1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/etherdevice.h> 8 #include <linux/crc32.h> 9 #include <linux/vmalloc.h> 10 #include <linux/crash_dump.h> 11 #include <linux/qed/qed_iov_if.h> 12 #include "qed_cxt.h" 13 #include "qed_hsi.h" 14 #include "qed_hw.h" 15 #include "qed_init_ops.h" 16 #include "qed_int.h" 17 #include "qed_mcp.h" 18 #include "qed_reg_addr.h" 19 #include "qed_sp.h" 20 #include "qed_sriov.h" 21 #include "qed_vf.h" 22 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 23 u8 opcode, 24 __le16 echo, 25 union event_ring_data *data, u8 fw_return_code); 26 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid); 27 28 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) 29 { 30 u8 legacy = 0; 31 32 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 33 ETH_HSI_VER_NO_PKT_LEN_TUNN) 34 legacy |= QED_QCID_LEGACY_VF_RX_PROD; 35 36 if (!(p_vf->acquire.vfdev_info.capabilities & 37 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 38 legacy |= QED_QCID_LEGACY_VF_CID; 39 40 return legacy; 41 } 42 43 /* IOV ramrods */ 44 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 45 { 46 struct vf_start_ramrod_data *p_ramrod = NULL; 47 struct qed_spq_entry *p_ent = NULL; 48 struct qed_sp_init_data init_data; 49 int rc = -EINVAL; 50 u8 fp_minor; 51 52 /* Get SPQ entry */ 53 memset(&init_data, 0, sizeof(init_data)); 54 init_data.cid = qed_spq_get_cid(p_hwfn); 55 init_data.opaque_fid = p_vf->opaque_fid; 56 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 57 58 rc = qed_sp_init_request(p_hwfn, &p_ent, 59 COMMON_RAMROD_VF_START, 60 PROTOCOLID_COMMON, &init_data); 61 if (rc) 62 return rc; 63 64 p_ramrod = &p_ent->ramrod.vf_start; 65 66 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 67 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 68 69 switch (p_hwfn->hw_info.personality) { 70 case QED_PCI_ETH: 71 p_ramrod->personality = PERSONALITY_ETH; 72 break; 73 case QED_PCI_ETH_ROCE: 74 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 75 break; 76 default: 77 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 78 p_hwfn->hw_info.personality); 79 qed_sp_destroy_request(p_hwfn, p_ent); 80 return -EINVAL; 81 } 82 83 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 84 if (fp_minor > ETH_HSI_VER_MINOR && 85 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 86 DP_VERBOSE(p_hwfn, 87 QED_MSG_IOV, 88 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 89 p_vf->abs_vf_id, 90 ETH_HSI_VER_MAJOR, 91 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 92 fp_minor = ETH_HSI_VER_MINOR; 93 } 94 95 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 96 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 97 98 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 99 "VF[%d] - Starting using HSI %02x.%02x\n", 100 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 101 102 return qed_spq_post(p_hwfn, p_ent, NULL); 103 } 104 105 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 106 u32 concrete_vfid, u16 opaque_vfid) 107 { 108 struct vf_stop_ramrod_data *p_ramrod = NULL; 109 struct qed_spq_entry *p_ent = NULL; 110 struct qed_sp_init_data init_data; 111 int rc = -EINVAL; 112 113 /* Get SPQ entry */ 114 memset(&init_data, 0, sizeof(init_data)); 115 init_data.cid = qed_spq_get_cid(p_hwfn); 116 init_data.opaque_fid = opaque_vfid; 117 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 118 119 rc = qed_sp_init_request(p_hwfn, &p_ent, 120 COMMON_RAMROD_VF_STOP, 121 PROTOCOLID_COMMON, &init_data); 122 if (rc) 123 return rc; 124 125 p_ramrod = &p_ent->ramrod.vf_stop; 126 127 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 128 129 return qed_spq_post(p_hwfn, p_ent, NULL); 130 } 131 132 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 133 int rel_vf_id, 134 bool b_enabled_only, bool b_non_malicious) 135 { 136 if (!p_hwfn->pf_iov_info) { 137 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 138 return false; 139 } 140 141 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 142 (rel_vf_id < 0)) 143 return false; 144 145 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 146 b_enabled_only) 147 return false; 148 149 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 150 b_non_malicious) 151 return false; 152 153 return true; 154 } 155 156 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 157 u16 relative_vf_id, 158 bool b_enabled_only) 159 { 160 struct qed_vf_info *vf = NULL; 161 162 if (!p_hwfn->pf_iov_info) { 163 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 164 return NULL; 165 } 166 167 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 168 b_enabled_only, false)) 169 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 170 else 171 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 172 relative_vf_id); 173 174 return vf; 175 } 176 177 static struct qed_queue_cid * 178 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) 179 { 180 int i; 181 182 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 183 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) 184 return p_queue->cids[i].p_cid; 185 } 186 187 return NULL; 188 } 189 190 enum qed_iov_validate_q_mode { 191 QED_IOV_VALIDATE_Q_NA, 192 QED_IOV_VALIDATE_Q_ENABLE, 193 QED_IOV_VALIDATE_Q_DISABLE, 194 }; 195 196 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 197 struct qed_vf_info *p_vf, 198 u16 qid, 199 enum qed_iov_validate_q_mode mode, 200 bool b_is_tx) 201 { 202 int i; 203 204 if (mode == QED_IOV_VALIDATE_Q_NA) 205 return true; 206 207 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 208 struct qed_vf_queue_cid *p_qcid; 209 210 p_qcid = &p_vf->vf_queues[qid].cids[i]; 211 212 if (!p_qcid->p_cid) 213 continue; 214 215 if (p_qcid->b_is_tx != b_is_tx) 216 continue; 217 218 return mode == QED_IOV_VALIDATE_Q_ENABLE; 219 } 220 221 /* In case we haven't found any valid cid, then its disabled */ 222 return mode == QED_IOV_VALIDATE_Q_DISABLE; 223 } 224 225 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 226 struct qed_vf_info *p_vf, 227 u16 rx_qid, 228 enum qed_iov_validate_q_mode mode) 229 { 230 if (rx_qid >= p_vf->num_rxqs) { 231 DP_VERBOSE(p_hwfn, 232 QED_MSG_IOV, 233 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 234 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 235 return false; 236 } 237 238 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 239 } 240 241 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 242 struct qed_vf_info *p_vf, 243 u16 tx_qid, 244 enum qed_iov_validate_q_mode mode) 245 { 246 if (tx_qid >= p_vf->num_txqs) { 247 DP_VERBOSE(p_hwfn, 248 QED_MSG_IOV, 249 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 250 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 251 return false; 252 } 253 254 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 255 } 256 257 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 258 struct qed_vf_info *p_vf, u16 sb_idx) 259 { 260 int i; 261 262 for (i = 0; i < p_vf->num_sbs; i++) 263 if (p_vf->igu_sbs[i] == sb_idx) 264 return true; 265 266 DP_VERBOSE(p_hwfn, 267 QED_MSG_IOV, 268 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 269 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 270 271 return false; 272 } 273 274 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 275 struct qed_vf_info *p_vf) 276 { 277 u8 i; 278 279 for (i = 0; i < p_vf->num_rxqs; i++) 280 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 281 QED_IOV_VALIDATE_Q_ENABLE, 282 false)) 283 return true; 284 285 return false; 286 } 287 288 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 289 struct qed_vf_info *p_vf) 290 { 291 u8 i; 292 293 for (i = 0; i < p_vf->num_txqs; i++) 294 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 295 QED_IOV_VALIDATE_Q_ENABLE, 296 true)) 297 return true; 298 299 return false; 300 } 301 302 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 303 int vfid, struct qed_ptt *p_ptt) 304 { 305 struct qed_bulletin_content *p_bulletin; 306 int crc_size = sizeof(p_bulletin->crc); 307 struct qed_dmae_params params; 308 struct qed_vf_info *p_vf; 309 310 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 311 if (!p_vf) 312 return -EINVAL; 313 314 if (!p_vf->vf_bulletin) 315 return -EINVAL; 316 317 p_bulletin = p_vf->bulletin.p_virt; 318 319 /* Increment bulletin board version and compute crc */ 320 p_bulletin->version++; 321 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 322 p_vf->bulletin.size - crc_size); 323 324 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 325 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 326 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 327 328 /* propagate bulletin board via dmae to vm memory */ 329 memset(¶ms, 0, sizeof(params)); 330 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); 331 params.dst_vfid = p_vf->abs_vf_id; 332 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 333 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 334 ¶ms); 335 } 336 337 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 338 { 339 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 340 int pos = iov->pos; 341 342 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 343 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 344 345 pci_read_config_word(cdev->pdev, 346 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 347 pci_read_config_word(cdev->pdev, 348 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 349 350 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 351 if (iov->num_vfs) { 352 DP_VERBOSE(cdev, 353 QED_MSG_IOV, 354 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 355 iov->num_vfs = 0; 356 } 357 358 pci_read_config_word(cdev->pdev, 359 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 360 361 pci_read_config_word(cdev->pdev, 362 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 363 364 pci_read_config_word(cdev->pdev, 365 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 366 367 pci_read_config_dword(cdev->pdev, 368 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 369 370 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 371 372 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 373 374 DP_VERBOSE(cdev, 375 QED_MSG_IOV, 376 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 377 iov->nres, 378 iov->cap, 379 iov->ctrl, 380 iov->total_vfs, 381 iov->initial_vfs, 382 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 383 384 /* Some sanity checks */ 385 if (iov->num_vfs > NUM_OF_VFS(cdev) || 386 iov->total_vfs > NUM_OF_VFS(cdev)) { 387 /* This can happen only due to a bug. In this case we set 388 * num_vfs to zero to avoid memory corruption in the code that 389 * assumes max number of vfs 390 */ 391 DP_NOTICE(cdev, 392 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 393 iov->num_vfs); 394 395 iov->num_vfs = 0; 396 iov->total_vfs = 0; 397 } 398 399 return 0; 400 } 401 402 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 403 { 404 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 405 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 406 struct qed_bulletin_content *p_bulletin_virt; 407 dma_addr_t req_p, rply_p, bulletin_p; 408 union pfvf_tlvs *p_reply_virt_addr; 409 union vfpf_tlvs *p_req_virt_addr; 410 u8 idx = 0; 411 412 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 413 414 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 415 req_p = p_iov_info->mbx_msg_phys_addr; 416 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 417 rply_p = p_iov_info->mbx_reply_phys_addr; 418 p_bulletin_virt = p_iov_info->p_bulletins; 419 bulletin_p = p_iov_info->bulletins_phys; 420 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 421 DP_ERR(p_hwfn, 422 "qed_iov_setup_vfdb called without allocating mem first\n"); 423 return; 424 } 425 426 for (idx = 0; idx < p_iov->total_vfs; idx++) { 427 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 428 u32 concrete; 429 430 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 431 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 432 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 433 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 434 435 vf->state = VF_STOPPED; 436 vf->b_init = false; 437 438 vf->bulletin.phys = idx * 439 sizeof(struct qed_bulletin_content) + 440 bulletin_p; 441 vf->bulletin.p_virt = p_bulletin_virt + idx; 442 vf->bulletin.size = sizeof(struct qed_bulletin_content); 443 444 vf->relative_vf_id = idx; 445 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 446 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 447 vf->concrete_fid = concrete; 448 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 449 (vf->abs_vf_id << 8); 450 vf->vport_id = idx + 1; 451 452 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 453 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 454 } 455 } 456 457 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 458 { 459 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 460 void **p_v_addr; 461 u16 num_vfs = 0; 462 463 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 464 465 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 466 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 467 468 /* Allocate PF Mailbox buffer (per-VF) */ 469 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 470 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 471 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 472 p_iov_info->mbx_msg_size, 473 &p_iov_info->mbx_msg_phys_addr, 474 GFP_KERNEL); 475 if (!*p_v_addr) 476 return -ENOMEM; 477 478 /* Allocate PF Mailbox Reply buffer (per-VF) */ 479 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 480 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 481 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 482 p_iov_info->mbx_reply_size, 483 &p_iov_info->mbx_reply_phys_addr, 484 GFP_KERNEL); 485 if (!*p_v_addr) 486 return -ENOMEM; 487 488 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 489 num_vfs; 490 p_v_addr = &p_iov_info->p_bulletins; 491 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 492 p_iov_info->bulletins_size, 493 &p_iov_info->bulletins_phys, 494 GFP_KERNEL); 495 if (!*p_v_addr) 496 return -ENOMEM; 497 498 DP_VERBOSE(p_hwfn, 499 QED_MSG_IOV, 500 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 501 p_iov_info->mbx_msg_virt_addr, 502 (u64) p_iov_info->mbx_msg_phys_addr, 503 p_iov_info->mbx_reply_virt_addr, 504 (u64) p_iov_info->mbx_reply_phys_addr, 505 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 506 507 return 0; 508 } 509 510 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 511 { 512 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 513 514 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 515 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 516 p_iov_info->mbx_msg_size, 517 p_iov_info->mbx_msg_virt_addr, 518 p_iov_info->mbx_msg_phys_addr); 519 520 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 521 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 522 p_iov_info->mbx_reply_size, 523 p_iov_info->mbx_reply_virt_addr, 524 p_iov_info->mbx_reply_phys_addr); 525 526 if (p_iov_info->p_bulletins) 527 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 528 p_iov_info->bulletins_size, 529 p_iov_info->p_bulletins, 530 p_iov_info->bulletins_phys); 531 } 532 533 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 534 { 535 struct qed_pf_iov *p_sriov; 536 537 if (!IS_PF_SRIOV(p_hwfn)) { 538 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 539 "No SR-IOV - no need for IOV db\n"); 540 return 0; 541 } 542 543 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 544 if (!p_sriov) 545 return -ENOMEM; 546 547 p_hwfn->pf_iov_info = p_sriov; 548 549 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 550 qed_sriov_eqe_event); 551 552 return qed_iov_allocate_vfdb(p_hwfn); 553 } 554 555 void qed_iov_setup(struct qed_hwfn *p_hwfn) 556 { 557 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 558 return; 559 560 qed_iov_setup_vfdb(p_hwfn); 561 } 562 563 void qed_iov_free(struct qed_hwfn *p_hwfn) 564 { 565 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 566 567 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 568 qed_iov_free_vfdb(p_hwfn); 569 kfree(p_hwfn->pf_iov_info); 570 } 571 } 572 573 void qed_iov_free_hw_info(struct qed_dev *cdev) 574 { 575 kfree(cdev->p_iov_info); 576 cdev->p_iov_info = NULL; 577 } 578 579 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 580 { 581 struct qed_dev *cdev = p_hwfn->cdev; 582 int pos; 583 int rc; 584 585 if (is_kdump_kernel()) 586 return 0; 587 588 if (IS_VF(p_hwfn->cdev)) 589 return 0; 590 591 /* Learn the PCI configuration */ 592 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 593 PCI_EXT_CAP_ID_SRIOV); 594 if (!pos) { 595 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 596 return 0; 597 } 598 599 /* Allocate a new struct for IOV information */ 600 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 601 if (!cdev->p_iov_info) 602 return -ENOMEM; 603 604 cdev->p_iov_info->pos = pos; 605 606 rc = qed_iov_pci_cfg_info(cdev); 607 if (rc) 608 return rc; 609 610 /* We want PF IOV to be synonemous with the existance of p_iov_info; 611 * In case the capability is published but there are no VFs, simply 612 * de-allocate the struct. 613 */ 614 if (!cdev->p_iov_info->total_vfs) { 615 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 616 "IOV capabilities, but no VFs are published\n"); 617 kfree(cdev->p_iov_info); 618 cdev->p_iov_info = NULL; 619 return 0; 620 } 621 622 /* First VF index based on offset is tricky: 623 * - If ARI is supported [likely], offset - (16 - pf_id) would 624 * provide the number for eng0. 2nd engine Vfs would begin 625 * after the first engine's VFs. 626 * - If !ARI, VFs would start on next device. 627 * so offset - (256 - pf_id) would provide the number. 628 * Utilize the fact that (256 - pf_id) is achieved only by later 629 * to differentiate between the two. 630 */ 631 632 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 633 u32 first = p_hwfn->cdev->p_iov_info->offset + 634 p_hwfn->abs_pf_id - 16; 635 636 cdev->p_iov_info->first_vf_in_pf = first; 637 638 if (QED_PATH_ID(p_hwfn)) 639 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 640 } else { 641 u32 first = p_hwfn->cdev->p_iov_info->offset + 642 p_hwfn->abs_pf_id - 256; 643 644 cdev->p_iov_info->first_vf_in_pf = first; 645 } 646 647 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 648 "First VF in hwfn 0x%08x\n", 649 cdev->p_iov_info->first_vf_in_pf); 650 651 return 0; 652 } 653 654 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 655 int vfid, bool b_fail_malicious) 656 { 657 /* Check PF supports sriov */ 658 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 659 !IS_PF_SRIOV_ALLOC(p_hwfn)) 660 return false; 661 662 /* Check VF validity */ 663 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 664 return false; 665 666 return true; 667 } 668 669 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 670 { 671 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 672 } 673 674 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 675 u16 rel_vf_id, u8 to_disable) 676 { 677 struct qed_vf_info *vf; 678 int i; 679 680 for_each_hwfn(cdev, i) { 681 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 682 683 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 684 if (!vf) 685 continue; 686 687 vf->to_disable = to_disable; 688 } 689 } 690 691 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 692 { 693 u16 i; 694 695 if (!IS_QED_SRIOV(cdev)) 696 return; 697 698 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 699 qed_iov_set_vf_to_disable(cdev, i, to_disable); 700 } 701 702 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 703 struct qed_ptt *p_ptt, u8 abs_vfid) 704 { 705 qed_wr(p_hwfn, p_ptt, 706 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 707 1 << (abs_vfid & 0x1f)); 708 } 709 710 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 711 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 712 { 713 int i; 714 715 /* Set VF masks and configuration - pretend */ 716 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 717 718 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 719 720 /* unpretend */ 721 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 722 723 /* iterate over all queues, clear sb consumer */ 724 for (i = 0; i < vf->num_sbs; i++) 725 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 726 vf->igu_sbs[i], 727 vf->opaque_fid, true); 728 } 729 730 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 731 struct qed_ptt *p_ptt, 732 struct qed_vf_info *vf, bool enable) 733 { 734 u32 igu_vf_conf; 735 736 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 737 738 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 739 740 if (enable) 741 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 742 else 743 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 744 745 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 746 747 /* unpretend */ 748 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 749 } 750 751 static int 752 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, 753 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) 754 { 755 u8 current_max = 0; 756 int i; 757 758 /* For AH onward, configuration is per-PF. Find maximum of all 759 * the currently enabled child VFs, and set the number to be that. 760 */ 761 if (!QED_IS_BB(p_hwfn->cdev)) { 762 qed_for_each_vf(p_hwfn, i) { 763 struct qed_vf_info *p_vf; 764 765 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); 766 if (!p_vf) 767 continue; 768 769 current_max = max_t(u8, current_max, p_vf->num_sbs); 770 } 771 } 772 773 if (num_sbs > current_max) 774 return qed_mcp_config_vf_msix(p_hwfn, p_ptt, 775 abs_vf_id, num_sbs); 776 777 return 0; 778 } 779 780 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 781 struct qed_ptt *p_ptt, 782 struct qed_vf_info *vf) 783 { 784 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 785 int rc; 786 787 /* It's possible VF was previously considered malicious - 788 * clear the indication even if we're only going to disable VF. 789 */ 790 vf->b_malicious = false; 791 792 if (vf->to_disable) 793 return 0; 794 795 DP_VERBOSE(p_hwfn, 796 QED_MSG_IOV, 797 "Enable internal access for vf %x [abs %x]\n", 798 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 799 800 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 801 802 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 803 804 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, 805 vf->abs_vf_id, vf->num_sbs); 806 if (rc) 807 return rc; 808 809 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 810 811 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 812 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 813 814 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 815 p_hwfn->hw_info.hw_mode); 816 817 /* unpretend */ 818 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 819 820 vf->state = VF_FREE; 821 822 return rc; 823 } 824 825 /** 826 * qed_iov_config_perm_table() - Configure the permission zone table. 827 * 828 * @p_hwfn: HW device data. 829 * @p_ptt: PTT window for writing the registers. 830 * @vf: VF info data. 831 * @enable: The actual permision for this VF. 832 * 833 * In E4, queue zone permission table size is 320x9. There 834 * are 320 VF queues for single engine device (256 for dual 835 * engine device), and each entry has the following format: 836 * {Valid, VF[7:0]} 837 */ 838 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 839 struct qed_ptt *p_ptt, 840 struct qed_vf_info *vf, u8 enable) 841 { 842 u32 reg_addr, val; 843 u16 qzone_id = 0; 844 int qid; 845 846 for (qid = 0; qid < vf->num_rxqs; qid++) { 847 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 848 &qzone_id); 849 850 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 851 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 852 qed_wr(p_hwfn, p_ptt, reg_addr, val); 853 } 854 } 855 856 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 857 struct qed_ptt *p_ptt, 858 struct qed_vf_info *vf) 859 { 860 /* Reset vf in IGU - interrupts are still disabled */ 861 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 862 863 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 864 865 /* Permission Table */ 866 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 867 } 868 869 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 870 struct qed_ptt *p_ptt, 871 struct qed_vf_info *vf, u16 num_rx_queues) 872 { 873 struct qed_igu_block *p_block; 874 struct cau_sb_entry sb_entry; 875 int qid = 0; 876 u32 val = 0; 877 878 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 879 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 880 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 881 882 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 883 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 884 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 885 886 for (qid = 0; qid < num_rx_queues; qid++) { 887 p_block = qed_get_igu_free_sb(p_hwfn, false); 888 vf->igu_sbs[qid] = p_block->igu_sb_id; 889 p_block->status &= ~QED_IGU_STATUS_FREE; 890 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 891 892 qed_wr(p_hwfn, p_ptt, 893 IGU_REG_MAPPING_MEMORY + 894 sizeof(u32) * p_block->igu_sb_id, val); 895 896 /* Configure igu sb in CAU which were marked valid */ 897 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 898 p_hwfn->rel_pf_id, vf->abs_vf_id, 1); 899 900 qed_dmae_host2grc(p_hwfn, p_ptt, 901 (u64)(uintptr_t)&sb_entry, 902 CAU_REG_SB_VAR_MEMORY + 903 p_block->igu_sb_id * sizeof(u64), 2, NULL); 904 } 905 906 vf->num_sbs = (u8) num_rx_queues; 907 908 return vf->num_sbs; 909 } 910 911 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 912 struct qed_ptt *p_ptt, 913 struct qed_vf_info *vf) 914 { 915 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 916 int idx, igu_id; 917 u32 addr, val; 918 919 /* Invalidate igu CAM lines and mark them as free */ 920 for (idx = 0; idx < vf->num_sbs; idx++) { 921 igu_id = vf->igu_sbs[idx]; 922 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 923 924 val = qed_rd(p_hwfn, p_ptt, addr); 925 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 926 qed_wr(p_hwfn, p_ptt, addr, val); 927 928 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; 929 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 930 } 931 932 vf->num_sbs = 0; 933 } 934 935 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 936 u16 vfid, 937 struct qed_mcp_link_params *params, 938 struct qed_mcp_link_state *link, 939 struct qed_mcp_link_capabilities *p_caps) 940 { 941 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 942 vfid, 943 false); 944 struct qed_bulletin_content *p_bulletin; 945 946 if (!p_vf) 947 return; 948 949 p_bulletin = p_vf->bulletin.p_virt; 950 p_bulletin->req_autoneg = params->speed.autoneg; 951 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 952 p_bulletin->req_forced_speed = params->speed.forced_speed; 953 p_bulletin->req_autoneg_pause = params->pause.autoneg; 954 p_bulletin->req_forced_rx = params->pause.forced_rx; 955 p_bulletin->req_forced_tx = params->pause.forced_tx; 956 p_bulletin->req_loopback = params->loopback_mode; 957 958 p_bulletin->link_up = link->link_up; 959 p_bulletin->speed = link->speed; 960 p_bulletin->full_duplex = link->full_duplex; 961 p_bulletin->autoneg = link->an; 962 p_bulletin->autoneg_complete = link->an_complete; 963 p_bulletin->parallel_detection = link->parallel_detection; 964 p_bulletin->pfc_enabled = link->pfc_enabled; 965 p_bulletin->partner_adv_speed = link->partner_adv_speed; 966 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 967 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 968 p_bulletin->partner_adv_pause = link->partner_adv_pause; 969 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 970 971 p_bulletin->capability_speed = p_caps->speed_capabilities; 972 } 973 974 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 975 struct qed_ptt *p_ptt, 976 struct qed_iov_vf_init_params *p_params) 977 { 978 struct qed_mcp_link_capabilities link_caps; 979 struct qed_mcp_link_params link_params; 980 struct qed_mcp_link_state link_state; 981 u8 num_of_vf_avaiable_chains = 0; 982 struct qed_vf_info *vf = NULL; 983 u16 qid, num_irqs; 984 int rc = 0; 985 u32 cids; 986 u8 i; 987 988 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 989 if (!vf) { 990 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 991 return -EINVAL; 992 } 993 994 if (vf->b_init) { 995 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 996 p_params->rel_vf_id); 997 return -EINVAL; 998 } 999 1000 /* Perform sanity checking on the requested queue_id */ 1001 for (i = 0; i < p_params->num_queues; i++) { 1002 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 1003 u16 max_vf_qzone = min_vf_qzone + 1004 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 1005 1006 qid = p_params->req_rx_queue[i]; 1007 if (qid < min_vf_qzone || qid > max_vf_qzone) { 1008 DP_NOTICE(p_hwfn, 1009 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 1010 qid, 1011 p_params->rel_vf_id, 1012 min_vf_qzone, max_vf_qzone); 1013 return -EINVAL; 1014 } 1015 1016 qid = p_params->req_tx_queue[i]; 1017 if (qid > max_vf_qzone) { 1018 DP_NOTICE(p_hwfn, 1019 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 1020 qid, p_params->rel_vf_id, max_vf_qzone); 1021 return -EINVAL; 1022 } 1023 1024 /* If client *really* wants, Tx qid can be shared with PF */ 1025 if (qid < min_vf_qzone) 1026 DP_VERBOSE(p_hwfn, 1027 QED_MSG_IOV, 1028 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1029 p_params->rel_vf_id, qid, i); 1030 } 1031 1032 /* Limit number of queues according to number of CIDs */ 1033 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1034 DP_VERBOSE(p_hwfn, 1035 QED_MSG_IOV, 1036 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1037 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1038 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1039 1040 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1041 p_ptt, 1042 vf, num_irqs); 1043 if (!num_of_vf_avaiable_chains) { 1044 DP_ERR(p_hwfn, "no available igu sbs\n"); 1045 return -ENOMEM; 1046 } 1047 1048 /* Choose queue number and index ranges */ 1049 vf->num_rxqs = num_of_vf_avaiable_chains; 1050 vf->num_txqs = num_of_vf_avaiable_chains; 1051 1052 for (i = 0; i < vf->num_rxqs; i++) { 1053 struct qed_vf_queue *p_queue = &vf->vf_queues[i]; 1054 1055 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1056 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1057 1058 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1059 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1060 vf->relative_vf_id, i, vf->igu_sbs[i], 1061 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1062 } 1063 1064 /* Update the link configuration in bulletin */ 1065 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1066 sizeof(link_params)); 1067 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1068 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1069 sizeof(link_caps)); 1070 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1071 &link_params, &link_state, &link_caps); 1072 1073 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1074 if (!rc) { 1075 vf->b_init = true; 1076 1077 if (IS_LEAD_HWFN(p_hwfn)) 1078 p_hwfn->cdev->p_iov_info->num_vfs++; 1079 } 1080 1081 return rc; 1082 } 1083 1084 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1085 struct qed_ptt *p_ptt, u16 rel_vf_id) 1086 { 1087 struct qed_mcp_link_capabilities caps; 1088 struct qed_mcp_link_params params; 1089 struct qed_mcp_link_state link; 1090 struct qed_vf_info *vf = NULL; 1091 1092 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1093 if (!vf) { 1094 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1095 return -EINVAL; 1096 } 1097 1098 if (vf->bulletin.p_virt) 1099 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1100 1101 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1102 1103 /* Get the link configuration back in bulletin so 1104 * that when VFs are re-enabled they get the actual 1105 * link configuration. 1106 */ 1107 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1108 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1109 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1110 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1111 1112 /* Forget the VF's acquisition message */ 1113 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1114 1115 /* disablng interrupts and resetting permission table was done during 1116 * vf-close, however, we could get here without going through vf_close 1117 */ 1118 /* Disable Interrupts for VF */ 1119 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1120 1121 /* Reset Permission table */ 1122 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1123 1124 vf->num_rxqs = 0; 1125 vf->num_txqs = 0; 1126 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1127 1128 if (vf->b_init) { 1129 vf->b_init = false; 1130 1131 if (IS_LEAD_HWFN(p_hwfn)) 1132 p_hwfn->cdev->p_iov_info->num_vfs--; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static bool qed_iov_tlv_supported(u16 tlvtype) 1139 { 1140 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1141 } 1142 1143 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1144 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1145 { 1146 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1147 1148 tl->type = type; 1149 tl->length = length; 1150 1151 /* Offset should keep pointing to next TLV (the end of the last) */ 1152 *offset += length; 1153 1154 /* Return a pointer to the start of the added tlv */ 1155 return *offset - length; 1156 } 1157 1158 /* list the types and lengths of the tlvs on the buffer */ 1159 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1160 { 1161 u16 i = 1, total_length = 0; 1162 struct channel_tlv *tlv; 1163 1164 do { 1165 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1166 1167 /* output tlv */ 1168 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1169 "TLV number %d: type %d, length %d\n", 1170 i, tlv->type, tlv->length); 1171 1172 if (tlv->type == CHANNEL_TLV_LIST_END) 1173 return; 1174 1175 /* Validate entry - protect against malicious VFs */ 1176 if (!tlv->length) { 1177 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1178 return; 1179 } 1180 1181 total_length += tlv->length; 1182 1183 if (total_length >= sizeof(struct tlv_buffer_size)) { 1184 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1185 return; 1186 } 1187 1188 i++; 1189 } while (1); 1190 } 1191 1192 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1193 struct qed_ptt *p_ptt, 1194 struct qed_vf_info *p_vf, 1195 u16 length, u8 status) 1196 { 1197 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1198 struct qed_dmae_params params; 1199 u8 eng_vf_id; 1200 1201 mbx->reply_virt->default_resp.hdr.status = status; 1202 1203 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1204 1205 eng_vf_id = p_vf->abs_vf_id; 1206 1207 memset(¶ms, 0, sizeof(params)); 1208 SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_VF_VALID, 0x1); 1209 params.dst_vfid = eng_vf_id; 1210 1211 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1212 mbx->req_virt->first_tlv.reply_address + 1213 sizeof(u64), 1214 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1215 ¶ms); 1216 1217 /* Once PF copies the rc to the VF, the latter can continue 1218 * and send an additional message. So we have to make sure the 1219 * channel would be re-set to ready prior to that. 1220 */ 1221 REG_WR(p_hwfn, 1222 GTT_BAR0_MAP_REG_USDM_RAM + 1223 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1224 1225 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1226 mbx->req_virt->first_tlv.reply_address, 1227 sizeof(u64) / 4, ¶ms); 1228 } 1229 1230 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1231 enum qed_iov_vport_update_flag flag) 1232 { 1233 switch (flag) { 1234 case QED_IOV_VP_UPDATE_ACTIVATE: 1235 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1236 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1237 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1238 case QED_IOV_VP_UPDATE_TX_SWITCH: 1239 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1240 case QED_IOV_VP_UPDATE_MCAST: 1241 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1242 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1243 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1244 case QED_IOV_VP_UPDATE_RSS: 1245 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1246 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1247 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1248 case QED_IOV_VP_UPDATE_SGE_TPA: 1249 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1250 default: 1251 return 0; 1252 } 1253 } 1254 1255 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1256 struct qed_vf_info *p_vf, 1257 struct qed_iov_vf_mbx *p_mbx, 1258 u8 status, 1259 u16 tlvs_mask, u16 tlvs_accepted) 1260 { 1261 struct pfvf_def_resp_tlv *resp; 1262 u16 size, total_len, i; 1263 1264 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1265 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1266 size = sizeof(struct pfvf_def_resp_tlv); 1267 total_len = size; 1268 1269 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1270 1271 /* Prepare response for all extended tlvs if they are found by PF */ 1272 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1273 if (!(tlvs_mask & BIT(i))) 1274 continue; 1275 1276 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1277 qed_iov_vport_to_tlv(p_hwfn, i), size); 1278 1279 if (tlvs_accepted & BIT(i)) 1280 resp->hdr.status = status; 1281 else 1282 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1283 1284 DP_VERBOSE(p_hwfn, 1285 QED_MSG_IOV, 1286 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1287 p_vf->relative_vf_id, 1288 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1289 1290 total_len += size; 1291 } 1292 1293 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1294 sizeof(struct channel_list_end_tlv)); 1295 1296 return total_len; 1297 } 1298 1299 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1300 struct qed_ptt *p_ptt, 1301 struct qed_vf_info *vf_info, 1302 u16 type, u16 length, u8 status) 1303 { 1304 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1305 1306 mbx->offset = (u8 *)mbx->reply_virt; 1307 1308 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1309 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1310 sizeof(struct channel_list_end_tlv)); 1311 1312 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1313 } 1314 1315 static struct 1316 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1317 u16 relative_vf_id, 1318 bool b_enabled_only) 1319 { 1320 struct qed_vf_info *vf = NULL; 1321 1322 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1323 if (!vf) 1324 return NULL; 1325 1326 return &vf->p_vf_info; 1327 } 1328 1329 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1330 { 1331 struct qed_public_vf_info *vf_info; 1332 1333 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1334 1335 if (!vf_info) 1336 return; 1337 1338 /* Clear the VF mac */ 1339 eth_zero_addr(vf_info->mac); 1340 1341 vf_info->rx_accept_mode = 0; 1342 vf_info->tx_accept_mode = 0; 1343 } 1344 1345 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1346 struct qed_vf_info *p_vf) 1347 { 1348 u32 i, j; 1349 1350 p_vf->vf_bulletin = 0; 1351 p_vf->vport_instance = 0; 1352 p_vf->configured_features = 0; 1353 1354 /* If VF previously requested less resources, go back to default */ 1355 p_vf->num_rxqs = p_vf->num_sbs; 1356 p_vf->num_txqs = p_vf->num_sbs; 1357 1358 p_vf->num_active_rxqs = 0; 1359 1360 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1361 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1362 1363 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1364 if (!p_queue->cids[j].p_cid) 1365 continue; 1366 1367 qed_eth_queue_cid_release(p_hwfn, 1368 p_queue->cids[j].p_cid); 1369 p_queue->cids[j].p_cid = NULL; 1370 } 1371 } 1372 1373 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1374 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1375 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1376 } 1377 1378 /* Returns either 0, or log(size) */ 1379 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, 1380 struct qed_ptt *p_ptt) 1381 { 1382 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1383 1384 if (val) 1385 return val + 11; 1386 return 0; 1387 } 1388 1389 static void 1390 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, 1391 struct qed_ptt *p_ptt, 1392 struct qed_vf_info *p_vf, 1393 struct vf_pf_resc_request *p_req, 1394 struct pf_vf_resc *p_resp) 1395 { 1396 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1397 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - 1398 qed_db_addr_vf(0, DQ_DEMS_LEGACY); 1399 u32 bar_size; 1400 1401 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); 1402 1403 /* If VF didn't bother asking for QIDs than don't bother limiting 1404 * number of CIDs. The VF doesn't care about the number, and this 1405 * has the likely result of causing an additional acquisition. 1406 */ 1407 if (!(p_vf->acquire.vfdev_info.capabilities & 1408 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1409 return; 1410 1411 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1412 * that would make sure doorbells for all CIDs fall within the bar. 1413 * If it doesn't, make sure regview window is sufficient. 1414 */ 1415 if (p_vf->acquire.vfdev_info.capabilities & 1416 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1417 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1418 if (bar_size) 1419 bar_size = 1 << bar_size; 1420 1421 if (p_hwfn->cdev->num_hwfns > 1) 1422 bar_size /= 2; 1423 } else { 1424 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1425 } 1426 1427 if (bar_size / db_size < 256) 1428 p_resp->num_cids = min_t(u8, p_resp->num_cids, 1429 (u8)(bar_size / db_size)); 1430 } 1431 1432 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1433 struct qed_ptt *p_ptt, 1434 struct qed_vf_info *p_vf, 1435 struct vf_pf_resc_request *p_req, 1436 struct pf_vf_resc *p_resp) 1437 { 1438 u8 i; 1439 1440 /* Queue related information */ 1441 p_resp->num_rxqs = p_vf->num_rxqs; 1442 p_resp->num_txqs = p_vf->num_txqs; 1443 p_resp->num_sbs = p_vf->num_sbs; 1444 1445 for (i = 0; i < p_resp->num_sbs; i++) { 1446 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1447 p_resp->hw_sbs[i].sb_qid = 0; 1448 } 1449 1450 /* These fields are filled for backward compatibility. 1451 * Unused by modern vfs. 1452 */ 1453 for (i = 0; i < p_resp->num_rxqs; i++) { 1454 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1455 (u16 *)&p_resp->hw_qid[i]); 1456 p_resp->cid[i] = i; 1457 } 1458 1459 /* Filter related information */ 1460 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1461 p_req->num_mac_filters); 1462 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1463 p_req->num_vlan_filters); 1464 1465 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1466 1467 /* This isn't really needed/enforced, but some legacy VFs might depend 1468 * on the correct filling of this field. 1469 */ 1470 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1471 1472 /* Validate sufficient resources for VF */ 1473 if (p_resp->num_rxqs < p_req->num_rxqs || 1474 p_resp->num_txqs < p_req->num_txqs || 1475 p_resp->num_sbs < p_req->num_sbs || 1476 p_resp->num_mac_filters < p_req->num_mac_filters || 1477 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1478 p_resp->num_mc_filters < p_req->num_mc_filters || 1479 p_resp->num_cids < p_req->num_cids) { 1480 DP_VERBOSE(p_hwfn, 1481 QED_MSG_IOV, 1482 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1483 p_vf->abs_vf_id, 1484 p_req->num_rxqs, 1485 p_resp->num_rxqs, 1486 p_req->num_rxqs, 1487 p_resp->num_txqs, 1488 p_req->num_sbs, 1489 p_resp->num_sbs, 1490 p_req->num_mac_filters, 1491 p_resp->num_mac_filters, 1492 p_req->num_vlan_filters, 1493 p_resp->num_vlan_filters, 1494 p_req->num_mc_filters, 1495 p_resp->num_mc_filters, 1496 p_req->num_cids, p_resp->num_cids); 1497 1498 /* Some legacy OSes are incapable of correctly handling this 1499 * failure. 1500 */ 1501 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1502 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1503 (p_vf->acquire.vfdev_info.os_type == 1504 VFPF_ACQUIRE_OS_WINDOWS)) 1505 return PFVF_STATUS_SUCCESS; 1506 1507 return PFVF_STATUS_NO_RESOURCE; 1508 } 1509 1510 return PFVF_STATUS_SUCCESS; 1511 } 1512 1513 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1514 struct pfvf_stats_info *p_stats) 1515 { 1516 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1517 offsetof(struct mstorm_vf_zone, 1518 non_trigger.eth_queue_stat); 1519 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1520 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1521 offsetof(struct ustorm_vf_zone, 1522 non_trigger.eth_queue_stat); 1523 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1524 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1525 offsetof(struct pstorm_vf_zone, 1526 non_trigger.eth_queue_stat); 1527 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1528 p_stats->tstats.address = 0; 1529 p_stats->tstats.len = 0; 1530 } 1531 1532 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1533 struct qed_ptt *p_ptt, 1534 struct qed_vf_info *vf) 1535 { 1536 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1537 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1538 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1539 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1540 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1541 struct pf_vf_resc *resc = &resp->resc; 1542 int rc; 1543 1544 memset(resp, 0, sizeof(*resp)); 1545 1546 /* Write the PF version so that VF would know which version 1547 * is supported - might be later overriden. This guarantees that 1548 * VF could recognize legacy PF based on lack of versions in reply. 1549 */ 1550 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1551 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1552 1553 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1554 DP_VERBOSE(p_hwfn, 1555 QED_MSG_IOV, 1556 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1557 vf->abs_vf_id, vf->state); 1558 goto out; 1559 } 1560 1561 /* Validate FW compatibility */ 1562 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1563 if (req->vfdev_info.capabilities & 1564 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1565 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1566 1567 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1568 "VF[%d] is pre-fastpath HSI\n", 1569 vf->abs_vf_id); 1570 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1571 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1572 } else { 1573 DP_INFO(p_hwfn, 1574 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's fastpath HSI %02x.%02x\n", 1575 vf->abs_vf_id, 1576 req->vfdev_info.eth_fp_hsi_major, 1577 req->vfdev_info.eth_fp_hsi_minor, 1578 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1579 1580 goto out; 1581 } 1582 } 1583 1584 /* On 100g PFs, prevent old VFs from loading */ 1585 if ((p_hwfn->cdev->num_hwfns > 1) && 1586 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1587 DP_INFO(p_hwfn, 1588 "VF[%d] is running an old driver that doesn't support 100g\n", 1589 vf->abs_vf_id); 1590 goto out; 1591 } 1592 1593 /* Store the acquire message */ 1594 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1595 1596 vf->opaque_fid = req->vfdev_info.opaque_fid; 1597 1598 vf->vf_bulletin = req->bulletin_addr; 1599 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1600 vf->bulletin.size : req->bulletin_size; 1601 1602 /* fill in pfdev info */ 1603 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1604 pfdev_info->db_size = 0; 1605 pfdev_info->indices_per_sb = PIS_PER_SB_E4; 1606 1607 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1608 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1609 if (p_hwfn->cdev->num_hwfns > 1) 1610 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1611 1612 /* Share our ability to use multiple queue-ids only with VFs 1613 * that request it. 1614 */ 1615 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1616 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1617 1618 /* Share the sizes of the bars with VF */ 1619 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1620 1621 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1622 1623 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1624 1625 pfdev_info->fw_major = FW_MAJOR_VERSION; 1626 pfdev_info->fw_minor = FW_MINOR_VERSION; 1627 pfdev_info->fw_rev = FW_REVISION_VERSION; 1628 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1629 1630 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1631 * this field. 1632 */ 1633 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1634 req->vfdev_info.eth_fp_hsi_minor); 1635 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1636 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1637 1638 pfdev_info->dev_type = p_hwfn->cdev->type; 1639 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1640 1641 /* Fill resources available to VF; Make sure there are enough to 1642 * satisfy the VF's request. 1643 */ 1644 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1645 &req->resc_request, resc); 1646 if (vfpf_status != PFVF_STATUS_SUCCESS) 1647 goto out; 1648 1649 /* Start the VF in FW */ 1650 rc = qed_sp_vf_start(p_hwfn, vf); 1651 if (rc) { 1652 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1653 vfpf_status = PFVF_STATUS_FAILURE; 1654 goto out; 1655 } 1656 1657 /* Fill agreed size of bulletin board in response */ 1658 resp->bulletin_size = vf->bulletin.size; 1659 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1660 1661 DP_VERBOSE(p_hwfn, 1662 QED_MSG_IOV, 1663 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1664 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1665 vf->abs_vf_id, 1666 resp->pfdev_info.chip_num, 1667 resp->pfdev_info.db_size, 1668 resp->pfdev_info.indices_per_sb, 1669 resp->pfdev_info.capabilities, 1670 resc->num_rxqs, 1671 resc->num_txqs, 1672 resc->num_sbs, 1673 resc->num_mac_filters, 1674 resc->num_vlan_filters); 1675 vf->state = VF_ACQUIRED; 1676 1677 /* Prepare Response */ 1678 out: 1679 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1680 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1681 } 1682 1683 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1684 struct qed_vf_info *p_vf, bool val) 1685 { 1686 struct qed_sp_vport_update_params params; 1687 int rc; 1688 1689 if (val == p_vf->spoof_chk) { 1690 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1691 "Spoofchk value[%d] is already configured\n", val); 1692 return 0; 1693 } 1694 1695 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1696 params.opaque_fid = p_vf->opaque_fid; 1697 params.vport_id = p_vf->vport_id; 1698 params.update_anti_spoofing_en_flg = 1; 1699 params.anti_spoofing_en = val; 1700 1701 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1702 if (!rc) { 1703 p_vf->spoof_chk = val; 1704 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1705 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1706 "Spoofchk val[%d] configured\n", val); 1707 } else { 1708 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1709 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1710 val, p_vf->relative_vf_id); 1711 } 1712 1713 return rc; 1714 } 1715 1716 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1717 struct qed_vf_info *p_vf) 1718 { 1719 struct qed_filter_ucast filter; 1720 int rc = 0; 1721 int i; 1722 1723 memset(&filter, 0, sizeof(filter)); 1724 filter.is_rx_filter = 1; 1725 filter.is_tx_filter = 1; 1726 filter.vport_to_add_to = p_vf->vport_id; 1727 filter.opcode = QED_FILTER_ADD; 1728 1729 /* Reconfigure vlans */ 1730 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1731 if (!p_vf->shadow_config.vlans[i].used) 1732 continue; 1733 1734 filter.type = QED_FILTER_VLAN; 1735 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1736 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1737 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1738 filter.vlan, p_vf->relative_vf_id); 1739 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1740 &filter, QED_SPQ_MODE_CB, NULL); 1741 if (rc) { 1742 DP_NOTICE(p_hwfn, 1743 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1744 filter.vlan, p_vf->relative_vf_id); 1745 break; 1746 } 1747 } 1748 1749 return rc; 1750 } 1751 1752 static int 1753 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1754 struct qed_vf_info *p_vf, u64 events) 1755 { 1756 int rc = 0; 1757 1758 if ((events & BIT(VLAN_ADDR_FORCED)) && 1759 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1760 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1761 1762 return rc; 1763 } 1764 1765 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1766 struct qed_vf_info *p_vf, u64 events) 1767 { 1768 int rc = 0; 1769 struct qed_filter_ucast filter; 1770 1771 if (!p_vf->vport_instance) 1772 return -EINVAL; 1773 1774 if ((events & BIT(MAC_ADDR_FORCED)) || 1775 p_vf->p_vf_info.is_trusted_configured) { 1776 /* Since there's no way [currently] of removing the MAC, 1777 * we can always assume this means we need to force it. 1778 */ 1779 memset(&filter, 0, sizeof(filter)); 1780 filter.type = QED_FILTER_MAC; 1781 filter.opcode = QED_FILTER_REPLACE; 1782 filter.is_rx_filter = 1; 1783 filter.is_tx_filter = 1; 1784 filter.vport_to_add_to = p_vf->vport_id; 1785 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1786 1787 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1788 &filter, QED_SPQ_MODE_CB, NULL); 1789 if (rc) { 1790 DP_NOTICE(p_hwfn, 1791 "PF failed to configure MAC for VF\n"); 1792 return rc; 1793 } 1794 if (p_vf->p_vf_info.is_trusted_configured) 1795 p_vf->configured_features |= 1796 BIT(VFPF_BULLETIN_MAC_ADDR); 1797 else 1798 p_vf->configured_features |= 1799 BIT(MAC_ADDR_FORCED); 1800 } 1801 1802 if (events & BIT(VLAN_ADDR_FORCED)) { 1803 struct qed_sp_vport_update_params vport_update; 1804 u8 removal; 1805 int i; 1806 1807 memset(&filter, 0, sizeof(filter)); 1808 filter.type = QED_FILTER_VLAN; 1809 filter.is_rx_filter = 1; 1810 filter.is_tx_filter = 1; 1811 filter.vport_to_add_to = p_vf->vport_id; 1812 filter.vlan = p_vf->bulletin.p_virt->pvid; 1813 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1814 QED_FILTER_FLUSH; 1815 1816 /* Send the ramrod */ 1817 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1818 &filter, QED_SPQ_MODE_CB, NULL); 1819 if (rc) { 1820 DP_NOTICE(p_hwfn, 1821 "PF failed to configure VLAN for VF\n"); 1822 return rc; 1823 } 1824 1825 /* Update the default-vlan & silent vlan stripping */ 1826 memset(&vport_update, 0, sizeof(vport_update)); 1827 vport_update.opaque_fid = p_vf->opaque_fid; 1828 vport_update.vport_id = p_vf->vport_id; 1829 vport_update.update_default_vlan_enable_flg = 1; 1830 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1831 vport_update.update_default_vlan_flg = 1; 1832 vport_update.default_vlan = filter.vlan; 1833 1834 vport_update.update_inner_vlan_removal_flg = 1; 1835 removal = filter.vlan ? 1 1836 : p_vf->shadow_config.inner_vlan_removal; 1837 vport_update.inner_vlan_removal_flg = removal; 1838 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1839 rc = qed_sp_vport_update(p_hwfn, 1840 &vport_update, 1841 QED_SPQ_MODE_EBLOCK, NULL); 1842 if (rc) { 1843 DP_NOTICE(p_hwfn, 1844 "PF failed to configure VF vport for vlan\n"); 1845 return rc; 1846 } 1847 1848 /* Update all the Rx queues */ 1849 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1850 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1851 struct qed_queue_cid *p_cid = NULL; 1852 1853 /* There can be at most 1 Rx queue on qzone. Find it */ 1854 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 1855 if (!p_cid) 1856 continue; 1857 1858 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1859 (void **)&p_cid, 1860 1, 0, 1, 1861 QED_SPQ_MODE_EBLOCK, 1862 NULL); 1863 if (rc) { 1864 DP_NOTICE(p_hwfn, 1865 "Failed to send Rx update fo queue[0x%04x]\n", 1866 p_cid->rel.queue_id); 1867 return rc; 1868 } 1869 } 1870 1871 if (filter.vlan) 1872 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1873 else 1874 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1875 } 1876 1877 /* If forced features are terminated, we need to configure the shadow 1878 * configuration back again. 1879 */ 1880 if (events) 1881 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1882 1883 return rc; 1884 } 1885 1886 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1887 struct qed_ptt *p_ptt, 1888 struct qed_vf_info *vf) 1889 { 1890 struct qed_sp_vport_start_params params = { 0 }; 1891 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1892 struct vfpf_vport_start_tlv *start; 1893 u8 status = PFVF_STATUS_SUCCESS; 1894 struct qed_vf_info *vf_info; 1895 u64 *p_bitmap; 1896 int sb_id; 1897 int rc; 1898 1899 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1900 if (!vf_info) { 1901 DP_NOTICE(p_hwfn->cdev, 1902 "Failed to get VF info, invalid vfid [%d]\n", 1903 vf->relative_vf_id); 1904 return; 1905 } 1906 1907 vf->state = VF_ENABLED; 1908 start = &mbx->req_virt->start_vport; 1909 1910 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1911 1912 /* Initialize Status block in CAU */ 1913 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1914 if (!start->sb_addr[sb_id]) { 1915 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1916 "VF[%d] did not fill the address of SB %d\n", 1917 vf->relative_vf_id, sb_id); 1918 break; 1919 } 1920 1921 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1922 start->sb_addr[sb_id], 1923 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1924 } 1925 1926 vf->mtu = start->mtu; 1927 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1928 1929 /* Take into consideration configuration forced by hypervisor; 1930 * If none is configured, use the supplied VF values [for old 1931 * vfs that would still be fine, since they passed '0' as padding]. 1932 */ 1933 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1934 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1935 u8 vf_req = start->only_untagged; 1936 1937 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1938 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1939 } 1940 1941 params.tpa_mode = start->tpa_mode; 1942 params.remove_inner_vlan = start->inner_vlan_removal; 1943 params.tx_switching = true; 1944 1945 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1946 params.drop_ttl0 = false; 1947 params.concrete_fid = vf->concrete_fid; 1948 params.opaque_fid = vf->opaque_fid; 1949 params.vport_id = vf->vport_id; 1950 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1951 params.mtu = vf->mtu; 1952 1953 /* Non trusted VFs should enable control frame filtering */ 1954 params.check_mac = !vf->p_vf_info.is_trusted_configured; 1955 1956 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1957 if (rc) { 1958 DP_ERR(p_hwfn, 1959 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1960 status = PFVF_STATUS_FAILURE; 1961 } else { 1962 vf->vport_instance++; 1963 1964 /* Force configuration if needed on the newly opened vport */ 1965 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1966 1967 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1968 } 1969 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1970 sizeof(struct pfvf_def_resp_tlv), status); 1971 } 1972 1973 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1974 struct qed_ptt *p_ptt, 1975 struct qed_vf_info *vf) 1976 { 1977 u8 status = PFVF_STATUS_SUCCESS; 1978 int rc; 1979 1980 vf->vport_instance--; 1981 vf->spoof_chk = false; 1982 1983 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 1984 (qed_iov_validate_active_txq(p_hwfn, vf))) { 1985 vf->b_malicious = true; 1986 DP_NOTICE(p_hwfn, 1987 "VF [%02x] - considered malicious; Unable to stop RX/TX queues\n", 1988 vf->abs_vf_id); 1989 status = PFVF_STATUS_MALICIOUS; 1990 goto out; 1991 } 1992 1993 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 1994 if (rc) { 1995 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 1996 rc); 1997 status = PFVF_STATUS_FAILURE; 1998 } 1999 2000 /* Forget the configuration on the vport */ 2001 vf->configured_features = 0; 2002 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2003 2004 out: 2005 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2006 sizeof(struct pfvf_def_resp_tlv), status); 2007 } 2008 2009 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 2010 struct qed_ptt *p_ptt, 2011 struct qed_vf_info *vf, 2012 u8 status, bool b_legacy) 2013 { 2014 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2015 struct pfvf_start_queue_resp_tlv *p_tlv; 2016 struct vfpf_start_rxq_tlv *req; 2017 u16 length; 2018 2019 mbx->offset = (u8 *)mbx->reply_virt; 2020 2021 /* Taking a bigger struct instead of adding a TLV to list was a 2022 * mistake, but one which we're now stuck with, as some older 2023 * clients assume the size of the previous response. 2024 */ 2025 if (!b_legacy) 2026 length = sizeof(*p_tlv); 2027 else 2028 length = sizeof(struct pfvf_def_resp_tlv); 2029 2030 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 2031 length); 2032 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2033 sizeof(struct channel_list_end_tlv)); 2034 2035 /* Update the TLV with the response */ 2036 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2037 req = &mbx->req_virt->start_rxq; 2038 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2039 offsetof(struct mstorm_vf_zone, 2040 non_trigger.eth_rx_queue_producers) + 2041 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2042 } 2043 2044 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2045 } 2046 2047 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, 2048 struct qed_vf_info *p_vf, bool b_is_tx) 2049 { 2050 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2051 struct vfpf_qid_tlv *p_qid_tlv; 2052 2053 /* Search for the qid if the VF published its going to provide it */ 2054 if (!(p_vf->acquire.vfdev_info.capabilities & 2055 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2056 if (b_is_tx) 2057 return QED_IOV_LEGACY_QID_TX; 2058 else 2059 return QED_IOV_LEGACY_QID_RX; 2060 } 2061 2062 p_qid_tlv = (struct vfpf_qid_tlv *) 2063 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2064 CHANNEL_TLV_QID); 2065 if (!p_qid_tlv) { 2066 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2067 "VF[%2x]: Failed to provide qid\n", 2068 p_vf->relative_vf_id); 2069 2070 return QED_IOV_QID_INVALID; 2071 } 2072 2073 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2074 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2075 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2076 p_vf->relative_vf_id, p_qid_tlv->qid); 2077 return QED_IOV_QID_INVALID; 2078 } 2079 2080 return p_qid_tlv->qid; 2081 } 2082 2083 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 2084 struct qed_ptt *p_ptt, 2085 struct qed_vf_info *vf) 2086 { 2087 struct qed_queue_start_common_params params; 2088 struct qed_queue_cid_vf_params vf_params; 2089 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2090 u8 status = PFVF_STATUS_NO_RESOURCE; 2091 u8 qid_usage_idx, vf_legacy = 0; 2092 struct vfpf_start_rxq_tlv *req; 2093 struct qed_vf_queue *p_queue; 2094 struct qed_queue_cid *p_cid; 2095 struct qed_sb_info sb_dummy; 2096 int rc; 2097 2098 req = &mbx->req_virt->start_rxq; 2099 2100 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2101 QED_IOV_VALIDATE_Q_DISABLE) || 2102 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2103 goto out; 2104 2105 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2106 if (qid_usage_idx == QED_IOV_QID_INVALID) 2107 goto out; 2108 2109 p_queue = &vf->vf_queues[req->rx_qid]; 2110 if (p_queue->cids[qid_usage_idx].p_cid) 2111 goto out; 2112 2113 vf_legacy = qed_vf_calculate_legacy(vf); 2114 2115 /* Acquire a new queue-cid */ 2116 memset(¶ms, 0, sizeof(params)); 2117 params.queue_id = p_queue->fw_rx_qid; 2118 params.vport_id = vf->vport_id; 2119 params.stats_id = vf->abs_vf_id + 0x10; 2120 /* Since IGU index is passed via sb_info, construct a dummy one */ 2121 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2122 sb_dummy.igu_sb_id = req->hw_sb; 2123 params.p_sb = &sb_dummy; 2124 params.sb_idx = req->sb_index; 2125 2126 memset(&vf_params, 0, sizeof(vf_params)); 2127 vf_params.vfid = vf->relative_vf_id; 2128 vf_params.vf_qid = (u8)req->rx_qid; 2129 vf_params.vf_legacy = vf_legacy; 2130 vf_params.qid_usage_idx = qid_usage_idx; 2131 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2132 ¶ms, true, &vf_params); 2133 if (!p_cid) 2134 goto out; 2135 2136 /* Legacy VFs have their Producers in a different location, which they 2137 * calculate on their own and clean the producer prior to this. 2138 */ 2139 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) 2140 REG_WR(p_hwfn, 2141 GTT_BAR0_MAP_REG_MSDM_RAM + 2142 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2143 0); 2144 2145 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, 2146 req->bd_max_bytes, 2147 req->rxq_addr, 2148 req->cqe_pbl_addr, req->cqe_pbl_size); 2149 if (rc) { 2150 status = PFVF_STATUS_FAILURE; 2151 qed_eth_queue_cid_release(p_hwfn, p_cid); 2152 } else { 2153 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2154 p_queue->cids[qid_usage_idx].b_is_tx = false; 2155 status = PFVF_STATUS_SUCCESS; 2156 vf->num_active_rxqs++; 2157 } 2158 2159 out: 2160 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2161 !!(vf_legacy & 2162 QED_QCID_LEGACY_VF_RX_PROD)); 2163 } 2164 2165 static void 2166 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2167 struct qed_tunnel_info *p_tun, 2168 u16 tunn_feature_mask) 2169 { 2170 p_resp->tunn_feature_mask = tunn_feature_mask; 2171 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2172 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2173 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2174 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2175 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2176 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2177 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2178 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2179 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2180 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2181 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2182 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2183 } 2184 2185 static void 2186 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2187 struct qed_tunn_update_type *p_tun, 2188 enum qed_tunn_mode mask, u8 tun_cls) 2189 { 2190 if (p_req->tun_mode_update_mask & BIT(mask)) { 2191 p_tun->b_update_mode = true; 2192 2193 if (p_req->tunn_mode & BIT(mask)) 2194 p_tun->b_mode_enabled = true; 2195 } 2196 2197 p_tun->tun_cls = tun_cls; 2198 } 2199 2200 static void 2201 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2202 struct qed_tunn_update_type *p_tun, 2203 struct qed_tunn_update_udp_port *p_port, 2204 enum qed_tunn_mode mask, 2205 u8 tun_cls, u8 update_port, u16 port) 2206 { 2207 if (update_port) { 2208 p_port->b_update_port = true; 2209 p_port->port = port; 2210 } 2211 2212 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2213 } 2214 2215 static bool 2216 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2217 { 2218 bool b_update_requested = false; 2219 2220 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2221 p_req->update_geneve_port || p_req->update_vxlan_port) 2222 b_update_requested = true; 2223 2224 return b_update_requested; 2225 } 2226 2227 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2228 { 2229 if (tun->b_update_mode && !tun->b_mode_enabled) { 2230 tun->b_update_mode = false; 2231 *rc = -EINVAL; 2232 } 2233 } 2234 2235 static int 2236 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2237 u16 *tun_features, bool *update, 2238 struct qed_tunnel_info *tun_src) 2239 { 2240 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2241 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2242 u16 bultn_vxlan_port, bultn_geneve_port; 2243 void *cookie = p_hwfn->cdev->ops_cookie; 2244 int i, rc = 0; 2245 2246 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2247 bultn_vxlan_port = tun->vxlan_port.port; 2248 bultn_geneve_port = tun->geneve_port.port; 2249 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2250 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2251 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2252 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2253 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2254 2255 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2256 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2257 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2258 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2259 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2260 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2261 tun_src->b_update_rx_cls = false; 2262 tun_src->b_update_tx_cls = false; 2263 rc = -EINVAL; 2264 } 2265 2266 if (tun_src->vxlan_port.b_update_port) { 2267 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2268 tun_src->vxlan_port.b_update_port = false; 2269 } else { 2270 *update = true; 2271 bultn_vxlan_port = tun_src->vxlan_port.port; 2272 } 2273 } 2274 2275 if (tun_src->geneve_port.b_update_port) { 2276 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2277 tun_src->geneve_port.b_update_port = false; 2278 } else { 2279 *update = true; 2280 bultn_geneve_port = tun_src->geneve_port.port; 2281 } 2282 } 2283 2284 qed_for_each_vf(p_hwfn, i) { 2285 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2286 bultn_geneve_port); 2287 } 2288 2289 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2290 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2291 2292 return rc; 2293 } 2294 2295 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2296 struct qed_ptt *p_ptt, 2297 struct qed_vf_info *p_vf) 2298 { 2299 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2300 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2301 struct pfvf_update_tunn_param_tlv *p_resp; 2302 struct vfpf_update_tunn_param_tlv *p_req; 2303 u8 status = PFVF_STATUS_SUCCESS; 2304 bool b_update_required = false; 2305 struct qed_tunnel_info tunn; 2306 u16 tunn_feature_mask = 0; 2307 int i, rc = 0; 2308 2309 mbx->offset = (u8 *)mbx->reply_virt; 2310 2311 memset(&tunn, 0, sizeof(tunn)); 2312 p_req = &mbx->req_virt->tunn_param_update; 2313 2314 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2315 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2316 "No tunnel update requested by VF\n"); 2317 status = PFVF_STATUS_FAILURE; 2318 goto send_resp; 2319 } 2320 2321 tunn.b_update_rx_cls = p_req->update_tun_cls; 2322 tunn.b_update_tx_cls = p_req->update_tun_cls; 2323 2324 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2325 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2326 p_req->update_vxlan_port, 2327 p_req->vxlan_port); 2328 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2329 QED_MODE_L2GENEVE_TUNN, 2330 p_req->l2geneve_clss, 2331 p_req->update_geneve_port, 2332 p_req->geneve_port); 2333 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2334 QED_MODE_IPGENEVE_TUNN, 2335 p_req->ipgeneve_clss); 2336 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2337 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2338 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2339 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2340 2341 /* If PF modifies VF's req then it should 2342 * still return an error in case of partial configuration 2343 * or modified configuration as opposed to requested one. 2344 */ 2345 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2346 &b_update_required, &tunn); 2347 2348 if (rc) 2349 status = PFVF_STATUS_FAILURE; 2350 2351 /* If QED client is willing to update anything ? */ 2352 if (b_update_required) { 2353 u16 geneve_port; 2354 2355 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2356 QED_SPQ_MODE_EBLOCK, NULL); 2357 if (rc) 2358 status = PFVF_STATUS_FAILURE; 2359 2360 geneve_port = p_tun->geneve_port.port; 2361 qed_for_each_vf(p_hwfn, i) { 2362 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2363 p_tun->vxlan_port.port, 2364 geneve_port); 2365 } 2366 } 2367 2368 send_resp: 2369 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2370 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2371 2372 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2373 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2374 sizeof(struct channel_list_end_tlv)); 2375 2376 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2377 } 2378 2379 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2380 struct qed_ptt *p_ptt, 2381 struct qed_vf_info *p_vf, 2382 u32 cid, u8 status) 2383 { 2384 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2385 struct pfvf_start_queue_resp_tlv *p_tlv; 2386 bool b_legacy = false; 2387 u16 length; 2388 2389 mbx->offset = (u8 *)mbx->reply_virt; 2390 2391 /* Taking a bigger struct instead of adding a TLV to list was a 2392 * mistake, but one which we're now stuck with, as some older 2393 * clients assume the size of the previous response. 2394 */ 2395 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2396 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2397 b_legacy = true; 2398 2399 if (!b_legacy) 2400 length = sizeof(*p_tlv); 2401 else 2402 length = sizeof(struct pfvf_def_resp_tlv); 2403 2404 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2405 length); 2406 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2407 sizeof(struct channel_list_end_tlv)); 2408 2409 /* Update the TLV with the response */ 2410 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2411 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); 2412 2413 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2414 } 2415 2416 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2417 struct qed_ptt *p_ptt, 2418 struct qed_vf_info *vf) 2419 { 2420 struct qed_queue_start_common_params params; 2421 struct qed_queue_cid_vf_params vf_params; 2422 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2423 u8 status = PFVF_STATUS_NO_RESOURCE; 2424 struct vfpf_start_txq_tlv *req; 2425 struct qed_vf_queue *p_queue; 2426 struct qed_queue_cid *p_cid; 2427 struct qed_sb_info sb_dummy; 2428 u8 qid_usage_idx, vf_legacy; 2429 u32 cid = 0; 2430 int rc; 2431 u16 pq; 2432 2433 memset(¶ms, 0, sizeof(params)); 2434 req = &mbx->req_virt->start_txq; 2435 2436 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2437 QED_IOV_VALIDATE_Q_NA) || 2438 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2439 goto out; 2440 2441 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2442 if (qid_usage_idx == QED_IOV_QID_INVALID) 2443 goto out; 2444 2445 p_queue = &vf->vf_queues[req->tx_qid]; 2446 if (p_queue->cids[qid_usage_idx].p_cid) 2447 goto out; 2448 2449 vf_legacy = qed_vf_calculate_legacy(vf); 2450 2451 /* Acquire a new queue-cid */ 2452 params.queue_id = p_queue->fw_tx_qid; 2453 params.vport_id = vf->vport_id; 2454 params.stats_id = vf->abs_vf_id + 0x10; 2455 2456 /* Since IGU index is passed via sb_info, construct a dummy one */ 2457 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2458 sb_dummy.igu_sb_id = req->hw_sb; 2459 params.p_sb = &sb_dummy; 2460 params.sb_idx = req->sb_index; 2461 2462 memset(&vf_params, 0, sizeof(vf_params)); 2463 vf_params.vfid = vf->relative_vf_id; 2464 vf_params.vf_qid = (u8)req->tx_qid; 2465 vf_params.vf_legacy = vf_legacy; 2466 vf_params.qid_usage_idx = qid_usage_idx; 2467 2468 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2469 ¶ms, false, &vf_params); 2470 if (!p_cid) 2471 goto out; 2472 2473 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2474 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, 2475 req->pbl_addr, req->pbl_size, pq); 2476 if (rc) { 2477 status = PFVF_STATUS_FAILURE; 2478 qed_eth_queue_cid_release(p_hwfn, p_cid); 2479 } else { 2480 status = PFVF_STATUS_SUCCESS; 2481 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2482 p_queue->cids[qid_usage_idx].b_is_tx = true; 2483 cid = p_cid->cid; 2484 } 2485 2486 out: 2487 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); 2488 } 2489 2490 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2491 struct qed_vf_info *vf, 2492 u16 rxq_id, 2493 u8 qid_usage_idx, bool cqe_completion) 2494 { 2495 struct qed_vf_queue *p_queue; 2496 int rc = 0; 2497 2498 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { 2499 DP_VERBOSE(p_hwfn, 2500 QED_MSG_IOV, 2501 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2502 vf->relative_vf_id, rxq_id, qid_usage_idx); 2503 return -EINVAL; 2504 } 2505 2506 p_queue = &vf->vf_queues[rxq_id]; 2507 2508 /* We've validated the index and the existence of the active RXQ - 2509 * now we need to make sure that it's using the correct qid. 2510 */ 2511 if (!p_queue->cids[qid_usage_idx].p_cid || 2512 p_queue->cids[qid_usage_idx].b_is_tx) { 2513 struct qed_queue_cid *p_cid; 2514 2515 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 2516 DP_VERBOSE(p_hwfn, 2517 QED_MSG_IOV, 2518 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2519 vf->relative_vf_id, 2520 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); 2521 return -EINVAL; 2522 } 2523 2524 /* Now that we know we have a valid Rx-queue - close it */ 2525 rc = qed_eth_rx_queue_stop(p_hwfn, 2526 p_queue->cids[qid_usage_idx].p_cid, 2527 false, cqe_completion); 2528 if (rc) 2529 return rc; 2530 2531 p_queue->cids[qid_usage_idx].p_cid = NULL; 2532 vf->num_active_rxqs--; 2533 2534 return 0; 2535 } 2536 2537 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2538 struct qed_vf_info *vf, 2539 u16 txq_id, u8 qid_usage_idx) 2540 { 2541 struct qed_vf_queue *p_queue; 2542 int rc = 0; 2543 2544 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) 2545 return -EINVAL; 2546 2547 p_queue = &vf->vf_queues[txq_id]; 2548 if (!p_queue->cids[qid_usage_idx].p_cid || 2549 !p_queue->cids[qid_usage_idx].b_is_tx) 2550 return -EINVAL; 2551 2552 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); 2553 if (rc) 2554 return rc; 2555 2556 p_queue->cids[qid_usage_idx].p_cid = NULL; 2557 return 0; 2558 } 2559 2560 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2561 struct qed_ptt *p_ptt, 2562 struct qed_vf_info *vf) 2563 { 2564 u16 length = sizeof(struct pfvf_def_resp_tlv); 2565 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2566 u8 status = PFVF_STATUS_FAILURE; 2567 struct vfpf_stop_rxqs_tlv *req; 2568 u8 qid_usage_idx; 2569 int rc; 2570 2571 /* There has never been an official driver that used this interface 2572 * for stopping multiple queues, and it is now considered deprecated. 2573 * Validate this isn't used here. 2574 */ 2575 req = &mbx->req_virt->stop_rxqs; 2576 if (req->num_rxqs != 1) { 2577 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2578 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2579 vf->relative_vf_id); 2580 status = PFVF_STATUS_NOT_SUPPORTED; 2581 goto out; 2582 } 2583 2584 /* Find which qid-index is associated with the queue */ 2585 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2586 if (qid_usage_idx == QED_IOV_QID_INVALID) 2587 goto out; 2588 2589 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2590 qid_usage_idx, req->cqe_completion); 2591 if (!rc) 2592 status = PFVF_STATUS_SUCCESS; 2593 out: 2594 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2595 length, status); 2596 } 2597 2598 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2599 struct qed_ptt *p_ptt, 2600 struct qed_vf_info *vf) 2601 { 2602 u16 length = sizeof(struct pfvf_def_resp_tlv); 2603 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2604 u8 status = PFVF_STATUS_FAILURE; 2605 struct vfpf_stop_txqs_tlv *req; 2606 u8 qid_usage_idx; 2607 int rc; 2608 2609 /* There has never been an official driver that used this interface 2610 * for stopping multiple queues, and it is now considered deprecated. 2611 * Validate this isn't used here. 2612 */ 2613 req = &mbx->req_virt->stop_txqs; 2614 if (req->num_txqs != 1) { 2615 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2616 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2617 vf->relative_vf_id); 2618 status = PFVF_STATUS_NOT_SUPPORTED; 2619 goto out; 2620 } 2621 2622 /* Find which qid-index is associated with the queue */ 2623 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2624 if (qid_usage_idx == QED_IOV_QID_INVALID) 2625 goto out; 2626 2627 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); 2628 if (!rc) 2629 status = PFVF_STATUS_SUCCESS; 2630 2631 out: 2632 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2633 length, status); 2634 } 2635 2636 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2637 struct qed_ptt *p_ptt, 2638 struct qed_vf_info *vf) 2639 { 2640 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2641 u16 length = sizeof(struct pfvf_def_resp_tlv); 2642 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2643 struct vfpf_update_rxq_tlv *req; 2644 u8 status = PFVF_STATUS_FAILURE; 2645 u8 complete_event_flg; 2646 u8 complete_cqe_flg; 2647 u8 qid_usage_idx; 2648 int rc; 2649 u8 i; 2650 2651 req = &mbx->req_virt->update_rxq; 2652 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2653 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2654 2655 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2656 if (qid_usage_idx == QED_IOV_QID_INVALID) 2657 goto out; 2658 2659 /* There shouldn't exist a VF that uses queue-qids yet uses this 2660 * API with multiple Rx queues. Validate this. 2661 */ 2662 if ((vf->acquire.vfdev_info.capabilities & 2663 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { 2664 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2665 "VF[%d] supports QIDs but sends multiple queues\n", 2666 vf->relative_vf_id); 2667 goto out; 2668 } 2669 2670 /* Validate inputs - for the legacy case this is still true since 2671 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2672 */ 2673 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2674 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2675 QED_IOV_VALIDATE_Q_NA) || 2676 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2677 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2678 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2679 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2680 vf->relative_vf_id, req->rx_qid, 2681 req->num_rxqs); 2682 goto out; 2683 } 2684 } 2685 2686 /* Prepare the handlers */ 2687 for (i = 0; i < req->num_rxqs; i++) { 2688 u16 qid = req->rx_qid + i; 2689 2690 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2691 } 2692 2693 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2694 req->num_rxqs, 2695 complete_cqe_flg, 2696 complete_event_flg, 2697 QED_SPQ_MODE_EBLOCK, NULL); 2698 if (rc) 2699 goto out; 2700 2701 status = PFVF_STATUS_SUCCESS; 2702 out: 2703 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2704 length, status); 2705 } 2706 2707 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2708 void *p_tlvs_list, u16 req_type) 2709 { 2710 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2711 int len = 0; 2712 2713 do { 2714 if (!p_tlv->length) { 2715 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2716 return NULL; 2717 } 2718 2719 if (p_tlv->type == req_type) { 2720 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2721 "Extended tlv type %d, length %d found\n", 2722 p_tlv->type, p_tlv->length); 2723 return p_tlv; 2724 } 2725 2726 len += p_tlv->length; 2727 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2728 2729 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2730 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2731 return NULL; 2732 } 2733 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2734 2735 return NULL; 2736 } 2737 2738 static void 2739 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2740 struct qed_sp_vport_update_params *p_data, 2741 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2742 { 2743 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2744 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2745 2746 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2747 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2748 if (!p_act_tlv) 2749 return; 2750 2751 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2752 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2753 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2754 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2755 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2756 } 2757 2758 static void 2759 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2760 struct qed_sp_vport_update_params *p_data, 2761 struct qed_vf_info *p_vf, 2762 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2763 { 2764 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2765 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2766 2767 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2768 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2769 if (!p_vlan_tlv) 2770 return; 2771 2772 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2773 2774 /* Ignore the VF request if we're forcing a vlan */ 2775 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2776 p_data->update_inner_vlan_removal_flg = 1; 2777 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2778 } 2779 2780 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2781 } 2782 2783 static void 2784 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2785 struct qed_sp_vport_update_params *p_data, 2786 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2787 { 2788 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2789 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2790 2791 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2792 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2793 tlv); 2794 if (!p_tx_switch_tlv) 2795 return; 2796 2797 p_data->update_tx_switching_flg = 1; 2798 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2799 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2800 } 2801 2802 static void 2803 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2804 struct qed_sp_vport_update_params *p_data, 2805 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2806 { 2807 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2808 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2809 2810 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2811 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2812 if (!p_mcast_tlv) 2813 return; 2814 2815 p_data->update_approx_mcast_flg = 1; 2816 memcpy(p_data->bins, p_mcast_tlv->bins, 2817 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2818 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2819 } 2820 2821 static void 2822 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2823 struct qed_sp_vport_update_params *p_data, 2824 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2825 { 2826 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2827 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2828 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2829 2830 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2831 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2832 if (!p_accept_tlv) 2833 return; 2834 2835 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2836 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2837 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2838 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2839 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2840 } 2841 2842 static void 2843 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2844 struct qed_sp_vport_update_params *p_data, 2845 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2846 { 2847 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2848 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2849 2850 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2851 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2852 tlv); 2853 if (!p_accept_any_vlan) 2854 return; 2855 2856 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2857 p_data->update_accept_any_vlan_flg = 2858 p_accept_any_vlan->update_accept_any_vlan_flg; 2859 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2860 } 2861 2862 static void 2863 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2864 struct qed_vf_info *vf, 2865 struct qed_sp_vport_update_params *p_data, 2866 struct qed_rss_params *p_rss, 2867 struct qed_iov_vf_mbx *p_mbx, 2868 u16 *tlvs_mask, u16 *tlvs_accepted) 2869 { 2870 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2871 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2872 bool b_reject = false; 2873 u16 table_size; 2874 u16 i, q_idx; 2875 2876 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2877 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2878 if (!p_rss_tlv) { 2879 p_data->rss_params = NULL; 2880 return; 2881 } 2882 2883 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2884 2885 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2886 VFPF_UPDATE_RSS_CONFIG_FLAG); 2887 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2888 VFPF_UPDATE_RSS_CAPS_FLAG); 2889 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2890 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2891 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2892 VFPF_UPDATE_RSS_KEY_FLAG); 2893 2894 p_rss->rss_enable = p_rss_tlv->rss_enable; 2895 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2896 p_rss->rss_caps = p_rss_tlv->rss_caps; 2897 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2898 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2899 2900 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2901 (1 << p_rss_tlv->rss_table_size_log)); 2902 2903 for (i = 0; i < table_size; i++) { 2904 struct qed_queue_cid *p_cid; 2905 2906 q_idx = p_rss_tlv->rss_ind_table[i]; 2907 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2908 QED_IOV_VALIDATE_Q_ENABLE)) { 2909 DP_VERBOSE(p_hwfn, 2910 QED_MSG_IOV, 2911 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2912 vf->relative_vf_id, q_idx); 2913 b_reject = true; 2914 goto out; 2915 } 2916 2917 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 2918 p_rss->rss_ind_table[i] = p_cid; 2919 } 2920 2921 p_data->rss_params = p_rss; 2922 out: 2923 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2924 if (!b_reject) 2925 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2926 } 2927 2928 static void 2929 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2930 struct qed_vf_info *vf, 2931 struct qed_sp_vport_update_params *p_data, 2932 struct qed_sge_tpa_params *p_sge_tpa, 2933 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2934 { 2935 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2936 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2937 2938 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2939 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2940 2941 if (!p_sge_tpa_tlv) { 2942 p_data->sge_tpa_params = NULL; 2943 return; 2944 } 2945 2946 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2947 2948 p_sge_tpa->update_tpa_en_flg = 2949 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2950 p_sge_tpa->update_tpa_param_flg = 2951 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2952 VFPF_UPDATE_TPA_PARAM_FLAG); 2953 2954 p_sge_tpa->tpa_ipv4_en_flg = 2955 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2956 p_sge_tpa->tpa_ipv6_en_flg = 2957 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2958 p_sge_tpa->tpa_pkt_split_flg = 2959 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2960 p_sge_tpa->tpa_hdr_data_split_flg = 2961 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2962 p_sge_tpa->tpa_gro_consistent_flg = 2963 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2964 2965 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2966 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2967 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2968 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2969 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2970 2971 p_data->sge_tpa_params = p_sge_tpa; 2972 2973 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2974 } 2975 2976 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2977 u8 vfid, 2978 struct qed_sp_vport_update_params *params, 2979 u16 *tlvs) 2980 { 2981 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 2982 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 2983 struct qed_public_vf_info *vf_info; 2984 2985 /* Untrusted VFs can't even be trusted to know that fact. 2986 * Simply indicate everything is configured fine, and trace 2987 * configuration 'behind their back'. 2988 */ 2989 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 2990 return 0; 2991 2992 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 2993 2994 if (flags->update_rx_mode_config) { 2995 vf_info->rx_accept_mode = flags->rx_accept_filter; 2996 if (!vf_info->is_trusted_configured) 2997 flags->rx_accept_filter &= ~mask; 2998 } 2999 3000 if (flags->update_tx_mode_config) { 3001 vf_info->tx_accept_mode = flags->tx_accept_filter; 3002 if (!vf_info->is_trusted_configured) 3003 flags->tx_accept_filter &= ~mask; 3004 } 3005 3006 return 0; 3007 } 3008 3009 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 3010 struct qed_ptt *p_ptt, 3011 struct qed_vf_info *vf) 3012 { 3013 struct qed_rss_params *p_rss_params = NULL; 3014 struct qed_sp_vport_update_params params; 3015 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3016 struct qed_sge_tpa_params sge_tpa_params; 3017 u16 tlvs_mask = 0, tlvs_accepted = 0; 3018 u8 status = PFVF_STATUS_SUCCESS; 3019 u16 length; 3020 int rc; 3021 3022 /* Valiate PF can send such a request */ 3023 if (!vf->vport_instance) { 3024 DP_VERBOSE(p_hwfn, 3025 QED_MSG_IOV, 3026 "No VPORT instance available for VF[%d], failing vport update\n", 3027 vf->abs_vf_id); 3028 status = PFVF_STATUS_FAILURE; 3029 goto out; 3030 } 3031 p_rss_params = vzalloc(sizeof(*p_rss_params)); 3032 if (p_rss_params == NULL) { 3033 status = PFVF_STATUS_FAILURE; 3034 goto out; 3035 } 3036 3037 memset(¶ms, 0, sizeof(params)); 3038 params.opaque_fid = vf->opaque_fid; 3039 params.vport_id = vf->vport_id; 3040 params.rss_params = NULL; 3041 3042 /* Search for extended tlvs list and update values 3043 * from VF in struct qed_sp_vport_update_params. 3044 */ 3045 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3046 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3047 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3048 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3049 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3050 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3051 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 3052 &sge_tpa_params, mbx, &tlvs_mask); 3053 3054 tlvs_accepted = tlvs_mask; 3055 3056 /* Some of the extended TLVs need to be validated first; In that case, 3057 * they can update the mask without updating the accepted [so that 3058 * PF could communicate to VF it has rejected request]. 3059 */ 3060 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3061 mbx, &tlvs_mask, &tlvs_accepted); 3062 3063 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 3064 ¶ms, &tlvs_accepted)) { 3065 tlvs_accepted = 0; 3066 status = PFVF_STATUS_NOT_SUPPORTED; 3067 goto out; 3068 } 3069 3070 if (!tlvs_accepted) { 3071 if (tlvs_mask) 3072 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3073 "Upper-layer prevents VF vport configuration\n"); 3074 else 3075 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3076 "No feature tlvs found for vport update\n"); 3077 status = PFVF_STATUS_NOT_SUPPORTED; 3078 goto out; 3079 } 3080 3081 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 3082 3083 if (rc) 3084 status = PFVF_STATUS_FAILURE; 3085 3086 out: 3087 vfree(p_rss_params); 3088 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3089 tlvs_mask, tlvs_accepted); 3090 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3091 } 3092 3093 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 3094 struct qed_vf_info *p_vf, 3095 struct qed_filter_ucast *p_params) 3096 { 3097 int i; 3098 3099 /* First remove entries and then add new ones */ 3100 if (p_params->opcode == QED_FILTER_REMOVE) { 3101 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3102 if (p_vf->shadow_config.vlans[i].used && 3103 p_vf->shadow_config.vlans[i].vid == 3104 p_params->vlan) { 3105 p_vf->shadow_config.vlans[i].used = false; 3106 break; 3107 } 3108 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3109 DP_VERBOSE(p_hwfn, 3110 QED_MSG_IOV, 3111 "VF [%d] - Tries to remove a non-existing vlan\n", 3112 p_vf->relative_vf_id); 3113 return -EINVAL; 3114 } 3115 } else if (p_params->opcode == QED_FILTER_REPLACE || 3116 p_params->opcode == QED_FILTER_FLUSH) { 3117 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3118 p_vf->shadow_config.vlans[i].used = false; 3119 } 3120 3121 /* In forced mode, we're willing to remove entries - but we don't add 3122 * new ones. 3123 */ 3124 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 3125 return 0; 3126 3127 if (p_params->opcode == QED_FILTER_ADD || 3128 p_params->opcode == QED_FILTER_REPLACE) { 3129 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3130 if (p_vf->shadow_config.vlans[i].used) 3131 continue; 3132 3133 p_vf->shadow_config.vlans[i].used = true; 3134 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3135 break; 3136 } 3137 3138 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3139 DP_VERBOSE(p_hwfn, 3140 QED_MSG_IOV, 3141 "VF [%d] - Tries to configure more than %d vlan filters\n", 3142 p_vf->relative_vf_id, 3143 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 3144 return -EINVAL; 3145 } 3146 } 3147 3148 return 0; 3149 } 3150 3151 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 3152 struct qed_vf_info *p_vf, 3153 struct qed_filter_ucast *p_params) 3154 { 3155 int i; 3156 3157 /* If we're in forced-mode, we don't allow any change */ 3158 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 3159 return 0; 3160 3161 /* Don't keep track of shadow copy since we don't intend to restore. */ 3162 if (p_vf->p_vf_info.is_trusted_configured) 3163 return 0; 3164 3165 /* First remove entries and then add new ones */ 3166 if (p_params->opcode == QED_FILTER_REMOVE) { 3167 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3168 if (ether_addr_equal(p_vf->shadow_config.macs[i], 3169 p_params->mac)) { 3170 eth_zero_addr(p_vf->shadow_config.macs[i]); 3171 break; 3172 } 3173 } 3174 3175 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3176 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3177 "MAC isn't configured\n"); 3178 return -EINVAL; 3179 } 3180 } else if (p_params->opcode == QED_FILTER_REPLACE || 3181 p_params->opcode == QED_FILTER_FLUSH) { 3182 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 3183 eth_zero_addr(p_vf->shadow_config.macs[i]); 3184 } 3185 3186 /* List the new MAC address */ 3187 if (p_params->opcode != QED_FILTER_ADD && 3188 p_params->opcode != QED_FILTER_REPLACE) 3189 return 0; 3190 3191 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3192 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 3193 ether_addr_copy(p_vf->shadow_config.macs[i], 3194 p_params->mac); 3195 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3196 "Added MAC at %d entry in shadow\n", i); 3197 break; 3198 } 3199 } 3200 3201 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3202 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 3203 return -EINVAL; 3204 } 3205 3206 return 0; 3207 } 3208 3209 static int 3210 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 3211 struct qed_vf_info *p_vf, 3212 struct qed_filter_ucast *p_params) 3213 { 3214 int rc = 0; 3215 3216 if (p_params->type == QED_FILTER_MAC) { 3217 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3218 if (rc) 3219 return rc; 3220 } 3221 3222 if (p_params->type == QED_FILTER_VLAN) 3223 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3224 3225 return rc; 3226 } 3227 3228 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3229 int vfid, struct qed_filter_ucast *params) 3230 { 3231 struct qed_public_vf_info *vf; 3232 3233 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3234 if (!vf) 3235 return -EINVAL; 3236 3237 /* No real decision to make; Store the configured MAC */ 3238 if (params->type == QED_FILTER_MAC || 3239 params->type == QED_FILTER_MAC_VLAN) { 3240 ether_addr_copy(vf->mac, params->mac); 3241 3242 if (vf->is_trusted_configured) { 3243 qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid); 3244 3245 /* Update and post bulleitin again */ 3246 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3247 } 3248 } 3249 3250 return 0; 3251 } 3252 3253 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3254 struct qed_ptt *p_ptt, 3255 struct qed_vf_info *vf) 3256 { 3257 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3258 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3259 struct vfpf_ucast_filter_tlv *req; 3260 u8 status = PFVF_STATUS_SUCCESS; 3261 struct qed_filter_ucast params; 3262 int rc; 3263 3264 /* Prepare the unicast filter params */ 3265 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3266 req = &mbx->req_virt->ucast_filter; 3267 params.opcode = (enum qed_filter_opcode)req->opcode; 3268 params.type = (enum qed_filter_ucast_type)req->type; 3269 3270 params.is_rx_filter = 1; 3271 params.is_tx_filter = 1; 3272 params.vport_to_remove_from = vf->vport_id; 3273 params.vport_to_add_to = vf->vport_id; 3274 memcpy(params.mac, req->mac, ETH_ALEN); 3275 params.vlan = req->vlan; 3276 3277 DP_VERBOSE(p_hwfn, 3278 QED_MSG_IOV, 3279 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %pM, vlan 0x%04x\n", 3280 vf->abs_vf_id, params.opcode, params.type, 3281 params.is_rx_filter ? "RX" : "", 3282 params.is_tx_filter ? "TX" : "", 3283 params.vport_to_add_to, 3284 params.mac, params.vlan); 3285 3286 if (!vf->vport_instance) { 3287 DP_VERBOSE(p_hwfn, 3288 QED_MSG_IOV, 3289 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3290 vf->abs_vf_id); 3291 status = PFVF_STATUS_FAILURE; 3292 goto out; 3293 } 3294 3295 /* Update shadow copy of the VF configuration */ 3296 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3297 status = PFVF_STATUS_FAILURE; 3298 goto out; 3299 } 3300 3301 /* Determine if the unicast filtering is acceptible by PF */ 3302 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3303 (params.type == QED_FILTER_VLAN || 3304 params.type == QED_FILTER_MAC_VLAN)) { 3305 /* Once VLAN is forced or PVID is set, do not allow 3306 * to add/replace any further VLANs. 3307 */ 3308 if (params.opcode == QED_FILTER_ADD || 3309 params.opcode == QED_FILTER_REPLACE) 3310 status = PFVF_STATUS_FORCED; 3311 goto out; 3312 } 3313 3314 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3315 (params.type == QED_FILTER_MAC || 3316 params.type == QED_FILTER_MAC_VLAN)) { 3317 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3318 (params.opcode != QED_FILTER_ADD && 3319 params.opcode != QED_FILTER_REPLACE)) 3320 status = PFVF_STATUS_FORCED; 3321 goto out; 3322 } 3323 3324 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3325 if (rc) { 3326 status = PFVF_STATUS_FAILURE; 3327 goto out; 3328 } 3329 3330 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3331 QED_SPQ_MODE_CB, NULL); 3332 if (rc) 3333 status = PFVF_STATUS_FAILURE; 3334 3335 out: 3336 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3337 sizeof(struct pfvf_def_resp_tlv), status); 3338 } 3339 3340 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3341 struct qed_ptt *p_ptt, 3342 struct qed_vf_info *vf) 3343 { 3344 int i; 3345 3346 /* Reset the SBs */ 3347 for (i = 0; i < vf->num_sbs; i++) 3348 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3349 vf->igu_sbs[i], 3350 vf->opaque_fid, false); 3351 3352 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3353 sizeof(struct pfvf_def_resp_tlv), 3354 PFVF_STATUS_SUCCESS); 3355 } 3356 3357 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3358 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3359 { 3360 u16 length = sizeof(struct pfvf_def_resp_tlv); 3361 u8 status = PFVF_STATUS_SUCCESS; 3362 3363 /* Disable Interrupts for VF */ 3364 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3365 3366 /* Reset Permission table */ 3367 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3368 3369 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3370 length, status); 3371 } 3372 3373 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3374 struct qed_ptt *p_ptt, 3375 struct qed_vf_info *p_vf) 3376 { 3377 u16 length = sizeof(struct pfvf_def_resp_tlv); 3378 u8 status = PFVF_STATUS_SUCCESS; 3379 int rc = 0; 3380 3381 qed_iov_vf_cleanup(p_hwfn, p_vf); 3382 3383 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3384 /* Stopping the VF */ 3385 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3386 p_vf->opaque_fid); 3387 3388 if (rc) { 3389 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3390 rc); 3391 status = PFVF_STATUS_FAILURE; 3392 } 3393 3394 p_vf->state = VF_STOPPED; 3395 } 3396 3397 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3398 length, status); 3399 } 3400 3401 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, 3402 struct qed_ptt *p_ptt, 3403 struct qed_vf_info *p_vf) 3404 { 3405 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3406 struct pfvf_read_coal_resp_tlv *p_resp; 3407 struct vfpf_read_coal_req_tlv *req; 3408 u8 status = PFVF_STATUS_FAILURE; 3409 struct qed_vf_queue *p_queue; 3410 struct qed_queue_cid *p_cid; 3411 u16 coal = 0, qid, i; 3412 bool b_is_rx; 3413 int rc = 0; 3414 3415 mbx->offset = (u8 *)mbx->reply_virt; 3416 req = &mbx->req_virt->read_coal_req; 3417 3418 qid = req->qid; 3419 b_is_rx = req->is_rx ? true : false; 3420 3421 if (b_is_rx) { 3422 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, 3423 QED_IOV_VALIDATE_Q_ENABLE)) { 3424 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3425 "VF[%d]: Invalid Rx queue_id = %d\n", 3426 p_vf->abs_vf_id, qid); 3427 goto send_resp; 3428 } 3429 3430 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3431 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3432 if (rc) 3433 goto send_resp; 3434 } else { 3435 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, 3436 QED_IOV_VALIDATE_Q_ENABLE)) { 3437 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3438 "VF[%d]: Invalid Tx queue_id = %d\n", 3439 p_vf->abs_vf_id, qid); 3440 goto send_resp; 3441 } 3442 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3443 p_queue = &p_vf->vf_queues[qid]; 3444 if ((!p_queue->cids[i].p_cid) || 3445 (!p_queue->cids[i].b_is_tx)) 3446 continue; 3447 3448 p_cid = p_queue->cids[i].p_cid; 3449 3450 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3451 if (rc) 3452 goto send_resp; 3453 break; 3454 } 3455 } 3456 3457 status = PFVF_STATUS_SUCCESS; 3458 3459 send_resp: 3460 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, 3461 sizeof(*p_resp)); 3462 p_resp->coal = coal; 3463 3464 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 3465 sizeof(struct channel_list_end_tlv)); 3466 3467 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3468 } 3469 3470 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, 3471 struct qed_ptt *p_ptt, 3472 struct qed_vf_info *vf) 3473 { 3474 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3475 struct vfpf_update_coalesce *req; 3476 u8 status = PFVF_STATUS_FAILURE; 3477 struct qed_queue_cid *p_cid; 3478 u16 rx_coal, tx_coal; 3479 int rc = 0, i; 3480 u16 qid; 3481 3482 req = &mbx->req_virt->update_coalesce; 3483 3484 rx_coal = req->rx_coal; 3485 tx_coal = req->tx_coal; 3486 qid = req->qid; 3487 3488 if (!qed_iov_validate_rxq(p_hwfn, vf, qid, 3489 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { 3490 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3491 "VF[%d]: Invalid Rx queue_id = %d\n", 3492 vf->abs_vf_id, qid); 3493 goto out; 3494 } 3495 3496 if (!qed_iov_validate_txq(p_hwfn, vf, qid, 3497 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { 3498 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3499 "VF[%d]: Invalid Tx queue_id = %d\n", 3500 vf->abs_vf_id, qid); 3501 goto out; 3502 } 3503 3504 DP_VERBOSE(p_hwfn, 3505 QED_MSG_IOV, 3506 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3507 vf->abs_vf_id, rx_coal, tx_coal, qid); 3508 3509 if (rx_coal) { 3510 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3511 3512 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3513 if (rc) { 3514 DP_VERBOSE(p_hwfn, 3515 QED_MSG_IOV, 3516 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3517 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3518 goto out; 3519 } 3520 vf->rx_coal = rx_coal; 3521 } 3522 3523 if (tx_coal) { 3524 struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; 3525 3526 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3527 if (!p_queue->cids[i].p_cid) 3528 continue; 3529 3530 if (!p_queue->cids[i].b_is_tx) 3531 continue; 3532 3533 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3534 p_queue->cids[i].p_cid); 3535 3536 if (rc) { 3537 DP_VERBOSE(p_hwfn, 3538 QED_MSG_IOV, 3539 "VF[%d]: Unable to set tx queue coalesce\n", 3540 vf->abs_vf_id); 3541 goto out; 3542 } 3543 } 3544 vf->tx_coal = tx_coal; 3545 } 3546 3547 status = PFVF_STATUS_SUCCESS; 3548 out: 3549 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3550 sizeof(struct pfvf_def_resp_tlv), status); 3551 } 3552 static int 3553 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3554 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3555 { 3556 int cnt; 3557 u32 val; 3558 3559 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 3560 3561 for (cnt = 0; cnt < 50; cnt++) { 3562 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3563 if (!val) 3564 break; 3565 msleep(20); 3566 } 3567 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 3568 3569 if (cnt == 50) { 3570 DP_ERR(p_hwfn, 3571 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3572 p_vf->abs_vf_id, val); 3573 return -EBUSY; 3574 } 3575 3576 return 0; 3577 } 3578 3579 static int 3580 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3581 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3582 { 3583 u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4]; 3584 int i, cnt; 3585 3586 /* Read initial consumers & producers */ 3587 for (i = 0; i < MAX_NUM_VOQS_E4; i++) { 3588 u32 prod; 3589 3590 cons[i] = qed_rd(p_hwfn, p_ptt, 3591 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3592 i * 0x40); 3593 prod = qed_rd(p_hwfn, p_ptt, 3594 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3595 i * 0x40); 3596 distance[i] = prod - cons[i]; 3597 } 3598 3599 /* Wait for consumers to pass the producers */ 3600 i = 0; 3601 for (cnt = 0; cnt < 50; cnt++) { 3602 for (; i < MAX_NUM_VOQS_E4; i++) { 3603 u32 tmp; 3604 3605 tmp = qed_rd(p_hwfn, p_ptt, 3606 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3607 i * 0x40); 3608 if (distance[i] > tmp - cons[i]) 3609 break; 3610 } 3611 3612 if (i == MAX_NUM_VOQS_E4) 3613 break; 3614 3615 msleep(20); 3616 } 3617 3618 if (cnt == 50) { 3619 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3620 p_vf->abs_vf_id, i); 3621 return -EBUSY; 3622 } 3623 3624 return 0; 3625 } 3626 3627 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3628 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3629 { 3630 int rc; 3631 3632 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3633 if (rc) 3634 return rc; 3635 3636 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3637 if (rc) 3638 return rc; 3639 3640 return 0; 3641 } 3642 3643 static int 3644 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3645 struct qed_ptt *p_ptt, 3646 u16 rel_vf_id, u32 *ack_vfs) 3647 { 3648 struct qed_vf_info *p_vf; 3649 int rc = 0; 3650 3651 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3652 if (!p_vf) 3653 return 0; 3654 3655 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3656 (1ULL << (rel_vf_id % 64))) { 3657 u16 vfid = p_vf->abs_vf_id; 3658 3659 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3660 "VF[%d] - Handling FLR\n", vfid); 3661 3662 qed_iov_vf_cleanup(p_hwfn, p_vf); 3663 3664 /* If VF isn't active, no need for anything but SW */ 3665 if (!p_vf->b_init) 3666 goto cleanup; 3667 3668 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3669 if (rc) 3670 goto cleanup; 3671 3672 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3673 if (rc) { 3674 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3675 return rc; 3676 } 3677 3678 /* Workaround to make VF-PF channel ready, as FW 3679 * doesn't do that as a part of FLR. 3680 */ 3681 REG_WR(p_hwfn, 3682 GTT_BAR0_MAP_REG_USDM_RAM + 3683 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3684 3685 /* VF_STOPPED has to be set only after final cleanup 3686 * but prior to re-enabling the VF. 3687 */ 3688 p_vf->state = VF_STOPPED; 3689 3690 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3691 if (rc) { 3692 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3693 vfid); 3694 return rc; 3695 } 3696 cleanup: 3697 /* Mark VF for ack and clean pending state */ 3698 if (p_vf->state == VF_RESET) 3699 p_vf->state = VF_STOPPED; 3700 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3701 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3702 ~(1ULL << (rel_vf_id % 64)); 3703 p_vf->vf_mbx.b_pending_msg = false; 3704 } 3705 3706 return rc; 3707 } 3708 3709 static int 3710 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3711 { 3712 u32 ack_vfs[VF_MAX_STATIC / 32]; 3713 int rc = 0; 3714 u16 i; 3715 3716 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3717 3718 /* Since BRB <-> PRS interface can't be tested as part of the flr 3719 * polling due to HW limitations, simply sleep a bit. And since 3720 * there's no need to wait per-vf, do it before looping. 3721 */ 3722 msleep(100); 3723 3724 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3725 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3726 3727 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3728 return rc; 3729 } 3730 3731 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3732 { 3733 bool found = false; 3734 u16 i; 3735 3736 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3737 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3738 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3739 "[%08x,...,%08x]: %08x\n", 3740 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3741 3742 if (!p_hwfn->cdev->p_iov_info) { 3743 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3744 return false; 3745 } 3746 3747 /* Mark VFs */ 3748 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3749 struct qed_vf_info *p_vf; 3750 u8 vfid; 3751 3752 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3753 if (!p_vf) 3754 continue; 3755 3756 vfid = p_vf->abs_vf_id; 3757 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3758 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3759 u16 rel_vf_id = p_vf->relative_vf_id; 3760 3761 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3762 "VF[%d] [rel %d] got FLR-ed\n", 3763 vfid, rel_vf_id); 3764 3765 p_vf->state = VF_RESET; 3766 3767 /* No need to lock here, since pending_flr should 3768 * only change here and before ACKing MFw. Since 3769 * MFW will not trigger an additional attention for 3770 * VF flr until ACKs, we're safe. 3771 */ 3772 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3773 found = true; 3774 } 3775 } 3776 3777 return found; 3778 } 3779 3780 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3781 u16 vfid, 3782 struct qed_mcp_link_params *p_params, 3783 struct qed_mcp_link_state *p_link, 3784 struct qed_mcp_link_capabilities *p_caps) 3785 { 3786 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3787 vfid, 3788 false); 3789 struct qed_bulletin_content *p_bulletin; 3790 3791 if (!p_vf) 3792 return; 3793 3794 p_bulletin = p_vf->bulletin.p_virt; 3795 3796 if (p_params) 3797 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3798 if (p_link) 3799 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3800 if (p_caps) 3801 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3802 } 3803 3804 static int 3805 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn, 3806 struct qed_ptt *p_ptt, 3807 struct qed_vf_info *p_vf) 3808 { 3809 struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt; 3810 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3811 struct vfpf_bulletin_update_mac_tlv *p_req; 3812 u8 status = PFVF_STATUS_SUCCESS; 3813 int rc = 0; 3814 3815 if (!p_vf->p_vf_info.is_trusted_configured) { 3816 DP_VERBOSE(p_hwfn, 3817 QED_MSG_IOV, 3818 "Blocking bulletin update request from untrusted VF[%d]\n", 3819 p_vf->abs_vf_id); 3820 status = PFVF_STATUS_NOT_SUPPORTED; 3821 rc = -EINVAL; 3822 goto send_status; 3823 } 3824 3825 p_req = &mbx->req_virt->bulletin_update_mac; 3826 ether_addr_copy(p_bulletin->mac, p_req->mac); 3827 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3828 "Updated bulletin of VF[%d] with requested MAC[%pM]\n", 3829 p_vf->abs_vf_id, p_req->mac); 3830 3831 send_status: 3832 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3833 CHANNEL_TLV_BULLETIN_UPDATE_MAC, 3834 sizeof(struct pfvf_def_resp_tlv), status); 3835 return rc; 3836 } 3837 3838 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3839 struct qed_ptt *p_ptt, int vfid) 3840 { 3841 struct qed_iov_vf_mbx *mbx; 3842 struct qed_vf_info *p_vf; 3843 3844 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3845 if (!p_vf) 3846 return; 3847 3848 mbx = &p_vf->vf_mbx; 3849 3850 /* qed_iov_process_mbx_request */ 3851 if (!mbx->b_pending_msg) { 3852 DP_NOTICE(p_hwfn, 3853 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3854 p_vf->abs_vf_id); 3855 return; 3856 } 3857 mbx->b_pending_msg = false; 3858 3859 mbx->first_tlv = mbx->req_virt->first_tlv; 3860 3861 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3862 "VF[%02x]: Processing mailbox message [type %04x]\n", 3863 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3864 3865 /* check if tlv type is known */ 3866 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3867 !p_vf->b_malicious) { 3868 switch (mbx->first_tlv.tl.type) { 3869 case CHANNEL_TLV_ACQUIRE: 3870 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3871 break; 3872 case CHANNEL_TLV_VPORT_START: 3873 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3874 break; 3875 case CHANNEL_TLV_VPORT_TEARDOWN: 3876 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3877 break; 3878 case CHANNEL_TLV_START_RXQ: 3879 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3880 break; 3881 case CHANNEL_TLV_START_TXQ: 3882 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3883 break; 3884 case CHANNEL_TLV_STOP_RXQS: 3885 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3886 break; 3887 case CHANNEL_TLV_STOP_TXQS: 3888 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3889 break; 3890 case CHANNEL_TLV_UPDATE_RXQ: 3891 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3892 break; 3893 case CHANNEL_TLV_VPORT_UPDATE: 3894 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3895 break; 3896 case CHANNEL_TLV_UCAST_FILTER: 3897 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3898 break; 3899 case CHANNEL_TLV_CLOSE: 3900 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3901 break; 3902 case CHANNEL_TLV_INT_CLEANUP: 3903 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3904 break; 3905 case CHANNEL_TLV_RELEASE: 3906 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3907 break; 3908 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3909 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3910 break; 3911 case CHANNEL_TLV_COALESCE_UPDATE: 3912 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 3913 break; 3914 case CHANNEL_TLV_COALESCE_READ: 3915 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 3916 break; 3917 case CHANNEL_TLV_BULLETIN_UPDATE_MAC: 3918 qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf); 3919 break; 3920 } 3921 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3922 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3923 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3924 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3925 3926 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3927 mbx->first_tlv.tl.type, 3928 sizeof(struct pfvf_def_resp_tlv), 3929 PFVF_STATUS_MALICIOUS); 3930 } else { 3931 /* unknown TLV - this may belong to a VF driver from the future 3932 * - a version written after this PF driver was written, which 3933 * supports features unknown as of yet. Too bad since we don't 3934 * support them. Or this may be because someone wrote a crappy 3935 * VF driver and is sending garbage over the channel. 3936 */ 3937 DP_NOTICE(p_hwfn, 3938 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3939 p_vf->abs_vf_id, 3940 mbx->first_tlv.tl.type, 3941 mbx->first_tlv.tl.length, 3942 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3943 3944 /* Try replying in case reply address matches the acquisition's 3945 * posted address. 3946 */ 3947 if (p_vf->acquire.first_tlv.reply_address && 3948 (mbx->first_tlv.reply_address == 3949 p_vf->acquire.first_tlv.reply_address)) { 3950 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3951 mbx->first_tlv.tl.type, 3952 sizeof(struct pfvf_def_resp_tlv), 3953 PFVF_STATUS_NOT_SUPPORTED); 3954 } else { 3955 DP_VERBOSE(p_hwfn, 3956 QED_MSG_IOV, 3957 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3958 p_vf->abs_vf_id); 3959 } 3960 } 3961 } 3962 3963 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3964 { 3965 int i; 3966 3967 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3968 3969 qed_for_each_vf(p_hwfn, i) { 3970 struct qed_vf_info *p_vf; 3971 3972 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3973 if (p_vf->vf_mbx.b_pending_msg) 3974 events[i / 64] |= 1ULL << (i % 64); 3975 } 3976 } 3977 3978 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3979 u16 abs_vfid) 3980 { 3981 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 3982 3983 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 3984 DP_VERBOSE(p_hwfn, 3985 QED_MSG_IOV, 3986 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 3987 abs_vfid); 3988 return NULL; 3989 } 3990 3991 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 3992 } 3993 3994 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 3995 u16 abs_vfid, struct regpair *vf_msg) 3996 { 3997 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 3998 abs_vfid); 3999 4000 if (!p_vf) 4001 return 0; 4002 4003 /* List the physical address of the request so that handler 4004 * could later on copy the message from it. 4005 */ 4006 p_vf->vf_mbx.pending_req = HILO_64(vf_msg->hi, vf_msg->lo); 4007 4008 /* Mark the event and schedule the workqueue */ 4009 p_vf->vf_mbx.b_pending_msg = true; 4010 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 4011 4012 return 0; 4013 } 4014 4015 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 4016 struct malicious_vf_eqe_data *p_data) 4017 { 4018 struct qed_vf_info *p_vf; 4019 4020 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 4021 4022 if (!p_vf) 4023 return; 4024 4025 if (!p_vf->b_malicious) { 4026 DP_NOTICE(p_hwfn, 4027 "VF [%d] - Malicious behavior [%02x]\n", 4028 p_vf->abs_vf_id, p_data->err_id); 4029 4030 p_vf->b_malicious = true; 4031 } else { 4032 DP_INFO(p_hwfn, 4033 "VF [%d] - Malicious behavior [%02x]\n", 4034 p_vf->abs_vf_id, p_data->err_id); 4035 } 4036 } 4037 4038 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo, 4039 union event_ring_data *data, u8 fw_return_code) 4040 { 4041 switch (opcode) { 4042 case COMMON_EVENT_VF_PF_CHANNEL: 4043 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 4044 &data->vf_pf_channel.msg_addr); 4045 case COMMON_EVENT_MALICIOUS_VF: 4046 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 4047 return 0; 4048 default: 4049 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 4050 opcode); 4051 return -EINVAL; 4052 } 4053 } 4054 4055 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4056 { 4057 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 4058 u16 i; 4059 4060 if (!p_iov) 4061 goto out; 4062 4063 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4064 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4065 return i; 4066 4067 out: 4068 return MAX_NUM_VFS; 4069 } 4070 4071 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 4072 int vfid) 4073 { 4074 struct qed_dmae_params params; 4075 struct qed_vf_info *vf_info; 4076 4077 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4078 if (!vf_info) 4079 return -EINVAL; 4080 4081 memset(¶ms, 0, sizeof(params)); 4082 SET_FIELD(params.flags, QED_DMAE_PARAMS_SRC_VF_VALID, 0x1); 4083 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 0x1); 4084 params.src_vfid = vf_info->abs_vf_id; 4085 4086 if (qed_dmae_host2host(p_hwfn, ptt, 4087 vf_info->vf_mbx.pending_req, 4088 vf_info->vf_mbx.req_phys, 4089 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 4090 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4091 "Failed to copy message from VF 0x%02x\n", vfid); 4092 4093 return -EIO; 4094 } 4095 4096 return 0; 4097 } 4098 4099 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 4100 u8 *mac, int vfid) 4101 { 4102 struct qed_vf_info *vf_info; 4103 u64 feature; 4104 4105 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4106 if (!vf_info) { 4107 DP_NOTICE(p_hwfn->cdev, 4108 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4109 return; 4110 } 4111 4112 if (vf_info->b_malicious) { 4113 DP_NOTICE(p_hwfn->cdev, 4114 "Can't set forced MAC to malicious VF [%d]\n", vfid); 4115 return; 4116 } 4117 4118 if (vf_info->p_vf_info.is_trusted_configured) { 4119 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4120 /* Trust mode will disable Forced MAC */ 4121 vf_info->bulletin.p_virt->valid_bitmap &= 4122 ~BIT(MAC_ADDR_FORCED); 4123 } else { 4124 feature = BIT(MAC_ADDR_FORCED); 4125 /* Forced MAC will disable MAC_ADDR */ 4126 vf_info->bulletin.p_virt->valid_bitmap &= 4127 ~BIT(VFPF_BULLETIN_MAC_ADDR); 4128 } 4129 4130 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 4131 4132 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4133 4134 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4135 } 4136 4137 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) 4138 { 4139 struct qed_vf_info *vf_info; 4140 u64 feature; 4141 4142 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4143 if (!vf_info) { 4144 DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n", 4145 vfid); 4146 return -EINVAL; 4147 } 4148 4149 if (vf_info->b_malicious) { 4150 DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n", 4151 vfid); 4152 return -EINVAL; 4153 } 4154 4155 if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) { 4156 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4157 "Can not set MAC, Forced MAC is configured\n"); 4158 return -EINVAL; 4159 } 4160 4161 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4162 ether_addr_copy(vf_info->bulletin.p_virt->mac, mac); 4163 4164 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4165 4166 if (vf_info->p_vf_info.is_trusted_configured) 4167 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4168 4169 return 0; 4170 } 4171 4172 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 4173 u16 pvid, int vfid) 4174 { 4175 struct qed_vf_info *vf_info; 4176 u64 feature; 4177 4178 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4179 if (!vf_info) { 4180 DP_NOTICE(p_hwfn->cdev, 4181 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4182 return; 4183 } 4184 4185 if (vf_info->b_malicious) { 4186 DP_NOTICE(p_hwfn->cdev, 4187 "Can't set forced vlan to malicious VF [%d]\n", vfid); 4188 return; 4189 } 4190 4191 feature = 1 << VLAN_ADDR_FORCED; 4192 vf_info->bulletin.p_virt->pvid = pvid; 4193 if (pvid) 4194 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4195 else 4196 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4197 4198 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4199 } 4200 4201 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 4202 int vfid, u16 vxlan_port, u16 geneve_port) 4203 { 4204 struct qed_vf_info *vf_info; 4205 4206 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4207 if (!vf_info) { 4208 DP_NOTICE(p_hwfn->cdev, 4209 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4210 return; 4211 } 4212 4213 if (vf_info->b_malicious) { 4214 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4215 "Can not set udp ports to malicious VF [%d]\n", 4216 vfid); 4217 return; 4218 } 4219 4220 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4221 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4222 } 4223 4224 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 4225 { 4226 struct qed_vf_info *p_vf_info; 4227 4228 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4229 if (!p_vf_info) 4230 return false; 4231 4232 return !!p_vf_info->vport_instance; 4233 } 4234 4235 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 4236 { 4237 struct qed_vf_info *p_vf_info; 4238 4239 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4240 if (!p_vf_info) 4241 return true; 4242 4243 return p_vf_info->state == VF_STOPPED; 4244 } 4245 4246 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 4247 { 4248 struct qed_vf_info *vf_info; 4249 4250 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4251 if (!vf_info) 4252 return false; 4253 4254 return vf_info->spoof_chk; 4255 } 4256 4257 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 4258 { 4259 struct qed_vf_info *vf; 4260 int rc = -EINVAL; 4261 4262 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4263 DP_NOTICE(p_hwfn, 4264 "SR-IOV sanity check failed, can't set spoofchk\n"); 4265 goto out; 4266 } 4267 4268 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4269 if (!vf) 4270 goto out; 4271 4272 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4273 /* After VF VPORT start PF will configure spoof check */ 4274 vf->req_spoofchk_val = val; 4275 rc = 0; 4276 goto out; 4277 } 4278 4279 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 4280 4281 out: 4282 return rc; 4283 } 4284 4285 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4286 { 4287 struct qed_vf_info *p_vf; 4288 4289 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4290 if (!p_vf || !p_vf->bulletin.p_virt) 4291 return NULL; 4292 4293 if (!(p_vf->bulletin.p_virt->valid_bitmap & 4294 BIT(VFPF_BULLETIN_MAC_ADDR))) 4295 return NULL; 4296 4297 return p_vf->bulletin.p_virt->mac; 4298 } 4299 4300 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 4301 u16 rel_vf_id) 4302 { 4303 struct qed_vf_info *p_vf; 4304 4305 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4306 if (!p_vf || !p_vf->bulletin.p_virt) 4307 return NULL; 4308 4309 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 4310 return NULL; 4311 4312 return p_vf->bulletin.p_virt->mac; 4313 } 4314 4315 static u16 4316 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4317 { 4318 struct qed_vf_info *p_vf; 4319 4320 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4321 if (!p_vf || !p_vf->bulletin.p_virt) 4322 return 0; 4323 4324 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 4325 return 0; 4326 4327 return p_vf->bulletin.p_virt->pvid; 4328 } 4329 4330 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 4331 struct qed_ptt *p_ptt, int vfid, int val) 4332 { 4333 struct qed_vf_info *vf; 4334 u8 abs_vp_id = 0; 4335 u16 rl_id; 4336 int rc; 4337 4338 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4339 if (!vf) 4340 return -EINVAL; 4341 4342 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4343 if (rc) 4344 return rc; 4345 4346 rl_id = abs_vp_id; /* The "rl_id" is set as the "vport_id" */ 4347 return qed_init_global_rl(p_hwfn, p_ptt, rl_id, (u32)val); 4348 } 4349 4350 static int 4351 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 4352 { 4353 struct qed_vf_info *vf; 4354 u8 vport_id; 4355 int i; 4356 4357 for_each_hwfn(cdev, i) { 4358 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4359 4360 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4361 DP_NOTICE(p_hwfn, 4362 "SR-IOV sanity check failed, can't set min rate\n"); 4363 return -EINVAL; 4364 } 4365 } 4366 4367 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 4368 vport_id = vf->vport_id; 4369 4370 return qed_configure_vport_wfq(cdev, vport_id, rate); 4371 } 4372 4373 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 4374 { 4375 struct qed_wfq_data *vf_vp_wfq; 4376 struct qed_vf_info *vf_info; 4377 4378 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4379 if (!vf_info) 4380 return 0; 4381 4382 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4383 4384 if (vf_vp_wfq->configured) 4385 return vf_vp_wfq->min_speed; 4386 else 4387 return 0; 4388 } 4389 4390 /** 4391 * qed_schedule_iov - schedules IOV task for VF and PF 4392 * @hwfn: hardware function pointer 4393 * @flag: IOV flag for VF/PF 4394 */ 4395 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 4396 { 4397 smp_mb__before_atomic(); 4398 set_bit(flag, &hwfn->iov_task_flags); 4399 smp_mb__after_atomic(); 4400 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 4401 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 4402 } 4403 4404 void qed_vf_start_iov_wq(struct qed_dev *cdev) 4405 { 4406 int i; 4407 4408 for_each_hwfn(cdev, i) 4409 queue_delayed_work(cdev->hwfns[i].iov_wq, 4410 &cdev->hwfns[i].iov_task, 0); 4411 } 4412 4413 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 4414 { 4415 int i, j; 4416 4417 for_each_hwfn(cdev, i) 4418 if (cdev->hwfns[i].iov_wq) 4419 flush_workqueue(cdev->hwfns[i].iov_wq); 4420 4421 /* Mark VFs for disablement */ 4422 qed_iov_set_vfs_to_disable(cdev, true); 4423 4424 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 4425 pci_disable_sriov(cdev->pdev); 4426 4427 if (cdev->recov_in_prog) { 4428 DP_VERBOSE(cdev, 4429 QED_MSG_IOV, 4430 "Skip SRIOV disable operations in the device since a recovery is in progress\n"); 4431 goto out; 4432 } 4433 4434 for_each_hwfn(cdev, i) { 4435 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4436 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4437 4438 /* Failure to acquire the ptt in 100g creates an odd error 4439 * where the first engine has already relased IOV. 4440 */ 4441 if (!ptt) { 4442 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4443 return -EBUSY; 4444 } 4445 4446 /* Clean WFQ db and configure equal weight for all vports */ 4447 qed_clean_wfq_db(hwfn, ptt); 4448 4449 qed_for_each_vf(hwfn, j) { 4450 int k; 4451 4452 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 4453 continue; 4454 4455 /* Wait until VF is disabled before releasing */ 4456 for (k = 0; k < 100; k++) { 4457 if (!qed_iov_is_vf_stopped(hwfn, j)) 4458 msleep(20); 4459 else 4460 break; 4461 } 4462 4463 if (k < 100) 4464 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 4465 ptt, j); 4466 else 4467 DP_ERR(hwfn, 4468 "Timeout waiting for VF's FLR to end\n"); 4469 } 4470 4471 qed_ptt_release(hwfn, ptt); 4472 } 4473 out: 4474 qed_iov_set_vfs_to_disable(cdev, false); 4475 4476 return 0; 4477 } 4478 4479 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 4480 u16 vfid, 4481 struct qed_iov_vf_init_params *params) 4482 { 4483 u16 base, i; 4484 4485 /* Since we have an equal resource distribution per-VF, and we assume 4486 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 4487 * sequentially from there. 4488 */ 4489 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 4490 4491 params->rel_vf_id = vfid; 4492 for (i = 0; i < params->num_queues; i++) { 4493 params->req_rx_queue[i] = base + i; 4494 params->req_tx_queue[i] = base + i; 4495 } 4496 } 4497 4498 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4499 { 4500 struct qed_iov_vf_init_params params; 4501 struct qed_hwfn *hwfn; 4502 struct qed_ptt *ptt; 4503 int i, j, rc; 4504 4505 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4506 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4507 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4508 return -EINVAL; 4509 } 4510 4511 memset(¶ms, 0, sizeof(params)); 4512 4513 /* Initialize HW for VF access */ 4514 for_each_hwfn(cdev, j) { 4515 hwfn = &cdev->hwfns[j]; 4516 ptt = qed_ptt_acquire(hwfn); 4517 4518 /* Make sure not to use more than 16 queues per VF */ 4519 params.num_queues = min_t(int, 4520 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4521 16); 4522 4523 if (!ptt) { 4524 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4525 rc = -EBUSY; 4526 goto err; 4527 } 4528 4529 for (i = 0; i < num; i++) { 4530 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4531 continue; 4532 4533 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4534 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4535 if (rc) { 4536 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4537 qed_ptt_release(hwfn, ptt); 4538 goto err; 4539 } 4540 } 4541 4542 qed_ptt_release(hwfn, ptt); 4543 } 4544 4545 /* Enable SRIOV PCIe functions */ 4546 rc = pci_enable_sriov(cdev->pdev, num); 4547 if (rc) { 4548 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4549 goto err; 4550 } 4551 4552 hwfn = QED_LEADING_HWFN(cdev); 4553 ptt = qed_ptt_acquire(hwfn); 4554 if (!ptt) { 4555 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4556 rc = -EBUSY; 4557 goto err; 4558 } 4559 4560 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB); 4561 if (rc) 4562 DP_INFO(cdev, "Failed to update eswitch mode\n"); 4563 qed_ptt_release(hwfn, ptt); 4564 4565 return num; 4566 4567 err: 4568 qed_sriov_disable(cdev, false); 4569 return rc; 4570 } 4571 4572 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4573 { 4574 if (!IS_QED_SRIOV(cdev)) { 4575 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4576 return -EOPNOTSUPP; 4577 } 4578 4579 if (num_vfs_param) 4580 return qed_sriov_enable(cdev, num_vfs_param); 4581 else 4582 return qed_sriov_disable(cdev, true); 4583 } 4584 4585 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4586 { 4587 int i; 4588 4589 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4590 DP_VERBOSE(cdev, QED_MSG_IOV, 4591 "Cannot set a VF MAC; Sriov is not enabled\n"); 4592 return -EINVAL; 4593 } 4594 4595 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4596 DP_VERBOSE(cdev, QED_MSG_IOV, 4597 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4598 return -EINVAL; 4599 } 4600 4601 for_each_hwfn(cdev, i) { 4602 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4603 struct qed_public_vf_info *vf_info; 4604 4605 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4606 if (!vf_info) 4607 continue; 4608 4609 /* Set the MAC, and schedule the IOV task */ 4610 if (vf_info->is_trusted_configured) 4611 ether_addr_copy(vf_info->mac, mac); 4612 else 4613 ether_addr_copy(vf_info->forced_mac, mac); 4614 4615 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4616 } 4617 4618 return 0; 4619 } 4620 4621 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4622 { 4623 int i; 4624 4625 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4626 DP_VERBOSE(cdev, QED_MSG_IOV, 4627 "Cannot set a VF MAC; Sriov is not enabled\n"); 4628 return -EINVAL; 4629 } 4630 4631 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4632 DP_VERBOSE(cdev, QED_MSG_IOV, 4633 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4634 return -EINVAL; 4635 } 4636 4637 for_each_hwfn(cdev, i) { 4638 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4639 struct qed_public_vf_info *vf_info; 4640 4641 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4642 if (!vf_info) 4643 continue; 4644 4645 /* Set the forced vlan, and schedule the IOV task */ 4646 vf_info->forced_vlan = vid; 4647 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4648 } 4649 4650 return 0; 4651 } 4652 4653 static int qed_get_vf_config(struct qed_dev *cdev, 4654 int vf_id, struct ifla_vf_info *ivi) 4655 { 4656 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4657 struct qed_public_vf_info *vf_info; 4658 struct qed_mcp_link_state link; 4659 u32 tx_rate; 4660 4661 /* Sanitize request */ 4662 if (IS_VF(cdev)) 4663 return -EINVAL; 4664 4665 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4666 DP_VERBOSE(cdev, QED_MSG_IOV, 4667 "VF index [%d] isn't active\n", vf_id); 4668 return -EINVAL; 4669 } 4670 4671 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4672 4673 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4674 4675 /* Fill information about VF */ 4676 ivi->vf = vf_id; 4677 4678 if (is_valid_ether_addr(vf_info->forced_mac)) 4679 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4680 else 4681 ether_addr_copy(ivi->mac, vf_info->mac); 4682 4683 ivi->vlan = vf_info->forced_vlan; 4684 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4685 ivi->linkstate = vf_info->link_state; 4686 tx_rate = vf_info->tx_rate; 4687 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4688 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4689 4690 return 0; 4691 } 4692 4693 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4694 { 4695 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4696 struct qed_mcp_link_capabilities caps; 4697 struct qed_mcp_link_params params; 4698 struct qed_mcp_link_state link; 4699 int i; 4700 4701 if (!hwfn->pf_iov_info) 4702 return; 4703 4704 /* Update bulletin of all future possible VFs with link configuration */ 4705 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4706 struct qed_public_vf_info *vf_info; 4707 4708 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4709 if (!vf_info) 4710 continue; 4711 4712 /* Only hwfn0 is actually interested in the link speed. 4713 * But since only it would receive an MFW indication of link, 4714 * need to take configuration from it - otherwise things like 4715 * rate limiting for hwfn1 VF would not work. 4716 */ 4717 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4718 sizeof(params)); 4719 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4720 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4721 sizeof(caps)); 4722 4723 /* Modify link according to the VF's configured link state */ 4724 switch (vf_info->link_state) { 4725 case IFLA_VF_LINK_STATE_DISABLE: 4726 link.link_up = false; 4727 break; 4728 case IFLA_VF_LINK_STATE_ENABLE: 4729 link.link_up = true; 4730 /* Set speed according to maximum supported by HW. 4731 * that is 40G for regular devices and 100G for CMT 4732 * mode devices. 4733 */ 4734 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4735 100000 : 40000; 4736 default: 4737 /* In auto mode pass PF link image to VF */ 4738 break; 4739 } 4740 4741 if (link.link_up && vf_info->tx_rate) { 4742 struct qed_ptt *ptt; 4743 int rate; 4744 4745 rate = min_t(int, vf_info->tx_rate, link.speed); 4746 4747 ptt = qed_ptt_acquire(hwfn); 4748 if (!ptt) { 4749 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4750 return; 4751 } 4752 4753 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4754 vf_info->tx_rate = rate; 4755 link.speed = rate; 4756 } 4757 4758 qed_ptt_release(hwfn, ptt); 4759 } 4760 4761 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4762 } 4763 4764 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4765 } 4766 4767 static int qed_set_vf_link_state(struct qed_dev *cdev, 4768 int vf_id, int link_state) 4769 { 4770 int i; 4771 4772 /* Sanitize request */ 4773 if (IS_VF(cdev)) 4774 return -EINVAL; 4775 4776 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4777 DP_VERBOSE(cdev, QED_MSG_IOV, 4778 "VF index [%d] isn't active\n", vf_id); 4779 return -EINVAL; 4780 } 4781 4782 /* Handle configuration of link state */ 4783 for_each_hwfn(cdev, i) { 4784 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4785 struct qed_public_vf_info *vf; 4786 4787 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4788 if (!vf) 4789 continue; 4790 4791 if (vf->link_state == link_state) 4792 continue; 4793 4794 vf->link_state = link_state; 4795 qed_inform_vf_link_state(&cdev->hwfns[i]); 4796 } 4797 4798 return 0; 4799 } 4800 4801 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4802 { 4803 int i, rc = -EINVAL; 4804 4805 for_each_hwfn(cdev, i) { 4806 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4807 4808 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4809 if (rc) 4810 break; 4811 } 4812 4813 return rc; 4814 } 4815 4816 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4817 { 4818 int i; 4819 4820 for_each_hwfn(cdev, i) { 4821 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4822 struct qed_public_vf_info *vf; 4823 4824 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4825 DP_NOTICE(p_hwfn, 4826 "SR-IOV sanity check failed, can't set tx rate\n"); 4827 return -EINVAL; 4828 } 4829 4830 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4831 4832 vf->tx_rate = rate; 4833 4834 qed_inform_vf_link_state(p_hwfn); 4835 } 4836 4837 return 0; 4838 } 4839 4840 static int qed_set_vf_rate(struct qed_dev *cdev, 4841 int vfid, u32 min_rate, u32 max_rate) 4842 { 4843 int rc_min = 0, rc_max = 0; 4844 4845 if (max_rate) 4846 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4847 4848 if (min_rate) 4849 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4850 4851 if (rc_max | rc_min) 4852 return -EINVAL; 4853 4854 return 0; 4855 } 4856 4857 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4858 { 4859 int i; 4860 4861 for_each_hwfn(cdev, i) { 4862 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4863 struct qed_public_vf_info *vf; 4864 4865 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4866 DP_NOTICE(hwfn, 4867 "SR-IOV sanity check failed, can't set trust\n"); 4868 return -EINVAL; 4869 } 4870 4871 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4872 4873 if (vf->is_trusted_request == trust) 4874 return 0; 4875 vf->is_trusted_request = trust; 4876 4877 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4878 } 4879 4880 return 0; 4881 } 4882 4883 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4884 { 4885 u64 events[QED_VF_ARRAY_LENGTH]; 4886 struct qed_ptt *ptt; 4887 int i; 4888 4889 ptt = qed_ptt_acquire(hwfn); 4890 if (!ptt) { 4891 DP_VERBOSE(hwfn, QED_MSG_IOV, 4892 "Can't acquire PTT; re-scheduling\n"); 4893 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4894 return; 4895 } 4896 4897 qed_iov_pf_get_pending_events(hwfn, events); 4898 4899 DP_VERBOSE(hwfn, QED_MSG_IOV, 4900 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4901 events[0], events[1], events[2]); 4902 4903 qed_for_each_vf(hwfn, i) { 4904 /* Skip VFs with no pending messages */ 4905 if (!(events[i / 64] & (1ULL << (i % 64)))) 4906 continue; 4907 4908 DP_VERBOSE(hwfn, QED_MSG_IOV, 4909 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4910 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4911 4912 /* Copy VF's message to PF's request buffer for that VF */ 4913 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4914 continue; 4915 4916 qed_iov_process_mbx_req(hwfn, ptt, i); 4917 } 4918 4919 qed_ptt_release(hwfn, ptt); 4920 } 4921 4922 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn, 4923 u8 *mac, 4924 struct qed_public_vf_info *info) 4925 { 4926 if (info->is_trusted_configured) { 4927 if (is_valid_ether_addr(info->mac) && 4928 (!mac || !ether_addr_equal(mac, info->mac))) 4929 return true; 4930 } else { 4931 if (is_valid_ether_addr(info->forced_mac) && 4932 (!mac || !ether_addr_equal(mac, info->forced_mac))) 4933 return true; 4934 } 4935 4936 return false; 4937 } 4938 4939 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn, 4940 struct qed_public_vf_info *info, 4941 int vfid) 4942 { 4943 if (info->is_trusted_configured) 4944 qed_iov_bulletin_set_mac(hwfn, info->mac, vfid); 4945 else 4946 qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid); 4947 } 4948 4949 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4950 { 4951 int i; 4952 4953 qed_for_each_vf(hwfn, i) { 4954 struct qed_public_vf_info *info; 4955 bool update = false; 4956 u8 *mac; 4957 4958 info = qed_iov_get_public_vf_info(hwfn, i, true); 4959 if (!info) 4960 continue; 4961 4962 /* Update data on bulletin board */ 4963 if (info->is_trusted_configured) 4964 mac = qed_iov_bulletin_get_mac(hwfn, i); 4965 else 4966 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4967 4968 if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) { 4969 DP_VERBOSE(hwfn, 4970 QED_MSG_IOV, 4971 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4972 i, 4973 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4974 4975 /* Update bulletin board with MAC */ 4976 qed_set_bulletin_mac(hwfn, info, i); 4977 update = true; 4978 } 4979 4980 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 4981 info->forced_vlan) { 4982 DP_VERBOSE(hwfn, 4983 QED_MSG_IOV, 4984 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 4985 info->forced_vlan, 4986 i, 4987 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4988 qed_iov_bulletin_set_forced_vlan(hwfn, 4989 info->forced_vlan, i); 4990 update = true; 4991 } 4992 4993 if (update) 4994 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4995 } 4996 } 4997 4998 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 4999 { 5000 struct qed_ptt *ptt; 5001 int i; 5002 5003 ptt = qed_ptt_acquire(hwfn); 5004 if (!ptt) { 5005 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 5006 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5007 return; 5008 } 5009 5010 qed_for_each_vf(hwfn, i) 5011 qed_iov_post_vf_bulletin(hwfn, i, ptt); 5012 5013 qed_ptt_release(hwfn, ptt); 5014 } 5015 5016 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id) 5017 { 5018 struct qed_public_vf_info *vf_info; 5019 struct qed_vf_info *vf; 5020 u8 *force_mac; 5021 int i; 5022 5023 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 5024 vf = qed_iov_get_vf_info(hwfn, vf_id, true); 5025 5026 if (!vf_info || !vf) 5027 return; 5028 5029 /* Force MAC converted to generic MAC in case of VF trust on */ 5030 if (vf_info->is_trusted_configured && 5031 (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) { 5032 force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id); 5033 5034 if (force_mac) { 5035 /* Clear existing shadow copy of MAC to have a clean 5036 * slate. 5037 */ 5038 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5039 if (ether_addr_equal(vf->shadow_config.macs[i], 5040 vf_info->mac)) { 5041 eth_zero_addr(vf->shadow_config.macs[i]); 5042 DP_VERBOSE(hwfn, QED_MSG_IOV, 5043 "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n", 5044 vf_info->mac, vf_id); 5045 break; 5046 } 5047 } 5048 5049 ether_addr_copy(vf_info->mac, force_mac); 5050 eth_zero_addr(vf_info->forced_mac); 5051 vf->bulletin.p_virt->valid_bitmap &= 5052 ~BIT(MAC_ADDR_FORCED); 5053 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5054 } 5055 } 5056 5057 /* Update shadow copy with VF MAC when trust mode is turned off */ 5058 if (!vf_info->is_trusted_configured) { 5059 u8 empty_mac[ETH_ALEN]; 5060 5061 eth_zero_addr(empty_mac); 5062 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5063 if (ether_addr_equal(vf->shadow_config.macs[i], 5064 empty_mac)) { 5065 ether_addr_copy(vf->shadow_config.macs[i], 5066 vf_info->mac); 5067 DP_VERBOSE(hwfn, QED_MSG_IOV, 5068 "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n", 5069 vf_info->mac, vf_id); 5070 break; 5071 } 5072 } 5073 /* Clear bulletin when trust mode is turned off, 5074 * to have a clean slate for next (normal) operations. 5075 */ 5076 qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id); 5077 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5078 } 5079 } 5080 5081 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 5082 { 5083 struct qed_sp_vport_update_params params; 5084 struct qed_filter_accept_flags *flags; 5085 struct qed_public_vf_info *vf_info; 5086 struct qed_vf_info *vf; 5087 u8 mask; 5088 int i; 5089 5090 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 5091 flags = ¶ms.accept_flags; 5092 5093 qed_for_each_vf(hwfn, i) { 5094 /* Need to make sure current requested configuration didn't 5095 * flip so that we'll end up configuring something that's not 5096 * needed. 5097 */ 5098 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 5099 if (vf_info->is_trusted_configured == 5100 vf_info->is_trusted_request) 5101 continue; 5102 vf_info->is_trusted_configured = vf_info->is_trusted_request; 5103 5104 /* Handle forced MAC mode */ 5105 qed_update_mac_for_vf_trust_change(hwfn, i); 5106 5107 /* Validate that the VF has a configured vport */ 5108 vf = qed_iov_get_vf_info(hwfn, i, true); 5109 if (!vf->vport_instance) 5110 continue; 5111 5112 memset(¶ms, 0, sizeof(params)); 5113 params.opaque_fid = vf->opaque_fid; 5114 params.vport_id = vf->vport_id; 5115 5116 params.update_ctl_frame_check = 1; 5117 params.mac_chk_en = !vf_info->is_trusted_configured; 5118 5119 if (vf_info->rx_accept_mode & mask) { 5120 flags->update_rx_mode_config = 1; 5121 flags->rx_accept_filter = vf_info->rx_accept_mode; 5122 } 5123 5124 if (vf_info->tx_accept_mode & mask) { 5125 flags->update_tx_mode_config = 1; 5126 flags->tx_accept_filter = vf_info->tx_accept_mode; 5127 } 5128 5129 /* Remove if needed; Otherwise this would set the mask */ 5130 if (!vf_info->is_trusted_configured) { 5131 flags->rx_accept_filter &= ~mask; 5132 flags->tx_accept_filter &= ~mask; 5133 } 5134 5135 if (flags->update_rx_mode_config || 5136 flags->update_tx_mode_config || 5137 params.update_ctl_frame_check) 5138 qed_sp_vport_update(hwfn, ¶ms, 5139 QED_SPQ_MODE_EBLOCK, NULL); 5140 } 5141 } 5142 5143 static void qed_iov_pf_task(struct work_struct *work) 5144 5145 { 5146 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 5147 iov_task.work); 5148 int rc; 5149 5150 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 5151 return; 5152 5153 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 5154 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 5155 5156 if (!ptt) { 5157 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5158 return; 5159 } 5160 5161 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 5162 if (rc) 5163 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5164 5165 qed_ptt_release(hwfn, ptt); 5166 } 5167 5168 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 5169 qed_handle_vf_msg(hwfn); 5170 5171 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 5172 &hwfn->iov_task_flags)) 5173 qed_handle_pf_set_vf_unicast(hwfn); 5174 5175 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 5176 &hwfn->iov_task_flags)) 5177 qed_handle_bulletin_post(hwfn); 5178 5179 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 5180 qed_iov_handle_trust_change(hwfn); 5181 } 5182 5183 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 5184 { 5185 int i; 5186 5187 for_each_hwfn(cdev, i) { 5188 if (!cdev->hwfns[i].iov_wq) 5189 continue; 5190 5191 if (schedule_first) { 5192 qed_schedule_iov(&cdev->hwfns[i], 5193 QED_IOV_WQ_STOP_WQ_FLAG); 5194 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 5195 } 5196 5197 flush_workqueue(cdev->hwfns[i].iov_wq); 5198 destroy_workqueue(cdev->hwfns[i].iov_wq); 5199 } 5200 } 5201 5202 int qed_iov_wq_start(struct qed_dev *cdev) 5203 { 5204 char name[NAME_SIZE]; 5205 int i; 5206 5207 for_each_hwfn(cdev, i) { 5208 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 5209 5210 /* PFs needs a dedicated workqueue only if they support IOV. 5211 * VFs always require one. 5212 */ 5213 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 5214 continue; 5215 5216 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 5217 cdev->pdev->bus->number, 5218 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 5219 5220 p_hwfn->iov_wq = create_singlethread_workqueue(name); 5221 if (!p_hwfn->iov_wq) { 5222 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 5223 return -ENOMEM; 5224 } 5225 5226 if (IS_PF(cdev)) 5227 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 5228 else 5229 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 5230 } 5231 5232 return 0; 5233 } 5234 5235 const struct qed_iov_hv_ops qed_iov_ops_pass = { 5236 .configure = &qed_sriov_configure, 5237 .set_mac = &qed_sriov_pf_set_mac, 5238 .set_vlan = &qed_sriov_pf_set_vlan, 5239 .get_config = &qed_get_vf_config, 5240 .set_link_state = &qed_set_vf_link_state, 5241 .set_spoof = &qed_spoof_configure, 5242 .set_rate = &qed_set_vf_rate, 5243 .set_trust = &qed_set_vf_trust, 5244 }; 5245