1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/etherdevice.h> 34 #include <linux/crc32.h> 35 #include <linux/vmalloc.h> 36 #include <linux/qed/qed_iov_if.h> 37 #include "qed_cxt.h" 38 #include "qed_hsi.h" 39 #include "qed_hw.h" 40 #include "qed_init_ops.h" 41 #include "qed_int.h" 42 #include "qed_mcp.h" 43 #include "qed_reg_addr.h" 44 #include "qed_sp.h" 45 #include "qed_sriov.h" 46 #include "qed_vf.h" 47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 48 u8 opcode, 49 __le16 echo, 50 union event_ring_data *data, u8 fw_return_code); 51 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid); 52 53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) 54 { 55 u8 legacy = 0; 56 57 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 58 ETH_HSI_VER_NO_PKT_LEN_TUNN) 59 legacy |= QED_QCID_LEGACY_VF_RX_PROD; 60 61 if (!(p_vf->acquire.vfdev_info.capabilities & 62 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 63 legacy |= QED_QCID_LEGACY_VF_CID; 64 65 return legacy; 66 } 67 68 /* IOV ramrods */ 69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 70 { 71 struct vf_start_ramrod_data *p_ramrod = NULL; 72 struct qed_spq_entry *p_ent = NULL; 73 struct qed_sp_init_data init_data; 74 int rc = -EINVAL; 75 u8 fp_minor; 76 77 /* Get SPQ entry */ 78 memset(&init_data, 0, sizeof(init_data)); 79 init_data.cid = qed_spq_get_cid(p_hwfn); 80 init_data.opaque_fid = p_vf->opaque_fid; 81 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 82 83 rc = qed_sp_init_request(p_hwfn, &p_ent, 84 COMMON_RAMROD_VF_START, 85 PROTOCOLID_COMMON, &init_data); 86 if (rc) 87 return rc; 88 89 p_ramrod = &p_ent->ramrod.vf_start; 90 91 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 92 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 93 94 switch (p_hwfn->hw_info.personality) { 95 case QED_PCI_ETH: 96 p_ramrod->personality = PERSONALITY_ETH; 97 break; 98 case QED_PCI_ETH_ROCE: 99 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 100 break; 101 default: 102 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 103 p_hwfn->hw_info.personality); 104 return -EINVAL; 105 } 106 107 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 108 if (fp_minor > ETH_HSI_VER_MINOR && 109 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 110 DP_VERBOSE(p_hwfn, 111 QED_MSG_IOV, 112 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 113 p_vf->abs_vf_id, 114 ETH_HSI_VER_MAJOR, 115 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 116 fp_minor = ETH_HSI_VER_MINOR; 117 } 118 119 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 120 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 121 122 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 123 "VF[%d] - Starting using HSI %02x.%02x\n", 124 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 125 126 return qed_spq_post(p_hwfn, p_ent, NULL); 127 } 128 129 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 130 u32 concrete_vfid, u16 opaque_vfid) 131 { 132 struct vf_stop_ramrod_data *p_ramrod = NULL; 133 struct qed_spq_entry *p_ent = NULL; 134 struct qed_sp_init_data init_data; 135 int rc = -EINVAL; 136 137 /* Get SPQ entry */ 138 memset(&init_data, 0, sizeof(init_data)); 139 init_data.cid = qed_spq_get_cid(p_hwfn); 140 init_data.opaque_fid = opaque_vfid; 141 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 142 143 rc = qed_sp_init_request(p_hwfn, &p_ent, 144 COMMON_RAMROD_VF_STOP, 145 PROTOCOLID_COMMON, &init_data); 146 if (rc) 147 return rc; 148 149 p_ramrod = &p_ent->ramrod.vf_stop; 150 151 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 152 153 return qed_spq_post(p_hwfn, p_ent, NULL); 154 } 155 156 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 157 int rel_vf_id, 158 bool b_enabled_only, bool b_non_malicious) 159 { 160 if (!p_hwfn->pf_iov_info) { 161 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 162 return false; 163 } 164 165 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 166 (rel_vf_id < 0)) 167 return false; 168 169 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 170 b_enabled_only) 171 return false; 172 173 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 174 b_non_malicious) 175 return false; 176 177 return true; 178 } 179 180 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 181 u16 relative_vf_id, 182 bool b_enabled_only) 183 { 184 struct qed_vf_info *vf = NULL; 185 186 if (!p_hwfn->pf_iov_info) { 187 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 188 return NULL; 189 } 190 191 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 192 b_enabled_only, false)) 193 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 194 else 195 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 196 relative_vf_id); 197 198 return vf; 199 } 200 201 static struct qed_queue_cid * 202 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) 203 { 204 int i; 205 206 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 207 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) 208 return p_queue->cids[i].p_cid; 209 } 210 211 return NULL; 212 } 213 214 enum qed_iov_validate_q_mode { 215 QED_IOV_VALIDATE_Q_NA, 216 QED_IOV_VALIDATE_Q_ENABLE, 217 QED_IOV_VALIDATE_Q_DISABLE, 218 }; 219 220 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 221 struct qed_vf_info *p_vf, 222 u16 qid, 223 enum qed_iov_validate_q_mode mode, 224 bool b_is_tx) 225 { 226 int i; 227 228 if (mode == QED_IOV_VALIDATE_Q_NA) 229 return true; 230 231 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 232 struct qed_vf_queue_cid *p_qcid; 233 234 p_qcid = &p_vf->vf_queues[qid].cids[i]; 235 236 if (!p_qcid->p_cid) 237 continue; 238 239 if (p_qcid->b_is_tx != b_is_tx) 240 continue; 241 242 return mode == QED_IOV_VALIDATE_Q_ENABLE; 243 } 244 245 /* In case we haven't found any valid cid, then its disabled */ 246 return mode == QED_IOV_VALIDATE_Q_DISABLE; 247 } 248 249 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 250 struct qed_vf_info *p_vf, 251 u16 rx_qid, 252 enum qed_iov_validate_q_mode mode) 253 { 254 if (rx_qid >= p_vf->num_rxqs) { 255 DP_VERBOSE(p_hwfn, 256 QED_MSG_IOV, 257 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 258 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 259 return false; 260 } 261 262 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 263 } 264 265 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 266 struct qed_vf_info *p_vf, 267 u16 tx_qid, 268 enum qed_iov_validate_q_mode mode) 269 { 270 if (tx_qid >= p_vf->num_txqs) { 271 DP_VERBOSE(p_hwfn, 272 QED_MSG_IOV, 273 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 274 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 275 return false; 276 } 277 278 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 279 } 280 281 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 282 struct qed_vf_info *p_vf, u16 sb_idx) 283 { 284 int i; 285 286 for (i = 0; i < p_vf->num_sbs; i++) 287 if (p_vf->igu_sbs[i] == sb_idx) 288 return true; 289 290 DP_VERBOSE(p_hwfn, 291 QED_MSG_IOV, 292 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 293 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 294 295 return false; 296 } 297 298 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 299 struct qed_vf_info *p_vf) 300 { 301 u8 i; 302 303 for (i = 0; i < p_vf->num_rxqs; i++) 304 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 305 QED_IOV_VALIDATE_Q_ENABLE, 306 false)) 307 return true; 308 309 return false; 310 } 311 312 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 313 struct qed_vf_info *p_vf) 314 { 315 u8 i; 316 317 for (i = 0; i < p_vf->num_txqs; i++) 318 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 319 QED_IOV_VALIDATE_Q_ENABLE, 320 true)) 321 return true; 322 323 return false; 324 } 325 326 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 327 int vfid, struct qed_ptt *p_ptt) 328 { 329 struct qed_bulletin_content *p_bulletin; 330 int crc_size = sizeof(p_bulletin->crc); 331 struct qed_dmae_params params; 332 struct qed_vf_info *p_vf; 333 334 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 335 if (!p_vf) 336 return -EINVAL; 337 338 if (!p_vf->vf_bulletin) 339 return -EINVAL; 340 341 p_bulletin = p_vf->bulletin.p_virt; 342 343 /* Increment bulletin board version and compute crc */ 344 p_bulletin->version++; 345 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 346 p_vf->bulletin.size - crc_size); 347 348 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 349 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 350 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 351 352 /* propagate bulletin board via dmae to vm memory */ 353 memset(¶ms, 0, sizeof(params)); 354 params.flags = QED_DMAE_FLAG_VF_DST; 355 params.dst_vfid = p_vf->abs_vf_id; 356 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 357 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 358 ¶ms); 359 } 360 361 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 362 { 363 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 364 int pos = iov->pos; 365 366 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 367 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 368 369 pci_read_config_word(cdev->pdev, 370 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 371 pci_read_config_word(cdev->pdev, 372 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 373 374 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 375 if (iov->num_vfs) { 376 DP_VERBOSE(cdev, 377 QED_MSG_IOV, 378 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 379 iov->num_vfs = 0; 380 } 381 382 pci_read_config_word(cdev->pdev, 383 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 384 385 pci_read_config_word(cdev->pdev, 386 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 387 388 pci_read_config_word(cdev->pdev, 389 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 390 391 pci_read_config_dword(cdev->pdev, 392 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 393 394 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 395 396 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 397 398 DP_VERBOSE(cdev, 399 QED_MSG_IOV, 400 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 401 iov->nres, 402 iov->cap, 403 iov->ctrl, 404 iov->total_vfs, 405 iov->initial_vfs, 406 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 407 408 /* Some sanity checks */ 409 if (iov->num_vfs > NUM_OF_VFS(cdev) || 410 iov->total_vfs > NUM_OF_VFS(cdev)) { 411 /* This can happen only due to a bug. In this case we set 412 * num_vfs to zero to avoid memory corruption in the code that 413 * assumes max number of vfs 414 */ 415 DP_NOTICE(cdev, 416 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 417 iov->num_vfs); 418 419 iov->num_vfs = 0; 420 iov->total_vfs = 0; 421 } 422 423 return 0; 424 } 425 426 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 427 { 428 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 429 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 430 struct qed_bulletin_content *p_bulletin_virt; 431 dma_addr_t req_p, rply_p, bulletin_p; 432 union pfvf_tlvs *p_reply_virt_addr; 433 union vfpf_tlvs *p_req_virt_addr; 434 u8 idx = 0; 435 436 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 437 438 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 439 req_p = p_iov_info->mbx_msg_phys_addr; 440 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 441 rply_p = p_iov_info->mbx_reply_phys_addr; 442 p_bulletin_virt = p_iov_info->p_bulletins; 443 bulletin_p = p_iov_info->bulletins_phys; 444 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 445 DP_ERR(p_hwfn, 446 "qed_iov_setup_vfdb called without allocating mem first\n"); 447 return; 448 } 449 450 for (idx = 0; idx < p_iov->total_vfs; idx++) { 451 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 452 u32 concrete; 453 454 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 455 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 456 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 457 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 458 459 vf->state = VF_STOPPED; 460 vf->b_init = false; 461 462 vf->bulletin.phys = idx * 463 sizeof(struct qed_bulletin_content) + 464 bulletin_p; 465 vf->bulletin.p_virt = p_bulletin_virt + idx; 466 vf->bulletin.size = sizeof(struct qed_bulletin_content); 467 468 vf->relative_vf_id = idx; 469 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 470 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 471 vf->concrete_fid = concrete; 472 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 473 (vf->abs_vf_id << 8); 474 vf->vport_id = idx + 1; 475 476 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 477 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 478 } 479 } 480 481 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 482 { 483 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 484 void **p_v_addr; 485 u16 num_vfs = 0; 486 487 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 488 489 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 490 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 491 492 /* Allocate PF Mailbox buffer (per-VF) */ 493 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 494 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 495 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 496 p_iov_info->mbx_msg_size, 497 &p_iov_info->mbx_msg_phys_addr, 498 GFP_KERNEL); 499 if (!*p_v_addr) 500 return -ENOMEM; 501 502 /* Allocate PF Mailbox Reply buffer (per-VF) */ 503 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 504 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 505 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 506 p_iov_info->mbx_reply_size, 507 &p_iov_info->mbx_reply_phys_addr, 508 GFP_KERNEL); 509 if (!*p_v_addr) 510 return -ENOMEM; 511 512 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 513 num_vfs; 514 p_v_addr = &p_iov_info->p_bulletins; 515 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 516 p_iov_info->bulletins_size, 517 &p_iov_info->bulletins_phys, 518 GFP_KERNEL); 519 if (!*p_v_addr) 520 return -ENOMEM; 521 522 DP_VERBOSE(p_hwfn, 523 QED_MSG_IOV, 524 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 525 p_iov_info->mbx_msg_virt_addr, 526 (u64) p_iov_info->mbx_msg_phys_addr, 527 p_iov_info->mbx_reply_virt_addr, 528 (u64) p_iov_info->mbx_reply_phys_addr, 529 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 530 531 return 0; 532 } 533 534 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 535 { 536 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 537 538 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 539 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 540 p_iov_info->mbx_msg_size, 541 p_iov_info->mbx_msg_virt_addr, 542 p_iov_info->mbx_msg_phys_addr); 543 544 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 545 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 546 p_iov_info->mbx_reply_size, 547 p_iov_info->mbx_reply_virt_addr, 548 p_iov_info->mbx_reply_phys_addr); 549 550 if (p_iov_info->p_bulletins) 551 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 552 p_iov_info->bulletins_size, 553 p_iov_info->p_bulletins, 554 p_iov_info->bulletins_phys); 555 } 556 557 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 558 { 559 struct qed_pf_iov *p_sriov; 560 561 if (!IS_PF_SRIOV(p_hwfn)) { 562 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 563 "No SR-IOV - no need for IOV db\n"); 564 return 0; 565 } 566 567 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 568 if (!p_sriov) 569 return -ENOMEM; 570 571 p_hwfn->pf_iov_info = p_sriov; 572 573 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 574 qed_sriov_eqe_event); 575 576 return qed_iov_allocate_vfdb(p_hwfn); 577 } 578 579 void qed_iov_setup(struct qed_hwfn *p_hwfn) 580 { 581 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 582 return; 583 584 qed_iov_setup_vfdb(p_hwfn); 585 } 586 587 void qed_iov_free(struct qed_hwfn *p_hwfn) 588 { 589 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 590 591 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 592 qed_iov_free_vfdb(p_hwfn); 593 kfree(p_hwfn->pf_iov_info); 594 } 595 } 596 597 void qed_iov_free_hw_info(struct qed_dev *cdev) 598 { 599 kfree(cdev->p_iov_info); 600 cdev->p_iov_info = NULL; 601 } 602 603 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 604 { 605 struct qed_dev *cdev = p_hwfn->cdev; 606 int pos; 607 int rc; 608 609 if (IS_VF(p_hwfn->cdev)) 610 return 0; 611 612 /* Learn the PCI configuration */ 613 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 614 PCI_EXT_CAP_ID_SRIOV); 615 if (!pos) { 616 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 617 return 0; 618 } 619 620 /* Allocate a new struct for IOV information */ 621 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 622 if (!cdev->p_iov_info) 623 return -ENOMEM; 624 625 cdev->p_iov_info->pos = pos; 626 627 rc = qed_iov_pci_cfg_info(cdev); 628 if (rc) 629 return rc; 630 631 /* We want PF IOV to be synonemous with the existance of p_iov_info; 632 * In case the capability is published but there are no VFs, simply 633 * de-allocate the struct. 634 */ 635 if (!cdev->p_iov_info->total_vfs) { 636 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 637 "IOV capabilities, but no VFs are published\n"); 638 kfree(cdev->p_iov_info); 639 cdev->p_iov_info = NULL; 640 return 0; 641 } 642 643 /* First VF index based on offset is tricky: 644 * - If ARI is supported [likely], offset - (16 - pf_id) would 645 * provide the number for eng0. 2nd engine Vfs would begin 646 * after the first engine's VFs. 647 * - If !ARI, VFs would start on next device. 648 * so offset - (256 - pf_id) would provide the number. 649 * Utilize the fact that (256 - pf_id) is achieved only by later 650 * to differentiate between the two. 651 */ 652 653 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 654 u32 first = p_hwfn->cdev->p_iov_info->offset + 655 p_hwfn->abs_pf_id - 16; 656 657 cdev->p_iov_info->first_vf_in_pf = first; 658 659 if (QED_PATH_ID(p_hwfn)) 660 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 661 } else { 662 u32 first = p_hwfn->cdev->p_iov_info->offset + 663 p_hwfn->abs_pf_id - 256; 664 665 cdev->p_iov_info->first_vf_in_pf = first; 666 } 667 668 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 669 "First VF in hwfn 0x%08x\n", 670 cdev->p_iov_info->first_vf_in_pf); 671 672 return 0; 673 } 674 675 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 676 int vfid, bool b_fail_malicious) 677 { 678 /* Check PF supports sriov */ 679 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 680 !IS_PF_SRIOV_ALLOC(p_hwfn)) 681 return false; 682 683 /* Check VF validity */ 684 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 685 return false; 686 687 return true; 688 } 689 690 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 691 { 692 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 693 } 694 695 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 696 u16 rel_vf_id, u8 to_disable) 697 { 698 struct qed_vf_info *vf; 699 int i; 700 701 for_each_hwfn(cdev, i) { 702 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 703 704 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 705 if (!vf) 706 continue; 707 708 vf->to_disable = to_disable; 709 } 710 } 711 712 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 713 { 714 u16 i; 715 716 if (!IS_QED_SRIOV(cdev)) 717 return; 718 719 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 720 qed_iov_set_vf_to_disable(cdev, i, to_disable); 721 } 722 723 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 724 struct qed_ptt *p_ptt, u8 abs_vfid) 725 { 726 qed_wr(p_hwfn, p_ptt, 727 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 728 1 << (abs_vfid & 0x1f)); 729 } 730 731 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 732 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 733 { 734 int i; 735 736 /* Set VF masks and configuration - pretend */ 737 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 738 739 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 740 741 /* unpretend */ 742 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 743 744 /* iterate over all queues, clear sb consumer */ 745 for (i = 0; i < vf->num_sbs; i++) 746 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 747 vf->igu_sbs[i], 748 vf->opaque_fid, true); 749 } 750 751 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 752 struct qed_ptt *p_ptt, 753 struct qed_vf_info *vf, bool enable) 754 { 755 u32 igu_vf_conf; 756 757 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 758 759 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 760 761 if (enable) 762 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 763 else 764 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 765 766 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 767 768 /* unpretend */ 769 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 770 } 771 772 static int 773 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, 774 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) 775 { 776 u8 current_max = 0; 777 int i; 778 779 /* For AH onward, configuration is per-PF. Find maximum of all 780 * the currently enabled child VFs, and set the number to be that. 781 */ 782 if (!QED_IS_BB(p_hwfn->cdev)) { 783 qed_for_each_vf(p_hwfn, i) { 784 struct qed_vf_info *p_vf; 785 786 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); 787 if (!p_vf) 788 continue; 789 790 current_max = max_t(u8, current_max, p_vf->num_sbs); 791 } 792 } 793 794 if (num_sbs > current_max) 795 return qed_mcp_config_vf_msix(p_hwfn, p_ptt, 796 abs_vf_id, num_sbs); 797 798 return 0; 799 } 800 801 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 802 struct qed_ptt *p_ptt, 803 struct qed_vf_info *vf) 804 { 805 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 806 int rc; 807 808 /* It's possible VF was previously considered malicious - 809 * clear the indication even if we're only going to disable VF. 810 */ 811 vf->b_malicious = false; 812 813 if (vf->to_disable) 814 return 0; 815 816 DP_VERBOSE(p_hwfn, 817 QED_MSG_IOV, 818 "Enable internal access for vf %x [abs %x]\n", 819 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 820 821 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 822 823 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 824 825 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, 826 vf->abs_vf_id, vf->num_sbs); 827 if (rc) 828 return rc; 829 830 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 831 832 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 833 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 834 835 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 836 p_hwfn->hw_info.hw_mode); 837 838 /* unpretend */ 839 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 840 841 vf->state = VF_FREE; 842 843 return rc; 844 } 845 846 /** 847 * @brief qed_iov_config_perm_table - configure the permission 848 * zone table. 849 * In E4, queue zone permission table size is 320x9. There 850 * are 320 VF queues for single engine device (256 for dual 851 * engine device), and each entry has the following format: 852 * {Valid, VF[7:0]} 853 * @param p_hwfn 854 * @param p_ptt 855 * @param vf 856 * @param enable 857 */ 858 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 859 struct qed_ptt *p_ptt, 860 struct qed_vf_info *vf, u8 enable) 861 { 862 u32 reg_addr, val; 863 u16 qzone_id = 0; 864 int qid; 865 866 for (qid = 0; qid < vf->num_rxqs; qid++) { 867 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 868 &qzone_id); 869 870 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 871 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 872 qed_wr(p_hwfn, p_ptt, reg_addr, val); 873 } 874 } 875 876 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 877 struct qed_ptt *p_ptt, 878 struct qed_vf_info *vf) 879 { 880 /* Reset vf in IGU - interrupts are still disabled */ 881 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 882 883 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 884 885 /* Permission Table */ 886 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 887 } 888 889 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 890 struct qed_ptt *p_ptt, 891 struct qed_vf_info *vf, u16 num_rx_queues) 892 { 893 struct qed_igu_block *p_block; 894 struct cau_sb_entry sb_entry; 895 int qid = 0; 896 u32 val = 0; 897 898 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 899 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 900 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 901 902 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 903 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 904 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 905 906 for (qid = 0; qid < num_rx_queues; qid++) { 907 p_block = qed_get_igu_free_sb(p_hwfn, false); 908 vf->igu_sbs[qid] = p_block->igu_sb_id; 909 p_block->status &= ~QED_IGU_STATUS_FREE; 910 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 911 912 qed_wr(p_hwfn, p_ptt, 913 IGU_REG_MAPPING_MEMORY + 914 sizeof(u32) * p_block->igu_sb_id, val); 915 916 /* Configure igu sb in CAU which were marked valid */ 917 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 918 p_hwfn->rel_pf_id, vf->abs_vf_id, 1); 919 qed_dmae_host2grc(p_hwfn, p_ptt, 920 (u64)(uintptr_t)&sb_entry, 921 CAU_REG_SB_VAR_MEMORY + 922 p_block->igu_sb_id * sizeof(u64), 2, 0); 923 } 924 925 vf->num_sbs = (u8) num_rx_queues; 926 927 return vf->num_sbs; 928 } 929 930 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 931 struct qed_ptt *p_ptt, 932 struct qed_vf_info *vf) 933 { 934 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 935 int idx, igu_id; 936 u32 addr, val; 937 938 /* Invalidate igu CAM lines and mark them as free */ 939 for (idx = 0; idx < vf->num_sbs; idx++) { 940 igu_id = vf->igu_sbs[idx]; 941 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 942 943 val = qed_rd(p_hwfn, p_ptt, addr); 944 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 945 qed_wr(p_hwfn, p_ptt, addr, val); 946 947 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; 948 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 949 } 950 951 vf->num_sbs = 0; 952 } 953 954 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 955 u16 vfid, 956 struct qed_mcp_link_params *params, 957 struct qed_mcp_link_state *link, 958 struct qed_mcp_link_capabilities *p_caps) 959 { 960 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 961 vfid, 962 false); 963 struct qed_bulletin_content *p_bulletin; 964 965 if (!p_vf) 966 return; 967 968 p_bulletin = p_vf->bulletin.p_virt; 969 p_bulletin->req_autoneg = params->speed.autoneg; 970 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 971 p_bulletin->req_forced_speed = params->speed.forced_speed; 972 p_bulletin->req_autoneg_pause = params->pause.autoneg; 973 p_bulletin->req_forced_rx = params->pause.forced_rx; 974 p_bulletin->req_forced_tx = params->pause.forced_tx; 975 p_bulletin->req_loopback = params->loopback_mode; 976 977 p_bulletin->link_up = link->link_up; 978 p_bulletin->speed = link->speed; 979 p_bulletin->full_duplex = link->full_duplex; 980 p_bulletin->autoneg = link->an; 981 p_bulletin->autoneg_complete = link->an_complete; 982 p_bulletin->parallel_detection = link->parallel_detection; 983 p_bulletin->pfc_enabled = link->pfc_enabled; 984 p_bulletin->partner_adv_speed = link->partner_adv_speed; 985 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 986 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 987 p_bulletin->partner_adv_pause = link->partner_adv_pause; 988 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 989 990 p_bulletin->capability_speed = p_caps->speed_capabilities; 991 } 992 993 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 994 struct qed_ptt *p_ptt, 995 struct qed_iov_vf_init_params *p_params) 996 { 997 struct qed_mcp_link_capabilities link_caps; 998 struct qed_mcp_link_params link_params; 999 struct qed_mcp_link_state link_state; 1000 u8 num_of_vf_avaiable_chains = 0; 1001 struct qed_vf_info *vf = NULL; 1002 u16 qid, num_irqs; 1003 int rc = 0; 1004 u32 cids; 1005 u8 i; 1006 1007 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 1008 if (!vf) { 1009 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 1010 return -EINVAL; 1011 } 1012 1013 if (vf->b_init) { 1014 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 1015 p_params->rel_vf_id); 1016 return -EINVAL; 1017 } 1018 1019 /* Perform sanity checking on the requested queue_id */ 1020 for (i = 0; i < p_params->num_queues; i++) { 1021 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 1022 u16 max_vf_qzone = min_vf_qzone + 1023 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 1024 1025 qid = p_params->req_rx_queue[i]; 1026 if (qid < min_vf_qzone || qid > max_vf_qzone) { 1027 DP_NOTICE(p_hwfn, 1028 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 1029 qid, 1030 p_params->rel_vf_id, 1031 min_vf_qzone, max_vf_qzone); 1032 return -EINVAL; 1033 } 1034 1035 qid = p_params->req_tx_queue[i]; 1036 if (qid > max_vf_qzone) { 1037 DP_NOTICE(p_hwfn, 1038 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 1039 qid, p_params->rel_vf_id, max_vf_qzone); 1040 return -EINVAL; 1041 } 1042 1043 /* If client *really* wants, Tx qid can be shared with PF */ 1044 if (qid < min_vf_qzone) 1045 DP_VERBOSE(p_hwfn, 1046 QED_MSG_IOV, 1047 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1048 p_params->rel_vf_id, qid, i); 1049 } 1050 1051 /* Limit number of queues according to number of CIDs */ 1052 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1053 DP_VERBOSE(p_hwfn, 1054 QED_MSG_IOV, 1055 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1056 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1057 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1058 1059 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1060 p_ptt, 1061 vf, num_irqs); 1062 if (!num_of_vf_avaiable_chains) { 1063 DP_ERR(p_hwfn, "no available igu sbs\n"); 1064 return -ENOMEM; 1065 } 1066 1067 /* Choose queue number and index ranges */ 1068 vf->num_rxqs = num_of_vf_avaiable_chains; 1069 vf->num_txqs = num_of_vf_avaiable_chains; 1070 1071 for (i = 0; i < vf->num_rxqs; i++) { 1072 struct qed_vf_queue *p_queue = &vf->vf_queues[i]; 1073 1074 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1075 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1076 1077 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1078 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1079 vf->relative_vf_id, i, vf->igu_sbs[i], 1080 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1081 } 1082 1083 /* Update the link configuration in bulletin */ 1084 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1085 sizeof(link_params)); 1086 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1087 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1088 sizeof(link_caps)); 1089 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1090 &link_params, &link_state, &link_caps); 1091 1092 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1093 if (!rc) { 1094 vf->b_init = true; 1095 1096 if (IS_LEAD_HWFN(p_hwfn)) 1097 p_hwfn->cdev->p_iov_info->num_vfs++; 1098 } 1099 1100 return rc; 1101 } 1102 1103 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1104 struct qed_ptt *p_ptt, u16 rel_vf_id) 1105 { 1106 struct qed_mcp_link_capabilities caps; 1107 struct qed_mcp_link_params params; 1108 struct qed_mcp_link_state link; 1109 struct qed_vf_info *vf = NULL; 1110 1111 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1112 if (!vf) { 1113 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1114 return -EINVAL; 1115 } 1116 1117 if (vf->bulletin.p_virt) 1118 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1119 1120 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1121 1122 /* Get the link configuration back in bulletin so 1123 * that when VFs are re-enabled they get the actual 1124 * link configuration. 1125 */ 1126 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1127 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1128 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1129 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1130 1131 /* Forget the VF's acquisition message */ 1132 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1133 1134 /* disablng interrupts and resetting permission table was done during 1135 * vf-close, however, we could get here without going through vf_close 1136 */ 1137 /* Disable Interrupts for VF */ 1138 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1139 1140 /* Reset Permission table */ 1141 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1142 1143 vf->num_rxqs = 0; 1144 vf->num_txqs = 0; 1145 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1146 1147 if (vf->b_init) { 1148 vf->b_init = false; 1149 1150 if (IS_LEAD_HWFN(p_hwfn)) 1151 p_hwfn->cdev->p_iov_info->num_vfs--; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static bool qed_iov_tlv_supported(u16 tlvtype) 1158 { 1159 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1160 } 1161 1162 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1163 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1164 { 1165 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1166 1167 tl->type = type; 1168 tl->length = length; 1169 1170 /* Offset should keep pointing to next TLV (the end of the last) */ 1171 *offset += length; 1172 1173 /* Return a pointer to the start of the added tlv */ 1174 return *offset - length; 1175 } 1176 1177 /* list the types and lengths of the tlvs on the buffer */ 1178 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1179 { 1180 u16 i = 1, total_length = 0; 1181 struct channel_tlv *tlv; 1182 1183 do { 1184 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1185 1186 /* output tlv */ 1187 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1188 "TLV number %d: type %d, length %d\n", 1189 i, tlv->type, tlv->length); 1190 1191 if (tlv->type == CHANNEL_TLV_LIST_END) 1192 return; 1193 1194 /* Validate entry - protect against malicious VFs */ 1195 if (!tlv->length) { 1196 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1197 return; 1198 } 1199 1200 total_length += tlv->length; 1201 1202 if (total_length >= sizeof(struct tlv_buffer_size)) { 1203 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1204 return; 1205 } 1206 1207 i++; 1208 } while (1); 1209 } 1210 1211 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1212 struct qed_ptt *p_ptt, 1213 struct qed_vf_info *p_vf, 1214 u16 length, u8 status) 1215 { 1216 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1217 struct qed_dmae_params params; 1218 u8 eng_vf_id; 1219 1220 mbx->reply_virt->default_resp.hdr.status = status; 1221 1222 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1223 1224 eng_vf_id = p_vf->abs_vf_id; 1225 1226 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 1227 params.flags = QED_DMAE_FLAG_VF_DST; 1228 params.dst_vfid = eng_vf_id; 1229 1230 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1231 mbx->req_virt->first_tlv.reply_address + 1232 sizeof(u64), 1233 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1234 ¶ms); 1235 1236 /* Once PF copies the rc to the VF, the latter can continue 1237 * and send an additional message. So we have to make sure the 1238 * channel would be re-set to ready prior to that. 1239 */ 1240 REG_WR(p_hwfn, 1241 GTT_BAR0_MAP_REG_USDM_RAM + 1242 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1243 1244 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1245 mbx->req_virt->first_tlv.reply_address, 1246 sizeof(u64) / 4, ¶ms); 1247 } 1248 1249 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1250 enum qed_iov_vport_update_flag flag) 1251 { 1252 switch (flag) { 1253 case QED_IOV_VP_UPDATE_ACTIVATE: 1254 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1255 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1256 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1257 case QED_IOV_VP_UPDATE_TX_SWITCH: 1258 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1259 case QED_IOV_VP_UPDATE_MCAST: 1260 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1261 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1262 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1263 case QED_IOV_VP_UPDATE_RSS: 1264 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1265 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1266 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1267 case QED_IOV_VP_UPDATE_SGE_TPA: 1268 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1269 default: 1270 return 0; 1271 } 1272 } 1273 1274 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1275 struct qed_vf_info *p_vf, 1276 struct qed_iov_vf_mbx *p_mbx, 1277 u8 status, 1278 u16 tlvs_mask, u16 tlvs_accepted) 1279 { 1280 struct pfvf_def_resp_tlv *resp; 1281 u16 size, total_len, i; 1282 1283 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1284 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1285 size = sizeof(struct pfvf_def_resp_tlv); 1286 total_len = size; 1287 1288 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1289 1290 /* Prepare response for all extended tlvs if they are found by PF */ 1291 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1292 if (!(tlvs_mask & BIT(i))) 1293 continue; 1294 1295 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1296 qed_iov_vport_to_tlv(p_hwfn, i), size); 1297 1298 if (tlvs_accepted & BIT(i)) 1299 resp->hdr.status = status; 1300 else 1301 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1302 1303 DP_VERBOSE(p_hwfn, 1304 QED_MSG_IOV, 1305 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1306 p_vf->relative_vf_id, 1307 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1308 1309 total_len += size; 1310 } 1311 1312 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1313 sizeof(struct channel_list_end_tlv)); 1314 1315 return total_len; 1316 } 1317 1318 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1319 struct qed_ptt *p_ptt, 1320 struct qed_vf_info *vf_info, 1321 u16 type, u16 length, u8 status) 1322 { 1323 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1324 1325 mbx->offset = (u8 *)mbx->reply_virt; 1326 1327 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1328 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1329 sizeof(struct channel_list_end_tlv)); 1330 1331 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1332 } 1333 1334 static struct 1335 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1336 u16 relative_vf_id, 1337 bool b_enabled_only) 1338 { 1339 struct qed_vf_info *vf = NULL; 1340 1341 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1342 if (!vf) 1343 return NULL; 1344 1345 return &vf->p_vf_info; 1346 } 1347 1348 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1349 { 1350 struct qed_public_vf_info *vf_info; 1351 1352 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1353 1354 if (!vf_info) 1355 return; 1356 1357 /* Clear the VF mac */ 1358 eth_zero_addr(vf_info->mac); 1359 1360 vf_info->rx_accept_mode = 0; 1361 vf_info->tx_accept_mode = 0; 1362 } 1363 1364 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1365 struct qed_vf_info *p_vf) 1366 { 1367 u32 i, j; 1368 1369 p_vf->vf_bulletin = 0; 1370 p_vf->vport_instance = 0; 1371 p_vf->configured_features = 0; 1372 1373 /* If VF previously requested less resources, go back to default */ 1374 p_vf->num_rxqs = p_vf->num_sbs; 1375 p_vf->num_txqs = p_vf->num_sbs; 1376 1377 p_vf->num_active_rxqs = 0; 1378 1379 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1380 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1381 1382 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1383 if (!p_queue->cids[j].p_cid) 1384 continue; 1385 1386 qed_eth_queue_cid_release(p_hwfn, 1387 p_queue->cids[j].p_cid); 1388 p_queue->cids[j].p_cid = NULL; 1389 } 1390 } 1391 1392 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1393 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1394 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1395 } 1396 1397 /* Returns either 0, or log(size) */ 1398 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, 1399 struct qed_ptt *p_ptt) 1400 { 1401 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1402 1403 if (val) 1404 return val + 11; 1405 return 0; 1406 } 1407 1408 static void 1409 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, 1410 struct qed_ptt *p_ptt, 1411 struct qed_vf_info *p_vf, 1412 struct vf_pf_resc_request *p_req, 1413 struct pf_vf_resc *p_resp) 1414 { 1415 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1416 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - 1417 qed_db_addr_vf(0, DQ_DEMS_LEGACY); 1418 u32 bar_size; 1419 1420 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); 1421 1422 /* If VF didn't bother asking for QIDs than don't bother limiting 1423 * number of CIDs. The VF doesn't care about the number, and this 1424 * has the likely result of causing an additional acquisition. 1425 */ 1426 if (!(p_vf->acquire.vfdev_info.capabilities & 1427 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1428 return; 1429 1430 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1431 * that would make sure doorbells for all CIDs fall within the bar. 1432 * If it doesn't, make sure regview window is sufficient. 1433 */ 1434 if (p_vf->acquire.vfdev_info.capabilities & 1435 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1436 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1437 if (bar_size) 1438 bar_size = 1 << bar_size; 1439 1440 if (p_hwfn->cdev->num_hwfns > 1) 1441 bar_size /= 2; 1442 } else { 1443 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1444 } 1445 1446 if (bar_size / db_size < 256) 1447 p_resp->num_cids = min_t(u8, p_resp->num_cids, 1448 (u8)(bar_size / db_size)); 1449 } 1450 1451 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1452 struct qed_ptt *p_ptt, 1453 struct qed_vf_info *p_vf, 1454 struct vf_pf_resc_request *p_req, 1455 struct pf_vf_resc *p_resp) 1456 { 1457 u8 i; 1458 1459 /* Queue related information */ 1460 p_resp->num_rxqs = p_vf->num_rxqs; 1461 p_resp->num_txqs = p_vf->num_txqs; 1462 p_resp->num_sbs = p_vf->num_sbs; 1463 1464 for (i = 0; i < p_resp->num_sbs; i++) { 1465 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1466 p_resp->hw_sbs[i].sb_qid = 0; 1467 } 1468 1469 /* These fields are filled for backward compatibility. 1470 * Unused by modern vfs. 1471 */ 1472 for (i = 0; i < p_resp->num_rxqs; i++) { 1473 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1474 (u16 *)&p_resp->hw_qid[i]); 1475 p_resp->cid[i] = i; 1476 } 1477 1478 /* Filter related information */ 1479 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1480 p_req->num_mac_filters); 1481 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1482 p_req->num_vlan_filters); 1483 1484 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1485 1486 /* This isn't really needed/enforced, but some legacy VFs might depend 1487 * on the correct filling of this field. 1488 */ 1489 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1490 1491 /* Validate sufficient resources for VF */ 1492 if (p_resp->num_rxqs < p_req->num_rxqs || 1493 p_resp->num_txqs < p_req->num_txqs || 1494 p_resp->num_sbs < p_req->num_sbs || 1495 p_resp->num_mac_filters < p_req->num_mac_filters || 1496 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1497 p_resp->num_mc_filters < p_req->num_mc_filters || 1498 p_resp->num_cids < p_req->num_cids) { 1499 DP_VERBOSE(p_hwfn, 1500 QED_MSG_IOV, 1501 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1502 p_vf->abs_vf_id, 1503 p_req->num_rxqs, 1504 p_resp->num_rxqs, 1505 p_req->num_rxqs, 1506 p_resp->num_txqs, 1507 p_req->num_sbs, 1508 p_resp->num_sbs, 1509 p_req->num_mac_filters, 1510 p_resp->num_mac_filters, 1511 p_req->num_vlan_filters, 1512 p_resp->num_vlan_filters, 1513 p_req->num_mc_filters, 1514 p_resp->num_mc_filters, 1515 p_req->num_cids, p_resp->num_cids); 1516 1517 /* Some legacy OSes are incapable of correctly handling this 1518 * failure. 1519 */ 1520 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1521 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1522 (p_vf->acquire.vfdev_info.os_type == 1523 VFPF_ACQUIRE_OS_WINDOWS)) 1524 return PFVF_STATUS_SUCCESS; 1525 1526 return PFVF_STATUS_NO_RESOURCE; 1527 } 1528 1529 return PFVF_STATUS_SUCCESS; 1530 } 1531 1532 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1533 struct pfvf_stats_info *p_stats) 1534 { 1535 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1536 offsetof(struct mstorm_vf_zone, 1537 non_trigger.eth_queue_stat); 1538 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1539 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1540 offsetof(struct ustorm_vf_zone, 1541 non_trigger.eth_queue_stat); 1542 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1543 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1544 offsetof(struct pstorm_vf_zone, 1545 non_trigger.eth_queue_stat); 1546 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1547 p_stats->tstats.address = 0; 1548 p_stats->tstats.len = 0; 1549 } 1550 1551 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1552 struct qed_ptt *p_ptt, 1553 struct qed_vf_info *vf) 1554 { 1555 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1556 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1557 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1558 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1559 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1560 struct pf_vf_resc *resc = &resp->resc; 1561 int rc; 1562 1563 memset(resp, 0, sizeof(*resp)); 1564 1565 /* Write the PF version so that VF would know which version 1566 * is supported - might be later overriden. This guarantees that 1567 * VF could recognize legacy PF based on lack of versions in reply. 1568 */ 1569 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1570 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1571 1572 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1573 DP_VERBOSE(p_hwfn, 1574 QED_MSG_IOV, 1575 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1576 vf->abs_vf_id, vf->state); 1577 goto out; 1578 } 1579 1580 /* Validate FW compatibility */ 1581 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1582 if (req->vfdev_info.capabilities & 1583 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1584 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1585 1586 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1587 "VF[%d] is pre-fastpath HSI\n", 1588 vf->abs_vf_id); 1589 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1590 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1591 } else { 1592 DP_INFO(p_hwfn, 1593 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1594 vf->abs_vf_id, 1595 req->vfdev_info.eth_fp_hsi_major, 1596 req->vfdev_info.eth_fp_hsi_minor, 1597 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1598 1599 goto out; 1600 } 1601 } 1602 1603 /* On 100g PFs, prevent old VFs from loading */ 1604 if ((p_hwfn->cdev->num_hwfns > 1) && 1605 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1606 DP_INFO(p_hwfn, 1607 "VF[%d] is running an old driver that doesn't support 100g\n", 1608 vf->abs_vf_id); 1609 goto out; 1610 } 1611 1612 /* Store the acquire message */ 1613 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1614 1615 vf->opaque_fid = req->vfdev_info.opaque_fid; 1616 1617 vf->vf_bulletin = req->bulletin_addr; 1618 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1619 vf->bulletin.size : req->bulletin_size; 1620 1621 /* fill in pfdev info */ 1622 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1623 pfdev_info->db_size = 0; 1624 pfdev_info->indices_per_sb = PIS_PER_SB_E4; 1625 1626 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1627 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1628 if (p_hwfn->cdev->num_hwfns > 1) 1629 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1630 1631 /* Share our ability to use multiple queue-ids only with VFs 1632 * that request it. 1633 */ 1634 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1635 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1636 1637 /* Share the sizes of the bars with VF */ 1638 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1639 1640 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1641 1642 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1643 1644 pfdev_info->fw_major = FW_MAJOR_VERSION; 1645 pfdev_info->fw_minor = FW_MINOR_VERSION; 1646 pfdev_info->fw_rev = FW_REVISION_VERSION; 1647 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1648 1649 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1650 * this field. 1651 */ 1652 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1653 req->vfdev_info.eth_fp_hsi_minor); 1654 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1655 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1656 1657 pfdev_info->dev_type = p_hwfn->cdev->type; 1658 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1659 1660 /* Fill resources available to VF; Make sure there are enough to 1661 * satisfy the VF's request. 1662 */ 1663 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1664 &req->resc_request, resc); 1665 if (vfpf_status != PFVF_STATUS_SUCCESS) 1666 goto out; 1667 1668 /* Start the VF in FW */ 1669 rc = qed_sp_vf_start(p_hwfn, vf); 1670 if (rc) { 1671 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1672 vfpf_status = PFVF_STATUS_FAILURE; 1673 goto out; 1674 } 1675 1676 /* Fill agreed size of bulletin board in response */ 1677 resp->bulletin_size = vf->bulletin.size; 1678 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1679 1680 DP_VERBOSE(p_hwfn, 1681 QED_MSG_IOV, 1682 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1683 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1684 vf->abs_vf_id, 1685 resp->pfdev_info.chip_num, 1686 resp->pfdev_info.db_size, 1687 resp->pfdev_info.indices_per_sb, 1688 resp->pfdev_info.capabilities, 1689 resc->num_rxqs, 1690 resc->num_txqs, 1691 resc->num_sbs, 1692 resc->num_mac_filters, 1693 resc->num_vlan_filters); 1694 vf->state = VF_ACQUIRED; 1695 1696 /* Prepare Response */ 1697 out: 1698 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1699 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1700 } 1701 1702 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1703 struct qed_vf_info *p_vf, bool val) 1704 { 1705 struct qed_sp_vport_update_params params; 1706 int rc; 1707 1708 if (val == p_vf->spoof_chk) { 1709 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1710 "Spoofchk value[%d] is already configured\n", val); 1711 return 0; 1712 } 1713 1714 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1715 params.opaque_fid = p_vf->opaque_fid; 1716 params.vport_id = p_vf->vport_id; 1717 params.update_anti_spoofing_en_flg = 1; 1718 params.anti_spoofing_en = val; 1719 1720 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1721 if (!rc) { 1722 p_vf->spoof_chk = val; 1723 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1724 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1725 "Spoofchk val[%d] configured\n", val); 1726 } else { 1727 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1728 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1729 val, p_vf->relative_vf_id); 1730 } 1731 1732 return rc; 1733 } 1734 1735 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1736 struct qed_vf_info *p_vf) 1737 { 1738 struct qed_filter_ucast filter; 1739 int rc = 0; 1740 int i; 1741 1742 memset(&filter, 0, sizeof(filter)); 1743 filter.is_rx_filter = 1; 1744 filter.is_tx_filter = 1; 1745 filter.vport_to_add_to = p_vf->vport_id; 1746 filter.opcode = QED_FILTER_ADD; 1747 1748 /* Reconfigure vlans */ 1749 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1750 if (!p_vf->shadow_config.vlans[i].used) 1751 continue; 1752 1753 filter.type = QED_FILTER_VLAN; 1754 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1755 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1756 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1757 filter.vlan, p_vf->relative_vf_id); 1758 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1759 &filter, QED_SPQ_MODE_CB, NULL); 1760 if (rc) { 1761 DP_NOTICE(p_hwfn, 1762 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1763 filter.vlan, p_vf->relative_vf_id); 1764 break; 1765 } 1766 } 1767 1768 return rc; 1769 } 1770 1771 static int 1772 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1773 struct qed_vf_info *p_vf, u64 events) 1774 { 1775 int rc = 0; 1776 1777 if ((events & BIT(VLAN_ADDR_FORCED)) && 1778 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1779 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1780 1781 return rc; 1782 } 1783 1784 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1785 struct qed_vf_info *p_vf, u64 events) 1786 { 1787 int rc = 0; 1788 struct qed_filter_ucast filter; 1789 1790 if (!p_vf->vport_instance) 1791 return -EINVAL; 1792 1793 if ((events & BIT(MAC_ADDR_FORCED)) || 1794 p_vf->p_vf_info.is_trusted_configured) { 1795 /* Since there's no way [currently] of removing the MAC, 1796 * we can always assume this means we need to force it. 1797 */ 1798 memset(&filter, 0, sizeof(filter)); 1799 filter.type = QED_FILTER_MAC; 1800 filter.opcode = QED_FILTER_REPLACE; 1801 filter.is_rx_filter = 1; 1802 filter.is_tx_filter = 1; 1803 filter.vport_to_add_to = p_vf->vport_id; 1804 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1805 1806 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1807 &filter, QED_SPQ_MODE_CB, NULL); 1808 if (rc) { 1809 DP_NOTICE(p_hwfn, 1810 "PF failed to configure MAC for VF\n"); 1811 return rc; 1812 } 1813 if (p_vf->p_vf_info.is_trusted_configured) 1814 p_vf->configured_features |= 1815 BIT(VFPF_BULLETIN_MAC_ADDR); 1816 else 1817 p_vf->configured_features |= 1818 BIT(MAC_ADDR_FORCED); 1819 } 1820 1821 if (events & BIT(VLAN_ADDR_FORCED)) { 1822 struct qed_sp_vport_update_params vport_update; 1823 u8 removal; 1824 int i; 1825 1826 memset(&filter, 0, sizeof(filter)); 1827 filter.type = QED_FILTER_VLAN; 1828 filter.is_rx_filter = 1; 1829 filter.is_tx_filter = 1; 1830 filter.vport_to_add_to = p_vf->vport_id; 1831 filter.vlan = p_vf->bulletin.p_virt->pvid; 1832 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1833 QED_FILTER_FLUSH; 1834 1835 /* Send the ramrod */ 1836 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1837 &filter, QED_SPQ_MODE_CB, NULL); 1838 if (rc) { 1839 DP_NOTICE(p_hwfn, 1840 "PF failed to configure VLAN for VF\n"); 1841 return rc; 1842 } 1843 1844 /* Update the default-vlan & silent vlan stripping */ 1845 memset(&vport_update, 0, sizeof(vport_update)); 1846 vport_update.opaque_fid = p_vf->opaque_fid; 1847 vport_update.vport_id = p_vf->vport_id; 1848 vport_update.update_default_vlan_enable_flg = 1; 1849 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1850 vport_update.update_default_vlan_flg = 1; 1851 vport_update.default_vlan = filter.vlan; 1852 1853 vport_update.update_inner_vlan_removal_flg = 1; 1854 removal = filter.vlan ? 1 1855 : p_vf->shadow_config.inner_vlan_removal; 1856 vport_update.inner_vlan_removal_flg = removal; 1857 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1858 rc = qed_sp_vport_update(p_hwfn, 1859 &vport_update, 1860 QED_SPQ_MODE_EBLOCK, NULL); 1861 if (rc) { 1862 DP_NOTICE(p_hwfn, 1863 "PF failed to configure VF vport for vlan\n"); 1864 return rc; 1865 } 1866 1867 /* Update all the Rx queues */ 1868 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1869 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1870 struct qed_queue_cid *p_cid = NULL; 1871 1872 /* There can be at most 1 Rx queue on qzone. Find it */ 1873 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 1874 if (!p_cid) 1875 continue; 1876 1877 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1878 (void **)&p_cid, 1879 1, 0, 1, 1880 QED_SPQ_MODE_EBLOCK, 1881 NULL); 1882 if (rc) { 1883 DP_NOTICE(p_hwfn, 1884 "Failed to send Rx update fo queue[0x%04x]\n", 1885 p_cid->rel.queue_id); 1886 return rc; 1887 } 1888 } 1889 1890 if (filter.vlan) 1891 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1892 else 1893 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1894 } 1895 1896 /* If forced features are terminated, we need to configure the shadow 1897 * configuration back again. 1898 */ 1899 if (events) 1900 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1901 1902 return rc; 1903 } 1904 1905 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1906 struct qed_ptt *p_ptt, 1907 struct qed_vf_info *vf) 1908 { 1909 struct qed_sp_vport_start_params params = { 0 }; 1910 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1911 struct vfpf_vport_start_tlv *start; 1912 u8 status = PFVF_STATUS_SUCCESS; 1913 struct qed_vf_info *vf_info; 1914 u64 *p_bitmap; 1915 int sb_id; 1916 int rc; 1917 1918 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1919 if (!vf_info) { 1920 DP_NOTICE(p_hwfn->cdev, 1921 "Failed to get VF info, invalid vfid [%d]\n", 1922 vf->relative_vf_id); 1923 return; 1924 } 1925 1926 vf->state = VF_ENABLED; 1927 start = &mbx->req_virt->start_vport; 1928 1929 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1930 1931 /* Initialize Status block in CAU */ 1932 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1933 if (!start->sb_addr[sb_id]) { 1934 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1935 "VF[%d] did not fill the address of SB %d\n", 1936 vf->relative_vf_id, sb_id); 1937 break; 1938 } 1939 1940 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1941 start->sb_addr[sb_id], 1942 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1943 } 1944 1945 vf->mtu = start->mtu; 1946 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1947 1948 /* Take into consideration configuration forced by hypervisor; 1949 * If none is configured, use the supplied VF values [for old 1950 * vfs that would still be fine, since they passed '0' as padding]. 1951 */ 1952 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1953 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1954 u8 vf_req = start->only_untagged; 1955 1956 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1957 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1958 } 1959 1960 params.tpa_mode = start->tpa_mode; 1961 params.remove_inner_vlan = start->inner_vlan_removal; 1962 params.tx_switching = true; 1963 1964 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1965 params.drop_ttl0 = false; 1966 params.concrete_fid = vf->concrete_fid; 1967 params.opaque_fid = vf->opaque_fid; 1968 params.vport_id = vf->vport_id; 1969 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1970 params.mtu = vf->mtu; 1971 params.check_mac = true; 1972 1973 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1974 if (rc) { 1975 DP_ERR(p_hwfn, 1976 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1977 status = PFVF_STATUS_FAILURE; 1978 } else { 1979 vf->vport_instance++; 1980 1981 /* Force configuration if needed on the newly opened vport */ 1982 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1983 1984 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1985 } 1986 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1987 sizeof(struct pfvf_def_resp_tlv), status); 1988 } 1989 1990 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1991 struct qed_ptt *p_ptt, 1992 struct qed_vf_info *vf) 1993 { 1994 u8 status = PFVF_STATUS_SUCCESS; 1995 int rc; 1996 1997 vf->vport_instance--; 1998 vf->spoof_chk = false; 1999 2000 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 2001 (qed_iov_validate_active_txq(p_hwfn, vf))) { 2002 vf->b_malicious = true; 2003 DP_NOTICE(p_hwfn, 2004 "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n", 2005 vf->abs_vf_id); 2006 status = PFVF_STATUS_MALICIOUS; 2007 goto out; 2008 } 2009 2010 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 2011 if (rc) { 2012 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 2013 rc); 2014 status = PFVF_STATUS_FAILURE; 2015 } 2016 2017 /* Forget the configuration on the vport */ 2018 vf->configured_features = 0; 2019 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2020 2021 out: 2022 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2023 sizeof(struct pfvf_def_resp_tlv), status); 2024 } 2025 2026 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 2027 struct qed_ptt *p_ptt, 2028 struct qed_vf_info *vf, 2029 u8 status, bool b_legacy) 2030 { 2031 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2032 struct pfvf_start_queue_resp_tlv *p_tlv; 2033 struct vfpf_start_rxq_tlv *req; 2034 u16 length; 2035 2036 mbx->offset = (u8 *)mbx->reply_virt; 2037 2038 /* Taking a bigger struct instead of adding a TLV to list was a 2039 * mistake, but one which we're now stuck with, as some older 2040 * clients assume the size of the previous response. 2041 */ 2042 if (!b_legacy) 2043 length = sizeof(*p_tlv); 2044 else 2045 length = sizeof(struct pfvf_def_resp_tlv); 2046 2047 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 2048 length); 2049 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2050 sizeof(struct channel_list_end_tlv)); 2051 2052 /* Update the TLV with the response */ 2053 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2054 req = &mbx->req_virt->start_rxq; 2055 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2056 offsetof(struct mstorm_vf_zone, 2057 non_trigger.eth_rx_queue_producers) + 2058 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2059 } 2060 2061 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2062 } 2063 2064 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, 2065 struct qed_vf_info *p_vf, bool b_is_tx) 2066 { 2067 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2068 struct vfpf_qid_tlv *p_qid_tlv; 2069 2070 /* Search for the qid if the VF published its going to provide it */ 2071 if (!(p_vf->acquire.vfdev_info.capabilities & 2072 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2073 if (b_is_tx) 2074 return QED_IOV_LEGACY_QID_TX; 2075 else 2076 return QED_IOV_LEGACY_QID_RX; 2077 } 2078 2079 p_qid_tlv = (struct vfpf_qid_tlv *) 2080 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2081 CHANNEL_TLV_QID); 2082 if (!p_qid_tlv) { 2083 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2084 "VF[%2x]: Failed to provide qid\n", 2085 p_vf->relative_vf_id); 2086 2087 return QED_IOV_QID_INVALID; 2088 } 2089 2090 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2091 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2092 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2093 p_vf->relative_vf_id, p_qid_tlv->qid); 2094 return QED_IOV_QID_INVALID; 2095 } 2096 2097 return p_qid_tlv->qid; 2098 } 2099 2100 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 2101 struct qed_ptt *p_ptt, 2102 struct qed_vf_info *vf) 2103 { 2104 struct qed_queue_start_common_params params; 2105 struct qed_queue_cid_vf_params vf_params; 2106 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2107 u8 status = PFVF_STATUS_NO_RESOURCE; 2108 u8 qid_usage_idx, vf_legacy = 0; 2109 struct vfpf_start_rxq_tlv *req; 2110 struct qed_vf_queue *p_queue; 2111 struct qed_queue_cid *p_cid; 2112 struct qed_sb_info sb_dummy; 2113 int rc; 2114 2115 req = &mbx->req_virt->start_rxq; 2116 2117 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2118 QED_IOV_VALIDATE_Q_DISABLE) || 2119 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2120 goto out; 2121 2122 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2123 if (qid_usage_idx == QED_IOV_QID_INVALID) 2124 goto out; 2125 2126 p_queue = &vf->vf_queues[req->rx_qid]; 2127 if (p_queue->cids[qid_usage_idx].p_cid) 2128 goto out; 2129 2130 vf_legacy = qed_vf_calculate_legacy(vf); 2131 2132 /* Acquire a new queue-cid */ 2133 memset(¶ms, 0, sizeof(params)); 2134 params.queue_id = p_queue->fw_rx_qid; 2135 params.vport_id = vf->vport_id; 2136 params.stats_id = vf->abs_vf_id + 0x10; 2137 /* Since IGU index is passed via sb_info, construct a dummy one */ 2138 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2139 sb_dummy.igu_sb_id = req->hw_sb; 2140 params.p_sb = &sb_dummy; 2141 params.sb_idx = req->sb_index; 2142 2143 memset(&vf_params, 0, sizeof(vf_params)); 2144 vf_params.vfid = vf->relative_vf_id; 2145 vf_params.vf_qid = (u8)req->rx_qid; 2146 vf_params.vf_legacy = vf_legacy; 2147 vf_params.qid_usage_idx = qid_usage_idx; 2148 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2149 ¶ms, true, &vf_params); 2150 if (!p_cid) 2151 goto out; 2152 2153 /* Legacy VFs have their Producers in a different location, which they 2154 * calculate on their own and clean the producer prior to this. 2155 */ 2156 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) 2157 REG_WR(p_hwfn, 2158 GTT_BAR0_MAP_REG_MSDM_RAM + 2159 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2160 0); 2161 2162 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, 2163 req->bd_max_bytes, 2164 req->rxq_addr, 2165 req->cqe_pbl_addr, req->cqe_pbl_size); 2166 if (rc) { 2167 status = PFVF_STATUS_FAILURE; 2168 qed_eth_queue_cid_release(p_hwfn, p_cid); 2169 } else { 2170 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2171 p_queue->cids[qid_usage_idx].b_is_tx = false; 2172 status = PFVF_STATUS_SUCCESS; 2173 vf->num_active_rxqs++; 2174 } 2175 2176 out: 2177 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2178 !!(vf_legacy & 2179 QED_QCID_LEGACY_VF_RX_PROD)); 2180 } 2181 2182 static void 2183 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2184 struct qed_tunnel_info *p_tun, 2185 u16 tunn_feature_mask) 2186 { 2187 p_resp->tunn_feature_mask = tunn_feature_mask; 2188 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2189 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2190 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2191 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2192 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2193 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2194 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2195 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2196 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2197 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2198 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2199 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2200 } 2201 2202 static void 2203 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2204 struct qed_tunn_update_type *p_tun, 2205 enum qed_tunn_mode mask, u8 tun_cls) 2206 { 2207 if (p_req->tun_mode_update_mask & BIT(mask)) { 2208 p_tun->b_update_mode = true; 2209 2210 if (p_req->tunn_mode & BIT(mask)) 2211 p_tun->b_mode_enabled = true; 2212 } 2213 2214 p_tun->tun_cls = tun_cls; 2215 } 2216 2217 static void 2218 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2219 struct qed_tunn_update_type *p_tun, 2220 struct qed_tunn_update_udp_port *p_port, 2221 enum qed_tunn_mode mask, 2222 u8 tun_cls, u8 update_port, u16 port) 2223 { 2224 if (update_port) { 2225 p_port->b_update_port = true; 2226 p_port->port = port; 2227 } 2228 2229 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2230 } 2231 2232 static bool 2233 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2234 { 2235 bool b_update_requested = false; 2236 2237 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2238 p_req->update_geneve_port || p_req->update_vxlan_port) 2239 b_update_requested = true; 2240 2241 return b_update_requested; 2242 } 2243 2244 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2245 { 2246 if (tun->b_update_mode && !tun->b_mode_enabled) { 2247 tun->b_update_mode = false; 2248 *rc = -EINVAL; 2249 } 2250 } 2251 2252 static int 2253 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2254 u16 *tun_features, bool *update, 2255 struct qed_tunnel_info *tun_src) 2256 { 2257 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2258 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2259 u16 bultn_vxlan_port, bultn_geneve_port; 2260 void *cookie = p_hwfn->cdev->ops_cookie; 2261 int i, rc = 0; 2262 2263 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2264 bultn_vxlan_port = tun->vxlan_port.port; 2265 bultn_geneve_port = tun->geneve_port.port; 2266 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2267 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2268 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2269 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2270 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2271 2272 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2273 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2274 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2275 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2276 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2277 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2278 tun_src->b_update_rx_cls = false; 2279 tun_src->b_update_tx_cls = false; 2280 rc = -EINVAL; 2281 } 2282 2283 if (tun_src->vxlan_port.b_update_port) { 2284 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2285 tun_src->vxlan_port.b_update_port = false; 2286 } else { 2287 *update = true; 2288 bultn_vxlan_port = tun_src->vxlan_port.port; 2289 } 2290 } 2291 2292 if (tun_src->geneve_port.b_update_port) { 2293 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2294 tun_src->geneve_port.b_update_port = false; 2295 } else { 2296 *update = true; 2297 bultn_geneve_port = tun_src->geneve_port.port; 2298 } 2299 } 2300 2301 qed_for_each_vf(p_hwfn, i) { 2302 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2303 bultn_geneve_port); 2304 } 2305 2306 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2307 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2308 2309 return rc; 2310 } 2311 2312 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2313 struct qed_ptt *p_ptt, 2314 struct qed_vf_info *p_vf) 2315 { 2316 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2317 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2318 struct pfvf_update_tunn_param_tlv *p_resp; 2319 struct vfpf_update_tunn_param_tlv *p_req; 2320 u8 status = PFVF_STATUS_SUCCESS; 2321 bool b_update_required = false; 2322 struct qed_tunnel_info tunn; 2323 u16 tunn_feature_mask = 0; 2324 int i, rc = 0; 2325 2326 mbx->offset = (u8 *)mbx->reply_virt; 2327 2328 memset(&tunn, 0, sizeof(tunn)); 2329 p_req = &mbx->req_virt->tunn_param_update; 2330 2331 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2332 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2333 "No tunnel update requested by VF\n"); 2334 status = PFVF_STATUS_FAILURE; 2335 goto send_resp; 2336 } 2337 2338 tunn.b_update_rx_cls = p_req->update_tun_cls; 2339 tunn.b_update_tx_cls = p_req->update_tun_cls; 2340 2341 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2342 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2343 p_req->update_vxlan_port, 2344 p_req->vxlan_port); 2345 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2346 QED_MODE_L2GENEVE_TUNN, 2347 p_req->l2geneve_clss, 2348 p_req->update_geneve_port, 2349 p_req->geneve_port); 2350 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2351 QED_MODE_IPGENEVE_TUNN, 2352 p_req->ipgeneve_clss); 2353 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2354 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2355 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2356 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2357 2358 /* If PF modifies VF's req then it should 2359 * still return an error in case of partial configuration 2360 * or modified configuration as opposed to requested one. 2361 */ 2362 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2363 &b_update_required, &tunn); 2364 2365 if (rc) 2366 status = PFVF_STATUS_FAILURE; 2367 2368 /* If QED client is willing to update anything ? */ 2369 if (b_update_required) { 2370 u16 geneve_port; 2371 2372 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2373 QED_SPQ_MODE_EBLOCK, NULL); 2374 if (rc) 2375 status = PFVF_STATUS_FAILURE; 2376 2377 geneve_port = p_tun->geneve_port.port; 2378 qed_for_each_vf(p_hwfn, i) { 2379 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2380 p_tun->vxlan_port.port, 2381 geneve_port); 2382 } 2383 } 2384 2385 send_resp: 2386 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2387 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2388 2389 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2390 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2391 sizeof(struct channel_list_end_tlv)); 2392 2393 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2394 } 2395 2396 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2397 struct qed_ptt *p_ptt, 2398 struct qed_vf_info *p_vf, 2399 u32 cid, u8 status) 2400 { 2401 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2402 struct pfvf_start_queue_resp_tlv *p_tlv; 2403 bool b_legacy = false; 2404 u16 length; 2405 2406 mbx->offset = (u8 *)mbx->reply_virt; 2407 2408 /* Taking a bigger struct instead of adding a TLV to list was a 2409 * mistake, but one which we're now stuck with, as some older 2410 * clients assume the size of the previous response. 2411 */ 2412 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2413 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2414 b_legacy = true; 2415 2416 if (!b_legacy) 2417 length = sizeof(*p_tlv); 2418 else 2419 length = sizeof(struct pfvf_def_resp_tlv); 2420 2421 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2422 length); 2423 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2424 sizeof(struct channel_list_end_tlv)); 2425 2426 /* Update the TLV with the response */ 2427 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2428 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); 2429 2430 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2431 } 2432 2433 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2434 struct qed_ptt *p_ptt, 2435 struct qed_vf_info *vf) 2436 { 2437 struct qed_queue_start_common_params params; 2438 struct qed_queue_cid_vf_params vf_params; 2439 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2440 u8 status = PFVF_STATUS_NO_RESOURCE; 2441 struct vfpf_start_txq_tlv *req; 2442 struct qed_vf_queue *p_queue; 2443 struct qed_queue_cid *p_cid; 2444 struct qed_sb_info sb_dummy; 2445 u8 qid_usage_idx, vf_legacy; 2446 u32 cid = 0; 2447 int rc; 2448 u16 pq; 2449 2450 memset(¶ms, 0, sizeof(params)); 2451 req = &mbx->req_virt->start_txq; 2452 2453 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2454 QED_IOV_VALIDATE_Q_NA) || 2455 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2456 goto out; 2457 2458 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2459 if (qid_usage_idx == QED_IOV_QID_INVALID) 2460 goto out; 2461 2462 p_queue = &vf->vf_queues[req->tx_qid]; 2463 if (p_queue->cids[qid_usage_idx].p_cid) 2464 goto out; 2465 2466 vf_legacy = qed_vf_calculate_legacy(vf); 2467 2468 /* Acquire a new queue-cid */ 2469 params.queue_id = p_queue->fw_tx_qid; 2470 params.vport_id = vf->vport_id; 2471 params.stats_id = vf->abs_vf_id + 0x10; 2472 2473 /* Since IGU index is passed via sb_info, construct a dummy one */ 2474 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2475 sb_dummy.igu_sb_id = req->hw_sb; 2476 params.p_sb = &sb_dummy; 2477 params.sb_idx = req->sb_index; 2478 2479 memset(&vf_params, 0, sizeof(vf_params)); 2480 vf_params.vfid = vf->relative_vf_id; 2481 vf_params.vf_qid = (u8)req->tx_qid; 2482 vf_params.vf_legacy = vf_legacy; 2483 vf_params.qid_usage_idx = qid_usage_idx; 2484 2485 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2486 ¶ms, false, &vf_params); 2487 if (!p_cid) 2488 goto out; 2489 2490 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2491 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, 2492 req->pbl_addr, req->pbl_size, pq); 2493 if (rc) { 2494 status = PFVF_STATUS_FAILURE; 2495 qed_eth_queue_cid_release(p_hwfn, p_cid); 2496 } else { 2497 status = PFVF_STATUS_SUCCESS; 2498 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2499 p_queue->cids[qid_usage_idx].b_is_tx = true; 2500 cid = p_cid->cid; 2501 } 2502 2503 out: 2504 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); 2505 } 2506 2507 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2508 struct qed_vf_info *vf, 2509 u16 rxq_id, 2510 u8 qid_usage_idx, bool cqe_completion) 2511 { 2512 struct qed_vf_queue *p_queue; 2513 int rc = 0; 2514 2515 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { 2516 DP_VERBOSE(p_hwfn, 2517 QED_MSG_IOV, 2518 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2519 vf->relative_vf_id, rxq_id, qid_usage_idx); 2520 return -EINVAL; 2521 } 2522 2523 p_queue = &vf->vf_queues[rxq_id]; 2524 2525 /* We've validated the index and the existence of the active RXQ - 2526 * now we need to make sure that it's using the correct qid. 2527 */ 2528 if (!p_queue->cids[qid_usage_idx].p_cid || 2529 p_queue->cids[qid_usage_idx].b_is_tx) { 2530 struct qed_queue_cid *p_cid; 2531 2532 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 2533 DP_VERBOSE(p_hwfn, 2534 QED_MSG_IOV, 2535 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2536 vf->relative_vf_id, 2537 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); 2538 return -EINVAL; 2539 } 2540 2541 /* Now that we know we have a valid Rx-queue - close it */ 2542 rc = qed_eth_rx_queue_stop(p_hwfn, 2543 p_queue->cids[qid_usage_idx].p_cid, 2544 false, cqe_completion); 2545 if (rc) 2546 return rc; 2547 2548 p_queue->cids[qid_usage_idx].p_cid = NULL; 2549 vf->num_active_rxqs--; 2550 2551 return 0; 2552 } 2553 2554 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2555 struct qed_vf_info *vf, 2556 u16 txq_id, u8 qid_usage_idx) 2557 { 2558 struct qed_vf_queue *p_queue; 2559 int rc = 0; 2560 2561 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) 2562 return -EINVAL; 2563 2564 p_queue = &vf->vf_queues[txq_id]; 2565 if (!p_queue->cids[qid_usage_idx].p_cid || 2566 !p_queue->cids[qid_usage_idx].b_is_tx) 2567 return -EINVAL; 2568 2569 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); 2570 if (rc) 2571 return rc; 2572 2573 p_queue->cids[qid_usage_idx].p_cid = NULL; 2574 return 0; 2575 } 2576 2577 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2578 struct qed_ptt *p_ptt, 2579 struct qed_vf_info *vf) 2580 { 2581 u16 length = sizeof(struct pfvf_def_resp_tlv); 2582 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2583 u8 status = PFVF_STATUS_FAILURE; 2584 struct vfpf_stop_rxqs_tlv *req; 2585 u8 qid_usage_idx; 2586 int rc; 2587 2588 /* There has never been an official driver that used this interface 2589 * for stopping multiple queues, and it is now considered deprecated. 2590 * Validate this isn't used here. 2591 */ 2592 req = &mbx->req_virt->stop_rxqs; 2593 if (req->num_rxqs != 1) { 2594 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2595 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2596 vf->relative_vf_id); 2597 status = PFVF_STATUS_NOT_SUPPORTED; 2598 goto out; 2599 } 2600 2601 /* Find which qid-index is associated with the queue */ 2602 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2603 if (qid_usage_idx == QED_IOV_QID_INVALID) 2604 goto out; 2605 2606 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2607 qid_usage_idx, req->cqe_completion); 2608 if (!rc) 2609 status = PFVF_STATUS_SUCCESS; 2610 out: 2611 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2612 length, status); 2613 } 2614 2615 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2616 struct qed_ptt *p_ptt, 2617 struct qed_vf_info *vf) 2618 { 2619 u16 length = sizeof(struct pfvf_def_resp_tlv); 2620 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2621 u8 status = PFVF_STATUS_FAILURE; 2622 struct vfpf_stop_txqs_tlv *req; 2623 u8 qid_usage_idx; 2624 int rc; 2625 2626 /* There has never been an official driver that used this interface 2627 * for stopping multiple queues, and it is now considered deprecated. 2628 * Validate this isn't used here. 2629 */ 2630 req = &mbx->req_virt->stop_txqs; 2631 if (req->num_txqs != 1) { 2632 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2633 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2634 vf->relative_vf_id); 2635 status = PFVF_STATUS_NOT_SUPPORTED; 2636 goto out; 2637 } 2638 2639 /* Find which qid-index is associated with the queue */ 2640 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2641 if (qid_usage_idx == QED_IOV_QID_INVALID) 2642 goto out; 2643 2644 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); 2645 if (!rc) 2646 status = PFVF_STATUS_SUCCESS; 2647 2648 out: 2649 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2650 length, status); 2651 } 2652 2653 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2654 struct qed_ptt *p_ptt, 2655 struct qed_vf_info *vf) 2656 { 2657 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2658 u16 length = sizeof(struct pfvf_def_resp_tlv); 2659 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2660 struct vfpf_update_rxq_tlv *req; 2661 u8 status = PFVF_STATUS_FAILURE; 2662 u8 complete_event_flg; 2663 u8 complete_cqe_flg; 2664 u8 qid_usage_idx; 2665 int rc; 2666 u8 i; 2667 2668 req = &mbx->req_virt->update_rxq; 2669 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2670 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2671 2672 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2673 if (qid_usage_idx == QED_IOV_QID_INVALID) 2674 goto out; 2675 2676 /* There shouldn't exist a VF that uses queue-qids yet uses this 2677 * API with multiple Rx queues. Validate this. 2678 */ 2679 if ((vf->acquire.vfdev_info.capabilities & 2680 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { 2681 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2682 "VF[%d] supports QIDs but sends multiple queues\n", 2683 vf->relative_vf_id); 2684 goto out; 2685 } 2686 2687 /* Validate inputs - for the legacy case this is still true since 2688 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2689 */ 2690 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2691 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2692 QED_IOV_VALIDATE_Q_NA) || 2693 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2694 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2695 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2696 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2697 vf->relative_vf_id, req->rx_qid, 2698 req->num_rxqs); 2699 goto out; 2700 } 2701 } 2702 2703 /* Prepare the handlers */ 2704 for (i = 0; i < req->num_rxqs; i++) { 2705 u16 qid = req->rx_qid + i; 2706 2707 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2708 } 2709 2710 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2711 req->num_rxqs, 2712 complete_cqe_flg, 2713 complete_event_flg, 2714 QED_SPQ_MODE_EBLOCK, NULL); 2715 if (rc) 2716 goto out; 2717 2718 status = PFVF_STATUS_SUCCESS; 2719 out: 2720 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2721 length, status); 2722 } 2723 2724 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2725 void *p_tlvs_list, u16 req_type) 2726 { 2727 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2728 int len = 0; 2729 2730 do { 2731 if (!p_tlv->length) { 2732 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2733 return NULL; 2734 } 2735 2736 if (p_tlv->type == req_type) { 2737 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2738 "Extended tlv type %d, length %d found\n", 2739 p_tlv->type, p_tlv->length); 2740 return p_tlv; 2741 } 2742 2743 len += p_tlv->length; 2744 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2745 2746 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2747 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2748 return NULL; 2749 } 2750 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2751 2752 return NULL; 2753 } 2754 2755 static void 2756 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2757 struct qed_sp_vport_update_params *p_data, 2758 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2759 { 2760 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2761 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2762 2763 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2764 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2765 if (!p_act_tlv) 2766 return; 2767 2768 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2769 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2770 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2771 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2772 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2773 } 2774 2775 static void 2776 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2777 struct qed_sp_vport_update_params *p_data, 2778 struct qed_vf_info *p_vf, 2779 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2780 { 2781 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2782 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2783 2784 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2785 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2786 if (!p_vlan_tlv) 2787 return; 2788 2789 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2790 2791 /* Ignore the VF request if we're forcing a vlan */ 2792 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2793 p_data->update_inner_vlan_removal_flg = 1; 2794 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2795 } 2796 2797 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2798 } 2799 2800 static void 2801 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2802 struct qed_sp_vport_update_params *p_data, 2803 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2804 { 2805 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2806 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2807 2808 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2809 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2810 tlv); 2811 if (!p_tx_switch_tlv) 2812 return; 2813 2814 p_data->update_tx_switching_flg = 1; 2815 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2816 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2817 } 2818 2819 static void 2820 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2821 struct qed_sp_vport_update_params *p_data, 2822 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2823 { 2824 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2825 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2826 2827 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2828 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2829 if (!p_mcast_tlv) 2830 return; 2831 2832 p_data->update_approx_mcast_flg = 1; 2833 memcpy(p_data->bins, p_mcast_tlv->bins, 2834 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2835 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2836 } 2837 2838 static void 2839 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2840 struct qed_sp_vport_update_params *p_data, 2841 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2842 { 2843 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2844 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2845 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2846 2847 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2848 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2849 if (!p_accept_tlv) 2850 return; 2851 2852 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2853 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2854 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2855 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2856 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2857 } 2858 2859 static void 2860 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2861 struct qed_sp_vport_update_params *p_data, 2862 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2863 { 2864 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2865 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2866 2867 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2868 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2869 tlv); 2870 if (!p_accept_any_vlan) 2871 return; 2872 2873 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2874 p_data->update_accept_any_vlan_flg = 2875 p_accept_any_vlan->update_accept_any_vlan_flg; 2876 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2877 } 2878 2879 static void 2880 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2881 struct qed_vf_info *vf, 2882 struct qed_sp_vport_update_params *p_data, 2883 struct qed_rss_params *p_rss, 2884 struct qed_iov_vf_mbx *p_mbx, 2885 u16 *tlvs_mask, u16 *tlvs_accepted) 2886 { 2887 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2888 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2889 bool b_reject = false; 2890 u16 table_size; 2891 u16 i, q_idx; 2892 2893 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2894 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2895 if (!p_rss_tlv) { 2896 p_data->rss_params = NULL; 2897 return; 2898 } 2899 2900 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2901 2902 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2903 VFPF_UPDATE_RSS_CONFIG_FLAG); 2904 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2905 VFPF_UPDATE_RSS_CAPS_FLAG); 2906 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2907 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2908 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2909 VFPF_UPDATE_RSS_KEY_FLAG); 2910 2911 p_rss->rss_enable = p_rss_tlv->rss_enable; 2912 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2913 p_rss->rss_caps = p_rss_tlv->rss_caps; 2914 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2915 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2916 2917 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2918 (1 << p_rss_tlv->rss_table_size_log)); 2919 2920 for (i = 0; i < table_size; i++) { 2921 struct qed_queue_cid *p_cid; 2922 2923 q_idx = p_rss_tlv->rss_ind_table[i]; 2924 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2925 QED_IOV_VALIDATE_Q_ENABLE)) { 2926 DP_VERBOSE(p_hwfn, 2927 QED_MSG_IOV, 2928 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2929 vf->relative_vf_id, q_idx); 2930 b_reject = true; 2931 goto out; 2932 } 2933 2934 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 2935 p_rss->rss_ind_table[i] = p_cid; 2936 } 2937 2938 p_data->rss_params = p_rss; 2939 out: 2940 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2941 if (!b_reject) 2942 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2943 } 2944 2945 static void 2946 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2947 struct qed_vf_info *vf, 2948 struct qed_sp_vport_update_params *p_data, 2949 struct qed_sge_tpa_params *p_sge_tpa, 2950 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2951 { 2952 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2953 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2954 2955 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2956 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2957 2958 if (!p_sge_tpa_tlv) { 2959 p_data->sge_tpa_params = NULL; 2960 return; 2961 } 2962 2963 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2964 2965 p_sge_tpa->update_tpa_en_flg = 2966 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2967 p_sge_tpa->update_tpa_param_flg = 2968 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2969 VFPF_UPDATE_TPA_PARAM_FLAG); 2970 2971 p_sge_tpa->tpa_ipv4_en_flg = 2972 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2973 p_sge_tpa->tpa_ipv6_en_flg = 2974 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2975 p_sge_tpa->tpa_pkt_split_flg = 2976 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2977 p_sge_tpa->tpa_hdr_data_split_flg = 2978 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2979 p_sge_tpa->tpa_gro_consistent_flg = 2980 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2981 2982 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2983 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2984 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2985 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2986 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2987 2988 p_data->sge_tpa_params = p_sge_tpa; 2989 2990 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2991 } 2992 2993 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2994 u8 vfid, 2995 struct qed_sp_vport_update_params *params, 2996 u16 *tlvs) 2997 { 2998 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 2999 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 3000 struct qed_public_vf_info *vf_info; 3001 3002 /* Untrusted VFs can't even be trusted to know that fact. 3003 * Simply indicate everything is configured fine, and trace 3004 * configuration 'behind their back'. 3005 */ 3006 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 3007 return 0; 3008 3009 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3010 3011 if (flags->update_rx_mode_config) { 3012 vf_info->rx_accept_mode = flags->rx_accept_filter; 3013 if (!vf_info->is_trusted_configured) 3014 flags->rx_accept_filter &= ~mask; 3015 } 3016 3017 if (flags->update_tx_mode_config) { 3018 vf_info->tx_accept_mode = flags->tx_accept_filter; 3019 if (!vf_info->is_trusted_configured) 3020 flags->tx_accept_filter &= ~mask; 3021 } 3022 3023 return 0; 3024 } 3025 3026 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 3027 struct qed_ptt *p_ptt, 3028 struct qed_vf_info *vf) 3029 { 3030 struct qed_rss_params *p_rss_params = NULL; 3031 struct qed_sp_vport_update_params params; 3032 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3033 struct qed_sge_tpa_params sge_tpa_params; 3034 u16 tlvs_mask = 0, tlvs_accepted = 0; 3035 u8 status = PFVF_STATUS_SUCCESS; 3036 u16 length; 3037 int rc; 3038 3039 /* Valiate PF can send such a request */ 3040 if (!vf->vport_instance) { 3041 DP_VERBOSE(p_hwfn, 3042 QED_MSG_IOV, 3043 "No VPORT instance available for VF[%d], failing vport update\n", 3044 vf->abs_vf_id); 3045 status = PFVF_STATUS_FAILURE; 3046 goto out; 3047 } 3048 p_rss_params = vzalloc(sizeof(*p_rss_params)); 3049 if (p_rss_params == NULL) { 3050 status = PFVF_STATUS_FAILURE; 3051 goto out; 3052 } 3053 3054 memset(¶ms, 0, sizeof(params)); 3055 params.opaque_fid = vf->opaque_fid; 3056 params.vport_id = vf->vport_id; 3057 params.rss_params = NULL; 3058 3059 /* Search for extended tlvs list and update values 3060 * from VF in struct qed_sp_vport_update_params. 3061 */ 3062 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3063 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3064 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3065 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3066 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3067 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3068 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 3069 &sge_tpa_params, mbx, &tlvs_mask); 3070 3071 tlvs_accepted = tlvs_mask; 3072 3073 /* Some of the extended TLVs need to be validated first; In that case, 3074 * they can update the mask without updating the accepted [so that 3075 * PF could communicate to VF it has rejected request]. 3076 */ 3077 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3078 mbx, &tlvs_mask, &tlvs_accepted); 3079 3080 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 3081 ¶ms, &tlvs_accepted)) { 3082 tlvs_accepted = 0; 3083 status = PFVF_STATUS_NOT_SUPPORTED; 3084 goto out; 3085 } 3086 3087 if (!tlvs_accepted) { 3088 if (tlvs_mask) 3089 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3090 "Upper-layer prevents VF vport configuration\n"); 3091 else 3092 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3093 "No feature tlvs found for vport update\n"); 3094 status = PFVF_STATUS_NOT_SUPPORTED; 3095 goto out; 3096 } 3097 3098 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 3099 3100 if (rc) 3101 status = PFVF_STATUS_FAILURE; 3102 3103 out: 3104 vfree(p_rss_params); 3105 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3106 tlvs_mask, tlvs_accepted); 3107 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3108 } 3109 3110 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 3111 struct qed_vf_info *p_vf, 3112 struct qed_filter_ucast *p_params) 3113 { 3114 int i; 3115 3116 /* First remove entries and then add new ones */ 3117 if (p_params->opcode == QED_FILTER_REMOVE) { 3118 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3119 if (p_vf->shadow_config.vlans[i].used && 3120 p_vf->shadow_config.vlans[i].vid == 3121 p_params->vlan) { 3122 p_vf->shadow_config.vlans[i].used = false; 3123 break; 3124 } 3125 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3126 DP_VERBOSE(p_hwfn, 3127 QED_MSG_IOV, 3128 "VF [%d] - Tries to remove a non-existing vlan\n", 3129 p_vf->relative_vf_id); 3130 return -EINVAL; 3131 } 3132 } else if (p_params->opcode == QED_FILTER_REPLACE || 3133 p_params->opcode == QED_FILTER_FLUSH) { 3134 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3135 p_vf->shadow_config.vlans[i].used = false; 3136 } 3137 3138 /* In forced mode, we're willing to remove entries - but we don't add 3139 * new ones. 3140 */ 3141 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 3142 return 0; 3143 3144 if (p_params->opcode == QED_FILTER_ADD || 3145 p_params->opcode == QED_FILTER_REPLACE) { 3146 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3147 if (p_vf->shadow_config.vlans[i].used) 3148 continue; 3149 3150 p_vf->shadow_config.vlans[i].used = true; 3151 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3152 break; 3153 } 3154 3155 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3156 DP_VERBOSE(p_hwfn, 3157 QED_MSG_IOV, 3158 "VF [%d] - Tries to configure more than %d vlan filters\n", 3159 p_vf->relative_vf_id, 3160 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 3161 return -EINVAL; 3162 } 3163 } 3164 3165 return 0; 3166 } 3167 3168 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 3169 struct qed_vf_info *p_vf, 3170 struct qed_filter_ucast *p_params) 3171 { 3172 int i; 3173 3174 /* If we're in forced-mode, we don't allow any change */ 3175 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 3176 return 0; 3177 3178 /* Don't keep track of shadow copy since we don't intend to restore. */ 3179 if (p_vf->p_vf_info.is_trusted_configured) 3180 return 0; 3181 3182 /* First remove entries and then add new ones */ 3183 if (p_params->opcode == QED_FILTER_REMOVE) { 3184 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3185 if (ether_addr_equal(p_vf->shadow_config.macs[i], 3186 p_params->mac)) { 3187 eth_zero_addr(p_vf->shadow_config.macs[i]); 3188 break; 3189 } 3190 } 3191 3192 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3193 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3194 "MAC isn't configured\n"); 3195 return -EINVAL; 3196 } 3197 } else if (p_params->opcode == QED_FILTER_REPLACE || 3198 p_params->opcode == QED_FILTER_FLUSH) { 3199 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 3200 eth_zero_addr(p_vf->shadow_config.macs[i]); 3201 } 3202 3203 /* List the new MAC address */ 3204 if (p_params->opcode != QED_FILTER_ADD && 3205 p_params->opcode != QED_FILTER_REPLACE) 3206 return 0; 3207 3208 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3209 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 3210 ether_addr_copy(p_vf->shadow_config.macs[i], 3211 p_params->mac); 3212 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3213 "Added MAC at %d entry in shadow\n", i); 3214 break; 3215 } 3216 } 3217 3218 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3219 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 3220 return -EINVAL; 3221 } 3222 3223 return 0; 3224 } 3225 3226 static int 3227 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 3228 struct qed_vf_info *p_vf, 3229 struct qed_filter_ucast *p_params) 3230 { 3231 int rc = 0; 3232 3233 if (p_params->type == QED_FILTER_MAC) { 3234 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3235 if (rc) 3236 return rc; 3237 } 3238 3239 if (p_params->type == QED_FILTER_VLAN) 3240 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3241 3242 return rc; 3243 } 3244 3245 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3246 int vfid, struct qed_filter_ucast *params) 3247 { 3248 struct qed_public_vf_info *vf; 3249 3250 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3251 if (!vf) 3252 return -EINVAL; 3253 3254 /* No real decision to make; Store the configured MAC */ 3255 if (params->type == QED_FILTER_MAC || 3256 params->type == QED_FILTER_MAC_VLAN) { 3257 ether_addr_copy(vf->mac, params->mac); 3258 3259 if (vf->is_trusted_configured) { 3260 qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid); 3261 3262 /* Update and post bulleitin again */ 3263 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3264 } 3265 } 3266 3267 return 0; 3268 } 3269 3270 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3271 struct qed_ptt *p_ptt, 3272 struct qed_vf_info *vf) 3273 { 3274 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3275 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3276 struct vfpf_ucast_filter_tlv *req; 3277 u8 status = PFVF_STATUS_SUCCESS; 3278 struct qed_filter_ucast params; 3279 int rc; 3280 3281 /* Prepare the unicast filter params */ 3282 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3283 req = &mbx->req_virt->ucast_filter; 3284 params.opcode = (enum qed_filter_opcode)req->opcode; 3285 params.type = (enum qed_filter_ucast_type)req->type; 3286 3287 params.is_rx_filter = 1; 3288 params.is_tx_filter = 1; 3289 params.vport_to_remove_from = vf->vport_id; 3290 params.vport_to_add_to = vf->vport_id; 3291 memcpy(params.mac, req->mac, ETH_ALEN); 3292 params.vlan = req->vlan; 3293 3294 DP_VERBOSE(p_hwfn, 3295 QED_MSG_IOV, 3296 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 3297 vf->abs_vf_id, params.opcode, params.type, 3298 params.is_rx_filter ? "RX" : "", 3299 params.is_tx_filter ? "TX" : "", 3300 params.vport_to_add_to, 3301 params.mac[0], params.mac[1], 3302 params.mac[2], params.mac[3], 3303 params.mac[4], params.mac[5], params.vlan); 3304 3305 if (!vf->vport_instance) { 3306 DP_VERBOSE(p_hwfn, 3307 QED_MSG_IOV, 3308 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3309 vf->abs_vf_id); 3310 status = PFVF_STATUS_FAILURE; 3311 goto out; 3312 } 3313 3314 /* Update shadow copy of the VF configuration */ 3315 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3316 status = PFVF_STATUS_FAILURE; 3317 goto out; 3318 } 3319 3320 /* Determine if the unicast filtering is acceptible by PF */ 3321 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3322 (params.type == QED_FILTER_VLAN || 3323 params.type == QED_FILTER_MAC_VLAN)) { 3324 /* Once VLAN is forced or PVID is set, do not allow 3325 * to add/replace any further VLANs. 3326 */ 3327 if (params.opcode == QED_FILTER_ADD || 3328 params.opcode == QED_FILTER_REPLACE) 3329 status = PFVF_STATUS_FORCED; 3330 goto out; 3331 } 3332 3333 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3334 (params.type == QED_FILTER_MAC || 3335 params.type == QED_FILTER_MAC_VLAN)) { 3336 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3337 (params.opcode != QED_FILTER_ADD && 3338 params.opcode != QED_FILTER_REPLACE)) 3339 status = PFVF_STATUS_FORCED; 3340 goto out; 3341 } 3342 3343 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3344 if (rc) { 3345 status = PFVF_STATUS_FAILURE; 3346 goto out; 3347 } 3348 3349 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3350 QED_SPQ_MODE_CB, NULL); 3351 if (rc) 3352 status = PFVF_STATUS_FAILURE; 3353 3354 out: 3355 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3356 sizeof(struct pfvf_def_resp_tlv), status); 3357 } 3358 3359 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3360 struct qed_ptt *p_ptt, 3361 struct qed_vf_info *vf) 3362 { 3363 int i; 3364 3365 /* Reset the SBs */ 3366 for (i = 0; i < vf->num_sbs; i++) 3367 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3368 vf->igu_sbs[i], 3369 vf->opaque_fid, false); 3370 3371 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3372 sizeof(struct pfvf_def_resp_tlv), 3373 PFVF_STATUS_SUCCESS); 3374 } 3375 3376 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3377 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3378 { 3379 u16 length = sizeof(struct pfvf_def_resp_tlv); 3380 u8 status = PFVF_STATUS_SUCCESS; 3381 3382 /* Disable Interrupts for VF */ 3383 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3384 3385 /* Reset Permission table */ 3386 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3387 3388 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3389 length, status); 3390 } 3391 3392 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3393 struct qed_ptt *p_ptt, 3394 struct qed_vf_info *p_vf) 3395 { 3396 u16 length = sizeof(struct pfvf_def_resp_tlv); 3397 u8 status = PFVF_STATUS_SUCCESS; 3398 int rc = 0; 3399 3400 qed_iov_vf_cleanup(p_hwfn, p_vf); 3401 3402 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3403 /* Stopping the VF */ 3404 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3405 p_vf->opaque_fid); 3406 3407 if (rc) { 3408 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3409 rc); 3410 status = PFVF_STATUS_FAILURE; 3411 } 3412 3413 p_vf->state = VF_STOPPED; 3414 } 3415 3416 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3417 length, status); 3418 } 3419 3420 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, 3421 struct qed_ptt *p_ptt, 3422 struct qed_vf_info *p_vf) 3423 { 3424 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3425 struct pfvf_read_coal_resp_tlv *p_resp; 3426 struct vfpf_read_coal_req_tlv *req; 3427 u8 status = PFVF_STATUS_FAILURE; 3428 struct qed_vf_queue *p_queue; 3429 struct qed_queue_cid *p_cid; 3430 u16 coal = 0, qid, i; 3431 bool b_is_rx; 3432 int rc = 0; 3433 3434 mbx->offset = (u8 *)mbx->reply_virt; 3435 req = &mbx->req_virt->read_coal_req; 3436 3437 qid = req->qid; 3438 b_is_rx = req->is_rx ? true : false; 3439 3440 if (b_is_rx) { 3441 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, 3442 QED_IOV_VALIDATE_Q_ENABLE)) { 3443 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3444 "VF[%d]: Invalid Rx queue_id = %d\n", 3445 p_vf->abs_vf_id, qid); 3446 goto send_resp; 3447 } 3448 3449 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3450 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3451 if (rc) 3452 goto send_resp; 3453 } else { 3454 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, 3455 QED_IOV_VALIDATE_Q_ENABLE)) { 3456 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3457 "VF[%d]: Invalid Tx queue_id = %d\n", 3458 p_vf->abs_vf_id, qid); 3459 goto send_resp; 3460 } 3461 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3462 p_queue = &p_vf->vf_queues[qid]; 3463 if ((!p_queue->cids[i].p_cid) || 3464 (!p_queue->cids[i].b_is_tx)) 3465 continue; 3466 3467 p_cid = p_queue->cids[i].p_cid; 3468 3469 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3470 if (rc) 3471 goto send_resp; 3472 break; 3473 } 3474 } 3475 3476 status = PFVF_STATUS_SUCCESS; 3477 3478 send_resp: 3479 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, 3480 sizeof(*p_resp)); 3481 p_resp->coal = coal; 3482 3483 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 3484 sizeof(struct channel_list_end_tlv)); 3485 3486 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3487 } 3488 3489 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, 3490 struct qed_ptt *p_ptt, 3491 struct qed_vf_info *vf) 3492 { 3493 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3494 struct vfpf_update_coalesce *req; 3495 u8 status = PFVF_STATUS_FAILURE; 3496 struct qed_queue_cid *p_cid; 3497 u16 rx_coal, tx_coal; 3498 int rc = 0, i; 3499 u16 qid; 3500 3501 req = &mbx->req_virt->update_coalesce; 3502 3503 rx_coal = req->rx_coal; 3504 tx_coal = req->tx_coal; 3505 qid = req->qid; 3506 3507 if (!qed_iov_validate_rxq(p_hwfn, vf, qid, 3508 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { 3509 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3510 "VF[%d]: Invalid Rx queue_id = %d\n", 3511 vf->abs_vf_id, qid); 3512 goto out; 3513 } 3514 3515 if (!qed_iov_validate_txq(p_hwfn, vf, qid, 3516 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { 3517 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3518 "VF[%d]: Invalid Tx queue_id = %d\n", 3519 vf->abs_vf_id, qid); 3520 goto out; 3521 } 3522 3523 DP_VERBOSE(p_hwfn, 3524 QED_MSG_IOV, 3525 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3526 vf->abs_vf_id, rx_coal, tx_coal, qid); 3527 3528 if (rx_coal) { 3529 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3530 3531 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3532 if (rc) { 3533 DP_VERBOSE(p_hwfn, 3534 QED_MSG_IOV, 3535 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3536 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3537 goto out; 3538 } 3539 vf->rx_coal = rx_coal; 3540 } 3541 3542 if (tx_coal) { 3543 struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; 3544 3545 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3546 if (!p_queue->cids[i].p_cid) 3547 continue; 3548 3549 if (!p_queue->cids[i].b_is_tx) 3550 continue; 3551 3552 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3553 p_queue->cids[i].p_cid); 3554 3555 if (rc) { 3556 DP_VERBOSE(p_hwfn, 3557 QED_MSG_IOV, 3558 "VF[%d]: Unable to set tx queue coalesce\n", 3559 vf->abs_vf_id); 3560 goto out; 3561 } 3562 } 3563 vf->tx_coal = tx_coal; 3564 } 3565 3566 status = PFVF_STATUS_SUCCESS; 3567 out: 3568 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3569 sizeof(struct pfvf_def_resp_tlv), status); 3570 } 3571 static int 3572 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3573 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3574 { 3575 int cnt; 3576 u32 val; 3577 3578 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 3579 3580 for (cnt = 0; cnt < 50; cnt++) { 3581 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3582 if (!val) 3583 break; 3584 msleep(20); 3585 } 3586 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 3587 3588 if (cnt == 50) { 3589 DP_ERR(p_hwfn, 3590 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3591 p_vf->abs_vf_id, val); 3592 return -EBUSY; 3593 } 3594 3595 return 0; 3596 } 3597 3598 static int 3599 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3600 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3601 { 3602 u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4]; 3603 int i, cnt; 3604 3605 /* Read initial consumers & producers */ 3606 for (i = 0; i < MAX_NUM_VOQS_E4; i++) { 3607 u32 prod; 3608 3609 cons[i] = qed_rd(p_hwfn, p_ptt, 3610 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3611 i * 0x40); 3612 prod = qed_rd(p_hwfn, p_ptt, 3613 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3614 i * 0x40); 3615 distance[i] = prod - cons[i]; 3616 } 3617 3618 /* Wait for consumers to pass the producers */ 3619 i = 0; 3620 for (cnt = 0; cnt < 50; cnt++) { 3621 for (; i < MAX_NUM_VOQS_E4; i++) { 3622 u32 tmp; 3623 3624 tmp = qed_rd(p_hwfn, p_ptt, 3625 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3626 i * 0x40); 3627 if (distance[i] > tmp - cons[i]) 3628 break; 3629 } 3630 3631 if (i == MAX_NUM_VOQS_E4) 3632 break; 3633 3634 msleep(20); 3635 } 3636 3637 if (cnt == 50) { 3638 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3639 p_vf->abs_vf_id, i); 3640 return -EBUSY; 3641 } 3642 3643 return 0; 3644 } 3645 3646 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3647 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3648 { 3649 int rc; 3650 3651 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3652 if (rc) 3653 return rc; 3654 3655 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3656 if (rc) 3657 return rc; 3658 3659 return 0; 3660 } 3661 3662 static int 3663 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3664 struct qed_ptt *p_ptt, 3665 u16 rel_vf_id, u32 *ack_vfs) 3666 { 3667 struct qed_vf_info *p_vf; 3668 int rc = 0; 3669 3670 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3671 if (!p_vf) 3672 return 0; 3673 3674 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3675 (1ULL << (rel_vf_id % 64))) { 3676 u16 vfid = p_vf->abs_vf_id; 3677 3678 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3679 "VF[%d] - Handling FLR\n", vfid); 3680 3681 qed_iov_vf_cleanup(p_hwfn, p_vf); 3682 3683 /* If VF isn't active, no need for anything but SW */ 3684 if (!p_vf->b_init) 3685 goto cleanup; 3686 3687 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3688 if (rc) 3689 goto cleanup; 3690 3691 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3692 if (rc) { 3693 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3694 return rc; 3695 } 3696 3697 /* Workaround to make VF-PF channel ready, as FW 3698 * doesn't do that as a part of FLR. 3699 */ 3700 REG_WR(p_hwfn, 3701 GTT_BAR0_MAP_REG_USDM_RAM + 3702 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3703 3704 /* VF_STOPPED has to be set only after final cleanup 3705 * but prior to re-enabling the VF. 3706 */ 3707 p_vf->state = VF_STOPPED; 3708 3709 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3710 if (rc) { 3711 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3712 vfid); 3713 return rc; 3714 } 3715 cleanup: 3716 /* Mark VF for ack and clean pending state */ 3717 if (p_vf->state == VF_RESET) 3718 p_vf->state = VF_STOPPED; 3719 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3720 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3721 ~(1ULL << (rel_vf_id % 64)); 3722 p_vf->vf_mbx.b_pending_msg = false; 3723 } 3724 3725 return rc; 3726 } 3727 3728 static int 3729 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3730 { 3731 u32 ack_vfs[VF_MAX_STATIC / 32]; 3732 int rc = 0; 3733 u16 i; 3734 3735 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3736 3737 /* Since BRB <-> PRS interface can't be tested as part of the flr 3738 * polling due to HW limitations, simply sleep a bit. And since 3739 * there's no need to wait per-vf, do it before looping. 3740 */ 3741 msleep(100); 3742 3743 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3744 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3745 3746 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3747 return rc; 3748 } 3749 3750 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3751 { 3752 bool found = false; 3753 u16 i; 3754 3755 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3756 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3757 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3758 "[%08x,...,%08x]: %08x\n", 3759 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3760 3761 if (!p_hwfn->cdev->p_iov_info) { 3762 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3763 return false; 3764 } 3765 3766 /* Mark VFs */ 3767 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3768 struct qed_vf_info *p_vf; 3769 u8 vfid; 3770 3771 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3772 if (!p_vf) 3773 continue; 3774 3775 vfid = p_vf->abs_vf_id; 3776 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3777 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3778 u16 rel_vf_id = p_vf->relative_vf_id; 3779 3780 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3781 "VF[%d] [rel %d] got FLR-ed\n", 3782 vfid, rel_vf_id); 3783 3784 p_vf->state = VF_RESET; 3785 3786 /* No need to lock here, since pending_flr should 3787 * only change here and before ACKing MFw. Since 3788 * MFW will not trigger an additional attention for 3789 * VF flr until ACKs, we're safe. 3790 */ 3791 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3792 found = true; 3793 } 3794 } 3795 3796 return found; 3797 } 3798 3799 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3800 u16 vfid, 3801 struct qed_mcp_link_params *p_params, 3802 struct qed_mcp_link_state *p_link, 3803 struct qed_mcp_link_capabilities *p_caps) 3804 { 3805 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3806 vfid, 3807 false); 3808 struct qed_bulletin_content *p_bulletin; 3809 3810 if (!p_vf) 3811 return; 3812 3813 p_bulletin = p_vf->bulletin.p_virt; 3814 3815 if (p_params) 3816 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3817 if (p_link) 3818 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3819 if (p_caps) 3820 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3821 } 3822 3823 static int 3824 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn, 3825 struct qed_ptt *p_ptt, 3826 struct qed_vf_info *p_vf) 3827 { 3828 struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt; 3829 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3830 struct vfpf_bulletin_update_mac_tlv *p_req; 3831 u8 status = PFVF_STATUS_SUCCESS; 3832 int rc = 0; 3833 3834 if (!p_vf->p_vf_info.is_trusted_configured) { 3835 DP_VERBOSE(p_hwfn, 3836 QED_MSG_IOV, 3837 "Blocking bulletin update request from untrusted VF[%d]\n", 3838 p_vf->abs_vf_id); 3839 status = PFVF_STATUS_NOT_SUPPORTED; 3840 rc = -EINVAL; 3841 goto send_status; 3842 } 3843 3844 p_req = &mbx->req_virt->bulletin_update_mac; 3845 ether_addr_copy(p_bulletin->mac, p_req->mac); 3846 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3847 "Updated bulletin of VF[%d] with requested MAC[%pM]\n", 3848 p_vf->abs_vf_id, p_req->mac); 3849 3850 send_status: 3851 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3852 CHANNEL_TLV_BULLETIN_UPDATE_MAC, 3853 sizeof(struct pfvf_def_resp_tlv), status); 3854 return rc; 3855 } 3856 3857 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3858 struct qed_ptt *p_ptt, int vfid) 3859 { 3860 struct qed_iov_vf_mbx *mbx; 3861 struct qed_vf_info *p_vf; 3862 3863 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3864 if (!p_vf) 3865 return; 3866 3867 mbx = &p_vf->vf_mbx; 3868 3869 /* qed_iov_process_mbx_request */ 3870 if (!mbx->b_pending_msg) { 3871 DP_NOTICE(p_hwfn, 3872 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3873 p_vf->abs_vf_id); 3874 return; 3875 } 3876 mbx->b_pending_msg = false; 3877 3878 mbx->first_tlv = mbx->req_virt->first_tlv; 3879 3880 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3881 "VF[%02x]: Processing mailbox message [type %04x]\n", 3882 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3883 3884 /* check if tlv type is known */ 3885 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3886 !p_vf->b_malicious) { 3887 switch (mbx->first_tlv.tl.type) { 3888 case CHANNEL_TLV_ACQUIRE: 3889 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3890 break; 3891 case CHANNEL_TLV_VPORT_START: 3892 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3893 break; 3894 case CHANNEL_TLV_VPORT_TEARDOWN: 3895 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3896 break; 3897 case CHANNEL_TLV_START_RXQ: 3898 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3899 break; 3900 case CHANNEL_TLV_START_TXQ: 3901 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3902 break; 3903 case CHANNEL_TLV_STOP_RXQS: 3904 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3905 break; 3906 case CHANNEL_TLV_STOP_TXQS: 3907 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3908 break; 3909 case CHANNEL_TLV_UPDATE_RXQ: 3910 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3911 break; 3912 case CHANNEL_TLV_VPORT_UPDATE: 3913 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3914 break; 3915 case CHANNEL_TLV_UCAST_FILTER: 3916 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3917 break; 3918 case CHANNEL_TLV_CLOSE: 3919 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3920 break; 3921 case CHANNEL_TLV_INT_CLEANUP: 3922 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3923 break; 3924 case CHANNEL_TLV_RELEASE: 3925 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3926 break; 3927 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3928 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3929 break; 3930 case CHANNEL_TLV_COALESCE_UPDATE: 3931 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 3932 break; 3933 case CHANNEL_TLV_COALESCE_READ: 3934 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 3935 break; 3936 case CHANNEL_TLV_BULLETIN_UPDATE_MAC: 3937 qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf); 3938 break; 3939 } 3940 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3941 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3942 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3943 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3944 3945 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3946 mbx->first_tlv.tl.type, 3947 sizeof(struct pfvf_def_resp_tlv), 3948 PFVF_STATUS_MALICIOUS); 3949 } else { 3950 /* unknown TLV - this may belong to a VF driver from the future 3951 * - a version written after this PF driver was written, which 3952 * supports features unknown as of yet. Too bad since we don't 3953 * support them. Or this may be because someone wrote a crappy 3954 * VF driver and is sending garbage over the channel. 3955 */ 3956 DP_NOTICE(p_hwfn, 3957 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3958 p_vf->abs_vf_id, 3959 mbx->first_tlv.tl.type, 3960 mbx->first_tlv.tl.length, 3961 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3962 3963 /* Try replying in case reply address matches the acquisition's 3964 * posted address. 3965 */ 3966 if (p_vf->acquire.first_tlv.reply_address && 3967 (mbx->first_tlv.reply_address == 3968 p_vf->acquire.first_tlv.reply_address)) { 3969 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3970 mbx->first_tlv.tl.type, 3971 sizeof(struct pfvf_def_resp_tlv), 3972 PFVF_STATUS_NOT_SUPPORTED); 3973 } else { 3974 DP_VERBOSE(p_hwfn, 3975 QED_MSG_IOV, 3976 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3977 p_vf->abs_vf_id); 3978 } 3979 } 3980 } 3981 3982 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3983 { 3984 int i; 3985 3986 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3987 3988 qed_for_each_vf(p_hwfn, i) { 3989 struct qed_vf_info *p_vf; 3990 3991 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3992 if (p_vf->vf_mbx.b_pending_msg) 3993 events[i / 64] |= 1ULL << (i % 64); 3994 } 3995 } 3996 3997 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3998 u16 abs_vfid) 3999 { 4000 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 4001 4002 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 4003 DP_VERBOSE(p_hwfn, 4004 QED_MSG_IOV, 4005 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 4006 abs_vfid); 4007 return NULL; 4008 } 4009 4010 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 4011 } 4012 4013 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 4014 u16 abs_vfid, struct regpair *vf_msg) 4015 { 4016 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 4017 abs_vfid); 4018 4019 if (!p_vf) 4020 return 0; 4021 4022 /* List the physical address of the request so that handler 4023 * could later on copy the message from it. 4024 */ 4025 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 4026 4027 /* Mark the event and schedule the workqueue */ 4028 p_vf->vf_mbx.b_pending_msg = true; 4029 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 4030 4031 return 0; 4032 } 4033 4034 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 4035 struct malicious_vf_eqe_data *p_data) 4036 { 4037 struct qed_vf_info *p_vf; 4038 4039 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 4040 4041 if (!p_vf) 4042 return; 4043 4044 if (!p_vf->b_malicious) { 4045 DP_NOTICE(p_hwfn, 4046 "VF [%d] - Malicious behavior [%02x]\n", 4047 p_vf->abs_vf_id, p_data->err_id); 4048 4049 p_vf->b_malicious = true; 4050 } else { 4051 DP_INFO(p_hwfn, 4052 "VF [%d] - Malicious behavior [%02x]\n", 4053 p_vf->abs_vf_id, p_data->err_id); 4054 } 4055 } 4056 4057 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 4058 u8 opcode, 4059 __le16 echo, 4060 union event_ring_data *data, u8 fw_return_code) 4061 { 4062 switch (opcode) { 4063 case COMMON_EVENT_VF_PF_CHANNEL: 4064 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 4065 &data->vf_pf_channel.msg_addr); 4066 case COMMON_EVENT_MALICIOUS_VF: 4067 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 4068 return 0; 4069 default: 4070 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 4071 opcode); 4072 return -EINVAL; 4073 } 4074 } 4075 4076 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4077 { 4078 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 4079 u16 i; 4080 4081 if (!p_iov) 4082 goto out; 4083 4084 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4085 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4086 return i; 4087 4088 out: 4089 return MAX_NUM_VFS; 4090 } 4091 4092 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 4093 int vfid) 4094 { 4095 struct qed_dmae_params params; 4096 struct qed_vf_info *vf_info; 4097 4098 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4099 if (!vf_info) 4100 return -EINVAL; 4101 4102 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 4103 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 4104 params.src_vfid = vf_info->abs_vf_id; 4105 4106 if (qed_dmae_host2host(p_hwfn, ptt, 4107 vf_info->vf_mbx.pending_req, 4108 vf_info->vf_mbx.req_phys, 4109 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 4110 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4111 "Failed to copy message from VF 0x%02x\n", vfid); 4112 4113 return -EIO; 4114 } 4115 4116 return 0; 4117 } 4118 4119 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 4120 u8 *mac, int vfid) 4121 { 4122 struct qed_vf_info *vf_info; 4123 u64 feature; 4124 4125 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4126 if (!vf_info) { 4127 DP_NOTICE(p_hwfn->cdev, 4128 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4129 return; 4130 } 4131 4132 if (vf_info->b_malicious) { 4133 DP_NOTICE(p_hwfn->cdev, 4134 "Can't set forced MAC to malicious VF [%d]\n", vfid); 4135 return; 4136 } 4137 4138 if (vf_info->p_vf_info.is_trusted_configured) { 4139 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4140 /* Trust mode will disable Forced MAC */ 4141 vf_info->bulletin.p_virt->valid_bitmap &= 4142 ~BIT(MAC_ADDR_FORCED); 4143 } else { 4144 feature = BIT(MAC_ADDR_FORCED); 4145 /* Forced MAC will disable MAC_ADDR */ 4146 vf_info->bulletin.p_virt->valid_bitmap &= 4147 ~BIT(VFPF_BULLETIN_MAC_ADDR); 4148 } 4149 4150 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 4151 4152 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4153 4154 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4155 } 4156 4157 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) 4158 { 4159 struct qed_vf_info *vf_info; 4160 u64 feature; 4161 4162 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4163 if (!vf_info) { 4164 DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n", 4165 vfid); 4166 return -EINVAL; 4167 } 4168 4169 if (vf_info->b_malicious) { 4170 DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n", 4171 vfid); 4172 return -EINVAL; 4173 } 4174 4175 if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) { 4176 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4177 "Can not set MAC, Forced MAC is configured\n"); 4178 return -EINVAL; 4179 } 4180 4181 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4182 ether_addr_copy(vf_info->bulletin.p_virt->mac, mac); 4183 4184 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4185 4186 if (vf_info->p_vf_info.is_trusted_configured) 4187 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4188 4189 return 0; 4190 } 4191 4192 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 4193 u16 pvid, int vfid) 4194 { 4195 struct qed_vf_info *vf_info; 4196 u64 feature; 4197 4198 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4199 if (!vf_info) { 4200 DP_NOTICE(p_hwfn->cdev, 4201 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4202 return; 4203 } 4204 4205 if (vf_info->b_malicious) { 4206 DP_NOTICE(p_hwfn->cdev, 4207 "Can't set forced vlan to malicious VF [%d]\n", vfid); 4208 return; 4209 } 4210 4211 feature = 1 << VLAN_ADDR_FORCED; 4212 vf_info->bulletin.p_virt->pvid = pvid; 4213 if (pvid) 4214 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4215 else 4216 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4217 4218 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4219 } 4220 4221 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 4222 int vfid, u16 vxlan_port, u16 geneve_port) 4223 { 4224 struct qed_vf_info *vf_info; 4225 4226 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4227 if (!vf_info) { 4228 DP_NOTICE(p_hwfn->cdev, 4229 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4230 return; 4231 } 4232 4233 if (vf_info->b_malicious) { 4234 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4235 "Can not set udp ports to malicious VF [%d]\n", 4236 vfid); 4237 return; 4238 } 4239 4240 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4241 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4242 } 4243 4244 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 4245 { 4246 struct qed_vf_info *p_vf_info; 4247 4248 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4249 if (!p_vf_info) 4250 return false; 4251 4252 return !!p_vf_info->vport_instance; 4253 } 4254 4255 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 4256 { 4257 struct qed_vf_info *p_vf_info; 4258 4259 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4260 if (!p_vf_info) 4261 return true; 4262 4263 return p_vf_info->state == VF_STOPPED; 4264 } 4265 4266 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 4267 { 4268 struct qed_vf_info *vf_info; 4269 4270 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4271 if (!vf_info) 4272 return false; 4273 4274 return vf_info->spoof_chk; 4275 } 4276 4277 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 4278 { 4279 struct qed_vf_info *vf; 4280 int rc = -EINVAL; 4281 4282 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4283 DP_NOTICE(p_hwfn, 4284 "SR-IOV sanity check failed, can't set spoofchk\n"); 4285 goto out; 4286 } 4287 4288 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4289 if (!vf) 4290 goto out; 4291 4292 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4293 /* After VF VPORT start PF will configure spoof check */ 4294 vf->req_spoofchk_val = val; 4295 rc = 0; 4296 goto out; 4297 } 4298 4299 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 4300 4301 out: 4302 return rc; 4303 } 4304 4305 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4306 { 4307 struct qed_vf_info *p_vf; 4308 4309 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4310 if (!p_vf || !p_vf->bulletin.p_virt) 4311 return NULL; 4312 4313 if (!(p_vf->bulletin.p_virt->valid_bitmap & 4314 BIT(VFPF_BULLETIN_MAC_ADDR))) 4315 return NULL; 4316 4317 return p_vf->bulletin.p_virt->mac; 4318 } 4319 4320 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 4321 u16 rel_vf_id) 4322 { 4323 struct qed_vf_info *p_vf; 4324 4325 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4326 if (!p_vf || !p_vf->bulletin.p_virt) 4327 return NULL; 4328 4329 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 4330 return NULL; 4331 4332 return p_vf->bulletin.p_virt->mac; 4333 } 4334 4335 static u16 4336 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4337 { 4338 struct qed_vf_info *p_vf; 4339 4340 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4341 if (!p_vf || !p_vf->bulletin.p_virt) 4342 return 0; 4343 4344 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 4345 return 0; 4346 4347 return p_vf->bulletin.p_virt->pvid; 4348 } 4349 4350 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 4351 struct qed_ptt *p_ptt, int vfid, int val) 4352 { 4353 struct qed_mcp_link_state *p_link; 4354 struct qed_vf_info *vf; 4355 u8 abs_vp_id = 0; 4356 int rc; 4357 4358 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4359 if (!vf) 4360 return -EINVAL; 4361 4362 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4363 if (rc) 4364 return rc; 4365 4366 p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output; 4367 4368 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val, 4369 p_link->speed); 4370 } 4371 4372 static int 4373 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 4374 { 4375 struct qed_vf_info *vf; 4376 u8 vport_id; 4377 int i; 4378 4379 for_each_hwfn(cdev, i) { 4380 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4381 4382 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4383 DP_NOTICE(p_hwfn, 4384 "SR-IOV sanity check failed, can't set min rate\n"); 4385 return -EINVAL; 4386 } 4387 } 4388 4389 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 4390 vport_id = vf->vport_id; 4391 4392 return qed_configure_vport_wfq(cdev, vport_id, rate); 4393 } 4394 4395 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 4396 { 4397 struct qed_wfq_data *vf_vp_wfq; 4398 struct qed_vf_info *vf_info; 4399 4400 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4401 if (!vf_info) 4402 return 0; 4403 4404 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4405 4406 if (vf_vp_wfq->configured) 4407 return vf_vp_wfq->min_speed; 4408 else 4409 return 0; 4410 } 4411 4412 /** 4413 * qed_schedule_iov - schedules IOV task for VF and PF 4414 * @hwfn: hardware function pointer 4415 * @flag: IOV flag for VF/PF 4416 */ 4417 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 4418 { 4419 smp_mb__before_atomic(); 4420 set_bit(flag, &hwfn->iov_task_flags); 4421 smp_mb__after_atomic(); 4422 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 4423 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 4424 } 4425 4426 void qed_vf_start_iov_wq(struct qed_dev *cdev) 4427 { 4428 int i; 4429 4430 for_each_hwfn(cdev, i) 4431 queue_delayed_work(cdev->hwfns[i].iov_wq, 4432 &cdev->hwfns[i].iov_task, 0); 4433 } 4434 4435 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 4436 { 4437 int i, j; 4438 4439 for_each_hwfn(cdev, i) 4440 if (cdev->hwfns[i].iov_wq) 4441 flush_workqueue(cdev->hwfns[i].iov_wq); 4442 4443 /* Mark VFs for disablement */ 4444 qed_iov_set_vfs_to_disable(cdev, true); 4445 4446 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 4447 pci_disable_sriov(cdev->pdev); 4448 4449 for_each_hwfn(cdev, i) { 4450 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4451 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4452 4453 /* Failure to acquire the ptt in 100g creates an odd error 4454 * where the first engine has already relased IOV. 4455 */ 4456 if (!ptt) { 4457 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4458 return -EBUSY; 4459 } 4460 4461 /* Clean WFQ db and configure equal weight for all vports */ 4462 qed_clean_wfq_db(hwfn, ptt); 4463 4464 qed_for_each_vf(hwfn, j) { 4465 int k; 4466 4467 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 4468 continue; 4469 4470 /* Wait until VF is disabled before releasing */ 4471 for (k = 0; k < 100; k++) { 4472 if (!qed_iov_is_vf_stopped(hwfn, j)) 4473 msleep(20); 4474 else 4475 break; 4476 } 4477 4478 if (k < 100) 4479 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 4480 ptt, j); 4481 else 4482 DP_ERR(hwfn, 4483 "Timeout waiting for VF's FLR to end\n"); 4484 } 4485 4486 qed_ptt_release(hwfn, ptt); 4487 } 4488 4489 qed_iov_set_vfs_to_disable(cdev, false); 4490 4491 return 0; 4492 } 4493 4494 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 4495 u16 vfid, 4496 struct qed_iov_vf_init_params *params) 4497 { 4498 u16 base, i; 4499 4500 /* Since we have an equal resource distribution per-VF, and we assume 4501 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 4502 * sequentially from there. 4503 */ 4504 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 4505 4506 params->rel_vf_id = vfid; 4507 for (i = 0; i < params->num_queues; i++) { 4508 params->req_rx_queue[i] = base + i; 4509 params->req_tx_queue[i] = base + i; 4510 } 4511 } 4512 4513 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4514 { 4515 struct qed_iov_vf_init_params params; 4516 struct qed_hwfn *hwfn; 4517 struct qed_ptt *ptt; 4518 int i, j, rc; 4519 4520 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4521 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4522 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4523 return -EINVAL; 4524 } 4525 4526 memset(¶ms, 0, sizeof(params)); 4527 4528 /* Initialize HW for VF access */ 4529 for_each_hwfn(cdev, j) { 4530 hwfn = &cdev->hwfns[j]; 4531 ptt = qed_ptt_acquire(hwfn); 4532 4533 /* Make sure not to use more than 16 queues per VF */ 4534 params.num_queues = min_t(int, 4535 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4536 16); 4537 4538 if (!ptt) { 4539 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4540 rc = -EBUSY; 4541 goto err; 4542 } 4543 4544 for (i = 0; i < num; i++) { 4545 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4546 continue; 4547 4548 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4549 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4550 if (rc) { 4551 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4552 qed_ptt_release(hwfn, ptt); 4553 goto err; 4554 } 4555 } 4556 4557 qed_ptt_release(hwfn, ptt); 4558 } 4559 4560 /* Enable SRIOV PCIe functions */ 4561 rc = pci_enable_sriov(cdev->pdev, num); 4562 if (rc) { 4563 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4564 goto err; 4565 } 4566 4567 hwfn = QED_LEADING_HWFN(cdev); 4568 ptt = qed_ptt_acquire(hwfn); 4569 if (!ptt) { 4570 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4571 rc = -EBUSY; 4572 goto err; 4573 } 4574 4575 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB); 4576 if (rc) 4577 DP_INFO(cdev, "Failed to update eswitch mode\n"); 4578 qed_ptt_release(hwfn, ptt); 4579 4580 return num; 4581 4582 err: 4583 qed_sriov_disable(cdev, false); 4584 return rc; 4585 } 4586 4587 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4588 { 4589 if (!IS_QED_SRIOV(cdev)) { 4590 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4591 return -EOPNOTSUPP; 4592 } 4593 4594 if (num_vfs_param) 4595 return qed_sriov_enable(cdev, num_vfs_param); 4596 else 4597 return qed_sriov_disable(cdev, true); 4598 } 4599 4600 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4601 { 4602 int i; 4603 4604 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4605 DP_VERBOSE(cdev, QED_MSG_IOV, 4606 "Cannot set a VF MAC; Sriov is not enabled\n"); 4607 return -EINVAL; 4608 } 4609 4610 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4611 DP_VERBOSE(cdev, QED_MSG_IOV, 4612 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4613 return -EINVAL; 4614 } 4615 4616 for_each_hwfn(cdev, i) { 4617 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4618 struct qed_public_vf_info *vf_info; 4619 4620 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4621 if (!vf_info) 4622 continue; 4623 4624 /* Set the MAC, and schedule the IOV task */ 4625 if (vf_info->is_trusted_configured) 4626 ether_addr_copy(vf_info->mac, mac); 4627 else 4628 ether_addr_copy(vf_info->forced_mac, mac); 4629 4630 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4631 } 4632 4633 return 0; 4634 } 4635 4636 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4637 { 4638 int i; 4639 4640 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4641 DP_VERBOSE(cdev, QED_MSG_IOV, 4642 "Cannot set a VF MAC; Sriov is not enabled\n"); 4643 return -EINVAL; 4644 } 4645 4646 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4647 DP_VERBOSE(cdev, QED_MSG_IOV, 4648 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4649 return -EINVAL; 4650 } 4651 4652 for_each_hwfn(cdev, i) { 4653 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4654 struct qed_public_vf_info *vf_info; 4655 4656 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4657 if (!vf_info) 4658 continue; 4659 4660 /* Set the forced vlan, and schedule the IOV task */ 4661 vf_info->forced_vlan = vid; 4662 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4663 } 4664 4665 return 0; 4666 } 4667 4668 static int qed_get_vf_config(struct qed_dev *cdev, 4669 int vf_id, struct ifla_vf_info *ivi) 4670 { 4671 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4672 struct qed_public_vf_info *vf_info; 4673 struct qed_mcp_link_state link; 4674 u32 tx_rate; 4675 4676 /* Sanitize request */ 4677 if (IS_VF(cdev)) 4678 return -EINVAL; 4679 4680 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4681 DP_VERBOSE(cdev, QED_MSG_IOV, 4682 "VF index [%d] isn't active\n", vf_id); 4683 return -EINVAL; 4684 } 4685 4686 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4687 4688 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4689 4690 /* Fill information about VF */ 4691 ivi->vf = vf_id; 4692 4693 if (is_valid_ether_addr(vf_info->forced_mac)) 4694 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4695 else 4696 ether_addr_copy(ivi->mac, vf_info->mac); 4697 4698 ivi->vlan = vf_info->forced_vlan; 4699 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4700 ivi->linkstate = vf_info->link_state; 4701 tx_rate = vf_info->tx_rate; 4702 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4703 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4704 4705 return 0; 4706 } 4707 4708 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4709 { 4710 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4711 struct qed_mcp_link_capabilities caps; 4712 struct qed_mcp_link_params params; 4713 struct qed_mcp_link_state link; 4714 int i; 4715 4716 if (!hwfn->pf_iov_info) 4717 return; 4718 4719 /* Update bulletin of all future possible VFs with link configuration */ 4720 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4721 struct qed_public_vf_info *vf_info; 4722 4723 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4724 if (!vf_info) 4725 continue; 4726 4727 /* Only hwfn0 is actually interested in the link speed. 4728 * But since only it would receive an MFW indication of link, 4729 * need to take configuration from it - otherwise things like 4730 * rate limiting for hwfn1 VF would not work. 4731 */ 4732 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4733 sizeof(params)); 4734 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4735 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4736 sizeof(caps)); 4737 4738 /* Modify link according to the VF's configured link state */ 4739 switch (vf_info->link_state) { 4740 case IFLA_VF_LINK_STATE_DISABLE: 4741 link.link_up = false; 4742 break; 4743 case IFLA_VF_LINK_STATE_ENABLE: 4744 link.link_up = true; 4745 /* Set speed according to maximum supported by HW. 4746 * that is 40G for regular devices and 100G for CMT 4747 * mode devices. 4748 */ 4749 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4750 100000 : 40000; 4751 default: 4752 /* In auto mode pass PF link image to VF */ 4753 break; 4754 } 4755 4756 if (link.link_up && vf_info->tx_rate) { 4757 struct qed_ptt *ptt; 4758 int rate; 4759 4760 rate = min_t(int, vf_info->tx_rate, link.speed); 4761 4762 ptt = qed_ptt_acquire(hwfn); 4763 if (!ptt) { 4764 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4765 return; 4766 } 4767 4768 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4769 vf_info->tx_rate = rate; 4770 link.speed = rate; 4771 } 4772 4773 qed_ptt_release(hwfn, ptt); 4774 } 4775 4776 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4777 } 4778 4779 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4780 } 4781 4782 static int qed_set_vf_link_state(struct qed_dev *cdev, 4783 int vf_id, int link_state) 4784 { 4785 int i; 4786 4787 /* Sanitize request */ 4788 if (IS_VF(cdev)) 4789 return -EINVAL; 4790 4791 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4792 DP_VERBOSE(cdev, QED_MSG_IOV, 4793 "VF index [%d] isn't active\n", vf_id); 4794 return -EINVAL; 4795 } 4796 4797 /* Handle configuration of link state */ 4798 for_each_hwfn(cdev, i) { 4799 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4800 struct qed_public_vf_info *vf; 4801 4802 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4803 if (!vf) 4804 continue; 4805 4806 if (vf->link_state == link_state) 4807 continue; 4808 4809 vf->link_state = link_state; 4810 qed_inform_vf_link_state(&cdev->hwfns[i]); 4811 } 4812 4813 return 0; 4814 } 4815 4816 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4817 { 4818 int i, rc = -EINVAL; 4819 4820 for_each_hwfn(cdev, i) { 4821 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4822 4823 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4824 if (rc) 4825 break; 4826 } 4827 4828 return rc; 4829 } 4830 4831 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4832 { 4833 int i; 4834 4835 for_each_hwfn(cdev, i) { 4836 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4837 struct qed_public_vf_info *vf; 4838 4839 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4840 DP_NOTICE(p_hwfn, 4841 "SR-IOV sanity check failed, can't set tx rate\n"); 4842 return -EINVAL; 4843 } 4844 4845 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4846 4847 vf->tx_rate = rate; 4848 4849 qed_inform_vf_link_state(p_hwfn); 4850 } 4851 4852 return 0; 4853 } 4854 4855 static int qed_set_vf_rate(struct qed_dev *cdev, 4856 int vfid, u32 min_rate, u32 max_rate) 4857 { 4858 int rc_min = 0, rc_max = 0; 4859 4860 if (max_rate) 4861 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4862 4863 if (min_rate) 4864 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4865 4866 if (rc_max | rc_min) 4867 return -EINVAL; 4868 4869 return 0; 4870 } 4871 4872 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4873 { 4874 int i; 4875 4876 for_each_hwfn(cdev, i) { 4877 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4878 struct qed_public_vf_info *vf; 4879 4880 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4881 DP_NOTICE(hwfn, 4882 "SR-IOV sanity check failed, can't set trust\n"); 4883 return -EINVAL; 4884 } 4885 4886 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4887 4888 if (vf->is_trusted_request == trust) 4889 return 0; 4890 vf->is_trusted_request = trust; 4891 4892 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4893 } 4894 4895 return 0; 4896 } 4897 4898 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4899 { 4900 u64 events[QED_VF_ARRAY_LENGTH]; 4901 struct qed_ptt *ptt; 4902 int i; 4903 4904 ptt = qed_ptt_acquire(hwfn); 4905 if (!ptt) { 4906 DP_VERBOSE(hwfn, QED_MSG_IOV, 4907 "Can't acquire PTT; re-scheduling\n"); 4908 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4909 return; 4910 } 4911 4912 qed_iov_pf_get_pending_events(hwfn, events); 4913 4914 DP_VERBOSE(hwfn, QED_MSG_IOV, 4915 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4916 events[0], events[1], events[2]); 4917 4918 qed_for_each_vf(hwfn, i) { 4919 /* Skip VFs with no pending messages */ 4920 if (!(events[i / 64] & (1ULL << (i % 64)))) 4921 continue; 4922 4923 DP_VERBOSE(hwfn, QED_MSG_IOV, 4924 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4925 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4926 4927 /* Copy VF's message to PF's request buffer for that VF */ 4928 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4929 continue; 4930 4931 qed_iov_process_mbx_req(hwfn, ptt, i); 4932 } 4933 4934 qed_ptt_release(hwfn, ptt); 4935 } 4936 4937 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn, 4938 u8 *mac, 4939 struct qed_public_vf_info *info) 4940 { 4941 if (info->is_trusted_configured) { 4942 if (is_valid_ether_addr(info->mac) && 4943 (!mac || !ether_addr_equal(mac, info->mac))) 4944 return true; 4945 } else { 4946 if (is_valid_ether_addr(info->forced_mac) && 4947 (!mac || !ether_addr_equal(mac, info->forced_mac))) 4948 return true; 4949 } 4950 4951 return false; 4952 } 4953 4954 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn, 4955 struct qed_public_vf_info *info, 4956 int vfid) 4957 { 4958 if (info->is_trusted_configured) 4959 qed_iov_bulletin_set_mac(hwfn, info->mac, vfid); 4960 else 4961 qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid); 4962 } 4963 4964 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4965 { 4966 int i; 4967 4968 qed_for_each_vf(hwfn, i) { 4969 struct qed_public_vf_info *info; 4970 bool update = false; 4971 u8 *mac; 4972 4973 info = qed_iov_get_public_vf_info(hwfn, i, true); 4974 if (!info) 4975 continue; 4976 4977 /* Update data on bulletin board */ 4978 if (info->is_trusted_configured) 4979 mac = qed_iov_bulletin_get_mac(hwfn, i); 4980 else 4981 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4982 4983 if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) { 4984 DP_VERBOSE(hwfn, 4985 QED_MSG_IOV, 4986 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4987 i, 4988 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4989 4990 /* Update bulletin board with MAC */ 4991 qed_set_bulletin_mac(hwfn, info, i); 4992 update = true; 4993 } 4994 4995 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 4996 info->forced_vlan) { 4997 DP_VERBOSE(hwfn, 4998 QED_MSG_IOV, 4999 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 5000 info->forced_vlan, 5001 i, 5002 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 5003 qed_iov_bulletin_set_forced_vlan(hwfn, 5004 info->forced_vlan, i); 5005 update = true; 5006 } 5007 5008 if (update) 5009 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5010 } 5011 } 5012 5013 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 5014 { 5015 struct qed_ptt *ptt; 5016 int i; 5017 5018 ptt = qed_ptt_acquire(hwfn); 5019 if (!ptt) { 5020 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 5021 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5022 return; 5023 } 5024 5025 qed_for_each_vf(hwfn, i) 5026 qed_iov_post_vf_bulletin(hwfn, i, ptt); 5027 5028 qed_ptt_release(hwfn, ptt); 5029 } 5030 5031 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id) 5032 { 5033 struct qed_public_vf_info *vf_info; 5034 struct qed_vf_info *vf; 5035 u8 *force_mac; 5036 int i; 5037 5038 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 5039 vf = qed_iov_get_vf_info(hwfn, vf_id, true); 5040 5041 if (!vf_info || !vf) 5042 return; 5043 5044 /* Force MAC converted to generic MAC in case of VF trust on */ 5045 if (vf_info->is_trusted_configured && 5046 (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) { 5047 force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id); 5048 5049 if (force_mac) { 5050 /* Clear existing shadow copy of MAC to have a clean 5051 * slate. 5052 */ 5053 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5054 if (ether_addr_equal(vf->shadow_config.macs[i], 5055 vf_info->mac)) { 5056 memset(vf->shadow_config.macs[i], 0, 5057 ETH_ALEN); 5058 DP_VERBOSE(hwfn, QED_MSG_IOV, 5059 "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n", 5060 vf_info->mac, vf_id); 5061 break; 5062 } 5063 } 5064 5065 ether_addr_copy(vf_info->mac, force_mac); 5066 memset(vf_info->forced_mac, 0, ETH_ALEN); 5067 vf->bulletin.p_virt->valid_bitmap &= 5068 ~BIT(MAC_ADDR_FORCED); 5069 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5070 } 5071 } 5072 5073 /* Update shadow copy with VF MAC when trust mode is turned off */ 5074 if (!vf_info->is_trusted_configured) { 5075 u8 empty_mac[ETH_ALEN]; 5076 5077 memset(empty_mac, 0, ETH_ALEN); 5078 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5079 if (ether_addr_equal(vf->shadow_config.macs[i], 5080 empty_mac)) { 5081 ether_addr_copy(vf->shadow_config.macs[i], 5082 vf_info->mac); 5083 DP_VERBOSE(hwfn, QED_MSG_IOV, 5084 "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n", 5085 vf_info->mac, vf_id); 5086 break; 5087 } 5088 } 5089 /* Clear bulletin when trust mode is turned off, 5090 * to have a clean slate for next (normal) operations. 5091 */ 5092 qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id); 5093 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5094 } 5095 } 5096 5097 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 5098 { 5099 struct qed_sp_vport_update_params params; 5100 struct qed_filter_accept_flags *flags; 5101 struct qed_public_vf_info *vf_info; 5102 struct qed_vf_info *vf; 5103 u8 mask; 5104 int i; 5105 5106 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 5107 flags = ¶ms.accept_flags; 5108 5109 qed_for_each_vf(hwfn, i) { 5110 /* Need to make sure current requested configuration didn't 5111 * flip so that we'll end up configuring something that's not 5112 * needed. 5113 */ 5114 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 5115 if (vf_info->is_trusted_configured == 5116 vf_info->is_trusted_request) 5117 continue; 5118 vf_info->is_trusted_configured = vf_info->is_trusted_request; 5119 5120 /* Handle forced MAC mode */ 5121 qed_update_mac_for_vf_trust_change(hwfn, i); 5122 5123 /* Validate that the VF has a configured vport */ 5124 vf = qed_iov_get_vf_info(hwfn, i, true); 5125 if (!vf->vport_instance) 5126 continue; 5127 5128 memset(¶ms, 0, sizeof(params)); 5129 params.opaque_fid = vf->opaque_fid; 5130 params.vport_id = vf->vport_id; 5131 5132 if (vf_info->rx_accept_mode & mask) { 5133 flags->update_rx_mode_config = 1; 5134 flags->rx_accept_filter = vf_info->rx_accept_mode; 5135 } 5136 5137 if (vf_info->tx_accept_mode & mask) { 5138 flags->update_tx_mode_config = 1; 5139 flags->tx_accept_filter = vf_info->tx_accept_mode; 5140 } 5141 5142 /* Remove if needed; Otherwise this would set the mask */ 5143 if (!vf_info->is_trusted_configured) { 5144 flags->rx_accept_filter &= ~mask; 5145 flags->tx_accept_filter &= ~mask; 5146 } 5147 5148 if (flags->update_rx_mode_config || 5149 flags->update_tx_mode_config) 5150 qed_sp_vport_update(hwfn, ¶ms, 5151 QED_SPQ_MODE_EBLOCK, NULL); 5152 } 5153 } 5154 5155 static void qed_iov_pf_task(struct work_struct *work) 5156 5157 { 5158 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 5159 iov_task.work); 5160 int rc; 5161 5162 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 5163 return; 5164 5165 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 5166 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 5167 5168 if (!ptt) { 5169 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5170 return; 5171 } 5172 5173 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 5174 if (rc) 5175 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5176 5177 qed_ptt_release(hwfn, ptt); 5178 } 5179 5180 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 5181 qed_handle_vf_msg(hwfn); 5182 5183 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 5184 &hwfn->iov_task_flags)) 5185 qed_handle_pf_set_vf_unicast(hwfn); 5186 5187 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 5188 &hwfn->iov_task_flags)) 5189 qed_handle_bulletin_post(hwfn); 5190 5191 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 5192 qed_iov_handle_trust_change(hwfn); 5193 } 5194 5195 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 5196 { 5197 int i; 5198 5199 for_each_hwfn(cdev, i) { 5200 if (!cdev->hwfns[i].iov_wq) 5201 continue; 5202 5203 if (schedule_first) { 5204 qed_schedule_iov(&cdev->hwfns[i], 5205 QED_IOV_WQ_STOP_WQ_FLAG); 5206 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 5207 } 5208 5209 flush_workqueue(cdev->hwfns[i].iov_wq); 5210 destroy_workqueue(cdev->hwfns[i].iov_wq); 5211 } 5212 } 5213 5214 int qed_iov_wq_start(struct qed_dev *cdev) 5215 { 5216 char name[NAME_SIZE]; 5217 int i; 5218 5219 for_each_hwfn(cdev, i) { 5220 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 5221 5222 /* PFs needs a dedicated workqueue only if they support IOV. 5223 * VFs always require one. 5224 */ 5225 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 5226 continue; 5227 5228 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 5229 cdev->pdev->bus->number, 5230 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 5231 5232 p_hwfn->iov_wq = create_singlethread_workqueue(name); 5233 if (!p_hwfn->iov_wq) { 5234 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 5235 return -ENOMEM; 5236 } 5237 5238 if (IS_PF(cdev)) 5239 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 5240 else 5241 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 5242 } 5243 5244 return 0; 5245 } 5246 5247 const struct qed_iov_hv_ops qed_iov_ops_pass = { 5248 .configure = &qed_sriov_configure, 5249 .set_mac = &qed_sriov_pf_set_mac, 5250 .set_vlan = &qed_sriov_pf_set_vlan, 5251 .get_config = &qed_get_vf_config, 5252 .set_link_state = &qed_set_vf_link_state, 5253 .set_spoof = &qed_spoof_configure, 5254 .set_rate = &qed_set_vf_rate, 5255 .set_trust = &qed_set_vf_trust, 5256 }; 5257