xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/etherdevice.h>
8 #include <linux/crc32.h>
9 #include <linux/vmalloc.h>
10 #include <linux/crash_dump.h>
11 #include <linux/qed/qed_iov_if.h>
12 #include "qed_cxt.h"
13 #include "qed_hsi.h"
14 #include "qed_hw.h"
15 #include "qed_init_ops.h"
16 #include "qed_int.h"
17 #include "qed_mcp.h"
18 #include "qed_reg_addr.h"
19 #include "qed_sp.h"
20 #include "qed_sriov.h"
21 #include "qed_vf.h"
22 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
23 			       u8 opcode,
24 			       __le16 echo,
25 			       union event_ring_data *data, u8 fw_return_code);
26 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
27 
28 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
29 {
30 	u8 legacy = 0;
31 
32 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
33 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
34 		legacy |= QED_QCID_LEGACY_VF_RX_PROD;
35 
36 	if (!(p_vf->acquire.vfdev_info.capabilities &
37 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
38 		legacy |= QED_QCID_LEGACY_VF_CID;
39 
40 	return legacy;
41 }
42 
43 /* IOV ramrods */
44 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
45 {
46 	struct vf_start_ramrod_data *p_ramrod = NULL;
47 	struct qed_spq_entry *p_ent = NULL;
48 	struct qed_sp_init_data init_data;
49 	int rc = -EINVAL;
50 	u8 fp_minor;
51 
52 	/* Get SPQ entry */
53 	memset(&init_data, 0, sizeof(init_data));
54 	init_data.cid = qed_spq_get_cid(p_hwfn);
55 	init_data.opaque_fid = p_vf->opaque_fid;
56 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
57 
58 	rc = qed_sp_init_request(p_hwfn, &p_ent,
59 				 COMMON_RAMROD_VF_START,
60 				 PROTOCOLID_COMMON, &init_data);
61 	if (rc)
62 		return rc;
63 
64 	p_ramrod = &p_ent->ramrod.vf_start;
65 
66 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
67 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
68 
69 	switch (p_hwfn->hw_info.personality) {
70 	case QED_PCI_ETH:
71 		p_ramrod->personality = PERSONALITY_ETH;
72 		break;
73 	case QED_PCI_ETH_ROCE:
74 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
75 		break;
76 	default:
77 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
78 			  p_hwfn->hw_info.personality);
79 		qed_sp_destroy_request(p_hwfn, p_ent);
80 		return -EINVAL;
81 	}
82 
83 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
84 	if (fp_minor > ETH_HSI_VER_MINOR &&
85 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
86 		DP_VERBOSE(p_hwfn,
87 			   QED_MSG_IOV,
88 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
89 			   p_vf->abs_vf_id,
90 			   ETH_HSI_VER_MAJOR,
91 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
92 		fp_minor = ETH_HSI_VER_MINOR;
93 	}
94 
95 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
96 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
97 
98 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
99 		   "VF[%d] - Starting using HSI %02x.%02x\n",
100 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
101 
102 	return qed_spq_post(p_hwfn, p_ent, NULL);
103 }
104 
105 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
106 			  u32 concrete_vfid, u16 opaque_vfid)
107 {
108 	struct vf_stop_ramrod_data *p_ramrod = NULL;
109 	struct qed_spq_entry *p_ent = NULL;
110 	struct qed_sp_init_data init_data;
111 	int rc = -EINVAL;
112 
113 	/* Get SPQ entry */
114 	memset(&init_data, 0, sizeof(init_data));
115 	init_data.cid = qed_spq_get_cid(p_hwfn);
116 	init_data.opaque_fid = opaque_vfid;
117 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
118 
119 	rc = qed_sp_init_request(p_hwfn, &p_ent,
120 				 COMMON_RAMROD_VF_STOP,
121 				 PROTOCOLID_COMMON, &init_data);
122 	if (rc)
123 		return rc;
124 
125 	p_ramrod = &p_ent->ramrod.vf_stop;
126 
127 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
128 
129 	return qed_spq_post(p_hwfn, p_ent, NULL);
130 }
131 
132 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
133 			   int rel_vf_id,
134 			   bool b_enabled_only, bool b_non_malicious)
135 {
136 	if (!p_hwfn->pf_iov_info) {
137 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
138 		return false;
139 	}
140 
141 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
142 	    (rel_vf_id < 0))
143 		return false;
144 
145 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
146 	    b_enabled_only)
147 		return false;
148 
149 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
150 	    b_non_malicious)
151 		return false;
152 
153 	return true;
154 }
155 
156 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
157 					       u16 relative_vf_id,
158 					       bool b_enabled_only)
159 {
160 	struct qed_vf_info *vf = NULL;
161 
162 	if (!p_hwfn->pf_iov_info) {
163 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
164 		return NULL;
165 	}
166 
167 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
168 				  b_enabled_only, false))
169 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
170 	else
171 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
172 		       relative_vf_id);
173 
174 	return vf;
175 }
176 
177 static struct qed_queue_cid *
178 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
179 {
180 	int i;
181 
182 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
183 		if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
184 			return p_queue->cids[i].p_cid;
185 	}
186 
187 	return NULL;
188 }
189 
190 enum qed_iov_validate_q_mode {
191 	QED_IOV_VALIDATE_Q_NA,
192 	QED_IOV_VALIDATE_Q_ENABLE,
193 	QED_IOV_VALIDATE_Q_DISABLE,
194 };
195 
196 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
197 					struct qed_vf_info *p_vf,
198 					u16 qid,
199 					enum qed_iov_validate_q_mode mode,
200 					bool b_is_tx)
201 {
202 	int i;
203 
204 	if (mode == QED_IOV_VALIDATE_Q_NA)
205 		return true;
206 
207 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
208 		struct qed_vf_queue_cid *p_qcid;
209 
210 		p_qcid = &p_vf->vf_queues[qid].cids[i];
211 
212 		if (!p_qcid->p_cid)
213 			continue;
214 
215 		if (p_qcid->b_is_tx != b_is_tx)
216 			continue;
217 
218 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
219 	}
220 
221 	/* In case we haven't found any valid cid, then its disabled */
222 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
223 }
224 
225 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
226 				 struct qed_vf_info *p_vf,
227 				 u16 rx_qid,
228 				 enum qed_iov_validate_q_mode mode)
229 {
230 	if (rx_qid >= p_vf->num_rxqs) {
231 		DP_VERBOSE(p_hwfn,
232 			   QED_MSG_IOV,
233 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
234 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
235 		return false;
236 	}
237 
238 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
239 }
240 
241 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
242 				 struct qed_vf_info *p_vf,
243 				 u16 tx_qid,
244 				 enum qed_iov_validate_q_mode mode)
245 {
246 	if (tx_qid >= p_vf->num_txqs) {
247 		DP_VERBOSE(p_hwfn,
248 			   QED_MSG_IOV,
249 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
250 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
251 		return false;
252 	}
253 
254 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
255 }
256 
257 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
258 				struct qed_vf_info *p_vf, u16 sb_idx)
259 {
260 	int i;
261 
262 	for (i = 0; i < p_vf->num_sbs; i++)
263 		if (p_vf->igu_sbs[i] == sb_idx)
264 			return true;
265 
266 	DP_VERBOSE(p_hwfn,
267 		   QED_MSG_IOV,
268 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
269 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
270 
271 	return false;
272 }
273 
274 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
275 					struct qed_vf_info *p_vf)
276 {
277 	u8 i;
278 
279 	for (i = 0; i < p_vf->num_rxqs; i++)
280 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
281 						QED_IOV_VALIDATE_Q_ENABLE,
282 						false))
283 			return true;
284 
285 	return false;
286 }
287 
288 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
289 					struct qed_vf_info *p_vf)
290 {
291 	u8 i;
292 
293 	for (i = 0; i < p_vf->num_txqs; i++)
294 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
295 						QED_IOV_VALIDATE_Q_ENABLE,
296 						true))
297 			return true;
298 
299 	return false;
300 }
301 
302 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
303 				    int vfid, struct qed_ptt *p_ptt)
304 {
305 	struct qed_bulletin_content *p_bulletin;
306 	int crc_size = sizeof(p_bulletin->crc);
307 	struct qed_dmae_params params;
308 	struct qed_vf_info *p_vf;
309 
310 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
311 	if (!p_vf)
312 		return -EINVAL;
313 
314 	if (!p_vf->vf_bulletin)
315 		return -EINVAL;
316 
317 	p_bulletin = p_vf->bulletin.p_virt;
318 
319 	/* Increment bulletin board version and compute crc */
320 	p_bulletin->version++;
321 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
322 				p_vf->bulletin.size - crc_size);
323 
324 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
325 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
326 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
327 
328 	/* propagate bulletin board via dmae to vm memory */
329 	memset(&params, 0, sizeof(params));
330 	SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1);
331 	params.dst_vfid = p_vf->abs_vf_id;
332 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
333 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
334 				  &params);
335 }
336 
337 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
338 {
339 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
340 	int pos = iov->pos;
341 
342 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
343 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
344 
345 	pci_read_config_word(cdev->pdev,
346 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
347 	pci_read_config_word(cdev->pdev,
348 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
349 
350 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
351 	if (iov->num_vfs) {
352 		DP_VERBOSE(cdev,
353 			   QED_MSG_IOV,
354 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
355 		iov->num_vfs = 0;
356 	}
357 
358 	pci_read_config_word(cdev->pdev,
359 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
360 
361 	pci_read_config_word(cdev->pdev,
362 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
363 
364 	pci_read_config_word(cdev->pdev,
365 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
366 
367 	pci_read_config_dword(cdev->pdev,
368 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
369 
370 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
371 
372 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
373 
374 	DP_VERBOSE(cdev,
375 		   QED_MSG_IOV,
376 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
377 		   iov->nres,
378 		   iov->cap,
379 		   iov->ctrl,
380 		   iov->total_vfs,
381 		   iov->initial_vfs,
382 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
383 
384 	/* Some sanity checks */
385 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
386 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
387 		/* This can happen only due to a bug. In this case we set
388 		 * num_vfs to zero to avoid memory corruption in the code that
389 		 * assumes max number of vfs
390 		 */
391 		DP_NOTICE(cdev,
392 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
393 			  iov->num_vfs);
394 
395 		iov->num_vfs = 0;
396 		iov->total_vfs = 0;
397 	}
398 
399 	return 0;
400 }
401 
402 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
403 {
404 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
405 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
406 	struct qed_bulletin_content *p_bulletin_virt;
407 	dma_addr_t req_p, rply_p, bulletin_p;
408 	union pfvf_tlvs *p_reply_virt_addr;
409 	union vfpf_tlvs *p_req_virt_addr;
410 	u8 idx = 0;
411 
412 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
413 
414 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
415 	req_p = p_iov_info->mbx_msg_phys_addr;
416 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
417 	rply_p = p_iov_info->mbx_reply_phys_addr;
418 	p_bulletin_virt = p_iov_info->p_bulletins;
419 	bulletin_p = p_iov_info->bulletins_phys;
420 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
421 		DP_ERR(p_hwfn,
422 		       "qed_iov_setup_vfdb called without allocating mem first\n");
423 		return;
424 	}
425 
426 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
427 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
428 		u32 concrete;
429 
430 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
431 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
432 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
433 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
434 
435 		vf->state = VF_STOPPED;
436 		vf->b_init = false;
437 
438 		vf->bulletin.phys = idx *
439 				    sizeof(struct qed_bulletin_content) +
440 				    bulletin_p;
441 		vf->bulletin.p_virt = p_bulletin_virt + idx;
442 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
443 
444 		vf->relative_vf_id = idx;
445 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
446 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
447 		vf->concrete_fid = concrete;
448 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
449 				 (vf->abs_vf_id << 8);
450 		vf->vport_id = idx + 1;
451 
452 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
453 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
454 	}
455 }
456 
457 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
458 {
459 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
460 	void **p_v_addr;
461 	u16 num_vfs = 0;
462 
463 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
464 
465 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
466 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
467 
468 	/* Allocate PF Mailbox buffer (per-VF) */
469 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
470 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
471 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
472 				       p_iov_info->mbx_msg_size,
473 				       &p_iov_info->mbx_msg_phys_addr,
474 				       GFP_KERNEL);
475 	if (!*p_v_addr)
476 		return -ENOMEM;
477 
478 	/* Allocate PF Mailbox Reply buffer (per-VF) */
479 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
480 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
481 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
482 				       p_iov_info->mbx_reply_size,
483 				       &p_iov_info->mbx_reply_phys_addr,
484 				       GFP_KERNEL);
485 	if (!*p_v_addr)
486 		return -ENOMEM;
487 
488 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
489 				     num_vfs;
490 	p_v_addr = &p_iov_info->p_bulletins;
491 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
492 				       p_iov_info->bulletins_size,
493 				       &p_iov_info->bulletins_phys,
494 				       GFP_KERNEL);
495 	if (!*p_v_addr)
496 		return -ENOMEM;
497 
498 	DP_VERBOSE(p_hwfn,
499 		   QED_MSG_IOV,
500 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
501 		   p_iov_info->mbx_msg_virt_addr,
502 		   (u64) p_iov_info->mbx_msg_phys_addr,
503 		   p_iov_info->mbx_reply_virt_addr,
504 		   (u64) p_iov_info->mbx_reply_phys_addr,
505 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
506 
507 	return 0;
508 }
509 
510 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
511 {
512 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
513 
514 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
515 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
516 				  p_iov_info->mbx_msg_size,
517 				  p_iov_info->mbx_msg_virt_addr,
518 				  p_iov_info->mbx_msg_phys_addr);
519 
520 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
521 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
522 				  p_iov_info->mbx_reply_size,
523 				  p_iov_info->mbx_reply_virt_addr,
524 				  p_iov_info->mbx_reply_phys_addr);
525 
526 	if (p_iov_info->p_bulletins)
527 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
528 				  p_iov_info->bulletins_size,
529 				  p_iov_info->p_bulletins,
530 				  p_iov_info->bulletins_phys);
531 }
532 
533 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
534 {
535 	struct qed_pf_iov *p_sriov;
536 
537 	if (!IS_PF_SRIOV(p_hwfn)) {
538 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
539 			   "No SR-IOV - no need for IOV db\n");
540 		return 0;
541 	}
542 
543 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
544 	if (!p_sriov)
545 		return -ENOMEM;
546 
547 	p_hwfn->pf_iov_info = p_sriov;
548 
549 	qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
550 				  qed_sriov_eqe_event);
551 
552 	return qed_iov_allocate_vfdb(p_hwfn);
553 }
554 
555 void qed_iov_setup(struct qed_hwfn *p_hwfn)
556 {
557 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
558 		return;
559 
560 	qed_iov_setup_vfdb(p_hwfn);
561 }
562 
563 void qed_iov_free(struct qed_hwfn *p_hwfn)
564 {
565 	qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
566 
567 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
568 		qed_iov_free_vfdb(p_hwfn);
569 		kfree(p_hwfn->pf_iov_info);
570 	}
571 }
572 
573 void qed_iov_free_hw_info(struct qed_dev *cdev)
574 {
575 	kfree(cdev->p_iov_info);
576 	cdev->p_iov_info = NULL;
577 }
578 
579 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
580 {
581 	struct qed_dev *cdev = p_hwfn->cdev;
582 	int pos;
583 	int rc;
584 
585 	if (is_kdump_kernel())
586 		return 0;
587 
588 	if (IS_VF(p_hwfn->cdev))
589 		return 0;
590 
591 	/* Learn the PCI configuration */
592 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
593 				      PCI_EXT_CAP_ID_SRIOV);
594 	if (!pos) {
595 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
596 		return 0;
597 	}
598 
599 	/* Allocate a new struct for IOV information */
600 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
601 	if (!cdev->p_iov_info)
602 		return -ENOMEM;
603 
604 	cdev->p_iov_info->pos = pos;
605 
606 	rc = qed_iov_pci_cfg_info(cdev);
607 	if (rc)
608 		return rc;
609 
610 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
611 	 * In case the capability is published but there are no VFs, simply
612 	 * de-allocate the struct.
613 	 */
614 	if (!cdev->p_iov_info->total_vfs) {
615 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
616 			   "IOV capabilities, but no VFs are published\n");
617 		kfree(cdev->p_iov_info);
618 		cdev->p_iov_info = NULL;
619 		return 0;
620 	}
621 
622 	/* First VF index based on offset is tricky:
623 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
624 	 *    provide the number for eng0. 2nd engine Vfs would begin
625 	 *    after the first engine's VFs.
626 	 *  - If !ARI, VFs would start on next device.
627 	 *    so offset - (256 - pf_id) would provide the number.
628 	 * Utilize the fact that (256 - pf_id) is achieved only by later
629 	 * to differentiate between the two.
630 	 */
631 
632 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
633 		u32 first = p_hwfn->cdev->p_iov_info->offset +
634 			    p_hwfn->abs_pf_id - 16;
635 
636 		cdev->p_iov_info->first_vf_in_pf = first;
637 
638 		if (QED_PATH_ID(p_hwfn))
639 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
640 	} else {
641 		u32 first = p_hwfn->cdev->p_iov_info->offset +
642 			    p_hwfn->abs_pf_id - 256;
643 
644 		cdev->p_iov_info->first_vf_in_pf = first;
645 	}
646 
647 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
648 		   "First VF in hwfn 0x%08x\n",
649 		   cdev->p_iov_info->first_vf_in_pf);
650 
651 	return 0;
652 }
653 
654 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
655 				     int vfid, bool b_fail_malicious)
656 {
657 	/* Check PF supports sriov */
658 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
659 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
660 		return false;
661 
662 	/* Check VF validity */
663 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
664 		return false;
665 
666 	return true;
667 }
668 
669 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
670 {
671 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
672 }
673 
674 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
675 				      u16 rel_vf_id, u8 to_disable)
676 {
677 	struct qed_vf_info *vf;
678 	int i;
679 
680 	for_each_hwfn(cdev, i) {
681 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
682 
683 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
684 		if (!vf)
685 			continue;
686 
687 		vf->to_disable = to_disable;
688 	}
689 }
690 
691 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
692 {
693 	u16 i;
694 
695 	if (!IS_QED_SRIOV(cdev))
696 		return;
697 
698 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
699 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
700 }
701 
702 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
703 				       struct qed_ptt *p_ptt, u8 abs_vfid)
704 {
705 	qed_wr(p_hwfn, p_ptt,
706 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
707 	       1 << (abs_vfid & 0x1f));
708 }
709 
710 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
711 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
712 {
713 	int i;
714 
715 	/* Set VF masks and configuration - pretend */
716 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
717 
718 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
719 
720 	/* unpretend */
721 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
722 
723 	/* iterate over all queues, clear sb consumer */
724 	for (i = 0; i < vf->num_sbs; i++)
725 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
726 						vf->igu_sbs[i],
727 						vf->opaque_fid, true);
728 }
729 
730 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
731 				   struct qed_ptt *p_ptt,
732 				   struct qed_vf_info *vf, bool enable)
733 {
734 	u32 igu_vf_conf;
735 
736 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
737 
738 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
739 
740 	if (enable)
741 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
742 	else
743 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
744 
745 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
746 
747 	/* unpretend */
748 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
749 }
750 
751 static int
752 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
753 			      struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
754 {
755 	u8 current_max = 0;
756 	int i;
757 
758 	/* For AH onward, configuration is per-PF. Find maximum of all
759 	 * the currently enabled child VFs, and set the number to be that.
760 	 */
761 	if (!QED_IS_BB(p_hwfn->cdev)) {
762 		qed_for_each_vf(p_hwfn, i) {
763 			struct qed_vf_info *p_vf;
764 
765 			p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
766 			if (!p_vf)
767 				continue;
768 
769 			current_max = max_t(u8, current_max, p_vf->num_sbs);
770 		}
771 	}
772 
773 	if (num_sbs > current_max)
774 		return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
775 					      abs_vf_id, num_sbs);
776 
777 	return 0;
778 }
779 
780 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
781 				    struct qed_ptt *p_ptt,
782 				    struct qed_vf_info *vf)
783 {
784 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
785 	int rc;
786 
787 	/* It's possible VF was previously considered malicious -
788 	 * clear the indication even if we're only going to disable VF.
789 	 */
790 	vf->b_malicious = false;
791 
792 	if (vf->to_disable)
793 		return 0;
794 
795 	DP_VERBOSE(p_hwfn,
796 		   QED_MSG_IOV,
797 		   "Enable internal access for vf %x [abs %x]\n",
798 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
799 
800 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
801 
802 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
803 
804 	rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
805 					   vf->abs_vf_id, vf->num_sbs);
806 	if (rc)
807 		return rc;
808 
809 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
810 
811 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
812 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
813 
814 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
815 		     p_hwfn->hw_info.hw_mode);
816 
817 	/* unpretend */
818 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
819 
820 	vf->state = VF_FREE;
821 
822 	return rc;
823 }
824 
825 /**
826  * qed_iov_config_perm_table() - Configure the permission zone table.
827  *
828  * @p_hwfn: HW device data.
829  * @p_ptt: PTT window for writing the registers.
830  * @vf: VF info data.
831  * @enable: The actual permision for this VF.
832  *
833  * In E4, queue zone permission table size is 320x9. There
834  * are 320 VF queues for single engine device (256 for dual
835  * engine device), and each entry has the following format:
836  * {Valid, VF[7:0]}
837  */
838 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
839 				      struct qed_ptt *p_ptt,
840 				      struct qed_vf_info *vf, u8 enable)
841 {
842 	u32 reg_addr, val;
843 	u16 qzone_id = 0;
844 	int qid;
845 
846 	for (qid = 0; qid < vf->num_rxqs; qid++) {
847 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
848 				&qzone_id);
849 
850 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
851 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
852 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
853 	}
854 }
855 
856 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
857 				      struct qed_ptt *p_ptt,
858 				      struct qed_vf_info *vf)
859 {
860 	/* Reset vf in IGU - interrupts are still disabled */
861 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
862 
863 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
864 
865 	/* Permission Table */
866 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
867 }
868 
869 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
870 				   struct qed_ptt *p_ptt,
871 				   struct qed_vf_info *vf, u16 num_rx_queues)
872 {
873 	struct qed_igu_block *p_block;
874 	struct cau_sb_entry sb_entry;
875 	int qid = 0;
876 	u32 val = 0;
877 
878 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
879 		num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
880 	p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
881 
882 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
883 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
884 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
885 
886 	for (qid = 0; qid < num_rx_queues; qid++) {
887 		p_block = qed_get_igu_free_sb(p_hwfn, false);
888 		vf->igu_sbs[qid] = p_block->igu_sb_id;
889 		p_block->status &= ~QED_IGU_STATUS_FREE;
890 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
891 
892 		qed_wr(p_hwfn, p_ptt,
893 		       IGU_REG_MAPPING_MEMORY +
894 		       sizeof(u32) * p_block->igu_sb_id, val);
895 
896 		/* Configure igu sb in CAU which were marked valid */
897 		qed_init_cau_sb_entry(p_hwfn, &sb_entry,
898 				      p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
899 
900 		qed_dmae_host2grc(p_hwfn, p_ptt,
901 				  (u64)(uintptr_t)&sb_entry,
902 				  CAU_REG_SB_VAR_MEMORY +
903 				  p_block->igu_sb_id * sizeof(u64), 2, NULL);
904 	}
905 
906 	vf->num_sbs = (u8) num_rx_queues;
907 
908 	return vf->num_sbs;
909 }
910 
911 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
912 				    struct qed_ptt *p_ptt,
913 				    struct qed_vf_info *vf)
914 {
915 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
916 	int idx, igu_id;
917 	u32 addr, val;
918 
919 	/* Invalidate igu CAM lines and mark them as free */
920 	for (idx = 0; idx < vf->num_sbs; idx++) {
921 		igu_id = vf->igu_sbs[idx];
922 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
923 
924 		val = qed_rd(p_hwfn, p_ptt, addr);
925 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
926 		qed_wr(p_hwfn, p_ptt, addr, val);
927 
928 		p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
929 		p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
930 	}
931 
932 	vf->num_sbs = 0;
933 }
934 
935 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
936 			     u16 vfid,
937 			     struct qed_mcp_link_params *params,
938 			     struct qed_mcp_link_state *link,
939 			     struct qed_mcp_link_capabilities *p_caps)
940 {
941 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
942 						       vfid,
943 						       false);
944 	struct qed_bulletin_content *p_bulletin;
945 
946 	if (!p_vf)
947 		return;
948 
949 	p_bulletin = p_vf->bulletin.p_virt;
950 	p_bulletin->req_autoneg = params->speed.autoneg;
951 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
952 	p_bulletin->req_forced_speed = params->speed.forced_speed;
953 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
954 	p_bulletin->req_forced_rx = params->pause.forced_rx;
955 	p_bulletin->req_forced_tx = params->pause.forced_tx;
956 	p_bulletin->req_loopback = params->loopback_mode;
957 
958 	p_bulletin->link_up = link->link_up;
959 	p_bulletin->speed = link->speed;
960 	p_bulletin->full_duplex = link->full_duplex;
961 	p_bulletin->autoneg = link->an;
962 	p_bulletin->autoneg_complete = link->an_complete;
963 	p_bulletin->parallel_detection = link->parallel_detection;
964 	p_bulletin->pfc_enabled = link->pfc_enabled;
965 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
966 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
967 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
968 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
969 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
970 
971 	p_bulletin->capability_speed = p_caps->speed_capabilities;
972 }
973 
974 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
975 				  struct qed_ptt *p_ptt,
976 				  struct qed_iov_vf_init_params *p_params)
977 {
978 	struct qed_mcp_link_capabilities link_caps;
979 	struct qed_mcp_link_params link_params;
980 	struct qed_mcp_link_state link_state;
981 	u8 num_of_vf_avaiable_chains = 0;
982 	struct qed_vf_info *vf = NULL;
983 	u16 qid, num_irqs;
984 	int rc = 0;
985 	u32 cids;
986 	u8 i;
987 
988 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
989 	if (!vf) {
990 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
991 		return -EINVAL;
992 	}
993 
994 	if (vf->b_init) {
995 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
996 			  p_params->rel_vf_id);
997 		return -EINVAL;
998 	}
999 
1000 	/* Perform sanity checking on the requested queue_id */
1001 	for (i = 0; i < p_params->num_queues; i++) {
1002 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1003 		u16 max_vf_qzone = min_vf_qzone +
1004 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1005 
1006 		qid = p_params->req_rx_queue[i];
1007 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
1008 			DP_NOTICE(p_hwfn,
1009 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1010 				  qid,
1011 				  p_params->rel_vf_id,
1012 				  min_vf_qzone, max_vf_qzone);
1013 			return -EINVAL;
1014 		}
1015 
1016 		qid = p_params->req_tx_queue[i];
1017 		if (qid > max_vf_qzone) {
1018 			DP_NOTICE(p_hwfn,
1019 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1020 				  qid, p_params->rel_vf_id, max_vf_qzone);
1021 			return -EINVAL;
1022 		}
1023 
1024 		/* If client *really* wants, Tx qid can be shared with PF */
1025 		if (qid < min_vf_qzone)
1026 			DP_VERBOSE(p_hwfn,
1027 				   QED_MSG_IOV,
1028 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1029 				   p_params->rel_vf_id, qid, i);
1030 	}
1031 
1032 	/* Limit number of queues according to number of CIDs */
1033 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1034 	DP_VERBOSE(p_hwfn,
1035 		   QED_MSG_IOV,
1036 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1037 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1038 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1039 
1040 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1041 							     p_ptt,
1042 							     vf, num_irqs);
1043 	if (!num_of_vf_avaiable_chains) {
1044 		DP_ERR(p_hwfn, "no available igu sbs\n");
1045 		return -ENOMEM;
1046 	}
1047 
1048 	/* Choose queue number and index ranges */
1049 	vf->num_rxqs = num_of_vf_avaiable_chains;
1050 	vf->num_txqs = num_of_vf_avaiable_chains;
1051 
1052 	for (i = 0; i < vf->num_rxqs; i++) {
1053 		struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1054 
1055 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1056 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1057 
1058 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1059 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1060 			   vf->relative_vf_id, i, vf->igu_sbs[i],
1061 			   p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1062 	}
1063 
1064 	/* Update the link configuration in bulletin */
1065 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1066 	       sizeof(link_params));
1067 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1068 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1069 	       sizeof(link_caps));
1070 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1071 			 &link_params, &link_state, &link_caps);
1072 
1073 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1074 	if (!rc) {
1075 		vf->b_init = true;
1076 
1077 		if (IS_LEAD_HWFN(p_hwfn))
1078 			p_hwfn->cdev->p_iov_info->num_vfs++;
1079 	}
1080 
1081 	return rc;
1082 }
1083 
1084 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1085 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1086 {
1087 	struct qed_mcp_link_capabilities caps;
1088 	struct qed_mcp_link_params params;
1089 	struct qed_mcp_link_state link;
1090 	struct qed_vf_info *vf = NULL;
1091 
1092 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1093 	if (!vf) {
1094 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1095 		return -EINVAL;
1096 	}
1097 
1098 	if (vf->bulletin.p_virt)
1099 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1100 
1101 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1102 
1103 	/* Get the link configuration back in bulletin so
1104 	 * that when VFs are re-enabled they get the actual
1105 	 * link configuration.
1106 	 */
1107 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1108 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1109 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1110 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1111 
1112 	/* Forget the VF's acquisition message */
1113 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1114 
1115 	/* disablng interrupts and resetting permission table was done during
1116 	 * vf-close, however, we could get here without going through vf_close
1117 	 */
1118 	/* Disable Interrupts for VF */
1119 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1120 
1121 	/* Reset Permission table */
1122 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1123 
1124 	vf->num_rxqs = 0;
1125 	vf->num_txqs = 0;
1126 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1127 
1128 	if (vf->b_init) {
1129 		vf->b_init = false;
1130 
1131 		if (IS_LEAD_HWFN(p_hwfn))
1132 			p_hwfn->cdev->p_iov_info->num_vfs--;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static bool qed_iov_tlv_supported(u16 tlvtype)
1139 {
1140 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1141 }
1142 
1143 /* place a given tlv on the tlv buffer, continuing current tlv list */
1144 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1145 {
1146 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1147 
1148 	tl->type = type;
1149 	tl->length = length;
1150 
1151 	/* Offset should keep pointing to next TLV (the end of the last) */
1152 	*offset += length;
1153 
1154 	/* Return a pointer to the start of the added tlv */
1155 	return *offset - length;
1156 }
1157 
1158 /* list the types and lengths of the tlvs on the buffer */
1159 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1160 {
1161 	u16 i = 1, total_length = 0;
1162 	struct channel_tlv *tlv;
1163 
1164 	do {
1165 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1166 
1167 		/* output tlv */
1168 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1169 			   "TLV number %d: type %d, length %d\n",
1170 			   i, tlv->type, tlv->length);
1171 
1172 		if (tlv->type == CHANNEL_TLV_LIST_END)
1173 			return;
1174 
1175 		/* Validate entry - protect against malicious VFs */
1176 		if (!tlv->length) {
1177 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1178 			return;
1179 		}
1180 
1181 		total_length += tlv->length;
1182 
1183 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1184 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1185 			return;
1186 		}
1187 
1188 		i++;
1189 	} while (1);
1190 }
1191 
1192 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1193 				  struct qed_ptt *p_ptt,
1194 				  struct qed_vf_info *p_vf,
1195 				  u16 length, u8 status)
1196 {
1197 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1198 	struct qed_dmae_params params;
1199 	u8 eng_vf_id;
1200 
1201 	mbx->reply_virt->default_resp.hdr.status = status;
1202 
1203 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1204 
1205 	eng_vf_id = p_vf->abs_vf_id;
1206 
1207 	memset(&params, 0, sizeof(params));
1208 	SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1);
1209 	params.dst_vfid = eng_vf_id;
1210 
1211 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1212 			   mbx->req_virt->first_tlv.reply_address +
1213 			   sizeof(u64),
1214 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1215 			   &params);
1216 
1217 	/* Once PF copies the rc to the VF, the latter can continue
1218 	 * and send an additional message. So we have to make sure the
1219 	 * channel would be re-set to ready prior to that.
1220 	 */
1221 	REG_WR(p_hwfn,
1222 	       GTT_BAR0_MAP_REG_USDM_RAM +
1223 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1224 
1225 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1226 			   mbx->req_virt->first_tlv.reply_address,
1227 			   sizeof(u64) / 4, &params);
1228 }
1229 
1230 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1231 				enum qed_iov_vport_update_flag flag)
1232 {
1233 	switch (flag) {
1234 	case QED_IOV_VP_UPDATE_ACTIVATE:
1235 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1236 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1237 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1238 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1239 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1240 	case QED_IOV_VP_UPDATE_MCAST:
1241 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1242 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1243 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1244 	case QED_IOV_VP_UPDATE_RSS:
1245 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1246 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1247 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1248 	case QED_IOV_VP_UPDATE_SGE_TPA:
1249 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1250 	default:
1251 		return 0;
1252 	}
1253 }
1254 
1255 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1256 					    struct qed_vf_info *p_vf,
1257 					    struct qed_iov_vf_mbx *p_mbx,
1258 					    u8 status,
1259 					    u16 tlvs_mask, u16 tlvs_accepted)
1260 {
1261 	struct pfvf_def_resp_tlv *resp;
1262 	u16 size, total_len, i;
1263 
1264 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1265 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1266 	size = sizeof(struct pfvf_def_resp_tlv);
1267 	total_len = size;
1268 
1269 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1270 
1271 	/* Prepare response for all extended tlvs if they are found by PF */
1272 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1273 		if (!(tlvs_mask & BIT(i)))
1274 			continue;
1275 
1276 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1277 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1278 
1279 		if (tlvs_accepted & BIT(i))
1280 			resp->hdr.status = status;
1281 		else
1282 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1283 
1284 		DP_VERBOSE(p_hwfn,
1285 			   QED_MSG_IOV,
1286 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1287 			   p_vf->relative_vf_id,
1288 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1289 
1290 		total_len += size;
1291 	}
1292 
1293 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1294 		    sizeof(struct channel_list_end_tlv));
1295 
1296 	return total_len;
1297 }
1298 
1299 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1300 				 struct qed_ptt *p_ptt,
1301 				 struct qed_vf_info *vf_info,
1302 				 u16 type, u16 length, u8 status)
1303 {
1304 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1305 
1306 	mbx->offset = (u8 *)mbx->reply_virt;
1307 
1308 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1309 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1310 		    sizeof(struct channel_list_end_tlv));
1311 
1312 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1313 }
1314 
1315 static struct
1316 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1317 					       u16 relative_vf_id,
1318 					       bool b_enabled_only)
1319 {
1320 	struct qed_vf_info *vf = NULL;
1321 
1322 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1323 	if (!vf)
1324 		return NULL;
1325 
1326 	return &vf->p_vf_info;
1327 }
1328 
1329 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1330 {
1331 	struct qed_public_vf_info *vf_info;
1332 
1333 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1334 
1335 	if (!vf_info)
1336 		return;
1337 
1338 	/* Clear the VF mac */
1339 	eth_zero_addr(vf_info->mac);
1340 
1341 	vf_info->rx_accept_mode = 0;
1342 	vf_info->tx_accept_mode = 0;
1343 }
1344 
1345 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1346 			       struct qed_vf_info *p_vf)
1347 {
1348 	u32 i, j;
1349 
1350 	p_vf->vf_bulletin = 0;
1351 	p_vf->vport_instance = 0;
1352 	p_vf->configured_features = 0;
1353 
1354 	/* If VF previously requested less resources, go back to default */
1355 	p_vf->num_rxqs = p_vf->num_sbs;
1356 	p_vf->num_txqs = p_vf->num_sbs;
1357 
1358 	p_vf->num_active_rxqs = 0;
1359 
1360 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1361 		struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1362 
1363 		for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1364 			if (!p_queue->cids[j].p_cid)
1365 				continue;
1366 
1367 			qed_eth_queue_cid_release(p_hwfn,
1368 						  p_queue->cids[j].p_cid);
1369 			p_queue->cids[j].p_cid = NULL;
1370 		}
1371 	}
1372 
1373 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1374 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1375 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1376 }
1377 
1378 /* Returns either 0, or log(size) */
1379 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1380 				  struct qed_ptt *p_ptt)
1381 {
1382 	u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1383 
1384 	if (val)
1385 		return val + 11;
1386 	return 0;
1387 }
1388 
1389 static void
1390 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1391 				 struct qed_ptt *p_ptt,
1392 				 struct qed_vf_info *p_vf,
1393 				 struct vf_pf_resc_request *p_req,
1394 				 struct pf_vf_resc *p_resp)
1395 {
1396 	u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1397 	u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1398 		     qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1399 	u32 bar_size;
1400 
1401 	p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1402 
1403 	/* If VF didn't bother asking for QIDs than don't bother limiting
1404 	 * number of CIDs. The VF doesn't care about the number, and this
1405 	 * has the likely result of causing an additional acquisition.
1406 	 */
1407 	if (!(p_vf->acquire.vfdev_info.capabilities &
1408 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1409 		return;
1410 
1411 	/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1412 	 * that would make sure doorbells for all CIDs fall within the bar.
1413 	 * If it doesn't, make sure regview window is sufficient.
1414 	 */
1415 	if (p_vf->acquire.vfdev_info.capabilities &
1416 	    VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1417 		bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1418 		if (bar_size)
1419 			bar_size = 1 << bar_size;
1420 
1421 		if (p_hwfn->cdev->num_hwfns > 1)
1422 			bar_size /= 2;
1423 	} else {
1424 		bar_size = PXP_VF_BAR0_DQ_LENGTH;
1425 	}
1426 
1427 	if (bar_size / db_size < 256)
1428 		p_resp->num_cids = min_t(u8, p_resp->num_cids,
1429 					 (u8)(bar_size / db_size));
1430 }
1431 
1432 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1433 				      struct qed_ptt *p_ptt,
1434 				      struct qed_vf_info *p_vf,
1435 				      struct vf_pf_resc_request *p_req,
1436 				      struct pf_vf_resc *p_resp)
1437 {
1438 	u8 i;
1439 
1440 	/* Queue related information */
1441 	p_resp->num_rxqs = p_vf->num_rxqs;
1442 	p_resp->num_txqs = p_vf->num_txqs;
1443 	p_resp->num_sbs = p_vf->num_sbs;
1444 
1445 	for (i = 0; i < p_resp->num_sbs; i++) {
1446 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1447 		p_resp->hw_sbs[i].sb_qid = 0;
1448 	}
1449 
1450 	/* These fields are filled for backward compatibility.
1451 	 * Unused by modern vfs.
1452 	 */
1453 	for (i = 0; i < p_resp->num_rxqs; i++) {
1454 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1455 				(u16 *)&p_resp->hw_qid[i]);
1456 		p_resp->cid[i] = i;
1457 	}
1458 
1459 	/* Filter related information */
1460 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1461 					p_req->num_mac_filters);
1462 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1463 					 p_req->num_vlan_filters);
1464 
1465 	qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1466 
1467 	/* This isn't really needed/enforced, but some legacy VFs might depend
1468 	 * on the correct filling of this field.
1469 	 */
1470 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1471 
1472 	/* Validate sufficient resources for VF */
1473 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1474 	    p_resp->num_txqs < p_req->num_txqs ||
1475 	    p_resp->num_sbs < p_req->num_sbs ||
1476 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1477 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1478 	    p_resp->num_mc_filters < p_req->num_mc_filters ||
1479 	    p_resp->num_cids < p_req->num_cids) {
1480 		DP_VERBOSE(p_hwfn,
1481 			   QED_MSG_IOV,
1482 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1483 			   p_vf->abs_vf_id,
1484 			   p_req->num_rxqs,
1485 			   p_resp->num_rxqs,
1486 			   p_req->num_rxqs,
1487 			   p_resp->num_txqs,
1488 			   p_req->num_sbs,
1489 			   p_resp->num_sbs,
1490 			   p_req->num_mac_filters,
1491 			   p_resp->num_mac_filters,
1492 			   p_req->num_vlan_filters,
1493 			   p_resp->num_vlan_filters,
1494 			   p_req->num_mc_filters,
1495 			   p_resp->num_mc_filters,
1496 			   p_req->num_cids, p_resp->num_cids);
1497 
1498 		/* Some legacy OSes are incapable of correctly handling this
1499 		 * failure.
1500 		 */
1501 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1502 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1503 		    (p_vf->acquire.vfdev_info.os_type ==
1504 		     VFPF_ACQUIRE_OS_WINDOWS))
1505 			return PFVF_STATUS_SUCCESS;
1506 
1507 		return PFVF_STATUS_NO_RESOURCE;
1508 	}
1509 
1510 	return PFVF_STATUS_SUCCESS;
1511 }
1512 
1513 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1514 					 struct pfvf_stats_info *p_stats)
1515 {
1516 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1517 				  offsetof(struct mstorm_vf_zone,
1518 					   non_trigger.eth_queue_stat);
1519 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1520 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1521 				  offsetof(struct ustorm_vf_zone,
1522 					   non_trigger.eth_queue_stat);
1523 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1524 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1525 				  offsetof(struct pstorm_vf_zone,
1526 					   non_trigger.eth_queue_stat);
1527 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1528 	p_stats->tstats.address = 0;
1529 	p_stats->tstats.len = 0;
1530 }
1531 
1532 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1533 				   struct qed_ptt *p_ptt,
1534 				   struct qed_vf_info *vf)
1535 {
1536 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1537 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1538 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1539 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1540 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1541 	struct pf_vf_resc *resc = &resp->resc;
1542 	int rc;
1543 
1544 	memset(resp, 0, sizeof(*resp));
1545 
1546 	/* Write the PF version so that VF would know which version
1547 	 * is supported - might be later overriden. This guarantees that
1548 	 * VF could recognize legacy PF based on lack of versions in reply.
1549 	 */
1550 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1551 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1552 
1553 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1554 		DP_VERBOSE(p_hwfn,
1555 			   QED_MSG_IOV,
1556 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1557 			   vf->abs_vf_id, vf->state);
1558 		goto out;
1559 	}
1560 
1561 	/* Validate FW compatibility */
1562 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1563 		if (req->vfdev_info.capabilities &
1564 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1565 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1566 
1567 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1568 				   "VF[%d] is pre-fastpath HSI\n",
1569 				   vf->abs_vf_id);
1570 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1571 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1572 		} else {
1573 			DP_INFO(p_hwfn,
1574 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n",
1575 				vf->abs_vf_id,
1576 				req->vfdev_info.eth_fp_hsi_major,
1577 				req->vfdev_info.eth_fp_hsi_minor,
1578 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1579 
1580 			goto out;
1581 		}
1582 	}
1583 
1584 	/* On 100g PFs, prevent old VFs from loading */
1585 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1586 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1587 		DP_INFO(p_hwfn,
1588 			"VF[%d] is running an old driver that doesn't support 100g\n",
1589 			vf->abs_vf_id);
1590 		goto out;
1591 	}
1592 
1593 	/* Store the acquire message */
1594 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1595 
1596 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1597 
1598 	vf->vf_bulletin = req->bulletin_addr;
1599 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1600 			    vf->bulletin.size : req->bulletin_size;
1601 
1602 	/* fill in pfdev info */
1603 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1604 	pfdev_info->db_size = 0;
1605 	pfdev_info->indices_per_sb = PIS_PER_SB_E4;
1606 
1607 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1608 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1609 	if (p_hwfn->cdev->num_hwfns > 1)
1610 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1611 
1612 	/* Share our ability to use multiple queue-ids only with VFs
1613 	 * that request it.
1614 	 */
1615 	if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1616 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1617 
1618 	/* Share the sizes of the bars with VF */
1619 	resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1620 
1621 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1622 
1623 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1624 
1625 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1626 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1627 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1628 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1629 
1630 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1631 	 * this field.
1632 	 */
1633 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1634 					 req->vfdev_info.eth_fp_hsi_minor);
1635 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1636 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1637 
1638 	pfdev_info->dev_type = p_hwfn->cdev->type;
1639 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1640 
1641 	/* Fill resources available to VF; Make sure there are enough to
1642 	 * satisfy the VF's request.
1643 	 */
1644 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1645 						  &req->resc_request, resc);
1646 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1647 		goto out;
1648 
1649 	/* Start the VF in FW */
1650 	rc = qed_sp_vf_start(p_hwfn, vf);
1651 	if (rc) {
1652 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1653 		vfpf_status = PFVF_STATUS_FAILURE;
1654 		goto out;
1655 	}
1656 
1657 	/* Fill agreed size of bulletin board in response */
1658 	resp->bulletin_size = vf->bulletin.size;
1659 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1660 
1661 	DP_VERBOSE(p_hwfn,
1662 		   QED_MSG_IOV,
1663 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1664 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1665 		   vf->abs_vf_id,
1666 		   resp->pfdev_info.chip_num,
1667 		   resp->pfdev_info.db_size,
1668 		   resp->pfdev_info.indices_per_sb,
1669 		   resp->pfdev_info.capabilities,
1670 		   resc->num_rxqs,
1671 		   resc->num_txqs,
1672 		   resc->num_sbs,
1673 		   resc->num_mac_filters,
1674 		   resc->num_vlan_filters);
1675 	vf->state = VF_ACQUIRED;
1676 
1677 	/* Prepare Response */
1678 out:
1679 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1680 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1681 }
1682 
1683 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1684 				  struct qed_vf_info *p_vf, bool val)
1685 {
1686 	struct qed_sp_vport_update_params params;
1687 	int rc;
1688 
1689 	if (val == p_vf->spoof_chk) {
1690 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1691 			   "Spoofchk value[%d] is already configured\n", val);
1692 		return 0;
1693 	}
1694 
1695 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1696 	params.opaque_fid = p_vf->opaque_fid;
1697 	params.vport_id = p_vf->vport_id;
1698 	params.update_anti_spoofing_en_flg = 1;
1699 	params.anti_spoofing_en = val;
1700 
1701 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1702 	if (!rc) {
1703 		p_vf->spoof_chk = val;
1704 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1705 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1706 			   "Spoofchk val[%d] configured\n", val);
1707 	} else {
1708 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1709 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1710 			   val, p_vf->relative_vf_id);
1711 	}
1712 
1713 	return rc;
1714 }
1715 
1716 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1717 					    struct qed_vf_info *p_vf)
1718 {
1719 	struct qed_filter_ucast filter;
1720 	int rc = 0;
1721 	int i;
1722 
1723 	memset(&filter, 0, sizeof(filter));
1724 	filter.is_rx_filter = 1;
1725 	filter.is_tx_filter = 1;
1726 	filter.vport_to_add_to = p_vf->vport_id;
1727 	filter.opcode = QED_FILTER_ADD;
1728 
1729 	/* Reconfigure vlans */
1730 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1731 		if (!p_vf->shadow_config.vlans[i].used)
1732 			continue;
1733 
1734 		filter.type = QED_FILTER_VLAN;
1735 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1736 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1737 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1738 			   filter.vlan, p_vf->relative_vf_id);
1739 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1740 					     &filter, QED_SPQ_MODE_CB, NULL);
1741 		if (rc) {
1742 			DP_NOTICE(p_hwfn,
1743 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1744 				  filter.vlan, p_vf->relative_vf_id);
1745 			break;
1746 		}
1747 	}
1748 
1749 	return rc;
1750 }
1751 
1752 static int
1753 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1754 				   struct qed_vf_info *p_vf, u64 events)
1755 {
1756 	int rc = 0;
1757 
1758 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1759 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1760 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1761 
1762 	return rc;
1763 }
1764 
1765 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1766 					  struct qed_vf_info *p_vf, u64 events)
1767 {
1768 	int rc = 0;
1769 	struct qed_filter_ucast filter;
1770 
1771 	if (!p_vf->vport_instance)
1772 		return -EINVAL;
1773 
1774 	if ((events & BIT(MAC_ADDR_FORCED)) ||
1775 	    p_vf->p_vf_info.is_trusted_configured) {
1776 		/* Since there's no way [currently] of removing the MAC,
1777 		 * we can always assume this means we need to force it.
1778 		 */
1779 		memset(&filter, 0, sizeof(filter));
1780 		filter.type = QED_FILTER_MAC;
1781 		filter.opcode = QED_FILTER_REPLACE;
1782 		filter.is_rx_filter = 1;
1783 		filter.is_tx_filter = 1;
1784 		filter.vport_to_add_to = p_vf->vport_id;
1785 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1786 
1787 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1788 					     &filter, QED_SPQ_MODE_CB, NULL);
1789 		if (rc) {
1790 			DP_NOTICE(p_hwfn,
1791 				  "PF failed to configure MAC for VF\n");
1792 			return rc;
1793 		}
1794 		if (p_vf->p_vf_info.is_trusted_configured)
1795 			p_vf->configured_features |=
1796 				BIT(VFPF_BULLETIN_MAC_ADDR);
1797 		else
1798 			p_vf->configured_features |=
1799 				BIT(MAC_ADDR_FORCED);
1800 	}
1801 
1802 	if (events & BIT(VLAN_ADDR_FORCED)) {
1803 		struct qed_sp_vport_update_params vport_update;
1804 		u8 removal;
1805 		int i;
1806 
1807 		memset(&filter, 0, sizeof(filter));
1808 		filter.type = QED_FILTER_VLAN;
1809 		filter.is_rx_filter = 1;
1810 		filter.is_tx_filter = 1;
1811 		filter.vport_to_add_to = p_vf->vport_id;
1812 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1813 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1814 					      QED_FILTER_FLUSH;
1815 
1816 		/* Send the ramrod */
1817 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1818 					     &filter, QED_SPQ_MODE_CB, NULL);
1819 		if (rc) {
1820 			DP_NOTICE(p_hwfn,
1821 				  "PF failed to configure VLAN for VF\n");
1822 			return rc;
1823 		}
1824 
1825 		/* Update the default-vlan & silent vlan stripping */
1826 		memset(&vport_update, 0, sizeof(vport_update));
1827 		vport_update.opaque_fid = p_vf->opaque_fid;
1828 		vport_update.vport_id = p_vf->vport_id;
1829 		vport_update.update_default_vlan_enable_flg = 1;
1830 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1831 		vport_update.update_default_vlan_flg = 1;
1832 		vport_update.default_vlan = filter.vlan;
1833 
1834 		vport_update.update_inner_vlan_removal_flg = 1;
1835 		removal = filter.vlan ? 1
1836 				      : p_vf->shadow_config.inner_vlan_removal;
1837 		vport_update.inner_vlan_removal_flg = removal;
1838 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1839 		rc = qed_sp_vport_update(p_hwfn,
1840 					 &vport_update,
1841 					 QED_SPQ_MODE_EBLOCK, NULL);
1842 		if (rc) {
1843 			DP_NOTICE(p_hwfn,
1844 				  "PF failed to configure VF vport for vlan\n");
1845 			return rc;
1846 		}
1847 
1848 		/* Update all the Rx queues */
1849 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1850 			struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1851 			struct qed_queue_cid *p_cid = NULL;
1852 
1853 			/* There can be at most 1 Rx queue on qzone. Find it */
1854 			p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1855 			if (!p_cid)
1856 				continue;
1857 
1858 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1859 							 (void **)&p_cid,
1860 							 1, 0, 1,
1861 							 QED_SPQ_MODE_EBLOCK,
1862 							 NULL);
1863 			if (rc) {
1864 				DP_NOTICE(p_hwfn,
1865 					  "Failed to send Rx update fo queue[0x%04x]\n",
1866 					  p_cid->rel.queue_id);
1867 				return rc;
1868 			}
1869 		}
1870 
1871 		if (filter.vlan)
1872 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1873 		else
1874 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1875 	}
1876 
1877 	/* If forced features are terminated, we need to configure the shadow
1878 	 * configuration back again.
1879 	 */
1880 	if (events)
1881 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1882 
1883 	return rc;
1884 }
1885 
1886 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1887 				       struct qed_ptt *p_ptt,
1888 				       struct qed_vf_info *vf)
1889 {
1890 	struct qed_sp_vport_start_params params = { 0 };
1891 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1892 	struct vfpf_vport_start_tlv *start;
1893 	u8 status = PFVF_STATUS_SUCCESS;
1894 	struct qed_vf_info *vf_info;
1895 	u64 *p_bitmap;
1896 	int sb_id;
1897 	int rc;
1898 
1899 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1900 	if (!vf_info) {
1901 		DP_NOTICE(p_hwfn->cdev,
1902 			  "Failed to get VF info, invalid vfid [%d]\n",
1903 			  vf->relative_vf_id);
1904 		return;
1905 	}
1906 
1907 	vf->state = VF_ENABLED;
1908 	start = &mbx->req_virt->start_vport;
1909 
1910 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1911 
1912 	/* Initialize Status block in CAU */
1913 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1914 		if (!start->sb_addr[sb_id]) {
1915 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1916 				   "VF[%d] did not fill the address of SB %d\n",
1917 				   vf->relative_vf_id, sb_id);
1918 			break;
1919 		}
1920 
1921 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1922 				    start->sb_addr[sb_id],
1923 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1924 	}
1925 
1926 	vf->mtu = start->mtu;
1927 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1928 
1929 	/* Take into consideration configuration forced by hypervisor;
1930 	 * If none is configured, use the supplied VF values [for old
1931 	 * vfs that would still be fine, since they passed '0' as padding].
1932 	 */
1933 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1934 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1935 		u8 vf_req = start->only_untagged;
1936 
1937 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1938 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1939 	}
1940 
1941 	params.tpa_mode = start->tpa_mode;
1942 	params.remove_inner_vlan = start->inner_vlan_removal;
1943 	params.tx_switching = true;
1944 
1945 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1946 	params.drop_ttl0 = false;
1947 	params.concrete_fid = vf->concrete_fid;
1948 	params.opaque_fid = vf->opaque_fid;
1949 	params.vport_id = vf->vport_id;
1950 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1951 	params.mtu = vf->mtu;
1952 
1953 	/* Non trusted VFs should enable control frame filtering */
1954 	params.check_mac = !vf->p_vf_info.is_trusted_configured;
1955 
1956 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1957 	if (rc) {
1958 		DP_ERR(p_hwfn,
1959 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1960 		status = PFVF_STATUS_FAILURE;
1961 	} else {
1962 		vf->vport_instance++;
1963 
1964 		/* Force configuration if needed on the newly opened vport */
1965 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1966 
1967 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1968 	}
1969 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1970 			     sizeof(struct pfvf_def_resp_tlv), status);
1971 }
1972 
1973 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1974 				      struct qed_ptt *p_ptt,
1975 				      struct qed_vf_info *vf)
1976 {
1977 	u8 status = PFVF_STATUS_SUCCESS;
1978 	int rc;
1979 
1980 	vf->vport_instance--;
1981 	vf->spoof_chk = false;
1982 
1983 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
1984 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
1985 		vf->b_malicious = true;
1986 		DP_NOTICE(p_hwfn,
1987 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n",
1988 			  vf->abs_vf_id);
1989 		status = PFVF_STATUS_MALICIOUS;
1990 		goto out;
1991 	}
1992 
1993 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
1994 	if (rc) {
1995 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
1996 		       rc);
1997 		status = PFVF_STATUS_FAILURE;
1998 	}
1999 
2000 	/* Forget the configuration on the vport */
2001 	vf->configured_features = 0;
2002 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2003 
2004 out:
2005 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2006 			     sizeof(struct pfvf_def_resp_tlv), status);
2007 }
2008 
2009 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2010 					  struct qed_ptt *p_ptt,
2011 					  struct qed_vf_info *vf,
2012 					  u8 status, bool b_legacy)
2013 {
2014 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2015 	struct pfvf_start_queue_resp_tlv *p_tlv;
2016 	struct vfpf_start_rxq_tlv *req;
2017 	u16 length;
2018 
2019 	mbx->offset = (u8 *)mbx->reply_virt;
2020 
2021 	/* Taking a bigger struct instead of adding a TLV to list was a
2022 	 * mistake, but one which we're now stuck with, as some older
2023 	 * clients assume the size of the previous response.
2024 	 */
2025 	if (!b_legacy)
2026 		length = sizeof(*p_tlv);
2027 	else
2028 		length = sizeof(struct pfvf_def_resp_tlv);
2029 
2030 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2031 			    length);
2032 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2033 		    sizeof(struct channel_list_end_tlv));
2034 
2035 	/* Update the TLV with the response */
2036 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2037 		req = &mbx->req_virt->start_rxq;
2038 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2039 				offsetof(struct mstorm_vf_zone,
2040 					 non_trigger.eth_rx_queue_producers) +
2041 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
2042 	}
2043 
2044 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2045 }
2046 
2047 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2048 			     struct qed_vf_info *p_vf, bool b_is_tx)
2049 {
2050 	struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2051 	struct vfpf_qid_tlv *p_qid_tlv;
2052 
2053 	/* Search for the qid if the VF published its going to provide it */
2054 	if (!(p_vf->acquire.vfdev_info.capabilities &
2055 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2056 		if (b_is_tx)
2057 			return QED_IOV_LEGACY_QID_TX;
2058 		else
2059 			return QED_IOV_LEGACY_QID_RX;
2060 	}
2061 
2062 	p_qid_tlv = (struct vfpf_qid_tlv *)
2063 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2064 					     CHANNEL_TLV_QID);
2065 	if (!p_qid_tlv) {
2066 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2067 			   "VF[%2x]: Failed to provide qid\n",
2068 			   p_vf->relative_vf_id);
2069 
2070 		return QED_IOV_QID_INVALID;
2071 	}
2072 
2073 	if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2074 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2075 			   "VF[%02x]: Provided qid out-of-bounds %02x\n",
2076 			   p_vf->relative_vf_id, p_qid_tlv->qid);
2077 		return QED_IOV_QID_INVALID;
2078 	}
2079 
2080 	return p_qid_tlv->qid;
2081 }
2082 
2083 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2084 				     struct qed_ptt *p_ptt,
2085 				     struct qed_vf_info *vf)
2086 {
2087 	struct qed_queue_start_common_params params;
2088 	struct qed_queue_cid_vf_params vf_params;
2089 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2090 	u8 status = PFVF_STATUS_NO_RESOURCE;
2091 	u8 qid_usage_idx, vf_legacy = 0;
2092 	struct vfpf_start_rxq_tlv *req;
2093 	struct qed_vf_queue *p_queue;
2094 	struct qed_queue_cid *p_cid;
2095 	struct qed_sb_info sb_dummy;
2096 	int rc;
2097 
2098 	req = &mbx->req_virt->start_rxq;
2099 
2100 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2101 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2102 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2103 		goto out;
2104 
2105 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2106 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2107 		goto out;
2108 
2109 	p_queue = &vf->vf_queues[req->rx_qid];
2110 	if (p_queue->cids[qid_usage_idx].p_cid)
2111 		goto out;
2112 
2113 	vf_legacy = qed_vf_calculate_legacy(vf);
2114 
2115 	/* Acquire a new queue-cid */
2116 	memset(&params, 0, sizeof(params));
2117 	params.queue_id = p_queue->fw_rx_qid;
2118 	params.vport_id = vf->vport_id;
2119 	params.stats_id = vf->abs_vf_id + 0x10;
2120 	/* Since IGU index is passed via sb_info, construct a dummy one */
2121 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2122 	sb_dummy.igu_sb_id = req->hw_sb;
2123 	params.p_sb = &sb_dummy;
2124 	params.sb_idx = req->sb_index;
2125 
2126 	memset(&vf_params, 0, sizeof(vf_params));
2127 	vf_params.vfid = vf->relative_vf_id;
2128 	vf_params.vf_qid = (u8)req->rx_qid;
2129 	vf_params.vf_legacy = vf_legacy;
2130 	vf_params.qid_usage_idx = qid_usage_idx;
2131 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2132 				     &params, true, &vf_params);
2133 	if (!p_cid)
2134 		goto out;
2135 
2136 	/* Legacy VFs have their Producers in a different location, which they
2137 	 * calculate on their own and clean the producer prior to this.
2138 	 */
2139 	if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2140 		REG_WR(p_hwfn,
2141 		       GTT_BAR0_MAP_REG_MSDM_RAM +
2142 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2143 		       0);
2144 
2145 	rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2146 				      req->bd_max_bytes,
2147 				      req->rxq_addr,
2148 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2149 	if (rc) {
2150 		status = PFVF_STATUS_FAILURE;
2151 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2152 	} else {
2153 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2154 		p_queue->cids[qid_usage_idx].b_is_tx = false;
2155 		status = PFVF_STATUS_SUCCESS;
2156 		vf->num_active_rxqs++;
2157 	}
2158 
2159 out:
2160 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2161 				      !!(vf_legacy &
2162 					 QED_QCID_LEGACY_VF_RX_PROD));
2163 }
2164 
2165 static void
2166 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2167 			       struct qed_tunnel_info *p_tun,
2168 			       u16 tunn_feature_mask)
2169 {
2170 	p_resp->tunn_feature_mask = tunn_feature_mask;
2171 	p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2172 	p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2173 	p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2174 	p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2175 	p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2176 	p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2177 	p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2178 	p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2179 	p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2180 	p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2181 	p_resp->geneve_udp_port = p_tun->geneve_port.port;
2182 	p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2183 }
2184 
2185 static void
2186 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2187 			      struct qed_tunn_update_type *p_tun,
2188 			      enum qed_tunn_mode mask, u8 tun_cls)
2189 {
2190 	if (p_req->tun_mode_update_mask & BIT(mask)) {
2191 		p_tun->b_update_mode = true;
2192 
2193 		if (p_req->tunn_mode & BIT(mask))
2194 			p_tun->b_mode_enabled = true;
2195 	}
2196 
2197 	p_tun->tun_cls = tun_cls;
2198 }
2199 
2200 static void
2201 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2202 			    struct qed_tunn_update_type *p_tun,
2203 			    struct qed_tunn_update_udp_port *p_port,
2204 			    enum qed_tunn_mode mask,
2205 			    u8 tun_cls, u8 update_port, u16 port)
2206 {
2207 	if (update_port) {
2208 		p_port->b_update_port = true;
2209 		p_port->port = port;
2210 	}
2211 
2212 	__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2213 }
2214 
2215 static bool
2216 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2217 {
2218 	bool b_update_requested = false;
2219 
2220 	if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2221 	    p_req->update_geneve_port || p_req->update_vxlan_port)
2222 		b_update_requested = true;
2223 
2224 	return b_update_requested;
2225 }
2226 
2227 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2228 {
2229 	if (tun->b_update_mode && !tun->b_mode_enabled) {
2230 		tun->b_update_mode = false;
2231 		*rc = -EINVAL;
2232 	}
2233 }
2234 
2235 static int
2236 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2237 				   u16 *tun_features, bool *update,
2238 				   struct qed_tunnel_info *tun_src)
2239 {
2240 	struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2241 	struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2242 	u16 bultn_vxlan_port, bultn_geneve_port;
2243 	void *cookie = p_hwfn->cdev->ops_cookie;
2244 	int i, rc = 0;
2245 
2246 	*tun_features = p_hwfn->cdev->tunn_feature_mask;
2247 	bultn_vxlan_port = tun->vxlan_port.port;
2248 	bultn_geneve_port = tun->geneve_port.port;
2249 	qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2250 	qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2251 	qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2252 	qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2253 	qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2254 
2255 	if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2256 	    (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2257 	     tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2258 	     tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2259 	     tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2260 	     tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2261 		tun_src->b_update_rx_cls = false;
2262 		tun_src->b_update_tx_cls = false;
2263 		rc = -EINVAL;
2264 	}
2265 
2266 	if (tun_src->vxlan_port.b_update_port) {
2267 		if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2268 			tun_src->vxlan_port.b_update_port = false;
2269 		} else {
2270 			*update = true;
2271 			bultn_vxlan_port = tun_src->vxlan_port.port;
2272 		}
2273 	}
2274 
2275 	if (tun_src->geneve_port.b_update_port) {
2276 		if (tun_src->geneve_port.port == tun->geneve_port.port) {
2277 			tun_src->geneve_port.b_update_port = false;
2278 		} else {
2279 			*update = true;
2280 			bultn_geneve_port = tun_src->geneve_port.port;
2281 		}
2282 	}
2283 
2284 	qed_for_each_vf(p_hwfn, i) {
2285 		qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2286 					       bultn_geneve_port);
2287 	}
2288 
2289 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2290 	ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2291 
2292 	return rc;
2293 }
2294 
2295 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2296 					     struct qed_ptt *p_ptt,
2297 					     struct qed_vf_info *p_vf)
2298 {
2299 	struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2300 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2301 	struct pfvf_update_tunn_param_tlv *p_resp;
2302 	struct vfpf_update_tunn_param_tlv *p_req;
2303 	u8 status = PFVF_STATUS_SUCCESS;
2304 	bool b_update_required = false;
2305 	struct qed_tunnel_info tunn;
2306 	u16 tunn_feature_mask = 0;
2307 	int i, rc = 0;
2308 
2309 	mbx->offset = (u8 *)mbx->reply_virt;
2310 
2311 	memset(&tunn, 0, sizeof(tunn));
2312 	p_req = &mbx->req_virt->tunn_param_update;
2313 
2314 	if (!qed_iov_pf_validate_tunn_param(p_req)) {
2315 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2316 			   "No tunnel update requested by VF\n");
2317 		status = PFVF_STATUS_FAILURE;
2318 		goto send_resp;
2319 	}
2320 
2321 	tunn.b_update_rx_cls = p_req->update_tun_cls;
2322 	tunn.b_update_tx_cls = p_req->update_tun_cls;
2323 
2324 	qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2325 				    QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2326 				    p_req->update_vxlan_port,
2327 				    p_req->vxlan_port);
2328 	qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2329 				    QED_MODE_L2GENEVE_TUNN,
2330 				    p_req->l2geneve_clss,
2331 				    p_req->update_geneve_port,
2332 				    p_req->geneve_port);
2333 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2334 				      QED_MODE_IPGENEVE_TUNN,
2335 				      p_req->ipgeneve_clss);
2336 	__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2337 				      QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2338 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2339 				      QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2340 
2341 	/* If PF modifies VF's req then it should
2342 	 * still return an error in case of partial configuration
2343 	 * or modified configuration as opposed to requested one.
2344 	 */
2345 	rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2346 						&b_update_required, &tunn);
2347 
2348 	if (rc)
2349 		status = PFVF_STATUS_FAILURE;
2350 
2351 	/* If QED client is willing to update anything ? */
2352 	if (b_update_required) {
2353 		u16 geneve_port;
2354 
2355 		rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2356 					       QED_SPQ_MODE_EBLOCK, NULL);
2357 		if (rc)
2358 			status = PFVF_STATUS_FAILURE;
2359 
2360 		geneve_port = p_tun->geneve_port.port;
2361 		qed_for_each_vf(p_hwfn, i) {
2362 			qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2363 						       p_tun->vxlan_port.port,
2364 						       geneve_port);
2365 		}
2366 	}
2367 
2368 send_resp:
2369 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2370 			     CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2371 
2372 	qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2373 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2374 		    sizeof(struct channel_list_end_tlv));
2375 
2376 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2377 }
2378 
2379 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2380 					  struct qed_ptt *p_ptt,
2381 					  struct qed_vf_info *p_vf,
2382 					  u32 cid, u8 status)
2383 {
2384 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2385 	struct pfvf_start_queue_resp_tlv *p_tlv;
2386 	bool b_legacy = false;
2387 	u16 length;
2388 
2389 	mbx->offset = (u8 *)mbx->reply_virt;
2390 
2391 	/* Taking a bigger struct instead of adding a TLV to list was a
2392 	 * mistake, but one which we're now stuck with, as some older
2393 	 * clients assume the size of the previous response.
2394 	 */
2395 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2396 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2397 		b_legacy = true;
2398 
2399 	if (!b_legacy)
2400 		length = sizeof(*p_tlv);
2401 	else
2402 		length = sizeof(struct pfvf_def_resp_tlv);
2403 
2404 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2405 			    length);
2406 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2407 		    sizeof(struct channel_list_end_tlv));
2408 
2409 	/* Update the TLV with the response */
2410 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2411 		p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2412 
2413 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2414 }
2415 
2416 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2417 				     struct qed_ptt *p_ptt,
2418 				     struct qed_vf_info *vf)
2419 {
2420 	struct qed_queue_start_common_params params;
2421 	struct qed_queue_cid_vf_params vf_params;
2422 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2423 	u8 status = PFVF_STATUS_NO_RESOURCE;
2424 	struct vfpf_start_txq_tlv *req;
2425 	struct qed_vf_queue *p_queue;
2426 	struct qed_queue_cid *p_cid;
2427 	struct qed_sb_info sb_dummy;
2428 	u8 qid_usage_idx, vf_legacy;
2429 	u32 cid = 0;
2430 	int rc;
2431 	u16 pq;
2432 
2433 	memset(&params, 0, sizeof(params));
2434 	req = &mbx->req_virt->start_txq;
2435 
2436 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2437 				  QED_IOV_VALIDATE_Q_NA) ||
2438 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2439 		goto out;
2440 
2441 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2442 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2443 		goto out;
2444 
2445 	p_queue = &vf->vf_queues[req->tx_qid];
2446 	if (p_queue->cids[qid_usage_idx].p_cid)
2447 		goto out;
2448 
2449 	vf_legacy = qed_vf_calculate_legacy(vf);
2450 
2451 	/* Acquire a new queue-cid */
2452 	params.queue_id = p_queue->fw_tx_qid;
2453 	params.vport_id = vf->vport_id;
2454 	params.stats_id = vf->abs_vf_id + 0x10;
2455 
2456 	/* Since IGU index is passed via sb_info, construct a dummy one */
2457 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2458 	sb_dummy.igu_sb_id = req->hw_sb;
2459 	params.p_sb = &sb_dummy;
2460 	params.sb_idx = req->sb_index;
2461 
2462 	memset(&vf_params, 0, sizeof(vf_params));
2463 	vf_params.vfid = vf->relative_vf_id;
2464 	vf_params.vf_qid = (u8)req->tx_qid;
2465 	vf_params.vf_legacy = vf_legacy;
2466 	vf_params.qid_usage_idx = qid_usage_idx;
2467 
2468 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2469 				     &params, false, &vf_params);
2470 	if (!p_cid)
2471 		goto out;
2472 
2473 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2474 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2475 				      req->pbl_addr, req->pbl_size, pq);
2476 	if (rc) {
2477 		status = PFVF_STATUS_FAILURE;
2478 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2479 	} else {
2480 		status = PFVF_STATUS_SUCCESS;
2481 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2482 		p_queue->cids[qid_usage_idx].b_is_tx = true;
2483 		cid = p_cid->cid;
2484 	}
2485 
2486 out:
2487 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2488 }
2489 
2490 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2491 				struct qed_vf_info *vf,
2492 				u16 rxq_id,
2493 				u8 qid_usage_idx, bool cqe_completion)
2494 {
2495 	struct qed_vf_queue *p_queue;
2496 	int rc = 0;
2497 
2498 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2499 		DP_VERBOSE(p_hwfn,
2500 			   QED_MSG_IOV,
2501 			   "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2502 			   vf->relative_vf_id, rxq_id, qid_usage_idx);
2503 		return -EINVAL;
2504 	}
2505 
2506 	p_queue = &vf->vf_queues[rxq_id];
2507 
2508 	/* We've validated the index and the existence of the active RXQ -
2509 	 * now we need to make sure that it's using the correct qid.
2510 	 */
2511 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2512 	    p_queue->cids[qid_usage_idx].b_is_tx) {
2513 		struct qed_queue_cid *p_cid;
2514 
2515 		p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2516 		DP_VERBOSE(p_hwfn,
2517 			   QED_MSG_IOV,
2518 			   "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2519 			   vf->relative_vf_id,
2520 			   rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2521 		return -EINVAL;
2522 	}
2523 
2524 	/* Now that we know we have a valid Rx-queue - close it */
2525 	rc = qed_eth_rx_queue_stop(p_hwfn,
2526 				   p_queue->cids[qid_usage_idx].p_cid,
2527 				   false, cqe_completion);
2528 	if (rc)
2529 		return rc;
2530 
2531 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2532 	vf->num_active_rxqs--;
2533 
2534 	return 0;
2535 }
2536 
2537 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2538 				struct qed_vf_info *vf,
2539 				u16 txq_id, u8 qid_usage_idx)
2540 {
2541 	struct qed_vf_queue *p_queue;
2542 	int rc = 0;
2543 
2544 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2545 		return -EINVAL;
2546 
2547 	p_queue = &vf->vf_queues[txq_id];
2548 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2549 	    !p_queue->cids[qid_usage_idx].b_is_tx)
2550 		return -EINVAL;
2551 
2552 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2553 	if (rc)
2554 		return rc;
2555 
2556 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2557 	return 0;
2558 }
2559 
2560 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2561 				     struct qed_ptt *p_ptt,
2562 				     struct qed_vf_info *vf)
2563 {
2564 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2565 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2566 	u8 status = PFVF_STATUS_FAILURE;
2567 	struct vfpf_stop_rxqs_tlv *req;
2568 	u8 qid_usage_idx;
2569 	int rc;
2570 
2571 	/* There has never been an official driver that used this interface
2572 	 * for stopping multiple queues, and it is now considered deprecated.
2573 	 * Validate this isn't used here.
2574 	 */
2575 	req = &mbx->req_virt->stop_rxqs;
2576 	if (req->num_rxqs != 1) {
2577 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2578 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2579 			   vf->relative_vf_id);
2580 		status = PFVF_STATUS_NOT_SUPPORTED;
2581 		goto out;
2582 	}
2583 
2584 	/* Find which qid-index is associated with the queue */
2585 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2586 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2587 		goto out;
2588 
2589 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2590 				  qid_usage_idx, req->cqe_completion);
2591 	if (!rc)
2592 		status = PFVF_STATUS_SUCCESS;
2593 out:
2594 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2595 			     length, status);
2596 }
2597 
2598 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2599 				     struct qed_ptt *p_ptt,
2600 				     struct qed_vf_info *vf)
2601 {
2602 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2603 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2604 	u8 status = PFVF_STATUS_FAILURE;
2605 	struct vfpf_stop_txqs_tlv *req;
2606 	u8 qid_usage_idx;
2607 	int rc;
2608 
2609 	/* There has never been an official driver that used this interface
2610 	 * for stopping multiple queues, and it is now considered deprecated.
2611 	 * Validate this isn't used here.
2612 	 */
2613 	req = &mbx->req_virt->stop_txqs;
2614 	if (req->num_txqs != 1) {
2615 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2616 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2617 			   vf->relative_vf_id);
2618 		status = PFVF_STATUS_NOT_SUPPORTED;
2619 		goto out;
2620 	}
2621 
2622 	/* Find which qid-index is associated with the queue */
2623 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2624 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2625 		goto out;
2626 
2627 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2628 	if (!rc)
2629 		status = PFVF_STATUS_SUCCESS;
2630 
2631 out:
2632 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2633 			     length, status);
2634 }
2635 
2636 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2637 				       struct qed_ptt *p_ptt,
2638 				       struct qed_vf_info *vf)
2639 {
2640 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2641 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2642 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2643 	struct vfpf_update_rxq_tlv *req;
2644 	u8 status = PFVF_STATUS_FAILURE;
2645 	u8 complete_event_flg;
2646 	u8 complete_cqe_flg;
2647 	u8 qid_usage_idx;
2648 	int rc;
2649 	u8 i;
2650 
2651 	req = &mbx->req_virt->update_rxq;
2652 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2653 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2654 
2655 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2656 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2657 		goto out;
2658 
2659 	/* There shouldn't exist a VF that uses queue-qids yet uses this
2660 	 * API with multiple Rx queues. Validate this.
2661 	 */
2662 	if ((vf->acquire.vfdev_info.capabilities &
2663 	     VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2664 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2665 			   "VF[%d] supports QIDs but sends multiple queues\n",
2666 			   vf->relative_vf_id);
2667 		goto out;
2668 	}
2669 
2670 	/* Validate inputs - for the legacy case this is still true since
2671 	 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2672 	 */
2673 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2674 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2675 					  QED_IOV_VALIDATE_Q_NA) ||
2676 		    !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2677 		    vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2678 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2679 				   "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2680 				   vf->relative_vf_id, req->rx_qid,
2681 				   req->num_rxqs);
2682 			goto out;
2683 		}
2684 	}
2685 
2686 	/* Prepare the handlers */
2687 	for (i = 0; i < req->num_rxqs; i++) {
2688 		u16 qid = req->rx_qid + i;
2689 
2690 		handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2691 	}
2692 
2693 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2694 					 req->num_rxqs,
2695 					 complete_cqe_flg,
2696 					 complete_event_flg,
2697 					 QED_SPQ_MODE_EBLOCK, NULL);
2698 	if (rc)
2699 		goto out;
2700 
2701 	status = PFVF_STATUS_SUCCESS;
2702 out:
2703 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2704 			     length, status);
2705 }
2706 
2707 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2708 			       void *p_tlvs_list, u16 req_type)
2709 {
2710 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2711 	int len = 0;
2712 
2713 	do {
2714 		if (!p_tlv->length) {
2715 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2716 			return NULL;
2717 		}
2718 
2719 		if (p_tlv->type == req_type) {
2720 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2721 				   "Extended tlv type %d, length %d found\n",
2722 				   p_tlv->type, p_tlv->length);
2723 			return p_tlv;
2724 		}
2725 
2726 		len += p_tlv->length;
2727 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2728 
2729 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2730 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2731 			return NULL;
2732 		}
2733 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2734 
2735 	return NULL;
2736 }
2737 
2738 static void
2739 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2740 			    struct qed_sp_vport_update_params *p_data,
2741 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2742 {
2743 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2744 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2745 
2746 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2747 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2748 	if (!p_act_tlv)
2749 		return;
2750 
2751 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2752 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2753 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2754 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2755 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2756 }
2757 
2758 static void
2759 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2760 			     struct qed_sp_vport_update_params *p_data,
2761 			     struct qed_vf_info *p_vf,
2762 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2763 {
2764 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2765 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2766 
2767 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2768 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2769 	if (!p_vlan_tlv)
2770 		return;
2771 
2772 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2773 
2774 	/* Ignore the VF request if we're forcing a vlan */
2775 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2776 		p_data->update_inner_vlan_removal_flg = 1;
2777 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2778 	}
2779 
2780 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2781 }
2782 
2783 static void
2784 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2785 			    struct qed_sp_vport_update_params *p_data,
2786 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2787 {
2788 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2789 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2790 
2791 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2792 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2793 						   tlv);
2794 	if (!p_tx_switch_tlv)
2795 		return;
2796 
2797 	p_data->update_tx_switching_flg = 1;
2798 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2799 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2800 }
2801 
2802 static void
2803 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2804 				  struct qed_sp_vport_update_params *p_data,
2805 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2806 {
2807 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2808 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2809 
2810 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2811 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2812 	if (!p_mcast_tlv)
2813 		return;
2814 
2815 	p_data->update_approx_mcast_flg = 1;
2816 	memcpy(p_data->bins, p_mcast_tlv->bins,
2817 	       sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2818 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2819 }
2820 
2821 static void
2822 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2823 			      struct qed_sp_vport_update_params *p_data,
2824 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2825 {
2826 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2827 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2828 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2829 
2830 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2831 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2832 	if (!p_accept_tlv)
2833 		return;
2834 
2835 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2836 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2837 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2838 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2839 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2840 }
2841 
2842 static void
2843 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2844 				  struct qed_sp_vport_update_params *p_data,
2845 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2846 {
2847 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2848 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2849 
2850 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2851 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2852 						     tlv);
2853 	if (!p_accept_any_vlan)
2854 		return;
2855 
2856 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2857 	p_data->update_accept_any_vlan_flg =
2858 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2859 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2860 }
2861 
2862 static void
2863 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2864 			    struct qed_vf_info *vf,
2865 			    struct qed_sp_vport_update_params *p_data,
2866 			    struct qed_rss_params *p_rss,
2867 			    struct qed_iov_vf_mbx *p_mbx,
2868 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2869 {
2870 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2871 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2872 	bool b_reject = false;
2873 	u16 table_size;
2874 	u16 i, q_idx;
2875 
2876 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2877 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2878 	if (!p_rss_tlv) {
2879 		p_data->rss_params = NULL;
2880 		return;
2881 	}
2882 
2883 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2884 
2885 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2886 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2887 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2888 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2889 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2890 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2891 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2892 				   VFPF_UPDATE_RSS_KEY_FLAG);
2893 
2894 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2895 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2896 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2897 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2898 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2899 
2900 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2901 			   (1 << p_rss_tlv->rss_table_size_log));
2902 
2903 	for (i = 0; i < table_size; i++) {
2904 		struct qed_queue_cid *p_cid;
2905 
2906 		q_idx = p_rss_tlv->rss_ind_table[i];
2907 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2908 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2909 			DP_VERBOSE(p_hwfn,
2910 				   QED_MSG_IOV,
2911 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2912 				   vf->relative_vf_id, q_idx);
2913 			b_reject = true;
2914 			goto out;
2915 		}
2916 
2917 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2918 		p_rss->rss_ind_table[i] = p_cid;
2919 	}
2920 
2921 	p_data->rss_params = p_rss;
2922 out:
2923 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2924 	if (!b_reject)
2925 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2926 }
2927 
2928 static void
2929 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2930 				struct qed_vf_info *vf,
2931 				struct qed_sp_vport_update_params *p_data,
2932 				struct qed_sge_tpa_params *p_sge_tpa,
2933 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2934 {
2935 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2936 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2937 
2938 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2939 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2940 
2941 	if (!p_sge_tpa_tlv) {
2942 		p_data->sge_tpa_params = NULL;
2943 		return;
2944 	}
2945 
2946 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2947 
2948 	p_sge_tpa->update_tpa_en_flg =
2949 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2950 	p_sge_tpa->update_tpa_param_flg =
2951 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2952 		VFPF_UPDATE_TPA_PARAM_FLAG);
2953 
2954 	p_sge_tpa->tpa_ipv4_en_flg =
2955 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2956 	p_sge_tpa->tpa_ipv6_en_flg =
2957 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2958 	p_sge_tpa->tpa_pkt_split_flg =
2959 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2960 	p_sge_tpa->tpa_hdr_data_split_flg =
2961 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2962 	p_sge_tpa->tpa_gro_consistent_flg =
2963 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2964 
2965 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2966 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2967 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2968 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2969 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2970 
2971 	p_data->sge_tpa_params = p_sge_tpa;
2972 
2973 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2974 }
2975 
2976 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2977 				    u8 vfid,
2978 				    struct qed_sp_vport_update_params *params,
2979 				    u16 *tlvs)
2980 {
2981 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2982 	struct qed_filter_accept_flags *flags = &params->accept_flags;
2983 	struct qed_public_vf_info *vf_info;
2984 
2985 	/* Untrusted VFs can't even be trusted to know that fact.
2986 	 * Simply indicate everything is configured fine, and trace
2987 	 * configuration 'behind their back'.
2988 	 */
2989 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
2990 		return 0;
2991 
2992 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
2993 
2994 	if (flags->update_rx_mode_config) {
2995 		vf_info->rx_accept_mode = flags->rx_accept_filter;
2996 		if (!vf_info->is_trusted_configured)
2997 			flags->rx_accept_filter &= ~mask;
2998 	}
2999 
3000 	if (flags->update_tx_mode_config) {
3001 		vf_info->tx_accept_mode = flags->tx_accept_filter;
3002 		if (!vf_info->is_trusted_configured)
3003 			flags->tx_accept_filter &= ~mask;
3004 	}
3005 
3006 	return 0;
3007 }
3008 
3009 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3010 					struct qed_ptt *p_ptt,
3011 					struct qed_vf_info *vf)
3012 {
3013 	struct qed_rss_params *p_rss_params = NULL;
3014 	struct qed_sp_vport_update_params params;
3015 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3016 	struct qed_sge_tpa_params sge_tpa_params;
3017 	u16 tlvs_mask = 0, tlvs_accepted = 0;
3018 	u8 status = PFVF_STATUS_SUCCESS;
3019 	u16 length;
3020 	int rc;
3021 
3022 	/* Valiate PF can send such a request */
3023 	if (!vf->vport_instance) {
3024 		DP_VERBOSE(p_hwfn,
3025 			   QED_MSG_IOV,
3026 			   "No VPORT instance available for VF[%d], failing vport update\n",
3027 			   vf->abs_vf_id);
3028 		status = PFVF_STATUS_FAILURE;
3029 		goto out;
3030 	}
3031 	p_rss_params = vzalloc(sizeof(*p_rss_params));
3032 	if (p_rss_params == NULL) {
3033 		status = PFVF_STATUS_FAILURE;
3034 		goto out;
3035 	}
3036 
3037 	memset(&params, 0, sizeof(params));
3038 	params.opaque_fid = vf->opaque_fid;
3039 	params.vport_id = vf->vport_id;
3040 	params.rss_params = NULL;
3041 
3042 	/* Search for extended tlvs list and update values
3043 	 * from VF in struct qed_sp_vport_update_params.
3044 	 */
3045 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3046 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3047 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3048 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3049 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3050 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3051 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3052 					&sge_tpa_params, mbx, &tlvs_mask);
3053 
3054 	tlvs_accepted = tlvs_mask;
3055 
3056 	/* Some of the extended TLVs need to be validated first; In that case,
3057 	 * they can update the mask without updating the accepted [so that
3058 	 * PF could communicate to VF it has rejected request].
3059 	 */
3060 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3061 				    mbx, &tlvs_mask, &tlvs_accepted);
3062 
3063 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3064 				     &params, &tlvs_accepted)) {
3065 		tlvs_accepted = 0;
3066 		status = PFVF_STATUS_NOT_SUPPORTED;
3067 		goto out;
3068 	}
3069 
3070 	if (!tlvs_accepted) {
3071 		if (tlvs_mask)
3072 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3073 				   "Upper-layer prevents VF vport configuration\n");
3074 		else
3075 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3076 				   "No feature tlvs found for vport update\n");
3077 		status = PFVF_STATUS_NOT_SUPPORTED;
3078 		goto out;
3079 	}
3080 
3081 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3082 
3083 	if (rc)
3084 		status = PFVF_STATUS_FAILURE;
3085 
3086 out:
3087 	vfree(p_rss_params);
3088 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3089 						  tlvs_mask, tlvs_accepted);
3090 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3091 }
3092 
3093 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3094 					 struct qed_vf_info *p_vf,
3095 					 struct qed_filter_ucast *p_params)
3096 {
3097 	int i;
3098 
3099 	/* First remove entries and then add new ones */
3100 	if (p_params->opcode == QED_FILTER_REMOVE) {
3101 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3102 			if (p_vf->shadow_config.vlans[i].used &&
3103 			    p_vf->shadow_config.vlans[i].vid ==
3104 			    p_params->vlan) {
3105 				p_vf->shadow_config.vlans[i].used = false;
3106 				break;
3107 			}
3108 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3109 			DP_VERBOSE(p_hwfn,
3110 				   QED_MSG_IOV,
3111 				   "VF [%d] - Tries to remove a non-existing vlan\n",
3112 				   p_vf->relative_vf_id);
3113 			return -EINVAL;
3114 		}
3115 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3116 		   p_params->opcode == QED_FILTER_FLUSH) {
3117 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3118 			p_vf->shadow_config.vlans[i].used = false;
3119 	}
3120 
3121 	/* In forced mode, we're willing to remove entries - but we don't add
3122 	 * new ones.
3123 	 */
3124 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3125 		return 0;
3126 
3127 	if (p_params->opcode == QED_FILTER_ADD ||
3128 	    p_params->opcode == QED_FILTER_REPLACE) {
3129 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3130 			if (p_vf->shadow_config.vlans[i].used)
3131 				continue;
3132 
3133 			p_vf->shadow_config.vlans[i].used = true;
3134 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3135 			break;
3136 		}
3137 
3138 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3139 			DP_VERBOSE(p_hwfn,
3140 				   QED_MSG_IOV,
3141 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
3142 				   p_vf->relative_vf_id,
3143 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3144 			return -EINVAL;
3145 		}
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3152 					struct qed_vf_info *p_vf,
3153 					struct qed_filter_ucast *p_params)
3154 {
3155 	int i;
3156 
3157 	/* If we're in forced-mode, we don't allow any change */
3158 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3159 		return 0;
3160 
3161 	/* Don't keep track of shadow copy since we don't intend to restore. */
3162 	if (p_vf->p_vf_info.is_trusted_configured)
3163 		return 0;
3164 
3165 	/* First remove entries and then add new ones */
3166 	if (p_params->opcode == QED_FILTER_REMOVE) {
3167 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3168 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
3169 					     p_params->mac)) {
3170 				eth_zero_addr(p_vf->shadow_config.macs[i]);
3171 				break;
3172 			}
3173 		}
3174 
3175 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3176 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3177 				   "MAC isn't configured\n");
3178 			return -EINVAL;
3179 		}
3180 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3181 		   p_params->opcode == QED_FILTER_FLUSH) {
3182 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3183 			eth_zero_addr(p_vf->shadow_config.macs[i]);
3184 	}
3185 
3186 	/* List the new MAC address */
3187 	if (p_params->opcode != QED_FILTER_ADD &&
3188 	    p_params->opcode != QED_FILTER_REPLACE)
3189 		return 0;
3190 
3191 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3192 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3193 			ether_addr_copy(p_vf->shadow_config.macs[i],
3194 					p_params->mac);
3195 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3196 				   "Added MAC at %d entry in shadow\n", i);
3197 			break;
3198 		}
3199 	}
3200 
3201 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3202 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3203 		return -EINVAL;
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 static int
3210 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3211 				 struct qed_vf_info *p_vf,
3212 				 struct qed_filter_ucast *p_params)
3213 {
3214 	int rc = 0;
3215 
3216 	if (p_params->type == QED_FILTER_MAC) {
3217 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3218 		if (rc)
3219 			return rc;
3220 	}
3221 
3222 	if (p_params->type == QED_FILTER_VLAN)
3223 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3224 
3225 	return rc;
3226 }
3227 
3228 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3229 			     int vfid, struct qed_filter_ucast *params)
3230 {
3231 	struct qed_public_vf_info *vf;
3232 
3233 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3234 	if (!vf)
3235 		return -EINVAL;
3236 
3237 	/* No real decision to make; Store the configured MAC */
3238 	if (params->type == QED_FILTER_MAC ||
3239 	    params->type == QED_FILTER_MAC_VLAN) {
3240 		ether_addr_copy(vf->mac, params->mac);
3241 
3242 		if (vf->is_trusted_configured) {
3243 			qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
3244 
3245 			/* Update and post bulleitin again */
3246 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3247 		}
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3254 					struct qed_ptt *p_ptt,
3255 					struct qed_vf_info *vf)
3256 {
3257 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3258 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3259 	struct vfpf_ucast_filter_tlv *req;
3260 	u8 status = PFVF_STATUS_SUCCESS;
3261 	struct qed_filter_ucast params;
3262 	int rc;
3263 
3264 	/* Prepare the unicast filter params */
3265 	memset(&params, 0, sizeof(struct qed_filter_ucast));
3266 	req = &mbx->req_virt->ucast_filter;
3267 	params.opcode = (enum qed_filter_opcode)req->opcode;
3268 	params.type = (enum qed_filter_ucast_type)req->type;
3269 
3270 	params.is_rx_filter = 1;
3271 	params.is_tx_filter = 1;
3272 	params.vport_to_remove_from = vf->vport_id;
3273 	params.vport_to_add_to = vf->vport_id;
3274 	memcpy(params.mac, req->mac, ETH_ALEN);
3275 	params.vlan = req->vlan;
3276 
3277 	DP_VERBOSE(p_hwfn,
3278 		   QED_MSG_IOV,
3279 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %pM, vlan 0x%04x\n",
3280 		   vf->abs_vf_id, params.opcode, params.type,
3281 		   params.is_rx_filter ? "RX" : "",
3282 		   params.is_tx_filter ? "TX" : "",
3283 		   params.vport_to_add_to,
3284 		   params.mac, params.vlan);
3285 
3286 	if (!vf->vport_instance) {
3287 		DP_VERBOSE(p_hwfn,
3288 			   QED_MSG_IOV,
3289 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3290 			   vf->abs_vf_id);
3291 		status = PFVF_STATUS_FAILURE;
3292 		goto out;
3293 	}
3294 
3295 	/* Update shadow copy of the VF configuration */
3296 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3297 		status = PFVF_STATUS_FAILURE;
3298 		goto out;
3299 	}
3300 
3301 	/* Determine if the unicast filtering is acceptible by PF */
3302 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3303 	    (params.type == QED_FILTER_VLAN ||
3304 	     params.type == QED_FILTER_MAC_VLAN)) {
3305 		/* Once VLAN is forced or PVID is set, do not allow
3306 		 * to add/replace any further VLANs.
3307 		 */
3308 		if (params.opcode == QED_FILTER_ADD ||
3309 		    params.opcode == QED_FILTER_REPLACE)
3310 			status = PFVF_STATUS_FORCED;
3311 		goto out;
3312 	}
3313 
3314 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3315 	    (params.type == QED_FILTER_MAC ||
3316 	     params.type == QED_FILTER_MAC_VLAN)) {
3317 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3318 		    (params.opcode != QED_FILTER_ADD &&
3319 		     params.opcode != QED_FILTER_REPLACE))
3320 			status = PFVF_STATUS_FORCED;
3321 		goto out;
3322 	}
3323 
3324 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3325 	if (rc) {
3326 		status = PFVF_STATUS_FAILURE;
3327 		goto out;
3328 	}
3329 
3330 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3331 				     QED_SPQ_MODE_CB, NULL);
3332 	if (rc)
3333 		status = PFVF_STATUS_FAILURE;
3334 
3335 out:
3336 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3337 			     sizeof(struct pfvf_def_resp_tlv), status);
3338 }
3339 
3340 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3341 				       struct qed_ptt *p_ptt,
3342 				       struct qed_vf_info *vf)
3343 {
3344 	int i;
3345 
3346 	/* Reset the SBs */
3347 	for (i = 0; i < vf->num_sbs; i++)
3348 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3349 						vf->igu_sbs[i],
3350 						vf->opaque_fid, false);
3351 
3352 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3353 			     sizeof(struct pfvf_def_resp_tlv),
3354 			     PFVF_STATUS_SUCCESS);
3355 }
3356 
3357 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3358 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3359 {
3360 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3361 	u8 status = PFVF_STATUS_SUCCESS;
3362 
3363 	/* Disable Interrupts for VF */
3364 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3365 
3366 	/* Reset Permission table */
3367 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3368 
3369 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3370 			     length, status);
3371 }
3372 
3373 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3374 				   struct qed_ptt *p_ptt,
3375 				   struct qed_vf_info *p_vf)
3376 {
3377 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3378 	u8 status = PFVF_STATUS_SUCCESS;
3379 	int rc = 0;
3380 
3381 	qed_iov_vf_cleanup(p_hwfn, p_vf);
3382 
3383 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3384 		/* Stopping the VF */
3385 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3386 				    p_vf->opaque_fid);
3387 
3388 		if (rc) {
3389 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3390 			       rc);
3391 			status = PFVF_STATUS_FAILURE;
3392 		}
3393 
3394 		p_vf->state = VF_STOPPED;
3395 	}
3396 
3397 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3398 			     length, status);
3399 }
3400 
3401 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3402 				       struct qed_ptt *p_ptt,
3403 				       struct qed_vf_info *p_vf)
3404 {
3405 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3406 	struct pfvf_read_coal_resp_tlv *p_resp;
3407 	struct vfpf_read_coal_req_tlv *req;
3408 	u8 status = PFVF_STATUS_FAILURE;
3409 	struct qed_vf_queue *p_queue;
3410 	struct qed_queue_cid *p_cid;
3411 	u16 coal = 0, qid, i;
3412 	bool b_is_rx;
3413 	int rc = 0;
3414 
3415 	mbx->offset = (u8 *)mbx->reply_virt;
3416 	req = &mbx->req_virt->read_coal_req;
3417 
3418 	qid = req->qid;
3419 	b_is_rx = req->is_rx ? true : false;
3420 
3421 	if (b_is_rx) {
3422 		if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3423 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3424 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3425 				   "VF[%d]: Invalid Rx queue_id = %d\n",
3426 				   p_vf->abs_vf_id, qid);
3427 			goto send_resp;
3428 		}
3429 
3430 		p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3431 		rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3432 		if (rc)
3433 			goto send_resp;
3434 	} else {
3435 		if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3436 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3437 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3438 				   "VF[%d]: Invalid Tx queue_id = %d\n",
3439 				   p_vf->abs_vf_id, qid);
3440 			goto send_resp;
3441 		}
3442 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3443 			p_queue = &p_vf->vf_queues[qid];
3444 			if ((!p_queue->cids[i].p_cid) ||
3445 			    (!p_queue->cids[i].b_is_tx))
3446 				continue;
3447 
3448 			p_cid = p_queue->cids[i].p_cid;
3449 
3450 			rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3451 			if (rc)
3452 				goto send_resp;
3453 			break;
3454 		}
3455 	}
3456 
3457 	status = PFVF_STATUS_SUCCESS;
3458 
3459 send_resp:
3460 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3461 			     sizeof(*p_resp));
3462 	p_resp->coal = coal;
3463 
3464 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3465 		    sizeof(struct channel_list_end_tlv));
3466 
3467 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3468 }
3469 
3470 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3471 				       struct qed_ptt *p_ptt,
3472 				       struct qed_vf_info *vf)
3473 {
3474 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3475 	struct vfpf_update_coalesce *req;
3476 	u8 status = PFVF_STATUS_FAILURE;
3477 	struct qed_queue_cid *p_cid;
3478 	u16 rx_coal, tx_coal;
3479 	int rc = 0, i;
3480 	u16 qid;
3481 
3482 	req = &mbx->req_virt->update_coalesce;
3483 
3484 	rx_coal = req->rx_coal;
3485 	tx_coal = req->tx_coal;
3486 	qid = req->qid;
3487 
3488 	if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3489 				  QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3490 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3491 			   "VF[%d]: Invalid Rx queue_id = %d\n",
3492 			   vf->abs_vf_id, qid);
3493 		goto out;
3494 	}
3495 
3496 	if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3497 				  QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3498 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3499 			   "VF[%d]: Invalid Tx queue_id = %d\n",
3500 			   vf->abs_vf_id, qid);
3501 		goto out;
3502 	}
3503 
3504 	DP_VERBOSE(p_hwfn,
3505 		   QED_MSG_IOV,
3506 		   "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3507 		   vf->abs_vf_id, rx_coal, tx_coal, qid);
3508 
3509 	if (rx_coal) {
3510 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3511 
3512 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3513 		if (rc) {
3514 			DP_VERBOSE(p_hwfn,
3515 				   QED_MSG_IOV,
3516 				   "VF[%d]: Unable to set rx queue = %d coalesce\n",
3517 				   vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3518 			goto out;
3519 		}
3520 		vf->rx_coal = rx_coal;
3521 	}
3522 
3523 	if (tx_coal) {
3524 		struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3525 
3526 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3527 			if (!p_queue->cids[i].p_cid)
3528 				continue;
3529 
3530 			if (!p_queue->cids[i].b_is_tx)
3531 				continue;
3532 
3533 			rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3534 						  p_queue->cids[i].p_cid);
3535 
3536 			if (rc) {
3537 				DP_VERBOSE(p_hwfn,
3538 					   QED_MSG_IOV,
3539 					   "VF[%d]: Unable to set tx queue coalesce\n",
3540 					   vf->abs_vf_id);
3541 				goto out;
3542 			}
3543 		}
3544 		vf->tx_coal = tx_coal;
3545 	}
3546 
3547 	status = PFVF_STATUS_SUCCESS;
3548 out:
3549 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3550 			     sizeof(struct pfvf_def_resp_tlv), status);
3551 }
3552 static int
3553 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3554 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3555 {
3556 	int cnt;
3557 	u32 val;
3558 
3559 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
3560 
3561 	for (cnt = 0; cnt < 50; cnt++) {
3562 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3563 		if (!val)
3564 			break;
3565 		msleep(20);
3566 	}
3567 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
3568 
3569 	if (cnt == 50) {
3570 		DP_ERR(p_hwfn,
3571 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3572 		       p_vf->abs_vf_id, val);
3573 		return -EBUSY;
3574 	}
3575 
3576 	return 0;
3577 }
3578 
3579 static int
3580 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3581 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3582 {
3583 	u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4];
3584 	int i, cnt;
3585 
3586 	/* Read initial consumers & producers */
3587 	for (i = 0; i < MAX_NUM_VOQS_E4; i++) {
3588 		u32 prod;
3589 
3590 		cons[i] = qed_rd(p_hwfn, p_ptt,
3591 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3592 				 i * 0x40);
3593 		prod = qed_rd(p_hwfn, p_ptt,
3594 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
3595 			      i * 0x40);
3596 		distance[i] = prod - cons[i];
3597 	}
3598 
3599 	/* Wait for consumers to pass the producers */
3600 	i = 0;
3601 	for (cnt = 0; cnt < 50; cnt++) {
3602 		for (; i < MAX_NUM_VOQS_E4; i++) {
3603 			u32 tmp;
3604 
3605 			tmp = qed_rd(p_hwfn, p_ptt,
3606 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3607 				     i * 0x40);
3608 			if (distance[i] > tmp - cons[i])
3609 				break;
3610 		}
3611 
3612 		if (i == MAX_NUM_VOQS_E4)
3613 			break;
3614 
3615 		msleep(20);
3616 	}
3617 
3618 	if (cnt == 50) {
3619 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3620 		       p_vf->abs_vf_id, i);
3621 		return -EBUSY;
3622 	}
3623 
3624 	return 0;
3625 }
3626 
3627 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3628 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3629 {
3630 	int rc;
3631 
3632 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3633 	if (rc)
3634 		return rc;
3635 
3636 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3637 	if (rc)
3638 		return rc;
3639 
3640 	return 0;
3641 }
3642 
3643 static int
3644 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3645 			       struct qed_ptt *p_ptt,
3646 			       u16 rel_vf_id, u32 *ack_vfs)
3647 {
3648 	struct qed_vf_info *p_vf;
3649 	int rc = 0;
3650 
3651 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3652 	if (!p_vf)
3653 		return 0;
3654 
3655 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3656 	    (1ULL << (rel_vf_id % 64))) {
3657 		u16 vfid = p_vf->abs_vf_id;
3658 
3659 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3660 			   "VF[%d] - Handling FLR\n", vfid);
3661 
3662 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3663 
3664 		/* If VF isn't active, no need for anything but SW */
3665 		if (!p_vf->b_init)
3666 			goto cleanup;
3667 
3668 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3669 		if (rc)
3670 			goto cleanup;
3671 
3672 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3673 		if (rc) {
3674 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3675 			return rc;
3676 		}
3677 
3678 		/* Workaround to make VF-PF channel ready, as FW
3679 		 * doesn't do that as a part of FLR.
3680 		 */
3681 		REG_WR(p_hwfn,
3682 		       GTT_BAR0_MAP_REG_USDM_RAM +
3683 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3684 
3685 		/* VF_STOPPED has to be set only after final cleanup
3686 		 * but prior to re-enabling the VF.
3687 		 */
3688 		p_vf->state = VF_STOPPED;
3689 
3690 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3691 		if (rc) {
3692 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3693 			       vfid);
3694 			return rc;
3695 		}
3696 cleanup:
3697 		/* Mark VF for ack and clean pending state */
3698 		if (p_vf->state == VF_RESET)
3699 			p_vf->state = VF_STOPPED;
3700 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3701 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3702 		    ~(1ULL << (rel_vf_id % 64));
3703 		p_vf->vf_mbx.b_pending_msg = false;
3704 	}
3705 
3706 	return rc;
3707 }
3708 
3709 static int
3710 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3711 {
3712 	u32 ack_vfs[VF_MAX_STATIC / 32];
3713 	int rc = 0;
3714 	u16 i;
3715 
3716 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3717 
3718 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3719 	 * polling due to HW limitations, simply sleep a bit. And since
3720 	 * there's no need to wait per-vf, do it before looping.
3721 	 */
3722 	msleep(100);
3723 
3724 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3725 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3726 
3727 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3728 	return rc;
3729 }
3730 
3731 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3732 {
3733 	bool found = false;
3734 	u16 i;
3735 
3736 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3737 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3738 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3739 			   "[%08x,...,%08x]: %08x\n",
3740 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3741 
3742 	if (!p_hwfn->cdev->p_iov_info) {
3743 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3744 		return false;
3745 	}
3746 
3747 	/* Mark VFs */
3748 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3749 		struct qed_vf_info *p_vf;
3750 		u8 vfid;
3751 
3752 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3753 		if (!p_vf)
3754 			continue;
3755 
3756 		vfid = p_vf->abs_vf_id;
3757 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3758 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3759 			u16 rel_vf_id = p_vf->relative_vf_id;
3760 
3761 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3762 				   "VF[%d] [rel %d] got FLR-ed\n",
3763 				   vfid, rel_vf_id);
3764 
3765 			p_vf->state = VF_RESET;
3766 
3767 			/* No need to lock here, since pending_flr should
3768 			 * only change here and before ACKing MFw. Since
3769 			 * MFW will not trigger an additional attention for
3770 			 * VF flr until ACKs, we're safe.
3771 			 */
3772 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3773 			found = true;
3774 		}
3775 	}
3776 
3777 	return found;
3778 }
3779 
3780 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3781 			     u16 vfid,
3782 			     struct qed_mcp_link_params *p_params,
3783 			     struct qed_mcp_link_state *p_link,
3784 			     struct qed_mcp_link_capabilities *p_caps)
3785 {
3786 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3787 						       vfid,
3788 						       false);
3789 	struct qed_bulletin_content *p_bulletin;
3790 
3791 	if (!p_vf)
3792 		return;
3793 
3794 	p_bulletin = p_vf->bulletin.p_virt;
3795 
3796 	if (p_params)
3797 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3798 	if (p_link)
3799 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3800 	if (p_caps)
3801 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3802 }
3803 
3804 static int
3805 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
3806 				  struct qed_ptt *p_ptt,
3807 				  struct qed_vf_info *p_vf)
3808 {
3809 	struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
3810 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3811 	struct vfpf_bulletin_update_mac_tlv *p_req;
3812 	u8 status = PFVF_STATUS_SUCCESS;
3813 	int rc = 0;
3814 
3815 	if (!p_vf->p_vf_info.is_trusted_configured) {
3816 		DP_VERBOSE(p_hwfn,
3817 			   QED_MSG_IOV,
3818 			   "Blocking bulletin update request from untrusted VF[%d]\n",
3819 			   p_vf->abs_vf_id);
3820 		status = PFVF_STATUS_NOT_SUPPORTED;
3821 		rc = -EINVAL;
3822 		goto send_status;
3823 	}
3824 
3825 	p_req = &mbx->req_virt->bulletin_update_mac;
3826 	ether_addr_copy(p_bulletin->mac, p_req->mac);
3827 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3828 		   "Updated bulletin of VF[%d] with requested MAC[%pM]\n",
3829 		   p_vf->abs_vf_id, p_req->mac);
3830 
3831 send_status:
3832 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3833 			     CHANNEL_TLV_BULLETIN_UPDATE_MAC,
3834 			     sizeof(struct pfvf_def_resp_tlv), status);
3835 	return rc;
3836 }
3837 
3838 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3839 				    struct qed_ptt *p_ptt, int vfid)
3840 {
3841 	struct qed_iov_vf_mbx *mbx;
3842 	struct qed_vf_info *p_vf;
3843 
3844 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3845 	if (!p_vf)
3846 		return;
3847 
3848 	mbx = &p_vf->vf_mbx;
3849 
3850 	/* qed_iov_process_mbx_request */
3851 	if (!mbx->b_pending_msg) {
3852 		DP_NOTICE(p_hwfn,
3853 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3854 			  p_vf->abs_vf_id);
3855 		return;
3856 	}
3857 	mbx->b_pending_msg = false;
3858 
3859 	mbx->first_tlv = mbx->req_virt->first_tlv;
3860 
3861 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3862 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3863 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3864 
3865 	/* check if tlv type is known */
3866 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3867 	    !p_vf->b_malicious) {
3868 		switch (mbx->first_tlv.tl.type) {
3869 		case CHANNEL_TLV_ACQUIRE:
3870 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3871 			break;
3872 		case CHANNEL_TLV_VPORT_START:
3873 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3874 			break;
3875 		case CHANNEL_TLV_VPORT_TEARDOWN:
3876 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3877 			break;
3878 		case CHANNEL_TLV_START_RXQ:
3879 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3880 			break;
3881 		case CHANNEL_TLV_START_TXQ:
3882 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3883 			break;
3884 		case CHANNEL_TLV_STOP_RXQS:
3885 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3886 			break;
3887 		case CHANNEL_TLV_STOP_TXQS:
3888 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3889 			break;
3890 		case CHANNEL_TLV_UPDATE_RXQ:
3891 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3892 			break;
3893 		case CHANNEL_TLV_VPORT_UPDATE:
3894 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3895 			break;
3896 		case CHANNEL_TLV_UCAST_FILTER:
3897 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3898 			break;
3899 		case CHANNEL_TLV_CLOSE:
3900 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3901 			break;
3902 		case CHANNEL_TLV_INT_CLEANUP:
3903 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3904 			break;
3905 		case CHANNEL_TLV_RELEASE:
3906 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3907 			break;
3908 		case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3909 			qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3910 			break;
3911 		case CHANNEL_TLV_COALESCE_UPDATE:
3912 			qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3913 			break;
3914 		case CHANNEL_TLV_COALESCE_READ:
3915 			qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3916 			break;
3917 		case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
3918 			qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
3919 			break;
3920 		}
3921 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3922 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3923 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3924 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3925 
3926 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3927 				     mbx->first_tlv.tl.type,
3928 				     sizeof(struct pfvf_def_resp_tlv),
3929 				     PFVF_STATUS_MALICIOUS);
3930 	} else {
3931 		/* unknown TLV - this may belong to a VF driver from the future
3932 		 * - a version written after this PF driver was written, which
3933 		 * supports features unknown as of yet. Too bad since we don't
3934 		 * support them. Or this may be because someone wrote a crappy
3935 		 * VF driver and is sending garbage over the channel.
3936 		 */
3937 		DP_NOTICE(p_hwfn,
3938 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3939 			  p_vf->abs_vf_id,
3940 			  mbx->first_tlv.tl.type,
3941 			  mbx->first_tlv.tl.length,
3942 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3943 
3944 		/* Try replying in case reply address matches the acquisition's
3945 		 * posted address.
3946 		 */
3947 		if (p_vf->acquire.first_tlv.reply_address &&
3948 		    (mbx->first_tlv.reply_address ==
3949 		     p_vf->acquire.first_tlv.reply_address)) {
3950 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3951 					     mbx->first_tlv.tl.type,
3952 					     sizeof(struct pfvf_def_resp_tlv),
3953 					     PFVF_STATUS_NOT_SUPPORTED);
3954 		} else {
3955 			DP_VERBOSE(p_hwfn,
3956 				   QED_MSG_IOV,
3957 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3958 				   p_vf->abs_vf_id);
3959 		}
3960 	}
3961 }
3962 
3963 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3964 {
3965 	int i;
3966 
3967 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3968 
3969 	qed_for_each_vf(p_hwfn, i) {
3970 		struct qed_vf_info *p_vf;
3971 
3972 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3973 		if (p_vf->vf_mbx.b_pending_msg)
3974 			events[i / 64] |= 1ULL << (i % 64);
3975 	}
3976 }
3977 
3978 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
3979 						       u16 abs_vfid)
3980 {
3981 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
3982 
3983 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
3984 		DP_VERBOSE(p_hwfn,
3985 			   QED_MSG_IOV,
3986 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
3987 			   abs_vfid);
3988 		return NULL;
3989 	}
3990 
3991 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
3992 }
3993 
3994 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
3995 			      u16 abs_vfid, struct regpair *vf_msg)
3996 {
3997 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
3998 			   abs_vfid);
3999 
4000 	if (!p_vf)
4001 		return 0;
4002 
4003 	/* List the physical address of the request so that handler
4004 	 * could later on copy the message from it.
4005 	 */
4006 	p_vf->vf_mbx.pending_req = HILO_64(vf_msg->hi, vf_msg->lo);
4007 
4008 	/* Mark the event and schedule the workqueue */
4009 	p_vf->vf_mbx.b_pending_msg = true;
4010 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
4011 
4012 	return 0;
4013 }
4014 
4015 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
4016 				     struct malicious_vf_eqe_data *p_data)
4017 {
4018 	struct qed_vf_info *p_vf;
4019 
4020 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
4021 
4022 	if (!p_vf)
4023 		return;
4024 
4025 	if (!p_vf->b_malicious) {
4026 		DP_NOTICE(p_hwfn,
4027 			  "VF [%d] - Malicious behavior [%02x]\n",
4028 			  p_vf->abs_vf_id, p_data->err_id);
4029 
4030 		p_vf->b_malicious = true;
4031 	} else {
4032 		DP_INFO(p_hwfn,
4033 			"VF [%d] - Malicious behavior [%02x]\n",
4034 			p_vf->abs_vf_id, p_data->err_id);
4035 	}
4036 }
4037 
4038 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo,
4039 			       union event_ring_data *data, u8 fw_return_code)
4040 {
4041 	switch (opcode) {
4042 	case COMMON_EVENT_VF_PF_CHANNEL:
4043 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4044 					  &data->vf_pf_channel.msg_addr);
4045 	case COMMON_EVENT_MALICIOUS_VF:
4046 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
4047 		return 0;
4048 	default:
4049 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4050 			opcode);
4051 		return -EINVAL;
4052 	}
4053 }
4054 
4055 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4056 {
4057 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4058 	u16 i;
4059 
4060 	if (!p_iov)
4061 		goto out;
4062 
4063 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4064 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4065 			return i;
4066 
4067 out:
4068 	return MAX_NUM_VFS;
4069 }
4070 
4071 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4072 			       int vfid)
4073 {
4074 	struct qed_dmae_params params;
4075 	struct qed_vf_info *vf_info;
4076 
4077 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4078 	if (!vf_info)
4079 		return -EINVAL;
4080 
4081 	memset(&params, 0, sizeof(params));
4082 	SET_FIELD(params.flags, QED_DMAE_PARAMS_SRC_VF_VALID, 0x1);
4083 	SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 0x1);
4084 	params.src_vfid = vf_info->abs_vf_id;
4085 
4086 	if (qed_dmae_host2host(p_hwfn, ptt,
4087 			       vf_info->vf_mbx.pending_req,
4088 			       vf_info->vf_mbx.req_phys,
4089 			       sizeof(union vfpf_tlvs) / 4, &params)) {
4090 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4091 			   "Failed to copy message from VF 0x%02x\n", vfid);
4092 
4093 		return -EIO;
4094 	}
4095 
4096 	return 0;
4097 }
4098 
4099 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4100 					    u8 *mac, int vfid)
4101 {
4102 	struct qed_vf_info *vf_info;
4103 	u64 feature;
4104 
4105 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4106 	if (!vf_info) {
4107 		DP_NOTICE(p_hwfn->cdev,
4108 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4109 		return;
4110 	}
4111 
4112 	if (vf_info->b_malicious) {
4113 		DP_NOTICE(p_hwfn->cdev,
4114 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
4115 		return;
4116 	}
4117 
4118 	if (vf_info->p_vf_info.is_trusted_configured) {
4119 		feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4120 		/* Trust mode will disable Forced MAC */
4121 		vf_info->bulletin.p_virt->valid_bitmap &=
4122 			~BIT(MAC_ADDR_FORCED);
4123 	} else {
4124 		feature = BIT(MAC_ADDR_FORCED);
4125 		/* Forced MAC will disable MAC_ADDR */
4126 		vf_info->bulletin.p_virt->valid_bitmap &=
4127 			~BIT(VFPF_BULLETIN_MAC_ADDR);
4128 	}
4129 
4130 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4131 
4132 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4133 
4134 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4135 }
4136 
4137 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
4138 {
4139 	struct qed_vf_info *vf_info;
4140 	u64 feature;
4141 
4142 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4143 	if (!vf_info) {
4144 		DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
4145 			  vfid);
4146 		return -EINVAL;
4147 	}
4148 
4149 	if (vf_info->b_malicious) {
4150 		DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
4151 			  vfid);
4152 		return -EINVAL;
4153 	}
4154 
4155 	if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
4156 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4157 			   "Can not set MAC, Forced MAC is configured\n");
4158 		return -EINVAL;
4159 	}
4160 
4161 	feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4162 	ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
4163 
4164 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4165 
4166 	if (vf_info->p_vf_info.is_trusted_configured)
4167 		qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4168 
4169 	return 0;
4170 }
4171 
4172 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4173 					     u16 pvid, int vfid)
4174 {
4175 	struct qed_vf_info *vf_info;
4176 	u64 feature;
4177 
4178 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4179 	if (!vf_info) {
4180 		DP_NOTICE(p_hwfn->cdev,
4181 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4182 		return;
4183 	}
4184 
4185 	if (vf_info->b_malicious) {
4186 		DP_NOTICE(p_hwfn->cdev,
4187 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
4188 		return;
4189 	}
4190 
4191 	feature = 1 << VLAN_ADDR_FORCED;
4192 	vf_info->bulletin.p_virt->pvid = pvid;
4193 	if (pvid)
4194 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
4195 	else
4196 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4197 
4198 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4199 }
4200 
4201 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4202 				    int vfid, u16 vxlan_port, u16 geneve_port)
4203 {
4204 	struct qed_vf_info *vf_info;
4205 
4206 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4207 	if (!vf_info) {
4208 		DP_NOTICE(p_hwfn->cdev,
4209 			  "Can not set udp ports, invalid vfid [%d]\n", vfid);
4210 		return;
4211 	}
4212 
4213 	if (vf_info->b_malicious) {
4214 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4215 			   "Can not set udp ports to malicious VF [%d]\n",
4216 			   vfid);
4217 		return;
4218 	}
4219 
4220 	vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4221 	vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4222 }
4223 
4224 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4225 {
4226 	struct qed_vf_info *p_vf_info;
4227 
4228 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4229 	if (!p_vf_info)
4230 		return false;
4231 
4232 	return !!p_vf_info->vport_instance;
4233 }
4234 
4235 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4236 {
4237 	struct qed_vf_info *p_vf_info;
4238 
4239 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4240 	if (!p_vf_info)
4241 		return true;
4242 
4243 	return p_vf_info->state == VF_STOPPED;
4244 }
4245 
4246 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4247 {
4248 	struct qed_vf_info *vf_info;
4249 
4250 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4251 	if (!vf_info)
4252 		return false;
4253 
4254 	return vf_info->spoof_chk;
4255 }
4256 
4257 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4258 {
4259 	struct qed_vf_info *vf;
4260 	int rc = -EINVAL;
4261 
4262 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4263 		DP_NOTICE(p_hwfn,
4264 			  "SR-IOV sanity check failed, can't set spoofchk\n");
4265 		goto out;
4266 	}
4267 
4268 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4269 	if (!vf)
4270 		goto out;
4271 
4272 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4273 		/* After VF VPORT start PF will configure spoof check */
4274 		vf->req_spoofchk_val = val;
4275 		rc = 0;
4276 		goto out;
4277 	}
4278 
4279 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4280 
4281 out:
4282 	return rc;
4283 }
4284 
4285 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4286 {
4287 	struct qed_vf_info *p_vf;
4288 
4289 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4290 	if (!p_vf || !p_vf->bulletin.p_virt)
4291 		return NULL;
4292 
4293 	if (!(p_vf->bulletin.p_virt->valid_bitmap &
4294 	      BIT(VFPF_BULLETIN_MAC_ADDR)))
4295 		return NULL;
4296 
4297 	return p_vf->bulletin.p_virt->mac;
4298 }
4299 
4300 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4301 					   u16 rel_vf_id)
4302 {
4303 	struct qed_vf_info *p_vf;
4304 
4305 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4306 	if (!p_vf || !p_vf->bulletin.p_virt)
4307 		return NULL;
4308 
4309 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4310 		return NULL;
4311 
4312 	return p_vf->bulletin.p_virt->mac;
4313 }
4314 
4315 static u16
4316 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4317 {
4318 	struct qed_vf_info *p_vf;
4319 
4320 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4321 	if (!p_vf || !p_vf->bulletin.p_virt)
4322 		return 0;
4323 
4324 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4325 		return 0;
4326 
4327 	return p_vf->bulletin.p_virt->pvid;
4328 }
4329 
4330 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4331 				     struct qed_ptt *p_ptt, int vfid, int val)
4332 {
4333 	struct qed_vf_info *vf;
4334 	u8 abs_vp_id = 0;
4335 	u16 rl_id;
4336 	int rc;
4337 
4338 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4339 	if (!vf)
4340 		return -EINVAL;
4341 
4342 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4343 	if (rc)
4344 		return rc;
4345 
4346 	rl_id = abs_vp_id;	/* The "rl_id" is set as the "vport_id" */
4347 	return qed_init_global_rl(p_hwfn, p_ptt, rl_id, (u32)val);
4348 }
4349 
4350 static int
4351 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4352 {
4353 	struct qed_vf_info *vf;
4354 	u8 vport_id;
4355 	int i;
4356 
4357 	for_each_hwfn(cdev, i) {
4358 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4359 
4360 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4361 			DP_NOTICE(p_hwfn,
4362 				  "SR-IOV sanity check failed, can't set min rate\n");
4363 			return -EINVAL;
4364 		}
4365 	}
4366 
4367 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4368 	vport_id = vf->vport_id;
4369 
4370 	return qed_configure_vport_wfq(cdev, vport_id, rate);
4371 }
4372 
4373 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4374 {
4375 	struct qed_wfq_data *vf_vp_wfq;
4376 	struct qed_vf_info *vf_info;
4377 
4378 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4379 	if (!vf_info)
4380 		return 0;
4381 
4382 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4383 
4384 	if (vf_vp_wfq->configured)
4385 		return vf_vp_wfq->min_speed;
4386 	else
4387 		return 0;
4388 }
4389 
4390 /**
4391  * qed_schedule_iov - schedules IOV task for VF and PF
4392  * @hwfn: hardware function pointer
4393  * @flag: IOV flag for VF/PF
4394  */
4395 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4396 {
4397 	smp_mb__before_atomic();
4398 	set_bit(flag, &hwfn->iov_task_flags);
4399 	smp_mb__after_atomic();
4400 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4401 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4402 }
4403 
4404 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4405 {
4406 	int i;
4407 
4408 	for_each_hwfn(cdev, i)
4409 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
4410 			       &cdev->hwfns[i].iov_task, 0);
4411 }
4412 
4413 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4414 {
4415 	int i, j;
4416 
4417 	for_each_hwfn(cdev, i)
4418 	    if (cdev->hwfns[i].iov_wq)
4419 		flush_workqueue(cdev->hwfns[i].iov_wq);
4420 
4421 	/* Mark VFs for disablement */
4422 	qed_iov_set_vfs_to_disable(cdev, true);
4423 
4424 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4425 		pci_disable_sriov(cdev->pdev);
4426 
4427 	if (cdev->recov_in_prog) {
4428 		DP_VERBOSE(cdev,
4429 			   QED_MSG_IOV,
4430 			   "Skip SRIOV disable operations in the device since a recovery is in progress\n");
4431 		goto out;
4432 	}
4433 
4434 	for_each_hwfn(cdev, i) {
4435 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4436 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4437 
4438 		/* Failure to acquire the ptt in 100g creates an odd error
4439 		 * where the first engine has already relased IOV.
4440 		 */
4441 		if (!ptt) {
4442 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4443 			return -EBUSY;
4444 		}
4445 
4446 		/* Clean WFQ db and configure equal weight for all vports */
4447 		qed_clean_wfq_db(hwfn, ptt);
4448 
4449 		qed_for_each_vf(hwfn, j) {
4450 			int k;
4451 
4452 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4453 				continue;
4454 
4455 			/* Wait until VF is disabled before releasing */
4456 			for (k = 0; k < 100; k++) {
4457 				if (!qed_iov_is_vf_stopped(hwfn, j))
4458 					msleep(20);
4459 				else
4460 					break;
4461 			}
4462 
4463 			if (k < 100)
4464 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4465 							  ptt, j);
4466 			else
4467 				DP_ERR(hwfn,
4468 				       "Timeout waiting for VF's FLR to end\n");
4469 		}
4470 
4471 		qed_ptt_release(hwfn, ptt);
4472 	}
4473 out:
4474 	qed_iov_set_vfs_to_disable(cdev, false);
4475 
4476 	return 0;
4477 }
4478 
4479 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4480 					u16 vfid,
4481 					struct qed_iov_vf_init_params *params)
4482 {
4483 	u16 base, i;
4484 
4485 	/* Since we have an equal resource distribution per-VF, and we assume
4486 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4487 	 * sequentially from there.
4488 	 */
4489 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4490 
4491 	params->rel_vf_id = vfid;
4492 	for (i = 0; i < params->num_queues; i++) {
4493 		params->req_rx_queue[i] = base + i;
4494 		params->req_tx_queue[i] = base + i;
4495 	}
4496 }
4497 
4498 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4499 {
4500 	struct qed_iov_vf_init_params params;
4501 	struct qed_hwfn *hwfn;
4502 	struct qed_ptt *ptt;
4503 	int i, j, rc;
4504 
4505 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4506 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
4507 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4508 		return -EINVAL;
4509 	}
4510 
4511 	memset(&params, 0, sizeof(params));
4512 
4513 	/* Initialize HW for VF access */
4514 	for_each_hwfn(cdev, j) {
4515 		hwfn = &cdev->hwfns[j];
4516 		ptt = qed_ptt_acquire(hwfn);
4517 
4518 		/* Make sure not to use more than 16 queues per VF */
4519 		params.num_queues = min_t(int,
4520 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4521 					  16);
4522 
4523 		if (!ptt) {
4524 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4525 			rc = -EBUSY;
4526 			goto err;
4527 		}
4528 
4529 		for (i = 0; i < num; i++) {
4530 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4531 				continue;
4532 
4533 			qed_sriov_enable_qid_config(hwfn, i, &params);
4534 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4535 			if (rc) {
4536 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4537 				qed_ptt_release(hwfn, ptt);
4538 				goto err;
4539 			}
4540 		}
4541 
4542 		qed_ptt_release(hwfn, ptt);
4543 	}
4544 
4545 	/* Enable SRIOV PCIe functions */
4546 	rc = pci_enable_sriov(cdev->pdev, num);
4547 	if (rc) {
4548 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4549 		goto err;
4550 	}
4551 
4552 	hwfn = QED_LEADING_HWFN(cdev);
4553 	ptt = qed_ptt_acquire(hwfn);
4554 	if (!ptt) {
4555 		DP_ERR(hwfn, "Failed to acquire ptt\n");
4556 		rc = -EBUSY;
4557 		goto err;
4558 	}
4559 
4560 	rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4561 	if (rc)
4562 		DP_INFO(cdev, "Failed to update eswitch mode\n");
4563 	qed_ptt_release(hwfn, ptt);
4564 
4565 	return num;
4566 
4567 err:
4568 	qed_sriov_disable(cdev, false);
4569 	return rc;
4570 }
4571 
4572 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4573 {
4574 	if (!IS_QED_SRIOV(cdev)) {
4575 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4576 		return -EOPNOTSUPP;
4577 	}
4578 
4579 	if (num_vfs_param)
4580 		return qed_sriov_enable(cdev, num_vfs_param);
4581 	else
4582 		return qed_sriov_disable(cdev, true);
4583 }
4584 
4585 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4586 {
4587 	int i;
4588 
4589 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4590 		DP_VERBOSE(cdev, QED_MSG_IOV,
4591 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4592 		return -EINVAL;
4593 	}
4594 
4595 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4596 		DP_VERBOSE(cdev, QED_MSG_IOV,
4597 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4598 		return -EINVAL;
4599 	}
4600 
4601 	for_each_hwfn(cdev, i) {
4602 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4603 		struct qed_public_vf_info *vf_info;
4604 
4605 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4606 		if (!vf_info)
4607 			continue;
4608 
4609 		/* Set the MAC, and schedule the IOV task */
4610 		if (vf_info->is_trusted_configured)
4611 			ether_addr_copy(vf_info->mac, mac);
4612 		else
4613 			ether_addr_copy(vf_info->forced_mac, mac);
4614 
4615 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4616 	}
4617 
4618 	return 0;
4619 }
4620 
4621 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4622 {
4623 	int i;
4624 
4625 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4626 		DP_VERBOSE(cdev, QED_MSG_IOV,
4627 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4628 		return -EINVAL;
4629 	}
4630 
4631 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4632 		DP_VERBOSE(cdev, QED_MSG_IOV,
4633 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4634 		return -EINVAL;
4635 	}
4636 
4637 	for_each_hwfn(cdev, i) {
4638 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4639 		struct qed_public_vf_info *vf_info;
4640 
4641 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4642 		if (!vf_info)
4643 			continue;
4644 
4645 		/* Set the forced vlan, and schedule the IOV task */
4646 		vf_info->forced_vlan = vid;
4647 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4648 	}
4649 
4650 	return 0;
4651 }
4652 
4653 static int qed_get_vf_config(struct qed_dev *cdev,
4654 			     int vf_id, struct ifla_vf_info *ivi)
4655 {
4656 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4657 	struct qed_public_vf_info *vf_info;
4658 	struct qed_mcp_link_state link;
4659 	u32 tx_rate;
4660 
4661 	/* Sanitize request */
4662 	if (IS_VF(cdev))
4663 		return -EINVAL;
4664 
4665 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4666 		DP_VERBOSE(cdev, QED_MSG_IOV,
4667 			   "VF index [%d] isn't active\n", vf_id);
4668 		return -EINVAL;
4669 	}
4670 
4671 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4672 
4673 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4674 
4675 	/* Fill information about VF */
4676 	ivi->vf = vf_id;
4677 
4678 	if (is_valid_ether_addr(vf_info->forced_mac))
4679 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
4680 	else
4681 		ether_addr_copy(ivi->mac, vf_info->mac);
4682 
4683 	ivi->vlan = vf_info->forced_vlan;
4684 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4685 	ivi->linkstate = vf_info->link_state;
4686 	tx_rate = vf_info->tx_rate;
4687 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4688 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4689 
4690 	return 0;
4691 }
4692 
4693 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4694 {
4695 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4696 	struct qed_mcp_link_capabilities caps;
4697 	struct qed_mcp_link_params params;
4698 	struct qed_mcp_link_state link;
4699 	int i;
4700 
4701 	if (!hwfn->pf_iov_info)
4702 		return;
4703 
4704 	/* Update bulletin of all future possible VFs with link configuration */
4705 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4706 		struct qed_public_vf_info *vf_info;
4707 
4708 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4709 		if (!vf_info)
4710 			continue;
4711 
4712 		/* Only hwfn0 is actually interested in the link speed.
4713 		 * But since only it would receive an MFW indication of link,
4714 		 * need to take configuration from it - otherwise things like
4715 		 * rate limiting for hwfn1 VF would not work.
4716 		 */
4717 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4718 		       sizeof(params));
4719 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4720 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4721 		       sizeof(caps));
4722 
4723 		/* Modify link according to the VF's configured link state */
4724 		switch (vf_info->link_state) {
4725 		case IFLA_VF_LINK_STATE_DISABLE:
4726 			link.link_up = false;
4727 			break;
4728 		case IFLA_VF_LINK_STATE_ENABLE:
4729 			link.link_up = true;
4730 			/* Set speed according to maximum supported by HW.
4731 			 * that is 40G for regular devices and 100G for CMT
4732 			 * mode devices.
4733 			 */
4734 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
4735 				     100000 : 40000;
4736 		default:
4737 			/* In auto mode pass PF link image to VF */
4738 			break;
4739 		}
4740 
4741 		if (link.link_up && vf_info->tx_rate) {
4742 			struct qed_ptt *ptt;
4743 			int rate;
4744 
4745 			rate = min_t(int, vf_info->tx_rate, link.speed);
4746 
4747 			ptt = qed_ptt_acquire(hwfn);
4748 			if (!ptt) {
4749 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4750 				return;
4751 			}
4752 
4753 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4754 				vf_info->tx_rate = rate;
4755 				link.speed = rate;
4756 			}
4757 
4758 			qed_ptt_release(hwfn, ptt);
4759 		}
4760 
4761 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4762 	}
4763 
4764 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4765 }
4766 
4767 static int qed_set_vf_link_state(struct qed_dev *cdev,
4768 				 int vf_id, int link_state)
4769 {
4770 	int i;
4771 
4772 	/* Sanitize request */
4773 	if (IS_VF(cdev))
4774 		return -EINVAL;
4775 
4776 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4777 		DP_VERBOSE(cdev, QED_MSG_IOV,
4778 			   "VF index [%d] isn't active\n", vf_id);
4779 		return -EINVAL;
4780 	}
4781 
4782 	/* Handle configuration of link state */
4783 	for_each_hwfn(cdev, i) {
4784 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4785 		struct qed_public_vf_info *vf;
4786 
4787 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4788 		if (!vf)
4789 			continue;
4790 
4791 		if (vf->link_state == link_state)
4792 			continue;
4793 
4794 		vf->link_state = link_state;
4795 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4796 	}
4797 
4798 	return 0;
4799 }
4800 
4801 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4802 {
4803 	int i, rc = -EINVAL;
4804 
4805 	for_each_hwfn(cdev, i) {
4806 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4807 
4808 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4809 		if (rc)
4810 			break;
4811 	}
4812 
4813 	return rc;
4814 }
4815 
4816 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4817 {
4818 	int i;
4819 
4820 	for_each_hwfn(cdev, i) {
4821 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4822 		struct qed_public_vf_info *vf;
4823 
4824 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4825 			DP_NOTICE(p_hwfn,
4826 				  "SR-IOV sanity check failed, can't set tx rate\n");
4827 			return -EINVAL;
4828 		}
4829 
4830 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4831 
4832 		vf->tx_rate = rate;
4833 
4834 		qed_inform_vf_link_state(p_hwfn);
4835 	}
4836 
4837 	return 0;
4838 }
4839 
4840 static int qed_set_vf_rate(struct qed_dev *cdev,
4841 			   int vfid, u32 min_rate, u32 max_rate)
4842 {
4843 	int rc_min = 0, rc_max = 0;
4844 
4845 	if (max_rate)
4846 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4847 
4848 	if (min_rate)
4849 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4850 
4851 	if (rc_max | rc_min)
4852 		return -EINVAL;
4853 
4854 	return 0;
4855 }
4856 
4857 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4858 {
4859 	int i;
4860 
4861 	for_each_hwfn(cdev, i) {
4862 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4863 		struct qed_public_vf_info *vf;
4864 
4865 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4866 			DP_NOTICE(hwfn,
4867 				  "SR-IOV sanity check failed, can't set trust\n");
4868 			return -EINVAL;
4869 		}
4870 
4871 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4872 
4873 		if (vf->is_trusted_request == trust)
4874 			return 0;
4875 		vf->is_trusted_request = trust;
4876 
4877 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4878 	}
4879 
4880 	return 0;
4881 }
4882 
4883 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4884 {
4885 	u64 events[QED_VF_ARRAY_LENGTH];
4886 	struct qed_ptt *ptt;
4887 	int i;
4888 
4889 	ptt = qed_ptt_acquire(hwfn);
4890 	if (!ptt) {
4891 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4892 			   "Can't acquire PTT; re-scheduling\n");
4893 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4894 		return;
4895 	}
4896 
4897 	qed_iov_pf_get_pending_events(hwfn, events);
4898 
4899 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4900 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4901 		   events[0], events[1], events[2]);
4902 
4903 	qed_for_each_vf(hwfn, i) {
4904 		/* Skip VFs with no pending messages */
4905 		if (!(events[i / 64] & (1ULL << (i % 64))))
4906 			continue;
4907 
4908 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4909 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4910 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4911 
4912 		/* Copy VF's message to PF's request buffer for that VF */
4913 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4914 			continue;
4915 
4916 		qed_iov_process_mbx_req(hwfn, ptt, i);
4917 	}
4918 
4919 	qed_ptt_release(hwfn, ptt);
4920 }
4921 
4922 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
4923 				       u8 *mac,
4924 				       struct qed_public_vf_info *info)
4925 {
4926 	if (info->is_trusted_configured) {
4927 		if (is_valid_ether_addr(info->mac) &&
4928 		    (!mac || !ether_addr_equal(mac, info->mac)))
4929 			return true;
4930 	} else {
4931 		if (is_valid_ether_addr(info->forced_mac) &&
4932 		    (!mac || !ether_addr_equal(mac, info->forced_mac)))
4933 			return true;
4934 	}
4935 
4936 	return false;
4937 }
4938 
4939 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
4940 				 struct qed_public_vf_info *info,
4941 				 int vfid)
4942 {
4943 	if (info->is_trusted_configured)
4944 		qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
4945 	else
4946 		qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
4947 }
4948 
4949 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4950 {
4951 	int i;
4952 
4953 	qed_for_each_vf(hwfn, i) {
4954 		struct qed_public_vf_info *info;
4955 		bool update = false;
4956 		u8 *mac;
4957 
4958 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4959 		if (!info)
4960 			continue;
4961 
4962 		/* Update data on bulletin board */
4963 		if (info->is_trusted_configured)
4964 			mac = qed_iov_bulletin_get_mac(hwfn, i);
4965 		else
4966 			mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4967 
4968 		if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
4969 			DP_VERBOSE(hwfn,
4970 				   QED_MSG_IOV,
4971 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4972 				   i,
4973 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4974 
4975 			/* Update bulletin board with MAC */
4976 			qed_set_bulletin_mac(hwfn, info, i);
4977 			update = true;
4978 		}
4979 
4980 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
4981 		    info->forced_vlan) {
4982 			DP_VERBOSE(hwfn,
4983 				   QED_MSG_IOV,
4984 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
4985 				   info->forced_vlan,
4986 				   i,
4987 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4988 			qed_iov_bulletin_set_forced_vlan(hwfn,
4989 							 info->forced_vlan, i);
4990 			update = true;
4991 		}
4992 
4993 		if (update)
4994 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4995 	}
4996 }
4997 
4998 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
4999 {
5000 	struct qed_ptt *ptt;
5001 	int i;
5002 
5003 	ptt = qed_ptt_acquire(hwfn);
5004 	if (!ptt) {
5005 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
5006 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5007 		return;
5008 	}
5009 
5010 	qed_for_each_vf(hwfn, i)
5011 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
5012 
5013 	qed_ptt_release(hwfn, ptt);
5014 }
5015 
5016 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
5017 {
5018 	struct qed_public_vf_info *vf_info;
5019 	struct qed_vf_info *vf;
5020 	u8 *force_mac;
5021 	int i;
5022 
5023 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
5024 	vf = qed_iov_get_vf_info(hwfn, vf_id, true);
5025 
5026 	if (!vf_info || !vf)
5027 		return;
5028 
5029 	/* Force MAC converted to generic MAC in case of VF trust on */
5030 	if (vf_info->is_trusted_configured &&
5031 	    (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
5032 		force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
5033 
5034 		if (force_mac) {
5035 			/* Clear existing shadow copy of MAC to have a clean
5036 			 * slate.
5037 			 */
5038 			for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5039 				if (ether_addr_equal(vf->shadow_config.macs[i],
5040 						     vf_info->mac)) {
5041 					eth_zero_addr(vf->shadow_config.macs[i]);
5042 					DP_VERBOSE(hwfn, QED_MSG_IOV,
5043 						   "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
5044 						    vf_info->mac, vf_id);
5045 					break;
5046 				}
5047 			}
5048 
5049 			ether_addr_copy(vf_info->mac, force_mac);
5050 			eth_zero_addr(vf_info->forced_mac);
5051 			vf->bulletin.p_virt->valid_bitmap &=
5052 					~BIT(MAC_ADDR_FORCED);
5053 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5054 		}
5055 	}
5056 
5057 	/* Update shadow copy with VF MAC when trust mode is turned off */
5058 	if (!vf_info->is_trusted_configured) {
5059 		u8 empty_mac[ETH_ALEN];
5060 
5061 		eth_zero_addr(empty_mac);
5062 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5063 			if (ether_addr_equal(vf->shadow_config.macs[i],
5064 					     empty_mac)) {
5065 				ether_addr_copy(vf->shadow_config.macs[i],
5066 						vf_info->mac);
5067 				DP_VERBOSE(hwfn, QED_MSG_IOV,
5068 					   "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
5069 					    vf_info->mac, vf_id);
5070 				break;
5071 			}
5072 		}
5073 		/* Clear bulletin when trust mode is turned off,
5074 		 * to have a clean slate for next (normal) operations.
5075 		 */
5076 		qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
5077 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5078 	}
5079 }
5080 
5081 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
5082 {
5083 	struct qed_sp_vport_update_params params;
5084 	struct qed_filter_accept_flags *flags;
5085 	struct qed_public_vf_info *vf_info;
5086 	struct qed_vf_info *vf;
5087 	u8 mask;
5088 	int i;
5089 
5090 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
5091 	flags = &params.accept_flags;
5092 
5093 	qed_for_each_vf(hwfn, i) {
5094 		/* Need to make sure current requested configuration didn't
5095 		 * flip so that we'll end up configuring something that's not
5096 		 * needed.
5097 		 */
5098 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
5099 		if (vf_info->is_trusted_configured ==
5100 		    vf_info->is_trusted_request)
5101 			continue;
5102 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
5103 
5104 		/* Handle forced MAC mode */
5105 		qed_update_mac_for_vf_trust_change(hwfn, i);
5106 
5107 		/* Validate that the VF has a configured vport */
5108 		vf = qed_iov_get_vf_info(hwfn, i, true);
5109 		if (!vf->vport_instance)
5110 			continue;
5111 
5112 		memset(&params, 0, sizeof(params));
5113 		params.opaque_fid = vf->opaque_fid;
5114 		params.vport_id = vf->vport_id;
5115 
5116 		params.update_ctl_frame_check = 1;
5117 		params.mac_chk_en = !vf_info->is_trusted_configured;
5118 
5119 		if (vf_info->rx_accept_mode & mask) {
5120 			flags->update_rx_mode_config = 1;
5121 			flags->rx_accept_filter = vf_info->rx_accept_mode;
5122 		}
5123 
5124 		if (vf_info->tx_accept_mode & mask) {
5125 			flags->update_tx_mode_config = 1;
5126 			flags->tx_accept_filter = vf_info->tx_accept_mode;
5127 		}
5128 
5129 		/* Remove if needed; Otherwise this would set the mask */
5130 		if (!vf_info->is_trusted_configured) {
5131 			flags->rx_accept_filter &= ~mask;
5132 			flags->tx_accept_filter &= ~mask;
5133 		}
5134 
5135 		if (flags->update_rx_mode_config ||
5136 		    flags->update_tx_mode_config ||
5137 		    params.update_ctl_frame_check)
5138 			qed_sp_vport_update(hwfn, &params,
5139 					    QED_SPQ_MODE_EBLOCK, NULL);
5140 	}
5141 }
5142 
5143 static void qed_iov_pf_task(struct work_struct *work)
5144 
5145 {
5146 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
5147 					     iov_task.work);
5148 	int rc;
5149 
5150 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
5151 		return;
5152 
5153 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
5154 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
5155 
5156 		if (!ptt) {
5157 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5158 			return;
5159 		}
5160 
5161 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
5162 		if (rc)
5163 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5164 
5165 		qed_ptt_release(hwfn, ptt);
5166 	}
5167 
5168 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
5169 		qed_handle_vf_msg(hwfn);
5170 
5171 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
5172 			       &hwfn->iov_task_flags))
5173 		qed_handle_pf_set_vf_unicast(hwfn);
5174 
5175 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
5176 			       &hwfn->iov_task_flags))
5177 		qed_handle_bulletin_post(hwfn);
5178 
5179 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
5180 		qed_iov_handle_trust_change(hwfn);
5181 }
5182 
5183 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
5184 {
5185 	int i;
5186 
5187 	for_each_hwfn(cdev, i) {
5188 		if (!cdev->hwfns[i].iov_wq)
5189 			continue;
5190 
5191 		if (schedule_first) {
5192 			qed_schedule_iov(&cdev->hwfns[i],
5193 					 QED_IOV_WQ_STOP_WQ_FLAG);
5194 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
5195 		}
5196 
5197 		flush_workqueue(cdev->hwfns[i].iov_wq);
5198 		destroy_workqueue(cdev->hwfns[i].iov_wq);
5199 	}
5200 }
5201 
5202 int qed_iov_wq_start(struct qed_dev *cdev)
5203 {
5204 	char name[NAME_SIZE];
5205 	int i;
5206 
5207 	for_each_hwfn(cdev, i) {
5208 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5209 
5210 		/* PFs needs a dedicated workqueue only if they support IOV.
5211 		 * VFs always require one.
5212 		 */
5213 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5214 			continue;
5215 
5216 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5217 			 cdev->pdev->bus->number,
5218 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5219 
5220 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
5221 		if (!p_hwfn->iov_wq) {
5222 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5223 			return -ENOMEM;
5224 		}
5225 
5226 		if (IS_PF(cdev))
5227 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5228 		else
5229 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5230 	}
5231 
5232 	return 0;
5233 }
5234 
5235 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5236 	.configure = &qed_sriov_configure,
5237 	.set_mac = &qed_sriov_pf_set_mac,
5238 	.set_vlan = &qed_sriov_pf_set_vlan,
5239 	.get_config = &qed_get_vf_config,
5240 	.set_link_state = &qed_set_vf_link_state,
5241 	.set_spoof = &qed_spoof_configure,
5242 	.set_rate = &qed_set_vf_rate,
5243 	.set_trust = &qed_set_vf_trust,
5244 };
5245