xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
48 			       u8 opcode,
49 			       __le16 echo,
50 			       union event_ring_data *data, u8 fw_return_code);
51 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
52 
53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
54 {
55 	u8 legacy = 0;
56 
57 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
58 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
59 		legacy |= QED_QCID_LEGACY_VF_RX_PROD;
60 
61 	if (!(p_vf->acquire.vfdev_info.capabilities &
62 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
63 		legacy |= QED_QCID_LEGACY_VF_CID;
64 
65 	return legacy;
66 }
67 
68 /* IOV ramrods */
69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
70 {
71 	struct vf_start_ramrod_data *p_ramrod = NULL;
72 	struct qed_spq_entry *p_ent = NULL;
73 	struct qed_sp_init_data init_data;
74 	int rc = -EINVAL;
75 	u8 fp_minor;
76 
77 	/* Get SPQ entry */
78 	memset(&init_data, 0, sizeof(init_data));
79 	init_data.cid = qed_spq_get_cid(p_hwfn);
80 	init_data.opaque_fid = p_vf->opaque_fid;
81 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
82 
83 	rc = qed_sp_init_request(p_hwfn, &p_ent,
84 				 COMMON_RAMROD_VF_START,
85 				 PROTOCOLID_COMMON, &init_data);
86 	if (rc)
87 		return rc;
88 
89 	p_ramrod = &p_ent->ramrod.vf_start;
90 
91 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
92 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
93 
94 	switch (p_hwfn->hw_info.personality) {
95 	case QED_PCI_ETH:
96 		p_ramrod->personality = PERSONALITY_ETH;
97 		break;
98 	case QED_PCI_ETH_ROCE:
99 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
100 		break;
101 	default:
102 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
103 			  p_hwfn->hw_info.personality);
104 		qed_sp_destroy_request(p_hwfn, p_ent);
105 		return -EINVAL;
106 	}
107 
108 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
109 	if (fp_minor > ETH_HSI_VER_MINOR &&
110 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
111 		DP_VERBOSE(p_hwfn,
112 			   QED_MSG_IOV,
113 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
114 			   p_vf->abs_vf_id,
115 			   ETH_HSI_VER_MAJOR,
116 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
117 		fp_minor = ETH_HSI_VER_MINOR;
118 	}
119 
120 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
121 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
122 
123 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
124 		   "VF[%d] - Starting using HSI %02x.%02x\n",
125 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
126 
127 	return qed_spq_post(p_hwfn, p_ent, NULL);
128 }
129 
130 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
131 			  u32 concrete_vfid, u16 opaque_vfid)
132 {
133 	struct vf_stop_ramrod_data *p_ramrod = NULL;
134 	struct qed_spq_entry *p_ent = NULL;
135 	struct qed_sp_init_data init_data;
136 	int rc = -EINVAL;
137 
138 	/* Get SPQ entry */
139 	memset(&init_data, 0, sizeof(init_data));
140 	init_data.cid = qed_spq_get_cid(p_hwfn);
141 	init_data.opaque_fid = opaque_vfid;
142 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
143 
144 	rc = qed_sp_init_request(p_hwfn, &p_ent,
145 				 COMMON_RAMROD_VF_STOP,
146 				 PROTOCOLID_COMMON, &init_data);
147 	if (rc)
148 		return rc;
149 
150 	p_ramrod = &p_ent->ramrod.vf_stop;
151 
152 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
153 
154 	return qed_spq_post(p_hwfn, p_ent, NULL);
155 }
156 
157 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
158 			   int rel_vf_id,
159 			   bool b_enabled_only, bool b_non_malicious)
160 {
161 	if (!p_hwfn->pf_iov_info) {
162 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
163 		return false;
164 	}
165 
166 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
167 	    (rel_vf_id < 0))
168 		return false;
169 
170 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
171 	    b_enabled_only)
172 		return false;
173 
174 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
175 	    b_non_malicious)
176 		return false;
177 
178 	return true;
179 }
180 
181 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
182 					       u16 relative_vf_id,
183 					       bool b_enabled_only)
184 {
185 	struct qed_vf_info *vf = NULL;
186 
187 	if (!p_hwfn->pf_iov_info) {
188 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
189 		return NULL;
190 	}
191 
192 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
193 				  b_enabled_only, false))
194 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
195 	else
196 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
197 		       relative_vf_id);
198 
199 	return vf;
200 }
201 
202 static struct qed_queue_cid *
203 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
204 {
205 	int i;
206 
207 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
208 		if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
209 			return p_queue->cids[i].p_cid;
210 	}
211 
212 	return NULL;
213 }
214 
215 enum qed_iov_validate_q_mode {
216 	QED_IOV_VALIDATE_Q_NA,
217 	QED_IOV_VALIDATE_Q_ENABLE,
218 	QED_IOV_VALIDATE_Q_DISABLE,
219 };
220 
221 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
222 					struct qed_vf_info *p_vf,
223 					u16 qid,
224 					enum qed_iov_validate_q_mode mode,
225 					bool b_is_tx)
226 {
227 	int i;
228 
229 	if (mode == QED_IOV_VALIDATE_Q_NA)
230 		return true;
231 
232 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
233 		struct qed_vf_queue_cid *p_qcid;
234 
235 		p_qcid = &p_vf->vf_queues[qid].cids[i];
236 
237 		if (!p_qcid->p_cid)
238 			continue;
239 
240 		if (p_qcid->b_is_tx != b_is_tx)
241 			continue;
242 
243 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
244 	}
245 
246 	/* In case we haven't found any valid cid, then its disabled */
247 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
248 }
249 
250 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
251 				 struct qed_vf_info *p_vf,
252 				 u16 rx_qid,
253 				 enum qed_iov_validate_q_mode mode)
254 {
255 	if (rx_qid >= p_vf->num_rxqs) {
256 		DP_VERBOSE(p_hwfn,
257 			   QED_MSG_IOV,
258 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
259 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
260 		return false;
261 	}
262 
263 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
264 }
265 
266 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
267 				 struct qed_vf_info *p_vf,
268 				 u16 tx_qid,
269 				 enum qed_iov_validate_q_mode mode)
270 {
271 	if (tx_qid >= p_vf->num_txqs) {
272 		DP_VERBOSE(p_hwfn,
273 			   QED_MSG_IOV,
274 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
275 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
276 		return false;
277 	}
278 
279 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
280 }
281 
282 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
283 				struct qed_vf_info *p_vf, u16 sb_idx)
284 {
285 	int i;
286 
287 	for (i = 0; i < p_vf->num_sbs; i++)
288 		if (p_vf->igu_sbs[i] == sb_idx)
289 			return true;
290 
291 	DP_VERBOSE(p_hwfn,
292 		   QED_MSG_IOV,
293 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
294 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
295 
296 	return false;
297 }
298 
299 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
300 					struct qed_vf_info *p_vf)
301 {
302 	u8 i;
303 
304 	for (i = 0; i < p_vf->num_rxqs; i++)
305 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
306 						QED_IOV_VALIDATE_Q_ENABLE,
307 						false))
308 			return true;
309 
310 	return false;
311 }
312 
313 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
314 					struct qed_vf_info *p_vf)
315 {
316 	u8 i;
317 
318 	for (i = 0; i < p_vf->num_txqs; i++)
319 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
320 						QED_IOV_VALIDATE_Q_ENABLE,
321 						true))
322 			return true;
323 
324 	return false;
325 }
326 
327 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
328 				    int vfid, struct qed_ptt *p_ptt)
329 {
330 	struct qed_bulletin_content *p_bulletin;
331 	int crc_size = sizeof(p_bulletin->crc);
332 	struct qed_dmae_params params;
333 	struct qed_vf_info *p_vf;
334 
335 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
336 	if (!p_vf)
337 		return -EINVAL;
338 
339 	if (!p_vf->vf_bulletin)
340 		return -EINVAL;
341 
342 	p_bulletin = p_vf->bulletin.p_virt;
343 
344 	/* Increment bulletin board version and compute crc */
345 	p_bulletin->version++;
346 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
347 				p_vf->bulletin.size - crc_size);
348 
349 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
350 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
351 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
352 
353 	/* propagate bulletin board via dmae to vm memory */
354 	memset(&params, 0, sizeof(params));
355 	params.flags = QED_DMAE_FLAG_VF_DST;
356 	params.dst_vfid = p_vf->abs_vf_id;
357 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
358 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
359 				  &params);
360 }
361 
362 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
363 {
364 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
365 	int pos = iov->pos;
366 
367 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
368 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
369 
370 	pci_read_config_word(cdev->pdev,
371 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
372 	pci_read_config_word(cdev->pdev,
373 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
374 
375 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
376 	if (iov->num_vfs) {
377 		DP_VERBOSE(cdev,
378 			   QED_MSG_IOV,
379 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
380 		iov->num_vfs = 0;
381 	}
382 
383 	pci_read_config_word(cdev->pdev,
384 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
385 
386 	pci_read_config_word(cdev->pdev,
387 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
388 
389 	pci_read_config_word(cdev->pdev,
390 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
391 
392 	pci_read_config_dword(cdev->pdev,
393 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
394 
395 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
396 
397 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
398 
399 	DP_VERBOSE(cdev,
400 		   QED_MSG_IOV,
401 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
402 		   iov->nres,
403 		   iov->cap,
404 		   iov->ctrl,
405 		   iov->total_vfs,
406 		   iov->initial_vfs,
407 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
408 
409 	/* Some sanity checks */
410 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
411 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
412 		/* This can happen only due to a bug. In this case we set
413 		 * num_vfs to zero to avoid memory corruption in the code that
414 		 * assumes max number of vfs
415 		 */
416 		DP_NOTICE(cdev,
417 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
418 			  iov->num_vfs);
419 
420 		iov->num_vfs = 0;
421 		iov->total_vfs = 0;
422 	}
423 
424 	return 0;
425 }
426 
427 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
428 {
429 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
430 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
431 	struct qed_bulletin_content *p_bulletin_virt;
432 	dma_addr_t req_p, rply_p, bulletin_p;
433 	union pfvf_tlvs *p_reply_virt_addr;
434 	union vfpf_tlvs *p_req_virt_addr;
435 	u8 idx = 0;
436 
437 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
438 
439 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
440 	req_p = p_iov_info->mbx_msg_phys_addr;
441 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
442 	rply_p = p_iov_info->mbx_reply_phys_addr;
443 	p_bulletin_virt = p_iov_info->p_bulletins;
444 	bulletin_p = p_iov_info->bulletins_phys;
445 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
446 		DP_ERR(p_hwfn,
447 		       "qed_iov_setup_vfdb called without allocating mem first\n");
448 		return;
449 	}
450 
451 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
452 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
453 		u32 concrete;
454 
455 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
456 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
457 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
458 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
459 
460 		vf->state = VF_STOPPED;
461 		vf->b_init = false;
462 
463 		vf->bulletin.phys = idx *
464 				    sizeof(struct qed_bulletin_content) +
465 				    bulletin_p;
466 		vf->bulletin.p_virt = p_bulletin_virt + idx;
467 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
468 
469 		vf->relative_vf_id = idx;
470 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
471 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
472 		vf->concrete_fid = concrete;
473 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
474 				 (vf->abs_vf_id << 8);
475 		vf->vport_id = idx + 1;
476 
477 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
478 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
479 	}
480 }
481 
482 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
483 {
484 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
485 	void **p_v_addr;
486 	u16 num_vfs = 0;
487 
488 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
489 
490 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
491 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
492 
493 	/* Allocate PF Mailbox buffer (per-VF) */
494 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
495 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
496 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
497 				       p_iov_info->mbx_msg_size,
498 				       &p_iov_info->mbx_msg_phys_addr,
499 				       GFP_KERNEL);
500 	if (!*p_v_addr)
501 		return -ENOMEM;
502 
503 	/* Allocate PF Mailbox Reply buffer (per-VF) */
504 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
505 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
506 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
507 				       p_iov_info->mbx_reply_size,
508 				       &p_iov_info->mbx_reply_phys_addr,
509 				       GFP_KERNEL);
510 	if (!*p_v_addr)
511 		return -ENOMEM;
512 
513 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
514 				     num_vfs;
515 	p_v_addr = &p_iov_info->p_bulletins;
516 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
517 				       p_iov_info->bulletins_size,
518 				       &p_iov_info->bulletins_phys,
519 				       GFP_KERNEL);
520 	if (!*p_v_addr)
521 		return -ENOMEM;
522 
523 	DP_VERBOSE(p_hwfn,
524 		   QED_MSG_IOV,
525 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
526 		   p_iov_info->mbx_msg_virt_addr,
527 		   (u64) p_iov_info->mbx_msg_phys_addr,
528 		   p_iov_info->mbx_reply_virt_addr,
529 		   (u64) p_iov_info->mbx_reply_phys_addr,
530 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
531 
532 	return 0;
533 }
534 
535 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
536 {
537 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
538 
539 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
540 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
541 				  p_iov_info->mbx_msg_size,
542 				  p_iov_info->mbx_msg_virt_addr,
543 				  p_iov_info->mbx_msg_phys_addr);
544 
545 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
546 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
547 				  p_iov_info->mbx_reply_size,
548 				  p_iov_info->mbx_reply_virt_addr,
549 				  p_iov_info->mbx_reply_phys_addr);
550 
551 	if (p_iov_info->p_bulletins)
552 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
553 				  p_iov_info->bulletins_size,
554 				  p_iov_info->p_bulletins,
555 				  p_iov_info->bulletins_phys);
556 }
557 
558 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
559 {
560 	struct qed_pf_iov *p_sriov;
561 
562 	if (!IS_PF_SRIOV(p_hwfn)) {
563 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
564 			   "No SR-IOV - no need for IOV db\n");
565 		return 0;
566 	}
567 
568 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
569 	if (!p_sriov)
570 		return -ENOMEM;
571 
572 	p_hwfn->pf_iov_info = p_sriov;
573 
574 	qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
575 				  qed_sriov_eqe_event);
576 
577 	return qed_iov_allocate_vfdb(p_hwfn);
578 }
579 
580 void qed_iov_setup(struct qed_hwfn *p_hwfn)
581 {
582 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
583 		return;
584 
585 	qed_iov_setup_vfdb(p_hwfn);
586 }
587 
588 void qed_iov_free(struct qed_hwfn *p_hwfn)
589 {
590 	qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
591 
592 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
593 		qed_iov_free_vfdb(p_hwfn);
594 		kfree(p_hwfn->pf_iov_info);
595 	}
596 }
597 
598 void qed_iov_free_hw_info(struct qed_dev *cdev)
599 {
600 	kfree(cdev->p_iov_info);
601 	cdev->p_iov_info = NULL;
602 }
603 
604 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
605 {
606 	struct qed_dev *cdev = p_hwfn->cdev;
607 	int pos;
608 	int rc;
609 
610 	if (IS_VF(p_hwfn->cdev))
611 		return 0;
612 
613 	/* Learn the PCI configuration */
614 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
615 				      PCI_EXT_CAP_ID_SRIOV);
616 	if (!pos) {
617 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
618 		return 0;
619 	}
620 
621 	/* Allocate a new struct for IOV information */
622 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
623 	if (!cdev->p_iov_info)
624 		return -ENOMEM;
625 
626 	cdev->p_iov_info->pos = pos;
627 
628 	rc = qed_iov_pci_cfg_info(cdev);
629 	if (rc)
630 		return rc;
631 
632 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
633 	 * In case the capability is published but there are no VFs, simply
634 	 * de-allocate the struct.
635 	 */
636 	if (!cdev->p_iov_info->total_vfs) {
637 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
638 			   "IOV capabilities, but no VFs are published\n");
639 		kfree(cdev->p_iov_info);
640 		cdev->p_iov_info = NULL;
641 		return 0;
642 	}
643 
644 	/* First VF index based on offset is tricky:
645 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
646 	 *    provide the number for eng0. 2nd engine Vfs would begin
647 	 *    after the first engine's VFs.
648 	 *  - If !ARI, VFs would start on next device.
649 	 *    so offset - (256 - pf_id) would provide the number.
650 	 * Utilize the fact that (256 - pf_id) is achieved only by later
651 	 * to differentiate between the two.
652 	 */
653 
654 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
655 		u32 first = p_hwfn->cdev->p_iov_info->offset +
656 			    p_hwfn->abs_pf_id - 16;
657 
658 		cdev->p_iov_info->first_vf_in_pf = first;
659 
660 		if (QED_PATH_ID(p_hwfn))
661 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
662 	} else {
663 		u32 first = p_hwfn->cdev->p_iov_info->offset +
664 			    p_hwfn->abs_pf_id - 256;
665 
666 		cdev->p_iov_info->first_vf_in_pf = first;
667 	}
668 
669 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
670 		   "First VF in hwfn 0x%08x\n",
671 		   cdev->p_iov_info->first_vf_in_pf);
672 
673 	return 0;
674 }
675 
676 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
677 				     int vfid, bool b_fail_malicious)
678 {
679 	/* Check PF supports sriov */
680 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
681 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
682 		return false;
683 
684 	/* Check VF validity */
685 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
686 		return false;
687 
688 	return true;
689 }
690 
691 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
692 {
693 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
694 }
695 
696 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
697 				      u16 rel_vf_id, u8 to_disable)
698 {
699 	struct qed_vf_info *vf;
700 	int i;
701 
702 	for_each_hwfn(cdev, i) {
703 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
704 
705 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
706 		if (!vf)
707 			continue;
708 
709 		vf->to_disable = to_disable;
710 	}
711 }
712 
713 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
714 {
715 	u16 i;
716 
717 	if (!IS_QED_SRIOV(cdev))
718 		return;
719 
720 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
721 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
722 }
723 
724 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
725 				       struct qed_ptt *p_ptt, u8 abs_vfid)
726 {
727 	qed_wr(p_hwfn, p_ptt,
728 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
729 	       1 << (abs_vfid & 0x1f));
730 }
731 
732 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
733 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
734 {
735 	int i;
736 
737 	/* Set VF masks and configuration - pretend */
738 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
739 
740 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
741 
742 	/* unpretend */
743 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
744 
745 	/* iterate over all queues, clear sb consumer */
746 	for (i = 0; i < vf->num_sbs; i++)
747 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
748 						vf->igu_sbs[i],
749 						vf->opaque_fid, true);
750 }
751 
752 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
753 				   struct qed_ptt *p_ptt,
754 				   struct qed_vf_info *vf, bool enable)
755 {
756 	u32 igu_vf_conf;
757 
758 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
759 
760 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
761 
762 	if (enable)
763 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
764 	else
765 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
766 
767 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
768 
769 	/* unpretend */
770 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
771 }
772 
773 static int
774 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
775 			      struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
776 {
777 	u8 current_max = 0;
778 	int i;
779 
780 	/* For AH onward, configuration is per-PF. Find maximum of all
781 	 * the currently enabled child VFs, and set the number to be that.
782 	 */
783 	if (!QED_IS_BB(p_hwfn->cdev)) {
784 		qed_for_each_vf(p_hwfn, i) {
785 			struct qed_vf_info *p_vf;
786 
787 			p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
788 			if (!p_vf)
789 				continue;
790 
791 			current_max = max_t(u8, current_max, p_vf->num_sbs);
792 		}
793 	}
794 
795 	if (num_sbs > current_max)
796 		return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
797 					      abs_vf_id, num_sbs);
798 
799 	return 0;
800 }
801 
802 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
803 				    struct qed_ptt *p_ptt,
804 				    struct qed_vf_info *vf)
805 {
806 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
807 	int rc;
808 
809 	/* It's possible VF was previously considered malicious -
810 	 * clear the indication even if we're only going to disable VF.
811 	 */
812 	vf->b_malicious = false;
813 
814 	if (vf->to_disable)
815 		return 0;
816 
817 	DP_VERBOSE(p_hwfn,
818 		   QED_MSG_IOV,
819 		   "Enable internal access for vf %x [abs %x]\n",
820 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
821 
822 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
823 
824 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
825 
826 	rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
827 					   vf->abs_vf_id, vf->num_sbs);
828 	if (rc)
829 		return rc;
830 
831 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
832 
833 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
834 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
835 
836 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
837 		     p_hwfn->hw_info.hw_mode);
838 
839 	/* unpretend */
840 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
841 
842 	vf->state = VF_FREE;
843 
844 	return rc;
845 }
846 
847 /**
848  * @brief qed_iov_config_perm_table - configure the permission
849  *      zone table.
850  *      In E4, queue zone permission table size is 320x9. There
851  *      are 320 VF queues for single engine device (256 for dual
852  *      engine device), and each entry has the following format:
853  *      {Valid, VF[7:0]}
854  * @param p_hwfn
855  * @param p_ptt
856  * @param vf
857  * @param enable
858  */
859 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
860 				      struct qed_ptt *p_ptt,
861 				      struct qed_vf_info *vf, u8 enable)
862 {
863 	u32 reg_addr, val;
864 	u16 qzone_id = 0;
865 	int qid;
866 
867 	for (qid = 0; qid < vf->num_rxqs; qid++) {
868 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
869 				&qzone_id);
870 
871 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
872 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
873 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
874 	}
875 }
876 
877 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
878 				      struct qed_ptt *p_ptt,
879 				      struct qed_vf_info *vf)
880 {
881 	/* Reset vf in IGU - interrupts are still disabled */
882 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
883 
884 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
885 
886 	/* Permission Table */
887 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
888 }
889 
890 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
891 				   struct qed_ptt *p_ptt,
892 				   struct qed_vf_info *vf, u16 num_rx_queues)
893 {
894 	struct qed_igu_block *p_block;
895 	struct cau_sb_entry sb_entry;
896 	int qid = 0;
897 	u32 val = 0;
898 
899 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
900 		num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
901 	p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
902 
903 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
904 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
905 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
906 
907 	for (qid = 0; qid < num_rx_queues; qid++) {
908 		p_block = qed_get_igu_free_sb(p_hwfn, false);
909 		vf->igu_sbs[qid] = p_block->igu_sb_id;
910 		p_block->status &= ~QED_IGU_STATUS_FREE;
911 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
912 
913 		qed_wr(p_hwfn, p_ptt,
914 		       IGU_REG_MAPPING_MEMORY +
915 		       sizeof(u32) * p_block->igu_sb_id, val);
916 
917 		/* Configure igu sb in CAU which were marked valid */
918 		qed_init_cau_sb_entry(p_hwfn, &sb_entry,
919 				      p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
920 		qed_dmae_host2grc(p_hwfn, p_ptt,
921 				  (u64)(uintptr_t)&sb_entry,
922 				  CAU_REG_SB_VAR_MEMORY +
923 				  p_block->igu_sb_id * sizeof(u64), 2, 0);
924 	}
925 
926 	vf->num_sbs = (u8) num_rx_queues;
927 
928 	return vf->num_sbs;
929 }
930 
931 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
932 				    struct qed_ptt *p_ptt,
933 				    struct qed_vf_info *vf)
934 {
935 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
936 	int idx, igu_id;
937 	u32 addr, val;
938 
939 	/* Invalidate igu CAM lines and mark them as free */
940 	for (idx = 0; idx < vf->num_sbs; idx++) {
941 		igu_id = vf->igu_sbs[idx];
942 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
943 
944 		val = qed_rd(p_hwfn, p_ptt, addr);
945 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
946 		qed_wr(p_hwfn, p_ptt, addr, val);
947 
948 		p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
949 		p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
950 	}
951 
952 	vf->num_sbs = 0;
953 }
954 
955 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
956 			     u16 vfid,
957 			     struct qed_mcp_link_params *params,
958 			     struct qed_mcp_link_state *link,
959 			     struct qed_mcp_link_capabilities *p_caps)
960 {
961 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
962 						       vfid,
963 						       false);
964 	struct qed_bulletin_content *p_bulletin;
965 
966 	if (!p_vf)
967 		return;
968 
969 	p_bulletin = p_vf->bulletin.p_virt;
970 	p_bulletin->req_autoneg = params->speed.autoneg;
971 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
972 	p_bulletin->req_forced_speed = params->speed.forced_speed;
973 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
974 	p_bulletin->req_forced_rx = params->pause.forced_rx;
975 	p_bulletin->req_forced_tx = params->pause.forced_tx;
976 	p_bulletin->req_loopback = params->loopback_mode;
977 
978 	p_bulletin->link_up = link->link_up;
979 	p_bulletin->speed = link->speed;
980 	p_bulletin->full_duplex = link->full_duplex;
981 	p_bulletin->autoneg = link->an;
982 	p_bulletin->autoneg_complete = link->an_complete;
983 	p_bulletin->parallel_detection = link->parallel_detection;
984 	p_bulletin->pfc_enabled = link->pfc_enabled;
985 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
986 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
987 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
988 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
989 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
990 
991 	p_bulletin->capability_speed = p_caps->speed_capabilities;
992 }
993 
994 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
995 				  struct qed_ptt *p_ptt,
996 				  struct qed_iov_vf_init_params *p_params)
997 {
998 	struct qed_mcp_link_capabilities link_caps;
999 	struct qed_mcp_link_params link_params;
1000 	struct qed_mcp_link_state link_state;
1001 	u8 num_of_vf_avaiable_chains = 0;
1002 	struct qed_vf_info *vf = NULL;
1003 	u16 qid, num_irqs;
1004 	int rc = 0;
1005 	u32 cids;
1006 	u8 i;
1007 
1008 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
1009 	if (!vf) {
1010 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (vf->b_init) {
1015 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
1016 			  p_params->rel_vf_id);
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Perform sanity checking on the requested queue_id */
1021 	for (i = 0; i < p_params->num_queues; i++) {
1022 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1023 		u16 max_vf_qzone = min_vf_qzone +
1024 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1025 
1026 		qid = p_params->req_rx_queue[i];
1027 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
1028 			DP_NOTICE(p_hwfn,
1029 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1030 				  qid,
1031 				  p_params->rel_vf_id,
1032 				  min_vf_qzone, max_vf_qzone);
1033 			return -EINVAL;
1034 		}
1035 
1036 		qid = p_params->req_tx_queue[i];
1037 		if (qid > max_vf_qzone) {
1038 			DP_NOTICE(p_hwfn,
1039 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1040 				  qid, p_params->rel_vf_id, max_vf_qzone);
1041 			return -EINVAL;
1042 		}
1043 
1044 		/* If client *really* wants, Tx qid can be shared with PF */
1045 		if (qid < min_vf_qzone)
1046 			DP_VERBOSE(p_hwfn,
1047 				   QED_MSG_IOV,
1048 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1049 				   p_params->rel_vf_id, qid, i);
1050 	}
1051 
1052 	/* Limit number of queues according to number of CIDs */
1053 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1054 	DP_VERBOSE(p_hwfn,
1055 		   QED_MSG_IOV,
1056 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1057 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1058 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1059 
1060 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1061 							     p_ptt,
1062 							     vf, num_irqs);
1063 	if (!num_of_vf_avaiable_chains) {
1064 		DP_ERR(p_hwfn, "no available igu sbs\n");
1065 		return -ENOMEM;
1066 	}
1067 
1068 	/* Choose queue number and index ranges */
1069 	vf->num_rxqs = num_of_vf_avaiable_chains;
1070 	vf->num_txqs = num_of_vf_avaiable_chains;
1071 
1072 	for (i = 0; i < vf->num_rxqs; i++) {
1073 		struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1074 
1075 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1076 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1077 
1078 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1079 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1080 			   vf->relative_vf_id, i, vf->igu_sbs[i],
1081 			   p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1082 	}
1083 
1084 	/* Update the link configuration in bulletin */
1085 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1086 	       sizeof(link_params));
1087 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1088 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1089 	       sizeof(link_caps));
1090 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1091 			 &link_params, &link_state, &link_caps);
1092 
1093 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1094 	if (!rc) {
1095 		vf->b_init = true;
1096 
1097 		if (IS_LEAD_HWFN(p_hwfn))
1098 			p_hwfn->cdev->p_iov_info->num_vfs++;
1099 	}
1100 
1101 	return rc;
1102 }
1103 
1104 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1105 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1106 {
1107 	struct qed_mcp_link_capabilities caps;
1108 	struct qed_mcp_link_params params;
1109 	struct qed_mcp_link_state link;
1110 	struct qed_vf_info *vf = NULL;
1111 
1112 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1113 	if (!vf) {
1114 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1115 		return -EINVAL;
1116 	}
1117 
1118 	if (vf->bulletin.p_virt)
1119 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1120 
1121 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1122 
1123 	/* Get the link configuration back in bulletin so
1124 	 * that when VFs are re-enabled they get the actual
1125 	 * link configuration.
1126 	 */
1127 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1128 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1129 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1130 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1131 
1132 	/* Forget the VF's acquisition message */
1133 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1134 
1135 	/* disablng interrupts and resetting permission table was done during
1136 	 * vf-close, however, we could get here without going through vf_close
1137 	 */
1138 	/* Disable Interrupts for VF */
1139 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1140 
1141 	/* Reset Permission table */
1142 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1143 
1144 	vf->num_rxqs = 0;
1145 	vf->num_txqs = 0;
1146 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1147 
1148 	if (vf->b_init) {
1149 		vf->b_init = false;
1150 
1151 		if (IS_LEAD_HWFN(p_hwfn))
1152 			p_hwfn->cdev->p_iov_info->num_vfs--;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static bool qed_iov_tlv_supported(u16 tlvtype)
1159 {
1160 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1161 }
1162 
1163 /* place a given tlv on the tlv buffer, continuing current tlv list */
1164 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1165 {
1166 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1167 
1168 	tl->type = type;
1169 	tl->length = length;
1170 
1171 	/* Offset should keep pointing to next TLV (the end of the last) */
1172 	*offset += length;
1173 
1174 	/* Return a pointer to the start of the added tlv */
1175 	return *offset - length;
1176 }
1177 
1178 /* list the types and lengths of the tlvs on the buffer */
1179 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1180 {
1181 	u16 i = 1, total_length = 0;
1182 	struct channel_tlv *tlv;
1183 
1184 	do {
1185 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1186 
1187 		/* output tlv */
1188 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1189 			   "TLV number %d: type %d, length %d\n",
1190 			   i, tlv->type, tlv->length);
1191 
1192 		if (tlv->type == CHANNEL_TLV_LIST_END)
1193 			return;
1194 
1195 		/* Validate entry - protect against malicious VFs */
1196 		if (!tlv->length) {
1197 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1198 			return;
1199 		}
1200 
1201 		total_length += tlv->length;
1202 
1203 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1204 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1205 			return;
1206 		}
1207 
1208 		i++;
1209 	} while (1);
1210 }
1211 
1212 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1213 				  struct qed_ptt *p_ptt,
1214 				  struct qed_vf_info *p_vf,
1215 				  u16 length, u8 status)
1216 {
1217 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1218 	struct qed_dmae_params params;
1219 	u8 eng_vf_id;
1220 
1221 	mbx->reply_virt->default_resp.hdr.status = status;
1222 
1223 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1224 
1225 	eng_vf_id = p_vf->abs_vf_id;
1226 
1227 	memset(&params, 0, sizeof(struct qed_dmae_params));
1228 	params.flags = QED_DMAE_FLAG_VF_DST;
1229 	params.dst_vfid = eng_vf_id;
1230 
1231 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1232 			   mbx->req_virt->first_tlv.reply_address +
1233 			   sizeof(u64),
1234 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1235 			   &params);
1236 
1237 	/* Once PF copies the rc to the VF, the latter can continue
1238 	 * and send an additional message. So we have to make sure the
1239 	 * channel would be re-set to ready prior to that.
1240 	 */
1241 	REG_WR(p_hwfn,
1242 	       GTT_BAR0_MAP_REG_USDM_RAM +
1243 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1244 
1245 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1246 			   mbx->req_virt->first_tlv.reply_address,
1247 			   sizeof(u64) / 4, &params);
1248 }
1249 
1250 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1251 				enum qed_iov_vport_update_flag flag)
1252 {
1253 	switch (flag) {
1254 	case QED_IOV_VP_UPDATE_ACTIVATE:
1255 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1256 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1257 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1258 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1259 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1260 	case QED_IOV_VP_UPDATE_MCAST:
1261 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1262 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1263 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1264 	case QED_IOV_VP_UPDATE_RSS:
1265 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1266 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1267 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1268 	case QED_IOV_VP_UPDATE_SGE_TPA:
1269 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1270 	default:
1271 		return 0;
1272 	}
1273 }
1274 
1275 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1276 					    struct qed_vf_info *p_vf,
1277 					    struct qed_iov_vf_mbx *p_mbx,
1278 					    u8 status,
1279 					    u16 tlvs_mask, u16 tlvs_accepted)
1280 {
1281 	struct pfvf_def_resp_tlv *resp;
1282 	u16 size, total_len, i;
1283 
1284 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1285 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1286 	size = sizeof(struct pfvf_def_resp_tlv);
1287 	total_len = size;
1288 
1289 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1290 
1291 	/* Prepare response for all extended tlvs if they are found by PF */
1292 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1293 		if (!(tlvs_mask & BIT(i)))
1294 			continue;
1295 
1296 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1297 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1298 
1299 		if (tlvs_accepted & BIT(i))
1300 			resp->hdr.status = status;
1301 		else
1302 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1303 
1304 		DP_VERBOSE(p_hwfn,
1305 			   QED_MSG_IOV,
1306 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1307 			   p_vf->relative_vf_id,
1308 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1309 
1310 		total_len += size;
1311 	}
1312 
1313 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1314 		    sizeof(struct channel_list_end_tlv));
1315 
1316 	return total_len;
1317 }
1318 
1319 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1320 				 struct qed_ptt *p_ptt,
1321 				 struct qed_vf_info *vf_info,
1322 				 u16 type, u16 length, u8 status)
1323 {
1324 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1325 
1326 	mbx->offset = (u8 *)mbx->reply_virt;
1327 
1328 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1329 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1330 		    sizeof(struct channel_list_end_tlv));
1331 
1332 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1333 }
1334 
1335 static struct
1336 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1337 					       u16 relative_vf_id,
1338 					       bool b_enabled_only)
1339 {
1340 	struct qed_vf_info *vf = NULL;
1341 
1342 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1343 	if (!vf)
1344 		return NULL;
1345 
1346 	return &vf->p_vf_info;
1347 }
1348 
1349 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1350 {
1351 	struct qed_public_vf_info *vf_info;
1352 
1353 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1354 
1355 	if (!vf_info)
1356 		return;
1357 
1358 	/* Clear the VF mac */
1359 	eth_zero_addr(vf_info->mac);
1360 
1361 	vf_info->rx_accept_mode = 0;
1362 	vf_info->tx_accept_mode = 0;
1363 }
1364 
1365 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1366 			       struct qed_vf_info *p_vf)
1367 {
1368 	u32 i, j;
1369 
1370 	p_vf->vf_bulletin = 0;
1371 	p_vf->vport_instance = 0;
1372 	p_vf->configured_features = 0;
1373 
1374 	/* If VF previously requested less resources, go back to default */
1375 	p_vf->num_rxqs = p_vf->num_sbs;
1376 	p_vf->num_txqs = p_vf->num_sbs;
1377 
1378 	p_vf->num_active_rxqs = 0;
1379 
1380 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1381 		struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1382 
1383 		for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1384 			if (!p_queue->cids[j].p_cid)
1385 				continue;
1386 
1387 			qed_eth_queue_cid_release(p_hwfn,
1388 						  p_queue->cids[j].p_cid);
1389 			p_queue->cids[j].p_cid = NULL;
1390 		}
1391 	}
1392 
1393 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1394 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1395 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1396 }
1397 
1398 /* Returns either 0, or log(size) */
1399 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1400 				  struct qed_ptt *p_ptt)
1401 {
1402 	u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1403 
1404 	if (val)
1405 		return val + 11;
1406 	return 0;
1407 }
1408 
1409 static void
1410 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1411 				 struct qed_ptt *p_ptt,
1412 				 struct qed_vf_info *p_vf,
1413 				 struct vf_pf_resc_request *p_req,
1414 				 struct pf_vf_resc *p_resp)
1415 {
1416 	u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1417 	u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1418 		     qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1419 	u32 bar_size;
1420 
1421 	p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1422 
1423 	/* If VF didn't bother asking for QIDs than don't bother limiting
1424 	 * number of CIDs. The VF doesn't care about the number, and this
1425 	 * has the likely result of causing an additional acquisition.
1426 	 */
1427 	if (!(p_vf->acquire.vfdev_info.capabilities &
1428 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1429 		return;
1430 
1431 	/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1432 	 * that would make sure doorbells for all CIDs fall within the bar.
1433 	 * If it doesn't, make sure regview window is sufficient.
1434 	 */
1435 	if (p_vf->acquire.vfdev_info.capabilities &
1436 	    VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1437 		bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1438 		if (bar_size)
1439 			bar_size = 1 << bar_size;
1440 
1441 		if (p_hwfn->cdev->num_hwfns > 1)
1442 			bar_size /= 2;
1443 	} else {
1444 		bar_size = PXP_VF_BAR0_DQ_LENGTH;
1445 	}
1446 
1447 	if (bar_size / db_size < 256)
1448 		p_resp->num_cids = min_t(u8, p_resp->num_cids,
1449 					 (u8)(bar_size / db_size));
1450 }
1451 
1452 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1453 				      struct qed_ptt *p_ptt,
1454 				      struct qed_vf_info *p_vf,
1455 				      struct vf_pf_resc_request *p_req,
1456 				      struct pf_vf_resc *p_resp)
1457 {
1458 	u8 i;
1459 
1460 	/* Queue related information */
1461 	p_resp->num_rxqs = p_vf->num_rxqs;
1462 	p_resp->num_txqs = p_vf->num_txqs;
1463 	p_resp->num_sbs = p_vf->num_sbs;
1464 
1465 	for (i = 0; i < p_resp->num_sbs; i++) {
1466 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1467 		p_resp->hw_sbs[i].sb_qid = 0;
1468 	}
1469 
1470 	/* These fields are filled for backward compatibility.
1471 	 * Unused by modern vfs.
1472 	 */
1473 	for (i = 0; i < p_resp->num_rxqs; i++) {
1474 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1475 				(u16 *)&p_resp->hw_qid[i]);
1476 		p_resp->cid[i] = i;
1477 	}
1478 
1479 	/* Filter related information */
1480 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1481 					p_req->num_mac_filters);
1482 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1483 					 p_req->num_vlan_filters);
1484 
1485 	qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1486 
1487 	/* This isn't really needed/enforced, but some legacy VFs might depend
1488 	 * on the correct filling of this field.
1489 	 */
1490 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1491 
1492 	/* Validate sufficient resources for VF */
1493 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1494 	    p_resp->num_txqs < p_req->num_txqs ||
1495 	    p_resp->num_sbs < p_req->num_sbs ||
1496 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1497 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1498 	    p_resp->num_mc_filters < p_req->num_mc_filters ||
1499 	    p_resp->num_cids < p_req->num_cids) {
1500 		DP_VERBOSE(p_hwfn,
1501 			   QED_MSG_IOV,
1502 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1503 			   p_vf->abs_vf_id,
1504 			   p_req->num_rxqs,
1505 			   p_resp->num_rxqs,
1506 			   p_req->num_rxqs,
1507 			   p_resp->num_txqs,
1508 			   p_req->num_sbs,
1509 			   p_resp->num_sbs,
1510 			   p_req->num_mac_filters,
1511 			   p_resp->num_mac_filters,
1512 			   p_req->num_vlan_filters,
1513 			   p_resp->num_vlan_filters,
1514 			   p_req->num_mc_filters,
1515 			   p_resp->num_mc_filters,
1516 			   p_req->num_cids, p_resp->num_cids);
1517 
1518 		/* Some legacy OSes are incapable of correctly handling this
1519 		 * failure.
1520 		 */
1521 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1522 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1523 		    (p_vf->acquire.vfdev_info.os_type ==
1524 		     VFPF_ACQUIRE_OS_WINDOWS))
1525 			return PFVF_STATUS_SUCCESS;
1526 
1527 		return PFVF_STATUS_NO_RESOURCE;
1528 	}
1529 
1530 	return PFVF_STATUS_SUCCESS;
1531 }
1532 
1533 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1534 					 struct pfvf_stats_info *p_stats)
1535 {
1536 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1537 				  offsetof(struct mstorm_vf_zone,
1538 					   non_trigger.eth_queue_stat);
1539 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1540 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1541 				  offsetof(struct ustorm_vf_zone,
1542 					   non_trigger.eth_queue_stat);
1543 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1544 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1545 				  offsetof(struct pstorm_vf_zone,
1546 					   non_trigger.eth_queue_stat);
1547 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1548 	p_stats->tstats.address = 0;
1549 	p_stats->tstats.len = 0;
1550 }
1551 
1552 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1553 				   struct qed_ptt *p_ptt,
1554 				   struct qed_vf_info *vf)
1555 {
1556 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1557 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1558 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1559 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1560 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1561 	struct pf_vf_resc *resc = &resp->resc;
1562 	int rc;
1563 
1564 	memset(resp, 0, sizeof(*resp));
1565 
1566 	/* Write the PF version so that VF would know which version
1567 	 * is supported - might be later overriden. This guarantees that
1568 	 * VF could recognize legacy PF based on lack of versions in reply.
1569 	 */
1570 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1571 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1572 
1573 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1574 		DP_VERBOSE(p_hwfn,
1575 			   QED_MSG_IOV,
1576 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1577 			   vf->abs_vf_id, vf->state);
1578 		goto out;
1579 	}
1580 
1581 	/* Validate FW compatibility */
1582 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1583 		if (req->vfdev_info.capabilities &
1584 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1585 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1586 
1587 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1588 				   "VF[%d] is pre-fastpath HSI\n",
1589 				   vf->abs_vf_id);
1590 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1591 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1592 		} else {
1593 			DP_INFO(p_hwfn,
1594 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n",
1595 				vf->abs_vf_id,
1596 				req->vfdev_info.eth_fp_hsi_major,
1597 				req->vfdev_info.eth_fp_hsi_minor,
1598 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1599 
1600 			goto out;
1601 		}
1602 	}
1603 
1604 	/* On 100g PFs, prevent old VFs from loading */
1605 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1606 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1607 		DP_INFO(p_hwfn,
1608 			"VF[%d] is running an old driver that doesn't support 100g\n",
1609 			vf->abs_vf_id);
1610 		goto out;
1611 	}
1612 
1613 	/* Store the acquire message */
1614 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1615 
1616 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1617 
1618 	vf->vf_bulletin = req->bulletin_addr;
1619 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1620 			    vf->bulletin.size : req->bulletin_size;
1621 
1622 	/* fill in pfdev info */
1623 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1624 	pfdev_info->db_size = 0;
1625 	pfdev_info->indices_per_sb = PIS_PER_SB_E4;
1626 
1627 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1628 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1629 	if (p_hwfn->cdev->num_hwfns > 1)
1630 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1631 
1632 	/* Share our ability to use multiple queue-ids only with VFs
1633 	 * that request it.
1634 	 */
1635 	if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1636 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1637 
1638 	/* Share the sizes of the bars with VF */
1639 	resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1640 
1641 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1642 
1643 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1644 
1645 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1646 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1647 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1648 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1649 
1650 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1651 	 * this field.
1652 	 */
1653 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1654 					 req->vfdev_info.eth_fp_hsi_minor);
1655 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1656 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1657 
1658 	pfdev_info->dev_type = p_hwfn->cdev->type;
1659 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1660 
1661 	/* Fill resources available to VF; Make sure there are enough to
1662 	 * satisfy the VF's request.
1663 	 */
1664 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1665 						  &req->resc_request, resc);
1666 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1667 		goto out;
1668 
1669 	/* Start the VF in FW */
1670 	rc = qed_sp_vf_start(p_hwfn, vf);
1671 	if (rc) {
1672 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1673 		vfpf_status = PFVF_STATUS_FAILURE;
1674 		goto out;
1675 	}
1676 
1677 	/* Fill agreed size of bulletin board in response */
1678 	resp->bulletin_size = vf->bulletin.size;
1679 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1680 
1681 	DP_VERBOSE(p_hwfn,
1682 		   QED_MSG_IOV,
1683 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1684 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1685 		   vf->abs_vf_id,
1686 		   resp->pfdev_info.chip_num,
1687 		   resp->pfdev_info.db_size,
1688 		   resp->pfdev_info.indices_per_sb,
1689 		   resp->pfdev_info.capabilities,
1690 		   resc->num_rxqs,
1691 		   resc->num_txqs,
1692 		   resc->num_sbs,
1693 		   resc->num_mac_filters,
1694 		   resc->num_vlan_filters);
1695 	vf->state = VF_ACQUIRED;
1696 
1697 	/* Prepare Response */
1698 out:
1699 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1700 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1701 }
1702 
1703 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1704 				  struct qed_vf_info *p_vf, bool val)
1705 {
1706 	struct qed_sp_vport_update_params params;
1707 	int rc;
1708 
1709 	if (val == p_vf->spoof_chk) {
1710 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1711 			   "Spoofchk value[%d] is already configured\n", val);
1712 		return 0;
1713 	}
1714 
1715 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1716 	params.opaque_fid = p_vf->opaque_fid;
1717 	params.vport_id = p_vf->vport_id;
1718 	params.update_anti_spoofing_en_flg = 1;
1719 	params.anti_spoofing_en = val;
1720 
1721 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1722 	if (!rc) {
1723 		p_vf->spoof_chk = val;
1724 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1725 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1726 			   "Spoofchk val[%d] configured\n", val);
1727 	} else {
1728 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1729 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1730 			   val, p_vf->relative_vf_id);
1731 	}
1732 
1733 	return rc;
1734 }
1735 
1736 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1737 					    struct qed_vf_info *p_vf)
1738 {
1739 	struct qed_filter_ucast filter;
1740 	int rc = 0;
1741 	int i;
1742 
1743 	memset(&filter, 0, sizeof(filter));
1744 	filter.is_rx_filter = 1;
1745 	filter.is_tx_filter = 1;
1746 	filter.vport_to_add_to = p_vf->vport_id;
1747 	filter.opcode = QED_FILTER_ADD;
1748 
1749 	/* Reconfigure vlans */
1750 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1751 		if (!p_vf->shadow_config.vlans[i].used)
1752 			continue;
1753 
1754 		filter.type = QED_FILTER_VLAN;
1755 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1756 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1757 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1758 			   filter.vlan, p_vf->relative_vf_id);
1759 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1760 					     &filter, QED_SPQ_MODE_CB, NULL);
1761 		if (rc) {
1762 			DP_NOTICE(p_hwfn,
1763 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1764 				  filter.vlan, p_vf->relative_vf_id);
1765 			break;
1766 		}
1767 	}
1768 
1769 	return rc;
1770 }
1771 
1772 static int
1773 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1774 				   struct qed_vf_info *p_vf, u64 events)
1775 {
1776 	int rc = 0;
1777 
1778 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1779 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1780 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1781 
1782 	return rc;
1783 }
1784 
1785 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1786 					  struct qed_vf_info *p_vf, u64 events)
1787 {
1788 	int rc = 0;
1789 	struct qed_filter_ucast filter;
1790 
1791 	if (!p_vf->vport_instance)
1792 		return -EINVAL;
1793 
1794 	if ((events & BIT(MAC_ADDR_FORCED)) ||
1795 	    p_vf->p_vf_info.is_trusted_configured) {
1796 		/* Since there's no way [currently] of removing the MAC,
1797 		 * we can always assume this means we need to force it.
1798 		 */
1799 		memset(&filter, 0, sizeof(filter));
1800 		filter.type = QED_FILTER_MAC;
1801 		filter.opcode = QED_FILTER_REPLACE;
1802 		filter.is_rx_filter = 1;
1803 		filter.is_tx_filter = 1;
1804 		filter.vport_to_add_to = p_vf->vport_id;
1805 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1806 
1807 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1808 					     &filter, QED_SPQ_MODE_CB, NULL);
1809 		if (rc) {
1810 			DP_NOTICE(p_hwfn,
1811 				  "PF failed to configure MAC for VF\n");
1812 			return rc;
1813 		}
1814 		if (p_vf->p_vf_info.is_trusted_configured)
1815 			p_vf->configured_features |=
1816 				BIT(VFPF_BULLETIN_MAC_ADDR);
1817 		else
1818 			p_vf->configured_features |=
1819 				BIT(MAC_ADDR_FORCED);
1820 	}
1821 
1822 	if (events & BIT(VLAN_ADDR_FORCED)) {
1823 		struct qed_sp_vport_update_params vport_update;
1824 		u8 removal;
1825 		int i;
1826 
1827 		memset(&filter, 0, sizeof(filter));
1828 		filter.type = QED_FILTER_VLAN;
1829 		filter.is_rx_filter = 1;
1830 		filter.is_tx_filter = 1;
1831 		filter.vport_to_add_to = p_vf->vport_id;
1832 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1833 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1834 					      QED_FILTER_FLUSH;
1835 
1836 		/* Send the ramrod */
1837 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1838 					     &filter, QED_SPQ_MODE_CB, NULL);
1839 		if (rc) {
1840 			DP_NOTICE(p_hwfn,
1841 				  "PF failed to configure VLAN for VF\n");
1842 			return rc;
1843 		}
1844 
1845 		/* Update the default-vlan & silent vlan stripping */
1846 		memset(&vport_update, 0, sizeof(vport_update));
1847 		vport_update.opaque_fid = p_vf->opaque_fid;
1848 		vport_update.vport_id = p_vf->vport_id;
1849 		vport_update.update_default_vlan_enable_flg = 1;
1850 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1851 		vport_update.update_default_vlan_flg = 1;
1852 		vport_update.default_vlan = filter.vlan;
1853 
1854 		vport_update.update_inner_vlan_removal_flg = 1;
1855 		removal = filter.vlan ? 1
1856 				      : p_vf->shadow_config.inner_vlan_removal;
1857 		vport_update.inner_vlan_removal_flg = removal;
1858 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1859 		rc = qed_sp_vport_update(p_hwfn,
1860 					 &vport_update,
1861 					 QED_SPQ_MODE_EBLOCK, NULL);
1862 		if (rc) {
1863 			DP_NOTICE(p_hwfn,
1864 				  "PF failed to configure VF vport for vlan\n");
1865 			return rc;
1866 		}
1867 
1868 		/* Update all the Rx queues */
1869 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1870 			struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1871 			struct qed_queue_cid *p_cid = NULL;
1872 
1873 			/* There can be at most 1 Rx queue on qzone. Find it */
1874 			p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1875 			if (!p_cid)
1876 				continue;
1877 
1878 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1879 							 (void **)&p_cid,
1880 							 1, 0, 1,
1881 							 QED_SPQ_MODE_EBLOCK,
1882 							 NULL);
1883 			if (rc) {
1884 				DP_NOTICE(p_hwfn,
1885 					  "Failed to send Rx update fo queue[0x%04x]\n",
1886 					  p_cid->rel.queue_id);
1887 				return rc;
1888 			}
1889 		}
1890 
1891 		if (filter.vlan)
1892 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1893 		else
1894 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1895 	}
1896 
1897 	/* If forced features are terminated, we need to configure the shadow
1898 	 * configuration back again.
1899 	 */
1900 	if (events)
1901 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1902 
1903 	return rc;
1904 }
1905 
1906 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1907 				       struct qed_ptt *p_ptt,
1908 				       struct qed_vf_info *vf)
1909 {
1910 	struct qed_sp_vport_start_params params = { 0 };
1911 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1912 	struct vfpf_vport_start_tlv *start;
1913 	u8 status = PFVF_STATUS_SUCCESS;
1914 	struct qed_vf_info *vf_info;
1915 	u64 *p_bitmap;
1916 	int sb_id;
1917 	int rc;
1918 
1919 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1920 	if (!vf_info) {
1921 		DP_NOTICE(p_hwfn->cdev,
1922 			  "Failed to get VF info, invalid vfid [%d]\n",
1923 			  vf->relative_vf_id);
1924 		return;
1925 	}
1926 
1927 	vf->state = VF_ENABLED;
1928 	start = &mbx->req_virt->start_vport;
1929 
1930 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1931 
1932 	/* Initialize Status block in CAU */
1933 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1934 		if (!start->sb_addr[sb_id]) {
1935 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1936 				   "VF[%d] did not fill the address of SB %d\n",
1937 				   vf->relative_vf_id, sb_id);
1938 			break;
1939 		}
1940 
1941 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1942 				    start->sb_addr[sb_id],
1943 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1944 	}
1945 
1946 	vf->mtu = start->mtu;
1947 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1948 
1949 	/* Take into consideration configuration forced by hypervisor;
1950 	 * If none is configured, use the supplied VF values [for old
1951 	 * vfs that would still be fine, since they passed '0' as padding].
1952 	 */
1953 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1954 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1955 		u8 vf_req = start->only_untagged;
1956 
1957 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1958 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1959 	}
1960 
1961 	params.tpa_mode = start->tpa_mode;
1962 	params.remove_inner_vlan = start->inner_vlan_removal;
1963 	params.tx_switching = true;
1964 
1965 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1966 	params.drop_ttl0 = false;
1967 	params.concrete_fid = vf->concrete_fid;
1968 	params.opaque_fid = vf->opaque_fid;
1969 	params.vport_id = vf->vport_id;
1970 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1971 	params.mtu = vf->mtu;
1972 
1973 	/* Non trusted VFs should enable control frame filtering */
1974 	params.check_mac = !vf->p_vf_info.is_trusted_configured;
1975 
1976 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1977 	if (rc) {
1978 		DP_ERR(p_hwfn,
1979 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1980 		status = PFVF_STATUS_FAILURE;
1981 	} else {
1982 		vf->vport_instance++;
1983 
1984 		/* Force configuration if needed on the newly opened vport */
1985 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1986 
1987 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1988 	}
1989 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1990 			     sizeof(struct pfvf_def_resp_tlv), status);
1991 }
1992 
1993 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1994 				      struct qed_ptt *p_ptt,
1995 				      struct qed_vf_info *vf)
1996 {
1997 	u8 status = PFVF_STATUS_SUCCESS;
1998 	int rc;
1999 
2000 	vf->vport_instance--;
2001 	vf->spoof_chk = false;
2002 
2003 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
2004 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
2005 		vf->b_malicious = true;
2006 		DP_NOTICE(p_hwfn,
2007 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
2008 			  vf->abs_vf_id);
2009 		status = PFVF_STATUS_MALICIOUS;
2010 		goto out;
2011 	}
2012 
2013 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
2014 	if (rc) {
2015 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
2016 		       rc);
2017 		status = PFVF_STATUS_FAILURE;
2018 	}
2019 
2020 	/* Forget the configuration on the vport */
2021 	vf->configured_features = 0;
2022 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2023 
2024 out:
2025 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2026 			     sizeof(struct pfvf_def_resp_tlv), status);
2027 }
2028 
2029 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2030 					  struct qed_ptt *p_ptt,
2031 					  struct qed_vf_info *vf,
2032 					  u8 status, bool b_legacy)
2033 {
2034 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2035 	struct pfvf_start_queue_resp_tlv *p_tlv;
2036 	struct vfpf_start_rxq_tlv *req;
2037 	u16 length;
2038 
2039 	mbx->offset = (u8 *)mbx->reply_virt;
2040 
2041 	/* Taking a bigger struct instead of adding a TLV to list was a
2042 	 * mistake, but one which we're now stuck with, as some older
2043 	 * clients assume the size of the previous response.
2044 	 */
2045 	if (!b_legacy)
2046 		length = sizeof(*p_tlv);
2047 	else
2048 		length = sizeof(struct pfvf_def_resp_tlv);
2049 
2050 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2051 			    length);
2052 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2053 		    sizeof(struct channel_list_end_tlv));
2054 
2055 	/* Update the TLV with the response */
2056 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2057 		req = &mbx->req_virt->start_rxq;
2058 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2059 				offsetof(struct mstorm_vf_zone,
2060 					 non_trigger.eth_rx_queue_producers) +
2061 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
2062 	}
2063 
2064 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2065 }
2066 
2067 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2068 			     struct qed_vf_info *p_vf, bool b_is_tx)
2069 {
2070 	struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2071 	struct vfpf_qid_tlv *p_qid_tlv;
2072 
2073 	/* Search for the qid if the VF published its going to provide it */
2074 	if (!(p_vf->acquire.vfdev_info.capabilities &
2075 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2076 		if (b_is_tx)
2077 			return QED_IOV_LEGACY_QID_TX;
2078 		else
2079 			return QED_IOV_LEGACY_QID_RX;
2080 	}
2081 
2082 	p_qid_tlv = (struct vfpf_qid_tlv *)
2083 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2084 					     CHANNEL_TLV_QID);
2085 	if (!p_qid_tlv) {
2086 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2087 			   "VF[%2x]: Failed to provide qid\n",
2088 			   p_vf->relative_vf_id);
2089 
2090 		return QED_IOV_QID_INVALID;
2091 	}
2092 
2093 	if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2094 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2095 			   "VF[%02x]: Provided qid out-of-bounds %02x\n",
2096 			   p_vf->relative_vf_id, p_qid_tlv->qid);
2097 		return QED_IOV_QID_INVALID;
2098 	}
2099 
2100 	return p_qid_tlv->qid;
2101 }
2102 
2103 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2104 				     struct qed_ptt *p_ptt,
2105 				     struct qed_vf_info *vf)
2106 {
2107 	struct qed_queue_start_common_params params;
2108 	struct qed_queue_cid_vf_params vf_params;
2109 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2110 	u8 status = PFVF_STATUS_NO_RESOURCE;
2111 	u8 qid_usage_idx, vf_legacy = 0;
2112 	struct vfpf_start_rxq_tlv *req;
2113 	struct qed_vf_queue *p_queue;
2114 	struct qed_queue_cid *p_cid;
2115 	struct qed_sb_info sb_dummy;
2116 	int rc;
2117 
2118 	req = &mbx->req_virt->start_rxq;
2119 
2120 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2121 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2122 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2123 		goto out;
2124 
2125 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2126 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2127 		goto out;
2128 
2129 	p_queue = &vf->vf_queues[req->rx_qid];
2130 	if (p_queue->cids[qid_usage_idx].p_cid)
2131 		goto out;
2132 
2133 	vf_legacy = qed_vf_calculate_legacy(vf);
2134 
2135 	/* Acquire a new queue-cid */
2136 	memset(&params, 0, sizeof(params));
2137 	params.queue_id = p_queue->fw_rx_qid;
2138 	params.vport_id = vf->vport_id;
2139 	params.stats_id = vf->abs_vf_id + 0x10;
2140 	/* Since IGU index is passed via sb_info, construct a dummy one */
2141 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2142 	sb_dummy.igu_sb_id = req->hw_sb;
2143 	params.p_sb = &sb_dummy;
2144 	params.sb_idx = req->sb_index;
2145 
2146 	memset(&vf_params, 0, sizeof(vf_params));
2147 	vf_params.vfid = vf->relative_vf_id;
2148 	vf_params.vf_qid = (u8)req->rx_qid;
2149 	vf_params.vf_legacy = vf_legacy;
2150 	vf_params.qid_usage_idx = qid_usage_idx;
2151 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2152 				     &params, true, &vf_params);
2153 	if (!p_cid)
2154 		goto out;
2155 
2156 	/* Legacy VFs have their Producers in a different location, which they
2157 	 * calculate on their own and clean the producer prior to this.
2158 	 */
2159 	if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2160 		REG_WR(p_hwfn,
2161 		       GTT_BAR0_MAP_REG_MSDM_RAM +
2162 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2163 		       0);
2164 
2165 	rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2166 				      req->bd_max_bytes,
2167 				      req->rxq_addr,
2168 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2169 	if (rc) {
2170 		status = PFVF_STATUS_FAILURE;
2171 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2172 	} else {
2173 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2174 		p_queue->cids[qid_usage_idx].b_is_tx = false;
2175 		status = PFVF_STATUS_SUCCESS;
2176 		vf->num_active_rxqs++;
2177 	}
2178 
2179 out:
2180 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2181 				      !!(vf_legacy &
2182 					 QED_QCID_LEGACY_VF_RX_PROD));
2183 }
2184 
2185 static void
2186 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2187 			       struct qed_tunnel_info *p_tun,
2188 			       u16 tunn_feature_mask)
2189 {
2190 	p_resp->tunn_feature_mask = tunn_feature_mask;
2191 	p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2192 	p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2193 	p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2194 	p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2195 	p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2196 	p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2197 	p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2198 	p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2199 	p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2200 	p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2201 	p_resp->geneve_udp_port = p_tun->geneve_port.port;
2202 	p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2203 }
2204 
2205 static void
2206 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2207 			      struct qed_tunn_update_type *p_tun,
2208 			      enum qed_tunn_mode mask, u8 tun_cls)
2209 {
2210 	if (p_req->tun_mode_update_mask & BIT(mask)) {
2211 		p_tun->b_update_mode = true;
2212 
2213 		if (p_req->tunn_mode & BIT(mask))
2214 			p_tun->b_mode_enabled = true;
2215 	}
2216 
2217 	p_tun->tun_cls = tun_cls;
2218 }
2219 
2220 static void
2221 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2222 			    struct qed_tunn_update_type *p_tun,
2223 			    struct qed_tunn_update_udp_port *p_port,
2224 			    enum qed_tunn_mode mask,
2225 			    u8 tun_cls, u8 update_port, u16 port)
2226 {
2227 	if (update_port) {
2228 		p_port->b_update_port = true;
2229 		p_port->port = port;
2230 	}
2231 
2232 	__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2233 }
2234 
2235 static bool
2236 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2237 {
2238 	bool b_update_requested = false;
2239 
2240 	if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2241 	    p_req->update_geneve_port || p_req->update_vxlan_port)
2242 		b_update_requested = true;
2243 
2244 	return b_update_requested;
2245 }
2246 
2247 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2248 {
2249 	if (tun->b_update_mode && !tun->b_mode_enabled) {
2250 		tun->b_update_mode = false;
2251 		*rc = -EINVAL;
2252 	}
2253 }
2254 
2255 static int
2256 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2257 				   u16 *tun_features, bool *update,
2258 				   struct qed_tunnel_info *tun_src)
2259 {
2260 	struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2261 	struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2262 	u16 bultn_vxlan_port, bultn_geneve_port;
2263 	void *cookie = p_hwfn->cdev->ops_cookie;
2264 	int i, rc = 0;
2265 
2266 	*tun_features = p_hwfn->cdev->tunn_feature_mask;
2267 	bultn_vxlan_port = tun->vxlan_port.port;
2268 	bultn_geneve_port = tun->geneve_port.port;
2269 	qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2270 	qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2271 	qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2272 	qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2273 	qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2274 
2275 	if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2276 	    (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2277 	     tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2278 	     tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2279 	     tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2280 	     tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2281 		tun_src->b_update_rx_cls = false;
2282 		tun_src->b_update_tx_cls = false;
2283 		rc = -EINVAL;
2284 	}
2285 
2286 	if (tun_src->vxlan_port.b_update_port) {
2287 		if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2288 			tun_src->vxlan_port.b_update_port = false;
2289 		} else {
2290 			*update = true;
2291 			bultn_vxlan_port = tun_src->vxlan_port.port;
2292 		}
2293 	}
2294 
2295 	if (tun_src->geneve_port.b_update_port) {
2296 		if (tun_src->geneve_port.port == tun->geneve_port.port) {
2297 			tun_src->geneve_port.b_update_port = false;
2298 		} else {
2299 			*update = true;
2300 			bultn_geneve_port = tun_src->geneve_port.port;
2301 		}
2302 	}
2303 
2304 	qed_for_each_vf(p_hwfn, i) {
2305 		qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2306 					       bultn_geneve_port);
2307 	}
2308 
2309 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2310 	ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2311 
2312 	return rc;
2313 }
2314 
2315 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2316 					     struct qed_ptt *p_ptt,
2317 					     struct qed_vf_info *p_vf)
2318 {
2319 	struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2320 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2321 	struct pfvf_update_tunn_param_tlv *p_resp;
2322 	struct vfpf_update_tunn_param_tlv *p_req;
2323 	u8 status = PFVF_STATUS_SUCCESS;
2324 	bool b_update_required = false;
2325 	struct qed_tunnel_info tunn;
2326 	u16 tunn_feature_mask = 0;
2327 	int i, rc = 0;
2328 
2329 	mbx->offset = (u8 *)mbx->reply_virt;
2330 
2331 	memset(&tunn, 0, sizeof(tunn));
2332 	p_req = &mbx->req_virt->tunn_param_update;
2333 
2334 	if (!qed_iov_pf_validate_tunn_param(p_req)) {
2335 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2336 			   "No tunnel update requested by VF\n");
2337 		status = PFVF_STATUS_FAILURE;
2338 		goto send_resp;
2339 	}
2340 
2341 	tunn.b_update_rx_cls = p_req->update_tun_cls;
2342 	tunn.b_update_tx_cls = p_req->update_tun_cls;
2343 
2344 	qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2345 				    QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2346 				    p_req->update_vxlan_port,
2347 				    p_req->vxlan_port);
2348 	qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2349 				    QED_MODE_L2GENEVE_TUNN,
2350 				    p_req->l2geneve_clss,
2351 				    p_req->update_geneve_port,
2352 				    p_req->geneve_port);
2353 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2354 				      QED_MODE_IPGENEVE_TUNN,
2355 				      p_req->ipgeneve_clss);
2356 	__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2357 				      QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2358 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2359 				      QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2360 
2361 	/* If PF modifies VF's req then it should
2362 	 * still return an error in case of partial configuration
2363 	 * or modified configuration as opposed to requested one.
2364 	 */
2365 	rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2366 						&b_update_required, &tunn);
2367 
2368 	if (rc)
2369 		status = PFVF_STATUS_FAILURE;
2370 
2371 	/* If QED client is willing to update anything ? */
2372 	if (b_update_required) {
2373 		u16 geneve_port;
2374 
2375 		rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2376 					       QED_SPQ_MODE_EBLOCK, NULL);
2377 		if (rc)
2378 			status = PFVF_STATUS_FAILURE;
2379 
2380 		geneve_port = p_tun->geneve_port.port;
2381 		qed_for_each_vf(p_hwfn, i) {
2382 			qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2383 						       p_tun->vxlan_port.port,
2384 						       geneve_port);
2385 		}
2386 	}
2387 
2388 send_resp:
2389 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2390 			     CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2391 
2392 	qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2393 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2394 		    sizeof(struct channel_list_end_tlv));
2395 
2396 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2397 }
2398 
2399 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2400 					  struct qed_ptt *p_ptt,
2401 					  struct qed_vf_info *p_vf,
2402 					  u32 cid, u8 status)
2403 {
2404 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2405 	struct pfvf_start_queue_resp_tlv *p_tlv;
2406 	bool b_legacy = false;
2407 	u16 length;
2408 
2409 	mbx->offset = (u8 *)mbx->reply_virt;
2410 
2411 	/* Taking a bigger struct instead of adding a TLV to list was a
2412 	 * mistake, but one which we're now stuck with, as some older
2413 	 * clients assume the size of the previous response.
2414 	 */
2415 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2416 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2417 		b_legacy = true;
2418 
2419 	if (!b_legacy)
2420 		length = sizeof(*p_tlv);
2421 	else
2422 		length = sizeof(struct pfvf_def_resp_tlv);
2423 
2424 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2425 			    length);
2426 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2427 		    sizeof(struct channel_list_end_tlv));
2428 
2429 	/* Update the TLV with the response */
2430 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2431 		p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2432 
2433 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2434 }
2435 
2436 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2437 				     struct qed_ptt *p_ptt,
2438 				     struct qed_vf_info *vf)
2439 {
2440 	struct qed_queue_start_common_params params;
2441 	struct qed_queue_cid_vf_params vf_params;
2442 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2443 	u8 status = PFVF_STATUS_NO_RESOURCE;
2444 	struct vfpf_start_txq_tlv *req;
2445 	struct qed_vf_queue *p_queue;
2446 	struct qed_queue_cid *p_cid;
2447 	struct qed_sb_info sb_dummy;
2448 	u8 qid_usage_idx, vf_legacy;
2449 	u32 cid = 0;
2450 	int rc;
2451 	u16 pq;
2452 
2453 	memset(&params, 0, sizeof(params));
2454 	req = &mbx->req_virt->start_txq;
2455 
2456 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2457 				  QED_IOV_VALIDATE_Q_NA) ||
2458 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2459 		goto out;
2460 
2461 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2462 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2463 		goto out;
2464 
2465 	p_queue = &vf->vf_queues[req->tx_qid];
2466 	if (p_queue->cids[qid_usage_idx].p_cid)
2467 		goto out;
2468 
2469 	vf_legacy = qed_vf_calculate_legacy(vf);
2470 
2471 	/* Acquire a new queue-cid */
2472 	params.queue_id = p_queue->fw_tx_qid;
2473 	params.vport_id = vf->vport_id;
2474 	params.stats_id = vf->abs_vf_id + 0x10;
2475 
2476 	/* Since IGU index is passed via sb_info, construct a dummy one */
2477 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2478 	sb_dummy.igu_sb_id = req->hw_sb;
2479 	params.p_sb = &sb_dummy;
2480 	params.sb_idx = req->sb_index;
2481 
2482 	memset(&vf_params, 0, sizeof(vf_params));
2483 	vf_params.vfid = vf->relative_vf_id;
2484 	vf_params.vf_qid = (u8)req->tx_qid;
2485 	vf_params.vf_legacy = vf_legacy;
2486 	vf_params.qid_usage_idx = qid_usage_idx;
2487 
2488 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2489 				     &params, false, &vf_params);
2490 	if (!p_cid)
2491 		goto out;
2492 
2493 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2494 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2495 				      req->pbl_addr, req->pbl_size, pq);
2496 	if (rc) {
2497 		status = PFVF_STATUS_FAILURE;
2498 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2499 	} else {
2500 		status = PFVF_STATUS_SUCCESS;
2501 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2502 		p_queue->cids[qid_usage_idx].b_is_tx = true;
2503 		cid = p_cid->cid;
2504 	}
2505 
2506 out:
2507 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2508 }
2509 
2510 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2511 				struct qed_vf_info *vf,
2512 				u16 rxq_id,
2513 				u8 qid_usage_idx, bool cqe_completion)
2514 {
2515 	struct qed_vf_queue *p_queue;
2516 	int rc = 0;
2517 
2518 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2519 		DP_VERBOSE(p_hwfn,
2520 			   QED_MSG_IOV,
2521 			   "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2522 			   vf->relative_vf_id, rxq_id, qid_usage_idx);
2523 		return -EINVAL;
2524 	}
2525 
2526 	p_queue = &vf->vf_queues[rxq_id];
2527 
2528 	/* We've validated the index and the existence of the active RXQ -
2529 	 * now we need to make sure that it's using the correct qid.
2530 	 */
2531 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2532 	    p_queue->cids[qid_usage_idx].b_is_tx) {
2533 		struct qed_queue_cid *p_cid;
2534 
2535 		p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2536 		DP_VERBOSE(p_hwfn,
2537 			   QED_MSG_IOV,
2538 			   "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2539 			   vf->relative_vf_id,
2540 			   rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2541 		return -EINVAL;
2542 	}
2543 
2544 	/* Now that we know we have a valid Rx-queue - close it */
2545 	rc = qed_eth_rx_queue_stop(p_hwfn,
2546 				   p_queue->cids[qid_usage_idx].p_cid,
2547 				   false, cqe_completion);
2548 	if (rc)
2549 		return rc;
2550 
2551 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2552 	vf->num_active_rxqs--;
2553 
2554 	return 0;
2555 }
2556 
2557 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2558 				struct qed_vf_info *vf,
2559 				u16 txq_id, u8 qid_usage_idx)
2560 {
2561 	struct qed_vf_queue *p_queue;
2562 	int rc = 0;
2563 
2564 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2565 		return -EINVAL;
2566 
2567 	p_queue = &vf->vf_queues[txq_id];
2568 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2569 	    !p_queue->cids[qid_usage_idx].b_is_tx)
2570 		return -EINVAL;
2571 
2572 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2573 	if (rc)
2574 		return rc;
2575 
2576 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2577 	return 0;
2578 }
2579 
2580 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2581 				     struct qed_ptt *p_ptt,
2582 				     struct qed_vf_info *vf)
2583 {
2584 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2585 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2586 	u8 status = PFVF_STATUS_FAILURE;
2587 	struct vfpf_stop_rxqs_tlv *req;
2588 	u8 qid_usage_idx;
2589 	int rc;
2590 
2591 	/* There has never been an official driver that used this interface
2592 	 * for stopping multiple queues, and it is now considered deprecated.
2593 	 * Validate this isn't used here.
2594 	 */
2595 	req = &mbx->req_virt->stop_rxqs;
2596 	if (req->num_rxqs != 1) {
2597 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2598 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2599 			   vf->relative_vf_id);
2600 		status = PFVF_STATUS_NOT_SUPPORTED;
2601 		goto out;
2602 	}
2603 
2604 	/* Find which qid-index is associated with the queue */
2605 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2606 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2607 		goto out;
2608 
2609 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2610 				  qid_usage_idx, req->cqe_completion);
2611 	if (!rc)
2612 		status = PFVF_STATUS_SUCCESS;
2613 out:
2614 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2615 			     length, status);
2616 }
2617 
2618 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2619 				     struct qed_ptt *p_ptt,
2620 				     struct qed_vf_info *vf)
2621 {
2622 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2623 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2624 	u8 status = PFVF_STATUS_FAILURE;
2625 	struct vfpf_stop_txqs_tlv *req;
2626 	u8 qid_usage_idx;
2627 	int rc;
2628 
2629 	/* There has never been an official driver that used this interface
2630 	 * for stopping multiple queues, and it is now considered deprecated.
2631 	 * Validate this isn't used here.
2632 	 */
2633 	req = &mbx->req_virt->stop_txqs;
2634 	if (req->num_txqs != 1) {
2635 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2636 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2637 			   vf->relative_vf_id);
2638 		status = PFVF_STATUS_NOT_SUPPORTED;
2639 		goto out;
2640 	}
2641 
2642 	/* Find which qid-index is associated with the queue */
2643 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2644 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2645 		goto out;
2646 
2647 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2648 	if (!rc)
2649 		status = PFVF_STATUS_SUCCESS;
2650 
2651 out:
2652 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2653 			     length, status);
2654 }
2655 
2656 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2657 				       struct qed_ptt *p_ptt,
2658 				       struct qed_vf_info *vf)
2659 {
2660 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2661 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2662 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2663 	struct vfpf_update_rxq_tlv *req;
2664 	u8 status = PFVF_STATUS_FAILURE;
2665 	u8 complete_event_flg;
2666 	u8 complete_cqe_flg;
2667 	u8 qid_usage_idx;
2668 	int rc;
2669 	u8 i;
2670 
2671 	req = &mbx->req_virt->update_rxq;
2672 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2673 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2674 
2675 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2676 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2677 		goto out;
2678 
2679 	/* There shouldn't exist a VF that uses queue-qids yet uses this
2680 	 * API with multiple Rx queues. Validate this.
2681 	 */
2682 	if ((vf->acquire.vfdev_info.capabilities &
2683 	     VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2684 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2685 			   "VF[%d] supports QIDs but sends multiple queues\n",
2686 			   vf->relative_vf_id);
2687 		goto out;
2688 	}
2689 
2690 	/* Validate inputs - for the legacy case this is still true since
2691 	 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2692 	 */
2693 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2694 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2695 					  QED_IOV_VALIDATE_Q_NA) ||
2696 		    !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2697 		    vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2698 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2699 				   "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2700 				   vf->relative_vf_id, req->rx_qid,
2701 				   req->num_rxqs);
2702 			goto out;
2703 		}
2704 	}
2705 
2706 	/* Prepare the handlers */
2707 	for (i = 0; i < req->num_rxqs; i++) {
2708 		u16 qid = req->rx_qid + i;
2709 
2710 		handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2711 	}
2712 
2713 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2714 					 req->num_rxqs,
2715 					 complete_cqe_flg,
2716 					 complete_event_flg,
2717 					 QED_SPQ_MODE_EBLOCK, NULL);
2718 	if (rc)
2719 		goto out;
2720 
2721 	status = PFVF_STATUS_SUCCESS;
2722 out:
2723 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2724 			     length, status);
2725 }
2726 
2727 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2728 			       void *p_tlvs_list, u16 req_type)
2729 {
2730 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2731 	int len = 0;
2732 
2733 	do {
2734 		if (!p_tlv->length) {
2735 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2736 			return NULL;
2737 		}
2738 
2739 		if (p_tlv->type == req_type) {
2740 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2741 				   "Extended tlv type %d, length %d found\n",
2742 				   p_tlv->type, p_tlv->length);
2743 			return p_tlv;
2744 		}
2745 
2746 		len += p_tlv->length;
2747 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2748 
2749 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2750 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2751 			return NULL;
2752 		}
2753 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2754 
2755 	return NULL;
2756 }
2757 
2758 static void
2759 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2760 			    struct qed_sp_vport_update_params *p_data,
2761 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2762 {
2763 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2764 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2765 
2766 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2767 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2768 	if (!p_act_tlv)
2769 		return;
2770 
2771 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2772 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2773 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2774 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2775 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2776 }
2777 
2778 static void
2779 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2780 			     struct qed_sp_vport_update_params *p_data,
2781 			     struct qed_vf_info *p_vf,
2782 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2783 {
2784 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2785 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2786 
2787 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2788 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2789 	if (!p_vlan_tlv)
2790 		return;
2791 
2792 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2793 
2794 	/* Ignore the VF request if we're forcing a vlan */
2795 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2796 		p_data->update_inner_vlan_removal_flg = 1;
2797 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2798 	}
2799 
2800 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2801 }
2802 
2803 static void
2804 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2805 			    struct qed_sp_vport_update_params *p_data,
2806 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2807 {
2808 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2809 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2810 
2811 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2812 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2813 						   tlv);
2814 	if (!p_tx_switch_tlv)
2815 		return;
2816 
2817 	p_data->update_tx_switching_flg = 1;
2818 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2819 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2820 }
2821 
2822 static void
2823 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2824 				  struct qed_sp_vport_update_params *p_data,
2825 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2826 {
2827 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2828 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2829 
2830 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2831 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2832 	if (!p_mcast_tlv)
2833 		return;
2834 
2835 	p_data->update_approx_mcast_flg = 1;
2836 	memcpy(p_data->bins, p_mcast_tlv->bins,
2837 	       sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2838 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2839 }
2840 
2841 static void
2842 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2843 			      struct qed_sp_vport_update_params *p_data,
2844 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2845 {
2846 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2847 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2848 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2849 
2850 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2851 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2852 	if (!p_accept_tlv)
2853 		return;
2854 
2855 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2856 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2857 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2858 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2859 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2860 }
2861 
2862 static void
2863 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2864 				  struct qed_sp_vport_update_params *p_data,
2865 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2866 {
2867 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2868 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2869 
2870 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2871 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2872 						     tlv);
2873 	if (!p_accept_any_vlan)
2874 		return;
2875 
2876 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2877 	p_data->update_accept_any_vlan_flg =
2878 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2879 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2880 }
2881 
2882 static void
2883 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2884 			    struct qed_vf_info *vf,
2885 			    struct qed_sp_vport_update_params *p_data,
2886 			    struct qed_rss_params *p_rss,
2887 			    struct qed_iov_vf_mbx *p_mbx,
2888 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2889 {
2890 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2891 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2892 	bool b_reject = false;
2893 	u16 table_size;
2894 	u16 i, q_idx;
2895 
2896 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2897 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2898 	if (!p_rss_tlv) {
2899 		p_data->rss_params = NULL;
2900 		return;
2901 	}
2902 
2903 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2904 
2905 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2906 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2907 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2908 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2909 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2910 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2911 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2912 				   VFPF_UPDATE_RSS_KEY_FLAG);
2913 
2914 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2915 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2916 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2917 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2918 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2919 
2920 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2921 			   (1 << p_rss_tlv->rss_table_size_log));
2922 
2923 	for (i = 0; i < table_size; i++) {
2924 		struct qed_queue_cid *p_cid;
2925 
2926 		q_idx = p_rss_tlv->rss_ind_table[i];
2927 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2928 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2929 			DP_VERBOSE(p_hwfn,
2930 				   QED_MSG_IOV,
2931 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2932 				   vf->relative_vf_id, q_idx);
2933 			b_reject = true;
2934 			goto out;
2935 		}
2936 
2937 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2938 		p_rss->rss_ind_table[i] = p_cid;
2939 	}
2940 
2941 	p_data->rss_params = p_rss;
2942 out:
2943 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2944 	if (!b_reject)
2945 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2946 }
2947 
2948 static void
2949 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2950 				struct qed_vf_info *vf,
2951 				struct qed_sp_vport_update_params *p_data,
2952 				struct qed_sge_tpa_params *p_sge_tpa,
2953 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2954 {
2955 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2956 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2957 
2958 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2959 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2960 
2961 	if (!p_sge_tpa_tlv) {
2962 		p_data->sge_tpa_params = NULL;
2963 		return;
2964 	}
2965 
2966 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2967 
2968 	p_sge_tpa->update_tpa_en_flg =
2969 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2970 	p_sge_tpa->update_tpa_param_flg =
2971 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2972 		VFPF_UPDATE_TPA_PARAM_FLAG);
2973 
2974 	p_sge_tpa->tpa_ipv4_en_flg =
2975 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2976 	p_sge_tpa->tpa_ipv6_en_flg =
2977 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2978 	p_sge_tpa->tpa_pkt_split_flg =
2979 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2980 	p_sge_tpa->tpa_hdr_data_split_flg =
2981 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2982 	p_sge_tpa->tpa_gro_consistent_flg =
2983 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2984 
2985 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2986 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2987 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2988 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2989 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2990 
2991 	p_data->sge_tpa_params = p_sge_tpa;
2992 
2993 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2994 }
2995 
2996 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2997 				    u8 vfid,
2998 				    struct qed_sp_vport_update_params *params,
2999 				    u16 *tlvs)
3000 {
3001 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
3002 	struct qed_filter_accept_flags *flags = &params->accept_flags;
3003 	struct qed_public_vf_info *vf_info;
3004 
3005 	/* Untrusted VFs can't even be trusted to know that fact.
3006 	 * Simply indicate everything is configured fine, and trace
3007 	 * configuration 'behind their back'.
3008 	 */
3009 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
3010 		return 0;
3011 
3012 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3013 
3014 	if (flags->update_rx_mode_config) {
3015 		vf_info->rx_accept_mode = flags->rx_accept_filter;
3016 		if (!vf_info->is_trusted_configured)
3017 			flags->rx_accept_filter &= ~mask;
3018 	}
3019 
3020 	if (flags->update_tx_mode_config) {
3021 		vf_info->tx_accept_mode = flags->tx_accept_filter;
3022 		if (!vf_info->is_trusted_configured)
3023 			flags->tx_accept_filter &= ~mask;
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3030 					struct qed_ptt *p_ptt,
3031 					struct qed_vf_info *vf)
3032 {
3033 	struct qed_rss_params *p_rss_params = NULL;
3034 	struct qed_sp_vport_update_params params;
3035 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3036 	struct qed_sge_tpa_params sge_tpa_params;
3037 	u16 tlvs_mask = 0, tlvs_accepted = 0;
3038 	u8 status = PFVF_STATUS_SUCCESS;
3039 	u16 length;
3040 	int rc;
3041 
3042 	/* Valiate PF can send such a request */
3043 	if (!vf->vport_instance) {
3044 		DP_VERBOSE(p_hwfn,
3045 			   QED_MSG_IOV,
3046 			   "No VPORT instance available for VF[%d], failing vport update\n",
3047 			   vf->abs_vf_id);
3048 		status = PFVF_STATUS_FAILURE;
3049 		goto out;
3050 	}
3051 	p_rss_params = vzalloc(sizeof(*p_rss_params));
3052 	if (p_rss_params == NULL) {
3053 		status = PFVF_STATUS_FAILURE;
3054 		goto out;
3055 	}
3056 
3057 	memset(&params, 0, sizeof(params));
3058 	params.opaque_fid = vf->opaque_fid;
3059 	params.vport_id = vf->vport_id;
3060 	params.rss_params = NULL;
3061 
3062 	/* Search for extended tlvs list and update values
3063 	 * from VF in struct qed_sp_vport_update_params.
3064 	 */
3065 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3066 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3067 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3068 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3069 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3070 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3071 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3072 					&sge_tpa_params, mbx, &tlvs_mask);
3073 
3074 	tlvs_accepted = tlvs_mask;
3075 
3076 	/* Some of the extended TLVs need to be validated first; In that case,
3077 	 * they can update the mask without updating the accepted [so that
3078 	 * PF could communicate to VF it has rejected request].
3079 	 */
3080 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3081 				    mbx, &tlvs_mask, &tlvs_accepted);
3082 
3083 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3084 				     &params, &tlvs_accepted)) {
3085 		tlvs_accepted = 0;
3086 		status = PFVF_STATUS_NOT_SUPPORTED;
3087 		goto out;
3088 	}
3089 
3090 	if (!tlvs_accepted) {
3091 		if (tlvs_mask)
3092 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3093 				   "Upper-layer prevents VF vport configuration\n");
3094 		else
3095 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3096 				   "No feature tlvs found for vport update\n");
3097 		status = PFVF_STATUS_NOT_SUPPORTED;
3098 		goto out;
3099 	}
3100 
3101 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3102 
3103 	if (rc)
3104 		status = PFVF_STATUS_FAILURE;
3105 
3106 out:
3107 	vfree(p_rss_params);
3108 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3109 						  tlvs_mask, tlvs_accepted);
3110 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3111 }
3112 
3113 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3114 					 struct qed_vf_info *p_vf,
3115 					 struct qed_filter_ucast *p_params)
3116 {
3117 	int i;
3118 
3119 	/* First remove entries and then add new ones */
3120 	if (p_params->opcode == QED_FILTER_REMOVE) {
3121 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3122 			if (p_vf->shadow_config.vlans[i].used &&
3123 			    p_vf->shadow_config.vlans[i].vid ==
3124 			    p_params->vlan) {
3125 				p_vf->shadow_config.vlans[i].used = false;
3126 				break;
3127 			}
3128 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3129 			DP_VERBOSE(p_hwfn,
3130 				   QED_MSG_IOV,
3131 				   "VF [%d] - Tries to remove a non-existing vlan\n",
3132 				   p_vf->relative_vf_id);
3133 			return -EINVAL;
3134 		}
3135 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3136 		   p_params->opcode == QED_FILTER_FLUSH) {
3137 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3138 			p_vf->shadow_config.vlans[i].used = false;
3139 	}
3140 
3141 	/* In forced mode, we're willing to remove entries - but we don't add
3142 	 * new ones.
3143 	 */
3144 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3145 		return 0;
3146 
3147 	if (p_params->opcode == QED_FILTER_ADD ||
3148 	    p_params->opcode == QED_FILTER_REPLACE) {
3149 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3150 			if (p_vf->shadow_config.vlans[i].used)
3151 				continue;
3152 
3153 			p_vf->shadow_config.vlans[i].used = true;
3154 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3155 			break;
3156 		}
3157 
3158 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3159 			DP_VERBOSE(p_hwfn,
3160 				   QED_MSG_IOV,
3161 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
3162 				   p_vf->relative_vf_id,
3163 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3164 			return -EINVAL;
3165 		}
3166 	}
3167 
3168 	return 0;
3169 }
3170 
3171 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3172 					struct qed_vf_info *p_vf,
3173 					struct qed_filter_ucast *p_params)
3174 {
3175 	int i;
3176 
3177 	/* If we're in forced-mode, we don't allow any change */
3178 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3179 		return 0;
3180 
3181 	/* Don't keep track of shadow copy since we don't intend to restore. */
3182 	if (p_vf->p_vf_info.is_trusted_configured)
3183 		return 0;
3184 
3185 	/* First remove entries and then add new ones */
3186 	if (p_params->opcode == QED_FILTER_REMOVE) {
3187 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3188 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
3189 					     p_params->mac)) {
3190 				eth_zero_addr(p_vf->shadow_config.macs[i]);
3191 				break;
3192 			}
3193 		}
3194 
3195 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3196 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3197 				   "MAC isn't configured\n");
3198 			return -EINVAL;
3199 		}
3200 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3201 		   p_params->opcode == QED_FILTER_FLUSH) {
3202 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3203 			eth_zero_addr(p_vf->shadow_config.macs[i]);
3204 	}
3205 
3206 	/* List the new MAC address */
3207 	if (p_params->opcode != QED_FILTER_ADD &&
3208 	    p_params->opcode != QED_FILTER_REPLACE)
3209 		return 0;
3210 
3211 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3212 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3213 			ether_addr_copy(p_vf->shadow_config.macs[i],
3214 					p_params->mac);
3215 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3216 				   "Added MAC at %d entry in shadow\n", i);
3217 			break;
3218 		}
3219 	}
3220 
3221 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3222 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3223 		return -EINVAL;
3224 	}
3225 
3226 	return 0;
3227 }
3228 
3229 static int
3230 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3231 				 struct qed_vf_info *p_vf,
3232 				 struct qed_filter_ucast *p_params)
3233 {
3234 	int rc = 0;
3235 
3236 	if (p_params->type == QED_FILTER_MAC) {
3237 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3238 		if (rc)
3239 			return rc;
3240 	}
3241 
3242 	if (p_params->type == QED_FILTER_VLAN)
3243 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3244 
3245 	return rc;
3246 }
3247 
3248 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3249 			     int vfid, struct qed_filter_ucast *params)
3250 {
3251 	struct qed_public_vf_info *vf;
3252 
3253 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3254 	if (!vf)
3255 		return -EINVAL;
3256 
3257 	/* No real decision to make; Store the configured MAC */
3258 	if (params->type == QED_FILTER_MAC ||
3259 	    params->type == QED_FILTER_MAC_VLAN) {
3260 		ether_addr_copy(vf->mac, params->mac);
3261 
3262 		if (vf->is_trusted_configured) {
3263 			qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
3264 
3265 			/* Update and post bulleitin again */
3266 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3267 		}
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3274 					struct qed_ptt *p_ptt,
3275 					struct qed_vf_info *vf)
3276 {
3277 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3278 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3279 	struct vfpf_ucast_filter_tlv *req;
3280 	u8 status = PFVF_STATUS_SUCCESS;
3281 	struct qed_filter_ucast params;
3282 	int rc;
3283 
3284 	/* Prepare the unicast filter params */
3285 	memset(&params, 0, sizeof(struct qed_filter_ucast));
3286 	req = &mbx->req_virt->ucast_filter;
3287 	params.opcode = (enum qed_filter_opcode)req->opcode;
3288 	params.type = (enum qed_filter_ucast_type)req->type;
3289 
3290 	params.is_rx_filter = 1;
3291 	params.is_tx_filter = 1;
3292 	params.vport_to_remove_from = vf->vport_id;
3293 	params.vport_to_add_to = vf->vport_id;
3294 	memcpy(params.mac, req->mac, ETH_ALEN);
3295 	params.vlan = req->vlan;
3296 
3297 	DP_VERBOSE(p_hwfn,
3298 		   QED_MSG_IOV,
3299 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
3300 		   vf->abs_vf_id, params.opcode, params.type,
3301 		   params.is_rx_filter ? "RX" : "",
3302 		   params.is_tx_filter ? "TX" : "",
3303 		   params.vport_to_add_to,
3304 		   params.mac[0], params.mac[1],
3305 		   params.mac[2], params.mac[3],
3306 		   params.mac[4], params.mac[5], params.vlan);
3307 
3308 	if (!vf->vport_instance) {
3309 		DP_VERBOSE(p_hwfn,
3310 			   QED_MSG_IOV,
3311 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3312 			   vf->abs_vf_id);
3313 		status = PFVF_STATUS_FAILURE;
3314 		goto out;
3315 	}
3316 
3317 	/* Update shadow copy of the VF configuration */
3318 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3319 		status = PFVF_STATUS_FAILURE;
3320 		goto out;
3321 	}
3322 
3323 	/* Determine if the unicast filtering is acceptible by PF */
3324 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3325 	    (params.type == QED_FILTER_VLAN ||
3326 	     params.type == QED_FILTER_MAC_VLAN)) {
3327 		/* Once VLAN is forced or PVID is set, do not allow
3328 		 * to add/replace any further VLANs.
3329 		 */
3330 		if (params.opcode == QED_FILTER_ADD ||
3331 		    params.opcode == QED_FILTER_REPLACE)
3332 			status = PFVF_STATUS_FORCED;
3333 		goto out;
3334 	}
3335 
3336 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3337 	    (params.type == QED_FILTER_MAC ||
3338 	     params.type == QED_FILTER_MAC_VLAN)) {
3339 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3340 		    (params.opcode != QED_FILTER_ADD &&
3341 		     params.opcode != QED_FILTER_REPLACE))
3342 			status = PFVF_STATUS_FORCED;
3343 		goto out;
3344 	}
3345 
3346 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3347 	if (rc) {
3348 		status = PFVF_STATUS_FAILURE;
3349 		goto out;
3350 	}
3351 
3352 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3353 				     QED_SPQ_MODE_CB, NULL);
3354 	if (rc)
3355 		status = PFVF_STATUS_FAILURE;
3356 
3357 out:
3358 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3359 			     sizeof(struct pfvf_def_resp_tlv), status);
3360 }
3361 
3362 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3363 				       struct qed_ptt *p_ptt,
3364 				       struct qed_vf_info *vf)
3365 {
3366 	int i;
3367 
3368 	/* Reset the SBs */
3369 	for (i = 0; i < vf->num_sbs; i++)
3370 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3371 						vf->igu_sbs[i],
3372 						vf->opaque_fid, false);
3373 
3374 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3375 			     sizeof(struct pfvf_def_resp_tlv),
3376 			     PFVF_STATUS_SUCCESS);
3377 }
3378 
3379 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3380 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3381 {
3382 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3383 	u8 status = PFVF_STATUS_SUCCESS;
3384 
3385 	/* Disable Interrupts for VF */
3386 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3387 
3388 	/* Reset Permission table */
3389 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3390 
3391 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3392 			     length, status);
3393 }
3394 
3395 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3396 				   struct qed_ptt *p_ptt,
3397 				   struct qed_vf_info *p_vf)
3398 {
3399 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3400 	u8 status = PFVF_STATUS_SUCCESS;
3401 	int rc = 0;
3402 
3403 	qed_iov_vf_cleanup(p_hwfn, p_vf);
3404 
3405 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3406 		/* Stopping the VF */
3407 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3408 				    p_vf->opaque_fid);
3409 
3410 		if (rc) {
3411 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3412 			       rc);
3413 			status = PFVF_STATUS_FAILURE;
3414 		}
3415 
3416 		p_vf->state = VF_STOPPED;
3417 	}
3418 
3419 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3420 			     length, status);
3421 }
3422 
3423 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3424 				       struct qed_ptt *p_ptt,
3425 				       struct qed_vf_info *p_vf)
3426 {
3427 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3428 	struct pfvf_read_coal_resp_tlv *p_resp;
3429 	struct vfpf_read_coal_req_tlv *req;
3430 	u8 status = PFVF_STATUS_FAILURE;
3431 	struct qed_vf_queue *p_queue;
3432 	struct qed_queue_cid *p_cid;
3433 	u16 coal = 0, qid, i;
3434 	bool b_is_rx;
3435 	int rc = 0;
3436 
3437 	mbx->offset = (u8 *)mbx->reply_virt;
3438 	req = &mbx->req_virt->read_coal_req;
3439 
3440 	qid = req->qid;
3441 	b_is_rx = req->is_rx ? true : false;
3442 
3443 	if (b_is_rx) {
3444 		if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3445 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3446 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3447 				   "VF[%d]: Invalid Rx queue_id = %d\n",
3448 				   p_vf->abs_vf_id, qid);
3449 			goto send_resp;
3450 		}
3451 
3452 		p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3453 		rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3454 		if (rc)
3455 			goto send_resp;
3456 	} else {
3457 		if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3458 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3459 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3460 				   "VF[%d]: Invalid Tx queue_id = %d\n",
3461 				   p_vf->abs_vf_id, qid);
3462 			goto send_resp;
3463 		}
3464 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3465 			p_queue = &p_vf->vf_queues[qid];
3466 			if ((!p_queue->cids[i].p_cid) ||
3467 			    (!p_queue->cids[i].b_is_tx))
3468 				continue;
3469 
3470 			p_cid = p_queue->cids[i].p_cid;
3471 
3472 			rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3473 			if (rc)
3474 				goto send_resp;
3475 			break;
3476 		}
3477 	}
3478 
3479 	status = PFVF_STATUS_SUCCESS;
3480 
3481 send_resp:
3482 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3483 			     sizeof(*p_resp));
3484 	p_resp->coal = coal;
3485 
3486 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3487 		    sizeof(struct channel_list_end_tlv));
3488 
3489 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3490 }
3491 
3492 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3493 				       struct qed_ptt *p_ptt,
3494 				       struct qed_vf_info *vf)
3495 {
3496 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3497 	struct vfpf_update_coalesce *req;
3498 	u8 status = PFVF_STATUS_FAILURE;
3499 	struct qed_queue_cid *p_cid;
3500 	u16 rx_coal, tx_coal;
3501 	int rc = 0, i;
3502 	u16 qid;
3503 
3504 	req = &mbx->req_virt->update_coalesce;
3505 
3506 	rx_coal = req->rx_coal;
3507 	tx_coal = req->tx_coal;
3508 	qid = req->qid;
3509 
3510 	if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3511 				  QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3512 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3513 			   "VF[%d]: Invalid Rx queue_id = %d\n",
3514 			   vf->abs_vf_id, qid);
3515 		goto out;
3516 	}
3517 
3518 	if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3519 				  QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3520 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3521 			   "VF[%d]: Invalid Tx queue_id = %d\n",
3522 			   vf->abs_vf_id, qid);
3523 		goto out;
3524 	}
3525 
3526 	DP_VERBOSE(p_hwfn,
3527 		   QED_MSG_IOV,
3528 		   "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3529 		   vf->abs_vf_id, rx_coal, tx_coal, qid);
3530 
3531 	if (rx_coal) {
3532 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3533 
3534 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3535 		if (rc) {
3536 			DP_VERBOSE(p_hwfn,
3537 				   QED_MSG_IOV,
3538 				   "VF[%d]: Unable to set rx queue = %d coalesce\n",
3539 				   vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3540 			goto out;
3541 		}
3542 		vf->rx_coal = rx_coal;
3543 	}
3544 
3545 	if (tx_coal) {
3546 		struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3547 
3548 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3549 			if (!p_queue->cids[i].p_cid)
3550 				continue;
3551 
3552 			if (!p_queue->cids[i].b_is_tx)
3553 				continue;
3554 
3555 			rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3556 						  p_queue->cids[i].p_cid);
3557 
3558 			if (rc) {
3559 				DP_VERBOSE(p_hwfn,
3560 					   QED_MSG_IOV,
3561 					   "VF[%d]: Unable to set tx queue coalesce\n",
3562 					   vf->abs_vf_id);
3563 				goto out;
3564 			}
3565 		}
3566 		vf->tx_coal = tx_coal;
3567 	}
3568 
3569 	status = PFVF_STATUS_SUCCESS;
3570 out:
3571 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3572 			     sizeof(struct pfvf_def_resp_tlv), status);
3573 }
3574 static int
3575 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3576 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3577 {
3578 	int cnt;
3579 	u32 val;
3580 
3581 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
3582 
3583 	for (cnt = 0; cnt < 50; cnt++) {
3584 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3585 		if (!val)
3586 			break;
3587 		msleep(20);
3588 	}
3589 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
3590 
3591 	if (cnt == 50) {
3592 		DP_ERR(p_hwfn,
3593 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3594 		       p_vf->abs_vf_id, val);
3595 		return -EBUSY;
3596 	}
3597 
3598 	return 0;
3599 }
3600 
3601 static int
3602 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3603 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3604 {
3605 	u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4];
3606 	int i, cnt;
3607 
3608 	/* Read initial consumers & producers */
3609 	for (i = 0; i < MAX_NUM_VOQS_E4; i++) {
3610 		u32 prod;
3611 
3612 		cons[i] = qed_rd(p_hwfn, p_ptt,
3613 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3614 				 i * 0x40);
3615 		prod = qed_rd(p_hwfn, p_ptt,
3616 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
3617 			      i * 0x40);
3618 		distance[i] = prod - cons[i];
3619 	}
3620 
3621 	/* Wait for consumers to pass the producers */
3622 	i = 0;
3623 	for (cnt = 0; cnt < 50; cnt++) {
3624 		for (; i < MAX_NUM_VOQS_E4; i++) {
3625 			u32 tmp;
3626 
3627 			tmp = qed_rd(p_hwfn, p_ptt,
3628 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3629 				     i * 0x40);
3630 			if (distance[i] > tmp - cons[i])
3631 				break;
3632 		}
3633 
3634 		if (i == MAX_NUM_VOQS_E4)
3635 			break;
3636 
3637 		msleep(20);
3638 	}
3639 
3640 	if (cnt == 50) {
3641 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3642 		       p_vf->abs_vf_id, i);
3643 		return -EBUSY;
3644 	}
3645 
3646 	return 0;
3647 }
3648 
3649 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3650 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3651 {
3652 	int rc;
3653 
3654 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3655 	if (rc)
3656 		return rc;
3657 
3658 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3659 	if (rc)
3660 		return rc;
3661 
3662 	return 0;
3663 }
3664 
3665 static int
3666 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3667 			       struct qed_ptt *p_ptt,
3668 			       u16 rel_vf_id, u32 *ack_vfs)
3669 {
3670 	struct qed_vf_info *p_vf;
3671 	int rc = 0;
3672 
3673 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3674 	if (!p_vf)
3675 		return 0;
3676 
3677 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3678 	    (1ULL << (rel_vf_id % 64))) {
3679 		u16 vfid = p_vf->abs_vf_id;
3680 
3681 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3682 			   "VF[%d] - Handling FLR\n", vfid);
3683 
3684 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3685 
3686 		/* If VF isn't active, no need for anything but SW */
3687 		if (!p_vf->b_init)
3688 			goto cleanup;
3689 
3690 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3691 		if (rc)
3692 			goto cleanup;
3693 
3694 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3695 		if (rc) {
3696 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3697 			return rc;
3698 		}
3699 
3700 		/* Workaround to make VF-PF channel ready, as FW
3701 		 * doesn't do that as a part of FLR.
3702 		 */
3703 		REG_WR(p_hwfn,
3704 		       GTT_BAR0_MAP_REG_USDM_RAM +
3705 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3706 
3707 		/* VF_STOPPED has to be set only after final cleanup
3708 		 * but prior to re-enabling the VF.
3709 		 */
3710 		p_vf->state = VF_STOPPED;
3711 
3712 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3713 		if (rc) {
3714 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3715 			       vfid);
3716 			return rc;
3717 		}
3718 cleanup:
3719 		/* Mark VF for ack and clean pending state */
3720 		if (p_vf->state == VF_RESET)
3721 			p_vf->state = VF_STOPPED;
3722 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3723 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3724 		    ~(1ULL << (rel_vf_id % 64));
3725 		p_vf->vf_mbx.b_pending_msg = false;
3726 	}
3727 
3728 	return rc;
3729 }
3730 
3731 static int
3732 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3733 {
3734 	u32 ack_vfs[VF_MAX_STATIC / 32];
3735 	int rc = 0;
3736 	u16 i;
3737 
3738 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3739 
3740 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3741 	 * polling due to HW limitations, simply sleep a bit. And since
3742 	 * there's no need to wait per-vf, do it before looping.
3743 	 */
3744 	msleep(100);
3745 
3746 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3747 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3748 
3749 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3750 	return rc;
3751 }
3752 
3753 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3754 {
3755 	bool found = false;
3756 	u16 i;
3757 
3758 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3759 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3760 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3761 			   "[%08x,...,%08x]: %08x\n",
3762 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3763 
3764 	if (!p_hwfn->cdev->p_iov_info) {
3765 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3766 		return false;
3767 	}
3768 
3769 	/* Mark VFs */
3770 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3771 		struct qed_vf_info *p_vf;
3772 		u8 vfid;
3773 
3774 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3775 		if (!p_vf)
3776 			continue;
3777 
3778 		vfid = p_vf->abs_vf_id;
3779 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3780 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3781 			u16 rel_vf_id = p_vf->relative_vf_id;
3782 
3783 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3784 				   "VF[%d] [rel %d] got FLR-ed\n",
3785 				   vfid, rel_vf_id);
3786 
3787 			p_vf->state = VF_RESET;
3788 
3789 			/* No need to lock here, since pending_flr should
3790 			 * only change here and before ACKing MFw. Since
3791 			 * MFW will not trigger an additional attention for
3792 			 * VF flr until ACKs, we're safe.
3793 			 */
3794 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3795 			found = true;
3796 		}
3797 	}
3798 
3799 	return found;
3800 }
3801 
3802 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3803 			     u16 vfid,
3804 			     struct qed_mcp_link_params *p_params,
3805 			     struct qed_mcp_link_state *p_link,
3806 			     struct qed_mcp_link_capabilities *p_caps)
3807 {
3808 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3809 						       vfid,
3810 						       false);
3811 	struct qed_bulletin_content *p_bulletin;
3812 
3813 	if (!p_vf)
3814 		return;
3815 
3816 	p_bulletin = p_vf->bulletin.p_virt;
3817 
3818 	if (p_params)
3819 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3820 	if (p_link)
3821 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3822 	if (p_caps)
3823 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3824 }
3825 
3826 static int
3827 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
3828 				  struct qed_ptt *p_ptt,
3829 				  struct qed_vf_info *p_vf)
3830 {
3831 	struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
3832 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3833 	struct vfpf_bulletin_update_mac_tlv *p_req;
3834 	u8 status = PFVF_STATUS_SUCCESS;
3835 	int rc = 0;
3836 
3837 	if (!p_vf->p_vf_info.is_trusted_configured) {
3838 		DP_VERBOSE(p_hwfn,
3839 			   QED_MSG_IOV,
3840 			   "Blocking bulletin update request from untrusted VF[%d]\n",
3841 			   p_vf->abs_vf_id);
3842 		status = PFVF_STATUS_NOT_SUPPORTED;
3843 		rc = -EINVAL;
3844 		goto send_status;
3845 	}
3846 
3847 	p_req = &mbx->req_virt->bulletin_update_mac;
3848 	ether_addr_copy(p_bulletin->mac, p_req->mac);
3849 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3850 		   "Updated bulletin of VF[%d] with requested MAC[%pM]\n",
3851 		   p_vf->abs_vf_id, p_req->mac);
3852 
3853 send_status:
3854 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3855 			     CHANNEL_TLV_BULLETIN_UPDATE_MAC,
3856 			     sizeof(struct pfvf_def_resp_tlv), status);
3857 	return rc;
3858 }
3859 
3860 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3861 				    struct qed_ptt *p_ptt, int vfid)
3862 {
3863 	struct qed_iov_vf_mbx *mbx;
3864 	struct qed_vf_info *p_vf;
3865 
3866 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3867 	if (!p_vf)
3868 		return;
3869 
3870 	mbx = &p_vf->vf_mbx;
3871 
3872 	/* qed_iov_process_mbx_request */
3873 	if (!mbx->b_pending_msg) {
3874 		DP_NOTICE(p_hwfn,
3875 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3876 			  p_vf->abs_vf_id);
3877 		return;
3878 	}
3879 	mbx->b_pending_msg = false;
3880 
3881 	mbx->first_tlv = mbx->req_virt->first_tlv;
3882 
3883 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3884 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3885 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3886 
3887 	/* check if tlv type is known */
3888 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3889 	    !p_vf->b_malicious) {
3890 		switch (mbx->first_tlv.tl.type) {
3891 		case CHANNEL_TLV_ACQUIRE:
3892 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3893 			break;
3894 		case CHANNEL_TLV_VPORT_START:
3895 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3896 			break;
3897 		case CHANNEL_TLV_VPORT_TEARDOWN:
3898 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3899 			break;
3900 		case CHANNEL_TLV_START_RXQ:
3901 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3902 			break;
3903 		case CHANNEL_TLV_START_TXQ:
3904 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3905 			break;
3906 		case CHANNEL_TLV_STOP_RXQS:
3907 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3908 			break;
3909 		case CHANNEL_TLV_STOP_TXQS:
3910 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3911 			break;
3912 		case CHANNEL_TLV_UPDATE_RXQ:
3913 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3914 			break;
3915 		case CHANNEL_TLV_VPORT_UPDATE:
3916 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3917 			break;
3918 		case CHANNEL_TLV_UCAST_FILTER:
3919 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3920 			break;
3921 		case CHANNEL_TLV_CLOSE:
3922 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3923 			break;
3924 		case CHANNEL_TLV_INT_CLEANUP:
3925 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3926 			break;
3927 		case CHANNEL_TLV_RELEASE:
3928 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3929 			break;
3930 		case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3931 			qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3932 			break;
3933 		case CHANNEL_TLV_COALESCE_UPDATE:
3934 			qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3935 			break;
3936 		case CHANNEL_TLV_COALESCE_READ:
3937 			qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3938 			break;
3939 		case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
3940 			qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
3941 			break;
3942 		}
3943 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3944 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3945 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3946 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3947 
3948 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3949 				     mbx->first_tlv.tl.type,
3950 				     sizeof(struct pfvf_def_resp_tlv),
3951 				     PFVF_STATUS_MALICIOUS);
3952 	} else {
3953 		/* unknown TLV - this may belong to a VF driver from the future
3954 		 * - a version written after this PF driver was written, which
3955 		 * supports features unknown as of yet. Too bad since we don't
3956 		 * support them. Or this may be because someone wrote a crappy
3957 		 * VF driver and is sending garbage over the channel.
3958 		 */
3959 		DP_NOTICE(p_hwfn,
3960 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3961 			  p_vf->abs_vf_id,
3962 			  mbx->first_tlv.tl.type,
3963 			  mbx->first_tlv.tl.length,
3964 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3965 
3966 		/* Try replying in case reply address matches the acquisition's
3967 		 * posted address.
3968 		 */
3969 		if (p_vf->acquire.first_tlv.reply_address &&
3970 		    (mbx->first_tlv.reply_address ==
3971 		     p_vf->acquire.first_tlv.reply_address)) {
3972 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3973 					     mbx->first_tlv.tl.type,
3974 					     sizeof(struct pfvf_def_resp_tlv),
3975 					     PFVF_STATUS_NOT_SUPPORTED);
3976 		} else {
3977 			DP_VERBOSE(p_hwfn,
3978 				   QED_MSG_IOV,
3979 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3980 				   p_vf->abs_vf_id);
3981 		}
3982 	}
3983 }
3984 
3985 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3986 {
3987 	int i;
3988 
3989 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3990 
3991 	qed_for_each_vf(p_hwfn, i) {
3992 		struct qed_vf_info *p_vf;
3993 
3994 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3995 		if (p_vf->vf_mbx.b_pending_msg)
3996 			events[i / 64] |= 1ULL << (i % 64);
3997 	}
3998 }
3999 
4000 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
4001 						       u16 abs_vfid)
4002 {
4003 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
4004 
4005 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
4006 		DP_VERBOSE(p_hwfn,
4007 			   QED_MSG_IOV,
4008 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
4009 			   abs_vfid);
4010 		return NULL;
4011 	}
4012 
4013 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
4014 }
4015 
4016 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
4017 			      u16 abs_vfid, struct regpair *vf_msg)
4018 {
4019 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
4020 			   abs_vfid);
4021 
4022 	if (!p_vf)
4023 		return 0;
4024 
4025 	/* List the physical address of the request so that handler
4026 	 * could later on copy the message from it.
4027 	 */
4028 	p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
4029 
4030 	/* Mark the event and schedule the workqueue */
4031 	p_vf->vf_mbx.b_pending_msg = true;
4032 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
4033 
4034 	return 0;
4035 }
4036 
4037 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
4038 				     struct malicious_vf_eqe_data *p_data)
4039 {
4040 	struct qed_vf_info *p_vf;
4041 
4042 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
4043 
4044 	if (!p_vf)
4045 		return;
4046 
4047 	if (!p_vf->b_malicious) {
4048 		DP_NOTICE(p_hwfn,
4049 			  "VF [%d] - Malicious behavior [%02x]\n",
4050 			  p_vf->abs_vf_id, p_data->err_id);
4051 
4052 		p_vf->b_malicious = true;
4053 	} else {
4054 		DP_INFO(p_hwfn,
4055 			"VF [%d] - Malicious behavior [%02x]\n",
4056 			p_vf->abs_vf_id, p_data->err_id);
4057 	}
4058 }
4059 
4060 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
4061 			       u8 opcode,
4062 			       __le16 echo,
4063 			       union event_ring_data *data, u8 fw_return_code)
4064 {
4065 	switch (opcode) {
4066 	case COMMON_EVENT_VF_PF_CHANNEL:
4067 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4068 					  &data->vf_pf_channel.msg_addr);
4069 	case COMMON_EVENT_MALICIOUS_VF:
4070 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
4071 		return 0;
4072 	default:
4073 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4074 			opcode);
4075 		return -EINVAL;
4076 	}
4077 }
4078 
4079 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4080 {
4081 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4082 	u16 i;
4083 
4084 	if (!p_iov)
4085 		goto out;
4086 
4087 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4088 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4089 			return i;
4090 
4091 out:
4092 	return MAX_NUM_VFS;
4093 }
4094 
4095 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4096 			       int vfid)
4097 {
4098 	struct qed_dmae_params params;
4099 	struct qed_vf_info *vf_info;
4100 
4101 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4102 	if (!vf_info)
4103 		return -EINVAL;
4104 
4105 	memset(&params, 0, sizeof(struct qed_dmae_params));
4106 	params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
4107 	params.src_vfid = vf_info->abs_vf_id;
4108 
4109 	if (qed_dmae_host2host(p_hwfn, ptt,
4110 			       vf_info->vf_mbx.pending_req,
4111 			       vf_info->vf_mbx.req_phys,
4112 			       sizeof(union vfpf_tlvs) / 4, &params)) {
4113 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4114 			   "Failed to copy message from VF 0x%02x\n", vfid);
4115 
4116 		return -EIO;
4117 	}
4118 
4119 	return 0;
4120 }
4121 
4122 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4123 					    u8 *mac, int vfid)
4124 {
4125 	struct qed_vf_info *vf_info;
4126 	u64 feature;
4127 
4128 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4129 	if (!vf_info) {
4130 		DP_NOTICE(p_hwfn->cdev,
4131 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4132 		return;
4133 	}
4134 
4135 	if (vf_info->b_malicious) {
4136 		DP_NOTICE(p_hwfn->cdev,
4137 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
4138 		return;
4139 	}
4140 
4141 	if (vf_info->p_vf_info.is_trusted_configured) {
4142 		feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4143 		/* Trust mode will disable Forced MAC */
4144 		vf_info->bulletin.p_virt->valid_bitmap &=
4145 			~BIT(MAC_ADDR_FORCED);
4146 	} else {
4147 		feature = BIT(MAC_ADDR_FORCED);
4148 		/* Forced MAC will disable MAC_ADDR */
4149 		vf_info->bulletin.p_virt->valid_bitmap &=
4150 			~BIT(VFPF_BULLETIN_MAC_ADDR);
4151 	}
4152 
4153 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4154 
4155 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4156 
4157 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4158 }
4159 
4160 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
4161 {
4162 	struct qed_vf_info *vf_info;
4163 	u64 feature;
4164 
4165 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4166 	if (!vf_info) {
4167 		DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
4168 			  vfid);
4169 		return -EINVAL;
4170 	}
4171 
4172 	if (vf_info->b_malicious) {
4173 		DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
4174 			  vfid);
4175 		return -EINVAL;
4176 	}
4177 
4178 	if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
4179 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4180 			   "Can not set MAC, Forced MAC is configured\n");
4181 		return -EINVAL;
4182 	}
4183 
4184 	feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4185 	ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
4186 
4187 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4188 
4189 	if (vf_info->p_vf_info.is_trusted_configured)
4190 		qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4191 
4192 	return 0;
4193 }
4194 
4195 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4196 					     u16 pvid, int vfid)
4197 {
4198 	struct qed_vf_info *vf_info;
4199 	u64 feature;
4200 
4201 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4202 	if (!vf_info) {
4203 		DP_NOTICE(p_hwfn->cdev,
4204 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4205 		return;
4206 	}
4207 
4208 	if (vf_info->b_malicious) {
4209 		DP_NOTICE(p_hwfn->cdev,
4210 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
4211 		return;
4212 	}
4213 
4214 	feature = 1 << VLAN_ADDR_FORCED;
4215 	vf_info->bulletin.p_virt->pvid = pvid;
4216 	if (pvid)
4217 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
4218 	else
4219 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4220 
4221 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4222 }
4223 
4224 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4225 				    int vfid, u16 vxlan_port, u16 geneve_port)
4226 {
4227 	struct qed_vf_info *vf_info;
4228 
4229 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4230 	if (!vf_info) {
4231 		DP_NOTICE(p_hwfn->cdev,
4232 			  "Can not set udp ports, invalid vfid [%d]\n", vfid);
4233 		return;
4234 	}
4235 
4236 	if (vf_info->b_malicious) {
4237 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4238 			   "Can not set udp ports to malicious VF [%d]\n",
4239 			   vfid);
4240 		return;
4241 	}
4242 
4243 	vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4244 	vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4245 }
4246 
4247 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4248 {
4249 	struct qed_vf_info *p_vf_info;
4250 
4251 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4252 	if (!p_vf_info)
4253 		return false;
4254 
4255 	return !!p_vf_info->vport_instance;
4256 }
4257 
4258 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4259 {
4260 	struct qed_vf_info *p_vf_info;
4261 
4262 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4263 	if (!p_vf_info)
4264 		return true;
4265 
4266 	return p_vf_info->state == VF_STOPPED;
4267 }
4268 
4269 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4270 {
4271 	struct qed_vf_info *vf_info;
4272 
4273 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4274 	if (!vf_info)
4275 		return false;
4276 
4277 	return vf_info->spoof_chk;
4278 }
4279 
4280 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4281 {
4282 	struct qed_vf_info *vf;
4283 	int rc = -EINVAL;
4284 
4285 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4286 		DP_NOTICE(p_hwfn,
4287 			  "SR-IOV sanity check failed, can't set spoofchk\n");
4288 		goto out;
4289 	}
4290 
4291 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4292 	if (!vf)
4293 		goto out;
4294 
4295 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4296 		/* After VF VPORT start PF will configure spoof check */
4297 		vf->req_spoofchk_val = val;
4298 		rc = 0;
4299 		goto out;
4300 	}
4301 
4302 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4303 
4304 out:
4305 	return rc;
4306 }
4307 
4308 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4309 {
4310 	struct qed_vf_info *p_vf;
4311 
4312 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4313 	if (!p_vf || !p_vf->bulletin.p_virt)
4314 		return NULL;
4315 
4316 	if (!(p_vf->bulletin.p_virt->valid_bitmap &
4317 	      BIT(VFPF_BULLETIN_MAC_ADDR)))
4318 		return NULL;
4319 
4320 	return p_vf->bulletin.p_virt->mac;
4321 }
4322 
4323 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4324 					   u16 rel_vf_id)
4325 {
4326 	struct qed_vf_info *p_vf;
4327 
4328 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4329 	if (!p_vf || !p_vf->bulletin.p_virt)
4330 		return NULL;
4331 
4332 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4333 		return NULL;
4334 
4335 	return p_vf->bulletin.p_virt->mac;
4336 }
4337 
4338 static u16
4339 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4340 {
4341 	struct qed_vf_info *p_vf;
4342 
4343 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4344 	if (!p_vf || !p_vf->bulletin.p_virt)
4345 		return 0;
4346 
4347 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4348 		return 0;
4349 
4350 	return p_vf->bulletin.p_virt->pvid;
4351 }
4352 
4353 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4354 				     struct qed_ptt *p_ptt, int vfid, int val)
4355 {
4356 	struct qed_mcp_link_state *p_link;
4357 	struct qed_vf_info *vf;
4358 	u8 abs_vp_id = 0;
4359 	int rc;
4360 
4361 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4362 	if (!vf)
4363 		return -EINVAL;
4364 
4365 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4366 	if (rc)
4367 		return rc;
4368 
4369 	p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output;
4370 
4371 	return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val,
4372 				 p_link->speed);
4373 }
4374 
4375 static int
4376 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4377 {
4378 	struct qed_vf_info *vf;
4379 	u8 vport_id;
4380 	int i;
4381 
4382 	for_each_hwfn(cdev, i) {
4383 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4384 
4385 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4386 			DP_NOTICE(p_hwfn,
4387 				  "SR-IOV sanity check failed, can't set min rate\n");
4388 			return -EINVAL;
4389 		}
4390 	}
4391 
4392 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4393 	vport_id = vf->vport_id;
4394 
4395 	return qed_configure_vport_wfq(cdev, vport_id, rate);
4396 }
4397 
4398 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4399 {
4400 	struct qed_wfq_data *vf_vp_wfq;
4401 	struct qed_vf_info *vf_info;
4402 
4403 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4404 	if (!vf_info)
4405 		return 0;
4406 
4407 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4408 
4409 	if (vf_vp_wfq->configured)
4410 		return vf_vp_wfq->min_speed;
4411 	else
4412 		return 0;
4413 }
4414 
4415 /**
4416  * qed_schedule_iov - schedules IOV task for VF and PF
4417  * @hwfn: hardware function pointer
4418  * @flag: IOV flag for VF/PF
4419  */
4420 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4421 {
4422 	smp_mb__before_atomic();
4423 	set_bit(flag, &hwfn->iov_task_flags);
4424 	smp_mb__after_atomic();
4425 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4426 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4427 }
4428 
4429 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4430 {
4431 	int i;
4432 
4433 	for_each_hwfn(cdev, i)
4434 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
4435 			       &cdev->hwfns[i].iov_task, 0);
4436 }
4437 
4438 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4439 {
4440 	int i, j;
4441 
4442 	for_each_hwfn(cdev, i)
4443 	    if (cdev->hwfns[i].iov_wq)
4444 		flush_workqueue(cdev->hwfns[i].iov_wq);
4445 
4446 	/* Mark VFs for disablement */
4447 	qed_iov_set_vfs_to_disable(cdev, true);
4448 
4449 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4450 		pci_disable_sriov(cdev->pdev);
4451 
4452 	if (cdev->recov_in_prog) {
4453 		DP_VERBOSE(cdev,
4454 			   QED_MSG_IOV,
4455 			   "Skip SRIOV disable operations in the device since a recovery is in progress\n");
4456 		goto out;
4457 	}
4458 
4459 	for_each_hwfn(cdev, i) {
4460 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4461 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4462 
4463 		/* Failure to acquire the ptt in 100g creates an odd error
4464 		 * where the first engine has already relased IOV.
4465 		 */
4466 		if (!ptt) {
4467 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4468 			return -EBUSY;
4469 		}
4470 
4471 		/* Clean WFQ db and configure equal weight for all vports */
4472 		qed_clean_wfq_db(hwfn, ptt);
4473 
4474 		qed_for_each_vf(hwfn, j) {
4475 			int k;
4476 
4477 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4478 				continue;
4479 
4480 			/* Wait until VF is disabled before releasing */
4481 			for (k = 0; k < 100; k++) {
4482 				if (!qed_iov_is_vf_stopped(hwfn, j))
4483 					msleep(20);
4484 				else
4485 					break;
4486 			}
4487 
4488 			if (k < 100)
4489 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4490 							  ptt, j);
4491 			else
4492 				DP_ERR(hwfn,
4493 				       "Timeout waiting for VF's FLR to end\n");
4494 		}
4495 
4496 		qed_ptt_release(hwfn, ptt);
4497 	}
4498 out:
4499 	qed_iov_set_vfs_to_disable(cdev, false);
4500 
4501 	return 0;
4502 }
4503 
4504 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4505 					u16 vfid,
4506 					struct qed_iov_vf_init_params *params)
4507 {
4508 	u16 base, i;
4509 
4510 	/* Since we have an equal resource distribution per-VF, and we assume
4511 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4512 	 * sequentially from there.
4513 	 */
4514 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4515 
4516 	params->rel_vf_id = vfid;
4517 	for (i = 0; i < params->num_queues; i++) {
4518 		params->req_rx_queue[i] = base + i;
4519 		params->req_tx_queue[i] = base + i;
4520 	}
4521 }
4522 
4523 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4524 {
4525 	struct qed_iov_vf_init_params params;
4526 	struct qed_hwfn *hwfn;
4527 	struct qed_ptt *ptt;
4528 	int i, j, rc;
4529 
4530 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4531 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
4532 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4533 		return -EINVAL;
4534 	}
4535 
4536 	memset(&params, 0, sizeof(params));
4537 
4538 	/* Initialize HW for VF access */
4539 	for_each_hwfn(cdev, j) {
4540 		hwfn = &cdev->hwfns[j];
4541 		ptt = qed_ptt_acquire(hwfn);
4542 
4543 		/* Make sure not to use more than 16 queues per VF */
4544 		params.num_queues = min_t(int,
4545 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4546 					  16);
4547 
4548 		if (!ptt) {
4549 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4550 			rc = -EBUSY;
4551 			goto err;
4552 		}
4553 
4554 		for (i = 0; i < num; i++) {
4555 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4556 				continue;
4557 
4558 			qed_sriov_enable_qid_config(hwfn, i, &params);
4559 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4560 			if (rc) {
4561 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4562 				qed_ptt_release(hwfn, ptt);
4563 				goto err;
4564 			}
4565 		}
4566 
4567 		qed_ptt_release(hwfn, ptt);
4568 	}
4569 
4570 	/* Enable SRIOV PCIe functions */
4571 	rc = pci_enable_sriov(cdev->pdev, num);
4572 	if (rc) {
4573 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4574 		goto err;
4575 	}
4576 
4577 	hwfn = QED_LEADING_HWFN(cdev);
4578 	ptt = qed_ptt_acquire(hwfn);
4579 	if (!ptt) {
4580 		DP_ERR(hwfn, "Failed to acquire ptt\n");
4581 		rc = -EBUSY;
4582 		goto err;
4583 	}
4584 
4585 	rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4586 	if (rc)
4587 		DP_INFO(cdev, "Failed to update eswitch mode\n");
4588 	qed_ptt_release(hwfn, ptt);
4589 
4590 	return num;
4591 
4592 err:
4593 	qed_sriov_disable(cdev, false);
4594 	return rc;
4595 }
4596 
4597 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4598 {
4599 	if (!IS_QED_SRIOV(cdev)) {
4600 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4601 		return -EOPNOTSUPP;
4602 	}
4603 
4604 	if (num_vfs_param)
4605 		return qed_sriov_enable(cdev, num_vfs_param);
4606 	else
4607 		return qed_sriov_disable(cdev, true);
4608 }
4609 
4610 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4611 {
4612 	int i;
4613 
4614 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4615 		DP_VERBOSE(cdev, QED_MSG_IOV,
4616 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4617 		return -EINVAL;
4618 	}
4619 
4620 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4621 		DP_VERBOSE(cdev, QED_MSG_IOV,
4622 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4623 		return -EINVAL;
4624 	}
4625 
4626 	for_each_hwfn(cdev, i) {
4627 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4628 		struct qed_public_vf_info *vf_info;
4629 
4630 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4631 		if (!vf_info)
4632 			continue;
4633 
4634 		/* Set the MAC, and schedule the IOV task */
4635 		if (vf_info->is_trusted_configured)
4636 			ether_addr_copy(vf_info->mac, mac);
4637 		else
4638 			ether_addr_copy(vf_info->forced_mac, mac);
4639 
4640 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4641 	}
4642 
4643 	return 0;
4644 }
4645 
4646 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4647 {
4648 	int i;
4649 
4650 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4651 		DP_VERBOSE(cdev, QED_MSG_IOV,
4652 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4653 		return -EINVAL;
4654 	}
4655 
4656 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4657 		DP_VERBOSE(cdev, QED_MSG_IOV,
4658 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4659 		return -EINVAL;
4660 	}
4661 
4662 	for_each_hwfn(cdev, i) {
4663 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4664 		struct qed_public_vf_info *vf_info;
4665 
4666 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4667 		if (!vf_info)
4668 			continue;
4669 
4670 		/* Set the forced vlan, and schedule the IOV task */
4671 		vf_info->forced_vlan = vid;
4672 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4673 	}
4674 
4675 	return 0;
4676 }
4677 
4678 static int qed_get_vf_config(struct qed_dev *cdev,
4679 			     int vf_id, struct ifla_vf_info *ivi)
4680 {
4681 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4682 	struct qed_public_vf_info *vf_info;
4683 	struct qed_mcp_link_state link;
4684 	u32 tx_rate;
4685 
4686 	/* Sanitize request */
4687 	if (IS_VF(cdev))
4688 		return -EINVAL;
4689 
4690 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4691 		DP_VERBOSE(cdev, QED_MSG_IOV,
4692 			   "VF index [%d] isn't active\n", vf_id);
4693 		return -EINVAL;
4694 	}
4695 
4696 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4697 
4698 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4699 
4700 	/* Fill information about VF */
4701 	ivi->vf = vf_id;
4702 
4703 	if (is_valid_ether_addr(vf_info->forced_mac))
4704 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
4705 	else
4706 		ether_addr_copy(ivi->mac, vf_info->mac);
4707 
4708 	ivi->vlan = vf_info->forced_vlan;
4709 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4710 	ivi->linkstate = vf_info->link_state;
4711 	tx_rate = vf_info->tx_rate;
4712 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4713 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4714 
4715 	return 0;
4716 }
4717 
4718 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4719 {
4720 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4721 	struct qed_mcp_link_capabilities caps;
4722 	struct qed_mcp_link_params params;
4723 	struct qed_mcp_link_state link;
4724 	int i;
4725 
4726 	if (!hwfn->pf_iov_info)
4727 		return;
4728 
4729 	/* Update bulletin of all future possible VFs with link configuration */
4730 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4731 		struct qed_public_vf_info *vf_info;
4732 
4733 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4734 		if (!vf_info)
4735 			continue;
4736 
4737 		/* Only hwfn0 is actually interested in the link speed.
4738 		 * But since only it would receive an MFW indication of link,
4739 		 * need to take configuration from it - otherwise things like
4740 		 * rate limiting for hwfn1 VF would not work.
4741 		 */
4742 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4743 		       sizeof(params));
4744 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4745 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4746 		       sizeof(caps));
4747 
4748 		/* Modify link according to the VF's configured link state */
4749 		switch (vf_info->link_state) {
4750 		case IFLA_VF_LINK_STATE_DISABLE:
4751 			link.link_up = false;
4752 			break;
4753 		case IFLA_VF_LINK_STATE_ENABLE:
4754 			link.link_up = true;
4755 			/* Set speed according to maximum supported by HW.
4756 			 * that is 40G for regular devices and 100G for CMT
4757 			 * mode devices.
4758 			 */
4759 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
4760 				     100000 : 40000;
4761 		default:
4762 			/* In auto mode pass PF link image to VF */
4763 			break;
4764 		}
4765 
4766 		if (link.link_up && vf_info->tx_rate) {
4767 			struct qed_ptt *ptt;
4768 			int rate;
4769 
4770 			rate = min_t(int, vf_info->tx_rate, link.speed);
4771 
4772 			ptt = qed_ptt_acquire(hwfn);
4773 			if (!ptt) {
4774 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4775 				return;
4776 			}
4777 
4778 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4779 				vf_info->tx_rate = rate;
4780 				link.speed = rate;
4781 			}
4782 
4783 			qed_ptt_release(hwfn, ptt);
4784 		}
4785 
4786 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4787 	}
4788 
4789 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4790 }
4791 
4792 static int qed_set_vf_link_state(struct qed_dev *cdev,
4793 				 int vf_id, int link_state)
4794 {
4795 	int i;
4796 
4797 	/* Sanitize request */
4798 	if (IS_VF(cdev))
4799 		return -EINVAL;
4800 
4801 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4802 		DP_VERBOSE(cdev, QED_MSG_IOV,
4803 			   "VF index [%d] isn't active\n", vf_id);
4804 		return -EINVAL;
4805 	}
4806 
4807 	/* Handle configuration of link state */
4808 	for_each_hwfn(cdev, i) {
4809 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4810 		struct qed_public_vf_info *vf;
4811 
4812 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4813 		if (!vf)
4814 			continue;
4815 
4816 		if (vf->link_state == link_state)
4817 			continue;
4818 
4819 		vf->link_state = link_state;
4820 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4821 	}
4822 
4823 	return 0;
4824 }
4825 
4826 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4827 {
4828 	int i, rc = -EINVAL;
4829 
4830 	for_each_hwfn(cdev, i) {
4831 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4832 
4833 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4834 		if (rc)
4835 			break;
4836 	}
4837 
4838 	return rc;
4839 }
4840 
4841 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4842 {
4843 	int i;
4844 
4845 	for_each_hwfn(cdev, i) {
4846 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4847 		struct qed_public_vf_info *vf;
4848 
4849 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4850 			DP_NOTICE(p_hwfn,
4851 				  "SR-IOV sanity check failed, can't set tx rate\n");
4852 			return -EINVAL;
4853 		}
4854 
4855 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4856 
4857 		vf->tx_rate = rate;
4858 
4859 		qed_inform_vf_link_state(p_hwfn);
4860 	}
4861 
4862 	return 0;
4863 }
4864 
4865 static int qed_set_vf_rate(struct qed_dev *cdev,
4866 			   int vfid, u32 min_rate, u32 max_rate)
4867 {
4868 	int rc_min = 0, rc_max = 0;
4869 
4870 	if (max_rate)
4871 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4872 
4873 	if (min_rate)
4874 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4875 
4876 	if (rc_max | rc_min)
4877 		return -EINVAL;
4878 
4879 	return 0;
4880 }
4881 
4882 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4883 {
4884 	int i;
4885 
4886 	for_each_hwfn(cdev, i) {
4887 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4888 		struct qed_public_vf_info *vf;
4889 
4890 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4891 			DP_NOTICE(hwfn,
4892 				  "SR-IOV sanity check failed, can't set trust\n");
4893 			return -EINVAL;
4894 		}
4895 
4896 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4897 
4898 		if (vf->is_trusted_request == trust)
4899 			return 0;
4900 		vf->is_trusted_request = trust;
4901 
4902 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4903 	}
4904 
4905 	return 0;
4906 }
4907 
4908 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4909 {
4910 	u64 events[QED_VF_ARRAY_LENGTH];
4911 	struct qed_ptt *ptt;
4912 	int i;
4913 
4914 	ptt = qed_ptt_acquire(hwfn);
4915 	if (!ptt) {
4916 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4917 			   "Can't acquire PTT; re-scheduling\n");
4918 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4919 		return;
4920 	}
4921 
4922 	qed_iov_pf_get_pending_events(hwfn, events);
4923 
4924 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4925 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4926 		   events[0], events[1], events[2]);
4927 
4928 	qed_for_each_vf(hwfn, i) {
4929 		/* Skip VFs with no pending messages */
4930 		if (!(events[i / 64] & (1ULL << (i % 64))))
4931 			continue;
4932 
4933 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4934 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4935 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4936 
4937 		/* Copy VF's message to PF's request buffer for that VF */
4938 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4939 			continue;
4940 
4941 		qed_iov_process_mbx_req(hwfn, ptt, i);
4942 	}
4943 
4944 	qed_ptt_release(hwfn, ptt);
4945 }
4946 
4947 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
4948 				       u8 *mac,
4949 				       struct qed_public_vf_info *info)
4950 {
4951 	if (info->is_trusted_configured) {
4952 		if (is_valid_ether_addr(info->mac) &&
4953 		    (!mac || !ether_addr_equal(mac, info->mac)))
4954 			return true;
4955 	} else {
4956 		if (is_valid_ether_addr(info->forced_mac) &&
4957 		    (!mac || !ether_addr_equal(mac, info->forced_mac)))
4958 			return true;
4959 	}
4960 
4961 	return false;
4962 }
4963 
4964 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
4965 				 struct qed_public_vf_info *info,
4966 				 int vfid)
4967 {
4968 	if (info->is_trusted_configured)
4969 		qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
4970 	else
4971 		qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
4972 }
4973 
4974 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4975 {
4976 	int i;
4977 
4978 	qed_for_each_vf(hwfn, i) {
4979 		struct qed_public_vf_info *info;
4980 		bool update = false;
4981 		u8 *mac;
4982 
4983 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4984 		if (!info)
4985 			continue;
4986 
4987 		/* Update data on bulletin board */
4988 		if (info->is_trusted_configured)
4989 			mac = qed_iov_bulletin_get_mac(hwfn, i);
4990 		else
4991 			mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4992 
4993 		if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
4994 			DP_VERBOSE(hwfn,
4995 				   QED_MSG_IOV,
4996 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4997 				   i,
4998 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4999 
5000 			/* Update bulletin board with MAC */
5001 			qed_set_bulletin_mac(hwfn, info, i);
5002 			update = true;
5003 		}
5004 
5005 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
5006 		    info->forced_vlan) {
5007 			DP_VERBOSE(hwfn,
5008 				   QED_MSG_IOV,
5009 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
5010 				   info->forced_vlan,
5011 				   i,
5012 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5013 			qed_iov_bulletin_set_forced_vlan(hwfn,
5014 							 info->forced_vlan, i);
5015 			update = true;
5016 		}
5017 
5018 		if (update)
5019 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5020 	}
5021 }
5022 
5023 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
5024 {
5025 	struct qed_ptt *ptt;
5026 	int i;
5027 
5028 	ptt = qed_ptt_acquire(hwfn);
5029 	if (!ptt) {
5030 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
5031 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5032 		return;
5033 	}
5034 
5035 	qed_for_each_vf(hwfn, i)
5036 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
5037 
5038 	qed_ptt_release(hwfn, ptt);
5039 }
5040 
5041 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
5042 {
5043 	struct qed_public_vf_info *vf_info;
5044 	struct qed_vf_info *vf;
5045 	u8 *force_mac;
5046 	int i;
5047 
5048 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
5049 	vf = qed_iov_get_vf_info(hwfn, vf_id, true);
5050 
5051 	if (!vf_info || !vf)
5052 		return;
5053 
5054 	/* Force MAC converted to generic MAC in case of VF trust on */
5055 	if (vf_info->is_trusted_configured &&
5056 	    (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
5057 		force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
5058 
5059 		if (force_mac) {
5060 			/* Clear existing shadow copy of MAC to have a clean
5061 			 * slate.
5062 			 */
5063 			for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5064 				if (ether_addr_equal(vf->shadow_config.macs[i],
5065 						     vf_info->mac)) {
5066 					memset(vf->shadow_config.macs[i], 0,
5067 					       ETH_ALEN);
5068 					DP_VERBOSE(hwfn, QED_MSG_IOV,
5069 						   "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
5070 						    vf_info->mac, vf_id);
5071 					break;
5072 				}
5073 			}
5074 
5075 			ether_addr_copy(vf_info->mac, force_mac);
5076 			memset(vf_info->forced_mac, 0, ETH_ALEN);
5077 			vf->bulletin.p_virt->valid_bitmap &=
5078 					~BIT(MAC_ADDR_FORCED);
5079 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5080 		}
5081 	}
5082 
5083 	/* Update shadow copy with VF MAC when trust mode is turned off */
5084 	if (!vf_info->is_trusted_configured) {
5085 		u8 empty_mac[ETH_ALEN];
5086 
5087 		memset(empty_mac, 0, ETH_ALEN);
5088 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5089 			if (ether_addr_equal(vf->shadow_config.macs[i],
5090 					     empty_mac)) {
5091 				ether_addr_copy(vf->shadow_config.macs[i],
5092 						vf_info->mac);
5093 				DP_VERBOSE(hwfn, QED_MSG_IOV,
5094 					   "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
5095 					    vf_info->mac, vf_id);
5096 				break;
5097 			}
5098 		}
5099 		/* Clear bulletin when trust mode is turned off,
5100 		 * to have a clean slate for next (normal) operations.
5101 		 */
5102 		qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
5103 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5104 	}
5105 }
5106 
5107 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
5108 {
5109 	struct qed_sp_vport_update_params params;
5110 	struct qed_filter_accept_flags *flags;
5111 	struct qed_public_vf_info *vf_info;
5112 	struct qed_vf_info *vf;
5113 	u8 mask;
5114 	int i;
5115 
5116 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
5117 	flags = &params.accept_flags;
5118 
5119 	qed_for_each_vf(hwfn, i) {
5120 		/* Need to make sure current requested configuration didn't
5121 		 * flip so that we'll end up configuring something that's not
5122 		 * needed.
5123 		 */
5124 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
5125 		if (vf_info->is_trusted_configured ==
5126 		    vf_info->is_trusted_request)
5127 			continue;
5128 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
5129 
5130 		/* Handle forced MAC mode */
5131 		qed_update_mac_for_vf_trust_change(hwfn, i);
5132 
5133 		/* Validate that the VF has a configured vport */
5134 		vf = qed_iov_get_vf_info(hwfn, i, true);
5135 		if (!vf->vport_instance)
5136 			continue;
5137 
5138 		memset(&params, 0, sizeof(params));
5139 		params.opaque_fid = vf->opaque_fid;
5140 		params.vport_id = vf->vport_id;
5141 
5142 		params.update_ctl_frame_check = 1;
5143 		params.mac_chk_en = !vf_info->is_trusted_configured;
5144 
5145 		if (vf_info->rx_accept_mode & mask) {
5146 			flags->update_rx_mode_config = 1;
5147 			flags->rx_accept_filter = vf_info->rx_accept_mode;
5148 		}
5149 
5150 		if (vf_info->tx_accept_mode & mask) {
5151 			flags->update_tx_mode_config = 1;
5152 			flags->tx_accept_filter = vf_info->tx_accept_mode;
5153 		}
5154 
5155 		/* Remove if needed; Otherwise this would set the mask */
5156 		if (!vf_info->is_trusted_configured) {
5157 			flags->rx_accept_filter &= ~mask;
5158 			flags->tx_accept_filter &= ~mask;
5159 		}
5160 
5161 		if (flags->update_rx_mode_config ||
5162 		    flags->update_tx_mode_config ||
5163 		    params.update_ctl_frame_check)
5164 			qed_sp_vport_update(hwfn, &params,
5165 					    QED_SPQ_MODE_EBLOCK, NULL);
5166 	}
5167 }
5168 
5169 static void qed_iov_pf_task(struct work_struct *work)
5170 
5171 {
5172 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
5173 					     iov_task.work);
5174 	int rc;
5175 
5176 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
5177 		return;
5178 
5179 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
5180 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
5181 
5182 		if (!ptt) {
5183 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5184 			return;
5185 		}
5186 
5187 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
5188 		if (rc)
5189 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5190 
5191 		qed_ptt_release(hwfn, ptt);
5192 	}
5193 
5194 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
5195 		qed_handle_vf_msg(hwfn);
5196 
5197 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
5198 			       &hwfn->iov_task_flags))
5199 		qed_handle_pf_set_vf_unicast(hwfn);
5200 
5201 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
5202 			       &hwfn->iov_task_flags))
5203 		qed_handle_bulletin_post(hwfn);
5204 
5205 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
5206 		qed_iov_handle_trust_change(hwfn);
5207 }
5208 
5209 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
5210 {
5211 	int i;
5212 
5213 	for_each_hwfn(cdev, i) {
5214 		if (!cdev->hwfns[i].iov_wq)
5215 			continue;
5216 
5217 		if (schedule_first) {
5218 			qed_schedule_iov(&cdev->hwfns[i],
5219 					 QED_IOV_WQ_STOP_WQ_FLAG);
5220 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
5221 		}
5222 
5223 		flush_workqueue(cdev->hwfns[i].iov_wq);
5224 		destroy_workqueue(cdev->hwfns[i].iov_wq);
5225 	}
5226 }
5227 
5228 int qed_iov_wq_start(struct qed_dev *cdev)
5229 {
5230 	char name[NAME_SIZE];
5231 	int i;
5232 
5233 	for_each_hwfn(cdev, i) {
5234 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5235 
5236 		/* PFs needs a dedicated workqueue only if they support IOV.
5237 		 * VFs always require one.
5238 		 */
5239 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5240 			continue;
5241 
5242 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5243 			 cdev->pdev->bus->number,
5244 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5245 
5246 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
5247 		if (!p_hwfn->iov_wq) {
5248 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5249 			return -ENOMEM;
5250 		}
5251 
5252 		if (IS_PF(cdev))
5253 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5254 		else
5255 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5256 	}
5257 
5258 	return 0;
5259 }
5260 
5261 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5262 	.configure = &qed_sriov_configure,
5263 	.set_mac = &qed_sriov_pf_set_mac,
5264 	.set_vlan = &qed_sriov_pf_set_vlan,
5265 	.get_config = &qed_get_vf_config,
5266 	.set_link_state = &qed_set_vf_link_state,
5267 	.set_spoof = &qed_spoof_configure,
5268 	.set_rate = &qed_set_vf_rate,
5269 	.set_trust = &qed_set_vf_trust,
5270 };
5271