xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
48 			       u8 opcode,
49 			       __le16 echo,
50 			       union event_ring_data *data, u8 fw_return_code);
51 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
52 
53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
54 {
55 	u8 legacy = 0;
56 
57 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
58 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
59 		legacy |= QED_QCID_LEGACY_VF_RX_PROD;
60 
61 	if (!(p_vf->acquire.vfdev_info.capabilities &
62 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
63 		legacy |= QED_QCID_LEGACY_VF_CID;
64 
65 	return legacy;
66 }
67 
68 /* IOV ramrods */
69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
70 {
71 	struct vf_start_ramrod_data *p_ramrod = NULL;
72 	struct qed_spq_entry *p_ent = NULL;
73 	struct qed_sp_init_data init_data;
74 	int rc = -EINVAL;
75 	u8 fp_minor;
76 
77 	/* Get SPQ entry */
78 	memset(&init_data, 0, sizeof(init_data));
79 	init_data.cid = qed_spq_get_cid(p_hwfn);
80 	init_data.opaque_fid = p_vf->opaque_fid;
81 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
82 
83 	rc = qed_sp_init_request(p_hwfn, &p_ent,
84 				 COMMON_RAMROD_VF_START,
85 				 PROTOCOLID_COMMON, &init_data);
86 	if (rc)
87 		return rc;
88 
89 	p_ramrod = &p_ent->ramrod.vf_start;
90 
91 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
92 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
93 
94 	switch (p_hwfn->hw_info.personality) {
95 	case QED_PCI_ETH:
96 		p_ramrod->personality = PERSONALITY_ETH;
97 		break;
98 	case QED_PCI_ETH_ROCE:
99 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
100 		break;
101 	default:
102 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
103 			  p_hwfn->hw_info.personality);
104 		qed_sp_destroy_request(p_hwfn, p_ent);
105 		return -EINVAL;
106 	}
107 
108 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
109 	if (fp_minor > ETH_HSI_VER_MINOR &&
110 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
111 		DP_VERBOSE(p_hwfn,
112 			   QED_MSG_IOV,
113 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
114 			   p_vf->abs_vf_id,
115 			   ETH_HSI_VER_MAJOR,
116 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
117 		fp_minor = ETH_HSI_VER_MINOR;
118 	}
119 
120 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
121 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
122 
123 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
124 		   "VF[%d] - Starting using HSI %02x.%02x\n",
125 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
126 
127 	return qed_spq_post(p_hwfn, p_ent, NULL);
128 }
129 
130 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
131 			  u32 concrete_vfid, u16 opaque_vfid)
132 {
133 	struct vf_stop_ramrod_data *p_ramrod = NULL;
134 	struct qed_spq_entry *p_ent = NULL;
135 	struct qed_sp_init_data init_data;
136 	int rc = -EINVAL;
137 
138 	/* Get SPQ entry */
139 	memset(&init_data, 0, sizeof(init_data));
140 	init_data.cid = qed_spq_get_cid(p_hwfn);
141 	init_data.opaque_fid = opaque_vfid;
142 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
143 
144 	rc = qed_sp_init_request(p_hwfn, &p_ent,
145 				 COMMON_RAMROD_VF_STOP,
146 				 PROTOCOLID_COMMON, &init_data);
147 	if (rc)
148 		return rc;
149 
150 	p_ramrod = &p_ent->ramrod.vf_stop;
151 
152 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
153 
154 	return qed_spq_post(p_hwfn, p_ent, NULL);
155 }
156 
157 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
158 			   int rel_vf_id,
159 			   bool b_enabled_only, bool b_non_malicious)
160 {
161 	if (!p_hwfn->pf_iov_info) {
162 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
163 		return false;
164 	}
165 
166 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
167 	    (rel_vf_id < 0))
168 		return false;
169 
170 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
171 	    b_enabled_only)
172 		return false;
173 
174 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
175 	    b_non_malicious)
176 		return false;
177 
178 	return true;
179 }
180 
181 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
182 					       u16 relative_vf_id,
183 					       bool b_enabled_only)
184 {
185 	struct qed_vf_info *vf = NULL;
186 
187 	if (!p_hwfn->pf_iov_info) {
188 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
189 		return NULL;
190 	}
191 
192 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
193 				  b_enabled_only, false))
194 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
195 	else
196 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
197 		       relative_vf_id);
198 
199 	return vf;
200 }
201 
202 static struct qed_queue_cid *
203 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
204 {
205 	int i;
206 
207 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
208 		if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
209 			return p_queue->cids[i].p_cid;
210 	}
211 
212 	return NULL;
213 }
214 
215 enum qed_iov_validate_q_mode {
216 	QED_IOV_VALIDATE_Q_NA,
217 	QED_IOV_VALIDATE_Q_ENABLE,
218 	QED_IOV_VALIDATE_Q_DISABLE,
219 };
220 
221 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
222 					struct qed_vf_info *p_vf,
223 					u16 qid,
224 					enum qed_iov_validate_q_mode mode,
225 					bool b_is_tx)
226 {
227 	int i;
228 
229 	if (mode == QED_IOV_VALIDATE_Q_NA)
230 		return true;
231 
232 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
233 		struct qed_vf_queue_cid *p_qcid;
234 
235 		p_qcid = &p_vf->vf_queues[qid].cids[i];
236 
237 		if (!p_qcid->p_cid)
238 			continue;
239 
240 		if (p_qcid->b_is_tx != b_is_tx)
241 			continue;
242 
243 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
244 	}
245 
246 	/* In case we haven't found any valid cid, then its disabled */
247 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
248 }
249 
250 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
251 				 struct qed_vf_info *p_vf,
252 				 u16 rx_qid,
253 				 enum qed_iov_validate_q_mode mode)
254 {
255 	if (rx_qid >= p_vf->num_rxqs) {
256 		DP_VERBOSE(p_hwfn,
257 			   QED_MSG_IOV,
258 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
259 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
260 		return false;
261 	}
262 
263 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
264 }
265 
266 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
267 				 struct qed_vf_info *p_vf,
268 				 u16 tx_qid,
269 				 enum qed_iov_validate_q_mode mode)
270 {
271 	if (tx_qid >= p_vf->num_txqs) {
272 		DP_VERBOSE(p_hwfn,
273 			   QED_MSG_IOV,
274 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
275 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
276 		return false;
277 	}
278 
279 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
280 }
281 
282 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
283 				struct qed_vf_info *p_vf, u16 sb_idx)
284 {
285 	int i;
286 
287 	for (i = 0; i < p_vf->num_sbs; i++)
288 		if (p_vf->igu_sbs[i] == sb_idx)
289 			return true;
290 
291 	DP_VERBOSE(p_hwfn,
292 		   QED_MSG_IOV,
293 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
294 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
295 
296 	return false;
297 }
298 
299 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
300 					struct qed_vf_info *p_vf)
301 {
302 	u8 i;
303 
304 	for (i = 0; i < p_vf->num_rxqs; i++)
305 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
306 						QED_IOV_VALIDATE_Q_ENABLE,
307 						false))
308 			return true;
309 
310 	return false;
311 }
312 
313 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
314 					struct qed_vf_info *p_vf)
315 {
316 	u8 i;
317 
318 	for (i = 0; i < p_vf->num_txqs; i++)
319 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
320 						QED_IOV_VALIDATE_Q_ENABLE,
321 						true))
322 			return true;
323 
324 	return false;
325 }
326 
327 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
328 				    int vfid, struct qed_ptt *p_ptt)
329 {
330 	struct qed_bulletin_content *p_bulletin;
331 	int crc_size = sizeof(p_bulletin->crc);
332 	struct qed_dmae_params params;
333 	struct qed_vf_info *p_vf;
334 
335 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
336 	if (!p_vf)
337 		return -EINVAL;
338 
339 	if (!p_vf->vf_bulletin)
340 		return -EINVAL;
341 
342 	p_bulletin = p_vf->bulletin.p_virt;
343 
344 	/* Increment bulletin board version and compute crc */
345 	p_bulletin->version++;
346 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
347 				p_vf->bulletin.size - crc_size);
348 
349 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
350 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
351 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
352 
353 	/* propagate bulletin board via dmae to vm memory */
354 	memset(&params, 0, sizeof(params));
355 	params.flags = QED_DMAE_FLAG_VF_DST;
356 	params.dst_vfid = p_vf->abs_vf_id;
357 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
358 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
359 				  &params);
360 }
361 
362 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
363 {
364 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
365 	int pos = iov->pos;
366 
367 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
368 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
369 
370 	pci_read_config_word(cdev->pdev,
371 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
372 	pci_read_config_word(cdev->pdev,
373 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
374 
375 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
376 	if (iov->num_vfs) {
377 		DP_VERBOSE(cdev,
378 			   QED_MSG_IOV,
379 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
380 		iov->num_vfs = 0;
381 	}
382 
383 	pci_read_config_word(cdev->pdev,
384 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
385 
386 	pci_read_config_word(cdev->pdev,
387 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
388 
389 	pci_read_config_word(cdev->pdev,
390 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
391 
392 	pci_read_config_dword(cdev->pdev,
393 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
394 
395 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
396 
397 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
398 
399 	DP_VERBOSE(cdev,
400 		   QED_MSG_IOV,
401 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
402 		   iov->nres,
403 		   iov->cap,
404 		   iov->ctrl,
405 		   iov->total_vfs,
406 		   iov->initial_vfs,
407 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
408 
409 	/* Some sanity checks */
410 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
411 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
412 		/* This can happen only due to a bug. In this case we set
413 		 * num_vfs to zero to avoid memory corruption in the code that
414 		 * assumes max number of vfs
415 		 */
416 		DP_NOTICE(cdev,
417 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
418 			  iov->num_vfs);
419 
420 		iov->num_vfs = 0;
421 		iov->total_vfs = 0;
422 	}
423 
424 	return 0;
425 }
426 
427 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
428 {
429 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
430 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
431 	struct qed_bulletin_content *p_bulletin_virt;
432 	dma_addr_t req_p, rply_p, bulletin_p;
433 	union pfvf_tlvs *p_reply_virt_addr;
434 	union vfpf_tlvs *p_req_virt_addr;
435 	u8 idx = 0;
436 
437 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
438 
439 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
440 	req_p = p_iov_info->mbx_msg_phys_addr;
441 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
442 	rply_p = p_iov_info->mbx_reply_phys_addr;
443 	p_bulletin_virt = p_iov_info->p_bulletins;
444 	bulletin_p = p_iov_info->bulletins_phys;
445 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
446 		DP_ERR(p_hwfn,
447 		       "qed_iov_setup_vfdb called without allocating mem first\n");
448 		return;
449 	}
450 
451 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
452 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
453 		u32 concrete;
454 
455 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
456 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
457 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
458 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
459 
460 		vf->state = VF_STOPPED;
461 		vf->b_init = false;
462 
463 		vf->bulletin.phys = idx *
464 				    sizeof(struct qed_bulletin_content) +
465 				    bulletin_p;
466 		vf->bulletin.p_virt = p_bulletin_virt + idx;
467 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
468 
469 		vf->relative_vf_id = idx;
470 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
471 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
472 		vf->concrete_fid = concrete;
473 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
474 				 (vf->abs_vf_id << 8);
475 		vf->vport_id = idx + 1;
476 
477 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
478 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
479 	}
480 }
481 
482 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
483 {
484 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
485 	void **p_v_addr;
486 	u16 num_vfs = 0;
487 
488 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
489 
490 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
491 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
492 
493 	/* Allocate PF Mailbox buffer (per-VF) */
494 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
495 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
496 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
497 				       p_iov_info->mbx_msg_size,
498 				       &p_iov_info->mbx_msg_phys_addr,
499 				       GFP_KERNEL);
500 	if (!*p_v_addr)
501 		return -ENOMEM;
502 
503 	/* Allocate PF Mailbox Reply buffer (per-VF) */
504 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
505 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
506 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
507 				       p_iov_info->mbx_reply_size,
508 				       &p_iov_info->mbx_reply_phys_addr,
509 				       GFP_KERNEL);
510 	if (!*p_v_addr)
511 		return -ENOMEM;
512 
513 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
514 				     num_vfs;
515 	p_v_addr = &p_iov_info->p_bulletins;
516 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
517 				       p_iov_info->bulletins_size,
518 				       &p_iov_info->bulletins_phys,
519 				       GFP_KERNEL);
520 	if (!*p_v_addr)
521 		return -ENOMEM;
522 
523 	DP_VERBOSE(p_hwfn,
524 		   QED_MSG_IOV,
525 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
526 		   p_iov_info->mbx_msg_virt_addr,
527 		   (u64) p_iov_info->mbx_msg_phys_addr,
528 		   p_iov_info->mbx_reply_virt_addr,
529 		   (u64) p_iov_info->mbx_reply_phys_addr,
530 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
531 
532 	return 0;
533 }
534 
535 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
536 {
537 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
538 
539 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
540 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
541 				  p_iov_info->mbx_msg_size,
542 				  p_iov_info->mbx_msg_virt_addr,
543 				  p_iov_info->mbx_msg_phys_addr);
544 
545 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
546 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
547 				  p_iov_info->mbx_reply_size,
548 				  p_iov_info->mbx_reply_virt_addr,
549 				  p_iov_info->mbx_reply_phys_addr);
550 
551 	if (p_iov_info->p_bulletins)
552 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
553 				  p_iov_info->bulletins_size,
554 				  p_iov_info->p_bulletins,
555 				  p_iov_info->bulletins_phys);
556 }
557 
558 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
559 {
560 	struct qed_pf_iov *p_sriov;
561 
562 	if (!IS_PF_SRIOV(p_hwfn)) {
563 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
564 			   "No SR-IOV - no need for IOV db\n");
565 		return 0;
566 	}
567 
568 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
569 	if (!p_sriov)
570 		return -ENOMEM;
571 
572 	p_hwfn->pf_iov_info = p_sriov;
573 
574 	qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
575 				  qed_sriov_eqe_event);
576 
577 	return qed_iov_allocate_vfdb(p_hwfn);
578 }
579 
580 void qed_iov_setup(struct qed_hwfn *p_hwfn)
581 {
582 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
583 		return;
584 
585 	qed_iov_setup_vfdb(p_hwfn);
586 }
587 
588 void qed_iov_free(struct qed_hwfn *p_hwfn)
589 {
590 	qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
591 
592 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
593 		qed_iov_free_vfdb(p_hwfn);
594 		kfree(p_hwfn->pf_iov_info);
595 	}
596 }
597 
598 void qed_iov_free_hw_info(struct qed_dev *cdev)
599 {
600 	kfree(cdev->p_iov_info);
601 	cdev->p_iov_info = NULL;
602 }
603 
604 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
605 {
606 	struct qed_dev *cdev = p_hwfn->cdev;
607 	int pos;
608 	int rc;
609 
610 	if (IS_VF(p_hwfn->cdev))
611 		return 0;
612 
613 	/* Learn the PCI configuration */
614 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
615 				      PCI_EXT_CAP_ID_SRIOV);
616 	if (!pos) {
617 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
618 		return 0;
619 	}
620 
621 	/* Allocate a new struct for IOV information */
622 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
623 	if (!cdev->p_iov_info)
624 		return -ENOMEM;
625 
626 	cdev->p_iov_info->pos = pos;
627 
628 	rc = qed_iov_pci_cfg_info(cdev);
629 	if (rc)
630 		return rc;
631 
632 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
633 	 * In case the capability is published but there are no VFs, simply
634 	 * de-allocate the struct.
635 	 */
636 	if (!cdev->p_iov_info->total_vfs) {
637 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
638 			   "IOV capabilities, but no VFs are published\n");
639 		kfree(cdev->p_iov_info);
640 		cdev->p_iov_info = NULL;
641 		return 0;
642 	}
643 
644 	/* First VF index based on offset is tricky:
645 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
646 	 *    provide the number for eng0. 2nd engine Vfs would begin
647 	 *    after the first engine's VFs.
648 	 *  - If !ARI, VFs would start on next device.
649 	 *    so offset - (256 - pf_id) would provide the number.
650 	 * Utilize the fact that (256 - pf_id) is achieved only by later
651 	 * to differentiate between the two.
652 	 */
653 
654 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
655 		u32 first = p_hwfn->cdev->p_iov_info->offset +
656 			    p_hwfn->abs_pf_id - 16;
657 
658 		cdev->p_iov_info->first_vf_in_pf = first;
659 
660 		if (QED_PATH_ID(p_hwfn))
661 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
662 	} else {
663 		u32 first = p_hwfn->cdev->p_iov_info->offset +
664 			    p_hwfn->abs_pf_id - 256;
665 
666 		cdev->p_iov_info->first_vf_in_pf = first;
667 	}
668 
669 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
670 		   "First VF in hwfn 0x%08x\n",
671 		   cdev->p_iov_info->first_vf_in_pf);
672 
673 	return 0;
674 }
675 
676 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
677 				     int vfid, bool b_fail_malicious)
678 {
679 	/* Check PF supports sriov */
680 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
681 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
682 		return false;
683 
684 	/* Check VF validity */
685 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
686 		return false;
687 
688 	return true;
689 }
690 
691 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
692 {
693 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
694 }
695 
696 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
697 				      u16 rel_vf_id, u8 to_disable)
698 {
699 	struct qed_vf_info *vf;
700 	int i;
701 
702 	for_each_hwfn(cdev, i) {
703 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
704 
705 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
706 		if (!vf)
707 			continue;
708 
709 		vf->to_disable = to_disable;
710 	}
711 }
712 
713 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
714 {
715 	u16 i;
716 
717 	if (!IS_QED_SRIOV(cdev))
718 		return;
719 
720 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
721 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
722 }
723 
724 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
725 				       struct qed_ptt *p_ptt, u8 abs_vfid)
726 {
727 	qed_wr(p_hwfn, p_ptt,
728 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
729 	       1 << (abs_vfid & 0x1f));
730 }
731 
732 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
733 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
734 {
735 	int i;
736 
737 	/* Set VF masks and configuration - pretend */
738 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
739 
740 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
741 
742 	/* unpretend */
743 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
744 
745 	/* iterate over all queues, clear sb consumer */
746 	for (i = 0; i < vf->num_sbs; i++)
747 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
748 						vf->igu_sbs[i],
749 						vf->opaque_fid, true);
750 }
751 
752 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
753 				   struct qed_ptt *p_ptt,
754 				   struct qed_vf_info *vf, bool enable)
755 {
756 	u32 igu_vf_conf;
757 
758 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
759 
760 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
761 
762 	if (enable)
763 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
764 	else
765 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
766 
767 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
768 
769 	/* unpretend */
770 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
771 }
772 
773 static int
774 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
775 			      struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
776 {
777 	u8 current_max = 0;
778 	int i;
779 
780 	/* For AH onward, configuration is per-PF. Find maximum of all
781 	 * the currently enabled child VFs, and set the number to be that.
782 	 */
783 	if (!QED_IS_BB(p_hwfn->cdev)) {
784 		qed_for_each_vf(p_hwfn, i) {
785 			struct qed_vf_info *p_vf;
786 
787 			p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
788 			if (!p_vf)
789 				continue;
790 
791 			current_max = max_t(u8, current_max, p_vf->num_sbs);
792 		}
793 	}
794 
795 	if (num_sbs > current_max)
796 		return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
797 					      abs_vf_id, num_sbs);
798 
799 	return 0;
800 }
801 
802 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
803 				    struct qed_ptt *p_ptt,
804 				    struct qed_vf_info *vf)
805 {
806 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
807 	int rc;
808 
809 	/* It's possible VF was previously considered malicious -
810 	 * clear the indication even if we're only going to disable VF.
811 	 */
812 	vf->b_malicious = false;
813 
814 	if (vf->to_disable)
815 		return 0;
816 
817 	DP_VERBOSE(p_hwfn,
818 		   QED_MSG_IOV,
819 		   "Enable internal access for vf %x [abs %x]\n",
820 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
821 
822 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
823 
824 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
825 
826 	rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
827 					   vf->abs_vf_id, vf->num_sbs);
828 	if (rc)
829 		return rc;
830 
831 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
832 
833 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
834 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
835 
836 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
837 		     p_hwfn->hw_info.hw_mode);
838 
839 	/* unpretend */
840 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
841 
842 	vf->state = VF_FREE;
843 
844 	return rc;
845 }
846 
847 /**
848  * @brief qed_iov_config_perm_table - configure the permission
849  *      zone table.
850  *      In E4, queue zone permission table size is 320x9. There
851  *      are 320 VF queues for single engine device (256 for dual
852  *      engine device), and each entry has the following format:
853  *      {Valid, VF[7:0]}
854  * @param p_hwfn
855  * @param p_ptt
856  * @param vf
857  * @param enable
858  */
859 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
860 				      struct qed_ptt *p_ptt,
861 				      struct qed_vf_info *vf, u8 enable)
862 {
863 	u32 reg_addr, val;
864 	u16 qzone_id = 0;
865 	int qid;
866 
867 	for (qid = 0; qid < vf->num_rxqs; qid++) {
868 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
869 				&qzone_id);
870 
871 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
872 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
873 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
874 	}
875 }
876 
877 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
878 				      struct qed_ptt *p_ptt,
879 				      struct qed_vf_info *vf)
880 {
881 	/* Reset vf in IGU - interrupts are still disabled */
882 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
883 
884 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
885 
886 	/* Permission Table */
887 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
888 }
889 
890 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
891 				   struct qed_ptt *p_ptt,
892 				   struct qed_vf_info *vf, u16 num_rx_queues)
893 {
894 	struct qed_igu_block *p_block;
895 	struct cau_sb_entry sb_entry;
896 	int qid = 0;
897 	u32 val = 0;
898 
899 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
900 		num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
901 	p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
902 
903 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
904 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
905 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
906 
907 	for (qid = 0; qid < num_rx_queues; qid++) {
908 		p_block = qed_get_igu_free_sb(p_hwfn, false);
909 		vf->igu_sbs[qid] = p_block->igu_sb_id;
910 		p_block->status &= ~QED_IGU_STATUS_FREE;
911 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
912 
913 		qed_wr(p_hwfn, p_ptt,
914 		       IGU_REG_MAPPING_MEMORY +
915 		       sizeof(u32) * p_block->igu_sb_id, val);
916 
917 		/* Configure igu sb in CAU which were marked valid */
918 		qed_init_cau_sb_entry(p_hwfn, &sb_entry,
919 				      p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
920 
921 		qed_dmae_host2grc(p_hwfn, p_ptt,
922 				  (u64)(uintptr_t)&sb_entry,
923 				  CAU_REG_SB_VAR_MEMORY +
924 				  p_block->igu_sb_id * sizeof(u64), 2, NULL);
925 	}
926 
927 	vf->num_sbs = (u8) num_rx_queues;
928 
929 	return vf->num_sbs;
930 }
931 
932 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
933 				    struct qed_ptt *p_ptt,
934 				    struct qed_vf_info *vf)
935 {
936 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
937 	int idx, igu_id;
938 	u32 addr, val;
939 
940 	/* Invalidate igu CAM lines and mark them as free */
941 	for (idx = 0; idx < vf->num_sbs; idx++) {
942 		igu_id = vf->igu_sbs[idx];
943 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
944 
945 		val = qed_rd(p_hwfn, p_ptt, addr);
946 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
947 		qed_wr(p_hwfn, p_ptt, addr, val);
948 
949 		p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
950 		p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
951 	}
952 
953 	vf->num_sbs = 0;
954 }
955 
956 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
957 			     u16 vfid,
958 			     struct qed_mcp_link_params *params,
959 			     struct qed_mcp_link_state *link,
960 			     struct qed_mcp_link_capabilities *p_caps)
961 {
962 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
963 						       vfid,
964 						       false);
965 	struct qed_bulletin_content *p_bulletin;
966 
967 	if (!p_vf)
968 		return;
969 
970 	p_bulletin = p_vf->bulletin.p_virt;
971 	p_bulletin->req_autoneg = params->speed.autoneg;
972 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
973 	p_bulletin->req_forced_speed = params->speed.forced_speed;
974 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
975 	p_bulletin->req_forced_rx = params->pause.forced_rx;
976 	p_bulletin->req_forced_tx = params->pause.forced_tx;
977 	p_bulletin->req_loopback = params->loopback_mode;
978 
979 	p_bulletin->link_up = link->link_up;
980 	p_bulletin->speed = link->speed;
981 	p_bulletin->full_duplex = link->full_duplex;
982 	p_bulletin->autoneg = link->an;
983 	p_bulletin->autoneg_complete = link->an_complete;
984 	p_bulletin->parallel_detection = link->parallel_detection;
985 	p_bulletin->pfc_enabled = link->pfc_enabled;
986 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
987 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
988 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
989 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
990 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
991 
992 	p_bulletin->capability_speed = p_caps->speed_capabilities;
993 }
994 
995 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
996 				  struct qed_ptt *p_ptt,
997 				  struct qed_iov_vf_init_params *p_params)
998 {
999 	struct qed_mcp_link_capabilities link_caps;
1000 	struct qed_mcp_link_params link_params;
1001 	struct qed_mcp_link_state link_state;
1002 	u8 num_of_vf_avaiable_chains = 0;
1003 	struct qed_vf_info *vf = NULL;
1004 	u16 qid, num_irqs;
1005 	int rc = 0;
1006 	u32 cids;
1007 	u8 i;
1008 
1009 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
1010 	if (!vf) {
1011 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
1012 		return -EINVAL;
1013 	}
1014 
1015 	if (vf->b_init) {
1016 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
1017 			  p_params->rel_vf_id);
1018 		return -EINVAL;
1019 	}
1020 
1021 	/* Perform sanity checking on the requested queue_id */
1022 	for (i = 0; i < p_params->num_queues; i++) {
1023 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1024 		u16 max_vf_qzone = min_vf_qzone +
1025 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1026 
1027 		qid = p_params->req_rx_queue[i];
1028 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
1029 			DP_NOTICE(p_hwfn,
1030 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1031 				  qid,
1032 				  p_params->rel_vf_id,
1033 				  min_vf_qzone, max_vf_qzone);
1034 			return -EINVAL;
1035 		}
1036 
1037 		qid = p_params->req_tx_queue[i];
1038 		if (qid > max_vf_qzone) {
1039 			DP_NOTICE(p_hwfn,
1040 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1041 				  qid, p_params->rel_vf_id, max_vf_qzone);
1042 			return -EINVAL;
1043 		}
1044 
1045 		/* If client *really* wants, Tx qid can be shared with PF */
1046 		if (qid < min_vf_qzone)
1047 			DP_VERBOSE(p_hwfn,
1048 				   QED_MSG_IOV,
1049 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1050 				   p_params->rel_vf_id, qid, i);
1051 	}
1052 
1053 	/* Limit number of queues according to number of CIDs */
1054 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1055 	DP_VERBOSE(p_hwfn,
1056 		   QED_MSG_IOV,
1057 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1058 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1059 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1060 
1061 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1062 							     p_ptt,
1063 							     vf, num_irqs);
1064 	if (!num_of_vf_avaiable_chains) {
1065 		DP_ERR(p_hwfn, "no available igu sbs\n");
1066 		return -ENOMEM;
1067 	}
1068 
1069 	/* Choose queue number and index ranges */
1070 	vf->num_rxqs = num_of_vf_avaiable_chains;
1071 	vf->num_txqs = num_of_vf_avaiable_chains;
1072 
1073 	for (i = 0; i < vf->num_rxqs; i++) {
1074 		struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1075 
1076 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1077 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1078 
1079 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1080 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1081 			   vf->relative_vf_id, i, vf->igu_sbs[i],
1082 			   p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1083 	}
1084 
1085 	/* Update the link configuration in bulletin */
1086 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1087 	       sizeof(link_params));
1088 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1089 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1090 	       sizeof(link_caps));
1091 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1092 			 &link_params, &link_state, &link_caps);
1093 
1094 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1095 	if (!rc) {
1096 		vf->b_init = true;
1097 
1098 		if (IS_LEAD_HWFN(p_hwfn))
1099 			p_hwfn->cdev->p_iov_info->num_vfs++;
1100 	}
1101 
1102 	return rc;
1103 }
1104 
1105 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1106 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1107 {
1108 	struct qed_mcp_link_capabilities caps;
1109 	struct qed_mcp_link_params params;
1110 	struct qed_mcp_link_state link;
1111 	struct qed_vf_info *vf = NULL;
1112 
1113 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1114 	if (!vf) {
1115 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1116 		return -EINVAL;
1117 	}
1118 
1119 	if (vf->bulletin.p_virt)
1120 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1121 
1122 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1123 
1124 	/* Get the link configuration back in bulletin so
1125 	 * that when VFs are re-enabled they get the actual
1126 	 * link configuration.
1127 	 */
1128 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1129 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1130 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1131 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1132 
1133 	/* Forget the VF's acquisition message */
1134 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1135 
1136 	/* disablng interrupts and resetting permission table was done during
1137 	 * vf-close, however, we could get here without going through vf_close
1138 	 */
1139 	/* Disable Interrupts for VF */
1140 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1141 
1142 	/* Reset Permission table */
1143 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1144 
1145 	vf->num_rxqs = 0;
1146 	vf->num_txqs = 0;
1147 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1148 
1149 	if (vf->b_init) {
1150 		vf->b_init = false;
1151 
1152 		if (IS_LEAD_HWFN(p_hwfn))
1153 			p_hwfn->cdev->p_iov_info->num_vfs--;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 static bool qed_iov_tlv_supported(u16 tlvtype)
1160 {
1161 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1162 }
1163 
1164 /* place a given tlv on the tlv buffer, continuing current tlv list */
1165 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1166 {
1167 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1168 
1169 	tl->type = type;
1170 	tl->length = length;
1171 
1172 	/* Offset should keep pointing to next TLV (the end of the last) */
1173 	*offset += length;
1174 
1175 	/* Return a pointer to the start of the added tlv */
1176 	return *offset - length;
1177 }
1178 
1179 /* list the types and lengths of the tlvs on the buffer */
1180 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1181 {
1182 	u16 i = 1, total_length = 0;
1183 	struct channel_tlv *tlv;
1184 
1185 	do {
1186 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1187 
1188 		/* output tlv */
1189 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1190 			   "TLV number %d: type %d, length %d\n",
1191 			   i, tlv->type, tlv->length);
1192 
1193 		if (tlv->type == CHANNEL_TLV_LIST_END)
1194 			return;
1195 
1196 		/* Validate entry - protect against malicious VFs */
1197 		if (!tlv->length) {
1198 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1199 			return;
1200 		}
1201 
1202 		total_length += tlv->length;
1203 
1204 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1205 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1206 			return;
1207 		}
1208 
1209 		i++;
1210 	} while (1);
1211 }
1212 
1213 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1214 				  struct qed_ptt *p_ptt,
1215 				  struct qed_vf_info *p_vf,
1216 				  u16 length, u8 status)
1217 {
1218 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1219 	struct qed_dmae_params params;
1220 	u8 eng_vf_id;
1221 
1222 	mbx->reply_virt->default_resp.hdr.status = status;
1223 
1224 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1225 
1226 	eng_vf_id = p_vf->abs_vf_id;
1227 
1228 	memset(&params, 0, sizeof(struct qed_dmae_params));
1229 	params.flags = QED_DMAE_FLAG_VF_DST;
1230 	params.dst_vfid = eng_vf_id;
1231 
1232 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1233 			   mbx->req_virt->first_tlv.reply_address +
1234 			   sizeof(u64),
1235 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1236 			   &params);
1237 
1238 	/* Once PF copies the rc to the VF, the latter can continue
1239 	 * and send an additional message. So we have to make sure the
1240 	 * channel would be re-set to ready prior to that.
1241 	 */
1242 	REG_WR(p_hwfn,
1243 	       GTT_BAR0_MAP_REG_USDM_RAM +
1244 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1245 
1246 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1247 			   mbx->req_virt->first_tlv.reply_address,
1248 			   sizeof(u64) / 4, &params);
1249 }
1250 
1251 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1252 				enum qed_iov_vport_update_flag flag)
1253 {
1254 	switch (flag) {
1255 	case QED_IOV_VP_UPDATE_ACTIVATE:
1256 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1257 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1258 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1259 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1260 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1261 	case QED_IOV_VP_UPDATE_MCAST:
1262 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1263 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1264 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1265 	case QED_IOV_VP_UPDATE_RSS:
1266 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1267 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1268 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1269 	case QED_IOV_VP_UPDATE_SGE_TPA:
1270 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1271 	default:
1272 		return 0;
1273 	}
1274 }
1275 
1276 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1277 					    struct qed_vf_info *p_vf,
1278 					    struct qed_iov_vf_mbx *p_mbx,
1279 					    u8 status,
1280 					    u16 tlvs_mask, u16 tlvs_accepted)
1281 {
1282 	struct pfvf_def_resp_tlv *resp;
1283 	u16 size, total_len, i;
1284 
1285 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1286 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1287 	size = sizeof(struct pfvf_def_resp_tlv);
1288 	total_len = size;
1289 
1290 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1291 
1292 	/* Prepare response for all extended tlvs if they are found by PF */
1293 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1294 		if (!(tlvs_mask & BIT(i)))
1295 			continue;
1296 
1297 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1298 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1299 
1300 		if (tlvs_accepted & BIT(i))
1301 			resp->hdr.status = status;
1302 		else
1303 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1304 
1305 		DP_VERBOSE(p_hwfn,
1306 			   QED_MSG_IOV,
1307 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1308 			   p_vf->relative_vf_id,
1309 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1310 
1311 		total_len += size;
1312 	}
1313 
1314 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1315 		    sizeof(struct channel_list_end_tlv));
1316 
1317 	return total_len;
1318 }
1319 
1320 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1321 				 struct qed_ptt *p_ptt,
1322 				 struct qed_vf_info *vf_info,
1323 				 u16 type, u16 length, u8 status)
1324 {
1325 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1326 
1327 	mbx->offset = (u8 *)mbx->reply_virt;
1328 
1329 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1330 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1331 		    sizeof(struct channel_list_end_tlv));
1332 
1333 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1334 }
1335 
1336 static struct
1337 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1338 					       u16 relative_vf_id,
1339 					       bool b_enabled_only)
1340 {
1341 	struct qed_vf_info *vf = NULL;
1342 
1343 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1344 	if (!vf)
1345 		return NULL;
1346 
1347 	return &vf->p_vf_info;
1348 }
1349 
1350 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1351 {
1352 	struct qed_public_vf_info *vf_info;
1353 
1354 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1355 
1356 	if (!vf_info)
1357 		return;
1358 
1359 	/* Clear the VF mac */
1360 	eth_zero_addr(vf_info->mac);
1361 
1362 	vf_info->rx_accept_mode = 0;
1363 	vf_info->tx_accept_mode = 0;
1364 }
1365 
1366 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1367 			       struct qed_vf_info *p_vf)
1368 {
1369 	u32 i, j;
1370 
1371 	p_vf->vf_bulletin = 0;
1372 	p_vf->vport_instance = 0;
1373 	p_vf->configured_features = 0;
1374 
1375 	/* If VF previously requested less resources, go back to default */
1376 	p_vf->num_rxqs = p_vf->num_sbs;
1377 	p_vf->num_txqs = p_vf->num_sbs;
1378 
1379 	p_vf->num_active_rxqs = 0;
1380 
1381 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1382 		struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1383 
1384 		for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1385 			if (!p_queue->cids[j].p_cid)
1386 				continue;
1387 
1388 			qed_eth_queue_cid_release(p_hwfn,
1389 						  p_queue->cids[j].p_cid);
1390 			p_queue->cids[j].p_cid = NULL;
1391 		}
1392 	}
1393 
1394 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1395 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1396 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1397 }
1398 
1399 /* Returns either 0, or log(size) */
1400 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1401 				  struct qed_ptt *p_ptt)
1402 {
1403 	u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1404 
1405 	if (val)
1406 		return val + 11;
1407 	return 0;
1408 }
1409 
1410 static void
1411 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1412 				 struct qed_ptt *p_ptt,
1413 				 struct qed_vf_info *p_vf,
1414 				 struct vf_pf_resc_request *p_req,
1415 				 struct pf_vf_resc *p_resp)
1416 {
1417 	u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1418 	u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1419 		     qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1420 	u32 bar_size;
1421 
1422 	p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1423 
1424 	/* If VF didn't bother asking for QIDs than don't bother limiting
1425 	 * number of CIDs. The VF doesn't care about the number, and this
1426 	 * has the likely result of causing an additional acquisition.
1427 	 */
1428 	if (!(p_vf->acquire.vfdev_info.capabilities &
1429 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1430 		return;
1431 
1432 	/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1433 	 * that would make sure doorbells for all CIDs fall within the bar.
1434 	 * If it doesn't, make sure regview window is sufficient.
1435 	 */
1436 	if (p_vf->acquire.vfdev_info.capabilities &
1437 	    VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1438 		bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1439 		if (bar_size)
1440 			bar_size = 1 << bar_size;
1441 
1442 		if (p_hwfn->cdev->num_hwfns > 1)
1443 			bar_size /= 2;
1444 	} else {
1445 		bar_size = PXP_VF_BAR0_DQ_LENGTH;
1446 	}
1447 
1448 	if (bar_size / db_size < 256)
1449 		p_resp->num_cids = min_t(u8, p_resp->num_cids,
1450 					 (u8)(bar_size / db_size));
1451 }
1452 
1453 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1454 				      struct qed_ptt *p_ptt,
1455 				      struct qed_vf_info *p_vf,
1456 				      struct vf_pf_resc_request *p_req,
1457 				      struct pf_vf_resc *p_resp)
1458 {
1459 	u8 i;
1460 
1461 	/* Queue related information */
1462 	p_resp->num_rxqs = p_vf->num_rxqs;
1463 	p_resp->num_txqs = p_vf->num_txqs;
1464 	p_resp->num_sbs = p_vf->num_sbs;
1465 
1466 	for (i = 0; i < p_resp->num_sbs; i++) {
1467 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1468 		p_resp->hw_sbs[i].sb_qid = 0;
1469 	}
1470 
1471 	/* These fields are filled for backward compatibility.
1472 	 * Unused by modern vfs.
1473 	 */
1474 	for (i = 0; i < p_resp->num_rxqs; i++) {
1475 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1476 				(u16 *)&p_resp->hw_qid[i]);
1477 		p_resp->cid[i] = i;
1478 	}
1479 
1480 	/* Filter related information */
1481 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1482 					p_req->num_mac_filters);
1483 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1484 					 p_req->num_vlan_filters);
1485 
1486 	qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1487 
1488 	/* This isn't really needed/enforced, but some legacy VFs might depend
1489 	 * on the correct filling of this field.
1490 	 */
1491 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1492 
1493 	/* Validate sufficient resources for VF */
1494 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1495 	    p_resp->num_txqs < p_req->num_txqs ||
1496 	    p_resp->num_sbs < p_req->num_sbs ||
1497 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1498 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1499 	    p_resp->num_mc_filters < p_req->num_mc_filters ||
1500 	    p_resp->num_cids < p_req->num_cids) {
1501 		DP_VERBOSE(p_hwfn,
1502 			   QED_MSG_IOV,
1503 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1504 			   p_vf->abs_vf_id,
1505 			   p_req->num_rxqs,
1506 			   p_resp->num_rxqs,
1507 			   p_req->num_rxqs,
1508 			   p_resp->num_txqs,
1509 			   p_req->num_sbs,
1510 			   p_resp->num_sbs,
1511 			   p_req->num_mac_filters,
1512 			   p_resp->num_mac_filters,
1513 			   p_req->num_vlan_filters,
1514 			   p_resp->num_vlan_filters,
1515 			   p_req->num_mc_filters,
1516 			   p_resp->num_mc_filters,
1517 			   p_req->num_cids, p_resp->num_cids);
1518 
1519 		/* Some legacy OSes are incapable of correctly handling this
1520 		 * failure.
1521 		 */
1522 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1523 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1524 		    (p_vf->acquire.vfdev_info.os_type ==
1525 		     VFPF_ACQUIRE_OS_WINDOWS))
1526 			return PFVF_STATUS_SUCCESS;
1527 
1528 		return PFVF_STATUS_NO_RESOURCE;
1529 	}
1530 
1531 	return PFVF_STATUS_SUCCESS;
1532 }
1533 
1534 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1535 					 struct pfvf_stats_info *p_stats)
1536 {
1537 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1538 				  offsetof(struct mstorm_vf_zone,
1539 					   non_trigger.eth_queue_stat);
1540 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1541 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1542 				  offsetof(struct ustorm_vf_zone,
1543 					   non_trigger.eth_queue_stat);
1544 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1545 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1546 				  offsetof(struct pstorm_vf_zone,
1547 					   non_trigger.eth_queue_stat);
1548 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1549 	p_stats->tstats.address = 0;
1550 	p_stats->tstats.len = 0;
1551 }
1552 
1553 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1554 				   struct qed_ptt *p_ptt,
1555 				   struct qed_vf_info *vf)
1556 {
1557 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1558 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1559 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1560 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1561 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1562 	struct pf_vf_resc *resc = &resp->resc;
1563 	int rc;
1564 
1565 	memset(resp, 0, sizeof(*resp));
1566 
1567 	/* Write the PF version so that VF would know which version
1568 	 * is supported - might be later overriden. This guarantees that
1569 	 * VF could recognize legacy PF based on lack of versions in reply.
1570 	 */
1571 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1572 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1573 
1574 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1575 		DP_VERBOSE(p_hwfn,
1576 			   QED_MSG_IOV,
1577 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1578 			   vf->abs_vf_id, vf->state);
1579 		goto out;
1580 	}
1581 
1582 	/* Validate FW compatibility */
1583 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1584 		if (req->vfdev_info.capabilities &
1585 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1586 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1587 
1588 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1589 				   "VF[%d] is pre-fastpath HSI\n",
1590 				   vf->abs_vf_id);
1591 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1592 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1593 		} else {
1594 			DP_INFO(p_hwfn,
1595 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n",
1596 				vf->abs_vf_id,
1597 				req->vfdev_info.eth_fp_hsi_major,
1598 				req->vfdev_info.eth_fp_hsi_minor,
1599 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1600 
1601 			goto out;
1602 		}
1603 	}
1604 
1605 	/* On 100g PFs, prevent old VFs from loading */
1606 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1607 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1608 		DP_INFO(p_hwfn,
1609 			"VF[%d] is running an old driver that doesn't support 100g\n",
1610 			vf->abs_vf_id);
1611 		goto out;
1612 	}
1613 
1614 	/* Store the acquire message */
1615 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1616 
1617 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1618 
1619 	vf->vf_bulletin = req->bulletin_addr;
1620 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1621 			    vf->bulletin.size : req->bulletin_size;
1622 
1623 	/* fill in pfdev info */
1624 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1625 	pfdev_info->db_size = 0;
1626 	pfdev_info->indices_per_sb = PIS_PER_SB_E4;
1627 
1628 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1629 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1630 	if (p_hwfn->cdev->num_hwfns > 1)
1631 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1632 
1633 	/* Share our ability to use multiple queue-ids only with VFs
1634 	 * that request it.
1635 	 */
1636 	if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1637 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1638 
1639 	/* Share the sizes of the bars with VF */
1640 	resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1641 
1642 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1643 
1644 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1645 
1646 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1647 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1648 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1649 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1650 
1651 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1652 	 * this field.
1653 	 */
1654 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1655 					 req->vfdev_info.eth_fp_hsi_minor);
1656 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1657 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1658 
1659 	pfdev_info->dev_type = p_hwfn->cdev->type;
1660 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1661 
1662 	/* Fill resources available to VF; Make sure there are enough to
1663 	 * satisfy the VF's request.
1664 	 */
1665 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1666 						  &req->resc_request, resc);
1667 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1668 		goto out;
1669 
1670 	/* Start the VF in FW */
1671 	rc = qed_sp_vf_start(p_hwfn, vf);
1672 	if (rc) {
1673 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1674 		vfpf_status = PFVF_STATUS_FAILURE;
1675 		goto out;
1676 	}
1677 
1678 	/* Fill agreed size of bulletin board in response */
1679 	resp->bulletin_size = vf->bulletin.size;
1680 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1681 
1682 	DP_VERBOSE(p_hwfn,
1683 		   QED_MSG_IOV,
1684 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1685 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1686 		   vf->abs_vf_id,
1687 		   resp->pfdev_info.chip_num,
1688 		   resp->pfdev_info.db_size,
1689 		   resp->pfdev_info.indices_per_sb,
1690 		   resp->pfdev_info.capabilities,
1691 		   resc->num_rxqs,
1692 		   resc->num_txqs,
1693 		   resc->num_sbs,
1694 		   resc->num_mac_filters,
1695 		   resc->num_vlan_filters);
1696 	vf->state = VF_ACQUIRED;
1697 
1698 	/* Prepare Response */
1699 out:
1700 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1701 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1702 }
1703 
1704 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1705 				  struct qed_vf_info *p_vf, bool val)
1706 {
1707 	struct qed_sp_vport_update_params params;
1708 	int rc;
1709 
1710 	if (val == p_vf->spoof_chk) {
1711 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1712 			   "Spoofchk value[%d] is already configured\n", val);
1713 		return 0;
1714 	}
1715 
1716 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1717 	params.opaque_fid = p_vf->opaque_fid;
1718 	params.vport_id = p_vf->vport_id;
1719 	params.update_anti_spoofing_en_flg = 1;
1720 	params.anti_spoofing_en = val;
1721 
1722 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1723 	if (!rc) {
1724 		p_vf->spoof_chk = val;
1725 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1726 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1727 			   "Spoofchk val[%d] configured\n", val);
1728 	} else {
1729 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1730 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1731 			   val, p_vf->relative_vf_id);
1732 	}
1733 
1734 	return rc;
1735 }
1736 
1737 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1738 					    struct qed_vf_info *p_vf)
1739 {
1740 	struct qed_filter_ucast filter;
1741 	int rc = 0;
1742 	int i;
1743 
1744 	memset(&filter, 0, sizeof(filter));
1745 	filter.is_rx_filter = 1;
1746 	filter.is_tx_filter = 1;
1747 	filter.vport_to_add_to = p_vf->vport_id;
1748 	filter.opcode = QED_FILTER_ADD;
1749 
1750 	/* Reconfigure vlans */
1751 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1752 		if (!p_vf->shadow_config.vlans[i].used)
1753 			continue;
1754 
1755 		filter.type = QED_FILTER_VLAN;
1756 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1757 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1758 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1759 			   filter.vlan, p_vf->relative_vf_id);
1760 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1761 					     &filter, QED_SPQ_MODE_CB, NULL);
1762 		if (rc) {
1763 			DP_NOTICE(p_hwfn,
1764 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1765 				  filter.vlan, p_vf->relative_vf_id);
1766 			break;
1767 		}
1768 	}
1769 
1770 	return rc;
1771 }
1772 
1773 static int
1774 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1775 				   struct qed_vf_info *p_vf, u64 events)
1776 {
1777 	int rc = 0;
1778 
1779 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1780 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1781 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1782 
1783 	return rc;
1784 }
1785 
1786 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1787 					  struct qed_vf_info *p_vf, u64 events)
1788 {
1789 	int rc = 0;
1790 	struct qed_filter_ucast filter;
1791 
1792 	if (!p_vf->vport_instance)
1793 		return -EINVAL;
1794 
1795 	if ((events & BIT(MAC_ADDR_FORCED)) ||
1796 	    p_vf->p_vf_info.is_trusted_configured) {
1797 		/* Since there's no way [currently] of removing the MAC,
1798 		 * we can always assume this means we need to force it.
1799 		 */
1800 		memset(&filter, 0, sizeof(filter));
1801 		filter.type = QED_FILTER_MAC;
1802 		filter.opcode = QED_FILTER_REPLACE;
1803 		filter.is_rx_filter = 1;
1804 		filter.is_tx_filter = 1;
1805 		filter.vport_to_add_to = p_vf->vport_id;
1806 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1807 
1808 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1809 					     &filter, QED_SPQ_MODE_CB, NULL);
1810 		if (rc) {
1811 			DP_NOTICE(p_hwfn,
1812 				  "PF failed to configure MAC for VF\n");
1813 			return rc;
1814 		}
1815 		if (p_vf->p_vf_info.is_trusted_configured)
1816 			p_vf->configured_features |=
1817 				BIT(VFPF_BULLETIN_MAC_ADDR);
1818 		else
1819 			p_vf->configured_features |=
1820 				BIT(MAC_ADDR_FORCED);
1821 	}
1822 
1823 	if (events & BIT(VLAN_ADDR_FORCED)) {
1824 		struct qed_sp_vport_update_params vport_update;
1825 		u8 removal;
1826 		int i;
1827 
1828 		memset(&filter, 0, sizeof(filter));
1829 		filter.type = QED_FILTER_VLAN;
1830 		filter.is_rx_filter = 1;
1831 		filter.is_tx_filter = 1;
1832 		filter.vport_to_add_to = p_vf->vport_id;
1833 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1834 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1835 					      QED_FILTER_FLUSH;
1836 
1837 		/* Send the ramrod */
1838 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1839 					     &filter, QED_SPQ_MODE_CB, NULL);
1840 		if (rc) {
1841 			DP_NOTICE(p_hwfn,
1842 				  "PF failed to configure VLAN for VF\n");
1843 			return rc;
1844 		}
1845 
1846 		/* Update the default-vlan & silent vlan stripping */
1847 		memset(&vport_update, 0, sizeof(vport_update));
1848 		vport_update.opaque_fid = p_vf->opaque_fid;
1849 		vport_update.vport_id = p_vf->vport_id;
1850 		vport_update.update_default_vlan_enable_flg = 1;
1851 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1852 		vport_update.update_default_vlan_flg = 1;
1853 		vport_update.default_vlan = filter.vlan;
1854 
1855 		vport_update.update_inner_vlan_removal_flg = 1;
1856 		removal = filter.vlan ? 1
1857 				      : p_vf->shadow_config.inner_vlan_removal;
1858 		vport_update.inner_vlan_removal_flg = removal;
1859 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1860 		rc = qed_sp_vport_update(p_hwfn,
1861 					 &vport_update,
1862 					 QED_SPQ_MODE_EBLOCK, NULL);
1863 		if (rc) {
1864 			DP_NOTICE(p_hwfn,
1865 				  "PF failed to configure VF vport for vlan\n");
1866 			return rc;
1867 		}
1868 
1869 		/* Update all the Rx queues */
1870 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1871 			struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1872 			struct qed_queue_cid *p_cid = NULL;
1873 
1874 			/* There can be at most 1 Rx queue on qzone. Find it */
1875 			p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1876 			if (!p_cid)
1877 				continue;
1878 
1879 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1880 							 (void **)&p_cid,
1881 							 1, 0, 1,
1882 							 QED_SPQ_MODE_EBLOCK,
1883 							 NULL);
1884 			if (rc) {
1885 				DP_NOTICE(p_hwfn,
1886 					  "Failed to send Rx update fo queue[0x%04x]\n",
1887 					  p_cid->rel.queue_id);
1888 				return rc;
1889 			}
1890 		}
1891 
1892 		if (filter.vlan)
1893 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1894 		else
1895 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1896 	}
1897 
1898 	/* If forced features are terminated, we need to configure the shadow
1899 	 * configuration back again.
1900 	 */
1901 	if (events)
1902 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1903 
1904 	return rc;
1905 }
1906 
1907 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1908 				       struct qed_ptt *p_ptt,
1909 				       struct qed_vf_info *vf)
1910 {
1911 	struct qed_sp_vport_start_params params = { 0 };
1912 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1913 	struct vfpf_vport_start_tlv *start;
1914 	u8 status = PFVF_STATUS_SUCCESS;
1915 	struct qed_vf_info *vf_info;
1916 	u64 *p_bitmap;
1917 	int sb_id;
1918 	int rc;
1919 
1920 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1921 	if (!vf_info) {
1922 		DP_NOTICE(p_hwfn->cdev,
1923 			  "Failed to get VF info, invalid vfid [%d]\n",
1924 			  vf->relative_vf_id);
1925 		return;
1926 	}
1927 
1928 	vf->state = VF_ENABLED;
1929 	start = &mbx->req_virt->start_vport;
1930 
1931 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1932 
1933 	/* Initialize Status block in CAU */
1934 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1935 		if (!start->sb_addr[sb_id]) {
1936 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1937 				   "VF[%d] did not fill the address of SB %d\n",
1938 				   vf->relative_vf_id, sb_id);
1939 			break;
1940 		}
1941 
1942 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1943 				    start->sb_addr[sb_id],
1944 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1945 	}
1946 
1947 	vf->mtu = start->mtu;
1948 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1949 
1950 	/* Take into consideration configuration forced by hypervisor;
1951 	 * If none is configured, use the supplied VF values [for old
1952 	 * vfs that would still be fine, since they passed '0' as padding].
1953 	 */
1954 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1955 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1956 		u8 vf_req = start->only_untagged;
1957 
1958 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1959 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1960 	}
1961 
1962 	params.tpa_mode = start->tpa_mode;
1963 	params.remove_inner_vlan = start->inner_vlan_removal;
1964 	params.tx_switching = true;
1965 
1966 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1967 	params.drop_ttl0 = false;
1968 	params.concrete_fid = vf->concrete_fid;
1969 	params.opaque_fid = vf->opaque_fid;
1970 	params.vport_id = vf->vport_id;
1971 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1972 	params.mtu = vf->mtu;
1973 
1974 	/* Non trusted VFs should enable control frame filtering */
1975 	params.check_mac = !vf->p_vf_info.is_trusted_configured;
1976 
1977 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1978 	if (rc) {
1979 		DP_ERR(p_hwfn,
1980 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1981 		status = PFVF_STATUS_FAILURE;
1982 	} else {
1983 		vf->vport_instance++;
1984 
1985 		/* Force configuration if needed on the newly opened vport */
1986 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1987 
1988 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1989 	}
1990 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1991 			     sizeof(struct pfvf_def_resp_tlv), status);
1992 }
1993 
1994 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1995 				      struct qed_ptt *p_ptt,
1996 				      struct qed_vf_info *vf)
1997 {
1998 	u8 status = PFVF_STATUS_SUCCESS;
1999 	int rc;
2000 
2001 	vf->vport_instance--;
2002 	vf->spoof_chk = false;
2003 
2004 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
2005 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
2006 		vf->b_malicious = true;
2007 		DP_NOTICE(p_hwfn,
2008 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n",
2009 			  vf->abs_vf_id);
2010 		status = PFVF_STATUS_MALICIOUS;
2011 		goto out;
2012 	}
2013 
2014 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
2015 	if (rc) {
2016 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
2017 		       rc);
2018 		status = PFVF_STATUS_FAILURE;
2019 	}
2020 
2021 	/* Forget the configuration on the vport */
2022 	vf->configured_features = 0;
2023 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2024 
2025 out:
2026 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2027 			     sizeof(struct pfvf_def_resp_tlv), status);
2028 }
2029 
2030 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2031 					  struct qed_ptt *p_ptt,
2032 					  struct qed_vf_info *vf,
2033 					  u8 status, bool b_legacy)
2034 {
2035 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2036 	struct pfvf_start_queue_resp_tlv *p_tlv;
2037 	struct vfpf_start_rxq_tlv *req;
2038 	u16 length;
2039 
2040 	mbx->offset = (u8 *)mbx->reply_virt;
2041 
2042 	/* Taking a bigger struct instead of adding a TLV to list was a
2043 	 * mistake, but one which we're now stuck with, as some older
2044 	 * clients assume the size of the previous response.
2045 	 */
2046 	if (!b_legacy)
2047 		length = sizeof(*p_tlv);
2048 	else
2049 		length = sizeof(struct pfvf_def_resp_tlv);
2050 
2051 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2052 			    length);
2053 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2054 		    sizeof(struct channel_list_end_tlv));
2055 
2056 	/* Update the TLV with the response */
2057 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2058 		req = &mbx->req_virt->start_rxq;
2059 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2060 				offsetof(struct mstorm_vf_zone,
2061 					 non_trigger.eth_rx_queue_producers) +
2062 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
2063 	}
2064 
2065 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2066 }
2067 
2068 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2069 			     struct qed_vf_info *p_vf, bool b_is_tx)
2070 {
2071 	struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2072 	struct vfpf_qid_tlv *p_qid_tlv;
2073 
2074 	/* Search for the qid if the VF published its going to provide it */
2075 	if (!(p_vf->acquire.vfdev_info.capabilities &
2076 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2077 		if (b_is_tx)
2078 			return QED_IOV_LEGACY_QID_TX;
2079 		else
2080 			return QED_IOV_LEGACY_QID_RX;
2081 	}
2082 
2083 	p_qid_tlv = (struct vfpf_qid_tlv *)
2084 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2085 					     CHANNEL_TLV_QID);
2086 	if (!p_qid_tlv) {
2087 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2088 			   "VF[%2x]: Failed to provide qid\n",
2089 			   p_vf->relative_vf_id);
2090 
2091 		return QED_IOV_QID_INVALID;
2092 	}
2093 
2094 	if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2095 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2096 			   "VF[%02x]: Provided qid out-of-bounds %02x\n",
2097 			   p_vf->relative_vf_id, p_qid_tlv->qid);
2098 		return QED_IOV_QID_INVALID;
2099 	}
2100 
2101 	return p_qid_tlv->qid;
2102 }
2103 
2104 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2105 				     struct qed_ptt *p_ptt,
2106 				     struct qed_vf_info *vf)
2107 {
2108 	struct qed_queue_start_common_params params;
2109 	struct qed_queue_cid_vf_params vf_params;
2110 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2111 	u8 status = PFVF_STATUS_NO_RESOURCE;
2112 	u8 qid_usage_idx, vf_legacy = 0;
2113 	struct vfpf_start_rxq_tlv *req;
2114 	struct qed_vf_queue *p_queue;
2115 	struct qed_queue_cid *p_cid;
2116 	struct qed_sb_info sb_dummy;
2117 	int rc;
2118 
2119 	req = &mbx->req_virt->start_rxq;
2120 
2121 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2122 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2123 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2124 		goto out;
2125 
2126 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2127 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2128 		goto out;
2129 
2130 	p_queue = &vf->vf_queues[req->rx_qid];
2131 	if (p_queue->cids[qid_usage_idx].p_cid)
2132 		goto out;
2133 
2134 	vf_legacy = qed_vf_calculate_legacy(vf);
2135 
2136 	/* Acquire a new queue-cid */
2137 	memset(&params, 0, sizeof(params));
2138 	params.queue_id = p_queue->fw_rx_qid;
2139 	params.vport_id = vf->vport_id;
2140 	params.stats_id = vf->abs_vf_id + 0x10;
2141 	/* Since IGU index is passed via sb_info, construct a dummy one */
2142 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2143 	sb_dummy.igu_sb_id = req->hw_sb;
2144 	params.p_sb = &sb_dummy;
2145 	params.sb_idx = req->sb_index;
2146 
2147 	memset(&vf_params, 0, sizeof(vf_params));
2148 	vf_params.vfid = vf->relative_vf_id;
2149 	vf_params.vf_qid = (u8)req->rx_qid;
2150 	vf_params.vf_legacy = vf_legacy;
2151 	vf_params.qid_usage_idx = qid_usage_idx;
2152 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2153 				     &params, true, &vf_params);
2154 	if (!p_cid)
2155 		goto out;
2156 
2157 	/* Legacy VFs have their Producers in a different location, which they
2158 	 * calculate on their own and clean the producer prior to this.
2159 	 */
2160 	if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2161 		REG_WR(p_hwfn,
2162 		       GTT_BAR0_MAP_REG_MSDM_RAM +
2163 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2164 		       0);
2165 
2166 	rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2167 				      req->bd_max_bytes,
2168 				      req->rxq_addr,
2169 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2170 	if (rc) {
2171 		status = PFVF_STATUS_FAILURE;
2172 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2173 	} else {
2174 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2175 		p_queue->cids[qid_usage_idx].b_is_tx = false;
2176 		status = PFVF_STATUS_SUCCESS;
2177 		vf->num_active_rxqs++;
2178 	}
2179 
2180 out:
2181 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2182 				      !!(vf_legacy &
2183 					 QED_QCID_LEGACY_VF_RX_PROD));
2184 }
2185 
2186 static void
2187 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2188 			       struct qed_tunnel_info *p_tun,
2189 			       u16 tunn_feature_mask)
2190 {
2191 	p_resp->tunn_feature_mask = tunn_feature_mask;
2192 	p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2193 	p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2194 	p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2195 	p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2196 	p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2197 	p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2198 	p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2199 	p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2200 	p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2201 	p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2202 	p_resp->geneve_udp_port = p_tun->geneve_port.port;
2203 	p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2204 }
2205 
2206 static void
2207 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2208 			      struct qed_tunn_update_type *p_tun,
2209 			      enum qed_tunn_mode mask, u8 tun_cls)
2210 {
2211 	if (p_req->tun_mode_update_mask & BIT(mask)) {
2212 		p_tun->b_update_mode = true;
2213 
2214 		if (p_req->tunn_mode & BIT(mask))
2215 			p_tun->b_mode_enabled = true;
2216 	}
2217 
2218 	p_tun->tun_cls = tun_cls;
2219 }
2220 
2221 static void
2222 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2223 			    struct qed_tunn_update_type *p_tun,
2224 			    struct qed_tunn_update_udp_port *p_port,
2225 			    enum qed_tunn_mode mask,
2226 			    u8 tun_cls, u8 update_port, u16 port)
2227 {
2228 	if (update_port) {
2229 		p_port->b_update_port = true;
2230 		p_port->port = port;
2231 	}
2232 
2233 	__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2234 }
2235 
2236 static bool
2237 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2238 {
2239 	bool b_update_requested = false;
2240 
2241 	if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2242 	    p_req->update_geneve_port || p_req->update_vxlan_port)
2243 		b_update_requested = true;
2244 
2245 	return b_update_requested;
2246 }
2247 
2248 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2249 {
2250 	if (tun->b_update_mode && !tun->b_mode_enabled) {
2251 		tun->b_update_mode = false;
2252 		*rc = -EINVAL;
2253 	}
2254 }
2255 
2256 static int
2257 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2258 				   u16 *tun_features, bool *update,
2259 				   struct qed_tunnel_info *tun_src)
2260 {
2261 	struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2262 	struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2263 	u16 bultn_vxlan_port, bultn_geneve_port;
2264 	void *cookie = p_hwfn->cdev->ops_cookie;
2265 	int i, rc = 0;
2266 
2267 	*tun_features = p_hwfn->cdev->tunn_feature_mask;
2268 	bultn_vxlan_port = tun->vxlan_port.port;
2269 	bultn_geneve_port = tun->geneve_port.port;
2270 	qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2271 	qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2272 	qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2273 	qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2274 	qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2275 
2276 	if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2277 	    (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2278 	     tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2279 	     tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2280 	     tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2281 	     tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2282 		tun_src->b_update_rx_cls = false;
2283 		tun_src->b_update_tx_cls = false;
2284 		rc = -EINVAL;
2285 	}
2286 
2287 	if (tun_src->vxlan_port.b_update_port) {
2288 		if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2289 			tun_src->vxlan_port.b_update_port = false;
2290 		} else {
2291 			*update = true;
2292 			bultn_vxlan_port = tun_src->vxlan_port.port;
2293 		}
2294 	}
2295 
2296 	if (tun_src->geneve_port.b_update_port) {
2297 		if (tun_src->geneve_port.port == tun->geneve_port.port) {
2298 			tun_src->geneve_port.b_update_port = false;
2299 		} else {
2300 			*update = true;
2301 			bultn_geneve_port = tun_src->geneve_port.port;
2302 		}
2303 	}
2304 
2305 	qed_for_each_vf(p_hwfn, i) {
2306 		qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2307 					       bultn_geneve_port);
2308 	}
2309 
2310 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2311 	ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2312 
2313 	return rc;
2314 }
2315 
2316 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2317 					     struct qed_ptt *p_ptt,
2318 					     struct qed_vf_info *p_vf)
2319 {
2320 	struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2321 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2322 	struct pfvf_update_tunn_param_tlv *p_resp;
2323 	struct vfpf_update_tunn_param_tlv *p_req;
2324 	u8 status = PFVF_STATUS_SUCCESS;
2325 	bool b_update_required = false;
2326 	struct qed_tunnel_info tunn;
2327 	u16 tunn_feature_mask = 0;
2328 	int i, rc = 0;
2329 
2330 	mbx->offset = (u8 *)mbx->reply_virt;
2331 
2332 	memset(&tunn, 0, sizeof(tunn));
2333 	p_req = &mbx->req_virt->tunn_param_update;
2334 
2335 	if (!qed_iov_pf_validate_tunn_param(p_req)) {
2336 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2337 			   "No tunnel update requested by VF\n");
2338 		status = PFVF_STATUS_FAILURE;
2339 		goto send_resp;
2340 	}
2341 
2342 	tunn.b_update_rx_cls = p_req->update_tun_cls;
2343 	tunn.b_update_tx_cls = p_req->update_tun_cls;
2344 
2345 	qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2346 				    QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2347 				    p_req->update_vxlan_port,
2348 				    p_req->vxlan_port);
2349 	qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2350 				    QED_MODE_L2GENEVE_TUNN,
2351 				    p_req->l2geneve_clss,
2352 				    p_req->update_geneve_port,
2353 				    p_req->geneve_port);
2354 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2355 				      QED_MODE_IPGENEVE_TUNN,
2356 				      p_req->ipgeneve_clss);
2357 	__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2358 				      QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2359 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2360 				      QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2361 
2362 	/* If PF modifies VF's req then it should
2363 	 * still return an error in case of partial configuration
2364 	 * or modified configuration as opposed to requested one.
2365 	 */
2366 	rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2367 						&b_update_required, &tunn);
2368 
2369 	if (rc)
2370 		status = PFVF_STATUS_FAILURE;
2371 
2372 	/* If QED client is willing to update anything ? */
2373 	if (b_update_required) {
2374 		u16 geneve_port;
2375 
2376 		rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2377 					       QED_SPQ_MODE_EBLOCK, NULL);
2378 		if (rc)
2379 			status = PFVF_STATUS_FAILURE;
2380 
2381 		geneve_port = p_tun->geneve_port.port;
2382 		qed_for_each_vf(p_hwfn, i) {
2383 			qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2384 						       p_tun->vxlan_port.port,
2385 						       geneve_port);
2386 		}
2387 	}
2388 
2389 send_resp:
2390 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2391 			     CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2392 
2393 	qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2394 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2395 		    sizeof(struct channel_list_end_tlv));
2396 
2397 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2398 }
2399 
2400 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2401 					  struct qed_ptt *p_ptt,
2402 					  struct qed_vf_info *p_vf,
2403 					  u32 cid, u8 status)
2404 {
2405 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2406 	struct pfvf_start_queue_resp_tlv *p_tlv;
2407 	bool b_legacy = false;
2408 	u16 length;
2409 
2410 	mbx->offset = (u8 *)mbx->reply_virt;
2411 
2412 	/* Taking a bigger struct instead of adding a TLV to list was a
2413 	 * mistake, but one which we're now stuck with, as some older
2414 	 * clients assume the size of the previous response.
2415 	 */
2416 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2417 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2418 		b_legacy = true;
2419 
2420 	if (!b_legacy)
2421 		length = sizeof(*p_tlv);
2422 	else
2423 		length = sizeof(struct pfvf_def_resp_tlv);
2424 
2425 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2426 			    length);
2427 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2428 		    sizeof(struct channel_list_end_tlv));
2429 
2430 	/* Update the TLV with the response */
2431 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2432 		p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2433 
2434 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2435 }
2436 
2437 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2438 				     struct qed_ptt *p_ptt,
2439 				     struct qed_vf_info *vf)
2440 {
2441 	struct qed_queue_start_common_params params;
2442 	struct qed_queue_cid_vf_params vf_params;
2443 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2444 	u8 status = PFVF_STATUS_NO_RESOURCE;
2445 	struct vfpf_start_txq_tlv *req;
2446 	struct qed_vf_queue *p_queue;
2447 	struct qed_queue_cid *p_cid;
2448 	struct qed_sb_info sb_dummy;
2449 	u8 qid_usage_idx, vf_legacy;
2450 	u32 cid = 0;
2451 	int rc;
2452 	u16 pq;
2453 
2454 	memset(&params, 0, sizeof(params));
2455 	req = &mbx->req_virt->start_txq;
2456 
2457 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2458 				  QED_IOV_VALIDATE_Q_NA) ||
2459 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2460 		goto out;
2461 
2462 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2463 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2464 		goto out;
2465 
2466 	p_queue = &vf->vf_queues[req->tx_qid];
2467 	if (p_queue->cids[qid_usage_idx].p_cid)
2468 		goto out;
2469 
2470 	vf_legacy = qed_vf_calculate_legacy(vf);
2471 
2472 	/* Acquire a new queue-cid */
2473 	params.queue_id = p_queue->fw_tx_qid;
2474 	params.vport_id = vf->vport_id;
2475 	params.stats_id = vf->abs_vf_id + 0x10;
2476 
2477 	/* Since IGU index is passed via sb_info, construct a dummy one */
2478 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2479 	sb_dummy.igu_sb_id = req->hw_sb;
2480 	params.p_sb = &sb_dummy;
2481 	params.sb_idx = req->sb_index;
2482 
2483 	memset(&vf_params, 0, sizeof(vf_params));
2484 	vf_params.vfid = vf->relative_vf_id;
2485 	vf_params.vf_qid = (u8)req->tx_qid;
2486 	vf_params.vf_legacy = vf_legacy;
2487 	vf_params.qid_usage_idx = qid_usage_idx;
2488 
2489 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2490 				     &params, false, &vf_params);
2491 	if (!p_cid)
2492 		goto out;
2493 
2494 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2495 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2496 				      req->pbl_addr, req->pbl_size, pq);
2497 	if (rc) {
2498 		status = PFVF_STATUS_FAILURE;
2499 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2500 	} else {
2501 		status = PFVF_STATUS_SUCCESS;
2502 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2503 		p_queue->cids[qid_usage_idx].b_is_tx = true;
2504 		cid = p_cid->cid;
2505 	}
2506 
2507 out:
2508 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2509 }
2510 
2511 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2512 				struct qed_vf_info *vf,
2513 				u16 rxq_id,
2514 				u8 qid_usage_idx, bool cqe_completion)
2515 {
2516 	struct qed_vf_queue *p_queue;
2517 	int rc = 0;
2518 
2519 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2520 		DP_VERBOSE(p_hwfn,
2521 			   QED_MSG_IOV,
2522 			   "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2523 			   vf->relative_vf_id, rxq_id, qid_usage_idx);
2524 		return -EINVAL;
2525 	}
2526 
2527 	p_queue = &vf->vf_queues[rxq_id];
2528 
2529 	/* We've validated the index and the existence of the active RXQ -
2530 	 * now we need to make sure that it's using the correct qid.
2531 	 */
2532 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2533 	    p_queue->cids[qid_usage_idx].b_is_tx) {
2534 		struct qed_queue_cid *p_cid;
2535 
2536 		p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2537 		DP_VERBOSE(p_hwfn,
2538 			   QED_MSG_IOV,
2539 			   "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2540 			   vf->relative_vf_id,
2541 			   rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2542 		return -EINVAL;
2543 	}
2544 
2545 	/* Now that we know we have a valid Rx-queue - close it */
2546 	rc = qed_eth_rx_queue_stop(p_hwfn,
2547 				   p_queue->cids[qid_usage_idx].p_cid,
2548 				   false, cqe_completion);
2549 	if (rc)
2550 		return rc;
2551 
2552 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2553 	vf->num_active_rxqs--;
2554 
2555 	return 0;
2556 }
2557 
2558 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2559 				struct qed_vf_info *vf,
2560 				u16 txq_id, u8 qid_usage_idx)
2561 {
2562 	struct qed_vf_queue *p_queue;
2563 	int rc = 0;
2564 
2565 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2566 		return -EINVAL;
2567 
2568 	p_queue = &vf->vf_queues[txq_id];
2569 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2570 	    !p_queue->cids[qid_usage_idx].b_is_tx)
2571 		return -EINVAL;
2572 
2573 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2574 	if (rc)
2575 		return rc;
2576 
2577 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2578 	return 0;
2579 }
2580 
2581 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2582 				     struct qed_ptt *p_ptt,
2583 				     struct qed_vf_info *vf)
2584 {
2585 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2586 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2587 	u8 status = PFVF_STATUS_FAILURE;
2588 	struct vfpf_stop_rxqs_tlv *req;
2589 	u8 qid_usage_idx;
2590 	int rc;
2591 
2592 	/* There has never been an official driver that used this interface
2593 	 * for stopping multiple queues, and it is now considered deprecated.
2594 	 * Validate this isn't used here.
2595 	 */
2596 	req = &mbx->req_virt->stop_rxqs;
2597 	if (req->num_rxqs != 1) {
2598 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2599 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2600 			   vf->relative_vf_id);
2601 		status = PFVF_STATUS_NOT_SUPPORTED;
2602 		goto out;
2603 	}
2604 
2605 	/* Find which qid-index is associated with the queue */
2606 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2607 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2608 		goto out;
2609 
2610 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2611 				  qid_usage_idx, req->cqe_completion);
2612 	if (!rc)
2613 		status = PFVF_STATUS_SUCCESS;
2614 out:
2615 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2616 			     length, status);
2617 }
2618 
2619 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2620 				     struct qed_ptt *p_ptt,
2621 				     struct qed_vf_info *vf)
2622 {
2623 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2624 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2625 	u8 status = PFVF_STATUS_FAILURE;
2626 	struct vfpf_stop_txqs_tlv *req;
2627 	u8 qid_usage_idx;
2628 	int rc;
2629 
2630 	/* There has never been an official driver that used this interface
2631 	 * for stopping multiple queues, and it is now considered deprecated.
2632 	 * Validate this isn't used here.
2633 	 */
2634 	req = &mbx->req_virt->stop_txqs;
2635 	if (req->num_txqs != 1) {
2636 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2637 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2638 			   vf->relative_vf_id);
2639 		status = PFVF_STATUS_NOT_SUPPORTED;
2640 		goto out;
2641 	}
2642 
2643 	/* Find which qid-index is associated with the queue */
2644 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2645 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2646 		goto out;
2647 
2648 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2649 	if (!rc)
2650 		status = PFVF_STATUS_SUCCESS;
2651 
2652 out:
2653 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2654 			     length, status);
2655 }
2656 
2657 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2658 				       struct qed_ptt *p_ptt,
2659 				       struct qed_vf_info *vf)
2660 {
2661 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2662 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2663 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2664 	struct vfpf_update_rxq_tlv *req;
2665 	u8 status = PFVF_STATUS_FAILURE;
2666 	u8 complete_event_flg;
2667 	u8 complete_cqe_flg;
2668 	u8 qid_usage_idx;
2669 	int rc;
2670 	u8 i;
2671 
2672 	req = &mbx->req_virt->update_rxq;
2673 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2674 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2675 
2676 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2677 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2678 		goto out;
2679 
2680 	/* There shouldn't exist a VF that uses queue-qids yet uses this
2681 	 * API with multiple Rx queues. Validate this.
2682 	 */
2683 	if ((vf->acquire.vfdev_info.capabilities &
2684 	     VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2685 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2686 			   "VF[%d] supports QIDs but sends multiple queues\n",
2687 			   vf->relative_vf_id);
2688 		goto out;
2689 	}
2690 
2691 	/* Validate inputs - for the legacy case this is still true since
2692 	 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2693 	 */
2694 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2695 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2696 					  QED_IOV_VALIDATE_Q_NA) ||
2697 		    !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2698 		    vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2699 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2700 				   "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2701 				   vf->relative_vf_id, req->rx_qid,
2702 				   req->num_rxqs);
2703 			goto out;
2704 		}
2705 	}
2706 
2707 	/* Prepare the handlers */
2708 	for (i = 0; i < req->num_rxqs; i++) {
2709 		u16 qid = req->rx_qid + i;
2710 
2711 		handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2712 	}
2713 
2714 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2715 					 req->num_rxqs,
2716 					 complete_cqe_flg,
2717 					 complete_event_flg,
2718 					 QED_SPQ_MODE_EBLOCK, NULL);
2719 	if (rc)
2720 		goto out;
2721 
2722 	status = PFVF_STATUS_SUCCESS;
2723 out:
2724 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2725 			     length, status);
2726 }
2727 
2728 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2729 			       void *p_tlvs_list, u16 req_type)
2730 {
2731 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2732 	int len = 0;
2733 
2734 	do {
2735 		if (!p_tlv->length) {
2736 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2737 			return NULL;
2738 		}
2739 
2740 		if (p_tlv->type == req_type) {
2741 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2742 				   "Extended tlv type %d, length %d found\n",
2743 				   p_tlv->type, p_tlv->length);
2744 			return p_tlv;
2745 		}
2746 
2747 		len += p_tlv->length;
2748 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2749 
2750 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2751 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2752 			return NULL;
2753 		}
2754 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2755 
2756 	return NULL;
2757 }
2758 
2759 static void
2760 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2761 			    struct qed_sp_vport_update_params *p_data,
2762 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2763 {
2764 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2765 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2766 
2767 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2768 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2769 	if (!p_act_tlv)
2770 		return;
2771 
2772 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2773 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2774 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2775 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2776 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2777 }
2778 
2779 static void
2780 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2781 			     struct qed_sp_vport_update_params *p_data,
2782 			     struct qed_vf_info *p_vf,
2783 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2784 {
2785 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2786 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2787 
2788 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2789 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2790 	if (!p_vlan_tlv)
2791 		return;
2792 
2793 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2794 
2795 	/* Ignore the VF request if we're forcing a vlan */
2796 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2797 		p_data->update_inner_vlan_removal_flg = 1;
2798 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2799 	}
2800 
2801 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2802 }
2803 
2804 static void
2805 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2806 			    struct qed_sp_vport_update_params *p_data,
2807 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2808 {
2809 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2810 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2811 
2812 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2813 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2814 						   tlv);
2815 	if (!p_tx_switch_tlv)
2816 		return;
2817 
2818 	p_data->update_tx_switching_flg = 1;
2819 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2820 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2821 }
2822 
2823 static void
2824 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2825 				  struct qed_sp_vport_update_params *p_data,
2826 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2827 {
2828 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2829 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2830 
2831 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2832 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2833 	if (!p_mcast_tlv)
2834 		return;
2835 
2836 	p_data->update_approx_mcast_flg = 1;
2837 	memcpy(p_data->bins, p_mcast_tlv->bins,
2838 	       sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2839 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2840 }
2841 
2842 static void
2843 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2844 			      struct qed_sp_vport_update_params *p_data,
2845 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2846 {
2847 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2848 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2849 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2850 
2851 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2852 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2853 	if (!p_accept_tlv)
2854 		return;
2855 
2856 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2857 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2858 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2859 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2860 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2861 }
2862 
2863 static void
2864 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2865 				  struct qed_sp_vport_update_params *p_data,
2866 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2867 {
2868 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2869 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2870 
2871 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2872 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2873 						     tlv);
2874 	if (!p_accept_any_vlan)
2875 		return;
2876 
2877 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2878 	p_data->update_accept_any_vlan_flg =
2879 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2880 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2881 }
2882 
2883 static void
2884 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2885 			    struct qed_vf_info *vf,
2886 			    struct qed_sp_vport_update_params *p_data,
2887 			    struct qed_rss_params *p_rss,
2888 			    struct qed_iov_vf_mbx *p_mbx,
2889 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2890 {
2891 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2892 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2893 	bool b_reject = false;
2894 	u16 table_size;
2895 	u16 i, q_idx;
2896 
2897 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2898 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2899 	if (!p_rss_tlv) {
2900 		p_data->rss_params = NULL;
2901 		return;
2902 	}
2903 
2904 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2905 
2906 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2907 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2908 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2909 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2910 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2911 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2912 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2913 				   VFPF_UPDATE_RSS_KEY_FLAG);
2914 
2915 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2916 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2917 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2918 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2919 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2920 
2921 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2922 			   (1 << p_rss_tlv->rss_table_size_log));
2923 
2924 	for (i = 0; i < table_size; i++) {
2925 		struct qed_queue_cid *p_cid;
2926 
2927 		q_idx = p_rss_tlv->rss_ind_table[i];
2928 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2929 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2930 			DP_VERBOSE(p_hwfn,
2931 				   QED_MSG_IOV,
2932 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2933 				   vf->relative_vf_id, q_idx);
2934 			b_reject = true;
2935 			goto out;
2936 		}
2937 
2938 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2939 		p_rss->rss_ind_table[i] = p_cid;
2940 	}
2941 
2942 	p_data->rss_params = p_rss;
2943 out:
2944 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2945 	if (!b_reject)
2946 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2947 }
2948 
2949 static void
2950 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2951 				struct qed_vf_info *vf,
2952 				struct qed_sp_vport_update_params *p_data,
2953 				struct qed_sge_tpa_params *p_sge_tpa,
2954 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2955 {
2956 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2957 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2958 
2959 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2960 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2961 
2962 	if (!p_sge_tpa_tlv) {
2963 		p_data->sge_tpa_params = NULL;
2964 		return;
2965 	}
2966 
2967 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2968 
2969 	p_sge_tpa->update_tpa_en_flg =
2970 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2971 	p_sge_tpa->update_tpa_param_flg =
2972 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2973 		VFPF_UPDATE_TPA_PARAM_FLAG);
2974 
2975 	p_sge_tpa->tpa_ipv4_en_flg =
2976 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2977 	p_sge_tpa->tpa_ipv6_en_flg =
2978 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2979 	p_sge_tpa->tpa_pkt_split_flg =
2980 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2981 	p_sge_tpa->tpa_hdr_data_split_flg =
2982 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2983 	p_sge_tpa->tpa_gro_consistent_flg =
2984 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2985 
2986 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2987 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2988 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2989 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2990 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2991 
2992 	p_data->sge_tpa_params = p_sge_tpa;
2993 
2994 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2995 }
2996 
2997 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2998 				    u8 vfid,
2999 				    struct qed_sp_vport_update_params *params,
3000 				    u16 *tlvs)
3001 {
3002 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
3003 	struct qed_filter_accept_flags *flags = &params->accept_flags;
3004 	struct qed_public_vf_info *vf_info;
3005 
3006 	/* Untrusted VFs can't even be trusted to know that fact.
3007 	 * Simply indicate everything is configured fine, and trace
3008 	 * configuration 'behind their back'.
3009 	 */
3010 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
3011 		return 0;
3012 
3013 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3014 
3015 	if (flags->update_rx_mode_config) {
3016 		vf_info->rx_accept_mode = flags->rx_accept_filter;
3017 		if (!vf_info->is_trusted_configured)
3018 			flags->rx_accept_filter &= ~mask;
3019 	}
3020 
3021 	if (flags->update_tx_mode_config) {
3022 		vf_info->tx_accept_mode = flags->tx_accept_filter;
3023 		if (!vf_info->is_trusted_configured)
3024 			flags->tx_accept_filter &= ~mask;
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3031 					struct qed_ptt *p_ptt,
3032 					struct qed_vf_info *vf)
3033 {
3034 	struct qed_rss_params *p_rss_params = NULL;
3035 	struct qed_sp_vport_update_params params;
3036 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3037 	struct qed_sge_tpa_params sge_tpa_params;
3038 	u16 tlvs_mask = 0, tlvs_accepted = 0;
3039 	u8 status = PFVF_STATUS_SUCCESS;
3040 	u16 length;
3041 	int rc;
3042 
3043 	/* Valiate PF can send such a request */
3044 	if (!vf->vport_instance) {
3045 		DP_VERBOSE(p_hwfn,
3046 			   QED_MSG_IOV,
3047 			   "No VPORT instance available for VF[%d], failing vport update\n",
3048 			   vf->abs_vf_id);
3049 		status = PFVF_STATUS_FAILURE;
3050 		goto out;
3051 	}
3052 	p_rss_params = vzalloc(sizeof(*p_rss_params));
3053 	if (p_rss_params == NULL) {
3054 		status = PFVF_STATUS_FAILURE;
3055 		goto out;
3056 	}
3057 
3058 	memset(&params, 0, sizeof(params));
3059 	params.opaque_fid = vf->opaque_fid;
3060 	params.vport_id = vf->vport_id;
3061 	params.rss_params = NULL;
3062 
3063 	/* Search for extended tlvs list and update values
3064 	 * from VF in struct qed_sp_vport_update_params.
3065 	 */
3066 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3067 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3068 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3069 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3070 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3071 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3072 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3073 					&sge_tpa_params, mbx, &tlvs_mask);
3074 
3075 	tlvs_accepted = tlvs_mask;
3076 
3077 	/* Some of the extended TLVs need to be validated first; In that case,
3078 	 * they can update the mask without updating the accepted [so that
3079 	 * PF could communicate to VF it has rejected request].
3080 	 */
3081 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3082 				    mbx, &tlvs_mask, &tlvs_accepted);
3083 
3084 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3085 				     &params, &tlvs_accepted)) {
3086 		tlvs_accepted = 0;
3087 		status = PFVF_STATUS_NOT_SUPPORTED;
3088 		goto out;
3089 	}
3090 
3091 	if (!tlvs_accepted) {
3092 		if (tlvs_mask)
3093 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3094 				   "Upper-layer prevents VF vport configuration\n");
3095 		else
3096 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3097 				   "No feature tlvs found for vport update\n");
3098 		status = PFVF_STATUS_NOT_SUPPORTED;
3099 		goto out;
3100 	}
3101 
3102 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3103 
3104 	if (rc)
3105 		status = PFVF_STATUS_FAILURE;
3106 
3107 out:
3108 	vfree(p_rss_params);
3109 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3110 						  tlvs_mask, tlvs_accepted);
3111 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3112 }
3113 
3114 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3115 					 struct qed_vf_info *p_vf,
3116 					 struct qed_filter_ucast *p_params)
3117 {
3118 	int i;
3119 
3120 	/* First remove entries and then add new ones */
3121 	if (p_params->opcode == QED_FILTER_REMOVE) {
3122 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3123 			if (p_vf->shadow_config.vlans[i].used &&
3124 			    p_vf->shadow_config.vlans[i].vid ==
3125 			    p_params->vlan) {
3126 				p_vf->shadow_config.vlans[i].used = false;
3127 				break;
3128 			}
3129 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3130 			DP_VERBOSE(p_hwfn,
3131 				   QED_MSG_IOV,
3132 				   "VF [%d] - Tries to remove a non-existing vlan\n",
3133 				   p_vf->relative_vf_id);
3134 			return -EINVAL;
3135 		}
3136 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3137 		   p_params->opcode == QED_FILTER_FLUSH) {
3138 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3139 			p_vf->shadow_config.vlans[i].used = false;
3140 	}
3141 
3142 	/* In forced mode, we're willing to remove entries - but we don't add
3143 	 * new ones.
3144 	 */
3145 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3146 		return 0;
3147 
3148 	if (p_params->opcode == QED_FILTER_ADD ||
3149 	    p_params->opcode == QED_FILTER_REPLACE) {
3150 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3151 			if (p_vf->shadow_config.vlans[i].used)
3152 				continue;
3153 
3154 			p_vf->shadow_config.vlans[i].used = true;
3155 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3156 			break;
3157 		}
3158 
3159 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3160 			DP_VERBOSE(p_hwfn,
3161 				   QED_MSG_IOV,
3162 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
3163 				   p_vf->relative_vf_id,
3164 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3165 			return -EINVAL;
3166 		}
3167 	}
3168 
3169 	return 0;
3170 }
3171 
3172 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3173 					struct qed_vf_info *p_vf,
3174 					struct qed_filter_ucast *p_params)
3175 {
3176 	int i;
3177 
3178 	/* If we're in forced-mode, we don't allow any change */
3179 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3180 		return 0;
3181 
3182 	/* Don't keep track of shadow copy since we don't intend to restore. */
3183 	if (p_vf->p_vf_info.is_trusted_configured)
3184 		return 0;
3185 
3186 	/* First remove entries and then add new ones */
3187 	if (p_params->opcode == QED_FILTER_REMOVE) {
3188 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3189 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
3190 					     p_params->mac)) {
3191 				eth_zero_addr(p_vf->shadow_config.macs[i]);
3192 				break;
3193 			}
3194 		}
3195 
3196 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3197 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3198 				   "MAC isn't configured\n");
3199 			return -EINVAL;
3200 		}
3201 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3202 		   p_params->opcode == QED_FILTER_FLUSH) {
3203 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3204 			eth_zero_addr(p_vf->shadow_config.macs[i]);
3205 	}
3206 
3207 	/* List the new MAC address */
3208 	if (p_params->opcode != QED_FILTER_ADD &&
3209 	    p_params->opcode != QED_FILTER_REPLACE)
3210 		return 0;
3211 
3212 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3213 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3214 			ether_addr_copy(p_vf->shadow_config.macs[i],
3215 					p_params->mac);
3216 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3217 				   "Added MAC at %d entry in shadow\n", i);
3218 			break;
3219 		}
3220 	}
3221 
3222 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3223 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3224 		return -EINVAL;
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 static int
3231 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3232 				 struct qed_vf_info *p_vf,
3233 				 struct qed_filter_ucast *p_params)
3234 {
3235 	int rc = 0;
3236 
3237 	if (p_params->type == QED_FILTER_MAC) {
3238 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3239 		if (rc)
3240 			return rc;
3241 	}
3242 
3243 	if (p_params->type == QED_FILTER_VLAN)
3244 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3245 
3246 	return rc;
3247 }
3248 
3249 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3250 			     int vfid, struct qed_filter_ucast *params)
3251 {
3252 	struct qed_public_vf_info *vf;
3253 
3254 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3255 	if (!vf)
3256 		return -EINVAL;
3257 
3258 	/* No real decision to make; Store the configured MAC */
3259 	if (params->type == QED_FILTER_MAC ||
3260 	    params->type == QED_FILTER_MAC_VLAN) {
3261 		ether_addr_copy(vf->mac, params->mac);
3262 
3263 		if (vf->is_trusted_configured) {
3264 			qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
3265 
3266 			/* Update and post bulleitin again */
3267 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3268 		}
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3275 					struct qed_ptt *p_ptt,
3276 					struct qed_vf_info *vf)
3277 {
3278 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3279 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3280 	struct vfpf_ucast_filter_tlv *req;
3281 	u8 status = PFVF_STATUS_SUCCESS;
3282 	struct qed_filter_ucast params;
3283 	int rc;
3284 
3285 	/* Prepare the unicast filter params */
3286 	memset(&params, 0, sizeof(struct qed_filter_ucast));
3287 	req = &mbx->req_virt->ucast_filter;
3288 	params.opcode = (enum qed_filter_opcode)req->opcode;
3289 	params.type = (enum qed_filter_ucast_type)req->type;
3290 
3291 	params.is_rx_filter = 1;
3292 	params.is_tx_filter = 1;
3293 	params.vport_to_remove_from = vf->vport_id;
3294 	params.vport_to_add_to = vf->vport_id;
3295 	memcpy(params.mac, req->mac, ETH_ALEN);
3296 	params.vlan = req->vlan;
3297 
3298 	DP_VERBOSE(p_hwfn,
3299 		   QED_MSG_IOV,
3300 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
3301 		   vf->abs_vf_id, params.opcode, params.type,
3302 		   params.is_rx_filter ? "RX" : "",
3303 		   params.is_tx_filter ? "TX" : "",
3304 		   params.vport_to_add_to,
3305 		   params.mac[0], params.mac[1],
3306 		   params.mac[2], params.mac[3],
3307 		   params.mac[4], params.mac[5], params.vlan);
3308 
3309 	if (!vf->vport_instance) {
3310 		DP_VERBOSE(p_hwfn,
3311 			   QED_MSG_IOV,
3312 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3313 			   vf->abs_vf_id);
3314 		status = PFVF_STATUS_FAILURE;
3315 		goto out;
3316 	}
3317 
3318 	/* Update shadow copy of the VF configuration */
3319 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3320 		status = PFVF_STATUS_FAILURE;
3321 		goto out;
3322 	}
3323 
3324 	/* Determine if the unicast filtering is acceptible by PF */
3325 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3326 	    (params.type == QED_FILTER_VLAN ||
3327 	     params.type == QED_FILTER_MAC_VLAN)) {
3328 		/* Once VLAN is forced or PVID is set, do not allow
3329 		 * to add/replace any further VLANs.
3330 		 */
3331 		if (params.opcode == QED_FILTER_ADD ||
3332 		    params.opcode == QED_FILTER_REPLACE)
3333 			status = PFVF_STATUS_FORCED;
3334 		goto out;
3335 	}
3336 
3337 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3338 	    (params.type == QED_FILTER_MAC ||
3339 	     params.type == QED_FILTER_MAC_VLAN)) {
3340 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3341 		    (params.opcode != QED_FILTER_ADD &&
3342 		     params.opcode != QED_FILTER_REPLACE))
3343 			status = PFVF_STATUS_FORCED;
3344 		goto out;
3345 	}
3346 
3347 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3348 	if (rc) {
3349 		status = PFVF_STATUS_FAILURE;
3350 		goto out;
3351 	}
3352 
3353 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3354 				     QED_SPQ_MODE_CB, NULL);
3355 	if (rc)
3356 		status = PFVF_STATUS_FAILURE;
3357 
3358 out:
3359 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3360 			     sizeof(struct pfvf_def_resp_tlv), status);
3361 }
3362 
3363 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3364 				       struct qed_ptt *p_ptt,
3365 				       struct qed_vf_info *vf)
3366 {
3367 	int i;
3368 
3369 	/* Reset the SBs */
3370 	for (i = 0; i < vf->num_sbs; i++)
3371 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3372 						vf->igu_sbs[i],
3373 						vf->opaque_fid, false);
3374 
3375 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3376 			     sizeof(struct pfvf_def_resp_tlv),
3377 			     PFVF_STATUS_SUCCESS);
3378 }
3379 
3380 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3381 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3382 {
3383 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3384 	u8 status = PFVF_STATUS_SUCCESS;
3385 
3386 	/* Disable Interrupts for VF */
3387 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3388 
3389 	/* Reset Permission table */
3390 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3391 
3392 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3393 			     length, status);
3394 }
3395 
3396 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3397 				   struct qed_ptt *p_ptt,
3398 				   struct qed_vf_info *p_vf)
3399 {
3400 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3401 	u8 status = PFVF_STATUS_SUCCESS;
3402 	int rc = 0;
3403 
3404 	qed_iov_vf_cleanup(p_hwfn, p_vf);
3405 
3406 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3407 		/* Stopping the VF */
3408 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3409 				    p_vf->opaque_fid);
3410 
3411 		if (rc) {
3412 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3413 			       rc);
3414 			status = PFVF_STATUS_FAILURE;
3415 		}
3416 
3417 		p_vf->state = VF_STOPPED;
3418 	}
3419 
3420 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3421 			     length, status);
3422 }
3423 
3424 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3425 				       struct qed_ptt *p_ptt,
3426 				       struct qed_vf_info *p_vf)
3427 {
3428 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3429 	struct pfvf_read_coal_resp_tlv *p_resp;
3430 	struct vfpf_read_coal_req_tlv *req;
3431 	u8 status = PFVF_STATUS_FAILURE;
3432 	struct qed_vf_queue *p_queue;
3433 	struct qed_queue_cid *p_cid;
3434 	u16 coal = 0, qid, i;
3435 	bool b_is_rx;
3436 	int rc = 0;
3437 
3438 	mbx->offset = (u8 *)mbx->reply_virt;
3439 	req = &mbx->req_virt->read_coal_req;
3440 
3441 	qid = req->qid;
3442 	b_is_rx = req->is_rx ? true : false;
3443 
3444 	if (b_is_rx) {
3445 		if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3446 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3447 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3448 				   "VF[%d]: Invalid Rx queue_id = %d\n",
3449 				   p_vf->abs_vf_id, qid);
3450 			goto send_resp;
3451 		}
3452 
3453 		p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3454 		rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3455 		if (rc)
3456 			goto send_resp;
3457 	} else {
3458 		if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3459 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3460 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3461 				   "VF[%d]: Invalid Tx queue_id = %d\n",
3462 				   p_vf->abs_vf_id, qid);
3463 			goto send_resp;
3464 		}
3465 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3466 			p_queue = &p_vf->vf_queues[qid];
3467 			if ((!p_queue->cids[i].p_cid) ||
3468 			    (!p_queue->cids[i].b_is_tx))
3469 				continue;
3470 
3471 			p_cid = p_queue->cids[i].p_cid;
3472 
3473 			rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3474 			if (rc)
3475 				goto send_resp;
3476 			break;
3477 		}
3478 	}
3479 
3480 	status = PFVF_STATUS_SUCCESS;
3481 
3482 send_resp:
3483 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3484 			     sizeof(*p_resp));
3485 	p_resp->coal = coal;
3486 
3487 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3488 		    sizeof(struct channel_list_end_tlv));
3489 
3490 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3491 }
3492 
3493 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3494 				       struct qed_ptt *p_ptt,
3495 				       struct qed_vf_info *vf)
3496 {
3497 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3498 	struct vfpf_update_coalesce *req;
3499 	u8 status = PFVF_STATUS_FAILURE;
3500 	struct qed_queue_cid *p_cid;
3501 	u16 rx_coal, tx_coal;
3502 	int rc = 0, i;
3503 	u16 qid;
3504 
3505 	req = &mbx->req_virt->update_coalesce;
3506 
3507 	rx_coal = req->rx_coal;
3508 	tx_coal = req->tx_coal;
3509 	qid = req->qid;
3510 
3511 	if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3512 				  QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3513 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3514 			   "VF[%d]: Invalid Rx queue_id = %d\n",
3515 			   vf->abs_vf_id, qid);
3516 		goto out;
3517 	}
3518 
3519 	if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3520 				  QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3521 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3522 			   "VF[%d]: Invalid Tx queue_id = %d\n",
3523 			   vf->abs_vf_id, qid);
3524 		goto out;
3525 	}
3526 
3527 	DP_VERBOSE(p_hwfn,
3528 		   QED_MSG_IOV,
3529 		   "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3530 		   vf->abs_vf_id, rx_coal, tx_coal, qid);
3531 
3532 	if (rx_coal) {
3533 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3534 
3535 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3536 		if (rc) {
3537 			DP_VERBOSE(p_hwfn,
3538 				   QED_MSG_IOV,
3539 				   "VF[%d]: Unable to set rx queue = %d coalesce\n",
3540 				   vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3541 			goto out;
3542 		}
3543 		vf->rx_coal = rx_coal;
3544 	}
3545 
3546 	if (tx_coal) {
3547 		struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3548 
3549 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3550 			if (!p_queue->cids[i].p_cid)
3551 				continue;
3552 
3553 			if (!p_queue->cids[i].b_is_tx)
3554 				continue;
3555 
3556 			rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3557 						  p_queue->cids[i].p_cid);
3558 
3559 			if (rc) {
3560 				DP_VERBOSE(p_hwfn,
3561 					   QED_MSG_IOV,
3562 					   "VF[%d]: Unable to set tx queue coalesce\n",
3563 					   vf->abs_vf_id);
3564 				goto out;
3565 			}
3566 		}
3567 		vf->tx_coal = tx_coal;
3568 	}
3569 
3570 	status = PFVF_STATUS_SUCCESS;
3571 out:
3572 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3573 			     sizeof(struct pfvf_def_resp_tlv), status);
3574 }
3575 static int
3576 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3577 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3578 {
3579 	int cnt;
3580 	u32 val;
3581 
3582 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
3583 
3584 	for (cnt = 0; cnt < 50; cnt++) {
3585 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3586 		if (!val)
3587 			break;
3588 		msleep(20);
3589 	}
3590 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
3591 
3592 	if (cnt == 50) {
3593 		DP_ERR(p_hwfn,
3594 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3595 		       p_vf->abs_vf_id, val);
3596 		return -EBUSY;
3597 	}
3598 
3599 	return 0;
3600 }
3601 
3602 static int
3603 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3604 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3605 {
3606 	u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4];
3607 	int i, cnt;
3608 
3609 	/* Read initial consumers & producers */
3610 	for (i = 0; i < MAX_NUM_VOQS_E4; i++) {
3611 		u32 prod;
3612 
3613 		cons[i] = qed_rd(p_hwfn, p_ptt,
3614 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3615 				 i * 0x40);
3616 		prod = qed_rd(p_hwfn, p_ptt,
3617 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
3618 			      i * 0x40);
3619 		distance[i] = prod - cons[i];
3620 	}
3621 
3622 	/* Wait for consumers to pass the producers */
3623 	i = 0;
3624 	for (cnt = 0; cnt < 50; cnt++) {
3625 		for (; i < MAX_NUM_VOQS_E4; i++) {
3626 			u32 tmp;
3627 
3628 			tmp = qed_rd(p_hwfn, p_ptt,
3629 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3630 				     i * 0x40);
3631 			if (distance[i] > tmp - cons[i])
3632 				break;
3633 		}
3634 
3635 		if (i == MAX_NUM_VOQS_E4)
3636 			break;
3637 
3638 		msleep(20);
3639 	}
3640 
3641 	if (cnt == 50) {
3642 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3643 		       p_vf->abs_vf_id, i);
3644 		return -EBUSY;
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3651 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3652 {
3653 	int rc;
3654 
3655 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3656 	if (rc)
3657 		return rc;
3658 
3659 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3660 	if (rc)
3661 		return rc;
3662 
3663 	return 0;
3664 }
3665 
3666 static int
3667 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3668 			       struct qed_ptt *p_ptt,
3669 			       u16 rel_vf_id, u32 *ack_vfs)
3670 {
3671 	struct qed_vf_info *p_vf;
3672 	int rc = 0;
3673 
3674 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3675 	if (!p_vf)
3676 		return 0;
3677 
3678 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3679 	    (1ULL << (rel_vf_id % 64))) {
3680 		u16 vfid = p_vf->abs_vf_id;
3681 
3682 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3683 			   "VF[%d] - Handling FLR\n", vfid);
3684 
3685 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3686 
3687 		/* If VF isn't active, no need for anything but SW */
3688 		if (!p_vf->b_init)
3689 			goto cleanup;
3690 
3691 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3692 		if (rc)
3693 			goto cleanup;
3694 
3695 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3696 		if (rc) {
3697 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3698 			return rc;
3699 		}
3700 
3701 		/* Workaround to make VF-PF channel ready, as FW
3702 		 * doesn't do that as a part of FLR.
3703 		 */
3704 		REG_WR(p_hwfn,
3705 		       GTT_BAR0_MAP_REG_USDM_RAM +
3706 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3707 
3708 		/* VF_STOPPED has to be set only after final cleanup
3709 		 * but prior to re-enabling the VF.
3710 		 */
3711 		p_vf->state = VF_STOPPED;
3712 
3713 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3714 		if (rc) {
3715 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3716 			       vfid);
3717 			return rc;
3718 		}
3719 cleanup:
3720 		/* Mark VF for ack and clean pending state */
3721 		if (p_vf->state == VF_RESET)
3722 			p_vf->state = VF_STOPPED;
3723 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3724 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3725 		    ~(1ULL << (rel_vf_id % 64));
3726 		p_vf->vf_mbx.b_pending_msg = false;
3727 	}
3728 
3729 	return rc;
3730 }
3731 
3732 static int
3733 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3734 {
3735 	u32 ack_vfs[VF_MAX_STATIC / 32];
3736 	int rc = 0;
3737 	u16 i;
3738 
3739 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3740 
3741 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3742 	 * polling due to HW limitations, simply sleep a bit. And since
3743 	 * there's no need to wait per-vf, do it before looping.
3744 	 */
3745 	msleep(100);
3746 
3747 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3748 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3749 
3750 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3751 	return rc;
3752 }
3753 
3754 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3755 {
3756 	bool found = false;
3757 	u16 i;
3758 
3759 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3760 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3761 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3762 			   "[%08x,...,%08x]: %08x\n",
3763 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3764 
3765 	if (!p_hwfn->cdev->p_iov_info) {
3766 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3767 		return false;
3768 	}
3769 
3770 	/* Mark VFs */
3771 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3772 		struct qed_vf_info *p_vf;
3773 		u8 vfid;
3774 
3775 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3776 		if (!p_vf)
3777 			continue;
3778 
3779 		vfid = p_vf->abs_vf_id;
3780 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3781 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3782 			u16 rel_vf_id = p_vf->relative_vf_id;
3783 
3784 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3785 				   "VF[%d] [rel %d] got FLR-ed\n",
3786 				   vfid, rel_vf_id);
3787 
3788 			p_vf->state = VF_RESET;
3789 
3790 			/* No need to lock here, since pending_flr should
3791 			 * only change here and before ACKing MFw. Since
3792 			 * MFW will not trigger an additional attention for
3793 			 * VF flr until ACKs, we're safe.
3794 			 */
3795 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3796 			found = true;
3797 		}
3798 	}
3799 
3800 	return found;
3801 }
3802 
3803 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3804 			     u16 vfid,
3805 			     struct qed_mcp_link_params *p_params,
3806 			     struct qed_mcp_link_state *p_link,
3807 			     struct qed_mcp_link_capabilities *p_caps)
3808 {
3809 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3810 						       vfid,
3811 						       false);
3812 	struct qed_bulletin_content *p_bulletin;
3813 
3814 	if (!p_vf)
3815 		return;
3816 
3817 	p_bulletin = p_vf->bulletin.p_virt;
3818 
3819 	if (p_params)
3820 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3821 	if (p_link)
3822 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3823 	if (p_caps)
3824 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3825 }
3826 
3827 static int
3828 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
3829 				  struct qed_ptt *p_ptt,
3830 				  struct qed_vf_info *p_vf)
3831 {
3832 	struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
3833 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3834 	struct vfpf_bulletin_update_mac_tlv *p_req;
3835 	u8 status = PFVF_STATUS_SUCCESS;
3836 	int rc = 0;
3837 
3838 	if (!p_vf->p_vf_info.is_trusted_configured) {
3839 		DP_VERBOSE(p_hwfn,
3840 			   QED_MSG_IOV,
3841 			   "Blocking bulletin update request from untrusted VF[%d]\n",
3842 			   p_vf->abs_vf_id);
3843 		status = PFVF_STATUS_NOT_SUPPORTED;
3844 		rc = -EINVAL;
3845 		goto send_status;
3846 	}
3847 
3848 	p_req = &mbx->req_virt->bulletin_update_mac;
3849 	ether_addr_copy(p_bulletin->mac, p_req->mac);
3850 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3851 		   "Updated bulletin of VF[%d] with requested MAC[%pM]\n",
3852 		   p_vf->abs_vf_id, p_req->mac);
3853 
3854 send_status:
3855 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3856 			     CHANNEL_TLV_BULLETIN_UPDATE_MAC,
3857 			     sizeof(struct pfvf_def_resp_tlv), status);
3858 	return rc;
3859 }
3860 
3861 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3862 				    struct qed_ptt *p_ptt, int vfid)
3863 {
3864 	struct qed_iov_vf_mbx *mbx;
3865 	struct qed_vf_info *p_vf;
3866 
3867 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3868 	if (!p_vf)
3869 		return;
3870 
3871 	mbx = &p_vf->vf_mbx;
3872 
3873 	/* qed_iov_process_mbx_request */
3874 	if (!mbx->b_pending_msg) {
3875 		DP_NOTICE(p_hwfn,
3876 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3877 			  p_vf->abs_vf_id);
3878 		return;
3879 	}
3880 	mbx->b_pending_msg = false;
3881 
3882 	mbx->first_tlv = mbx->req_virt->first_tlv;
3883 
3884 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3885 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3886 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3887 
3888 	/* check if tlv type is known */
3889 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3890 	    !p_vf->b_malicious) {
3891 		switch (mbx->first_tlv.tl.type) {
3892 		case CHANNEL_TLV_ACQUIRE:
3893 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3894 			break;
3895 		case CHANNEL_TLV_VPORT_START:
3896 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3897 			break;
3898 		case CHANNEL_TLV_VPORT_TEARDOWN:
3899 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3900 			break;
3901 		case CHANNEL_TLV_START_RXQ:
3902 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3903 			break;
3904 		case CHANNEL_TLV_START_TXQ:
3905 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3906 			break;
3907 		case CHANNEL_TLV_STOP_RXQS:
3908 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3909 			break;
3910 		case CHANNEL_TLV_STOP_TXQS:
3911 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3912 			break;
3913 		case CHANNEL_TLV_UPDATE_RXQ:
3914 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3915 			break;
3916 		case CHANNEL_TLV_VPORT_UPDATE:
3917 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3918 			break;
3919 		case CHANNEL_TLV_UCAST_FILTER:
3920 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3921 			break;
3922 		case CHANNEL_TLV_CLOSE:
3923 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3924 			break;
3925 		case CHANNEL_TLV_INT_CLEANUP:
3926 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3927 			break;
3928 		case CHANNEL_TLV_RELEASE:
3929 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3930 			break;
3931 		case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3932 			qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3933 			break;
3934 		case CHANNEL_TLV_COALESCE_UPDATE:
3935 			qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3936 			break;
3937 		case CHANNEL_TLV_COALESCE_READ:
3938 			qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3939 			break;
3940 		case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
3941 			qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
3942 			break;
3943 		}
3944 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3945 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3946 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3947 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3948 
3949 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3950 				     mbx->first_tlv.tl.type,
3951 				     sizeof(struct pfvf_def_resp_tlv),
3952 				     PFVF_STATUS_MALICIOUS);
3953 	} else {
3954 		/* unknown TLV - this may belong to a VF driver from the future
3955 		 * - a version written after this PF driver was written, which
3956 		 * supports features unknown as of yet. Too bad since we don't
3957 		 * support them. Or this may be because someone wrote a crappy
3958 		 * VF driver and is sending garbage over the channel.
3959 		 */
3960 		DP_NOTICE(p_hwfn,
3961 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3962 			  p_vf->abs_vf_id,
3963 			  mbx->first_tlv.tl.type,
3964 			  mbx->first_tlv.tl.length,
3965 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3966 
3967 		/* Try replying in case reply address matches the acquisition's
3968 		 * posted address.
3969 		 */
3970 		if (p_vf->acquire.first_tlv.reply_address &&
3971 		    (mbx->first_tlv.reply_address ==
3972 		     p_vf->acquire.first_tlv.reply_address)) {
3973 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3974 					     mbx->first_tlv.tl.type,
3975 					     sizeof(struct pfvf_def_resp_tlv),
3976 					     PFVF_STATUS_NOT_SUPPORTED);
3977 		} else {
3978 			DP_VERBOSE(p_hwfn,
3979 				   QED_MSG_IOV,
3980 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3981 				   p_vf->abs_vf_id);
3982 		}
3983 	}
3984 }
3985 
3986 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3987 {
3988 	int i;
3989 
3990 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3991 
3992 	qed_for_each_vf(p_hwfn, i) {
3993 		struct qed_vf_info *p_vf;
3994 
3995 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3996 		if (p_vf->vf_mbx.b_pending_msg)
3997 			events[i / 64] |= 1ULL << (i % 64);
3998 	}
3999 }
4000 
4001 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
4002 						       u16 abs_vfid)
4003 {
4004 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
4005 
4006 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
4007 		DP_VERBOSE(p_hwfn,
4008 			   QED_MSG_IOV,
4009 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
4010 			   abs_vfid);
4011 		return NULL;
4012 	}
4013 
4014 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
4015 }
4016 
4017 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
4018 			      u16 abs_vfid, struct regpair *vf_msg)
4019 {
4020 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
4021 			   abs_vfid);
4022 
4023 	if (!p_vf)
4024 		return 0;
4025 
4026 	/* List the physical address of the request so that handler
4027 	 * could later on copy the message from it.
4028 	 */
4029 	p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
4030 
4031 	/* Mark the event and schedule the workqueue */
4032 	p_vf->vf_mbx.b_pending_msg = true;
4033 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
4034 
4035 	return 0;
4036 }
4037 
4038 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
4039 				     struct malicious_vf_eqe_data *p_data)
4040 {
4041 	struct qed_vf_info *p_vf;
4042 
4043 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
4044 
4045 	if (!p_vf)
4046 		return;
4047 
4048 	if (!p_vf->b_malicious) {
4049 		DP_NOTICE(p_hwfn,
4050 			  "VF [%d] - Malicious behavior [%02x]\n",
4051 			  p_vf->abs_vf_id, p_data->err_id);
4052 
4053 		p_vf->b_malicious = true;
4054 	} else {
4055 		DP_INFO(p_hwfn,
4056 			"VF [%d] - Malicious behavior [%02x]\n",
4057 			p_vf->abs_vf_id, p_data->err_id);
4058 	}
4059 }
4060 
4061 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
4062 			       u8 opcode,
4063 			       __le16 echo,
4064 			       union event_ring_data *data, u8 fw_return_code)
4065 {
4066 	switch (opcode) {
4067 	case COMMON_EVENT_VF_PF_CHANNEL:
4068 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4069 					  &data->vf_pf_channel.msg_addr);
4070 	case COMMON_EVENT_MALICIOUS_VF:
4071 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
4072 		return 0;
4073 	default:
4074 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4075 			opcode);
4076 		return -EINVAL;
4077 	}
4078 }
4079 
4080 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4081 {
4082 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4083 	u16 i;
4084 
4085 	if (!p_iov)
4086 		goto out;
4087 
4088 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4089 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4090 			return i;
4091 
4092 out:
4093 	return MAX_NUM_VFS;
4094 }
4095 
4096 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4097 			       int vfid)
4098 {
4099 	struct qed_dmae_params params;
4100 	struct qed_vf_info *vf_info;
4101 
4102 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4103 	if (!vf_info)
4104 		return -EINVAL;
4105 
4106 	memset(&params, 0, sizeof(struct qed_dmae_params));
4107 	params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
4108 	params.src_vfid = vf_info->abs_vf_id;
4109 
4110 	if (qed_dmae_host2host(p_hwfn, ptt,
4111 			       vf_info->vf_mbx.pending_req,
4112 			       vf_info->vf_mbx.req_phys,
4113 			       sizeof(union vfpf_tlvs) / 4, &params)) {
4114 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4115 			   "Failed to copy message from VF 0x%02x\n", vfid);
4116 
4117 		return -EIO;
4118 	}
4119 
4120 	return 0;
4121 }
4122 
4123 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4124 					    u8 *mac, int vfid)
4125 {
4126 	struct qed_vf_info *vf_info;
4127 	u64 feature;
4128 
4129 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4130 	if (!vf_info) {
4131 		DP_NOTICE(p_hwfn->cdev,
4132 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4133 		return;
4134 	}
4135 
4136 	if (vf_info->b_malicious) {
4137 		DP_NOTICE(p_hwfn->cdev,
4138 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
4139 		return;
4140 	}
4141 
4142 	if (vf_info->p_vf_info.is_trusted_configured) {
4143 		feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4144 		/* Trust mode will disable Forced MAC */
4145 		vf_info->bulletin.p_virt->valid_bitmap &=
4146 			~BIT(MAC_ADDR_FORCED);
4147 	} else {
4148 		feature = BIT(MAC_ADDR_FORCED);
4149 		/* Forced MAC will disable MAC_ADDR */
4150 		vf_info->bulletin.p_virt->valid_bitmap &=
4151 			~BIT(VFPF_BULLETIN_MAC_ADDR);
4152 	}
4153 
4154 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4155 
4156 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4157 
4158 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4159 }
4160 
4161 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
4162 {
4163 	struct qed_vf_info *vf_info;
4164 	u64 feature;
4165 
4166 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4167 	if (!vf_info) {
4168 		DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
4169 			  vfid);
4170 		return -EINVAL;
4171 	}
4172 
4173 	if (vf_info->b_malicious) {
4174 		DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
4175 			  vfid);
4176 		return -EINVAL;
4177 	}
4178 
4179 	if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
4180 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4181 			   "Can not set MAC, Forced MAC is configured\n");
4182 		return -EINVAL;
4183 	}
4184 
4185 	feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4186 	ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
4187 
4188 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4189 
4190 	if (vf_info->p_vf_info.is_trusted_configured)
4191 		qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4192 
4193 	return 0;
4194 }
4195 
4196 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4197 					     u16 pvid, int vfid)
4198 {
4199 	struct qed_vf_info *vf_info;
4200 	u64 feature;
4201 
4202 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4203 	if (!vf_info) {
4204 		DP_NOTICE(p_hwfn->cdev,
4205 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4206 		return;
4207 	}
4208 
4209 	if (vf_info->b_malicious) {
4210 		DP_NOTICE(p_hwfn->cdev,
4211 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
4212 		return;
4213 	}
4214 
4215 	feature = 1 << VLAN_ADDR_FORCED;
4216 	vf_info->bulletin.p_virt->pvid = pvid;
4217 	if (pvid)
4218 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
4219 	else
4220 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4221 
4222 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4223 }
4224 
4225 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4226 				    int vfid, u16 vxlan_port, u16 geneve_port)
4227 {
4228 	struct qed_vf_info *vf_info;
4229 
4230 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4231 	if (!vf_info) {
4232 		DP_NOTICE(p_hwfn->cdev,
4233 			  "Can not set udp ports, invalid vfid [%d]\n", vfid);
4234 		return;
4235 	}
4236 
4237 	if (vf_info->b_malicious) {
4238 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4239 			   "Can not set udp ports to malicious VF [%d]\n",
4240 			   vfid);
4241 		return;
4242 	}
4243 
4244 	vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4245 	vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4246 }
4247 
4248 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4249 {
4250 	struct qed_vf_info *p_vf_info;
4251 
4252 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4253 	if (!p_vf_info)
4254 		return false;
4255 
4256 	return !!p_vf_info->vport_instance;
4257 }
4258 
4259 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4260 {
4261 	struct qed_vf_info *p_vf_info;
4262 
4263 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4264 	if (!p_vf_info)
4265 		return true;
4266 
4267 	return p_vf_info->state == VF_STOPPED;
4268 }
4269 
4270 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4271 {
4272 	struct qed_vf_info *vf_info;
4273 
4274 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4275 	if (!vf_info)
4276 		return false;
4277 
4278 	return vf_info->spoof_chk;
4279 }
4280 
4281 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4282 {
4283 	struct qed_vf_info *vf;
4284 	int rc = -EINVAL;
4285 
4286 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4287 		DP_NOTICE(p_hwfn,
4288 			  "SR-IOV sanity check failed, can't set spoofchk\n");
4289 		goto out;
4290 	}
4291 
4292 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4293 	if (!vf)
4294 		goto out;
4295 
4296 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4297 		/* After VF VPORT start PF will configure spoof check */
4298 		vf->req_spoofchk_val = val;
4299 		rc = 0;
4300 		goto out;
4301 	}
4302 
4303 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4304 
4305 out:
4306 	return rc;
4307 }
4308 
4309 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4310 {
4311 	struct qed_vf_info *p_vf;
4312 
4313 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4314 	if (!p_vf || !p_vf->bulletin.p_virt)
4315 		return NULL;
4316 
4317 	if (!(p_vf->bulletin.p_virt->valid_bitmap &
4318 	      BIT(VFPF_BULLETIN_MAC_ADDR)))
4319 		return NULL;
4320 
4321 	return p_vf->bulletin.p_virt->mac;
4322 }
4323 
4324 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4325 					   u16 rel_vf_id)
4326 {
4327 	struct qed_vf_info *p_vf;
4328 
4329 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4330 	if (!p_vf || !p_vf->bulletin.p_virt)
4331 		return NULL;
4332 
4333 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4334 		return NULL;
4335 
4336 	return p_vf->bulletin.p_virt->mac;
4337 }
4338 
4339 static u16
4340 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4341 {
4342 	struct qed_vf_info *p_vf;
4343 
4344 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4345 	if (!p_vf || !p_vf->bulletin.p_virt)
4346 		return 0;
4347 
4348 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4349 		return 0;
4350 
4351 	return p_vf->bulletin.p_virt->pvid;
4352 }
4353 
4354 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4355 				     struct qed_ptt *p_ptt, int vfid, int val)
4356 {
4357 	struct qed_mcp_link_state *p_link;
4358 	struct qed_vf_info *vf;
4359 	u8 abs_vp_id = 0;
4360 	int rc;
4361 
4362 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4363 	if (!vf)
4364 		return -EINVAL;
4365 
4366 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4367 	if (rc)
4368 		return rc;
4369 
4370 	p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output;
4371 
4372 	return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val,
4373 				 p_link->speed);
4374 }
4375 
4376 static int
4377 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4378 {
4379 	struct qed_vf_info *vf;
4380 	u8 vport_id;
4381 	int i;
4382 
4383 	for_each_hwfn(cdev, i) {
4384 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4385 
4386 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4387 			DP_NOTICE(p_hwfn,
4388 				  "SR-IOV sanity check failed, can't set min rate\n");
4389 			return -EINVAL;
4390 		}
4391 	}
4392 
4393 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4394 	vport_id = vf->vport_id;
4395 
4396 	return qed_configure_vport_wfq(cdev, vport_id, rate);
4397 }
4398 
4399 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4400 {
4401 	struct qed_wfq_data *vf_vp_wfq;
4402 	struct qed_vf_info *vf_info;
4403 
4404 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4405 	if (!vf_info)
4406 		return 0;
4407 
4408 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4409 
4410 	if (vf_vp_wfq->configured)
4411 		return vf_vp_wfq->min_speed;
4412 	else
4413 		return 0;
4414 }
4415 
4416 /**
4417  * qed_schedule_iov - schedules IOV task for VF and PF
4418  * @hwfn: hardware function pointer
4419  * @flag: IOV flag for VF/PF
4420  */
4421 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4422 {
4423 	smp_mb__before_atomic();
4424 	set_bit(flag, &hwfn->iov_task_flags);
4425 	smp_mb__after_atomic();
4426 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4427 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4428 }
4429 
4430 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4431 {
4432 	int i;
4433 
4434 	for_each_hwfn(cdev, i)
4435 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
4436 			       &cdev->hwfns[i].iov_task, 0);
4437 }
4438 
4439 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4440 {
4441 	int i, j;
4442 
4443 	for_each_hwfn(cdev, i)
4444 	    if (cdev->hwfns[i].iov_wq)
4445 		flush_workqueue(cdev->hwfns[i].iov_wq);
4446 
4447 	/* Mark VFs for disablement */
4448 	qed_iov_set_vfs_to_disable(cdev, true);
4449 
4450 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4451 		pci_disable_sriov(cdev->pdev);
4452 
4453 	if (cdev->recov_in_prog) {
4454 		DP_VERBOSE(cdev,
4455 			   QED_MSG_IOV,
4456 			   "Skip SRIOV disable operations in the device since a recovery is in progress\n");
4457 		goto out;
4458 	}
4459 
4460 	for_each_hwfn(cdev, i) {
4461 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4462 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4463 
4464 		/* Failure to acquire the ptt in 100g creates an odd error
4465 		 * where the first engine has already relased IOV.
4466 		 */
4467 		if (!ptt) {
4468 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4469 			return -EBUSY;
4470 		}
4471 
4472 		/* Clean WFQ db and configure equal weight for all vports */
4473 		qed_clean_wfq_db(hwfn, ptt);
4474 
4475 		qed_for_each_vf(hwfn, j) {
4476 			int k;
4477 
4478 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4479 				continue;
4480 
4481 			/* Wait until VF is disabled before releasing */
4482 			for (k = 0; k < 100; k++) {
4483 				if (!qed_iov_is_vf_stopped(hwfn, j))
4484 					msleep(20);
4485 				else
4486 					break;
4487 			}
4488 
4489 			if (k < 100)
4490 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4491 							  ptt, j);
4492 			else
4493 				DP_ERR(hwfn,
4494 				       "Timeout waiting for VF's FLR to end\n");
4495 		}
4496 
4497 		qed_ptt_release(hwfn, ptt);
4498 	}
4499 out:
4500 	qed_iov_set_vfs_to_disable(cdev, false);
4501 
4502 	return 0;
4503 }
4504 
4505 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4506 					u16 vfid,
4507 					struct qed_iov_vf_init_params *params)
4508 {
4509 	u16 base, i;
4510 
4511 	/* Since we have an equal resource distribution per-VF, and we assume
4512 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4513 	 * sequentially from there.
4514 	 */
4515 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4516 
4517 	params->rel_vf_id = vfid;
4518 	for (i = 0; i < params->num_queues; i++) {
4519 		params->req_rx_queue[i] = base + i;
4520 		params->req_tx_queue[i] = base + i;
4521 	}
4522 }
4523 
4524 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4525 {
4526 	struct qed_iov_vf_init_params params;
4527 	struct qed_hwfn *hwfn;
4528 	struct qed_ptt *ptt;
4529 	int i, j, rc;
4530 
4531 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4532 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
4533 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4534 		return -EINVAL;
4535 	}
4536 
4537 	memset(&params, 0, sizeof(params));
4538 
4539 	/* Initialize HW for VF access */
4540 	for_each_hwfn(cdev, j) {
4541 		hwfn = &cdev->hwfns[j];
4542 		ptt = qed_ptt_acquire(hwfn);
4543 
4544 		/* Make sure not to use more than 16 queues per VF */
4545 		params.num_queues = min_t(int,
4546 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4547 					  16);
4548 
4549 		if (!ptt) {
4550 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4551 			rc = -EBUSY;
4552 			goto err;
4553 		}
4554 
4555 		for (i = 0; i < num; i++) {
4556 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4557 				continue;
4558 
4559 			qed_sriov_enable_qid_config(hwfn, i, &params);
4560 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4561 			if (rc) {
4562 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4563 				qed_ptt_release(hwfn, ptt);
4564 				goto err;
4565 			}
4566 		}
4567 
4568 		qed_ptt_release(hwfn, ptt);
4569 	}
4570 
4571 	/* Enable SRIOV PCIe functions */
4572 	rc = pci_enable_sriov(cdev->pdev, num);
4573 	if (rc) {
4574 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4575 		goto err;
4576 	}
4577 
4578 	hwfn = QED_LEADING_HWFN(cdev);
4579 	ptt = qed_ptt_acquire(hwfn);
4580 	if (!ptt) {
4581 		DP_ERR(hwfn, "Failed to acquire ptt\n");
4582 		rc = -EBUSY;
4583 		goto err;
4584 	}
4585 
4586 	rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4587 	if (rc)
4588 		DP_INFO(cdev, "Failed to update eswitch mode\n");
4589 	qed_ptt_release(hwfn, ptt);
4590 
4591 	return num;
4592 
4593 err:
4594 	qed_sriov_disable(cdev, false);
4595 	return rc;
4596 }
4597 
4598 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4599 {
4600 	if (!IS_QED_SRIOV(cdev)) {
4601 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4602 		return -EOPNOTSUPP;
4603 	}
4604 
4605 	if (num_vfs_param)
4606 		return qed_sriov_enable(cdev, num_vfs_param);
4607 	else
4608 		return qed_sriov_disable(cdev, true);
4609 }
4610 
4611 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4612 {
4613 	int i;
4614 
4615 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4616 		DP_VERBOSE(cdev, QED_MSG_IOV,
4617 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4618 		return -EINVAL;
4619 	}
4620 
4621 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4622 		DP_VERBOSE(cdev, QED_MSG_IOV,
4623 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4624 		return -EINVAL;
4625 	}
4626 
4627 	for_each_hwfn(cdev, i) {
4628 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4629 		struct qed_public_vf_info *vf_info;
4630 
4631 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4632 		if (!vf_info)
4633 			continue;
4634 
4635 		/* Set the MAC, and schedule the IOV task */
4636 		if (vf_info->is_trusted_configured)
4637 			ether_addr_copy(vf_info->mac, mac);
4638 		else
4639 			ether_addr_copy(vf_info->forced_mac, mac);
4640 
4641 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4642 	}
4643 
4644 	return 0;
4645 }
4646 
4647 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4648 {
4649 	int i;
4650 
4651 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4652 		DP_VERBOSE(cdev, QED_MSG_IOV,
4653 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4654 		return -EINVAL;
4655 	}
4656 
4657 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4658 		DP_VERBOSE(cdev, QED_MSG_IOV,
4659 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4660 		return -EINVAL;
4661 	}
4662 
4663 	for_each_hwfn(cdev, i) {
4664 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4665 		struct qed_public_vf_info *vf_info;
4666 
4667 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4668 		if (!vf_info)
4669 			continue;
4670 
4671 		/* Set the forced vlan, and schedule the IOV task */
4672 		vf_info->forced_vlan = vid;
4673 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4674 	}
4675 
4676 	return 0;
4677 }
4678 
4679 static int qed_get_vf_config(struct qed_dev *cdev,
4680 			     int vf_id, struct ifla_vf_info *ivi)
4681 {
4682 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4683 	struct qed_public_vf_info *vf_info;
4684 	struct qed_mcp_link_state link;
4685 	u32 tx_rate;
4686 
4687 	/* Sanitize request */
4688 	if (IS_VF(cdev))
4689 		return -EINVAL;
4690 
4691 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4692 		DP_VERBOSE(cdev, QED_MSG_IOV,
4693 			   "VF index [%d] isn't active\n", vf_id);
4694 		return -EINVAL;
4695 	}
4696 
4697 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4698 
4699 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4700 
4701 	/* Fill information about VF */
4702 	ivi->vf = vf_id;
4703 
4704 	if (is_valid_ether_addr(vf_info->forced_mac))
4705 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
4706 	else
4707 		ether_addr_copy(ivi->mac, vf_info->mac);
4708 
4709 	ivi->vlan = vf_info->forced_vlan;
4710 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4711 	ivi->linkstate = vf_info->link_state;
4712 	tx_rate = vf_info->tx_rate;
4713 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4714 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4715 
4716 	return 0;
4717 }
4718 
4719 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4720 {
4721 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4722 	struct qed_mcp_link_capabilities caps;
4723 	struct qed_mcp_link_params params;
4724 	struct qed_mcp_link_state link;
4725 	int i;
4726 
4727 	if (!hwfn->pf_iov_info)
4728 		return;
4729 
4730 	/* Update bulletin of all future possible VFs with link configuration */
4731 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4732 		struct qed_public_vf_info *vf_info;
4733 
4734 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4735 		if (!vf_info)
4736 			continue;
4737 
4738 		/* Only hwfn0 is actually interested in the link speed.
4739 		 * But since only it would receive an MFW indication of link,
4740 		 * need to take configuration from it - otherwise things like
4741 		 * rate limiting for hwfn1 VF would not work.
4742 		 */
4743 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4744 		       sizeof(params));
4745 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4746 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4747 		       sizeof(caps));
4748 
4749 		/* Modify link according to the VF's configured link state */
4750 		switch (vf_info->link_state) {
4751 		case IFLA_VF_LINK_STATE_DISABLE:
4752 			link.link_up = false;
4753 			break;
4754 		case IFLA_VF_LINK_STATE_ENABLE:
4755 			link.link_up = true;
4756 			/* Set speed according to maximum supported by HW.
4757 			 * that is 40G for regular devices and 100G for CMT
4758 			 * mode devices.
4759 			 */
4760 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
4761 				     100000 : 40000;
4762 		default:
4763 			/* In auto mode pass PF link image to VF */
4764 			break;
4765 		}
4766 
4767 		if (link.link_up && vf_info->tx_rate) {
4768 			struct qed_ptt *ptt;
4769 			int rate;
4770 
4771 			rate = min_t(int, vf_info->tx_rate, link.speed);
4772 
4773 			ptt = qed_ptt_acquire(hwfn);
4774 			if (!ptt) {
4775 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4776 				return;
4777 			}
4778 
4779 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4780 				vf_info->tx_rate = rate;
4781 				link.speed = rate;
4782 			}
4783 
4784 			qed_ptt_release(hwfn, ptt);
4785 		}
4786 
4787 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4788 	}
4789 
4790 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4791 }
4792 
4793 static int qed_set_vf_link_state(struct qed_dev *cdev,
4794 				 int vf_id, int link_state)
4795 {
4796 	int i;
4797 
4798 	/* Sanitize request */
4799 	if (IS_VF(cdev))
4800 		return -EINVAL;
4801 
4802 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4803 		DP_VERBOSE(cdev, QED_MSG_IOV,
4804 			   "VF index [%d] isn't active\n", vf_id);
4805 		return -EINVAL;
4806 	}
4807 
4808 	/* Handle configuration of link state */
4809 	for_each_hwfn(cdev, i) {
4810 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4811 		struct qed_public_vf_info *vf;
4812 
4813 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4814 		if (!vf)
4815 			continue;
4816 
4817 		if (vf->link_state == link_state)
4818 			continue;
4819 
4820 		vf->link_state = link_state;
4821 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4822 	}
4823 
4824 	return 0;
4825 }
4826 
4827 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4828 {
4829 	int i, rc = -EINVAL;
4830 
4831 	for_each_hwfn(cdev, i) {
4832 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4833 
4834 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4835 		if (rc)
4836 			break;
4837 	}
4838 
4839 	return rc;
4840 }
4841 
4842 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4843 {
4844 	int i;
4845 
4846 	for_each_hwfn(cdev, i) {
4847 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4848 		struct qed_public_vf_info *vf;
4849 
4850 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4851 			DP_NOTICE(p_hwfn,
4852 				  "SR-IOV sanity check failed, can't set tx rate\n");
4853 			return -EINVAL;
4854 		}
4855 
4856 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4857 
4858 		vf->tx_rate = rate;
4859 
4860 		qed_inform_vf_link_state(p_hwfn);
4861 	}
4862 
4863 	return 0;
4864 }
4865 
4866 static int qed_set_vf_rate(struct qed_dev *cdev,
4867 			   int vfid, u32 min_rate, u32 max_rate)
4868 {
4869 	int rc_min = 0, rc_max = 0;
4870 
4871 	if (max_rate)
4872 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4873 
4874 	if (min_rate)
4875 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4876 
4877 	if (rc_max | rc_min)
4878 		return -EINVAL;
4879 
4880 	return 0;
4881 }
4882 
4883 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4884 {
4885 	int i;
4886 
4887 	for_each_hwfn(cdev, i) {
4888 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4889 		struct qed_public_vf_info *vf;
4890 
4891 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4892 			DP_NOTICE(hwfn,
4893 				  "SR-IOV sanity check failed, can't set trust\n");
4894 			return -EINVAL;
4895 		}
4896 
4897 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4898 
4899 		if (vf->is_trusted_request == trust)
4900 			return 0;
4901 		vf->is_trusted_request = trust;
4902 
4903 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4904 	}
4905 
4906 	return 0;
4907 }
4908 
4909 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4910 {
4911 	u64 events[QED_VF_ARRAY_LENGTH];
4912 	struct qed_ptt *ptt;
4913 	int i;
4914 
4915 	ptt = qed_ptt_acquire(hwfn);
4916 	if (!ptt) {
4917 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4918 			   "Can't acquire PTT; re-scheduling\n");
4919 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4920 		return;
4921 	}
4922 
4923 	qed_iov_pf_get_pending_events(hwfn, events);
4924 
4925 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4926 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4927 		   events[0], events[1], events[2]);
4928 
4929 	qed_for_each_vf(hwfn, i) {
4930 		/* Skip VFs with no pending messages */
4931 		if (!(events[i / 64] & (1ULL << (i % 64))))
4932 			continue;
4933 
4934 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4935 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4936 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4937 
4938 		/* Copy VF's message to PF's request buffer for that VF */
4939 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4940 			continue;
4941 
4942 		qed_iov_process_mbx_req(hwfn, ptt, i);
4943 	}
4944 
4945 	qed_ptt_release(hwfn, ptt);
4946 }
4947 
4948 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
4949 				       u8 *mac,
4950 				       struct qed_public_vf_info *info)
4951 {
4952 	if (info->is_trusted_configured) {
4953 		if (is_valid_ether_addr(info->mac) &&
4954 		    (!mac || !ether_addr_equal(mac, info->mac)))
4955 			return true;
4956 	} else {
4957 		if (is_valid_ether_addr(info->forced_mac) &&
4958 		    (!mac || !ether_addr_equal(mac, info->forced_mac)))
4959 			return true;
4960 	}
4961 
4962 	return false;
4963 }
4964 
4965 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
4966 				 struct qed_public_vf_info *info,
4967 				 int vfid)
4968 {
4969 	if (info->is_trusted_configured)
4970 		qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
4971 	else
4972 		qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
4973 }
4974 
4975 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4976 {
4977 	int i;
4978 
4979 	qed_for_each_vf(hwfn, i) {
4980 		struct qed_public_vf_info *info;
4981 		bool update = false;
4982 		u8 *mac;
4983 
4984 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4985 		if (!info)
4986 			continue;
4987 
4988 		/* Update data on bulletin board */
4989 		if (info->is_trusted_configured)
4990 			mac = qed_iov_bulletin_get_mac(hwfn, i);
4991 		else
4992 			mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4993 
4994 		if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
4995 			DP_VERBOSE(hwfn,
4996 				   QED_MSG_IOV,
4997 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4998 				   i,
4999 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5000 
5001 			/* Update bulletin board with MAC */
5002 			qed_set_bulletin_mac(hwfn, info, i);
5003 			update = true;
5004 		}
5005 
5006 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
5007 		    info->forced_vlan) {
5008 			DP_VERBOSE(hwfn,
5009 				   QED_MSG_IOV,
5010 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
5011 				   info->forced_vlan,
5012 				   i,
5013 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5014 			qed_iov_bulletin_set_forced_vlan(hwfn,
5015 							 info->forced_vlan, i);
5016 			update = true;
5017 		}
5018 
5019 		if (update)
5020 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5021 	}
5022 }
5023 
5024 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
5025 {
5026 	struct qed_ptt *ptt;
5027 	int i;
5028 
5029 	ptt = qed_ptt_acquire(hwfn);
5030 	if (!ptt) {
5031 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
5032 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5033 		return;
5034 	}
5035 
5036 	qed_for_each_vf(hwfn, i)
5037 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
5038 
5039 	qed_ptt_release(hwfn, ptt);
5040 }
5041 
5042 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
5043 {
5044 	struct qed_public_vf_info *vf_info;
5045 	struct qed_vf_info *vf;
5046 	u8 *force_mac;
5047 	int i;
5048 
5049 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
5050 	vf = qed_iov_get_vf_info(hwfn, vf_id, true);
5051 
5052 	if (!vf_info || !vf)
5053 		return;
5054 
5055 	/* Force MAC converted to generic MAC in case of VF trust on */
5056 	if (vf_info->is_trusted_configured &&
5057 	    (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
5058 		force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
5059 
5060 		if (force_mac) {
5061 			/* Clear existing shadow copy of MAC to have a clean
5062 			 * slate.
5063 			 */
5064 			for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5065 				if (ether_addr_equal(vf->shadow_config.macs[i],
5066 						     vf_info->mac)) {
5067 					memset(vf->shadow_config.macs[i], 0,
5068 					       ETH_ALEN);
5069 					DP_VERBOSE(hwfn, QED_MSG_IOV,
5070 						   "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
5071 						    vf_info->mac, vf_id);
5072 					break;
5073 				}
5074 			}
5075 
5076 			ether_addr_copy(vf_info->mac, force_mac);
5077 			memset(vf_info->forced_mac, 0, ETH_ALEN);
5078 			vf->bulletin.p_virt->valid_bitmap &=
5079 					~BIT(MAC_ADDR_FORCED);
5080 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5081 		}
5082 	}
5083 
5084 	/* Update shadow copy with VF MAC when trust mode is turned off */
5085 	if (!vf_info->is_trusted_configured) {
5086 		u8 empty_mac[ETH_ALEN];
5087 
5088 		memset(empty_mac, 0, ETH_ALEN);
5089 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5090 			if (ether_addr_equal(vf->shadow_config.macs[i],
5091 					     empty_mac)) {
5092 				ether_addr_copy(vf->shadow_config.macs[i],
5093 						vf_info->mac);
5094 				DP_VERBOSE(hwfn, QED_MSG_IOV,
5095 					   "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
5096 					    vf_info->mac, vf_id);
5097 				break;
5098 			}
5099 		}
5100 		/* Clear bulletin when trust mode is turned off,
5101 		 * to have a clean slate for next (normal) operations.
5102 		 */
5103 		qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
5104 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5105 	}
5106 }
5107 
5108 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
5109 {
5110 	struct qed_sp_vport_update_params params;
5111 	struct qed_filter_accept_flags *flags;
5112 	struct qed_public_vf_info *vf_info;
5113 	struct qed_vf_info *vf;
5114 	u8 mask;
5115 	int i;
5116 
5117 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
5118 	flags = &params.accept_flags;
5119 
5120 	qed_for_each_vf(hwfn, i) {
5121 		/* Need to make sure current requested configuration didn't
5122 		 * flip so that we'll end up configuring something that's not
5123 		 * needed.
5124 		 */
5125 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
5126 		if (vf_info->is_trusted_configured ==
5127 		    vf_info->is_trusted_request)
5128 			continue;
5129 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
5130 
5131 		/* Handle forced MAC mode */
5132 		qed_update_mac_for_vf_trust_change(hwfn, i);
5133 
5134 		/* Validate that the VF has a configured vport */
5135 		vf = qed_iov_get_vf_info(hwfn, i, true);
5136 		if (!vf->vport_instance)
5137 			continue;
5138 
5139 		memset(&params, 0, sizeof(params));
5140 		params.opaque_fid = vf->opaque_fid;
5141 		params.vport_id = vf->vport_id;
5142 
5143 		params.update_ctl_frame_check = 1;
5144 		params.mac_chk_en = !vf_info->is_trusted_configured;
5145 
5146 		if (vf_info->rx_accept_mode & mask) {
5147 			flags->update_rx_mode_config = 1;
5148 			flags->rx_accept_filter = vf_info->rx_accept_mode;
5149 		}
5150 
5151 		if (vf_info->tx_accept_mode & mask) {
5152 			flags->update_tx_mode_config = 1;
5153 			flags->tx_accept_filter = vf_info->tx_accept_mode;
5154 		}
5155 
5156 		/* Remove if needed; Otherwise this would set the mask */
5157 		if (!vf_info->is_trusted_configured) {
5158 			flags->rx_accept_filter &= ~mask;
5159 			flags->tx_accept_filter &= ~mask;
5160 		}
5161 
5162 		if (flags->update_rx_mode_config ||
5163 		    flags->update_tx_mode_config ||
5164 		    params.update_ctl_frame_check)
5165 			qed_sp_vport_update(hwfn, &params,
5166 					    QED_SPQ_MODE_EBLOCK, NULL);
5167 	}
5168 }
5169 
5170 static void qed_iov_pf_task(struct work_struct *work)
5171 
5172 {
5173 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
5174 					     iov_task.work);
5175 	int rc;
5176 
5177 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
5178 		return;
5179 
5180 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
5181 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
5182 
5183 		if (!ptt) {
5184 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5185 			return;
5186 		}
5187 
5188 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
5189 		if (rc)
5190 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5191 
5192 		qed_ptt_release(hwfn, ptt);
5193 	}
5194 
5195 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
5196 		qed_handle_vf_msg(hwfn);
5197 
5198 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
5199 			       &hwfn->iov_task_flags))
5200 		qed_handle_pf_set_vf_unicast(hwfn);
5201 
5202 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
5203 			       &hwfn->iov_task_flags))
5204 		qed_handle_bulletin_post(hwfn);
5205 
5206 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
5207 		qed_iov_handle_trust_change(hwfn);
5208 }
5209 
5210 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
5211 {
5212 	int i;
5213 
5214 	for_each_hwfn(cdev, i) {
5215 		if (!cdev->hwfns[i].iov_wq)
5216 			continue;
5217 
5218 		if (schedule_first) {
5219 			qed_schedule_iov(&cdev->hwfns[i],
5220 					 QED_IOV_WQ_STOP_WQ_FLAG);
5221 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
5222 		}
5223 
5224 		flush_workqueue(cdev->hwfns[i].iov_wq);
5225 		destroy_workqueue(cdev->hwfns[i].iov_wq);
5226 	}
5227 }
5228 
5229 int qed_iov_wq_start(struct qed_dev *cdev)
5230 {
5231 	char name[NAME_SIZE];
5232 	int i;
5233 
5234 	for_each_hwfn(cdev, i) {
5235 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5236 
5237 		/* PFs needs a dedicated workqueue only if they support IOV.
5238 		 * VFs always require one.
5239 		 */
5240 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5241 			continue;
5242 
5243 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5244 			 cdev->pdev->bus->number,
5245 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5246 
5247 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
5248 		if (!p_hwfn->iov_wq) {
5249 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5250 			return -ENOMEM;
5251 		}
5252 
5253 		if (IS_PF(cdev))
5254 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5255 		else
5256 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5257 	}
5258 
5259 	return 0;
5260 }
5261 
5262 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5263 	.configure = &qed_sriov_configure,
5264 	.set_mac = &qed_sriov_pf_set_mac,
5265 	.set_vlan = &qed_sriov_pf_set_vlan,
5266 	.get_config = &qed_get_vf_config,
5267 	.set_link_state = &qed_set_vf_link_state,
5268 	.set_spoof = &qed_spoof_configure,
5269 	.set_rate = &qed_set_vf_rate,
5270 	.set_trust = &qed_set_vf_trust,
5271 };
5272