64 events) 1775 { 1776 int rc = 0; 1777 1778 if ((events & BIT(VLAN_ADDR_FORCED)) && 1779 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1780 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1781 1782 return rc; 1783 } 1784 1785 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1786 struct qed_vf_info *p_vf, u64 events) 1787 { 1788 int rc = 0; 1789 struct qed_filter_ucast filter; 1790 1791 if (!p_vf->vport_instance) 1792 return -EINVAL; 1793 1794 if ((events & BIT(MAC_ADDR_FORCED)) || 1795 p_vf->p_vf_info.is_trusted_configured) { 1796 /* Since there's no way [currently] of removing the MAC, 1797 * we can always assume this means we need to force it. 1798 */ 1799 memset(&filter, 0, sizeof(filter)); 1800 filter.type = QED_FILTER_MAC; 1801 filter.opcode = QED_FILTER_REPLACE; 1802 filter.is_rx_filter = 1; 1803 filter.is_tx_filter = 1; 1804 filter.vport_to_add_to = p_vf->vport_id; 1805 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1806 1807 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1808 &filter, QED_SPQ_MODE_CB, NULL); 1809 if (rc) { 1810 DP_NOTICE(p_hwfn, 1811 "PF failed to configure MAC for VF\n"); 1812 return rc; 1813 } 1814 if (p_vf->p_vf_info.is_trusted_configured) 1815 p_vf->configured_features |= 1816 BIT(VFPF_BULLETIN_MAC_ADDR); 1817 else 1818 p_vf->configured_features |= 1819 BIT(MAC_ADDR_FORCED); 1820 } 1821 1822 if (events & BIT(VLAN_ADDR_FORCED)) { 1823 struct qed_sp_vport_update_params vport_update; 1824 u8 removal; 1825 int i; 1826 1827 memset(&filter, 0, sizeof(filter)); 1828 filter.type = QED_FILTER_VLAN; 1829 filter.is_rx_filter = 1; 1830 filter.is_tx_filter = 1; 1831 filter.vport_to_add_to = p_vf->vport_id; 1832 filter.vlan = p_vf->bulletin.p_virt->pvid; 1833 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1834 QED_FILTER_FLUSH; 1835 1836 /* Send the ramrod */ 1837 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1838 &filter, QED_SPQ_MODE_CB, NULL); 1839 if (rc) { 1840 DP_NOTICE(p_hwfn, 1841 "PF failed to configure VLAN for VF\n"); 1842 return rc; 1843 } 1844 1845 /* Update the default-vlan & silent vlan stripping */ 1846 memset(&vport_update, 0, sizeof(vport_update)); 1847 vport_update.opaque_fid = p_vf->opaque_fid; 1848 vport_update.vport_id = p_vf->vport_id; 1849 vport_update.update_default_vlan_enable_flg = 1; 1850 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1851 vport_update.update_default_vlan_flg = 1; 1852 vport_update.default_vlan = filter.vlan; 1853 1854 vport_update.update_inner_vlan_removal_flg = 1; 1855 removal = filter.vlan ? 1 1856 : p_vf->shadow_config.inner_vlan_removal; 1857 vport_update.inner_vlan_removal_flg = removal; 1858 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1859 rc = qed_sp_vport_update(p_hwfn, 1860 &vport_update, 1861 QED_SPQ_MODE_EBLOCK, NULL); 1862 if (rc) { 1863 DP_NOTICE(p_hwfn, 1864 "PF failed to configure VF vport for vlan\n"); 1865 return rc; 1866 } 1867 1868 /* Update all the Rx queues */ 1869 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1870 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1871 struct qed_queue_cid *p_cid = NULL; 1872 1873 /* There can be at most 1 Rx queue on qzone. Find it */ 1874 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 1875 if (!p_cid) 1876 continue; 1877 1878 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1879 (void **)&p_cid, 1880 1, 0, 1, 1881 QED_SPQ_MODE_EBLOCK, 1882 NULL); 1883 if (rc) { 1884 DP_NOTICE(p_hwfn, 1885 "Failed to send Rx update fo queue[0x%04x]\n", 1886 p_cid->rel.queue_id); 1887 return rc; 1888 } 1889 } 1890 1891 if (filter.vlan) 1892 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1893 else 1894 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1895 } 1896 1897 /* If forced features are terminated, we need to configure the shadow 1898 * configuration back again. 1899 */ 1900 if (events) 1901 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1902 1903 return rc; 1904 } 1905 1906 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1907 struct qed_ptt *p_ptt, 1908 struct qed_vf_info *vf) 1909 { 1910 struct qed_sp_vport_start_params params = { 0 }; 1911 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1912 struct vfpf_vport_start_tlv *start; 1913 u8 status = PFVF_STATUS_SUCCESS; 1914 struct qed_vf_info *vf_info; 1915 u64 *p_bitmap; 1916 int sb_id; 1917 int rc; 1918 1919 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1920 if (!vf_info) { 1921 DP_NOTICE(p_hwfn->cdev, 1922 "Failed to get VF info, invalid vfid [%d]\n", 1923 vf->relative_vf_id); 1924 return; 1925 } 1926 1927 vf->state = VF_ENABLED; 1928 start = &mbx->req_virt->start_vport; 1929 1930 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1931 1932 /* Initialize Status block in CAU */ 1933 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1934 if (!start->sb_addr[sb_id]) { 1935 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1936 "VF[%d] did not fill the address of SB %d\n", 1937 vf->relative_vf_id, sb_id); 1938 break; 1939 } 1940 1941 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1942 start->sb_addr[sb_id], 1943 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1944 } 1945 1946 vf->mtu = start->mtu; 1947 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1948 1949 /* Take into consideration configuration forced by hypervisor; 1950 * If none is configured, use the supplied VF values [for old 1951 * vfs that would still be fine, since they passed '0' as padding]. 1952 */ 1953 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1954 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1955 u8 vf_req = start->only_untagged; 1956 1957 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1958 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1959 } 1960 1961 params.tpa_mode = start->tpa_mode; 1962 params.remove_inner_vlan = start->inner_vlan_removal; 1963 params.tx_switching = true; 1964 1965 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1966 params.drop_ttl0 = false; 1967 params.concrete_fid = vf->concrete_fid; 1968 params.opaque_fid = vf->opaque_fid; 1969 params.vport_id = vf->vport_id; 1970 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1971 params.mtu = vf->mtu; 1972 1973 /* Non trusted VFs should enable control frame filtering */ 1974 params.check_mac = !vf->p_vf_info.is_trusted_configured; 1975 1976 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1977 if (rc) { 1978 DP_ERR(p_hwfn, 1979 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1980 status = PFVF_STATUS_FAILURE; 1981 } else { 1982 vf->vport_instance++; 1983 1984 /* Force configuration if needed on the newly opened vport */ 1985 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1986 1987 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1988 } 1989 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1990 sizeof(struct pfvf_def_resp_tlv), status); 1991 } 1992 1993 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1994 struct qed_ptt *p_ptt, 1995 struct qed_vf_info *vf) 1996 { 1997 u8 status = PFVF_STATUS_SUCCESS; 1998 int rc; 1999 2000 vf->vport_instance--; 2001 vf->spoof_chk = false; 2002 2003 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 2004 (qed_iov_validate_active_txq(p_hwfn, vf))) { 2005 vf->b_malicious = true; 2006 DP_NOTICE(p_hwfn, 2007 "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n", 2008 vf->abs_vf_id); 2009 status = PFVF_STATUS_MALICIOUS; 2010 goto out; 2011 } 2012 2013 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 2014 if (rc) { 2015 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 2016 rc); 2017 status = PFVF_STATUS_FAILURE; 2018 } 2019 2020 /* Forget the configuration on the vport */ 2021 vf->configured_features = 0; 2022 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2023 2024 out: 2025 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2026 sizeof(struct pfvf_def_resp_tlv), status); 2027 } 2028 2029 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 2030 struct qed_ptt *p_ptt, 2031 struct qed_vf_info *vf, 2032 u8 status, bool b_legacy) 2033 { 2034 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2035 struct pfvf_start_queue_resp_tlv *p_tlv; 2036 struct vfpf_start_rxq_tlv *req; 2037 u16 length; 2038 2039 mbx->offset = (u8 *)mbx->reply_virt; 2040 2041 /* Taking a bigger struct instead of adding a TLV to list was a 2042 * mistake, but one which we're now stuck with, as some older 2043 * clients assume the size of the previous response. 2044 */ 2045 if (!b_legacy) 2046 length = sizeof(*p_tlv); 2047 else 2048 length = sizeof(struct pfvf_def_resp_tlv); 2049 2050 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 2051 length); 2052 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2053 sizeof(struct channel_list_end_tlv)); 2054 2055 /* Update the TLV with the response */ 2056 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2057 req = &mbx->req_virt->start_rxq; 2058 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2059 offsetof(struct mstorm_vf_zone, 2060 non_trigger.eth_rx_queue_producers) + 2061 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2062 } 2063 2064 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2065 } 2066 2067 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, 2068 struct qed_vf_info *p_vf, bool b_is_tx) 2069 { 2070 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2071 struct vfpf_qid_tlv *p_qid_tlv; 2072 2073 /* Search for the qid if the VF published its going to provide it */ 2074 if (!(p_vf->acquire.vfdev_info.capabilities & 2075 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2076 if (b_is_tx) 2077 return QED_IOV_LEGACY_QID_TX; 2078 else 2079 return QED_IOV_LEGACY_QID_RX; 2080 } 2081 2082 p_qid_tlv = (struct vfpf_qid_tlv *) 2083 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2084 CHANNEL_TLV_QID); 2085 if (!p_qid_tlv) { 2086 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2087 "VF[%2x]: Failed to provide qid\n", 2088 p_vf->relative_vf_id); 2089 2090 return QED_IOV_QID_INVALID; 2091 } 2092 2093 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2094 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2095 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2096 p_vf->relative_vf_id, p_qid_tlv->qid); 2097 return QED_IOV_QID_INVALID; 2098 } 2099 2100 return p_qid_tlv->qid; 2101 } 2102 2103 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 2104 struct qed_ptt *p_ptt, 2105 struct qed_vf_info *vf) 2106 { 2107 struct qed_queue_start_common_params params; 2108 struct qed_queue_cid_vf_params vf_params; 2109 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2110 u8 status = PFVF_STATUS_NO_RESOURCE; 2111 u8 qid_usage_idx, vf_legacy = 0; 2112 struct vfpf_start_rxq_tlv *req; 2113 struct qed_vf_queue *p_queue; 2114 struct qed_queue_cid *p_cid; 2115 struct qed_sb_info sb_dummy; 2116 int rc; 2117 2118 req = &mbx->req_virt->start_rxq; 2119 2120 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2121 QED_IOV_VALIDATE_Q_DISABLE) || 2122 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2123 goto out; 2124 2125 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2126 if (qid_usage_idx == QED_IOV_QID_INVALID) 2127 goto out; 2128 2129 p_queue = &vf->vf_queues[req->rx_qid]; 2130 if (p_queue->cids[qid_usage_idx].p_cid) 2131 goto out; 2132 2133 vf_legacy = qed_vf_calculate_legacy(vf); 2134 2135 /* Acquire a new queue-cid */ 2136 memset(¶ms, 0, sizeof(params)); 2137 params.queue_id = p_queue->fw_rx_qid; 2138 params.vport_id = vf->vport_id; 2139 params.stats_id = vf->abs_vf_id + 0x10; 2140 /* Since IGU index is passed via sb_info, construct a dummy one */ 2141 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2142 sb_dummy.igu_sb_id = req->hw_sb; 2143 params.p_sb = &sb_dummy; 2144 params.sb_idx = req->sb_index; 2145 2146 memset(&vf_params, 0, sizeof(vf_params)); 2147 vf_params.vfid = vf->relative_vf_id; 2148 vf_params.vf_qid = (u8)req->rx_qid; 2149 vf_params.vf_legacy = vf_legacy; 2150 vf_params.qid_usage_idx = qid_usage_idx; 2151 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2152 ¶ms, true, &vf_params); 2153 if (!p_cid) 2154 goto out; 2155 2156 /* Legacy VFs have their Producers in a different location, which they 2157 * calculate on their own and clean the producer prior to this. 2158 */ 2159 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) 2160 REG_WR(p_hwfn, 2161 GTT_BAR0_MAP_REG_MSDM_RAM + 2162 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2163 0); 2164 2165 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, 2166 req->bd_max_bytes, 2167 req->rxq_addr, 2168 req->cqe_pbl_addr, req->cqe_pbl_size); 2169 if (rc) { 2170 status = PFVF_STATUS_FAILURE; 2171 qed_eth_queue_cid_release(p_hwfn, p_cid); 2172 } else { 2173 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2174 p_queue->cids[qid_usage_idx].b_is_tx = false; 2175 status = PFVF_STATUS_SUCCESS; 2176 vf->num_active_rxqs++; 2177 } 2178 2179 out: 2180 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2181 !!(vf_legacy & 2182 QED_QCID_LEGACY_VF_RX_PROD)); 2183 } 2184 2185 static void 2186 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2187 struct qed_tunnel_info *p_tun, 2188 u16 tunn_feature_mask) 2189 { 2190 p_resp->tunn_feature_mask = tunn_feature_mask; 2191 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2192 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2193 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2194 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2195 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2196 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2197 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2198 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2199 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2200 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2201 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2202 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2203 } 2204 2205 static void 2206 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2207 struct qed_tunn_update_type *p_tun, 2208 enum qed_tunn_mode mask, u8 tun_cls) 2209 { 2210 if (p_req->tun_mode_update_mask & BIT(mask)) { 2211 p_tun->b_update_mode = true; 2212 2213 if (p_req->tunn_mode & BIT(mask)) 2214 p_tun->b_mode_enabled = true; 2215 } 2216 2217 p_tun->tun_cls = tun_cls; 2218 } 2219 2220 static void 2221 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2222 struct qed_tunn_update_type *p_tun, 2223 struct qed_tunn_update_udp_port *p_port, 2224 enum qed_tunn_mode mask, 2225 u8 tun_cls, u8 update_port, u16 port) 2226 { 2227 if (update_port) { 2228 p_port->b_update_port = true; 2229 p_port->port = port; 2230 } 2231 2232 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2233 } 2234 2235 static bool 2236 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2237 { 2238 bool b_update_requested = false; 2239 2240 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2241 p_req->update_geneve_port || p_req->update_vxlan_port) 2242 b_update_requested = true; 2243 2244 return b_update_requested; 2245 } 2246 2247 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2248 { 2249 if (tun->b_update_mode && !tun->b_mode_enabled) { 2250 tun->b_update_mode = false; 2251 *rc = -EINVAL; 2252 } 2253 } 2254 2255 static int 2256 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2257 u16 *tun_features, bool *update, 2258 struct qed_tunnel_info *tun_src) 2259 { 2260 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2261 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2262 u16 bultn_vxlan_port, bultn_geneve_port; 2263 void *cookie = p_hwfn->cdev->ops_cookie; 2264 int i, rc = 0; 2265 2266 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2267 bultn_vxlan_port = tun->vxlan_port.port; 2268 bultn_geneve_port = tun->geneve_port.port; 2269 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2270 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2271 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2272 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2273 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2274 2275 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2276 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2277 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2278 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2279 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2280 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2281 tun_src->b_update_rx_cls = false; 2282 tun_src->b_update_tx_cls = false; 2283 rc = -EINVAL; 2284 } 2285 2286 if (tun_src->vxlan_port.b_update_port) { 2287 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2288 tun_src->vxlan_port.b_update_port = false; 2289 } else { 2290 *update = true; 2291 bultn_vxlan_port = tun_src->vxlan_port.port; 2292 } 2293 } 2294 2295 if (tun_src->geneve_port.b_update_port) { 2296 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2297 tun_src->geneve_port.b_update_port = false; 2298 } else { 2299 *update = true; 2300 bultn_geneve_port = tun_src->geneve_port.port; 2301 } 2302 } 2303 2304 qed_for_each_vf(p_hwfn, i) { 2305 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2306 bultn_geneve_port); 2307 } 2308 2309 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2310 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2311 2312 return rc; 2313 } 2314 2315 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2316 struct qed_ptt *p_ptt, 2317 struct qed_vf_info *p_vf) 2318 { 2319 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2320 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2321 struct pfvf_update_tunn_param_tlv *p_resp; 2322 struct vfpf_update_tunn_param_tlv *p_req; 2323 u8 status = PFVF_STATUS_SUCCESS; 2324 bool b_update_required = false; 2325 struct qed_tunnel_info tunn; 2326 u16 tunn_feature_mask = 0; 2327 int i, rc = 0; 2328 2329 mbx->offset = (u8 *)mbx->reply_virt; 2330 2331 memset(&tunn, 0, sizeof(tunn)); 2332 p_req = &mbx->req_virt->tunn_param_update; 2333 2334 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2335 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2336 "No tunnel update requested by VF\n"); 2337 status = PFVF_STATUS_FAILURE; 2338 goto send_resp; 2339 } 2340 2341 tunn.b_update_rx_cls = p_req->update_tun_cls; 2342 tunn.b_update_tx_cls = p_req->update_tun_cls; 2343 2344 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2345 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2346 p_req->update_vxlan_port, 2347 p_req->vxlan_port); 2348 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2349 QED_MODE_L2GENEVE_TUNN, 2350 p_req->l2geneve_clss, 2351 p_req->update_geneve_port, 2352 p_req->geneve_port); 2353 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2354 QED_MODE_IPGENEVE_TUNN, 2355 p_req->ipgeneve_clss); 2356 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2357 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2358 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2359 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2360 2361 /* If PF modifies VF's req then it should 2362 * still return an error in case of partial configuration 2363 * or modified configuration as opposed to requested one. 2364 */ 2365 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2366 &b_update_required, &tunn); 2367 2368 if (rc) 2369 status = PFVF_STATUS_FAILURE; 2370 2371 /* If QED client is willing to update anything ? */ 2372 if (b_update_required) { 2373 u16 geneve_port; 2374 2375 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2376 QED_SPQ_MODE_EBLOCK, NULL); 2377 if (rc) 2378 status = PFVF_STATUS_FAILURE; 2379 2380 geneve_port = p_tun->geneve_port.port; 2381 qed_for_each_vf(p_hwfn, i) { 2382 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2383 p_tun->vxlan_port.port, 2384 geneve_port); 2385 } 2386 } 2387 2388 send_resp: 2389 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2390 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2391 2392 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2393 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2394 sizeof(struct channel_list_end_tlv)); 2395 2396 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2397 } 2398 2399 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2400 struct qed_ptt *p_ptt, 2401 struct qed_vf_info *p_vf, 2402 u32 cid, u8 status) 2403 { 2404 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2405 struct pfvf_start_queue_resp_tlv *p_tlv; 2406 bool b_legacy = false; 2407 u16 length; 2408 2409 mbx->offset = (u8 *)mbx->reply_virt; 2410 2411 /* Taking a bigger struct instead of adding a TLV to list was a 2412 * mistake, but one which we're now stuck with, as some older 2413 * clients assume the size of the previous response. 2414 */ 2415 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2416 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2417 b_legacy = true; 2418 2419 if (!b_legacy) 2420 length = sizeof(*p_tlv); 2421 else 2422 length = sizeof(struct pfvf_def_resp_tlv); 2423 2424 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2425 length); 2426 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2427 sizeof(struct channel_list_end_tlv)); 2428 2429 /* Update the TLV with the response */ 2430 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2431 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); 2432 2433 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2434 } 2435 2436 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2437 struct qed_ptt *p_ptt, 2438 struct qed_vf_info *vf) 2439 { 2440 struct qed_queue_start_common_params params; 2441 struct qed_queue_cid_vf_params vf_params; 2442 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2443 u8 status = PFVF_STATUS_NO_RESOURCE; 2444 struct vfpf_start_txq_tlv *req; 2445 struct qed_vf_queue *p_queue; 2446 struct qed_queue_cid *p_cid; 2447 struct qed_sb_info sb_dummy; 2448 u8 qid_usage_idx, vf_legacy; 2449 u32 cid = 0; 2450 int rc; 2451 u16 pq; 2452 2453 memset(¶ms, 0, sizeof(params)); 2454 req = &mbx->req_virt->start_txq; 2455 2456 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2457 QED_IOV_VALIDATE_Q_NA) || 2458 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2459 goto out; 2460 2461 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2462 if (qid_usage_idx == QED_IOV_QID_INVALID) 2463 goto out; 2464 2465 p_queue = &vf->vf_queues[req->tx_qid]; 2466 if (p_queue->cids[qid_usage_idx].p_cid) 2467 goto out; 2468 2469 vf_legacy = qed_vf_calculate_legacy(vf); 2470 2471 /* Acquire a new queue-cid */ 2472 params.queue_id = p_queue->fw_tx_qid; 2473 params.vport_id = vf->vport_id; 2474 params.stats_id = vf->abs_vf_id + 0x10; 2475 2476 /* Since IGU index is passed via sb_info, construct a dummy one */ 2477 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2478 sb_dummy.igu_sb_id = req->hw_sb; 2479 params.p_sb = &sb_dummy; 2480 params.sb_idx = req->sb_index; 2481 2482 memset(&vf_params, 0, sizeof(vf_params)); 2483 vf_params.vfid = vf->relative_vf_id; 2484 vf_params.vf_qid = (u8)req->tx_qid; 2485 vf_params.vf_legacy = vf_legacy; 2486 vf_params.qid_usage_idx = qid_usage_idx; 2487 2488 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2489 ¶ms, false, &vf_params); 2490 if (!p_cid) 2491 goto out; 2492 2493 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2494 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, 2495 req->pbl_addr, req->pbl_size, pq); 2496 if (rc) { 2497 status = PFVF_STATUS_FAILURE; 2498 qed_eth_queue_cid_release(p_hwfn, p_cid); 2499 } else { 2500 status = PFVF_STATUS_SUCCESS; 2501 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2502 p_queue->cids[qid_usage_idx].b_is_tx = true; 2503 cid = p_cid->cid; 2504 } 2505 2506 out: 2507 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); 2508 } 2509 2510 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2511 struct qed_vf_info *vf, 2512 u16 rxq_id, 2513 u8 qid_usage_idx, bool cqe_completion) 2514 { 2515 struct qed_vf_queue *p_queue; 2516 int rc = 0; 2517 2518 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { 2519 DP_VERBOSE(p_hwfn, 2520 QED_MSG_IOV, 2521 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2522 vf->relative_vf_id, rxq_id, qid_usage_idx); 2523 return -EINVAL; 2524 } 2525 2526 p_queue = &vf->vf_queues[rxq_id]; 2527 2528 /* We've validated the index and the existence of the active RXQ - 2529 * now we need to make sure that it's using the correct qid. 2530 */ 2531 if (!p_queue->cids[qid_usage_idx].p_cid || 2532 p_queue->cids[qid_usage_idx].b_is_tx) { 2533 struct qed_queue_cid *p_cid; 2534 2535 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 2536 DP_VERBOSE(p_hwfn, 2537 QED_MSG_IOV, 2538 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2539 vf->relative_vf_id, 2540 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); 2541 return -EINVAL; 2542 } 2543 2544 /* Now that we know we have a valid Rx-queue - close it */ 2545 rc = qed_eth_rx_queue_stop(p_hwfn, 2546 p_queue->cids[qid_usage_idx].p_cid, 2547 false, cqe_completion); 2548 if (rc) 2549 return rc; 2550 2551 p_queue->cids[qid_usage_idx].p_cid = NULL; 2552 vf->num_active_rxqs--; 2553 2554 return 0; 2555 } 2556 2557 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2558 struct qed_vf_info *vf, 2559 u16 txq_id, u8 qid_usage_idx) 2560 { 2561 struct qed_vf_queue *p_queue; 2562 int rc = 0; 2563 2564 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) 2565 return -EINVAL; 2566 2567 p_queue = &vf->vf_queues[txq_id]; 2568 if (!p_queue->cids[qid_usage_idx].p_cid || 2569 !p_queue->cids[qid_usage_idx].b_is_tx) 2570 return -EINVAL; 2571 2572 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); 2573 if (rc) 2574 return rc; 2575 2576 p_queue->cids[qid_usage_idx].p_cid = NULL; 2577 return 0; 2578 } 2579 2580 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2581 struct qed_ptt *p_ptt, 2582 struct qed_vf_info *vf) 2583 { 2584 u16 length = sizeof(struct pfvf_def_resp_tlv); 2585 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2586 u8 status = PFVF_STATUS_FAILURE; 2587 struct vfpf_stop_rxqs_tlv *req; 2588 u8 qid_usage_idx; 2589 int rc; 2590 2591 /* There has never been an official driver that used this interface 2592 * for stopping multiple queues, and it is now considered deprecated. 2593 * Validate this isn't used here. 2594 */ 2595 req = &mbx->req_virt->stop_rxqs; 2596 if (req->num_rxqs != 1) { 2597 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2598 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2599 vf->relative_vf_id); 2600 status = PFVF_STATUS_NOT_SUPPORTED; 2601 goto out; 2602 } 2603 2604 /* Find which qid-index is associated with the queue */ 2605 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2606 if (qid_usage_idx == QED_IOV_QID_INVALID) 2607 goto out; 2608 2609 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2610 qid_usage_idx, req->cqe_completion); 2611 if (!rc) 2612 status = PFVF_STATUS_SUCCESS; 2613 out: 2614 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2615 length, status); 2616 } 2617 2618 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2619 struct qed_ptt *p_ptt, 2620 struct qed_vf_info *vf) 2621 { 2622 u16 length = sizeof(struct pfvf_def_resp_tlv); 2623 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2624 u8 status = PFVF_STATUS_FAILURE; 2625 struct vfpf_stop_txqs_tlv *req; 2626 u8 qid_usage_idx; 2627 int rc; 2628 2629 /* There has never been an official driver that used this interface 2630 * for stopping multiple queues, and it is now considered deprecated. 2631 * Validate this isn't used here. 2632 */ 2633 req = &mbx->req_virt->stop_txqs; 2634 if (req->num_txqs != 1) { 2635 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2636 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2637 vf->relative_vf_id); 2638 status = PFVF_STATUS_NOT_SUPPORTED; 2639 goto out; 2640 } 2641 2642 /* Find which qid-index is associated with the queue */ 2643 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2644 if (qid_usage_idx == QED_IOV_QID_INVALID) 2645 goto out; 2646 2647 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); 2648 if (!rc) 2649 status = PFVF_STATUS_SUCCESS; 2650 2651 out: 2652 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2653 length, status); 2654 } 2655 2656 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2657 struct qed_ptt *p_ptt, 2658 struct qed_vf_info *vf) 2659 { 2660 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2661 u16 length = sizeof(struct pfvf_def_resp_tlv); 2662 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2663 struct vfpf_update_rxq_tlv *req; 2664 u8 status = PFVF_STATUS_FAILURE; 2665 u8 complete_event_flg; 2666 u8 complete_cqe_flg; 2667 u8 qid_usage_idx; 2668 int rc; 2669 u8 i; 2670 2671 req = &mbx->req_virt->update_rxq; 2672 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2673 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2674 2675 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2676 if (qid_usage_idx == QED_IOV_QID_INVALID) 2677 goto out; 2678 2679 /* There shouldn't exist a VF that uses queue-qids yet uses this 2680 * API with multiple Rx queues. Validate this. 2681 */ 2682 if ((vf->acquire.vfdev_info.capabilities & 2683 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { 2684 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2685 "VF[%d] supports QIDs but sends multiple queues\n", 2686 vf->relative_vf_id); 2687 goto out; 2688 } 2689 2690 /* Validate inputs - for the legacy case this is still true since 2691 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2692 */ 2693 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2694 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2695 QED_IOV_VALIDATE_Q_NA) || 2696 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2697 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2698 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2699 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2700 vf->relative_vf_id, req->rx_qid, 2701 req->num_rxqs); 2702 goto out; 2703 } 2704 } 2705 2706 /* Prepare the handlers */ 2707 for (i = 0; i < req->num_rxqs; i++) { 2708 u16 qid = req->rx_qid + i; 2709 2710 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2711 } 2712 2713 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2714 req->num_rxqs, 2715 complete_cqe_flg, 2716 complete_event_flg, 2717 QED_SPQ_MODE_EBLOCK, NULL); 2718 if (rc) 2719 goto out; 2720 2721 status = PFVF_STATUS_SUCCESS; 2722 out: 2723 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2724 length, status); 2725 } 2726 2727 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2728 void *p_tlvs_list, u16 req_type) 2729 { 2730 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2731 int len = 0; 2732 2733 do { 2734 if (!p_tlv->length) { 2735 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2736 return NULL; 2737 } 2738 2739 if (p_tlv->type == req_type) { 2740 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2741 "Extended tlv type %d, length %d found\n", 2742 p_tlv->type, p_tlv->length); 2743 return p_tlv; 2744 } 2745 2746 len += p_tlv->length; 2747 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2748 2749 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2750 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2751 return NULL; 2752 } 2753 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2754 2755 return NULL; 2756 } 2757 2758 static void 2759 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2760 struct qed_sp_vport_update_params *p_data, 2761 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2762 { 2763 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2764 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2765 2766 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2767 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2768 if (!p_act_tlv) 2769 return; 2770 2771 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2772 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2773 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2774 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2775 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2776 } 2777 2778 static void 2779 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2780 struct qed_sp_vport_update_params *p_data, 2781 struct qed_vf_info *p_vf, 2782 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2783 { 2784 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2785 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2786 2787 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2788 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2789 if (!p_vlan_tlv) 2790 return; 2791 2792 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2793 2794 /* Ignore the VF request if we're forcing a vlan */ 2795 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2796 p_data->update_inner_vlan_removal_flg = 1; 2797 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2798 } 2799 2800 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2801 } 2802 2803 static void 2804 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2805 struct qed_sp_vport_update_params *p_data, 2806 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2807 { 2808 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2809 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2810 2811 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2812 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2813 tlv); 2814 if (!p_tx_switch_tlv) 2815 return; 2816 2817 p_data->update_tx_switching_flg = 1; 2818 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2819 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2820 } 2821 2822 static void 2823 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2824 struct qed_sp_vport_update_params *p_data, 2825 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2826 { 2827 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2828 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2829 2830 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2831 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2832 if (!p_mcast_tlv) 2833 return; 2834 2835 p_data->update_approx_mcast_flg = 1; 2836 memcpy(p_data->bins, p_mcast_tlv->bins, 2837 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2838 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2839 } 2840 2841 static void 2842 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2843 struct qed_sp_vport_update_params *p_data, 2844 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2845 { 2846 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2847 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2848 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2849 2850 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2851 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2852 if (!p_accept_tlv) 2853 return; 2854 2855 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2856 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2857 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2858 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2859 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2860 } 2861 2862 static void 2863 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2864 struct qed_sp_vport_update_params *p_data, 2865 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2866 { 2867 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2868 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2869 2870 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2871 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2872 tlv); 2873 if (!p_accept_any_vlan) 2874 return; 2875 2876 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2877 p_data->update_accept_any_vlan_flg = 2878 p_accept_any_vlan->update_accept_any_vlan_flg; 2879 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2880 } 2881 2882 static void 2883 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2884 struct qed_vf_info *vf, 2885 struct qed_sp_vport_update_params *p_data, 2886 struct qed_rss_params *p_rss, 2887 struct qed_iov_vf_mbx *p_mbx, 2888 u16 *tlvs_mask, u16 *tlvs_accepted) 2889 { 2890 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2891 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2892 bool b_reject = false; 2893 u16 table_size; 2894 u16 i, q_idx; 2895 2896 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2897 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2898 if (!p_rss_tlv) { 2899 p_data->rss_params = NULL; 2900 return; 2901 } 2902 2903 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2904 2905 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2906 VFPF_UPDATE_RSS_CONFIG_FLAG); 2907 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2908 VFPF_UPDATE_RSS_CAPS_FLAG); 2909 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2910 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2911 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2912 VFPF_UPDATE_RSS_KEY_FLAG); 2913 2914 p_rss->rss_enable = p_rss_tlv->rss_enable; 2915 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2916 p_rss->rss_caps = p_rss_tlv->rss_caps; 2917 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2918 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2919 2920 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2921 (1 << p_rss_tlv->rss_table_size_log)); 2922 2923 for (i = 0; i < table_size; i++) { 2924 struct qed_queue_cid *p_cid; 2925 2926 q_idx = p_rss_tlv->rss_ind_table[i]; 2927 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2928 QED_IOV_VALIDATE_Q_ENABLE)) { 2929 DP_VERBOSE(p_hwfn, 2930 QED_MSG_IOV, 2931 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2932 vf->relative_vf_id, q_idx); 2933 b_reject = true; 2934 goto out; 2935 } 2936 2937 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 2938 p_rss->rss_ind_table[i] = p_cid; 2939 } 2940 2941 p_data->rss_params = p_rss; 2942 out: 2943 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2944 if (!b_reject) 2945 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2946 } 2947 2948 static void 2949 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2950 struct qed_vf_info *vf, 2951 struct qed_sp_vport_update_params *p_data, 2952 struct qed_sge_tpa_params *p_sge_tpa, 2953 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2954 { 2955 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2956 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2957 2958 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2959 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2960 2961 if (!p_sge_tpa_tlv) { 2962 p_data->sge_tpa_params = NULL; 2963 return; 2964 } 2965 2966 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2967 2968 p_sge_tpa->update_tpa_en_flg = 2969 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2970 p_sge_tpa->update_tpa_param_flg = 2971 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2972 VFPF_UPDATE_TPA_PARAM_FLAG); 2973 2974 p_sge_tpa->tpa_ipv4_en_flg = 2975 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2976 p_sge_tpa->tpa_ipv6_en_flg = 2977 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2978 p_sge_tpa->tpa_pkt_split_flg = 2979 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2980 p_sge_tpa->tpa_hdr_data_split_flg = 2981 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2982 p_sge_tpa->tpa_gro_consistent_flg = 2983 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2984 2985 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2986 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2987 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2988 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2989 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2990 2991 p_data->sge_tpa_params = p_sge_tpa; 2992 2993 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2994 } 2995 2996 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2997 u8 vfid, 2998 struct qed_sp_vport_update_params *params, 2999 u16 *tlvs) 3000 { 3001 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 3002 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 3003 struct qed_public_vf_info *vf_info; 3004 3005 /* Untrusted VFs can't even be trusted to know that fact. 3006 * Simply indicate everything is configured fine, and trace 3007 * configuration 'behind their back'. 3008 */ 3009 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 3010 return 0; 3011 3012 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3013 3014 if (flags->update_rx_mode_config) { 3015 vf_info->rx_accept_mode = flags->rx_accept_filter; 3016 if (!vf_info->is_trusted_configured) 3017 flags->rx_accept_filter &= ~mask; 3018 } 3019 3020 if (flags->update_tx_mode_config) { 3021 vf_info->tx_accept_mode = flags->tx_accept_filter; 3022 if (!vf_info->is_trusted_configured) 3023 flags->tx_accept_filter &= ~mask; 3024 } 3025 3026 return 0; 3027 } 3028 3029 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 3030 struct qed_ptt *p_ptt, 3031 struct qed_vf_info *vf) 3032 { 3033 struct qed_rss_params *p_rss_params = NULL; 3034 struct qed_sp_vport_update_params params; 3035 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3036 struct qed_sge_tpa_params sge_tpa_params; 3037 u16 tlvs_mask = 0, tlvs_accepted = 0; 3038 u8 status = PFVF_STATUS_SUCCESS; 3039 u16 length; 3040 int rc; 3041 3042 /* Valiate PF can send such a request */ 3043 if (!vf->vport_instance) { 3044 DP_VERBOSE(p_hwfn, 3045 QED_MSG_IOV, 3046 "No VPORT instance available for VF[%d], failing vport update\n", 3047 vf->abs_vf_id); 3048 status = PFVF_STATUS_FAILURE; 3049 goto out; 3050 } 3051 p_rss_params = vzalloc(sizeof(*p_rss_params)); 3052 if (p_rss_params == NULL) { 3053 status = PFVF_STATUS_FAILURE; 3054 goto out; 3055 } 3056 3057 memset(¶ms, 0, sizeof(params)); 3058 params.opaque_fid = vf->opaque_fid; 3059 params.vport_id = vf->vport_id; 3060 params.rss_params = NULL; 3061 3062 /* Search for extended tlvs list and update values 3063 * from VF in struct qed_sp_vport_update_params. 3064 */ 3065 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3066 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3067 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3068 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3069 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3070 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3071 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 3072 &sge_tpa_params, mbx, &tlvs_mask); 3073 3074 tlvs_accepted = tlvs_mask; 3075 3076 /* Some of the extended TLVs need to be validated first; In that case, 3077 * they can update the mask without updating the accepted [so that 3078 * PF could communicate to VF it has rejected request]. 3079 */ 3080 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3081 mbx, &tlvs_mask, &tlvs_accepted); 3082 3083 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 3084 ¶ms, &tlvs_accepted)) { 3085 tlvs_accepted = 0; 3086 status = PFVF_STATUS_NOT_SUPPORTED; 3087 goto out; 3088 } 3089 3090 if (!tlvs_accepted) { 3091 if (tlvs_mask) 3092 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3093 "Upper-layer prevents VF vport configuration\n"); 3094 else 3095 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3096 "No feature tlvs found for vport update\n"); 3097 status = PFVF_STATUS_NOT_SUPPORTED; 3098 goto out; 3099 } 3100 3101 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 3102 3103 if (rc) 3104 status = PFVF_STATUS_FAILURE; 3105 3106 out: 3107 vfree(p_rss_params); 3108 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3109 tlvs_mask, tlvs_accepted); 3110 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3111 } 3112 3113 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 3114 struct qed_vf_info *p_vf, 3115 struct qed_filter_ucast *p_params) 3116 { 3117 int i; 3118 3119 /* First remove entries and then add new ones */ 3120 if (p_params->opcode == QED_FILTER_REMOVE) { 3121 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3122 if (p_vf->shadow_config.vlans[i].used && 3123 p_vf->shadow_config.vlans[i].vid == 3124 p_params->vlan) { 3125 p_vf->shadow_config.vlans[i].used = false; 3126 break; 3127 } 3128 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3129 DP_VERBOSE(p_hwfn, 3130 QED_MSG_IOV, 3131 "VF [%d] - Tries to remove a non-existing vlan\n", 3132 p_vf->relative_vf_id); 3133 return -EINVAL; 3134 } 3135 } else if (p_params->opcode == QED_FILTER_REPLACE || 3136 p_params->opcode == QED_FILTER_FLUSH) { 3137 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3138 p_vf->shadow_config.vlans[i].used = false; 3139 } 3140 3141 /* In forced mode, we're willing to remove entries - but we don't add 3142 * new ones. 3143 */ 3144 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 3145 return 0; 3146 3147 if (p_params->opcode == QED_FILTER_ADD || 3148 p_params->opcode == QED_FILTER_REPLACE) { 3149 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3150 if (p_vf->shadow_config.vlans[i].used) 3151 continue; 3152 3153 p_vf->shadow_config.vlans[i].used = true; 3154 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3155 break; 3156 } 3157 3158 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3159 DP_VERBOSE(p_hwfn, 3160 QED_MSG_IOV, 3161 "VF [%d] - Tries to configure more than %d vlan filters\n", 3162 p_vf->relative_vf_id, 3163 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 3164 return -EINVAL; 3165 } 3166 } 3167 3168 return 0; 3169 } 3170 3171 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 3172 struct qed_vf_info *p_vf, 3173 struct qed_filter_ucast *p_params) 3174 { 3175 int i; 3176 3177 /* If we're in forced-mode, we don't allow any change */ 3178 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 3179 return 0; 3180 3181 /* Don't keep track of shadow copy since we don't intend to restore. */ 3182 if (p_vf->p_vf_info.is_trusted_configured) 3183 return 0; 3184 3185 /* First remove entries and then add new ones */ 3186 if (p_params->opcode == QED_FILTER_REMOVE) { 3187 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3188 if (ether_addr_equal(p_vf->shadow_config.macs[i], 3189 p_params->mac)) { 3190 eth_zero_addr(p_vf->shadow_config.macs[i]); 3191 break; 3192 } 3193 } 3194 3195 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3196 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3197 "MAC isn't configured\n"); 3198 return -EINVAL; 3199 } 3200 } else if (p_params->opcode == QED_FILTER_REPLACE || 3201 p_params->opcode == QED_FILTER_FLUSH) { 3202 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 3203 eth_zero_addr(p_vf->shadow_config.macs[i]); 3204 } 3205 3206 /* List the new MAC address */ 3207 if (p_params->opcode != QED_FILTER_ADD && 3208 p_params->opcode != QED_FILTER_REPLACE) 3209 return 0; 3210 3211 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3212 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 3213 ether_addr_copy(p_vf->shadow_config.macs[i], 3214 p_params->mac); 3215 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3216 "Added MAC at %d entry in shadow\n", i); 3217 break; 3218 } 3219 } 3220 3221 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3222 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 3223 return -EINVAL; 3224 } 3225 3226 return 0; 3227 } 3228 3229 static int 3230 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 3231 struct qed_vf_info *p_vf, 3232 struct qed_filter_ucast *p_params) 3233 { 3234 int rc = 0; 3235 3236 if (p_params->type == QED_FILTER_MAC) { 3237 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3238 if (rc) 3239 return rc; 3240 } 3241 3242 if (p_params->type == QED_FILTER_VLAN) 3243 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3244 3245 return rc; 3246 } 3247 3248 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3249 int vfid, struct qed_filter_ucast *params) 3250 { 3251 struct qed_public_vf_info *vf; 3252 3253 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3254 if (!vf) 3255 return -EINVAL; 3256 3257 /* No real decision to make; Store the configured MAC */ 3258 if (params->type == QED_FILTER_MAC || 3259 params->type == QED_FILTER_MAC_VLAN) { 3260 ether_addr_copy(vf->mac, params->mac); 3261 3262 if (vf->is_trusted_configured) { 3263 qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid); 3264 3265 /* Update and post bulleitin again */ 3266 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3267 } 3268 } 3269 3270 return 0; 3271 } 3272 3273 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3274 struct qed_ptt *p_ptt, 3275 struct qed_vf_info *vf) 3276 { 3277 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3278 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3279 struct vfpf_ucast_filter_tlv *req; 3280 u8 status = PFVF_STATUS_SUCCESS; 3281 struct qed_filter_ucast params; 3282 int rc; 3283 3284 /* Prepare the unicast filter params */ 3285 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3286 req = &mbx->req_virt->ucast_filter; 3287 params.opcode = (enum qed_filter_opcode)req->opcode; 3288 params.type = (enum qed_filter_ucast_type)req->type; 3289 3290 params.is_rx_filter = 1; 3291 params.is_tx_filter = 1; 3292 params.vport_to_remove_from = vf->vport_id; 3293 params.vport_to_add_to = vf->vport_id; 3294 memcpy(params.mac, req->mac, ETH_ALEN); 3295 params.vlan = req->vlan; 3296 3297 DP_VERBOSE(p_hwfn, 3298 QED_MSG_IOV, 3299 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 3300 vf->abs_vf_id, params.opcode, params.type, 3301 params.is_rx_filter ? "RX" : "", 3302 params.is_tx_filter ? "TX" : "", 3303 params.vport_to_add_to, 3304 params.mac[0], params.mac[1], 3305 params.mac[2], params.mac[3], 3306 params.mac[4], params.mac[5], params.vlan); 3307 3308 if (!vf->vport_instance) { 3309 DP_VERBOSE(p_hwfn, 3310 QED_MSG_IOV, 3311 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3312 vf->abs_vf_id); 3313 status = PFVF_STATUS_FAILURE; 3314 goto out; 3315 } 3316 3317 /* Update shadow copy of the VF configuration */ 3318 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3319 status = PFVF_STATUS_FAILURE; 3320 goto out; 3321 } 3322 3323 /* Determine if the unicast filtering is acceptible by PF */ 3324 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3325 (params.type == QED_FILTER_VLAN || 3326 params.type == QED_FILTER_MAC_VLAN)) { 3327 /* Once VLAN is forced or PVID is set, do not allow 3328 * to add/replace any further VLANs. 3329 */ 3330 if (params.opcode == QED_FILTER_ADD || 3331 params.opcode == QED_FILTER_REPLACE) 3332 status = PFVF_STATUS_FORCED; 3333 goto out; 3334 } 3335 3336 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3337 (params.type == QED_FILTER_MAC || 3338 params.type == QED_FILTER_MAC_VLAN)) { 3339 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3340 (params.opcode != QED_FILTER_ADD && 3341 params.opcode != QED_FILTER_REPLACE)) 3342 status = PFVF_STATUS_FORCED; 3343 goto out; 3344 } 3345 3346 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3347 if (rc) { 3348 status = PFVF_STATUS_FAILURE; 3349 goto out; 3350 } 3351 3352 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3353 QED_SPQ_MODE_CB, NULL); 3354 if (rc) 3355 status = PFVF_STATUS_FAILURE; 3356 3357 out: 3358 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3359 sizeof(struct pfvf_def_resp_tlv), status); 3360 } 3361 3362 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3363 struct qed_ptt *p_ptt, 3364 struct qed_vf_info *vf) 3365 { 3366 int i; 3367 3368 /* Reset the SBs */ 3369 for (i = 0; i < vf->num_sbs; i++) 3370 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3371 vf->igu_sbs[i], 3372 vf->opaque_fid, false); 3373 3374 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3375 sizeof(struct pfvf_def_resp_tlv), 3376 PFVF_STATUS_SUCCESS); 3377 } 3378 3379 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3380 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3381 { 3382 u16 length = sizeof(struct pfvf_def_resp_tlv); 3383 u8 status = PFVF_STATUS_SUCCESS; 3384 3385 /* Disable Interrupts for VF */ 3386 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3387 3388 /* Reset Permission table */ 3389 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3390 3391 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3392 length, status); 3393 } 3394 3395 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3396 struct qed_ptt *p_ptt, 3397 struct qed_vf_info *p_vf) 3398 { 3399 u16 length = sizeof(struct pfvf_def_resp_tlv); 3400 u8 status = PFVF_STATUS_SUCCESS; 3401 int rc = 0; 3402 3403 qed_iov_vf_cleanup(p_hwfn, p_vf); 3404 3405 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3406 /* Stopping the VF */ 3407 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3408 p_vf->opaque_fid); 3409 3410 if (rc) { 3411 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3412 rc); 3413 status = PFVF_STATUS_FAILURE; 3414 } 3415 3416 p_vf->state = VF_STOPPED; 3417 } 3418 3419 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3420 length, status); 3421 } 3422 3423 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, 3424 struct qed_ptt *p_ptt, 3425 struct qed_vf_info *p_vf) 3426 { 3427 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3428 struct pfvf_read_coal_resp_tlv *p_resp; 3429 struct vfpf_read_coal_req_tlv *req; 3430 u8 status = PFVF_STATUS_FAILURE; 3431 struct qed_vf_queue *p_queue; 3432 struct qed_queue_cid *p_cid; 3433 u16 coal = 0, qid, i; 3434 bool b_is_rx; 3435 int rc = 0; 3436 3437 mbx->offset = (u8 *)mbx->reply_virt; 3438 req = &mbx->req_virt->read_coal_req; 3439 3440 qid = req->qid; 3441 b_is_rx = req->is_rx ? true : false; 3442 3443 if (b_is_rx) { 3444 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, 3445 QED_IOV_VALIDATE_Q_ENABLE)) { 3446 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3447 "VF[%d]: Invalid Rx queue_id = %d\n", 3448 p_vf->abs_vf_id, qid); 3449 goto send_resp; 3450 } 3451 3452 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3453 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3454 if (rc) 3455 goto send_resp; 3456 } else { 3457 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, 3458 QED_IOV_VALIDATE_Q_ENABLE)) { 3459 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3460 "VF[%d]: Invalid Tx queue_id = %d\n", 3461 p_vf->abs_vf_id, qid); 3462 goto send_resp; 3463 } 3464 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3465 p_queue = &p_vf->vf_queues[qid]; 3466 if ((!p_queue->cids[i].p_cid) || 3467 (!p_queue->cids[i].b_is_tx)) 3468 continue; 3469 3470 p_cid = p_queue->cids[i].p_cid; 3471 3472 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3473 if (rc) 3474 goto send_resp; 3475 break; 3476 } 3477 } 3478 3479 status = PFVF_STATUS_SUCCESS; 3480 3481 send_resp: 3482 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, 3483 sizeof(*p_resp)); 3484 p_resp->coal = coal; 3485 3486 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 3487 sizeof(struct channel_list_end_tlv)); 3488 3489 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3490 } 3491 3492 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, 3493 struct qed_ptt *p_ptt, 3494 struct qed_vf_info *vf) 3495 { 3496 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3497 struct vfpf_update_coalesce *req; 3498 u8 status = PFVF_STATUS_FAILURE; 3499 struct qed_queue_cid *p_cid; 3500 u16 rx_coal, tx_coal; 3501 int rc = 0, i; 3502 u16 qid; 3503 3504 req = &mbx->req_virt->update_coalesce; 3505 3506 rx_coal = req->rx_coal; 3507 tx_coal = req->tx_coal; 3508 qid = req->qid; 3509 3510 if (!qed_iov_validate_rxq(p_hwfn, vf, qid, 3511 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { 3512 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3513 "VF[%d]: Invalid Rx queue_id = %d\n", 3514 vf->abs_vf_id, qid); 3515 goto out; 3516 } 3517 3518 if (!qed_iov_validate_txq(p_hwfn, vf, qid, 3519 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { 3520 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3521 "VF[%d]: Invalid Tx queue_id = %d\n", 3522 vf->abs_vf_id, qid); 3523 goto out; 3524 } 3525 3526 DP_VERBOSE(p_hwfn, 3527 QED_MSG_IOV, 3528 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3529 vf->abs_vf_id, rx_coal, tx_coal, qid); 3530 3531 if (rx_coal) { 3532 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3533 3534 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3535 if (rc) { 3536 DP_VERBOSE(p_hwfn, 3537 QED_MSG_IOV, 3538 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3539 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3540 goto out; 3541 } 3542 vf->rx_coal = rx_coal; 3543 } 3544 3545 if (tx_coal) { 3546 struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; 3547 3548 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3549 if (!p_queue->cids[i].p_cid) 3550 continue; 3551 3552 if (!p_queue->cids[i].b_is_tx) 3553 continue; 3554 3555 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3556 p_queue->cids[i].p_cid); 3557 3558 if (rc) { 3559 DP_VERBOSE(p_hwfn, 3560 QED_MSG_IOV, 3561 "VF[%d]: Unable to set tx queue coalesce\n", 3562 vf->abs_vf_id); 3563 goto out; 3564 } 3565 } 3566 vf->tx_coal = tx_coal; 3567 } 3568 3569 status = PFVF_STATUS_SUCCESS; 3570 out: 3571 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3572 sizeof(struct pfvf_def_resp_tlv), status); 3573 } 3574 static int 3575 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3576 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3577 { 3578 int cnt; 3579 u32 val; 3580 3581 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 3582 3583 for (cnt = 0; cnt < 50; cnt++) { 3584 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3585 if (!val) 3586 break; 3587 msleep(20); 3588 } 3589 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 3590 3591 if (cnt == 50) { 3592 DP_ERR(p_hwfn, 3593 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3594 p_vf->abs_vf_id, val); 3595 return -EBUSY; 3596 } 3597 3598 return 0; 3599 } 3600 3601 static int 3602 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3603 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3604 { 3605 u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4]; 3606 int i, cnt; 3607 3608 /* Read initial consumers & producers */ 3609 for (i = 0; i < MAX_NUM_VOQS_E4; i++) { 3610 u32 prod; 3611 3612 cons[i] = qed_rd(p_hwfn, p_ptt, 3613 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3614 i * 0x40); 3615 prod = qed_rd(p_hwfn, p_ptt, 3616 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3617 i * 0x40); 3618 distance[i] = prod - cons[i]; 3619 } 3620 3621 /* Wait for consumers to pass the producers */ 3622 i = 0; 3623 for (cnt = 0; cnt < 50; cnt++) { 3624 for (; i < MAX_NUM_VOQS_E4; i++) { 3625 u32 tmp; 3626 3627 tmp = qed_rd(p_hwfn, p_ptt, 3628 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3629 i * 0x40); 3630 if (distance[i] > tmp - cons[i]) 3631 break; 3632 } 3633 3634 if (i == MAX_NUM_VOQS_E4) 3635 break; 3636 3637 msleep(20); 3638 } 3639 3640 if (cnt == 50) { 3641 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3642 p_vf->abs_vf_id, i); 3643 return -EBUSY; 3644 } 3645 3646 return 0; 3647 } 3648 3649 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3650 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3651 { 3652 int rc; 3653 3654 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3655 if (rc) 3656 return rc; 3657 3658 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3659 if (rc) 3660 return rc; 3661 3662 return 0; 3663 } 3664 3665 static int 3666 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3667 struct qed_ptt *p_ptt, 3668 u16 rel_vf_id, u32 *ack_vfs) 3669 { 3670 struct qed_vf_info *p_vf; 3671 int rc = 0; 3672 3673 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3674 if (!p_vf) 3675 return 0; 3676 3677 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3678 (1ULL << (rel_vf_id % 64))) { 3679 u16 vfid = p_vf->abs_vf_id; 3680 3681 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3682 "VF[%d] - Handling FLR\n", vfid); 3683 3684 qed_iov_vf_cleanup(p_hwfn, p_vf); 3685 3686 /* If VF isn't active, no need for anything but SW */ 3687 if (!p_vf->b_init) 3688 goto cleanup; 3689 3690 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3691 if (rc) 3692 goto cleanup; 3693 3694 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3695 if (rc) { 3696 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3697 return rc; 3698 } 3699 3700 /* Workaround to make VF-PF channel ready, as FW 3701 * doesn't do that as a part of FLR. 3702 */ 3703 REG_WR(p_hwfn, 3704 GTT_BAR0_MAP_REG_USDM_RAM + 3705 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3706 3707 /* VF_STOPPED has to be set only after final cleanup 3708 * but prior to re-enabling the VF. 3709 */ 3710 p_vf->state = VF_STOPPED; 3711 3712 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3713 if (rc) { 3714 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3715 vfid); 3716 return rc; 3717 } 3718 cleanup: 3719 /* Mark VF for ack and clean pending state */ 3720 if (p_vf->state == VF_RESET) 3721 p_vf->state = VF_STOPPED; 3722 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3723 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3724 ~(1ULL << (rel_vf_id % 64)); 3725 p_vf->vf_mbx.b_pending_msg = false; 3726 } 3727 3728 return rc; 3729 } 3730 3731 static int 3732 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3733 { 3734 u32 ack_vfs[VF_MAX_STATIC / 32]; 3735 int rc = 0; 3736 u16 i; 3737 3738 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3739 3740 /* Since BRB <-> PRS interface can't be tested as part of the flr 3741 * polling due to HW limitations, simply sleep a bit. And since 3742 * there's no need to wait per-vf, do it before looping. 3743 */ 3744 msleep(100); 3745 3746 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3747 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3748 3749 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3750 return rc; 3751 } 3752 3753 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3754 { 3755 bool found = false; 3756 u16 i; 3757 3758 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3759 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3760 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3761 "[%08x,...,%08x]: %08x\n", 3762 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3763 3764 if (!p_hwfn->cdev->p_iov_info) { 3765 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3766 return false; 3767 } 3768 3769 /* Mark VFs */ 3770 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3771 struct qed_vf_info *p_vf; 3772 u8 vfid; 3773 3774 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3775 if (!p_vf) 3776 continue; 3777 3778 vfid = p_vf->abs_vf_id; 3779 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3780 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3781 u16 rel_vf_id = p_vf->relative_vf_id; 3782 3783 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3784 "VF[%d] [rel %d] got FLR-ed\n", 3785 vfid, rel_vf_id); 3786 3787 p_vf->state = VF_RESET; 3788 3789 /* No need to lock here, since pending_flr should 3790 * only change here and before ACKing MFw. Since 3791 * MFW will not trigger an additional attention for 3792 * VF flr until ACKs, we're safe. 3793 */ 3794 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3795 found = true; 3796 } 3797 } 3798 3799 return found; 3800 } 3801 3802 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3803 u16 vfid, 3804 struct qed_mcp_link_params *p_params, 3805 struct qed_mcp_link_state *p_link, 3806 struct qed_mcp_link_capabilities *p_caps) 3807 { 3808 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3809 vfid, 3810 false); 3811 struct qed_bulletin_content *p_bulletin; 3812 3813 if (!p_vf) 3814 return; 3815 3816 p_bulletin = p_vf->bulletin.p_virt; 3817 3818 if (p_params) 3819 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3820 if (p_link) 3821 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3822 if (p_caps) 3823 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3824 } 3825 3826 static int 3827 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn, 3828 struct qed_ptt *p_ptt, 3829 struct qed_vf_info *p_vf) 3830 { 3831 struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt; 3832 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3833 struct vfpf_bulletin_update_mac_tlv *p_req; 3834 u8 status = PFVF_STATUS_SUCCESS; 3835 int rc = 0; 3836 3837 if (!p_vf->p_vf_info.is_trusted_configured) { 3838 DP_VERBOSE(p_hwfn, 3839 QED_MSG_IOV, 3840 "Blocking bulletin update request from untrusted VF[%d]\n", 3841 p_vf->abs_vf_id); 3842 status = PFVF_STATUS_NOT_SUPPORTED; 3843 rc = -EINVAL; 3844 goto send_status; 3845 } 3846 3847 p_req = &mbx->req_virt->bulletin_update_mac; 3848 ether_addr_copy(p_bulletin->mac, p_req->mac); 3849 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3850 "Updated bulletin of VF[%d] with requested MAC[%pM]\n", 3851 p_vf->abs_vf_id, p_req->mac); 3852 3853 send_status: 3854 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3855 CHANNEL_TLV_BULLETIN_UPDATE_MAC, 3856 sizeof(struct pfvf_def_resp_tlv), status); 3857 return rc; 3858 } 3859 3860 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3861 struct qed_ptt *p_ptt, int vfid) 3862 { 3863 struct qed_iov_vf_mbx *mbx; 3864 struct qed_vf_info *p_vf; 3865 3866 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3867 if (!p_vf) 3868 return; 3869 3870 mbx = &p_vf->vf_mbx; 3871 3872 /* qed_iov_process_mbx_request */ 3873 if (!mbx->b_pending_msg) { 3874 DP_NOTICE(p_hwfn, 3875 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3876 p_vf->abs_vf_id); 3877 return; 3878 } 3879 mbx->b_pending_msg = false; 3880 3881 mbx->first_tlv = mbx->req_virt->first_tlv; 3882 3883 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3884 "VF[%02x]: Processing mailbox message [type %04x]\n", 3885 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3886 3887 /* check if tlv type is known */ 3888 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3889 !p_vf->b_malicious) { 3890 switch (mbx->first_tlv.tl.type) { 3891 case CHANNEL_TLV_ACQUIRE: 3892 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3893 break; 3894 case CHANNEL_TLV_VPORT_START: 3895 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3896 break; 3897 case CHANNEL_TLV_VPORT_TEARDOWN: 3898 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3899 break; 3900 case CHANNEL_TLV_START_RXQ: 3901 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3902 break; 3903 case CHANNEL_TLV_START_TXQ: 3904 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3905 break; 3906 case CHANNEL_TLV_STOP_RXQS: 3907 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3908 break; 3909 case CHANNEL_TLV_STOP_TXQS: 3910 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3911 break; 3912 case CHANNEL_TLV_UPDATE_RXQ: 3913 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3914 break; 3915 case CHANNEL_TLV_VPORT_UPDATE: 3916 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3917 break; 3918 case CHANNEL_TLV_UCAST_FILTER: 3919 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3920 break; 3921 case CHANNEL_TLV_CLOSE: 3922 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3923 break; 3924 case CHANNEL_TLV_INT_CLEANUP: 3925 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3926 break; 3927 case CHANNEL_TLV_RELEASE: 3928 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3929 break; 3930 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3931 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3932 break; 3933 case CHANNEL_TLV_COALESCE_UPDATE: 3934 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 3935 break; 3936 case CHANNEL_TLV_COALESCE_READ: 3937 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 3938 break; 3939 case CHANNEL_TLV_BULLETIN_UPDATE_MAC: 3940 qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf); 3941 break; 3942 } 3943 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3944 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3945 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3946 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3947 3948 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3949 mbx->first_tlv.tl.type, 3950 sizeof(struct pfvf_def_resp_tlv), 3951 PFVF_STATUS_MALICIOUS); 3952 } else { 3953 /* unknown TLV - this may belong to a VF driver from the future 3954 * - a version written after this PF driver was written, which 3955 * supports features unknown as of yet. Too bad since we don't 3956 * support them. Or this may be because someone wrote a crappy 3957 * VF driver and is sending garbage over the channel. 3958 */ 3959 DP_NOTICE(p_hwfn, 3960 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3961 p_vf->abs_vf_id, 3962 mbx->first_tlv.tl.type, 3963 mbx->first_tlv.tl.length, 3964 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3965 3966 /* Try replying in case reply address matches the acquisition's 3967 * posted address. 3968 */ 3969 if (p_vf->acquire.first_tlv.reply_address && 3970 (mbx->first_tlv.reply_address == 3971 p_vf->acquire.first_tlv.reply_address)) { 3972 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3973 mbx->first_tlv.tl.type, 3974 sizeof(struct pfvf_def_resp_tlv), 3975 PFVF_STATUS_NOT_SUPPORTED); 3976 } else { 3977 DP_VERBOSE(p_hwfn, 3978 QED_MSG_IOV, 3979 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3980 p_vf->abs_vf_id); 3981 } 3982 } 3983 } 3984 3985 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3986 { 3987 int i; 3988 3989 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3990 3991 qed_for_each_vf(p_hwfn, i) { 3992 struct qed_vf_info *p_vf; 3993 3994 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3995 if (p_vf->vf_mbx.b_pending_msg) 3996 events[i / 64] |= 1ULL << (i % 64); 3997 } 3998 } 3999 4000 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 4001 u16 abs_vfid) 4002 { 4003 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 4004 4005 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 4006 DP_VERBOSE(p_hwfn, 4007 QED_MSG_IOV, 4008 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 4009 abs_vfid); 4010 return NULL; 4011 } 4012 4013 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 4014 } 4015 4016 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 4017 u16 abs_vfid, struct regpair *vf_msg) 4018 { 4019 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 4020 abs_vfid); 4021 4022 if (!p_vf) 4023 return 0; 4024 4025 /* List the physical address of the request so that handler 4026 * could later on copy the message from it. 4027 */ 4028 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 4029 4030 /* Mark the event and schedule the workqueue */ 4031 p_vf->vf_mbx.b_pending_msg = true; 4032 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 4033 4034 return 0; 4035 } 4036 4037 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 4038 struct malicious_vf_eqe_data *p_data) 4039 { 4040 struct qed_vf_info *p_vf; 4041 4042 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 4043 4044 if (!p_vf) 4045 return; 4046 4047 if (!p_vf->b_malicious) { 4048 DP_NOTICE(p_hwfn, 4049 "VF [%d] - Malicious behavior [%02x]\n", 4050 p_vf->abs_vf_id, p_data->err_id); 4051 4052 p_vf->b_malicious = true; 4053 } else { 4054 DP_INFO(p_hwfn, 4055 "VF [%d] - Malicious behavior [%02x]\n", 4056 p_vf->abs_vf_id, p_data->err_id); 4057 } 4058 } 4059 4060 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 4061 u8 opcode, 4062 __le16 echo, 4063 union event_ring_data *data, u8 fw_return_code) 4064 { 4065 switch (opcode) { 4066 case COMMON_EVENT_VF_PF_CHANNEL: 4067 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 4068 &data->vf_pf_channel.msg_addr); 4069 case COMMON_EVENT_MALICIOUS_VF: 4070 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 4071 return 0; 4072 default: 4073 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 4074 opcode); 4075 return -EINVAL; 4076 } 4077 } 4078 4079 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4080 { 4081 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 4082 u16 i; 4083 4084 if (!p_iov) 4085 goto out; 4086 4087 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4088 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4089 return i; 4090 4091 out: 4092 return MAX_NUM_VFS; 4093 } 4094 4095 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 4096 int vfid) 4097 { 4098 struct qed_dmae_params params; 4099 struct qed_vf_info *vf_info; 4100 4101 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4102 if (!vf_info) 4103 return -EINVAL; 4104 4105 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 4106 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 4107 params.src_vfid = vf_info->abs_vf_id; 4108 4109 if (qed_dmae_host2host(p_hwfn, ptt, 4110 vf_info->vf_mbx.pending_req, 4111 vf_info->vf_mbx.req_phys, 4112 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 4113 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4114 "Failed to copy message from VF 0x%02x\n", vfid); 4115 4116 return -EIO; 4117 } 4118 4119 return 0; 4120 } 4121 4122 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 4123 u8 *mac, int vfid) 4124 { 4125 struct qed_vf_info *vf_info; 4126 u64 feature; 4127 4128 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4129 if (!vf_info) { 4130 DP_NOTICE(p_hwfn->cdev, 4131 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4132 return; 4133 } 4134 4135 if (vf_info->b_malicious) { 4136 DP_NOTICE(p_hwfn->cdev, 4137 "Can't set forced MAC to malicious VF [%d]\n", vfid); 4138 return; 4139 } 4140 4141 if (vf_info->p_vf_info.is_trusted_configured) { 4142 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4143 /* Trust mode will disable Forced MAC */ 4144 vf_info->bulletin.p_virt->valid_bitmap &= 4145 ~BIT(MAC_ADDR_FORCED); 4146 } else { 4147 feature = BIT(MAC_ADDR_FORCED); 4148 /* Forced MAC will disable MAC_ADDR */ 4149 vf_info->bulletin.p_virt->valid_bitmap &= 4150 ~BIT(VFPF_BULLETIN_MAC_ADDR); 4151 } 4152 4153 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 4154 4155 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4156 4157 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4158 } 4159 4160 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) 4161 { 4162 struct qed_vf_info *vf_info; 4163 u64 feature; 4164 4165 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4166 if (!vf_info) { 4167 DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n", 4168 vfid); 4169 return -EINVAL; 4170 } 4171 4172 if (vf_info->b_malicious) { 4173 DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n", 4174 vfid); 4175 return -EINVAL; 4176 } 4177 4178 if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) { 4179 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4180 "Can not set MAC, Forced MAC is configured\n"); 4181 return -EINVAL; 4182 } 4183 4184 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4185 ether_addr_copy(vf_info->bulletin.p_virt->mac, mac); 4186 4187 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4188 4189 if (vf_info->p_vf_info.is_trusted_configured) 4190 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4191 4192 return 0; 4193 } 4194 4195 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 4196 u16 pvid, int vfid) 4197 { 4198 struct qed_vf_info *vf_info; 4199 u64 feature; 4200 4201 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4202 if (!vf_info) { 4203 DP_NOTICE(p_hwfn->cdev, 4204 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4205 return; 4206 } 4207 4208 if (vf_info->b_malicious) { 4209 DP_NOTICE(p_hwfn->cdev, 4210 "Can't set forced vlan to malicious VF [%d]\n", vfid); 4211 return; 4212 } 4213 4214 feature = 1 << VLAN_ADDR_FORCED; 4215 vf_info->bulletin.p_virt->pvid = pvid; 4216 if (pvid) 4217 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4218 else 4219 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4220 4221 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4222 } 4223 4224 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 4225 int vfid, u16 vxlan_port, u16 geneve_port) 4226 { 4227 struct qed_vf_info *vf_info; 4228 4229 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4230 if (!vf_info) { 4231 DP_NOTICE(p_hwfn->cdev, 4232 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4233 return; 4234 } 4235 4236 if (vf_info->b_malicious) { 4237 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4238 "Can not set udp ports to malicious VF [%d]\n", 4239 vfid); 4240 return; 4241 } 4242 4243 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4244 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4245 } 4246 4247 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 4248 { 4249 struct qed_vf_info *p_vf_info; 4250 4251 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4252 if (!p_vf_info) 4253 return false; 4254 4255 return !!p_vf_info->vport_instance; 4256 } 4257 4258 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 4259 { 4260 struct qed_vf_info *p_vf_info; 4261 4262 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4263 if (!p_vf_info) 4264 return true; 4265 4266 return p_vf_info->state == VF_STOPPED; 4267 } 4268 4269 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 4270 { 4271 struct qed_vf_info *vf_info; 4272 4273 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4274 if (!vf_info) 4275 return false; 4276 4277 return vf_info->spoof_chk; 4278 } 4279 4280 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 4281 { 4282 struct qed_vf_info *vf; 4283 int rc = -EINVAL; 4284 4285 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4286 DP_NOTICE(p_hwfn, 4287 "SR-IOV sanity check failed, can't set spoofchk\n"); 4288 goto out; 4289 } 4290 4291 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4292 if (!vf) 4293 goto out; 4294 4295 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4296 /* After VF VPORT start PF will configure spoof check */ 4297 vf->req_spoofchk_val = val; 4298 rc = 0; 4299 goto out; 4300 } 4301 4302 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 4303 4304 out: 4305 return rc; 4306 } 4307 4308 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4309 { 4310 struct qed_vf_info *p_vf; 4311 4312 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4313 if (!p_vf || !p_vf->bulletin.p_virt) 4314 return NULL; 4315 4316 if (!(p_vf->bulletin.p_virt->valid_bitmap & 4317 BIT(VFPF_BULLETIN_MAC_ADDR))) 4318 return NULL; 4319 4320 return p_vf->bulletin.p_virt->mac; 4321 } 4322 4323 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 4324 u16 rel_vf_id) 4325 { 4326 struct qed_vf_info *p_vf; 4327 4328 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4329 if (!p_vf || !p_vf->bulletin.p_virt) 4330 return NULL; 4331 4332 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 4333 return NULL; 4334 4335 return p_vf->bulletin.p_virt->mac; 4336 } 4337 4338 static u16 4339 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4340 { 4341 struct qed_vf_info *p_vf; 4342 4343 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4344 if (!p_vf || !p_vf->bulletin.p_virt) 4345 return 0; 4346 4347 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 4348 return 0; 4349 4350 return p_vf->bulletin.p_virt->pvid; 4351 } 4352 4353 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 4354 struct qed_ptt *p_ptt, int vfid, int val) 4355 { 4356 struct qed_mcp_link_state *p_link; 4357 struct qed_vf_info *vf; 4358 u8 abs_vp_id = 0; 4359 int rc; 4360 4361 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4362 if (!vf) 4363 return -EINVAL; 4364 4365 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4366 if (rc) 4367 return rc; 4368 4369 p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output; 4370 4371 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val, 4372 p_link->speed); 4373 } 4374 4375 static int 4376 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 4377 { 4378 struct qed_vf_info *vf; 4379 u8 vport_id; 4380 int i; 4381 4382 for_each_hwfn(cdev, i) { 4383 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4384 4385 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4386 DP_NOTICE(p_hwfn, 4387 "SR-IOV sanity check failed, can't set min rate\n"); 4388 return -EINVAL; 4389 } 4390 } 4391 4392 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 4393 vport_id = vf->vport_id; 4394 4395 return qed_configure_vport_wfq(cdev, vport_id, rate); 4396 } 4397 4398 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 4399 { 4400 struct qed_wfq_data *vf_vp_wfq; 4401 struct qed_vf_info *vf_info; 4402 4403 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4404 if (!vf_info) 4405 return 0; 4406 4407 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4408 4409 if (vf_vp_wfq->configured) 4410 return vf_vp_wfq->min_speed; 4411 else 4412 return 0; 4413 } 4414 4415 /** 4416 * qed_schedule_iov - schedules IOV task for VF and PF 4417 * @hwfn: hardware function pointer 4418 * @flag: IOV flag for VF/PF 4419 */ 4420 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 4421 { 4422 smp_mb__before_atomic(); 4423 set_bit(flag, &hwfn->iov_task_flags); 4424 smp_mb__after_atomic(); 4425 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 4426 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 4427 } 4428 4429 void qed_vf_start_iov_wq(struct qed_dev *cdev) 4430 { 4431 int i; 4432 4433 for_each_hwfn(cdev, i) 4434 queue_delayed_work(cdev->hwfns[i].iov_wq, 4435 &cdev->hwfns[i].iov_task, 0); 4436 } 4437 4438 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 4439 { 4440 int i, j; 4441 4442 for_each_hwfn(cdev, i) 4443 if (cdev->hwfns[i].iov_wq) 4444 flush_workqueue(cdev->hwfns[i].iov_wq); 4445 4446 /* Mark VFs for disablement */ 4447 qed_iov_set_vfs_to_disable(cdev, true); 4448 4449 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 4450 pci_disable_sriov(cdev->pdev); 4451 4452 if (cdev->recov_in_prog) { 4453 DP_VERBOSE(cdev, 4454 QED_MSG_IOV, 4455 "Skip SRIOV disable operations in the device since a recovery is in progress\n"); 4456 goto out; 4457 } 4458 4459 for_each_hwfn(cdev, i) { 4460 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4461 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4462 4463 /* Failure to acquire the ptt in 100g creates an odd error 4464 * where the first engine has already relased IOV. 4465 */ 4466 if (!ptt) { 4467 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4468 return -EBUSY; 4469 } 4470 4471 /* Clean WFQ db and configure equal weight for all vports */ 4472 qed_clean_wfq_db(hwfn, ptt); 4473 4474 qed_for_each_vf(hwfn, j) { 4475 int k; 4476 4477 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 4478 continue; 4479 4480 /* Wait until VF is disabled before releasing */ 4481 for (k = 0; k < 100; k++) { 4482 if (!qed_iov_is_vf_stopped(hwfn, j)) 4483 msleep(20); 4484 else 4485 break; 4486 } 4487 4488 if (k < 100) 4489 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 4490 ptt, j); 4491 else 4492 DP_ERR(hwfn, 4493 "Timeout waiting for VF's FLR to end\n"); 4494 } 4495 4496 qed_ptt_release(hwfn, ptt); 4497 } 4498 out: 4499 qed_iov_set_vfs_to_disable(cdev, false); 4500 4501 return 0; 4502 } 4503 4504 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 4505 u16 vfid, 4506 struct qed_iov_vf_init_params *params) 4507 { 4508 u16 base, i; 4509 4510 /* Since we have an equal resource distribution per-VF, and we assume 4511 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 4512 * sequentially from there. 4513 */ 4514 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 4515 4516 params->rel_vf_id = vfid; 4517 for (i = 0; i < params->num_queues; i++) { 4518 params->req_rx_queue[i] = base + i; 4519 params->req_tx_queue[i] = base + i; 4520 } 4521 } 4522 4523 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4524 { 4525 struct qed_iov_vf_init_params params; 4526 struct qed_hwfn *hwfn; 4527 struct qed_ptt *ptt; 4528 int i, j, rc; 4529 4530 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4531 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4532 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4533 return -EINVAL; 4534 } 4535 4536 memset(¶ms, 0, sizeof(params)); 4537 4538 /* Initialize HW for VF access */ 4539 for_each_hwfn(cdev, j) { 4540 hwfn = &cdev->hwfns[j]; 4541 ptt = qed_ptt_acquire(hwfn); 4542 4543 /* Make sure not to use more than 16 queues per VF */ 4544 params.num_queues = min_t(int, 4545 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4546 16); 4547 4548 if (!ptt) { 4549 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4550 rc = -EBUSY; 4551 goto err; 4552 } 4553 4554 for (i = 0; i < num; i++) { 4555 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4556 continue; 4557 4558 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4559 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4560 if (rc) { 4561 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4562 qed_ptt_release(hwfn, ptt); 4563 goto err; 4564 } 4565 } 4566 4567 qed_ptt_release(hwfn, ptt); 4568 } 4569 4570 /* Enable SRIOV PCIe functions */ 4571 rc = pci_enable_sriov(cdev->pdev, num); 4572 if (rc) { 4573 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4574 goto err; 4575 } 4576 4577 hwfn = QED_LEADING_HWFN(cdev); 4578 ptt = qed_ptt_acquire(hwfn); 4579 if (!ptt) { 4580 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4581 rc = -EBUSY; 4582 goto err; 4583 } 4584 4585 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB); 4586 if (rc) 4587 DP_INFO(cdev, "Failed to update eswitch mode\n"); 4588 qed_ptt_release(hwfn, ptt); 4589 4590 return num; 4591 4592 err: 4593 qed_sriov_disable(cdev, false); 4594 return rc; 4595 } 4596 4597 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4598 { 4599 if (!IS_QED_SRIOV(cdev)) { 4600 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4601 return -EOPNOTSUPP; 4602 } 4603 4604 if (num_vfs_param) 4605 return qed_sriov_enable(cdev, num_vfs_param); 4606 else 4607 return qed_sriov_disable(cdev, true); 4608 } 4609 4610 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4611 { 4612 int i; 4613 4614 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4615 DP_VERBOSE(cdev, QED_MSG_IOV, 4616 "Cannot set a VF MAC; Sriov is not enabled\n"); 4617 return -EINVAL; 4618 } 4619 4620 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4621 DP_VERBOSE(cdev, QED_MSG_IOV, 4622 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4623 return -EINVAL; 4624 } 4625 4626 for_each_hwfn(cdev, i) { 4627 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4628 struct qed_public_vf_info *vf_info; 4629 4630 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4631 if (!vf_info) 4632 continue; 4633 4634 /* Set the MAC, and schedule the IOV task */ 4635 if (vf_info->is_trusted_configured) 4636 ether_addr_copy(vf_info->mac, mac); 4637 else 4638 ether_addr_copy(vf_info->forced_mac, mac); 4639 4640 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4641 } 4642 4643 return 0; 4644 } 4645 4646 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4647 { 4648 int i; 4649 4650 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4651 DP_VERBOSE(cdev, QED_MSG_IOV, 4652 "Cannot set a VF MAC; Sriov is not enabled\n"); 4653 return -EINVAL; 4654 } 4655 4656 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4657 DP_VERBOSE(cdev, QED_MSG_IOV, 4658 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4659 return -EINVAL; 4660 } 4661 4662 for_each_hwfn(cdev, i) { 4663 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4664 struct qed_public_vf_info *vf_info; 4665 4666 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4667 if (!vf_info) 4668 continue; 4669 4670 /* Set the forced vlan, and schedule the IOV task */ 4671 vf_info->forced_vlan = vid; 4672 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4673 } 4674 4675 return 0; 4676 } 4677 4678 static int qed_get_vf_config(struct qed_dev *cdev, 4679 int vf_id, struct ifla_vf_info *ivi) 4680 { 4681 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4682 struct qed_public_vf_info *vf_info; 4683 struct qed_mcp_link_state link; 4684 u32 tx_rate; 4685 4686 /* Sanitize request */ 4687 if (IS_VF(cdev)) 4688 return -EINVAL; 4689 4690 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4691 DP_VERBOSE(cdev, QED_MSG_IOV, 4692 "VF index [%d] isn't active\n", vf_id); 4693 return -EINVAL; 4694 } 4695 4696 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4697 4698 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4699 4700 /* Fill information about VF */ 4701 ivi->vf = vf_id; 4702 4703 if (is_valid_ether_addr(vf_info->forced_mac)) 4704 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4705 else 4706 ether_addr_copy(ivi->mac, vf_info->mac); 4707 4708 ivi->vlan = vf_info->forced_vlan; 4709 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4710 ivi->linkstate = vf_info->link_state; 4711 tx_rate = vf_info->tx_rate; 4712 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4713 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4714 4715 return 0; 4716 } 4717 4718 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4719 { 4720 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4721 struct qed_mcp_link_capabilities caps; 4722 struct qed_mcp_link_params params; 4723 struct qed_mcp_link_state link; 4724 int i; 4725 4726 if (!hwfn->pf_iov_info) 4727 return; 4728 4729 /* Update bulletin of all future possible VFs with link configuration */ 4730 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4731 struct qed_public_vf_info *vf_info; 4732 4733 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4734 if (!vf_info) 4735 continue; 4736 4737 /* Only hwfn0 is actually interested in the link speed. 4738 * But since only it would receive an MFW indication of link, 4739 * need to take configuration from it - otherwise things like 4740 * rate limiting for hwfn1 VF would not work. 4741 */ 4742 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4743 sizeof(params)); 4744 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4745 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4746 sizeof(caps)); 4747 4748 /* Modify link according to the VF's configured link state */ 4749 switch (vf_info->link_state) { 4750 case IFLA_VF_LINK_STATE_DISABLE: 4751 link.link_up = false; 4752 break; 4753 case IFLA_VF_LINK_STATE_ENABLE: 4754 link.link_up = true; 4755 /* Set speed according to maximum supported by HW. 4756 * that is 40G for regular devices and 100G for CMT 4757 * mode devices. 4758 */ 4759 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4760 100000 : 40000; 4761 default: 4762 /* In auto mode pass PF link image to VF */ 4763 break; 4764 } 4765 4766 if (link.link_up && vf_info->tx_rate) { 4767 struct qed_ptt *ptt; 4768 int rate; 4769 4770 rate = min_t(int, vf_info->tx_rate, link.speed); 4771 4772 ptt = qed_ptt_acquire(hwfn); 4773 if (!ptt) { 4774 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4775 return; 4776 } 4777 4778 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4779 vf_info->tx_rate = rate; 4780 link.speed = rate; 4781 } 4782 4783 qed_ptt_release(hwfn, ptt); 4784 } 4785 4786 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4787 } 4788 4789 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4790 } 4791 4792 static int qed_set_vf_link_state(struct qed_dev *cdev, 4793 int vf_id, int link_state) 4794 { 4795 int i; 4796 4797 /* Sanitize request */ 4798 if (IS_VF(cdev)) 4799 return -EINVAL; 4800 4801 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4802 DP_VERBOSE(cdev, QED_MSG_IOV, 4803 "VF index [%d] isn't active\n", vf_id); 4804 return -EINVAL; 4805 } 4806 4807 /* Handle configuration of link state */ 4808 for_each_hwfn(cdev, i) { 4809 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4810 struct qed_public_vf_info *vf; 4811 4812 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4813 if (!vf) 4814 continue; 4815 4816 if (vf->link_state == link_state) 4817 continue; 4818 4819 vf->link_state = link_state; 4820 qed_inform_vf_link_state(&cdev->hwfns[i]); 4821 } 4822 4823 return 0; 4824 } 4825 4826 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4827 { 4828 int i, rc = -EINVAL; 4829 4830 for_each_hwfn(cdev, i) { 4831 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4832 4833 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4834 if (rc) 4835 break; 4836 } 4837 4838 return rc; 4839 } 4840 4841 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4842 { 4843 int i; 4844 4845 for_each_hwfn(cdev, i) { 4846 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4847 struct qed_public_vf_info *vf; 4848 4849 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4850 DP_NOTICE(p_hwfn, 4851 "SR-IOV sanity check failed, can't set tx rate\n"); 4852 return -EINVAL; 4853 } 4854 4855 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4856 4857 vf->tx_rate = rate; 4858 4859 qed_inform_vf_link_state(p_hwfn); 4860 } 4861 4862 return 0; 4863 } 4864 4865 static int qed_set_vf_rate(struct qed_dev *cdev, 4866 int vfid, u32 min_rate, u32 max_rate) 4867 { 4868 int rc_min = 0, rc_max = 0; 4869 4870 if (max_rate) 4871 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4872 4873 if (min_rate) 4874 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4875 4876 if (rc_max | rc_min) 4877 return -EINVAL; 4878 4879 return 0; 4880 } 4881 4882 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4883 { 4884 int i; 4885 4886 for_each_hwfn(cdev, i) { 4887 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4888 struct qed_public_vf_info *vf; 4889 4890 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4891 DP_NOTICE(hwfn, 4892 "SR-IOV sanity check failed, can't set trust\n"); 4893 return -EINVAL; 4894 } 4895 4896 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4897 4898 if (vf->is_trusted_request == trust) 4899 return 0; 4900 vf->is_trusted_request = trust; 4901 4902 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4903 } 4904 4905 return 0; 4906 } 4907 4908 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4909 { 4910 u64 events[QED_VF_ARRAY_LENGTH]; 4911 struct qed_ptt *ptt; 4912 int i; 4913 4914 ptt = qed_ptt_acquire(hwfn); 4915 if (!ptt) { 4916 DP_VERBOSE(hwfn, QED_MSG_IOV, 4917 "Can't acquire PTT; re-scheduling\n"); 4918 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4919 return; 4920 } 4921 4922 qed_iov_pf_get_pending_events(hwfn, events); 4923 4924 DP_VERBOSE(hwfn, QED_MSG_IOV, 4925 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4926 events[0], events[1], events[2]); 4927 4928 qed_for_each_vf(hwfn, i) { 4929 /* Skip VFs with no pending messages */ 4930 if (!(events[i / 64] & (1ULL << (i % 64)))) 4931 continue; 4932 4933 DP_VERBOSE(hwfn, QED_MSG_IOV, 4934 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4935 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4936 4937 /* Copy VF's message to PF's request buffer for that VF */ 4938 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4939 continue; 4940 4941 qed_iov_process_mbx_req(hwfn, ptt, i); 4942 } 4943 4944 qed_ptt_release(hwfn, ptt); 4945 } 4946 4947 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn, 4948 u8 *mac, 4949 struct qed_public_vf_info *info) 4950 { 4951 if (info->is_trusted_configured) { 4952 if (is_valid_ether_addr(info->mac) && 4953 (!mac || !ether_addr_equal(mac, info->mac))) 4954 return true; 4955 } else { 4956 if (is_valid_ether_addr(info->forced_mac) && 4957 (!mac || !ether_addr_equal(mac, info->forced_mac))) 4958 return true; 4959 } 4960 4961 return false; 4962 } 4963 4964 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn, 4965 struct qed_public_vf_info *info, 4966 int vfid) 4967 { 4968 if (info->is_trusted_configured) 4969 qed_iov_bulletin_set_mac(hwfn, info->mac, vfid); 4970 else 4971 qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid); 4972 } 4973 4974 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4975 { 4976 int i; 4977 4978 qed_for_each_vf(hwfn, i) { 4979 struct qed_public_vf_info *info; 4980 bool update = false; 4981 u8 *mac; 4982 4983 info = qed_iov_get_public_vf_info(hwfn, i, true); 4984 if (!info) 4985 continue; 4986 4987 /* Update data on bulletin board */ 4988 if (info->is_trusted_configured) 4989 mac = qed_iov_bulletin_get_mac(hwfn, i); 4990 else 4991 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4992 4993 if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) { 4994 DP_VERBOSE(hwfn, 4995 QED_MSG_IOV, 4996 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4997 i, 4998 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4999 5000 /* Update bulletin board with MAC */ 5001 qed_set_bulletin_mac(hwfn, info, i); 5002 update = true; 5003 } 5004 5005 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 5006 info->forced_vlan) { 5007 DP_VERBOSE(hwfn, 5008 QED_MSG_IOV, 5009 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 5010 info->forced_vlan, 5011 i, 5012 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 5013 qed_iov_bulletin_set_forced_vlan(hwfn, 5014 info->forced_vlan, i); 5015 update = true; 5016 } 5017 5018 if (update) 5019 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5020 } 5021 } 5022 5023 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 5024 { 5025 struct qed_ptt *ptt; 5026 int i; 5027 5028 ptt = qed_ptt_acquire(hwfn); 5029 if (!ptt) { 5030 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 5031 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5032 return; 5033 } 5034 5035 qed_for_each_vf(hwfn, i) 5036 qed_iov_post_vf_bulletin(hwfn, i, ptt); 5037 5038 qed_ptt_release(hwfn, ptt); 5039 } 5040 5041 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id) 5042 { 5043 struct qed_public_vf_info *vf_info; 5044 struct qed_vf_info *vf; 5045 u8 *force_mac; 5046 int i; 5047 5048 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 5049 vf = qed_iov_get_vf_info(hwfn, vf_id, true); 5050 5051 if (!vf_info || !vf) 5052 return; 5053 5054 /* Force MAC converted to generic MAC in case of VF trust on */ 5055 if (vf_info->is_trusted_configured && 5056 (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) { 5057 force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id); 5058 5059 if (force_mac) { 5060 /* Clear existing shadow copy of MAC to have a clean 5061 * slate. 5062 */ 5063 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5064 if (ether_addr_equal(vf->shadow_config.macs[i], 5065 vf_info->mac)) { 5066 memset(vf->shadow_config.macs[i], 0, 5067 ETH_ALEN); 5068 DP_VERBOSE(hwfn, QED_MSG_IOV, 5069 "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n", 5070 vf_info->mac, vf_id); 5071 break; 5072 } 5073 } 5074 5075 ether_addr_copy(vf_info->mac, force_mac); 5076 memset(vf_info->forced_mac, 0, ETH_ALEN); 5077 vf->bulletin.p_virt->valid_bitmap &= 5078 ~BIT(MAC_ADDR_FORCED); 5079 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5080 } 5081 } 5082 5083 /* Update shadow copy with VF MAC when trust mode is turned off */ 5084 if (!vf_info->is_trusted_configured) { 5085 u8 empty_mac[ETH_ALEN]; 5086 5087 memset(empty_mac, 0, ETH_ALEN); 5088 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5089 if (ether_addr_equal(vf->shadow_config.macs[i], 5090 empty_mac)) { 5091 ether_addr_copy(vf->shadow_config.macs[i], 5092 vf_info->mac); 5093 DP_VERBOSE(hwfn, QED_MSG_IOV, 5094 "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n", 5095 vf_info->mac, vf_id); 5096 break; 5097 } 5098 } 5099 /* Clear bulletin when trust mode is turned off, 5100 * to have a clean slate for next (normal) operations. 5101 */ 5102 qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id); 5103 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5104 } 5105 } 5106 5107 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 5108 { 5109 struct qed_sp_vport_update_params params; 5110 struct qed_filter_accept_flags *flags; 5111 struct qed_public_vf_info *vf_info; 5112 struct qed_vf_info *vf; 5113 u8 mask; 5114 int i; 5115 5116 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 5117 flags = ¶ms.accept_flags; 5118 5119 qed_for_each_vf(hwfn, i) { 5120 /* Need to make sure current requested configuration didn't 5121 * flip so that we'll end up configuring something that's not 5122 * needed. 5123 */ 5124 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 5125 if (vf_info->is_trusted_configured == 5126 vf_info->is_trusted_request) 5127 continue; 5128 vf_info->is_trusted_configured = vf_info->is_trusted_request; 5129 5130 /* Handle forced MAC mode */ 5131 qed_update_mac_for_vf_trust_change(hwfn, i); 5132 5133 /* Validate that the VF has a configured vport */ 5134 vf = qed_iov_get_vf_info(hwfn, i, true); 5135 if (!vf->vport_instance) 5136 continue; 5137 5138 memset(¶ms, 0, sizeof(params)); 5139 params.opaque_fid = vf->opaque_fid; 5140 params.vport_id = vf->vport_id; 5141 5142 params.update_ctl_frame_check = 1; 5143 params.mac_chk_en = !vf_info->is_trusted_configured; 5144 5145 if (vf_info->rx_accept_mode & mask) { 5146 flags->update_rx_mode_config = 1; 5147 flags->rx_accept_filter = vf_info->rx_accept_mode; 5148 } 5149 5150 if (vf_info->tx_accept_mode & mask) { 5151 flags->update_tx_mode_config = 1; 5152 flags->tx_accept_filter = vf_info->tx_accept_mode; 5153 } 5154 5155 /* Remove if needed; Otherwise this would set the mask */ 5156 if (!vf_info->is_trusted_configured) { 5157 flags->rx_accept_filter &= ~mask; 5158 flags->tx_accept_filter &= ~mask; 5159 } 5160 5161 if (flags->update_rx_mode_config || 5162 flags->update_tx_mode_config || 5163 params.update_ctl_frame_check) 5164 qed_sp_vport_update(hwfn, ¶ms, 5165 QED_SPQ_MODE_EBLOCK, NULL); 5166 } 5167 } 5168 5169 static void qed_iov_pf_task(struct work_struct *work) 5170 5171 { 5172 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 5173 iov_task.work); 5174 int rc; 5175 5176 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 5177 return; 5178 5179 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 5180 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 5181 5182 if (!ptt) { 5183 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5184 return; 5185 } 5186 5187 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 5188 if (rc) 5189 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5190 5191 qed_ptt_release(hwfn, ptt); 5192 } 5193 5194 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 5195 qed_handle_vf_msg(hwfn); 5196 5197 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 5198 &hwfn->iov_task_flags)) 5199 qed_handle_pf_set_vf_unicast(hwfn); 5200 5201 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 5202 &hwfn->iov_task_flags)) 5203 qed_handle_bulletin_post(hwfn); 5204 5205 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 5206 qed_iov_handle_trust_change(hwfn); 5207 } 5208 5209 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 5210 { 5211 int i; 5212 5213 for_each_hwfn(cdev, i) { 5214 if (!cdev->hwfns[i].iov_wq) 5215 continue; 5216 5217 if (schedule_first) { 5218 qed_schedule_iov(&cdev->hwfns[i], 5219 QED_IOV_WQ_STOP_WQ_FLAG); 5220 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 5221 } 5222 5223 flush_workqueue(cdev->hwfns[i].iov_wq); 5224 destroy_workqueue(cdev->hwfns[i].iov_wq); 5225 } 5226 } 5227 5228 int qed_iov_wq_start(struct qed_dev *cdev) 5229 { 5230 char name[NAME_SIZE]; 5231 int i; 5232 5233 for_each_hwfn(cdev, i) { 5234 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 5235 5236 /* PFs needs a dedicated workqueue only if they support IOV. 5237 * VFs always require one. 5238 */ 5239 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 5240 continue; 5241 5242 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 5243 cdev->pdev->bus->number, 5244 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 5245 5246 p_hwfn->iov_wq = create_singlethread_workqueue(name); 5247 if (!p_hwfn->iov_wq) { 5248 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 5249 return -ENOMEM; 5250 } 5251 5252 if (IS_PF(cdev)) 5253 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 5254 else 5255 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 5256 } 5257 5258 return 0; 5259 } 5260 5261 const struct qed_iov_hv_ops qed_iov_ops_pass = { 5262 .configure = &qed_sriov_configure, 5263 .set_mac = &qed_sriov_pf_set_mac, 5264 .set_vlan = &qed_sriov_pf_set_vlan, 5265 .get_config = &qed_get_vf_config, 5266 .set_link_state = &qed_set_vf_link_state, 5267 .set_spoof = &qed_spoof_configure, 5268 .set_rate = &qed_set_vf_rate, 5269 .set_trust = &qed_set_vf_trust, 5270 }; 5271