1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/etherdevice.h> 8 #include <linux/crc32.h> 9 #include <linux/vmalloc.h> 10 #include <linux/crash_dump.h> 11 #include <linux/qed/qed_iov_if.h> 12 #include "qed_cxt.h" 13 #include "qed_hsi.h" 14 #include "qed_hw.h" 15 #include "qed_init_ops.h" 16 #include "qed_int.h" 17 #include "qed_mcp.h" 18 #include "qed_reg_addr.h" 19 #include "qed_sp.h" 20 #include "qed_sriov.h" 21 #include "qed_vf.h" 22 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 23 u8 opcode, 24 __le16 echo, 25 union event_ring_data *data, u8 fw_return_code); 26 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid); 27 28 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) 29 { 30 u8 legacy = 0; 31 32 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 33 ETH_HSI_VER_NO_PKT_LEN_TUNN) 34 legacy |= QED_QCID_LEGACY_VF_RX_PROD; 35 36 if (!(p_vf->acquire.vfdev_info.capabilities & 37 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 38 legacy |= QED_QCID_LEGACY_VF_CID; 39 40 return legacy; 41 } 42 43 /* IOV ramrods */ 44 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 45 { 46 struct vf_start_ramrod_data *p_ramrod = NULL; 47 struct qed_spq_entry *p_ent = NULL; 48 struct qed_sp_init_data init_data; 49 int rc = -EINVAL; 50 u8 fp_minor; 51 52 /* Get SPQ entry */ 53 memset(&init_data, 0, sizeof(init_data)); 54 init_data.cid = qed_spq_get_cid(p_hwfn); 55 init_data.opaque_fid = p_vf->opaque_fid; 56 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 57 58 rc = qed_sp_init_request(p_hwfn, &p_ent, 59 COMMON_RAMROD_VF_START, 60 PROTOCOLID_COMMON, &init_data); 61 if (rc) 62 return rc; 63 64 p_ramrod = &p_ent->ramrod.vf_start; 65 66 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 67 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 68 69 switch (p_hwfn->hw_info.personality) { 70 case QED_PCI_ETH: 71 p_ramrod->personality = PERSONALITY_ETH; 72 break; 73 case QED_PCI_ETH_ROCE: 74 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 75 break; 76 default: 77 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 78 p_hwfn->hw_info.personality); 79 qed_sp_destroy_request(p_hwfn, p_ent); 80 return -EINVAL; 81 } 82 83 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 84 if (fp_minor > ETH_HSI_VER_MINOR && 85 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 86 DP_VERBOSE(p_hwfn, 87 QED_MSG_IOV, 88 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 89 p_vf->abs_vf_id, 90 ETH_HSI_VER_MAJOR, 91 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 92 fp_minor = ETH_HSI_VER_MINOR; 93 } 94 95 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 96 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 97 98 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 99 "VF[%d] - Starting using HSI %02x.%02x\n", 100 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 101 102 return qed_spq_post(p_hwfn, p_ent, NULL); 103 } 104 105 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 106 u32 concrete_vfid, u16 opaque_vfid) 107 { 108 struct vf_stop_ramrod_data *p_ramrod = NULL; 109 struct qed_spq_entry *p_ent = NULL; 110 struct qed_sp_init_data init_data; 111 int rc = -EINVAL; 112 113 /* Get SPQ entry */ 114 memset(&init_data, 0, sizeof(init_data)); 115 init_data.cid = qed_spq_get_cid(p_hwfn); 116 init_data.opaque_fid = opaque_vfid; 117 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 118 119 rc = qed_sp_init_request(p_hwfn, &p_ent, 120 COMMON_RAMROD_VF_STOP, 121 PROTOCOLID_COMMON, &init_data); 122 if (rc) 123 return rc; 124 125 p_ramrod = &p_ent->ramrod.vf_stop; 126 127 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 128 129 return qed_spq_post(p_hwfn, p_ent, NULL); 130 } 131 132 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 133 int rel_vf_id, 134 bool b_enabled_only, bool b_non_malicious) 135 { 136 if (!p_hwfn->pf_iov_info) { 137 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 138 return false; 139 } 140 141 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 142 (rel_vf_id < 0)) 143 return false; 144 145 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 146 b_enabled_only) 147 return false; 148 149 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 150 b_non_malicious) 151 return false; 152 153 return true; 154 } 155 156 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 157 u16 relative_vf_id, 158 bool b_enabled_only) 159 { 160 struct qed_vf_info *vf = NULL; 161 162 if (!p_hwfn->pf_iov_info) { 163 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 164 return NULL; 165 } 166 167 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 168 b_enabled_only, false)) 169 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 170 else 171 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 172 relative_vf_id); 173 174 return vf; 175 } 176 177 static struct qed_queue_cid * 178 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) 179 { 180 int i; 181 182 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 183 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) 184 return p_queue->cids[i].p_cid; 185 } 186 187 return NULL; 188 } 189 190 enum qed_iov_validate_q_mode { 191 QED_IOV_VALIDATE_Q_NA, 192 QED_IOV_VALIDATE_Q_ENABLE, 193 QED_IOV_VALIDATE_Q_DISABLE, 194 }; 195 196 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 197 struct qed_vf_info *p_vf, 198 u16 qid, 199 enum qed_iov_validate_q_mode mode, 200 bool b_is_tx) 201 { 202 int i; 203 204 if (mode == QED_IOV_VALIDATE_Q_NA) 205 return true; 206 207 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 208 struct qed_vf_queue_cid *p_qcid; 209 210 p_qcid = &p_vf->vf_queues[qid].cids[i]; 211 212 if (!p_qcid->p_cid) 213 continue; 214 215 if (p_qcid->b_is_tx != b_is_tx) 216 continue; 217 218 return mode == QED_IOV_VALIDATE_Q_ENABLE; 219 } 220 221 /* In case we haven't found any valid cid, then its disabled */ 222 return mode == QED_IOV_VALIDATE_Q_DISABLE; 223 } 224 225 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 226 struct qed_vf_info *p_vf, 227 u16 rx_qid, 228 enum qed_iov_validate_q_mode mode) 229 { 230 if (rx_qid >= p_vf->num_rxqs) { 231 DP_VERBOSE(p_hwfn, 232 QED_MSG_IOV, 233 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 234 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 235 return false; 236 } 237 238 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 239 } 240 241 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 242 struct qed_vf_info *p_vf, 243 u16 tx_qid, 244 enum qed_iov_validate_q_mode mode) 245 { 246 if (tx_qid >= p_vf->num_txqs) { 247 DP_VERBOSE(p_hwfn, 248 QED_MSG_IOV, 249 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 250 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 251 return false; 252 } 253 254 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 255 } 256 257 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 258 struct qed_vf_info *p_vf, u16 sb_idx) 259 { 260 int i; 261 262 for (i = 0; i < p_vf->num_sbs; i++) 263 if (p_vf->igu_sbs[i] == sb_idx) 264 return true; 265 266 DP_VERBOSE(p_hwfn, 267 QED_MSG_IOV, 268 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 269 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 270 271 return false; 272 } 273 274 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 275 struct qed_vf_info *p_vf) 276 { 277 u8 i; 278 279 for (i = 0; i < p_vf->num_rxqs; i++) 280 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 281 QED_IOV_VALIDATE_Q_ENABLE, 282 false)) 283 return true; 284 285 return false; 286 } 287 288 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 289 struct qed_vf_info *p_vf) 290 { 291 u8 i; 292 293 for (i = 0; i < p_vf->num_txqs; i++) 294 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 295 QED_IOV_VALIDATE_Q_ENABLE, 296 true)) 297 return true; 298 299 return false; 300 } 301 302 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 303 int vfid, struct qed_ptt *p_ptt) 304 { 305 struct qed_bulletin_content *p_bulletin; 306 int crc_size = sizeof(p_bulletin->crc); 307 struct qed_dmae_params params; 308 struct qed_vf_info *p_vf; 309 310 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 311 if (!p_vf) 312 return -EINVAL; 313 314 if (!p_vf->vf_bulletin) 315 return -EINVAL; 316 317 p_bulletin = p_vf->bulletin.p_virt; 318 319 /* Increment bulletin board version and compute crc */ 320 p_bulletin->version++; 321 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 322 p_vf->bulletin.size - crc_size); 323 324 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 325 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 326 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 327 328 /* propagate bulletin board via dmae to vm memory */ 329 memset(¶ms, 0, sizeof(params)); 330 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); 331 params.dst_vfid = p_vf->abs_vf_id; 332 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 333 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 334 ¶ms); 335 } 336 337 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 338 { 339 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 340 int pos = iov->pos; 341 342 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 343 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 344 345 pci_read_config_word(cdev->pdev, 346 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 347 pci_read_config_word(cdev->pdev, 348 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 349 350 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 351 if (iov->num_vfs) { 352 DP_VERBOSE(cdev, 353 QED_MSG_IOV, 354 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 355 iov->num_vfs = 0; 356 } 357 358 pci_read_config_word(cdev->pdev, 359 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 360 361 pci_read_config_word(cdev->pdev, 362 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 363 364 pci_read_config_word(cdev->pdev, 365 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 366 367 pci_read_config_dword(cdev->pdev, 368 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 369 370 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 371 372 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 373 374 DP_VERBOSE(cdev, 375 QED_MSG_IOV, 376 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 377 iov->nres, 378 iov->cap, 379 iov->ctrl, 380 iov->total_vfs, 381 iov->initial_vfs, 382 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 383 384 /* Some sanity checks */ 385 if (iov->num_vfs > NUM_OF_VFS(cdev) || 386 iov->total_vfs > NUM_OF_VFS(cdev)) { 387 /* This can happen only due to a bug. In this case we set 388 * num_vfs to zero to avoid memory corruption in the code that 389 * assumes max number of vfs 390 */ 391 DP_NOTICE(cdev, 392 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 393 iov->num_vfs); 394 395 iov->num_vfs = 0; 396 iov->total_vfs = 0; 397 } 398 399 return 0; 400 } 401 402 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 403 { 404 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 405 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 406 struct qed_bulletin_content *p_bulletin_virt; 407 dma_addr_t req_p, rply_p, bulletin_p; 408 union pfvf_tlvs *p_reply_virt_addr; 409 union vfpf_tlvs *p_req_virt_addr; 410 u8 idx = 0; 411 412 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 413 414 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 415 req_p = p_iov_info->mbx_msg_phys_addr; 416 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 417 rply_p = p_iov_info->mbx_reply_phys_addr; 418 p_bulletin_virt = p_iov_info->p_bulletins; 419 bulletin_p = p_iov_info->bulletins_phys; 420 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 421 DP_ERR(p_hwfn, 422 "qed_iov_setup_vfdb called without allocating mem first\n"); 423 return; 424 } 425 426 for (idx = 0; idx < p_iov->total_vfs; idx++) { 427 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 428 u32 concrete; 429 430 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 431 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 432 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 433 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 434 435 vf->state = VF_STOPPED; 436 vf->b_init = false; 437 438 vf->bulletin.phys = idx * 439 sizeof(struct qed_bulletin_content) + 440 bulletin_p; 441 vf->bulletin.p_virt = p_bulletin_virt + idx; 442 vf->bulletin.size = sizeof(struct qed_bulletin_content); 443 444 vf->relative_vf_id = idx; 445 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 446 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 447 vf->concrete_fid = concrete; 448 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 449 (vf->abs_vf_id << 8); 450 vf->vport_id = idx + 1; 451 452 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 453 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 454 } 455 } 456 457 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 458 { 459 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 460 void **p_v_addr; 461 u16 num_vfs = 0; 462 463 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 464 465 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 466 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 467 468 /* Allocate PF Mailbox buffer (per-VF) */ 469 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 470 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 471 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 472 p_iov_info->mbx_msg_size, 473 &p_iov_info->mbx_msg_phys_addr, 474 GFP_KERNEL); 475 if (!*p_v_addr) 476 return -ENOMEM; 477 478 /* Allocate PF Mailbox Reply buffer (per-VF) */ 479 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 480 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 481 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 482 p_iov_info->mbx_reply_size, 483 &p_iov_info->mbx_reply_phys_addr, 484 GFP_KERNEL); 485 if (!*p_v_addr) 486 return -ENOMEM; 487 488 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 489 num_vfs; 490 p_v_addr = &p_iov_info->p_bulletins; 491 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 492 p_iov_info->bulletins_size, 493 &p_iov_info->bulletins_phys, 494 GFP_KERNEL); 495 if (!*p_v_addr) 496 return -ENOMEM; 497 498 DP_VERBOSE(p_hwfn, 499 QED_MSG_IOV, 500 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 501 p_iov_info->mbx_msg_virt_addr, 502 (u64) p_iov_info->mbx_msg_phys_addr, 503 p_iov_info->mbx_reply_virt_addr, 504 (u64) p_iov_info->mbx_reply_phys_addr, 505 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 506 507 return 0; 508 } 509 510 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 511 { 512 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 513 514 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 515 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 516 p_iov_info->mbx_msg_size, 517 p_iov_info->mbx_msg_virt_addr, 518 p_iov_info->mbx_msg_phys_addr); 519 520 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 521 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 522 p_iov_info->mbx_reply_size, 523 p_iov_info->mbx_reply_virt_addr, 524 p_iov_info->mbx_reply_phys_addr); 525 526 if (p_iov_info->p_bulletins) 527 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 528 p_iov_info->bulletins_size, 529 p_iov_info->p_bulletins, 530 p_iov_info->bulletins_phys); 531 } 532 533 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 534 { 535 struct qed_pf_iov *p_sriov; 536 537 if (!IS_PF_SRIOV(p_hwfn)) { 538 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 539 "No SR-IOV - no need for IOV db\n"); 540 return 0; 541 } 542 543 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 544 if (!p_sriov) 545 return -ENOMEM; 546 547 p_hwfn->pf_iov_info = p_sriov; 548 549 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 550 qed_sriov_eqe_event); 551 552 return qed_iov_allocate_vfdb(p_hwfn); 553 } 554 555 void qed_iov_setup(struct qed_hwfn *p_hwfn) 556 { 557 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 558 return; 559 560 qed_iov_setup_vfdb(p_hwfn); 561 } 562 563 void qed_iov_free(struct qed_hwfn *p_hwfn) 564 { 565 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 566 567 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 568 qed_iov_free_vfdb(p_hwfn); 569 kfree(p_hwfn->pf_iov_info); 570 } 571 } 572 573 void qed_iov_free_hw_info(struct qed_dev *cdev) 574 { 575 kfree(cdev->p_iov_info); 576 cdev->p_iov_info = NULL; 577 } 578 579 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 580 { 581 struct qed_dev *cdev = p_hwfn->cdev; 582 int pos; 583 int rc; 584 585 if (is_kdump_kernel()) 586 return 0; 587 588 if (IS_VF(p_hwfn->cdev)) 589 return 0; 590 591 /* Learn the PCI configuration */ 592 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 593 PCI_EXT_CAP_ID_SRIOV); 594 if (!pos) { 595 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 596 return 0; 597 } 598 599 /* Allocate a new struct for IOV information */ 600 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 601 if (!cdev->p_iov_info) 602 return -ENOMEM; 603 604 cdev->p_iov_info->pos = pos; 605 606 rc = qed_iov_pci_cfg_info(cdev); 607 if (rc) 608 return rc; 609 610 /* We want PF IOV to be synonemous with the existance of p_iov_info; 611 * In case the capability is published but there are no VFs, simply 612 * de-allocate the struct. 613 */ 614 if (!cdev->p_iov_info->total_vfs) { 615 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 616 "IOV capabilities, but no VFs are published\n"); 617 kfree(cdev->p_iov_info); 618 cdev->p_iov_info = NULL; 619 return 0; 620 } 621 622 /* First VF index based on offset is tricky: 623 * - If ARI is supported [likely], offset - (16 - pf_id) would 624 * provide the number for eng0. 2nd engine Vfs would begin 625 * after the first engine's VFs. 626 * - If !ARI, VFs would start on next device. 627 * so offset - (256 - pf_id) would provide the number. 628 * Utilize the fact that (256 - pf_id) is achieved only by later 629 * to differentiate between the two. 630 */ 631 632 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 633 u32 first = p_hwfn->cdev->p_iov_info->offset + 634 p_hwfn->abs_pf_id - 16; 635 636 cdev->p_iov_info->first_vf_in_pf = first; 637 638 if (QED_PATH_ID(p_hwfn)) 639 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 640 } else { 641 u32 first = p_hwfn->cdev->p_iov_info->offset + 642 p_hwfn->abs_pf_id - 256; 643 644 cdev->p_iov_info->first_vf_in_pf = first; 645 } 646 647 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 648 "First VF in hwfn 0x%08x\n", 649 cdev->p_iov_info->first_vf_in_pf); 650 651 return 0; 652 } 653 654 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 655 int vfid, bool b_fail_malicious) 656 { 657 /* Check PF supports sriov */ 658 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 659 !IS_PF_SRIOV_ALLOC(p_hwfn)) 660 return false; 661 662 /* Check VF validity */ 663 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 664 return false; 665 666 return true; 667 } 668 669 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 670 { 671 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 672 } 673 674 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 675 u16 rel_vf_id, u8 to_disable) 676 { 677 struct qed_vf_info *vf; 678 int i; 679 680 for_each_hwfn(cdev, i) { 681 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 682 683 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 684 if (!vf) 685 continue; 686 687 vf->to_disable = to_disable; 688 } 689 } 690 691 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 692 { 693 u16 i; 694 695 if (!IS_QED_SRIOV(cdev)) 696 return; 697 698 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 699 qed_iov_set_vf_to_disable(cdev, i, to_disable); 700 } 701 702 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 703 struct qed_ptt *p_ptt, u8 abs_vfid) 704 { 705 qed_wr(p_hwfn, p_ptt, 706 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 707 1 << (abs_vfid & 0x1f)); 708 } 709 710 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 711 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 712 { 713 int i; 714 715 /* Set VF masks and configuration - pretend */ 716 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 717 718 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 719 720 /* unpretend */ 721 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 722 723 /* iterate over all queues, clear sb consumer */ 724 for (i = 0; i < vf->num_sbs; i++) 725 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 726 vf->igu_sbs[i], 727 vf->opaque_fid, true); 728 } 729 730 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 731 struct qed_ptt *p_ptt, 732 struct qed_vf_info *vf, bool enable) 733 { 734 u32 igu_vf_conf; 735 736 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 737 738 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 739 740 if (enable) 741 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 742 else 743 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 744 745 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 746 747 /* unpretend */ 748 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 749 } 750 751 static int 752 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, 753 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) 754 { 755 u8 current_max = 0; 756 int i; 757 758 /* For AH onward, configuration is per-PF. Find maximum of all 759 * the currently enabled child VFs, and set the number to be that. 760 */ 761 if (!QED_IS_BB(p_hwfn->cdev)) { 762 qed_for_each_vf(p_hwfn, i) { 763 struct qed_vf_info *p_vf; 764 765 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); 766 if (!p_vf) 767 continue; 768 769 current_max = max_t(u8, current_max, p_vf->num_sbs); 770 } 771 } 772 773 if (num_sbs > current_max) 774 return qed_mcp_config_vf_msix(p_hwfn, p_ptt, 775 abs_vf_id, num_sbs); 776 777 return 0; 778 } 779 780 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 781 struct qed_ptt *p_ptt, 782 struct qed_vf_info *vf) 783 { 784 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 785 int rc; 786 787 /* It's possible VF was previously considered malicious - 788 * clear the indication even if we're only going to disable VF. 789 */ 790 vf->b_malicious = false; 791 792 if (vf->to_disable) 793 return 0; 794 795 DP_VERBOSE(p_hwfn, 796 QED_MSG_IOV, 797 "Enable internal access for vf %x [abs %x]\n", 798 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 799 800 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 801 802 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 803 804 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, 805 vf->abs_vf_id, vf->num_sbs); 806 if (rc) 807 return rc; 808 809 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 810 811 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 812 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 813 814 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 815 p_hwfn->hw_info.hw_mode); 816 817 /* unpretend */ 818 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 819 820 vf->state = VF_FREE; 821 822 return rc; 823 } 824 825 /** 826 * qed_iov_config_perm_table() - Configure the permission zone table. 827 * 828 * @p_hwfn: HW device data. 829 * @p_ptt: PTT window for writing the registers. 830 * @vf: VF info data. 831 * @enable: The actual permision for this VF. 832 * 833 * In E4, queue zone permission table size is 320x9. There 834 * are 320 VF queues for single engine device (256 for dual 835 * engine device), and each entry has the following format: 836 * {Valid, VF[7:0]} 837 */ 838 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 839 struct qed_ptt *p_ptt, 840 struct qed_vf_info *vf, u8 enable) 841 { 842 u32 reg_addr, val; 843 u16 qzone_id = 0; 844 int qid; 845 846 for (qid = 0; qid < vf->num_rxqs; qid++) { 847 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 848 &qzone_id); 849 850 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 851 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 852 qed_wr(p_hwfn, p_ptt, reg_addr, val); 853 } 854 } 855 856 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 857 struct qed_ptt *p_ptt, 858 struct qed_vf_info *vf) 859 { 860 /* Reset vf in IGU - interrupts are still disabled */ 861 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 862 863 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 864 865 /* Permission Table */ 866 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 867 } 868 869 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 870 struct qed_ptt *p_ptt, 871 struct qed_vf_info *vf, u16 num_rx_queues) 872 { 873 struct qed_igu_block *p_block; 874 struct cau_sb_entry sb_entry; 875 int qid = 0; 876 u32 val = 0; 877 878 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 879 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 880 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 881 882 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 883 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 884 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 885 886 for (qid = 0; qid < num_rx_queues; qid++) { 887 p_block = qed_get_igu_free_sb(p_hwfn, false); 888 vf->igu_sbs[qid] = p_block->igu_sb_id; 889 p_block->status &= ~QED_IGU_STATUS_FREE; 890 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 891 892 qed_wr(p_hwfn, p_ptt, 893 IGU_REG_MAPPING_MEMORY + 894 sizeof(u32) * p_block->igu_sb_id, val); 895 896 /* Configure igu sb in CAU which were marked valid */ 897 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 898 p_hwfn->rel_pf_id, vf->abs_vf_id, 1); 899 900 qed_dmae_host2grc(p_hwfn, p_ptt, 901 (u64)(uintptr_t)&sb_entry, 902 CAU_REG_SB_VAR_MEMORY + 903 p_block->igu_sb_id * sizeof(u64), 2, NULL); 904 } 905 906 vf->num_sbs = (u8) num_rx_queues; 907 908 return vf->num_sbs; 909 } 910 911 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 912 struct qed_ptt *p_ptt, 913 struct qed_vf_info *vf) 914 { 915 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 916 int idx, igu_id; 917 u32 addr, val; 918 919 /* Invalidate igu CAM lines and mark them as free */ 920 for (idx = 0; idx < vf->num_sbs; idx++) { 921 igu_id = vf->igu_sbs[idx]; 922 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 923 924 val = qed_rd(p_hwfn, p_ptt, addr); 925 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 926 qed_wr(p_hwfn, p_ptt, addr, val); 927 928 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; 929 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 930 } 931 932 vf->num_sbs = 0; 933 } 934 935 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 936 u16 vfid, 937 struct qed_mcp_link_params *params, 938 struct qed_mcp_link_state *link, 939 struct qed_mcp_link_capabilities *p_caps) 940 { 941 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 942 vfid, 943 false); 944 struct qed_bulletin_content *p_bulletin; 945 946 if (!p_vf) 947 return; 948 949 p_bulletin = p_vf->bulletin.p_virt; 950 p_bulletin->req_autoneg = params->speed.autoneg; 951 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 952 p_bulletin->req_forced_speed = params->speed.forced_speed; 953 p_bulletin->req_autoneg_pause = params->pause.autoneg; 954 p_bulletin->req_forced_rx = params->pause.forced_rx; 955 p_bulletin->req_forced_tx = params->pause.forced_tx; 956 p_bulletin->req_loopback = params->loopback_mode; 957 958 p_bulletin->link_up = link->link_up; 959 p_bulletin->speed = link->speed; 960 p_bulletin->full_duplex = link->full_duplex; 961 p_bulletin->autoneg = link->an; 962 p_bulletin->autoneg_complete = link->an_complete; 963 p_bulletin->parallel_detection = link->parallel_detection; 964 p_bulletin->pfc_enabled = link->pfc_enabled; 965 p_bulletin->partner_adv_speed = link->partner_adv_speed; 966 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 967 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 968 p_bulletin->partner_adv_pause = link->partner_adv_pause; 969 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 970 971 p_bulletin->capability_speed = p_caps->speed_capabilities; 972 } 973 974 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 975 struct qed_ptt *p_ptt, 976 struct qed_iov_vf_init_params *p_params) 977 { 978 struct qed_mcp_link_capabilities link_caps; 979 struct qed_mcp_link_params link_params; 980 struct qed_mcp_link_state link_state; 981 u8 num_of_vf_avaiable_chains = 0; 982 struct qed_vf_info *vf = NULL; 983 u16 qid, num_irqs; 984 int rc = 0; 985 u32 cids; 986 u8 i; 987 988 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 989 if (!vf) { 990 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 991 return -EINVAL; 992 } 993 994 if (vf->b_init) { 995 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 996 p_params->rel_vf_id); 997 return -EINVAL; 998 } 999 1000 /* Perform sanity checking on the requested queue_id */ 1001 for (i = 0; i < p_params->num_queues; i++) { 1002 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 1003 u16 max_vf_qzone = min_vf_qzone + 1004 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 1005 1006 qid = p_params->req_rx_queue[i]; 1007 if (qid < min_vf_qzone || qid > max_vf_qzone) { 1008 DP_NOTICE(p_hwfn, 1009 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 1010 qid, 1011 p_params->rel_vf_id, 1012 min_vf_qzone, max_vf_qzone); 1013 return -EINVAL; 1014 } 1015 1016 qid = p_params->req_tx_queue[i]; 1017 if (qid > max_vf_qzone) { 1018 DP_NOTICE(p_hwfn, 1019 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 1020 qid, p_params->rel_vf_id, max_vf_qzone); 1021 return -EINVAL; 1022 } 1023 1024 /* If client *really* wants, Tx qid can be shared with PF */ 1025 if (qid < min_vf_qzone) 1026 DP_VERBOSE(p_hwfn, 1027 QED_MSG_IOV, 1028 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1029 p_params->rel_vf_id, qid, i); 1030 } 1031 1032 /* Limit number of queues according to number of CIDs */ 1033 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1034 DP_VERBOSE(p_hwfn, 1035 QED_MSG_IOV, 1036 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1037 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1038 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1039 1040 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1041 p_ptt, 1042 vf, num_irqs); 1043 if (!num_of_vf_avaiable_chains) { 1044 DP_ERR(p_hwfn, "no available igu sbs\n"); 1045 return -ENOMEM; 1046 } 1047 1048 /* Choose queue number and index ranges */ 1049 vf->num_rxqs = num_of_vf_avaiable_chains; 1050 vf->num_txqs = num_of_vf_avaiable_chains; 1051 1052 for (i = 0; i < vf->num_rxqs; i++) { 1053 struct qed_vf_queue *p_queue = &vf->vf_queues[i]; 1054 1055 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1056 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1057 1058 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1059 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1060 vf->relative_vf_id, i, vf->igu_sbs[i], 1061 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1062 } 1063 1064 /* Update the link configuration in bulletin */ 1065 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1066 sizeof(link_params)); 1067 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1068 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1069 sizeof(link_caps)); 1070 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1071 &link_params, &link_state, &link_caps); 1072 1073 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1074 if (!rc) { 1075 vf->b_init = true; 1076 1077 if (IS_LEAD_HWFN(p_hwfn)) 1078 p_hwfn->cdev->p_iov_info->num_vfs++; 1079 } 1080 1081 return rc; 1082 } 1083 1084 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1085 struct qed_ptt *p_ptt, u16 rel_vf_id) 1086 { 1087 struct qed_mcp_link_capabilities caps; 1088 struct qed_mcp_link_params params; 1089 struct qed_mcp_link_state link; 1090 struct qed_vf_info *vf = NULL; 1091 1092 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1093 if (!vf) { 1094 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1095 return -EINVAL; 1096 } 1097 1098 if (vf->bulletin.p_virt) 1099 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1100 1101 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1102 1103 /* Get the link configuration back in bulletin so 1104 * that when VFs are re-enabled they get the actual 1105 * link configuration. 1106 */ 1107 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1108 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1109 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1110 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1111 1112 /* Forget the VF's acquisition message */ 1113 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1114 1115 /* disablng interrupts and resetting permission table was done during 1116 * vf-close, however, we could get here without going through vf_close 1117 */ 1118 /* Disable Interrupts for VF */ 1119 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1120 1121 /* Reset Permission table */ 1122 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1123 1124 vf->num_rxqs = 0; 1125 vf->num_txqs = 0; 1126 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1127 1128 if (vf->b_init) { 1129 vf->b_init = false; 1130 1131 if (IS_LEAD_HWFN(p_hwfn)) 1132 p_hwfn->cdev->p_iov_info->num_vfs--; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static bool qed_iov_tlv_supported(u16 tlvtype) 1139 { 1140 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1141 } 1142 1143 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1144 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1145 { 1146 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1147 1148 tl->type = type; 1149 tl->length = length; 1150 1151 /* Offset should keep pointing to next TLV (the end of the last) */ 1152 *offset += length; 1153 1154 /* Return a pointer to the start of the added tlv */ 1155 return *offset - length; 1156 } 1157 1158 /* list the types and lengths of the tlvs on the buffer */ 1159 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1160 { 1161 u16 i = 1, total_length = 0; 1162 struct channel_tlv *tlv; 1163 1164 do { 1165 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1166 1167 /* output tlv */ 1168 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1169 "TLV number %d: type %d, length %d\n", 1170 i, tlv->type, tlv->length); 1171 1172 if (tlv->type == CHANNEL_TLV_LIST_END) 1173 return; 1174 1175 /* Validate entry - protect against malicious VFs */ 1176 if (!tlv->length) { 1177 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1178 return; 1179 } 1180 1181 total_length += tlv->length; 1182 1183 if (total_length >= sizeof(struct tlv_buffer_size)) { 1184 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1185 return; 1186 } 1187 1188 i++; 1189 } while (1); 1190 } 1191 1192 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1193 struct qed_ptt *p_ptt, 1194 struct qed_vf_info *p_vf, 1195 u16 length, u8 status) 1196 { 1197 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1198 struct qed_dmae_params params; 1199 u8 eng_vf_id; 1200 1201 mbx->reply_virt->default_resp.hdr.status = status; 1202 1203 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1204 1205 eng_vf_id = p_vf->abs_vf_id; 1206 1207 memset(¶ms, 0, sizeof(params)); 1208 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); 1209 params.dst_vfid = eng_vf_id; 1210 1211 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1212 mbx->req_virt->first_tlv.reply_address + 1213 sizeof(u64), 1214 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1215 ¶ms); 1216 1217 /* Once PF copies the rc to the VF, the latter can continue 1218 * and send an additional message. So we have to make sure the 1219 * channel would be re-set to ready prior to that. 1220 */ 1221 REG_WR(p_hwfn, 1222 GTT_BAR0_MAP_REG_USDM_RAM + 1223 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1224 1225 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1226 mbx->req_virt->first_tlv.reply_address, 1227 sizeof(u64) / 4, ¶ms); 1228 } 1229 1230 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1231 enum qed_iov_vport_update_flag flag) 1232 { 1233 switch (flag) { 1234 case QED_IOV_VP_UPDATE_ACTIVATE: 1235 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1236 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1237 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1238 case QED_IOV_VP_UPDATE_TX_SWITCH: 1239 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1240 case QED_IOV_VP_UPDATE_MCAST: 1241 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1242 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1243 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1244 case QED_IOV_VP_UPDATE_RSS: 1245 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1246 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1247 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1248 case QED_IOV_VP_UPDATE_SGE_TPA: 1249 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1250 default: 1251 return 0; 1252 } 1253 } 1254 1255 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1256 struct qed_vf_info *p_vf, 1257 struct qed_iov_vf_mbx *p_mbx, 1258 u8 status, 1259 u16 tlvs_mask, u16 tlvs_accepted) 1260 { 1261 struct pfvf_def_resp_tlv *resp; 1262 u16 size, total_len, i; 1263 1264 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1265 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1266 size = sizeof(struct pfvf_def_resp_tlv); 1267 total_len = size; 1268 1269 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1270 1271 /* Prepare response for all extended tlvs if they are found by PF */ 1272 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1273 if (!(tlvs_mask & BIT(i))) 1274 continue; 1275 1276 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1277 qed_iov_vport_to_tlv(p_hwfn, i), size); 1278 1279 if (tlvs_accepted & BIT(i)) 1280 resp->hdr.status = status; 1281 else 1282 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1283 1284 DP_VERBOSE(p_hwfn, 1285 QED_MSG_IOV, 1286 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1287 p_vf->relative_vf_id, 1288 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1289 1290 total_len += size; 1291 } 1292 1293 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1294 sizeof(struct channel_list_end_tlv)); 1295 1296 return total_len; 1297 } 1298 1299 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1300 struct qed_ptt *p_ptt, 1301 struct qed_vf_info *vf_info, 1302 u16 type, u16 length, u8 status) 1303 { 1304 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1305 1306 mbx->offset = (u8 *)mbx->reply_virt; 1307 1308 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1309 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1310 sizeof(struct channel_list_end_tlv)); 1311 1312 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1313 } 1314 1315 static struct 1316 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1317 u16 relative_vf_id, 1318 bool b_enabled_only) 1319 { 1320 struct qed_vf_info *vf = NULL; 1321 1322 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1323 if (!vf) 1324 return NULL; 1325 1326 return &vf->p_vf_info; 1327 } 1328 1329 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1330 { 1331 struct qed_public_vf_info *vf_info; 1332 1333 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1334 1335 if (!vf_info) 1336 return; 1337 1338 /* Clear the VF mac */ 1339 eth_zero_addr(vf_info->mac); 1340 1341 vf_info->rx_accept_mode = 0; 1342 vf_info->tx_accept_mode = 0; 1343 } 1344 1345 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1346 struct qed_vf_info *p_vf) 1347 { 1348 u32 i, j; 1349 1350 p_vf->vf_bulletin = 0; 1351 p_vf->vport_instance = 0; 1352 p_vf->configured_features = 0; 1353 1354 /* If VF previously requested less resources, go back to default */ 1355 p_vf->num_rxqs = p_vf->num_sbs; 1356 p_vf->num_txqs = p_vf->num_sbs; 1357 1358 p_vf->num_active_rxqs = 0; 1359 1360 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1361 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1362 1363 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1364 if (!p_queue->cids[j].p_cid) 1365 continue; 1366 1367 qed_eth_queue_cid_release(p_hwfn, 1368 p_queue->cids[j].p_cid); 1369 p_queue->cids[j].p_cid = NULL; 1370 } 1371 } 1372 1373 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1374 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1375 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1376 } 1377 1378 /* Returns either 0, or log(size) */ 1379 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, 1380 struct qed_ptt *p_ptt) 1381 { 1382 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1383 1384 if (val) 1385 return val + 11; 1386 return 0; 1387 } 1388 1389 static void 1390 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, 1391 struct qed_ptt *p_ptt, 1392 struct qed_vf_info *p_vf, 1393 struct vf_pf_resc_request *p_req, 1394 struct pf_vf_resc *p_resp) 1395 { 1396 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1397 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - 1398 qed_db_addr_vf(0, DQ_DEMS_LEGACY); 1399 u32 bar_size; 1400 1401 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); 1402 1403 /* If VF didn't bother asking for QIDs than don't bother limiting 1404 * number of CIDs. The VF doesn't care about the number, and this 1405 * has the likely result of causing an additional acquisition. 1406 */ 1407 if (!(p_vf->acquire.vfdev_info.capabilities & 1408 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1409 return; 1410 1411 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1412 * that would make sure doorbells for all CIDs fall within the bar. 1413 * If it doesn't, make sure regview window is sufficient. 1414 */ 1415 if (p_vf->acquire.vfdev_info.capabilities & 1416 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1417 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1418 if (bar_size) 1419 bar_size = 1 << bar_size; 1420 1421 if (p_hwfn->cdev->num_hwfns > 1) 1422 bar_size /= 2; 1423 } else { 1424 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1425 } 1426 1427 if (bar_size / db_size < 256) 1428 p_resp->num_cids = min_t(u8, p_resp->num_cids, 1429 (u8)(bar_size / db_size)); 1430 } 1431 1432 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1433 struct qed_ptt *p_ptt, 1434 struct qed_vf_info *p_vf, 1435 struct vf_pf_resc_request *p_req, 1436 struct pf_vf_resc *p_resp) 1437 { 1438 u8 i; 1439 1440 /* Queue related information */ 1441 p_resp->num_rxqs = p_vf->num_rxqs; 1442 p_resp->num_txqs = p_vf->num_txqs; 1443 p_resp->num_sbs = p_vf->num_sbs; 1444 1445 for (i = 0; i < p_resp->num_sbs; i++) { 1446 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1447 p_resp->hw_sbs[i].sb_qid = 0; 1448 } 1449 1450 /* These fields are filled for backward compatibility. 1451 * Unused by modern vfs. 1452 */ 1453 for (i = 0; i < p_resp->num_rxqs; i++) { 1454 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1455 (u16 *)&p_resp->hw_qid[i]); 1456 p_resp->cid[i] = i; 1457 } 1458 1459 /* Filter related information */ 1460 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1461 p_req->num_mac_filters); 1462 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1463 p_req->num_vlan_filters); 1464 1465 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1466 1467 /* This isn't really needed/enforced, but some legacy VFs might depend 1468 * on the correct filling of this field. 1469 */ 1470 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1471 1472 /* Validate sufficient resources for VF */ 1473 if (p_resp->num_rxqs < p_req->num_rxqs || 1474 p_resp->num_txqs < p_req->num_txqs || 1475 p_resp->num_sbs < p_req->num_sbs || 1476 p_resp->num_mac_filters < p_req->num_mac_filters || 1477 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1478 p_resp->num_mc_filters < p_req->num_mc_filters || 1479 p_resp->num_cids < p_req->num_cids) { 1480 DP_VERBOSE(p_hwfn, 1481 QED_MSG_IOV, 1482 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1483 p_vf->abs_vf_id, 1484 p_req->num_rxqs, 1485 p_resp->num_rxqs, 1486 p_req->num_rxqs, 1487 p_resp->num_txqs, 1488 p_req->num_sbs, 1489 p_resp->num_sbs, 1490 p_req->num_mac_filters, 1491 p_resp->num_mac_filters, 1492 p_req->num_vlan_filters, 1493 p_resp->num_vlan_filters, 1494 p_req->num_mc_filters, 1495 p_resp->num_mc_filters, 1496 p_req->num_cids, p_resp->num_cids); 1497 1498 /* Some legacy OSes are incapable of correctly handling this 1499 * failure. 1500 */ 1501 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1502 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1503 (p_vf->acquire.vfdev_info.os_type == 1504 VFPF_ACQUIRE_OS_WINDOWS)) 1505 return PFVF_STATUS_SUCCESS; 1506 1507 return PFVF_STATUS_NO_RESOURCE; 1508 } 1509 1510 return PFVF_STATUS_SUCCESS; 1511 } 1512 1513 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1514 struct pfvf_stats_info *p_stats) 1515 { 1516 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1517 offsetof(struct mstorm_vf_zone, 1518 non_trigger.eth_queue_stat); 1519 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1520 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1521 offsetof(struct ustorm_vf_zone, 1522 non_trigger.eth_queue_stat); 1523 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1524 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1525 offsetof(struct pstorm_vf_zone, 1526 non_trigger.eth_queue_stat); 1527 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1528 p_stats->tstats.address = 0; 1529 p_stats->tstats.len = 0; 1530 } 1531 1532 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1533 struct qed_ptt *p_ptt, 1534 struct qed_vf_info *vf) 1535 { 1536 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1537 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1538 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1539 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1540 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1541 struct pf_vf_resc *resc = &resp->resc; 1542 int rc; 1543 1544 memset(resp, 0, sizeof(*resp)); 1545 1546 /* Write the PF version so that VF would know which version 1547 * is supported - might be later overriden. This guarantees that 1548 * VF could recognize legacy PF based on lack of versions in reply. 1549 */ 1550 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1551 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1552 1553 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1554 DP_VERBOSE(p_hwfn, 1555 QED_MSG_IOV, 1556 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1557 vf->abs_vf_id, vf->state); 1558 goto out; 1559 } 1560 1561 /* Validate FW compatibility */ 1562 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1563 if (req->vfdev_info.capabilities & 1564 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1565 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1566 1567 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1568 "VF[%d] is pre-fastpath HSI\n", 1569 vf->abs_vf_id); 1570 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1571 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1572 } else { 1573 DP_INFO(p_hwfn, 1574 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n", 1575 vf->abs_vf_id, 1576 req->vfdev_info.eth_fp_hsi_major, 1577 req->vfdev_info.eth_fp_hsi_minor, 1578 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1579 1580 goto out; 1581 } 1582 } 1583 1584 /* On 100g PFs, prevent old VFs from loading */ 1585 if ((p_hwfn->cdev->num_hwfns > 1) && 1586 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1587 DP_INFO(p_hwfn, 1588 "VF[%d] is running an old driver that doesn't support 100g\n", 1589 vf->abs_vf_id); 1590 goto out; 1591 } 1592 1593 /* Store the acquire message */ 1594 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1595 1596 vf->opaque_fid = req->vfdev_info.opaque_fid; 1597 1598 vf->vf_bulletin = req->bulletin_addr; 1599 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1600 vf->bulletin.size : req->bulletin_size; 1601 1602 /* fill in pfdev info */ 1603 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1604 pfdev_info->db_size = 0; 1605 pfdev_info->indices_per_sb = PIS_PER_SB_E4; 1606 1607 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1608 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1609 if (p_hwfn->cdev->num_hwfns > 1) 1610 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1611 1612 /* Share our ability to use multiple queue-ids only with VFs 1613 * that request it. 1614 */ 1615 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1616 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1617 1618 /* Share the sizes of the bars with VF */ 1619 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1620 1621 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1622 1623 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1624 1625 pfdev_info->fw_major = FW_MAJOR_VERSION; 1626 pfdev_info->fw_minor = FW_MINOR_VERSION; 1627 pfdev_info->fw_rev = FW_REVISION_VERSION; 1628 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1629 1630 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1631 * this field. 1632 */ 1633 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1634 req->vfdev_info.eth_fp_hsi_minor); 1635 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1636 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1637 1638 pfdev_info->dev_type = p_hwfn->cdev->type; 1639 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1640 1641 /* Fill resources available to VF; Make sure there are enough to 1642 * satisfy the VF's request. 1643 */ 1644 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1645 &req->resc_request, resc); 1646 if (vfpf_status != PFVF_STATUS_SUCCESS) 1647 goto out; 1648 1649 /* Start the VF in FW */ 1650 rc = qed_sp_vf_start(p_hwfn, vf); 1651 if (rc) { 1652 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1653 vfpf_status = PFVF_STATUS_FAILURE; 1654 goto out; 1655 } 1656 1657 /* Fill agreed size of bulletin board in response */ 1658 resp->bulletin_size = vf->bulletin.size; 1659 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1660 1661 DP_VERBOSE(p_hwfn, 1662 QED_MSG_IOV, 1663 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1664 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1665 vf->abs_vf_id, 1666 resp->pfdev_info.chip_num, 1667 resp->pfdev_info.db_size, 1668 resp->pfdev_info.indices_per_sb, 1669 resp->pfdev_info.capabilities, 1670 resc->num_rxqs, 1671 resc->num_txqs, 1672 resc->num_sbs, 1673 resc->num_mac_filters, 1674 resc->num_vlan_filters); 1675 vf->state = VF_ACQUIRED; 1676 1677 /* Prepare Response */ 1678 out: 1679 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1680 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1681 } 1682 1683 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1684 struct qed_vf_info *p_vf, bool val) 1685 { 1686 struct qed_sp_vport_update_params params; 1687 int rc; 1688 1689 if (val == p_vf->spoof_chk) { 1690 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1691 "Spoofchk value[%d] is already configured\n", val); 1692 return 0; 1693 } 1694 1695 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1696 params.opaque_fid = p_vf->opaque_fid; 1697 params.vport_id = p_vf->vport_id; 1698 params.update_anti_spoofing_en_flg = 1; 1699 params.anti_spoofing_en = val; 1700 1701 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1702 if (!rc) { 1703 p_vf->spoof_chk = val; 1704 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1705 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1706 "Spoofchk val[%d] configured\n", val); 1707 } else { 1708 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1709 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1710 val, p_vf->relative_vf_id); 1711 } 1712 1713 return rc; 1714 } 1715 1716 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1717 struct qed_vf_info *p_vf) 1718 { 1719 struct qed_filter_ucast filter; 1720 int rc = 0; 1721 int i; 1722 1723 memset(&filter, 0, sizeof(filter)); 1724 filter.is_rx_filter = 1; 1725 filter.is_tx_filter = 1; 1726 filter.vport_to_add_to = p_vf->vport_id; 1727 filter.opcode = QED_FILTER_ADD; 1728 1729 /* Reconfigure vlans */ 1730 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1731 if (!p_vf->shadow_config.vlans[i].used) 1732 continue; 1733 1734 filter.type = QED_FILTER_VLAN; 1735 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1736 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1737 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1738 filter.vlan, p_vf->relative_vf_id); 1739 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1740 &filter, QED_SPQ_MODE_CB, NULL); 1741 if (rc) { 1742 DP_NOTICE(p_hwfn, 1743 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1744 filter.vlan, p_vf->relative_vf_id); 1745 break; 1746 } 1747 } 1748 1749 return rc; 1750 } 1751 1752 static int 1753 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1754 struct qed_vf_info *p_vf, u64 events) 1755 { 1756 int rc = 0; 1757 1758 if ((events & BIT(VLAN_ADDR_FORCED)) && 1759 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1760 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1761 1762 return rc; 1763 } 1764 1765 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1766 struct qed_vf_info *p_vf, u64 events) 1767 { 1768 int rc = 0; 1769 struct qed_filter_ucast filter; 1770 1771 if (!p_vf->vport_instance) 1772 return -EINVAL; 1773 1774 if ((events & BIT(MAC_ADDR_FORCED)) || 1775 p_vf->p_vf_info.is_trusted_configured) { 1776 /* Since there's no way [currently] of removing the MAC, 1777 * we can always assume this means we need to force it. 1778 */ 1779 memset(&filter, 0, sizeof(filter)); 1780 filter.type = QED_FILTER_MAC; 1781 filter.opcode = QED_FILTER_REPLACE; 1782 filter.is_rx_filter = 1; 1783 filter.is_tx_filter = 1; 1784 filter.vport_to_add_to = p_vf->vport_id; 1785 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1786 1787 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1788 &filter, QED_SPQ_MODE_CB, NULL); 1789 if (rc) { 1790 DP_NOTICE(p_hwfn, 1791 "PF failed to configure MAC for VF\n"); 1792 return rc; 1793 } 1794 if (p_vf->p_vf_info.is_trusted_configured) 1795 p_vf->configured_features |= 1796 BIT(VFPF_BULLETIN_MAC_ADDR); 1797 else 1798 p_vf->configured_features |= 1799 BIT(MAC_ADDR_FORCED); 1800 } 1801 1802 if (events & BIT(VLAN_ADDR_FORCED)) { 1803 struct qed_sp_vport_update_params vport_update; 1804 u8 removal; 1805 int i; 1806 1807 memset(&filter, 0, sizeof(filter)); 1808 filter.type = QED_FILTER_VLAN; 1809 filter.is_rx_filter = 1; 1810 filter.is_tx_filter = 1; 1811 filter.vport_to_add_to = p_vf->vport_id; 1812 filter.vlan = p_vf->bulletin.p_virt->pvid; 1813 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1814 QED_FILTER_FLUSH; 1815 1816 /* Send the ramrod */ 1817 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1818 &filter, QED_SPQ_MODE_CB, NULL); 1819 if (rc) { 1820 DP_NOTICE(p_hwfn, 1821 "PF failed to configure VLAN for VF\n"); 1822 return rc; 1823 } 1824 1825 /* Update the default-vlan & silent vlan stripping */ 1826 memset(&vport_update, 0, sizeof(vport_update)); 1827 vport_update.opaque_fid = p_vf->opaque_fid; 1828 vport_update.vport_id = p_vf->vport_id; 1829 vport_update.update_default_vlan_enable_flg = 1; 1830 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1831 vport_update.update_default_vlan_flg = 1; 1832 vport_update.default_vlan = filter.vlan; 1833 1834 vport_update.update_inner_vlan_removal_flg = 1; 1835 removal = filter.vlan ? 1 1836 : p_vf->shadow_config.inner_vlan_removal; 1837 vport_update.inner_vlan_removal_flg = removal; 1838 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1839 rc = qed_sp_vport_update(p_hwfn, 1840 &vport_update, 1841 QED_SPQ_MODE_EBLOCK, NULL); 1842 if (rc) { 1843 DP_NOTICE(p_hwfn, 1844 "PF failed to configure VF vport for vlan\n"); 1845 return rc; 1846 } 1847 1848 /* Update all the Rx queues */ 1849 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1850 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1851 struct qed_queue_cid *p_cid = NULL; 1852 1853 /* There can be at most 1 Rx queue on qzone. Find it */ 1854 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 1855 if (!p_cid) 1856 continue; 1857 1858 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1859 (void **)&p_cid, 1860 1, 0, 1, 1861 QED_SPQ_MODE_EBLOCK, 1862 NULL); 1863 if (rc) { 1864 DP_NOTICE(p_hwfn, 1865 "Failed to send Rx update fo queue[0x%04x]\n", 1866 p_cid->rel.queue_id); 1867 return rc; 1868 } 1869 } 1870 1871 if (filter.vlan) 1872 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1873 else 1874 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1875 } 1876 1877 /* If forced features are terminated, we need to configure the shadow 1878 * configuration back again. 1879 */ 1880 if (events) 1881 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1882 1883 return rc; 1884 } 1885 1886 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1887 struct qed_ptt *p_ptt, 1888 struct qed_vf_info *vf) 1889 { 1890 struct qed_sp_vport_start_params params = { 0 }; 1891 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1892 struct vfpf_vport_start_tlv *start; 1893 u8 status = PFVF_STATUS_SUCCESS; 1894 struct qed_vf_info *vf_info; 1895 u64 *p_bitmap; 1896 int sb_id; 1897 int rc; 1898 1899 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1900 if (!vf_info) { 1901 DP_NOTICE(p_hwfn->cdev, 1902 "Failed to get VF info, invalid vfid [%d]\n", 1903 vf->relative_vf_id); 1904 return; 1905 } 1906 1907 vf->state = VF_ENABLED; 1908 start = &mbx->req_virt->start_vport; 1909 1910 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1911 1912 /* Initialize Status block in CAU */ 1913 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1914 if (!start->sb_addr[sb_id]) { 1915 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1916 "VF[%d] did not fill the address of SB %d\n", 1917 vf->relative_vf_id, sb_id); 1918 break; 1919 } 1920 1921 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1922 start->sb_addr[sb_id], 1923 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1924 } 1925 1926 vf->mtu = start->mtu; 1927 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1928 1929 /* Take into consideration configuration forced by hypervisor; 1930 * If none is configured, use the supplied VF values [for old 1931 * vfs that would still be fine, since they passed '0' as padding]. 1932 */ 1933 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1934 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1935 u8 vf_req = start->only_untagged; 1936 1937 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1938 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1939 } 1940 1941 params.tpa_mode = start->tpa_mode; 1942 params.remove_inner_vlan = start->inner_vlan_removal; 1943 params.tx_switching = true; 1944 1945 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1946 params.drop_ttl0 = false; 1947 params.concrete_fid = vf->concrete_fid; 1948 params.opaque_fid = vf->opaque_fid; 1949 params.vport_id = vf->vport_id; 1950 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1951 params.mtu = vf->mtu; 1952 1953 /* Non trusted VFs should enable control frame filtering */ 1954 params.check_mac = !vf->p_vf_info.is_trusted_configured; 1955 1956 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1957 if (rc) { 1958 DP_ERR(p_hwfn, 1959 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1960 status = PFVF_STATUS_FAILURE; 1961 } else { 1962 vf->vport_instance++; 1963 1964 /* Force configuration if needed on the newly opened vport */ 1965 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1966 1967 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1968 } 1969 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1970 sizeof(struct pfvf_def_resp_tlv), status); 1971 } 1972 1973 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1974 struct qed_ptt *p_ptt, 1975 struct qed_vf_info *vf) 1976 { 1977 u8 status = PFVF_STATUS_SUCCESS; 1978 int rc; 1979 1980 vf->vport_instance--; 1981 vf->spoof_chk = false; 1982 1983 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 1984 (qed_iov_validate_active_txq(p_hwfn, vf))) { 1985 vf->b_malicious = true; 1986 DP_NOTICE(p_hwfn, 1987 "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n", 1988 vf->abs_vf_id); 1989 status = PFVF_STATUS_MALICIOUS; 1990 goto out; 1991 } 1992 1993 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 1994 if (rc) { 1995 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 1996 rc); 1997 status = PFVF_STATUS_FAILURE; 1998 } 1999 2000 /* Forget the configuration on the vport */ 2001 vf->configured_features = 0; 2002 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2003 2004 out: 2005 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2006 sizeof(struct pfvf_def_resp_tlv), status); 2007 } 2008 2009 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 2010 struct qed_ptt *p_ptt, 2011 struct qed_vf_info *vf, 2012 u8 status, bool b_legacy) 2013 { 2014 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2015 struct pfvf_start_queue_resp_tlv *p_tlv; 2016 struct vfpf_start_rxq_tlv *req; 2017 u16 length; 2018 2019 mbx->offset = (u8 *)mbx->reply_virt; 2020 2021 /* Taking a bigger struct instead of adding a TLV to list was a 2022 * mistake, but one which we're now stuck with, as some older 2023 * clients assume the size of the previous response. 2024 */ 2025 if (!b_legacy) 2026 length = sizeof(*p_tlv); 2027 else 2028 length = sizeof(struct pfvf_def_resp_tlv); 2029 2030 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 2031 length); 2032 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2033 sizeof(struct channel_list_end_tlv)); 2034 2035 /* Update the TLV with the response */ 2036 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2037 req = &mbx->req_virt->start_rxq; 2038 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2039 offsetof(struct mstorm_vf_zone, 2040 non_trigger.eth_rx_queue_producers) + 2041 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2042 } 2043 2044 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2045 } 2046 2047 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, 2048 struct qed_vf_info *p_vf, bool b_is_tx) 2049 { 2050 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2051 struct vfpf_qid_tlv *p_qid_tlv; 2052 2053 /* Search for the qid if the VF published its going to provide it */ 2054 if (!(p_vf->acquire.vfdev_info.capabilities & 2055 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2056 if (b_is_tx) 2057 return QED_IOV_LEGACY_QID_TX; 2058 else 2059 return QED_IOV_LEGACY_QID_RX; 2060 } 2061 2062 p_qid_tlv = (struct vfpf_qid_tlv *) 2063 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2064 CHANNEL_TLV_QID); 2065 if (!p_qid_tlv) { 2066 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2067 "VF[%2x]: Failed to provide qid\n", 2068 p_vf->relative_vf_id); 2069 2070 return QED_IOV_QID_INVALID; 2071 } 2072 2073 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2074 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2075 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2076 p_vf->relative_vf_id, p_qid_tlv->qid); 2077 return QED_IOV_QID_INVALID; 2078 } 2079 2080 return p_qid_tlv->qid; 2081 } 2082 2083 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 2084 struct qed_ptt *p_ptt, 2085 struct qed_vf_info *vf) 2086 { 2087 struct qed_queue_start_common_params params; 2088 struct qed_queue_cid_vf_params vf_params; 2089 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2090 u8 status = PFVF_STATUS_NO_RESOURCE; 2091 u8 qid_usage_idx, vf_legacy = 0; 2092 struct vfpf_start_rxq_tlv *req; 2093 struct qed_vf_queue *p_queue; 2094 struct qed_queue_cid *p_cid; 2095 struct qed_sb_info sb_dummy; 2096 int rc; 2097 2098 req = &mbx->req_virt->start_rxq; 2099 2100 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2101 QED_IOV_VALIDATE_Q_DISABLE) || 2102 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2103 goto out; 2104 2105 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2106 if (qid_usage_idx == QED_IOV_QID_INVALID) 2107 goto out; 2108 2109 p_queue = &vf->vf_queues[req->rx_qid]; 2110 if (p_queue->cids[qid_usage_idx].p_cid) 2111 goto out; 2112 2113 vf_legacy = qed_vf_calculate_legacy(vf); 2114 2115 /* Acquire a new queue-cid */ 2116 memset(¶ms, 0, sizeof(params)); 2117 params.queue_id = p_queue->fw_rx_qid; 2118 params.vport_id = vf->vport_id; 2119 params.stats_id = vf->abs_vf_id + 0x10; 2120 /* Since IGU index is passed via sb_info, construct a dummy one */ 2121 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2122 sb_dummy.igu_sb_id = req->hw_sb; 2123 params.p_sb = &sb_dummy; 2124 params.sb_idx = req->sb_index; 2125 2126 memset(&vf_params, 0, sizeof(vf_params)); 2127 vf_params.vfid = vf->relative_vf_id; 2128 vf_params.vf_qid = (u8)req->rx_qid; 2129 vf_params.vf_legacy = vf_legacy; 2130 vf_params.qid_usage_idx = qid_usage_idx; 2131 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2132 ¶ms, true, &vf_params); 2133 if (!p_cid) 2134 goto out; 2135 2136 /* Legacy VFs have their Producers in a different location, which they 2137 * calculate on their own and clean the producer prior to this. 2138 */ 2139 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) 2140 REG_WR(p_hwfn, 2141 GTT_BAR0_MAP_REG_MSDM_RAM + 2142 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2143 0); 2144 2145 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, 2146 req->bd_max_bytes, 2147 req->rxq_addr, 2148 req->cqe_pbl_addr, req->cqe_pbl_size); 2149 if (rc) { 2150 status = PFVF_STATUS_FAILURE; 2151 qed_eth_queue_cid_release(p_hwfn, p_cid); 2152 } else { 2153 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2154 p_queue->cids[qid_usage_idx].b_is_tx = false; 2155 status = PFVF_STATUS_SUCCESS; 2156 vf->num_active_rxqs++; 2157 } 2158 2159 out: 2160 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2161 !!(vf_legacy & 2162 QED_QCID_LEGACY_VF_RX_PROD)); 2163 } 2164 2165 static void 2166 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2167 struct qed_tunnel_info *p_tun, 2168 u16 tunn_feature_mask) 2169 { 2170 p_resp->tunn_feature_mask = tunn_feature_mask; 2171 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2172 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2173 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2174 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2175 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2176 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2177 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2178 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2179 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2180 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2181 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2182 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2183 } 2184 2185 static void 2186 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2187 struct qed_tunn_update_type *p_tun, 2188 enum qed_tunn_mode mask, u8 tun_cls) 2189 { 2190 if (p_req->tun_mode_update_mask & BIT(mask)) { 2191 p_tun->b_update_mode = true; 2192 2193 if (p_req->tunn_mode & BIT(mask)) 2194 p_tun->b_mode_enabled = true; 2195 } 2196 2197 p_tun->tun_cls = tun_cls; 2198 } 2199 2200 static void 2201 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2202 struct qed_tunn_update_type *p_tun, 2203 struct qed_tunn_update_udp_port *p_port, 2204 enum qed_tunn_mode mask, 2205 u8 tun_cls, u8 update_port, u16 port) 2206 { 2207 if (update_port) { 2208 p_port->b_update_port = true; 2209 p_port->port = port; 2210 } 2211 2212 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2213 } 2214 2215 static bool 2216 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2217 { 2218 bool b_update_requested = false; 2219 2220 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2221 p_req->update_geneve_port || p_req->update_vxlan_port) 2222 b_update_requested = true; 2223 2224 return b_update_requested; 2225 } 2226 2227 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2228 { 2229 if (tun->b_update_mode && !tun->b_mode_enabled) { 2230 tun->b_update_mode = false; 2231 *rc = -EINVAL; 2232 } 2233 } 2234 2235 static int 2236 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2237 u16 *tun_features, bool *update, 2238 struct qed_tunnel_info *tun_src) 2239 { 2240 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2241 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2242 u16 bultn_vxlan_port, bultn_geneve_port; 2243 void *cookie = p_hwfn->cdev->ops_cookie; 2244 int i, rc = 0; 2245 2246 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2247 bultn_vxlan_port = tun->vxlan_port.port; 2248 bultn_geneve_port = tun->geneve_port.port; 2249 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2250 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2251 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2252 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2253 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2254 2255 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2256 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2257 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2258 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2259 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2260 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2261 tun_src->b_update_rx_cls = false; 2262 tun_src->b_update_tx_cls = false; 2263 rc = -EINVAL; 2264 } 2265 2266 if (tun_src->vxlan_port.b_update_port) { 2267 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2268 tun_src->vxlan_port.b_update_port = false; 2269 } else { 2270 *update = true; 2271 bultn_vxlan_port = tun_src->vxlan_port.port; 2272 } 2273 } 2274 2275 if (tun_src->geneve_port.b_update_port) { 2276 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2277 tun_src->geneve_port.b_update_port = false; 2278 } else { 2279 *update = true; 2280 bultn_geneve_port = tun_src->geneve_port.port; 2281 } 2282 } 2283 2284 qed_for_each_vf(p_hwfn, i) { 2285 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2286 bultn_geneve_port); 2287 } 2288 2289 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2290 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2291 2292 return rc; 2293 } 2294 2295 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2296 struct qed_ptt *p_ptt, 2297 struct qed_vf_info *p_vf) 2298 { 2299 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2300 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2301 struct pfvf_update_tunn_param_tlv *p_resp; 2302 struct vfpf_update_tunn_param_tlv *p_req; 2303 u8 status = PFVF_STATUS_SUCCESS; 2304 bool b_update_required = false; 2305 struct qed_tunnel_info tunn; 2306 u16 tunn_feature_mask = 0; 2307 int i, rc = 0; 2308 2309 mbx->offset = (u8 *)mbx->reply_virt; 2310 2311 memset(&tunn, 0, sizeof(tunn)); 2312 p_req = &mbx->req_virt->tunn_param_update; 2313 2314 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2315 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2316 "No tunnel update requested by VF\n"); 2317 status = PFVF_STATUS_FAILURE; 2318 goto send_resp; 2319 } 2320 2321 tunn.b_update_rx_cls = p_req->update_tun_cls; 2322 tunn.b_update_tx_cls = p_req->update_tun_cls; 2323 2324 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2325 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2326 p_req->update_vxlan_port, 2327 p_req->vxlan_port); 2328 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2329 QED_MODE_L2GENEVE_TUNN, 2330 p_req->l2geneve_clss, 2331 p_req->update_geneve_port, 2332 p_req->geneve_port); 2333 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2334 QED_MODE_IPGENEVE_TUNN, 2335 p_req->ipgeneve_clss); 2336 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2337 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2338 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2339 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2340 2341 /* If PF modifies VF's req then it should 2342 * still return an error in case of partial configuration 2343 * or modified configuration as opposed to requested one. 2344 */ 2345 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2346 &b_update_required, &tunn); 2347 2348 if (rc) 2349 status = PFVF_STATUS_FAILURE; 2350 2351 /* If QED client is willing to update anything ? */ 2352 if (b_update_required) { 2353 u16 geneve_port; 2354 2355 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2356 QED_SPQ_MODE_EBLOCK, NULL); 2357 if (rc) 2358 status = PFVF_STATUS_FAILURE; 2359 2360 geneve_port = p_tun->geneve_port.port; 2361 qed_for_each_vf(p_hwfn, i) { 2362 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2363 p_tun->vxlan_port.port, 2364 geneve_port); 2365 } 2366 } 2367 2368 send_resp: 2369 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2370 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2371 2372 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2373 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2374 sizeof(struct channel_list_end_tlv)); 2375 2376 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2377 } 2378 2379 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2380 struct qed_ptt *p_ptt, 2381 struct qed_vf_info *p_vf, 2382 u32 cid, u8 status) 2383 { 2384 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2385 struct pfvf_start_queue_resp_tlv *p_tlv; 2386 bool b_legacy = false; 2387 u16 length; 2388 2389 mbx->offset = (u8 *)mbx->reply_virt; 2390 2391 /* Taking a bigger struct instead of adding a TLV to list was a 2392 * mistake, but one which we're now stuck with, as some older 2393 * clients assume the size of the previous response. 2394 */ 2395 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2396 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2397 b_legacy = true; 2398 2399 if (!b_legacy) 2400 length = sizeof(*p_tlv); 2401 else 2402 length = sizeof(struct pfvf_def_resp_tlv); 2403 2404 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2405 length); 2406 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2407 sizeof(struct channel_list_end_tlv)); 2408 2409 /* Update the TLV with the response */ 2410 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2411 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); 2412 2413 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2414 } 2415 2416 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2417 struct qed_ptt *p_ptt, 2418 struct qed_vf_info *vf) 2419 { 2420 struct qed_queue_start_common_params params; 2421 struct qed_queue_cid_vf_params vf_params; 2422 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2423 u8 status = PFVF_STATUS_NO_RESOURCE; 2424 struct vfpf_start_txq_tlv *req; 2425 struct qed_vf_queue *p_queue; 2426 struct qed_queue_cid *p_cid; 2427 struct qed_sb_info sb_dummy; 2428 u8 qid_usage_idx, vf_legacy; 2429 u32 cid = 0; 2430 int rc; 2431 u16 pq; 2432 2433 memset(¶ms, 0, sizeof(params)); 2434 req = &mbx->req_virt->start_txq; 2435 2436 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2437 QED_IOV_VALIDATE_Q_NA) || 2438 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2439 goto out; 2440 2441 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2442 if (qid_usage_idx == QED_IOV_QID_INVALID) 2443 goto out; 2444 2445 p_queue = &vf->vf_queues[req->tx_qid]; 2446 if (p_queue->cids[qid_usage_idx].p_cid) 2447 goto out; 2448 2449 vf_legacy = qed_vf_calculate_legacy(vf); 2450 2451 /* Acquire a new queue-cid */ 2452 params.queue_id = p_queue->fw_tx_qid; 2453 params.vport_id = vf->vport_id; 2454 params.stats_id = vf->abs_vf_id + 0x10; 2455 2456 /* Since IGU index is passed via sb_info, construct a dummy one */ 2457 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2458 sb_dummy.igu_sb_id = req->hw_sb; 2459 params.p_sb = &sb_dummy; 2460 params.sb_idx = req->sb_index; 2461 2462 memset(&vf_params, 0, sizeof(vf_params)); 2463 vf_params.vfid = vf->relative_vf_id; 2464 vf_params.vf_qid = (u8)req->tx_qid; 2465 vf_params.vf_legacy = vf_legacy; 2466 vf_params.qid_usage_idx = qid_usage_idx; 2467 2468 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2469 ¶ms, false, &vf_params); 2470 if (!p_cid) 2471 goto out; 2472 2473 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2474 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, 2475 req->pbl_addr, req->pbl_size, pq); 2476 if (rc) { 2477 status = PFVF_STATUS_FAILURE; 2478 qed_eth_queue_cid_release(p_hwfn, p_cid); 2479 } else { 2480 status = PFVF_STATUS_SUCCESS; 2481 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2482 p_queue->cids[qid_usage_idx].b_is_tx = true; 2483 cid = p_cid->cid; 2484 } 2485 2486 out: 2487 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); 2488 } 2489 2490 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2491 struct qed_vf_info *vf, 2492 u16 rxq_id, 2493 u8 qid_usage_idx, bool cqe_completion) 2494 { 2495 struct qed_vf_queue *p_queue; 2496 int rc = 0; 2497 2498 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { 2499 DP_VERBOSE(p_hwfn, 2500 QED_MSG_IOV, 2501 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2502 vf->relative_vf_id, rxq_id, qid_usage_idx); 2503 return -EINVAL; 2504 } 2505 2506 p_queue = &vf->vf_queues[rxq_id]; 2507 2508 /* We've validated the index and the existence of the active RXQ - 2509 * now we need to make sure that it's using the correct qid. 2510 */ 2511 if (!p_queue->cids[qid_usage_idx].p_cid || 2512 p_queue->cids[qid_usage_idx].b_is_tx) { 2513 struct qed_queue_cid *p_cid; 2514 2515 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 2516 DP_VERBOSE(p_hwfn, 2517 QED_MSG_IOV, 2518 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2519 vf->relative_vf_id, 2520 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); 2521 return -EINVAL; 2522 } 2523 2524 /* Now that we know we have a valid Rx-queue - close it */ 2525 rc = qed_eth_rx_queue_stop(p_hwfn, 2526 p_queue->cids[qid_usage_idx].p_cid, 2527 false, cqe_completion); 2528 if (rc) 2529 return rc; 2530 2531 p_queue->cids[qid_usage_idx].p_cid = NULL; 2532 vf->num_active_rxqs--; 2533 2534 return 0; 2535 } 2536 2537 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2538 struct qed_vf_info *vf, 2539 u16 txq_id, u8 qid_usage_idx) 2540 { 2541 struct qed_vf_queue *p_queue; 2542 int rc = 0; 2543 2544 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) 2545 return -EINVAL; 2546 2547 p_queue = &vf->vf_queues[txq_id]; 2548 if (!p_queue->cids[qid_usage_idx].p_cid || 2549 !p_queue->cids[qid_usage_idx].b_is_tx) 2550 return -EINVAL; 2551 2552 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); 2553 if (rc) 2554 return rc; 2555 2556 p_queue->cids[qid_usage_idx].p_cid = NULL; 2557 return 0; 2558 } 2559 2560 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2561 struct qed_ptt *p_ptt, 2562 struct qed_vf_info *vf) 2563 { 2564 u16 length = sizeof(struct pfvf_def_resp_tlv); 2565 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2566 u8 status = PFVF_STATUS_FAILURE; 2567 struct vfpf_stop_rxqs_tlv *req; 2568 u8 qid_usage_idx; 2569 int rc; 2570 2571 /* There has never been an official driver that used this interface 2572 * for stopping multiple queues, and it is now considered deprecated. 2573 * Validate this isn't used here. 2574 */ 2575 req = &mbx->req_virt->stop_rxqs; 2576 if (req->num_rxqs != 1) { 2577 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2578 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2579 vf->relative_vf_id); 2580 status = PFVF_STATUS_NOT_SUPPORTED; 2581 goto out; 2582 } 2583 2584 /* Find which qid-index is associated with the queue */ 2585 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2586 if (qid_usage_idx == QED_IOV_QID_INVALID) 2587 goto out; 2588 2589 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2590 qid_usage_idx, req->cqe_completion); 2591 if (!rc) 2592 status = PFVF_STATUS_SUCCESS; 2593 out: 2594 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2595 length, status); 2596 } 2597 2598 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2599 struct qed_ptt *p_ptt, 2600 struct qed_vf_info *vf) 2601 { 2602 u16 length = sizeof(struct pfvf_def_resp_tlv); 2603 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2604 u8 status = PFVF_STATUS_FAILURE; 2605 struct vfpf_stop_txqs_tlv *req; 2606 u8 qid_usage_idx; 2607 int rc; 2608 2609 /* There has never been an official driver that used this interface 2610 * for stopping multiple queues, and it is now considered deprecated. 2611 * Validate this isn't used here. 2612 */ 2613 req = &mbx->req_virt->stop_txqs; 2614 if (req->num_txqs != 1) { 2615 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2616 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2617 vf->relative_vf_id); 2618 status = PFVF_STATUS_NOT_SUPPORTED; 2619 goto out; 2620 } 2621 2622 /* Find which qid-index is associated with the queue */ 2623 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2624 if (qid_usage_idx == QED_IOV_QID_INVALID) 2625 goto out; 2626 2627 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); 2628 if (!rc) 2629 status = PFVF_STATUS_SUCCESS; 2630 2631 out: 2632 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2633 length, status); 2634 } 2635 2636 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2637 struct qed_ptt *p_ptt, 2638 struct qed_vf_info *vf) 2639 { 2640 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2641 u16 length = sizeof(struct pfvf_def_resp_tlv); 2642 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2643 struct vfpf_update_rxq_tlv *req; 2644 u8 status = PFVF_STATUS_FAILURE; 2645 u8 complete_event_flg; 2646 u8 complete_cqe_flg; 2647 u8 qid_usage_idx; 2648 int rc; 2649 u8 i; 2650 2651 req = &mbx->req_virt->update_rxq; 2652 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2653 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2654 2655 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2656 if (qid_usage_idx == QED_IOV_QID_INVALID) 2657 goto out; 2658 2659 /* There shouldn't exist a VF that uses queue-qids yet uses this 2660 * API with multiple Rx queues. Validate this. 2661 */ 2662 if ((vf->acquire.vfdev_info.capabilities & 2663 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { 2664 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2665 "VF[%d] supports QIDs but sends multiple queues\n", 2666 vf->relative_vf_id); 2667 goto out; 2668 } 2669 2670 /* Validate inputs - for the legacy case this is still true since 2671 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2672 */ 2673 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2674 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2675 QED_IOV_VALIDATE_Q_NA) || 2676 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2677 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2678 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2679 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2680 vf->relative_vf_id, req->rx_qid, 2681 req->num_rxqs); 2682 goto out; 2683 } 2684 } 2685 2686 /* Prepare the handlers */ 2687 for (i = 0; i < req->num_rxqs; i++) { 2688 u16 qid = req->rx_qid + i; 2689 2690 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2691 } 2692 2693 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2694 req->num_rxqs, 2695 complete_cqe_flg, 2696 complete_event_flg, 2697 QED_SPQ_MODE_EBLOCK, NULL); 2698 if (rc) 2699 goto out; 2700 2701 status = PFVF_STATUS_SUCCESS; 2702 out: 2703 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2704 length, status); 2705 } 2706 2707 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2708 void *p_tlvs_list, u16 req_type) 2709 { 2710 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2711 int len = 0; 2712 2713 do { 2714 if (!p_tlv->length) { 2715 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2716 return NULL; 2717 } 2718 2719 if (p_tlv->type == req_type) { 2720 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2721 "Extended tlv type %d, length %d found\n", 2722 p_tlv->type, p_tlv->length); 2723 return p_tlv; 2724 } 2725 2726 len += p_tlv->length; 2727 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2728 2729 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2730 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2731 return NULL; 2732 } 2733 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2734 2735 return NULL; 2736 } 2737 2738 static void 2739 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2740 struct qed_sp_vport_update_params *p_data, 2741 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2742 { 2743 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2744 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2745 2746 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2747 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2748 if (!p_act_tlv) 2749 return; 2750 2751 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2752 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2753 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2754 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2755 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2756 } 2757 2758 static void 2759 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2760 struct qed_sp_vport_update_params *p_data, 2761 struct qed_vf_info *p_vf, 2762 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2763 { 2764 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2765 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2766 2767 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2768 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2769 if (!p_vlan_tlv) 2770 return; 2771 2772 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2773 2774 /* Ignore the VF request if we're forcing a vlan */ 2775 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2776 p_data->update_inner_vlan_removal_flg = 1; 2777 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2778 } 2779 2780 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2781 } 2782 2783 static void 2784 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2785 struct qed_sp_vport_update_params *p_data, 2786 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2787 { 2788 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2789 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2790 2791 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2792 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2793 tlv); 2794 if (!p_tx_switch_tlv) 2795 return; 2796 2797 p_data->update_tx_switching_flg = 1; 2798 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2799 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2800 } 2801 2802 static void 2803 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2804 struct qed_sp_vport_update_params *p_data, 2805 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2806 { 2807 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2808 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2809 2810 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2811 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2812 if (!p_mcast_tlv) 2813 return; 2814 2815 p_data->update_approx_mcast_flg = 1; 2816 memcpy(p_data->bins, p_mcast_tlv->bins, 2817 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2818 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2819 } 2820 2821 static void 2822 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2823 struct qed_sp_vport_update_params *p_data, 2824 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2825 { 2826 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2827 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2828 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2829 2830 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2831 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2832 if (!p_accept_tlv) 2833 return; 2834 2835 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2836 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2837 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2838 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2839 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2840 } 2841 2842 static void 2843 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2844 struct qed_sp_vport_update_params *p_data, 2845 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2846 { 2847 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2848 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2849 2850 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2851 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2852 tlv); 2853 if (!p_accept_any_vlan) 2854 return; 2855 2856 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2857 p_data->update_accept_any_vlan_flg = 2858 p_accept_any_vlan->update_accept_any_vlan_flg; 2859 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2860 } 2861 2862 static void 2863 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2864 struct qed_vf_info *vf, 2865 struct qed_sp_vport_update_params *p_data, 2866 struct qed_rss_params *p_rss, 2867 struct qed_iov_vf_mbx *p_mbx, 2868 u16 *tlvs_mask, u16 *tlvs_accepted) 2869 { 2870 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2871 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2872 bool b_reject = false; 2873 u16 table_size; 2874 u16 i, q_idx; 2875 2876 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2877 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2878 if (!p_rss_tlv) { 2879 p_data->rss_params = NULL; 2880 return; 2881 } 2882 2883 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2884 2885 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2886 VFPF_UPDATE_RSS_CONFIG_FLAG); 2887 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2888 VFPF_UPDATE_RSS_CAPS_FLAG); 2889 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2890 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2891 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2892 VFPF_UPDATE_RSS_KEY_FLAG); 2893 2894 p_rss->rss_enable = p_rss_tlv->rss_enable; 2895 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2896 p_rss->rss_caps = p_rss_tlv->rss_caps; 2897 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2898 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2899 2900 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2901 (1 << p_rss_tlv->rss_table_size_log)); 2902 2903 for (i = 0; i < table_size; i++) { 2904 struct qed_queue_cid *p_cid; 2905 2906 q_idx = p_rss_tlv->rss_ind_table[i]; 2907 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2908 QED_IOV_VALIDATE_Q_ENABLE)) { 2909 DP_VERBOSE(p_hwfn, 2910 QED_MSG_IOV, 2911 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2912 vf->relative_vf_id, q_idx); 2913 b_reject = true; 2914 goto out; 2915 } 2916 2917 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 2918 p_rss->rss_ind_table[i] = p_cid; 2919 } 2920 2921 p_data->rss_params = p_rss; 2922 out: 2923 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2924 if (!b_reject) 2925 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2926 } 2927 2928 static void 2929 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2930 struct qed_vf_info *vf, 2931 struct qed_sp_vport_update_params *p_data, 2932 struct qed_sge_tpa_params *p_sge_tpa, 2933 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2934 { 2935 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2936 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2937 2938 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2939 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2940 2941 if (!p_sge_tpa_tlv) { 2942 p_data->sge_tpa_params = NULL; 2943 return; 2944 } 2945 2946 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2947 2948 p_sge_tpa->update_tpa_en_flg = 2949 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2950 p_sge_tpa->update_tpa_param_flg = 2951 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2952 VFPF_UPDATE_TPA_PARAM_FLAG); 2953 2954 p_sge_tpa->tpa_ipv4_en_flg = 2955 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2956 p_sge_tpa->tpa_ipv6_en_flg = 2957 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2958 p_sge_tpa->tpa_pkt_split_flg = 2959 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2960 p_sge_tpa->tpa_hdr_data_split_flg = 2961 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2962 p_sge_tpa->tpa_gro_consistent_flg = 2963 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2964 2965 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2966 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2967 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2968 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2969 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2970 2971 p_data->sge_tpa_params = p_sge_tpa; 2972 2973 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2974 } 2975 2976 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2977 u8 vfid, 2978 struct qed_sp_vport_update_params *params, 2979 u16 *tlvs) 2980 { 2981 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 2982 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 2983 struct qed_public_vf_info *vf_info; 2984 2985 /* Untrusted VFs can't even be trusted to know that fact. 2986 * Simply indicate everything is configured fine, and trace 2987 * configuration 'behind their back'. 2988 */ 2989 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 2990 return 0; 2991 2992 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 2993 2994 if (flags->update_rx_mode_config) { 2995 vf_info->rx_accept_mode = flags->rx_accept_filter; 2996 if (!vf_info->is_trusted_configured) 2997 flags->rx_accept_filter &= ~mask; 2998 } 2999 3000 if (flags->update_tx_mode_config) { 3001 vf_info->tx_accept_mode = flags->tx_accept_filter; 3002 if (!vf_info->is_trusted_configured) 3003 flags->tx_accept_filter &= ~mask; 3004 } 3005 3006 return 0; 3007 } 3008 3009 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 3010 struct qed_ptt *p_ptt, 3011 struct qed_vf_info *vf) 3012 { 3013 struct qed_rss_params *p_rss_params = NULL; 3014 struct qed_sp_vport_update_params params; 3015 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3016 struct qed_sge_tpa_params sge_tpa_params; 3017 u16 tlvs_mask = 0, tlvs_accepted = 0; 3018 u8 status = PFVF_STATUS_SUCCESS; 3019 u16 length; 3020 int rc; 3021 3022 /* Valiate PF can send such a request */ 3023 if (!vf->vport_instance) { 3024 DP_VERBOSE(p_hwfn, 3025 QED_MSG_IOV, 3026 "No VPORT instance available for VF[%d], failing vport update\n", 3027 vf->abs_vf_id); 3028 status = PFVF_STATUS_FAILURE; 3029 goto out; 3030 } 3031 p_rss_params = vzalloc(sizeof(*p_rss_params)); 3032 if (p_rss_params == NULL) { 3033 status = PFVF_STATUS_FAILURE; 3034 goto out; 3035 } 3036 3037 memset(¶ms, 0, sizeof(params)); 3038 params.opaque_fid = vf->opaque_fid; 3039 params.vport_id = vf->vport_id; 3040 params.rss_params = NULL; 3041 3042 /* Search for extended tlvs list and update values 3043 * from VF in struct qed_sp_vport_update_params. 3044 */ 3045 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3046 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3047 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3048 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3049 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3050 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3051 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 3052 &sge_tpa_params, mbx, &tlvs_mask); 3053 3054 tlvs_accepted = tlvs_mask; 3055 3056 /* Some of the extended TLVs need to be validated first; In that case, 3057 * they can update the mask without updating the accepted [so that 3058 * PF could communicate to VF it has rejected request]. 3059 */ 3060 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3061 mbx, &tlvs_mask, &tlvs_accepted); 3062 3063 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 3064 ¶ms, &tlvs_accepted)) { 3065 tlvs_accepted = 0; 3066 status = PFVF_STATUS_NOT_SUPPORTED; 3067 goto out; 3068 } 3069 3070 if (!tlvs_accepted) { 3071 if (tlvs_mask) 3072 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3073 "Upper-layer prevents VF vport configuration\n"); 3074 else 3075 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3076 "No feature tlvs found for vport update\n"); 3077 status = PFVF_STATUS_NOT_SUPPORTED; 3078 goto out; 3079 } 3080 3081 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 3082 3083 if (rc) 3084 status = PFVF_STATUS_FAILURE; 3085 3086 out: 3087 vfree(p_rss_params); 3088 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3089 tlvs_mask, tlvs_accepted); 3090 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3091 } 3092 3093 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 3094 struct qed_vf_info *p_vf, 3095 struct qed_filter_ucast *p_params) 3096 { 3097 int i; 3098 3099 /* First remove entries and then add new ones */ 3100 if (p_params->opcode == QED_FILTER_REMOVE) { 3101 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3102 if (p_vf->shadow_config.vlans[i].used && 3103 p_vf->shadow_config.vlans[i].vid == 3104 p_params->vlan) { 3105 p_vf->shadow_config.vlans[i].used = false; 3106 break; 3107 } 3108 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3109 DP_VERBOSE(p_hwfn, 3110 QED_MSG_IOV, 3111 "VF [%d] - Tries to remove a non-existing vlan\n", 3112 p_vf->relative_vf_id); 3113 return -EINVAL; 3114 } 3115 } else if (p_params->opcode == QED_FILTER_REPLACE || 3116 p_params->opcode == QED_FILTER_FLUSH) { 3117 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3118 p_vf->shadow_config.vlans[i].used = false; 3119 } 3120 3121 /* In forced mode, we're willing to remove entries - but we don't add 3122 * new ones. 3123 */ 3124 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 3125 return 0; 3126 3127 if (p_params->opcode == QED_FILTER_ADD || 3128 p_params->opcode == QED_FILTER_REPLACE) { 3129 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3130 if (p_vf->shadow_config.vlans[i].used) 3131 continue; 3132 3133 p_vf->shadow_config.vlans[i].used = true; 3134 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3135 break; 3136 } 3137 3138 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3139 DP_VERBOSE(p_hwfn, 3140 QED_MSG_IOV, 3141 "VF [%d] - Tries to configure more than %d vlan filters\n", 3142 p_vf->relative_vf_id, 3143 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 3144 return -EINVAL; 3145 } 3146 } 3147 3148 return 0; 3149 } 3150 3151 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 3152 struct qed_vf_info *p_vf, 3153 struct qed_filter_ucast *p_params) 3154 { 3155 int i; 3156 3157 /* If we're in forced-mode, we don't allow any change */ 3158 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 3159 return 0; 3160 3161 /* Don't keep track of shadow copy since we don't intend to restore. */ 3162 if (p_vf->p_vf_info.is_trusted_configured) 3163 return 0; 3164 3165 /* First remove entries and then add new ones */ 3166 if (p_params->opcode == QED_FILTER_REMOVE) { 3167 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3168 if (ether_addr_equal(p_vf->shadow_config.macs[i], 3169 p_params->mac)) { 3170 eth_zero_addr(p_vf->shadow_config.macs[i]); 3171 break; 3172 } 3173 } 3174 3175 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3176 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3177 "MAC isn't configured\n"); 3178 return -EINVAL; 3179 } 3180 } else if (p_params->opcode == QED_FILTER_REPLACE || 3181 p_params->opcode == QED_FILTER_FLUSH) { 3182 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 3183 eth_zero_addr(p_vf->shadow_config.macs[i]); 3184 } 3185 3186 /* List the new MAC address */ 3187 if (p_params->opcode != QED_FILTER_ADD && 3188 p_params->opcode != QED_FILTER_REPLACE) 3189 return 0; 3190 3191 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3192 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 3193 ether_addr_copy(p_vf->shadow_config.macs[i], 3194 p_params->mac); 3195 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3196 "Added MAC at %d entry in shadow\n", i); 3197 break; 3198 } 3199 } 3200 3201 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3202 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 3203 return -EINVAL; 3204 } 3205 3206 return 0; 3207 } 3208 3209 static int 3210 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 3211 struct qed_vf_info *p_vf, 3212 struct qed_filter_ucast *p_params) 3213 { 3214 int rc = 0; 3215 3216 if (p_params->type == QED_FILTER_MAC) { 3217 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3218 if (rc) 3219 return rc; 3220 } 3221 3222 if (p_params->type == QED_FILTER_VLAN) 3223 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3224 3225 return rc; 3226 } 3227 3228 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3229 int vfid, struct qed_filter_ucast *params) 3230 { 3231 struct qed_public_vf_info *vf; 3232 3233 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3234 if (!vf) 3235 return -EINVAL; 3236 3237 /* No real decision to make; Store the configured MAC */ 3238 if (params->type == QED_FILTER_MAC || 3239 params->type == QED_FILTER_MAC_VLAN) { 3240 ether_addr_copy(vf->mac, params->mac); 3241 3242 if (vf->is_trusted_configured) { 3243 qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid); 3244 3245 /* Update and post bulleitin again */ 3246 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3247 } 3248 } 3249 3250 return 0; 3251 } 3252 3253 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3254 struct qed_ptt *p_ptt, 3255 struct qed_vf_info *vf) 3256 { 3257 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3258 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3259 struct vfpf_ucast_filter_tlv *req; 3260 u8 status = PFVF_STATUS_SUCCESS; 3261 struct qed_filter_ucast params; 3262 int rc; 3263 3264 /* Prepare the unicast filter params */ 3265 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3266 req = &mbx->req_virt->ucast_filter; 3267 params.opcode = (enum qed_filter_opcode)req->opcode; 3268 params.type = (enum qed_filter_ucast_type)req->type; 3269 3270 params.is_rx_filter = 1; 3271 params.is_tx_filter = 1; 3272 params.vport_to_remove_from = vf->vport_id; 3273 params.vport_to_add_to = vf->vport_id; 3274 memcpy(params.mac, req->mac, ETH_ALEN); 3275 params.vlan = req->vlan; 3276 3277 DP_VERBOSE(p_hwfn, 3278 QED_MSG_IOV, 3279 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 3280 vf->abs_vf_id, params.opcode, params.type, 3281 params.is_rx_filter ? "RX" : "", 3282 params.is_tx_filter ? "TX" : "", 3283 params.vport_to_add_to, 3284 params.mac[0], params.mac[1], 3285 params.mac[2], params.mac[3], 3286 params.mac[4], params.mac[5], params.vlan); 3287 3288 if (!vf->vport_instance) { 3289 DP_VERBOSE(p_hwfn, 3290 QED_MSG_IOV, 3291 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3292 vf->abs_vf_id); 3293 status = PFVF_STATUS_FAILURE; 3294 goto out; 3295 } 3296 3297 /* Update shadow copy of the VF configuration */ 3298 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3299 status = PFVF_STATUS_FAILURE; 3300 goto out; 3301 } 3302 3303 /* Determine if the unicast filtering is acceptible by PF */ 3304 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3305 (params.type == QED_FILTER_VLAN || 3306 params.type == QED_FILTER_MAC_VLAN)) { 3307 /* Once VLAN is forced or PVID is set, do not allow 3308 * to add/replace any further VLANs. 3309 */ 3310 if (params.opcode == QED_FILTER_ADD || 3311 params.opcode == QED_FILTER_REPLACE) 3312 status = PFVF_STATUS_FORCED; 3313 goto out; 3314 } 3315 3316 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3317 (params.type == QED_FILTER_MAC || 3318 params.type == QED_FILTER_MAC_VLAN)) { 3319 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3320 (params.opcode != QED_FILTER_ADD && 3321 params.opcode != QED_FILTER_REPLACE)) 3322 status = PFVF_STATUS_FORCED; 3323 goto out; 3324 } 3325 3326 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3327 if (rc) { 3328 status = PFVF_STATUS_FAILURE; 3329 goto out; 3330 } 3331 3332 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3333 QED_SPQ_MODE_CB, NULL); 3334 if (rc) 3335 status = PFVF_STATUS_FAILURE; 3336 3337 out: 3338 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3339 sizeof(struct pfvf_def_resp_tlv), status); 3340 } 3341 3342 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3343 struct qed_ptt *p_ptt, 3344 struct qed_vf_info *vf) 3345 { 3346 int i; 3347 3348 /* Reset the SBs */ 3349 for (i = 0; i < vf->num_sbs; i++) 3350 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3351 vf->igu_sbs[i], 3352 vf->opaque_fid, false); 3353 3354 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3355 sizeof(struct pfvf_def_resp_tlv), 3356 PFVF_STATUS_SUCCESS); 3357 } 3358 3359 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3360 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3361 { 3362 u16 length = sizeof(struct pfvf_def_resp_tlv); 3363 u8 status = PFVF_STATUS_SUCCESS; 3364 3365 /* Disable Interrupts for VF */ 3366 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3367 3368 /* Reset Permission table */ 3369 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3370 3371 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3372 length, status); 3373 } 3374 3375 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3376 struct qed_ptt *p_ptt, 3377 struct qed_vf_info *p_vf) 3378 { 3379 u16 length = sizeof(struct pfvf_def_resp_tlv); 3380 u8 status = PFVF_STATUS_SUCCESS; 3381 int rc = 0; 3382 3383 qed_iov_vf_cleanup(p_hwfn, p_vf); 3384 3385 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3386 /* Stopping the VF */ 3387 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3388 p_vf->opaque_fid); 3389 3390 if (rc) { 3391 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3392 rc); 3393 status = PFVF_STATUS_FAILURE; 3394 } 3395 3396 p_vf->state = VF_STOPPED; 3397 } 3398 3399 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3400 length, status); 3401 } 3402 3403 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, 3404 struct qed_ptt *p_ptt, 3405 struct qed_vf_info *p_vf) 3406 { 3407 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3408 struct pfvf_read_coal_resp_tlv *p_resp; 3409 struct vfpf_read_coal_req_tlv *req; 3410 u8 status = PFVF_STATUS_FAILURE; 3411 struct qed_vf_queue *p_queue; 3412 struct qed_queue_cid *p_cid; 3413 u16 coal = 0, qid, i; 3414 bool b_is_rx; 3415 int rc = 0; 3416 3417 mbx->offset = (u8 *)mbx->reply_virt; 3418 req = &mbx->req_virt->read_coal_req; 3419 3420 qid = req->qid; 3421 b_is_rx = req->is_rx ? true : false; 3422 3423 if (b_is_rx) { 3424 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, 3425 QED_IOV_VALIDATE_Q_ENABLE)) { 3426 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3427 "VF[%d]: Invalid Rx queue_id = %d\n", 3428 p_vf->abs_vf_id, qid); 3429 goto send_resp; 3430 } 3431 3432 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3433 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3434 if (rc) 3435 goto send_resp; 3436 } else { 3437 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, 3438 QED_IOV_VALIDATE_Q_ENABLE)) { 3439 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3440 "VF[%d]: Invalid Tx queue_id = %d\n", 3441 p_vf->abs_vf_id, qid); 3442 goto send_resp; 3443 } 3444 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3445 p_queue = &p_vf->vf_queues[qid]; 3446 if ((!p_queue->cids[i].p_cid) || 3447 (!p_queue->cids[i].b_is_tx)) 3448 continue; 3449 3450 p_cid = p_queue->cids[i].p_cid; 3451 3452 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3453 if (rc) 3454 goto send_resp; 3455 break; 3456 } 3457 } 3458 3459 status = PFVF_STATUS_SUCCESS; 3460 3461 send_resp: 3462 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, 3463 sizeof(*p_resp)); 3464 p_resp->coal = coal; 3465 3466 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 3467 sizeof(struct channel_list_end_tlv)); 3468 3469 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3470 } 3471 3472 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, 3473 struct qed_ptt *p_ptt, 3474 struct qed_vf_info *vf) 3475 { 3476 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3477 struct vfpf_update_coalesce *req; 3478 u8 status = PFVF_STATUS_FAILURE; 3479 struct qed_queue_cid *p_cid; 3480 u16 rx_coal, tx_coal; 3481 int rc = 0, i; 3482 u16 qid; 3483 3484 req = &mbx->req_virt->update_coalesce; 3485 3486 rx_coal = req->rx_coal; 3487 tx_coal = req->tx_coal; 3488 qid = req->qid; 3489 3490 if (!qed_iov_validate_rxq(p_hwfn, vf, qid, 3491 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { 3492 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3493 "VF[%d]: Invalid Rx queue_id = %d\n", 3494 vf->abs_vf_id, qid); 3495 goto out; 3496 } 3497 3498 if (!qed_iov_validate_txq(p_hwfn, vf, qid, 3499 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { 3500 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3501 "VF[%d]: Invalid Tx queue_id = %d\n", 3502 vf->abs_vf_id, qid); 3503 goto out; 3504 } 3505 3506 DP_VERBOSE(p_hwfn, 3507 QED_MSG_IOV, 3508 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3509 vf->abs_vf_id, rx_coal, tx_coal, qid); 3510 3511 if (rx_coal) { 3512 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3513 3514 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3515 if (rc) { 3516 DP_VERBOSE(p_hwfn, 3517 QED_MSG_IOV, 3518 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3519 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3520 goto out; 3521 } 3522 vf->rx_coal = rx_coal; 3523 } 3524 3525 if (tx_coal) { 3526 struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; 3527 3528 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3529 if (!p_queue->cids[i].p_cid) 3530 continue; 3531 3532 if (!p_queue->cids[i].b_is_tx) 3533 continue; 3534 3535 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3536 p_queue->cids[i].p_cid); 3537 3538 if (rc) { 3539 DP_VERBOSE(p_hwfn, 3540 QED_MSG_IOV, 3541 "VF[%d]: Unable to set tx queue coalesce\n", 3542 vf->abs_vf_id); 3543 goto out; 3544 } 3545 } 3546 vf->tx_coal = tx_coal; 3547 } 3548 3549 status = PFVF_STATUS_SUCCESS; 3550 out: 3551 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3552 sizeof(struct pfvf_def_resp_tlv), status); 3553 } 3554 static int 3555 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3556 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3557 { 3558 int cnt; 3559 u32 val; 3560 3561 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 3562 3563 for (cnt = 0; cnt < 50; cnt++) { 3564 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3565 if (!val) 3566 break; 3567 msleep(20); 3568 } 3569 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 3570 3571 if (cnt == 50) { 3572 DP_ERR(p_hwfn, 3573 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3574 p_vf->abs_vf_id, val); 3575 return -EBUSY; 3576 } 3577 3578 return 0; 3579 } 3580 3581 static int 3582 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3583 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3584 { 3585 u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4]; 3586 int i, cnt; 3587 3588 /* Read initial consumers & producers */ 3589 for (i = 0; i < MAX_NUM_VOQS_E4; i++) { 3590 u32 prod; 3591 3592 cons[i] = qed_rd(p_hwfn, p_ptt, 3593 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3594 i * 0x40); 3595 prod = qed_rd(p_hwfn, p_ptt, 3596 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3597 i * 0x40); 3598 distance[i] = prod - cons[i]; 3599 } 3600 3601 /* Wait for consumers to pass the producers */ 3602 i = 0; 3603 for (cnt = 0; cnt < 50; cnt++) { 3604 for (; i < MAX_NUM_VOQS_E4; i++) { 3605 u32 tmp; 3606 3607 tmp = qed_rd(p_hwfn, p_ptt, 3608 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3609 i * 0x40); 3610 if (distance[i] > tmp - cons[i]) 3611 break; 3612 } 3613 3614 if (i == MAX_NUM_VOQS_E4) 3615 break; 3616 3617 msleep(20); 3618 } 3619 3620 if (cnt == 50) { 3621 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3622 p_vf->abs_vf_id, i); 3623 return -EBUSY; 3624 } 3625 3626 return 0; 3627 } 3628 3629 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3630 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3631 { 3632 int rc; 3633 3634 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3635 if (rc) 3636 return rc; 3637 3638 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3639 if (rc) 3640 return rc; 3641 3642 return 0; 3643 } 3644 3645 static int 3646 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3647 struct qed_ptt *p_ptt, 3648 u16 rel_vf_id, u32 *ack_vfs) 3649 { 3650 struct qed_vf_info *p_vf; 3651 int rc = 0; 3652 3653 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3654 if (!p_vf) 3655 return 0; 3656 3657 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3658 (1ULL << (rel_vf_id % 64))) { 3659 u16 vfid = p_vf->abs_vf_id; 3660 3661 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3662 "VF[%d] - Handling FLR\n", vfid); 3663 3664 qed_iov_vf_cleanup(p_hwfn, p_vf); 3665 3666 /* If VF isn't active, no need for anything but SW */ 3667 if (!p_vf->b_init) 3668 goto cleanup; 3669 3670 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3671 if (rc) 3672 goto cleanup; 3673 3674 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3675 if (rc) { 3676 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3677 return rc; 3678 } 3679 3680 /* Workaround to make VF-PF channel ready, as FW 3681 * doesn't do that as a part of FLR. 3682 */ 3683 REG_WR(p_hwfn, 3684 GTT_BAR0_MAP_REG_USDM_RAM + 3685 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3686 3687 /* VF_STOPPED has to be set only after final cleanup 3688 * but prior to re-enabling the VF. 3689 */ 3690 p_vf->state = VF_STOPPED; 3691 3692 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3693 if (rc) { 3694 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3695 vfid); 3696 return rc; 3697 } 3698 cleanup: 3699 /* Mark VF for ack and clean pending state */ 3700 if (p_vf->state == VF_RESET) 3701 p_vf->state = VF_STOPPED; 3702 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3703 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3704 ~(1ULL << (rel_vf_id % 64)); 3705 p_vf->vf_mbx.b_pending_msg = false; 3706 } 3707 3708 return rc; 3709 } 3710 3711 static int 3712 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3713 { 3714 u32 ack_vfs[VF_MAX_STATIC / 32]; 3715 int rc = 0; 3716 u16 i; 3717 3718 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3719 3720 /* Since BRB <-> PRS interface can't be tested as part of the flr 3721 * polling due to HW limitations, simply sleep a bit. And since 3722 * there's no need to wait per-vf, do it before looping. 3723 */ 3724 msleep(100); 3725 3726 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3727 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3728 3729 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3730 return rc; 3731 } 3732 3733 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3734 { 3735 bool found = false; 3736 u16 i; 3737 3738 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3739 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3740 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3741 "[%08x,...,%08x]: %08x\n", 3742 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3743 3744 if (!p_hwfn->cdev->p_iov_info) { 3745 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3746 return false; 3747 } 3748 3749 /* Mark VFs */ 3750 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3751 struct qed_vf_info *p_vf; 3752 u8 vfid; 3753 3754 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3755 if (!p_vf) 3756 continue; 3757 3758 vfid = p_vf->abs_vf_id; 3759 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3760 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3761 u16 rel_vf_id = p_vf->relative_vf_id; 3762 3763 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3764 "VF[%d] [rel %d] got FLR-ed\n", 3765 vfid, rel_vf_id); 3766 3767 p_vf->state = VF_RESET; 3768 3769 /* No need to lock here, since pending_flr should 3770 * only change here and before ACKing MFw. Since 3771 * MFW will not trigger an additional attention for 3772 * VF flr until ACKs, we're safe. 3773 */ 3774 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3775 found = true; 3776 } 3777 } 3778 3779 return found; 3780 } 3781 3782 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3783 u16 vfid, 3784 struct qed_mcp_link_params *p_params, 3785 struct qed_mcp_link_state *p_link, 3786 struct qed_mcp_link_capabilities *p_caps) 3787 { 3788 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3789 vfid, 3790 false); 3791 struct qed_bulletin_content *p_bulletin; 3792 3793 if (!p_vf) 3794 return; 3795 3796 p_bulletin = p_vf->bulletin.p_virt; 3797 3798 if (p_params) 3799 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3800 if (p_link) 3801 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3802 if (p_caps) 3803 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3804 } 3805 3806 static int 3807 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn, 3808 struct qed_ptt *p_ptt, 3809 struct qed_vf_info *p_vf) 3810 { 3811 struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt; 3812 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3813 struct vfpf_bulletin_update_mac_tlv *p_req; 3814 u8 status = PFVF_STATUS_SUCCESS; 3815 int rc = 0; 3816 3817 if (!p_vf->p_vf_info.is_trusted_configured) { 3818 DP_VERBOSE(p_hwfn, 3819 QED_MSG_IOV, 3820 "Blocking bulletin update request from untrusted VF[%d]\n", 3821 p_vf->abs_vf_id); 3822 status = PFVF_STATUS_NOT_SUPPORTED; 3823 rc = -EINVAL; 3824 goto send_status; 3825 } 3826 3827 p_req = &mbx->req_virt->bulletin_update_mac; 3828 ether_addr_copy(p_bulletin->mac, p_req->mac); 3829 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3830 "Updated bulletin of VF[%d] with requested MAC[%pM]\n", 3831 p_vf->abs_vf_id, p_req->mac); 3832 3833 send_status: 3834 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3835 CHANNEL_TLV_BULLETIN_UPDATE_MAC, 3836 sizeof(struct pfvf_def_resp_tlv), status); 3837 return rc; 3838 } 3839 3840 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3841 struct qed_ptt *p_ptt, int vfid) 3842 { 3843 struct qed_iov_vf_mbx *mbx; 3844 struct qed_vf_info *p_vf; 3845 3846 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3847 if (!p_vf) 3848 return; 3849 3850 mbx = &p_vf->vf_mbx; 3851 3852 /* qed_iov_process_mbx_request */ 3853 if (!mbx->b_pending_msg) { 3854 DP_NOTICE(p_hwfn, 3855 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3856 p_vf->abs_vf_id); 3857 return; 3858 } 3859 mbx->b_pending_msg = false; 3860 3861 mbx->first_tlv = mbx->req_virt->first_tlv; 3862 3863 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3864 "VF[%02x]: Processing mailbox message [type %04x]\n", 3865 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3866 3867 /* check if tlv type is known */ 3868 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3869 !p_vf->b_malicious) { 3870 switch (mbx->first_tlv.tl.type) { 3871 case CHANNEL_TLV_ACQUIRE: 3872 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3873 break; 3874 case CHANNEL_TLV_VPORT_START: 3875 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3876 break; 3877 case CHANNEL_TLV_VPORT_TEARDOWN: 3878 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3879 break; 3880 case CHANNEL_TLV_START_RXQ: 3881 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3882 break; 3883 case CHANNEL_TLV_START_TXQ: 3884 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3885 break; 3886 case CHANNEL_TLV_STOP_RXQS: 3887 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3888 break; 3889 case CHANNEL_TLV_STOP_TXQS: 3890 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3891 break; 3892 case CHANNEL_TLV_UPDATE_RXQ: 3893 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3894 break; 3895 case CHANNEL_TLV_VPORT_UPDATE: 3896 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3897 break; 3898 case CHANNEL_TLV_UCAST_FILTER: 3899 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3900 break; 3901 case CHANNEL_TLV_CLOSE: 3902 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3903 break; 3904 case CHANNEL_TLV_INT_CLEANUP: 3905 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3906 break; 3907 case CHANNEL_TLV_RELEASE: 3908 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3909 break; 3910 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3911 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3912 break; 3913 case CHANNEL_TLV_COALESCE_UPDATE: 3914 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 3915 break; 3916 case CHANNEL_TLV_COALESCE_READ: 3917 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 3918 break; 3919 case CHANNEL_TLV_BULLETIN_UPDATE_MAC: 3920 qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf); 3921 break; 3922 } 3923 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3924 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3925 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3926 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3927 3928 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3929 mbx->first_tlv.tl.type, 3930 sizeof(struct pfvf_def_resp_tlv), 3931 PFVF_STATUS_MALICIOUS); 3932 } else { 3933 /* unknown TLV - this may belong to a VF driver from the future 3934 * - a version written after this PF driver was written, which 3935 * supports features unknown as of yet. Too bad since we don't 3936 * support them. Or this may be because someone wrote a crappy 3937 * VF driver and is sending garbage over the channel. 3938 */ 3939 DP_NOTICE(p_hwfn, 3940 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3941 p_vf->abs_vf_id, 3942 mbx->first_tlv.tl.type, 3943 mbx->first_tlv.tl.length, 3944 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3945 3946 /* Try replying in case reply address matches the acquisition's 3947 * posted address. 3948 */ 3949 if (p_vf->acquire.first_tlv.reply_address && 3950 (mbx->first_tlv.reply_address == 3951 p_vf->acquire.first_tlv.reply_address)) { 3952 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3953 mbx->first_tlv.tl.type, 3954 sizeof(struct pfvf_def_resp_tlv), 3955 PFVF_STATUS_NOT_SUPPORTED); 3956 } else { 3957 DP_VERBOSE(p_hwfn, 3958 QED_MSG_IOV, 3959 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3960 p_vf->abs_vf_id); 3961 } 3962 } 3963 } 3964 3965 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3966 { 3967 int i; 3968 3969 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3970 3971 qed_for_each_vf(p_hwfn, i) { 3972 struct qed_vf_info *p_vf; 3973 3974 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3975 if (p_vf->vf_mbx.b_pending_msg) 3976 events[i / 64] |= 1ULL << (i % 64); 3977 } 3978 } 3979 3980 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3981 u16 abs_vfid) 3982 { 3983 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 3984 3985 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 3986 DP_VERBOSE(p_hwfn, 3987 QED_MSG_IOV, 3988 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 3989 abs_vfid); 3990 return NULL; 3991 } 3992 3993 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 3994 } 3995 3996 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 3997 u16 abs_vfid, struct regpair *vf_msg) 3998 { 3999 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 4000 abs_vfid); 4001 4002 if (!p_vf) 4003 return 0; 4004 4005 /* List the physical address of the request so that handler 4006 * could later on copy the message from it. 4007 */ 4008 p_vf->vf_mbx.pending_req = HILO_64(vf_msg->hi, vf_msg->lo); 4009 4010 /* Mark the event and schedule the workqueue */ 4011 p_vf->vf_mbx.b_pending_msg = true; 4012 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 4013 4014 return 0; 4015 } 4016 4017 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 4018 struct malicious_vf_eqe_data *p_data) 4019 { 4020 struct qed_vf_info *p_vf; 4021 4022 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 4023 4024 if (!p_vf) 4025 return; 4026 4027 if (!p_vf->b_malicious) { 4028 DP_NOTICE(p_hwfn, 4029 "VF [%d] - Malicious behavior [%02x]\n", 4030 p_vf->abs_vf_id, p_data->err_id); 4031 4032 p_vf->b_malicious = true; 4033 } else { 4034 DP_INFO(p_hwfn, 4035 "VF [%d] - Malicious behavior [%02x]\n", 4036 p_vf->abs_vf_id, p_data->err_id); 4037 } 4038 } 4039 4040 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo, 4041 union event_ring_data *data, u8 fw_return_code) 4042 { 4043 switch (opcode) { 4044 case COMMON_EVENT_VF_PF_CHANNEL: 4045 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 4046 &data->vf_pf_channel.msg_addr); 4047 case COMMON_EVENT_MALICIOUS_VF: 4048 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 4049 return 0; 4050 default: 4051 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 4052 opcode); 4053 return -EINVAL; 4054 } 4055 } 4056 4057 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4058 { 4059 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 4060 u16 i; 4061 4062 if (!p_iov) 4063 goto out; 4064 4065 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4066 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4067 return i; 4068 4069 out: 4070 return MAX_NUM_VFS; 4071 } 4072 4073 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 4074 int vfid) 4075 { 4076 struct qed_dmae_params params; 4077 struct qed_vf_info *vf_info; 4078 4079 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4080 if (!vf_info) 4081 return -EINVAL; 4082 4083 memset(¶ms, 0, sizeof(params)); 4084 SET_FIELD(params.flags, QED_DMAE_PARAMS_SRC_VF_VALID, 0x1); 4085 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 0x1); 4086 params.src_vfid = vf_info->abs_vf_id; 4087 4088 if (qed_dmae_host2host(p_hwfn, ptt, 4089 vf_info->vf_mbx.pending_req, 4090 vf_info->vf_mbx.req_phys, 4091 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 4092 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4093 "Failed to copy message from VF 0x%02x\n", vfid); 4094 4095 return -EIO; 4096 } 4097 4098 return 0; 4099 } 4100 4101 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 4102 u8 *mac, int vfid) 4103 { 4104 struct qed_vf_info *vf_info; 4105 u64 feature; 4106 4107 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4108 if (!vf_info) { 4109 DP_NOTICE(p_hwfn->cdev, 4110 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4111 return; 4112 } 4113 4114 if (vf_info->b_malicious) { 4115 DP_NOTICE(p_hwfn->cdev, 4116 "Can't set forced MAC to malicious VF [%d]\n", vfid); 4117 return; 4118 } 4119 4120 if (vf_info->p_vf_info.is_trusted_configured) { 4121 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4122 /* Trust mode will disable Forced MAC */ 4123 vf_info->bulletin.p_virt->valid_bitmap &= 4124 ~BIT(MAC_ADDR_FORCED); 4125 } else { 4126 feature = BIT(MAC_ADDR_FORCED); 4127 /* Forced MAC will disable MAC_ADDR */ 4128 vf_info->bulletin.p_virt->valid_bitmap &= 4129 ~BIT(VFPF_BULLETIN_MAC_ADDR); 4130 } 4131 4132 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 4133 4134 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4135 4136 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4137 } 4138 4139 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) 4140 { 4141 struct qed_vf_info *vf_info; 4142 u64 feature; 4143 4144 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4145 if (!vf_info) { 4146 DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n", 4147 vfid); 4148 return -EINVAL; 4149 } 4150 4151 if (vf_info->b_malicious) { 4152 DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n", 4153 vfid); 4154 return -EINVAL; 4155 } 4156 4157 if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) { 4158 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4159 "Can not set MAC, Forced MAC is configured\n"); 4160 return -EINVAL; 4161 } 4162 4163 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4164 ether_addr_copy(vf_info->bulletin.p_virt->mac, mac); 4165 4166 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4167 4168 if (vf_info->p_vf_info.is_trusted_configured) 4169 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4170 4171 return 0; 4172 } 4173 4174 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 4175 u16 pvid, int vfid) 4176 { 4177 struct qed_vf_info *vf_info; 4178 u64 feature; 4179 4180 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4181 if (!vf_info) { 4182 DP_NOTICE(p_hwfn->cdev, 4183 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4184 return; 4185 } 4186 4187 if (vf_info->b_malicious) { 4188 DP_NOTICE(p_hwfn->cdev, 4189 "Can't set forced vlan to malicious VF [%d]\n", vfid); 4190 return; 4191 } 4192 4193 feature = 1 << VLAN_ADDR_FORCED; 4194 vf_info->bulletin.p_virt->pvid = pvid; 4195 if (pvid) 4196 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4197 else 4198 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4199 4200 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4201 } 4202 4203 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 4204 int vfid, u16 vxlan_port, u16 geneve_port) 4205 { 4206 struct qed_vf_info *vf_info; 4207 4208 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4209 if (!vf_info) { 4210 DP_NOTICE(p_hwfn->cdev, 4211 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4212 return; 4213 } 4214 4215 if (vf_info->b_malicious) { 4216 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4217 "Can not set udp ports to malicious VF [%d]\n", 4218 vfid); 4219 return; 4220 } 4221 4222 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4223 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4224 } 4225 4226 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 4227 { 4228 struct qed_vf_info *p_vf_info; 4229 4230 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4231 if (!p_vf_info) 4232 return false; 4233 4234 return !!p_vf_info->vport_instance; 4235 } 4236 4237 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 4238 { 4239 struct qed_vf_info *p_vf_info; 4240 4241 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4242 if (!p_vf_info) 4243 return true; 4244 4245 return p_vf_info->state == VF_STOPPED; 4246 } 4247 4248 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 4249 { 4250 struct qed_vf_info *vf_info; 4251 4252 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4253 if (!vf_info) 4254 return false; 4255 4256 return vf_info->spoof_chk; 4257 } 4258 4259 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 4260 { 4261 struct qed_vf_info *vf; 4262 int rc = -EINVAL; 4263 4264 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4265 DP_NOTICE(p_hwfn, 4266 "SR-IOV sanity check failed, can't set spoofchk\n"); 4267 goto out; 4268 } 4269 4270 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4271 if (!vf) 4272 goto out; 4273 4274 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4275 /* After VF VPORT start PF will configure spoof check */ 4276 vf->req_spoofchk_val = val; 4277 rc = 0; 4278 goto out; 4279 } 4280 4281 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 4282 4283 out: 4284 return rc; 4285 } 4286 4287 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4288 { 4289 struct qed_vf_info *p_vf; 4290 4291 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4292 if (!p_vf || !p_vf->bulletin.p_virt) 4293 return NULL; 4294 4295 if (!(p_vf->bulletin.p_virt->valid_bitmap & 4296 BIT(VFPF_BULLETIN_MAC_ADDR))) 4297 return NULL; 4298 4299 return p_vf->bulletin.p_virt->mac; 4300 } 4301 4302 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 4303 u16 rel_vf_id) 4304 { 4305 struct qed_vf_info *p_vf; 4306 4307 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4308 if (!p_vf || !p_vf->bulletin.p_virt) 4309 return NULL; 4310 4311 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 4312 return NULL; 4313 4314 return p_vf->bulletin.p_virt->mac; 4315 } 4316 4317 static u16 4318 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4319 { 4320 struct qed_vf_info *p_vf; 4321 4322 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4323 if (!p_vf || !p_vf->bulletin.p_virt) 4324 return 0; 4325 4326 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 4327 return 0; 4328 4329 return p_vf->bulletin.p_virt->pvid; 4330 } 4331 4332 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 4333 struct qed_ptt *p_ptt, int vfid, int val) 4334 { 4335 struct qed_vf_info *vf; 4336 u8 abs_vp_id = 0; 4337 u16 rl_id; 4338 int rc; 4339 4340 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4341 if (!vf) 4342 return -EINVAL; 4343 4344 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4345 if (rc) 4346 return rc; 4347 4348 rl_id = abs_vp_id; /* The "rl_id" is set as the "vport_id" */ 4349 return qed_init_global_rl(p_hwfn, p_ptt, rl_id, (u32)val); 4350 } 4351 4352 static int 4353 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 4354 { 4355 struct qed_vf_info *vf; 4356 u8 vport_id; 4357 int i; 4358 4359 for_each_hwfn(cdev, i) { 4360 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4361 4362 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4363 DP_NOTICE(p_hwfn, 4364 "SR-IOV sanity check failed, can't set min rate\n"); 4365 return -EINVAL; 4366 } 4367 } 4368 4369 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 4370 vport_id = vf->vport_id; 4371 4372 return qed_configure_vport_wfq(cdev, vport_id, rate); 4373 } 4374 4375 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 4376 { 4377 struct qed_wfq_data *vf_vp_wfq; 4378 struct qed_vf_info *vf_info; 4379 4380 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4381 if (!vf_info) 4382 return 0; 4383 4384 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4385 4386 if (vf_vp_wfq->configured) 4387 return vf_vp_wfq->min_speed; 4388 else 4389 return 0; 4390 } 4391 4392 /** 4393 * qed_schedule_iov - schedules IOV task for VF and PF 4394 * @hwfn: hardware function pointer 4395 * @flag: IOV flag for VF/PF 4396 */ 4397 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 4398 { 4399 smp_mb__before_atomic(); 4400 set_bit(flag, &hwfn->iov_task_flags); 4401 smp_mb__after_atomic(); 4402 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 4403 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 4404 } 4405 4406 void qed_vf_start_iov_wq(struct qed_dev *cdev) 4407 { 4408 int i; 4409 4410 for_each_hwfn(cdev, i) 4411 queue_delayed_work(cdev->hwfns[i].iov_wq, 4412 &cdev->hwfns[i].iov_task, 0); 4413 } 4414 4415 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 4416 { 4417 int i, j; 4418 4419 for_each_hwfn(cdev, i) 4420 if (cdev->hwfns[i].iov_wq) 4421 flush_workqueue(cdev->hwfns[i].iov_wq); 4422 4423 /* Mark VFs for disablement */ 4424 qed_iov_set_vfs_to_disable(cdev, true); 4425 4426 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 4427 pci_disable_sriov(cdev->pdev); 4428 4429 if (cdev->recov_in_prog) { 4430 DP_VERBOSE(cdev, 4431 QED_MSG_IOV, 4432 "Skip SRIOV disable operations in the device since a recovery is in progress\n"); 4433 goto out; 4434 } 4435 4436 for_each_hwfn(cdev, i) { 4437 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4438 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4439 4440 /* Failure to acquire the ptt in 100g creates an odd error 4441 * where the first engine has already relased IOV. 4442 */ 4443 if (!ptt) { 4444 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4445 return -EBUSY; 4446 } 4447 4448 /* Clean WFQ db and configure equal weight for all vports */ 4449 qed_clean_wfq_db(hwfn, ptt); 4450 4451 qed_for_each_vf(hwfn, j) { 4452 int k; 4453 4454 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 4455 continue; 4456 4457 /* Wait until VF is disabled before releasing */ 4458 for (k = 0; k < 100; k++) { 4459 if (!qed_iov_is_vf_stopped(hwfn, j)) 4460 msleep(20); 4461 else 4462 break; 4463 } 4464 4465 if (k < 100) 4466 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 4467 ptt, j); 4468 else 4469 DP_ERR(hwfn, 4470 "Timeout waiting for VF's FLR to end\n"); 4471 } 4472 4473 qed_ptt_release(hwfn, ptt); 4474 } 4475 out: 4476 qed_iov_set_vfs_to_disable(cdev, false); 4477 4478 return 0; 4479 } 4480 4481 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 4482 u16 vfid, 4483 struct qed_iov_vf_init_params *params) 4484 { 4485 u16 base, i; 4486 4487 /* Since we have an equal resource distribution per-VF, and we assume 4488 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 4489 * sequentially from there. 4490 */ 4491 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 4492 4493 params->rel_vf_id = vfid; 4494 for (i = 0; i < params->num_queues; i++) { 4495 params->req_rx_queue[i] = base + i; 4496 params->req_tx_queue[i] = base + i; 4497 } 4498 } 4499 4500 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4501 { 4502 struct qed_iov_vf_init_params params; 4503 struct qed_hwfn *hwfn; 4504 struct qed_ptt *ptt; 4505 int i, j, rc; 4506 4507 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4508 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4509 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4510 return -EINVAL; 4511 } 4512 4513 memset(¶ms, 0, sizeof(params)); 4514 4515 /* Initialize HW for VF access */ 4516 for_each_hwfn(cdev, j) { 4517 hwfn = &cdev->hwfns[j]; 4518 ptt = qed_ptt_acquire(hwfn); 4519 4520 /* Make sure not to use more than 16 queues per VF */ 4521 params.num_queues = min_t(int, 4522 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4523 16); 4524 4525 if (!ptt) { 4526 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4527 rc = -EBUSY; 4528 goto err; 4529 } 4530 4531 for (i = 0; i < num; i++) { 4532 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4533 continue; 4534 4535 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4536 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4537 if (rc) { 4538 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4539 qed_ptt_release(hwfn, ptt); 4540 goto err; 4541 } 4542 } 4543 4544 qed_ptt_release(hwfn, ptt); 4545 } 4546 4547 /* Enable SRIOV PCIe functions */ 4548 rc = pci_enable_sriov(cdev->pdev, num); 4549 if (rc) { 4550 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4551 goto err; 4552 } 4553 4554 hwfn = QED_LEADING_HWFN(cdev); 4555 ptt = qed_ptt_acquire(hwfn); 4556 if (!ptt) { 4557 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4558 rc = -EBUSY; 4559 goto err; 4560 } 4561 4562 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB); 4563 if (rc) 4564 DP_INFO(cdev, "Failed to update eswitch mode\n"); 4565 qed_ptt_release(hwfn, ptt); 4566 4567 return num; 4568 4569 err: 4570 qed_sriov_disable(cdev, false); 4571 return rc; 4572 } 4573 4574 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4575 { 4576 if (!IS_QED_SRIOV(cdev)) { 4577 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4578 return -EOPNOTSUPP; 4579 } 4580 4581 if (num_vfs_param) 4582 return qed_sriov_enable(cdev, num_vfs_param); 4583 else 4584 return qed_sriov_disable(cdev, true); 4585 } 4586 4587 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4588 { 4589 int i; 4590 4591 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4592 DP_VERBOSE(cdev, QED_MSG_IOV, 4593 "Cannot set a VF MAC; Sriov is not enabled\n"); 4594 return -EINVAL; 4595 } 4596 4597 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4598 DP_VERBOSE(cdev, QED_MSG_IOV, 4599 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4600 return -EINVAL; 4601 } 4602 4603 for_each_hwfn(cdev, i) { 4604 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4605 struct qed_public_vf_info *vf_info; 4606 4607 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4608 if (!vf_info) 4609 continue; 4610 4611 /* Set the MAC, and schedule the IOV task */ 4612 if (vf_info->is_trusted_configured) 4613 ether_addr_copy(vf_info->mac, mac); 4614 else 4615 ether_addr_copy(vf_info->forced_mac, mac); 4616 4617 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4618 } 4619 4620 return 0; 4621 } 4622 4623 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4624 { 4625 int i; 4626 4627 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4628 DP_VERBOSE(cdev, QED_MSG_IOV, 4629 "Cannot set a VF MAC; Sriov is not enabled\n"); 4630 return -EINVAL; 4631 } 4632 4633 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4634 DP_VERBOSE(cdev, QED_MSG_IOV, 4635 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4636 return -EINVAL; 4637 } 4638 4639 for_each_hwfn(cdev, i) { 4640 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4641 struct qed_public_vf_info *vf_info; 4642 4643 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4644 if (!vf_info) 4645 continue; 4646 4647 /* Set the forced vlan, and schedule the IOV task */ 4648 vf_info->forced_vlan = vid; 4649 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4650 } 4651 4652 return 0; 4653 } 4654 4655 static int qed_get_vf_config(struct qed_dev *cdev, 4656 int vf_id, struct ifla_vf_info *ivi) 4657 { 4658 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4659 struct qed_public_vf_info *vf_info; 4660 struct qed_mcp_link_state link; 4661 u32 tx_rate; 4662 4663 /* Sanitize request */ 4664 if (IS_VF(cdev)) 4665 return -EINVAL; 4666 4667 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4668 DP_VERBOSE(cdev, QED_MSG_IOV, 4669 "VF index [%d] isn't active\n", vf_id); 4670 return -EINVAL; 4671 } 4672 4673 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4674 4675 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4676 4677 /* Fill information about VF */ 4678 ivi->vf = vf_id; 4679 4680 if (is_valid_ether_addr(vf_info->forced_mac)) 4681 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4682 else 4683 ether_addr_copy(ivi->mac, vf_info->mac); 4684 4685 ivi->vlan = vf_info->forced_vlan; 4686 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4687 ivi->linkstate = vf_info->link_state; 4688 tx_rate = vf_info->tx_rate; 4689 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4690 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4691 4692 return 0; 4693 } 4694 4695 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4696 { 4697 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4698 struct qed_mcp_link_capabilities caps; 4699 struct qed_mcp_link_params params; 4700 struct qed_mcp_link_state link; 4701 int i; 4702 4703 if (!hwfn->pf_iov_info) 4704 return; 4705 4706 /* Update bulletin of all future possible VFs with link configuration */ 4707 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4708 struct qed_public_vf_info *vf_info; 4709 4710 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4711 if (!vf_info) 4712 continue; 4713 4714 /* Only hwfn0 is actually interested in the link speed. 4715 * But since only it would receive an MFW indication of link, 4716 * need to take configuration from it - otherwise things like 4717 * rate limiting for hwfn1 VF would not work. 4718 */ 4719 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4720 sizeof(params)); 4721 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4722 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4723 sizeof(caps)); 4724 4725 /* Modify link according to the VF's configured link state */ 4726 switch (vf_info->link_state) { 4727 case IFLA_VF_LINK_STATE_DISABLE: 4728 link.link_up = false; 4729 break; 4730 case IFLA_VF_LINK_STATE_ENABLE: 4731 link.link_up = true; 4732 /* Set speed according to maximum supported by HW. 4733 * that is 40G for regular devices and 100G for CMT 4734 * mode devices. 4735 */ 4736 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4737 100000 : 40000; 4738 default: 4739 /* In auto mode pass PF link image to VF */ 4740 break; 4741 } 4742 4743 if (link.link_up && vf_info->tx_rate) { 4744 struct qed_ptt *ptt; 4745 int rate; 4746 4747 rate = min_t(int, vf_info->tx_rate, link.speed); 4748 4749 ptt = qed_ptt_acquire(hwfn); 4750 if (!ptt) { 4751 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4752 return; 4753 } 4754 4755 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4756 vf_info->tx_rate = rate; 4757 link.speed = rate; 4758 } 4759 4760 qed_ptt_release(hwfn, ptt); 4761 } 4762 4763 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4764 } 4765 4766 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4767 } 4768 4769 static int qed_set_vf_link_state(struct qed_dev *cdev, 4770 int vf_id, int link_state) 4771 { 4772 int i; 4773 4774 /* Sanitize request */ 4775 if (IS_VF(cdev)) 4776 return -EINVAL; 4777 4778 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4779 DP_VERBOSE(cdev, QED_MSG_IOV, 4780 "VF index [%d] isn't active\n", vf_id); 4781 return -EINVAL; 4782 } 4783 4784 /* Handle configuration of link state */ 4785 for_each_hwfn(cdev, i) { 4786 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4787 struct qed_public_vf_info *vf; 4788 4789 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4790 if (!vf) 4791 continue; 4792 4793 if (vf->link_state == link_state) 4794 continue; 4795 4796 vf->link_state = link_state; 4797 qed_inform_vf_link_state(&cdev->hwfns[i]); 4798 } 4799 4800 return 0; 4801 } 4802 4803 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4804 { 4805 int i, rc = -EINVAL; 4806 4807 for_each_hwfn(cdev, i) { 4808 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4809 4810 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4811 if (rc) 4812 break; 4813 } 4814 4815 return rc; 4816 } 4817 4818 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4819 { 4820 int i; 4821 4822 for_each_hwfn(cdev, i) { 4823 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4824 struct qed_public_vf_info *vf; 4825 4826 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4827 DP_NOTICE(p_hwfn, 4828 "SR-IOV sanity check failed, can't set tx rate\n"); 4829 return -EINVAL; 4830 } 4831 4832 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4833 4834 vf->tx_rate = rate; 4835 4836 qed_inform_vf_link_state(p_hwfn); 4837 } 4838 4839 return 0; 4840 } 4841 4842 static int qed_set_vf_rate(struct qed_dev *cdev, 4843 int vfid, u32 min_rate, u32 max_rate) 4844 { 4845 int rc_min = 0, rc_max = 0; 4846 4847 if (max_rate) 4848 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4849 4850 if (min_rate) 4851 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4852 4853 if (rc_max | rc_min) 4854 return -EINVAL; 4855 4856 return 0; 4857 } 4858 4859 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4860 { 4861 int i; 4862 4863 for_each_hwfn(cdev, i) { 4864 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4865 struct qed_public_vf_info *vf; 4866 4867 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4868 DP_NOTICE(hwfn, 4869 "SR-IOV sanity check failed, can't set trust\n"); 4870 return -EINVAL; 4871 } 4872 4873 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4874 4875 if (vf->is_trusted_request == trust) 4876 return 0; 4877 vf->is_trusted_request = trust; 4878 4879 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4880 } 4881 4882 return 0; 4883 } 4884 4885 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4886 { 4887 u64 events[QED_VF_ARRAY_LENGTH]; 4888 struct qed_ptt *ptt; 4889 int i; 4890 4891 ptt = qed_ptt_acquire(hwfn); 4892 if (!ptt) { 4893 DP_VERBOSE(hwfn, QED_MSG_IOV, 4894 "Can't acquire PTT; re-scheduling\n"); 4895 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4896 return; 4897 } 4898 4899 qed_iov_pf_get_pending_events(hwfn, events); 4900 4901 DP_VERBOSE(hwfn, QED_MSG_IOV, 4902 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4903 events[0], events[1], events[2]); 4904 4905 qed_for_each_vf(hwfn, i) { 4906 /* Skip VFs with no pending messages */ 4907 if (!(events[i / 64] & (1ULL << (i % 64)))) 4908 continue; 4909 4910 DP_VERBOSE(hwfn, QED_MSG_IOV, 4911 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4912 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4913 4914 /* Copy VF's message to PF's request buffer for that VF */ 4915 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4916 continue; 4917 4918 qed_iov_process_mbx_req(hwfn, ptt, i); 4919 } 4920 4921 qed_ptt_release(hwfn, ptt); 4922 } 4923 4924 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn, 4925 u8 *mac, 4926 struct qed_public_vf_info *info) 4927 { 4928 if (info->is_trusted_configured) { 4929 if (is_valid_ether_addr(info->mac) && 4930 (!mac || !ether_addr_equal(mac, info->mac))) 4931 return true; 4932 } else { 4933 if (is_valid_ether_addr(info->forced_mac) && 4934 (!mac || !ether_addr_equal(mac, info->forced_mac))) 4935 return true; 4936 } 4937 4938 return false; 4939 } 4940 4941 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn, 4942 struct qed_public_vf_info *info, 4943 int vfid) 4944 { 4945 if (info->is_trusted_configured) 4946 qed_iov_bulletin_set_mac(hwfn, info->mac, vfid); 4947 else 4948 qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid); 4949 } 4950 4951 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4952 { 4953 int i; 4954 4955 qed_for_each_vf(hwfn, i) { 4956 struct qed_public_vf_info *info; 4957 bool update = false; 4958 u8 *mac; 4959 4960 info = qed_iov_get_public_vf_info(hwfn, i, true); 4961 if (!info) 4962 continue; 4963 4964 /* Update data on bulletin board */ 4965 if (info->is_trusted_configured) 4966 mac = qed_iov_bulletin_get_mac(hwfn, i); 4967 else 4968 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4969 4970 if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) { 4971 DP_VERBOSE(hwfn, 4972 QED_MSG_IOV, 4973 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4974 i, 4975 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4976 4977 /* Update bulletin board with MAC */ 4978 qed_set_bulletin_mac(hwfn, info, i); 4979 update = true; 4980 } 4981 4982 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 4983 info->forced_vlan) { 4984 DP_VERBOSE(hwfn, 4985 QED_MSG_IOV, 4986 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 4987 info->forced_vlan, 4988 i, 4989 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4990 qed_iov_bulletin_set_forced_vlan(hwfn, 4991 info->forced_vlan, i); 4992 update = true; 4993 } 4994 4995 if (update) 4996 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4997 } 4998 } 4999 5000 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 5001 { 5002 struct qed_ptt *ptt; 5003 int i; 5004 5005 ptt = qed_ptt_acquire(hwfn); 5006 if (!ptt) { 5007 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 5008 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5009 return; 5010 } 5011 5012 qed_for_each_vf(hwfn, i) 5013 qed_iov_post_vf_bulletin(hwfn, i, ptt); 5014 5015 qed_ptt_release(hwfn, ptt); 5016 } 5017 5018 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id) 5019 { 5020 struct qed_public_vf_info *vf_info; 5021 struct qed_vf_info *vf; 5022 u8 *force_mac; 5023 int i; 5024 5025 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 5026 vf = qed_iov_get_vf_info(hwfn, vf_id, true); 5027 5028 if (!vf_info || !vf) 5029 return; 5030 5031 /* Force MAC converted to generic MAC in case of VF trust on */ 5032 if (vf_info->is_trusted_configured && 5033 (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) { 5034 force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id); 5035 5036 if (force_mac) { 5037 /* Clear existing shadow copy of MAC to have a clean 5038 * slate. 5039 */ 5040 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5041 if (ether_addr_equal(vf->shadow_config.macs[i], 5042 vf_info->mac)) { 5043 memset(vf->shadow_config.macs[i], 0, 5044 ETH_ALEN); 5045 DP_VERBOSE(hwfn, QED_MSG_IOV, 5046 "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n", 5047 vf_info->mac, vf_id); 5048 break; 5049 } 5050 } 5051 5052 ether_addr_copy(vf_info->mac, force_mac); 5053 memset(vf_info->forced_mac, 0, ETH_ALEN); 5054 vf->bulletin.p_virt->valid_bitmap &= 5055 ~BIT(MAC_ADDR_FORCED); 5056 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5057 } 5058 } 5059 5060 /* Update shadow copy with VF MAC when trust mode is turned off */ 5061 if (!vf_info->is_trusted_configured) { 5062 u8 empty_mac[ETH_ALEN]; 5063 5064 memset(empty_mac, 0, ETH_ALEN); 5065 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5066 if (ether_addr_equal(vf->shadow_config.macs[i], 5067 empty_mac)) { 5068 ether_addr_copy(vf->shadow_config.macs[i], 5069 vf_info->mac); 5070 DP_VERBOSE(hwfn, QED_MSG_IOV, 5071 "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n", 5072 vf_info->mac, vf_id); 5073 break; 5074 } 5075 } 5076 /* Clear bulletin when trust mode is turned off, 5077 * to have a clean slate for next (normal) operations. 5078 */ 5079 qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id); 5080 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5081 } 5082 } 5083 5084 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 5085 { 5086 struct qed_sp_vport_update_params params; 5087 struct qed_filter_accept_flags *flags; 5088 struct qed_public_vf_info *vf_info; 5089 struct qed_vf_info *vf; 5090 u8 mask; 5091 int i; 5092 5093 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 5094 flags = ¶ms.accept_flags; 5095 5096 qed_for_each_vf(hwfn, i) { 5097 /* Need to make sure current requested configuration didn't 5098 * flip so that we'll end up configuring something that's not 5099 * needed. 5100 */ 5101 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 5102 if (vf_info->is_trusted_configured == 5103 vf_info->is_trusted_request) 5104 continue; 5105 vf_info->is_trusted_configured = vf_info->is_trusted_request; 5106 5107 /* Handle forced MAC mode */ 5108 qed_update_mac_for_vf_trust_change(hwfn, i); 5109 5110 /* Validate that the VF has a configured vport */ 5111 vf = qed_iov_get_vf_info(hwfn, i, true); 5112 if (!vf->vport_instance) 5113 continue; 5114 5115 memset(¶ms, 0, sizeof(params)); 5116 params.opaque_fid = vf->opaque_fid; 5117 params.vport_id = vf->vport_id; 5118 5119 params.update_ctl_frame_check = 1; 5120 params.mac_chk_en = !vf_info->is_trusted_configured; 5121 5122 if (vf_info->rx_accept_mode & mask) { 5123 flags->update_rx_mode_config = 1; 5124 flags->rx_accept_filter = vf_info->rx_accept_mode; 5125 } 5126 5127 if (vf_info->tx_accept_mode & mask) { 5128 flags->update_tx_mode_config = 1; 5129 flags->tx_accept_filter = vf_info->tx_accept_mode; 5130 } 5131 5132 /* Remove if needed; Otherwise this would set the mask */ 5133 if (!vf_info->is_trusted_configured) { 5134 flags->rx_accept_filter &= ~mask; 5135 flags->tx_accept_filter &= ~mask; 5136 } 5137 5138 if (flags->update_rx_mode_config || 5139 flags->update_tx_mode_config || 5140 params.update_ctl_frame_check) 5141 qed_sp_vport_update(hwfn, ¶ms, 5142 QED_SPQ_MODE_EBLOCK, NULL); 5143 } 5144 } 5145 5146 static void qed_iov_pf_task(struct work_struct *work) 5147 5148 { 5149 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 5150 iov_task.work); 5151 int rc; 5152 5153 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 5154 return; 5155 5156 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 5157 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 5158 5159 if (!ptt) { 5160 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5161 return; 5162 } 5163 5164 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 5165 if (rc) 5166 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5167 5168 qed_ptt_release(hwfn, ptt); 5169 } 5170 5171 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 5172 qed_handle_vf_msg(hwfn); 5173 5174 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 5175 &hwfn->iov_task_flags)) 5176 qed_handle_pf_set_vf_unicast(hwfn); 5177 5178 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 5179 &hwfn->iov_task_flags)) 5180 qed_handle_bulletin_post(hwfn); 5181 5182 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 5183 qed_iov_handle_trust_change(hwfn); 5184 } 5185 5186 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 5187 { 5188 int i; 5189 5190 for_each_hwfn(cdev, i) { 5191 if (!cdev->hwfns[i].iov_wq) 5192 continue; 5193 5194 if (schedule_first) { 5195 qed_schedule_iov(&cdev->hwfns[i], 5196 QED_IOV_WQ_STOP_WQ_FLAG); 5197 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 5198 } 5199 5200 flush_workqueue(cdev->hwfns[i].iov_wq); 5201 destroy_workqueue(cdev->hwfns[i].iov_wq); 5202 } 5203 } 5204 5205 int qed_iov_wq_start(struct qed_dev *cdev) 5206 { 5207 char name[NAME_SIZE]; 5208 int i; 5209 5210 for_each_hwfn(cdev, i) { 5211 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 5212 5213 /* PFs needs a dedicated workqueue only if they support IOV. 5214 * VFs always require one. 5215 */ 5216 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 5217 continue; 5218 5219 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 5220 cdev->pdev->bus->number, 5221 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 5222 5223 p_hwfn->iov_wq = create_singlethread_workqueue(name); 5224 if (!p_hwfn->iov_wq) { 5225 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 5226 return -ENOMEM; 5227 } 5228 5229 if (IS_PF(cdev)) 5230 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 5231 else 5232 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 5233 } 5234 5235 return 0; 5236 } 5237 5238 const struct qed_iov_hv_ops qed_iov_ops_pass = { 5239 .configure = &qed_sriov_configure, 5240 .set_mac = &qed_sriov_pf_set_mac, 5241 .set_vlan = &qed_sriov_pf_set_vlan, 5242 .get_config = &qed_get_vf_config, 5243 .set_link_state = &qed_set_vf_link_state, 5244 .set_spoof = &qed_spoof_configure, 5245 .set_rate = &qed_set_vf_rate, 5246 .set_trust = &qed_set_vf_trust, 5247 }; 5248