1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/etherdevice.h> 34 #include <linux/crc32.h> 35 #include <linux/vmalloc.h> 36 #include <linux/qed/qed_iov_if.h> 37 #include "qed_cxt.h" 38 #include "qed_hsi.h" 39 #include "qed_hw.h" 40 #include "qed_init_ops.h" 41 #include "qed_int.h" 42 #include "qed_mcp.h" 43 #include "qed_reg_addr.h" 44 #include "qed_sp.h" 45 #include "qed_sriov.h" 46 #include "qed_vf.h" 47 48 /* IOV ramrods */ 49 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 50 { 51 struct vf_start_ramrod_data *p_ramrod = NULL; 52 struct qed_spq_entry *p_ent = NULL; 53 struct qed_sp_init_data init_data; 54 int rc = -EINVAL; 55 u8 fp_minor; 56 57 /* Get SPQ entry */ 58 memset(&init_data, 0, sizeof(init_data)); 59 init_data.cid = qed_spq_get_cid(p_hwfn); 60 init_data.opaque_fid = p_vf->opaque_fid; 61 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 62 63 rc = qed_sp_init_request(p_hwfn, &p_ent, 64 COMMON_RAMROD_VF_START, 65 PROTOCOLID_COMMON, &init_data); 66 if (rc) 67 return rc; 68 69 p_ramrod = &p_ent->ramrod.vf_start; 70 71 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 72 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 73 74 switch (p_hwfn->hw_info.personality) { 75 case QED_PCI_ETH: 76 p_ramrod->personality = PERSONALITY_ETH; 77 break; 78 case QED_PCI_ETH_ROCE: 79 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 80 break; 81 default: 82 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 83 p_hwfn->hw_info.personality); 84 return -EINVAL; 85 } 86 87 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 88 if (fp_minor > ETH_HSI_VER_MINOR && 89 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 90 DP_VERBOSE(p_hwfn, 91 QED_MSG_IOV, 92 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 93 p_vf->abs_vf_id, 94 ETH_HSI_VER_MAJOR, 95 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 96 fp_minor = ETH_HSI_VER_MINOR; 97 } 98 99 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 100 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 101 102 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 103 "VF[%d] - Starting using HSI %02x.%02x\n", 104 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 105 106 return qed_spq_post(p_hwfn, p_ent, NULL); 107 } 108 109 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 110 u32 concrete_vfid, u16 opaque_vfid) 111 { 112 struct vf_stop_ramrod_data *p_ramrod = NULL; 113 struct qed_spq_entry *p_ent = NULL; 114 struct qed_sp_init_data init_data; 115 int rc = -EINVAL; 116 117 /* Get SPQ entry */ 118 memset(&init_data, 0, sizeof(init_data)); 119 init_data.cid = qed_spq_get_cid(p_hwfn); 120 init_data.opaque_fid = opaque_vfid; 121 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 122 123 rc = qed_sp_init_request(p_hwfn, &p_ent, 124 COMMON_RAMROD_VF_STOP, 125 PROTOCOLID_COMMON, &init_data); 126 if (rc) 127 return rc; 128 129 p_ramrod = &p_ent->ramrod.vf_stop; 130 131 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 132 133 return qed_spq_post(p_hwfn, p_ent, NULL); 134 } 135 136 static bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 137 int rel_vf_id, 138 bool b_enabled_only, bool b_non_malicious) 139 { 140 if (!p_hwfn->pf_iov_info) { 141 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 142 return false; 143 } 144 145 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 146 (rel_vf_id < 0)) 147 return false; 148 149 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 150 b_enabled_only) 151 return false; 152 153 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 154 b_non_malicious) 155 return false; 156 157 return true; 158 } 159 160 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 161 u16 relative_vf_id, 162 bool b_enabled_only) 163 { 164 struct qed_vf_info *vf = NULL; 165 166 if (!p_hwfn->pf_iov_info) { 167 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 168 return NULL; 169 } 170 171 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 172 b_enabled_only, false)) 173 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 174 else 175 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 176 relative_vf_id); 177 178 return vf; 179 } 180 181 enum qed_iov_validate_q_mode { 182 QED_IOV_VALIDATE_Q_NA, 183 QED_IOV_VALIDATE_Q_ENABLE, 184 QED_IOV_VALIDATE_Q_DISABLE, 185 }; 186 187 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 188 struct qed_vf_info *p_vf, 189 u16 qid, 190 enum qed_iov_validate_q_mode mode, 191 bool b_is_tx) 192 { 193 if (mode == QED_IOV_VALIDATE_Q_NA) 194 return true; 195 196 if ((b_is_tx && p_vf->vf_queues[qid].p_tx_cid) || 197 (!b_is_tx && p_vf->vf_queues[qid].p_rx_cid)) 198 return mode == QED_IOV_VALIDATE_Q_ENABLE; 199 200 /* In case we haven't found any valid cid, then its disabled */ 201 return mode == QED_IOV_VALIDATE_Q_DISABLE; 202 } 203 204 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 205 struct qed_vf_info *p_vf, 206 u16 rx_qid, 207 enum qed_iov_validate_q_mode mode) 208 { 209 if (rx_qid >= p_vf->num_rxqs) { 210 DP_VERBOSE(p_hwfn, 211 QED_MSG_IOV, 212 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 213 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 214 return false; 215 } 216 217 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 218 } 219 220 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 221 struct qed_vf_info *p_vf, 222 u16 tx_qid, 223 enum qed_iov_validate_q_mode mode) 224 { 225 if (tx_qid >= p_vf->num_txqs) { 226 DP_VERBOSE(p_hwfn, 227 QED_MSG_IOV, 228 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 229 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 230 return false; 231 } 232 233 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 234 } 235 236 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 237 struct qed_vf_info *p_vf, u16 sb_idx) 238 { 239 int i; 240 241 for (i = 0; i < p_vf->num_sbs; i++) 242 if (p_vf->igu_sbs[i] == sb_idx) 243 return true; 244 245 DP_VERBOSE(p_hwfn, 246 QED_MSG_IOV, 247 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 248 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 249 250 return false; 251 } 252 253 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 254 struct qed_vf_info *p_vf) 255 { 256 u8 i; 257 258 for (i = 0; i < p_vf->num_rxqs; i++) 259 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 260 QED_IOV_VALIDATE_Q_ENABLE, 261 false)) 262 return true; 263 264 return false; 265 } 266 267 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 268 struct qed_vf_info *p_vf) 269 { 270 u8 i; 271 272 for (i = 0; i < p_vf->num_txqs; i++) 273 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 274 QED_IOV_VALIDATE_Q_ENABLE, 275 true)) 276 return true; 277 278 return false; 279 } 280 281 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 282 int vfid, struct qed_ptt *p_ptt) 283 { 284 struct qed_bulletin_content *p_bulletin; 285 int crc_size = sizeof(p_bulletin->crc); 286 struct qed_dmae_params params; 287 struct qed_vf_info *p_vf; 288 289 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 290 if (!p_vf) 291 return -EINVAL; 292 293 if (!p_vf->vf_bulletin) 294 return -EINVAL; 295 296 p_bulletin = p_vf->bulletin.p_virt; 297 298 /* Increment bulletin board version and compute crc */ 299 p_bulletin->version++; 300 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 301 p_vf->bulletin.size - crc_size); 302 303 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 304 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 305 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 306 307 /* propagate bulletin board via dmae to vm memory */ 308 memset(¶ms, 0, sizeof(params)); 309 params.flags = QED_DMAE_FLAG_VF_DST; 310 params.dst_vfid = p_vf->abs_vf_id; 311 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 312 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 313 ¶ms); 314 } 315 316 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 317 { 318 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 319 int pos = iov->pos; 320 321 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 322 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 323 324 pci_read_config_word(cdev->pdev, 325 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 326 pci_read_config_word(cdev->pdev, 327 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 328 329 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 330 if (iov->num_vfs) { 331 DP_VERBOSE(cdev, 332 QED_MSG_IOV, 333 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 334 iov->num_vfs = 0; 335 } 336 337 pci_read_config_word(cdev->pdev, 338 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 339 340 pci_read_config_word(cdev->pdev, 341 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 342 343 pci_read_config_word(cdev->pdev, 344 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 345 346 pci_read_config_dword(cdev->pdev, 347 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 348 349 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 350 351 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 352 353 DP_VERBOSE(cdev, 354 QED_MSG_IOV, 355 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 356 iov->nres, 357 iov->cap, 358 iov->ctrl, 359 iov->total_vfs, 360 iov->initial_vfs, 361 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 362 363 /* Some sanity checks */ 364 if (iov->num_vfs > NUM_OF_VFS(cdev) || 365 iov->total_vfs > NUM_OF_VFS(cdev)) { 366 /* This can happen only due to a bug. In this case we set 367 * num_vfs to zero to avoid memory corruption in the code that 368 * assumes max number of vfs 369 */ 370 DP_NOTICE(cdev, 371 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 372 iov->num_vfs); 373 374 iov->num_vfs = 0; 375 iov->total_vfs = 0; 376 } 377 378 return 0; 379 } 380 381 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn, 382 struct qed_ptt *p_ptt) 383 { 384 struct qed_igu_block *p_sb; 385 u16 sb_id; 386 u32 val; 387 388 if (!p_hwfn->hw_info.p_igu_info) { 389 DP_ERR(p_hwfn, 390 "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n"); 391 return; 392 } 393 394 for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 395 sb_id++) { 396 p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id]; 397 if ((p_sb->status & QED_IGU_STATUS_FREE) && 398 !(p_sb->status & QED_IGU_STATUS_PF)) { 399 val = qed_rd(p_hwfn, p_ptt, 400 IGU_REG_MAPPING_MEMORY + sb_id * 4); 401 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 402 qed_wr(p_hwfn, p_ptt, 403 IGU_REG_MAPPING_MEMORY + 4 * sb_id, val); 404 } 405 } 406 } 407 408 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 409 { 410 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 411 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 412 struct qed_bulletin_content *p_bulletin_virt; 413 dma_addr_t req_p, rply_p, bulletin_p; 414 union pfvf_tlvs *p_reply_virt_addr; 415 union vfpf_tlvs *p_req_virt_addr; 416 u8 idx = 0; 417 418 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 419 420 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 421 req_p = p_iov_info->mbx_msg_phys_addr; 422 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 423 rply_p = p_iov_info->mbx_reply_phys_addr; 424 p_bulletin_virt = p_iov_info->p_bulletins; 425 bulletin_p = p_iov_info->bulletins_phys; 426 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 427 DP_ERR(p_hwfn, 428 "qed_iov_setup_vfdb called without allocating mem first\n"); 429 return; 430 } 431 432 for (idx = 0; idx < p_iov->total_vfs; idx++) { 433 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 434 u32 concrete; 435 436 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 437 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 438 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 439 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 440 441 vf->state = VF_STOPPED; 442 vf->b_init = false; 443 444 vf->bulletin.phys = idx * 445 sizeof(struct qed_bulletin_content) + 446 bulletin_p; 447 vf->bulletin.p_virt = p_bulletin_virt + idx; 448 vf->bulletin.size = sizeof(struct qed_bulletin_content); 449 450 vf->relative_vf_id = idx; 451 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 452 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 453 vf->concrete_fid = concrete; 454 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 455 (vf->abs_vf_id << 8); 456 vf->vport_id = idx + 1; 457 458 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 459 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 460 } 461 } 462 463 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 464 { 465 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 466 void **p_v_addr; 467 u16 num_vfs = 0; 468 469 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 470 471 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 472 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 473 474 /* Allocate PF Mailbox buffer (per-VF) */ 475 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 476 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 477 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 478 p_iov_info->mbx_msg_size, 479 &p_iov_info->mbx_msg_phys_addr, 480 GFP_KERNEL); 481 if (!*p_v_addr) 482 return -ENOMEM; 483 484 /* Allocate PF Mailbox Reply buffer (per-VF) */ 485 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 486 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 487 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 488 p_iov_info->mbx_reply_size, 489 &p_iov_info->mbx_reply_phys_addr, 490 GFP_KERNEL); 491 if (!*p_v_addr) 492 return -ENOMEM; 493 494 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 495 num_vfs; 496 p_v_addr = &p_iov_info->p_bulletins; 497 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 498 p_iov_info->bulletins_size, 499 &p_iov_info->bulletins_phys, 500 GFP_KERNEL); 501 if (!*p_v_addr) 502 return -ENOMEM; 503 504 DP_VERBOSE(p_hwfn, 505 QED_MSG_IOV, 506 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 507 p_iov_info->mbx_msg_virt_addr, 508 (u64) p_iov_info->mbx_msg_phys_addr, 509 p_iov_info->mbx_reply_virt_addr, 510 (u64) p_iov_info->mbx_reply_phys_addr, 511 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 512 513 return 0; 514 } 515 516 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 517 { 518 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 519 520 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 521 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 522 p_iov_info->mbx_msg_size, 523 p_iov_info->mbx_msg_virt_addr, 524 p_iov_info->mbx_msg_phys_addr); 525 526 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 527 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 528 p_iov_info->mbx_reply_size, 529 p_iov_info->mbx_reply_virt_addr, 530 p_iov_info->mbx_reply_phys_addr); 531 532 if (p_iov_info->p_bulletins) 533 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 534 p_iov_info->bulletins_size, 535 p_iov_info->p_bulletins, 536 p_iov_info->bulletins_phys); 537 } 538 539 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 540 { 541 struct qed_pf_iov *p_sriov; 542 543 if (!IS_PF_SRIOV(p_hwfn)) { 544 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 545 "No SR-IOV - no need for IOV db\n"); 546 return 0; 547 } 548 549 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 550 if (!p_sriov) 551 return -ENOMEM; 552 553 p_hwfn->pf_iov_info = p_sriov; 554 555 return qed_iov_allocate_vfdb(p_hwfn); 556 } 557 558 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 559 { 560 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 561 return; 562 563 qed_iov_setup_vfdb(p_hwfn); 564 qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt); 565 } 566 567 void qed_iov_free(struct qed_hwfn *p_hwfn) 568 { 569 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 570 qed_iov_free_vfdb(p_hwfn); 571 kfree(p_hwfn->pf_iov_info); 572 } 573 } 574 575 void qed_iov_free_hw_info(struct qed_dev *cdev) 576 { 577 kfree(cdev->p_iov_info); 578 cdev->p_iov_info = NULL; 579 } 580 581 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 582 { 583 struct qed_dev *cdev = p_hwfn->cdev; 584 int pos; 585 int rc; 586 587 if (IS_VF(p_hwfn->cdev)) 588 return 0; 589 590 /* Learn the PCI configuration */ 591 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 592 PCI_EXT_CAP_ID_SRIOV); 593 if (!pos) { 594 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 595 return 0; 596 } 597 598 /* Allocate a new struct for IOV information */ 599 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 600 if (!cdev->p_iov_info) 601 return -ENOMEM; 602 603 cdev->p_iov_info->pos = pos; 604 605 rc = qed_iov_pci_cfg_info(cdev); 606 if (rc) 607 return rc; 608 609 /* We want PF IOV to be synonemous with the existance of p_iov_info; 610 * In case the capability is published but there are no VFs, simply 611 * de-allocate the struct. 612 */ 613 if (!cdev->p_iov_info->total_vfs) { 614 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 615 "IOV capabilities, but no VFs are published\n"); 616 kfree(cdev->p_iov_info); 617 cdev->p_iov_info = NULL; 618 return 0; 619 } 620 621 /* First VF index based on offset is tricky: 622 * - If ARI is supported [likely], offset - (16 - pf_id) would 623 * provide the number for eng0. 2nd engine Vfs would begin 624 * after the first engine's VFs. 625 * - If !ARI, VFs would start on next device. 626 * so offset - (256 - pf_id) would provide the number. 627 * Utilize the fact that (256 - pf_id) is achieved only by later 628 * to diffrentiate between the two. 629 */ 630 631 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 632 u32 first = p_hwfn->cdev->p_iov_info->offset + 633 p_hwfn->abs_pf_id - 16; 634 635 cdev->p_iov_info->first_vf_in_pf = first; 636 637 if (QED_PATH_ID(p_hwfn)) 638 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 639 } else { 640 u32 first = p_hwfn->cdev->p_iov_info->offset + 641 p_hwfn->abs_pf_id - 256; 642 643 cdev->p_iov_info->first_vf_in_pf = first; 644 } 645 646 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 647 "First VF in hwfn 0x%08x\n", 648 cdev->p_iov_info->first_vf_in_pf); 649 650 return 0; 651 } 652 653 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 654 int vfid, bool b_fail_malicious) 655 { 656 /* Check PF supports sriov */ 657 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 658 !IS_PF_SRIOV_ALLOC(p_hwfn)) 659 return false; 660 661 /* Check VF validity */ 662 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 663 return false; 664 665 return true; 666 } 667 668 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 669 { 670 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 671 } 672 673 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 674 u16 rel_vf_id, u8 to_disable) 675 { 676 struct qed_vf_info *vf; 677 int i; 678 679 for_each_hwfn(cdev, i) { 680 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 681 682 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 683 if (!vf) 684 continue; 685 686 vf->to_disable = to_disable; 687 } 688 } 689 690 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 691 { 692 u16 i; 693 694 if (!IS_QED_SRIOV(cdev)) 695 return; 696 697 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 698 qed_iov_set_vf_to_disable(cdev, i, to_disable); 699 } 700 701 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 702 struct qed_ptt *p_ptt, u8 abs_vfid) 703 { 704 qed_wr(p_hwfn, p_ptt, 705 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 706 1 << (abs_vfid & 0x1f)); 707 } 708 709 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 710 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 711 { 712 int i; 713 714 /* Set VF masks and configuration - pretend */ 715 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 716 717 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 718 719 /* unpretend */ 720 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 721 722 /* iterate over all queues, clear sb consumer */ 723 for (i = 0; i < vf->num_sbs; i++) 724 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 725 vf->igu_sbs[i], 726 vf->opaque_fid, true); 727 } 728 729 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 730 struct qed_ptt *p_ptt, 731 struct qed_vf_info *vf, bool enable) 732 { 733 u32 igu_vf_conf; 734 735 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 736 737 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 738 739 if (enable) 740 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 741 else 742 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 743 744 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 745 746 /* unpretend */ 747 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 748 } 749 750 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 751 struct qed_ptt *p_ptt, 752 struct qed_vf_info *vf) 753 { 754 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 755 int rc; 756 757 /* It's possible VF was previously considered malicious - 758 * clear the indication even if we're only going to disable VF. 759 */ 760 vf->b_malicious = false; 761 762 if (vf->to_disable) 763 return 0; 764 765 DP_VERBOSE(p_hwfn, 766 QED_MSG_IOV, 767 "Enable internal access for vf %x [abs %x]\n", 768 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 769 770 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 771 772 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 773 774 rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs); 775 if (rc) 776 return rc; 777 778 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 779 780 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 781 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 782 783 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 784 p_hwfn->hw_info.hw_mode); 785 786 /* unpretend */ 787 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 788 789 vf->state = VF_FREE; 790 791 return rc; 792 } 793 794 /** 795 * @brief qed_iov_config_perm_table - configure the permission 796 * zone table. 797 * In E4, queue zone permission table size is 320x9. There 798 * are 320 VF queues for single engine device (256 for dual 799 * engine device), and each entry has the following format: 800 * {Valid, VF[7:0]} 801 * @param p_hwfn 802 * @param p_ptt 803 * @param vf 804 * @param enable 805 */ 806 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 807 struct qed_ptt *p_ptt, 808 struct qed_vf_info *vf, u8 enable) 809 { 810 u32 reg_addr, val; 811 u16 qzone_id = 0; 812 int qid; 813 814 for (qid = 0; qid < vf->num_rxqs; qid++) { 815 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 816 &qzone_id); 817 818 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 819 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 820 qed_wr(p_hwfn, p_ptt, reg_addr, val); 821 } 822 } 823 824 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 825 struct qed_ptt *p_ptt, 826 struct qed_vf_info *vf) 827 { 828 /* Reset vf in IGU - interrupts are still disabled */ 829 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 830 831 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 832 833 /* Permission Table */ 834 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 835 } 836 837 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 838 struct qed_ptt *p_ptt, 839 struct qed_vf_info *vf, u16 num_rx_queues) 840 { 841 struct qed_igu_block *igu_blocks; 842 int qid = 0, igu_id = 0; 843 u32 val = 0; 844 845 igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks; 846 847 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks) 848 num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks; 849 p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues; 850 851 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 852 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 853 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 854 855 while ((qid < num_rx_queues) && 856 (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) { 857 if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) { 858 struct cau_sb_entry sb_entry; 859 860 vf->igu_sbs[qid] = (u16)igu_id; 861 igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE; 862 863 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 864 865 qed_wr(p_hwfn, p_ptt, 866 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id, 867 val); 868 869 /* Configure igu sb in CAU which were marked valid */ 870 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 871 p_hwfn->rel_pf_id, 872 vf->abs_vf_id, 1); 873 qed_dmae_host2grc(p_hwfn, p_ptt, 874 (u64)(uintptr_t)&sb_entry, 875 CAU_REG_SB_VAR_MEMORY + 876 igu_id * sizeof(u64), 2, 0); 877 qid++; 878 } 879 igu_id++; 880 } 881 882 vf->num_sbs = (u8) num_rx_queues; 883 884 return vf->num_sbs; 885 } 886 887 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 888 struct qed_ptt *p_ptt, 889 struct qed_vf_info *vf) 890 { 891 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 892 int idx, igu_id; 893 u32 addr, val; 894 895 /* Invalidate igu CAM lines and mark them as free */ 896 for (idx = 0; idx < vf->num_sbs; idx++) { 897 igu_id = vf->igu_sbs[idx]; 898 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 899 900 val = qed_rd(p_hwfn, p_ptt, addr); 901 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 902 qed_wr(p_hwfn, p_ptt, addr, val); 903 904 p_info->igu_map.igu_blocks[igu_id].status |= 905 QED_IGU_STATUS_FREE; 906 907 p_hwfn->hw_info.p_igu_info->free_blks++; 908 } 909 910 vf->num_sbs = 0; 911 } 912 913 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 914 u16 vfid, 915 struct qed_mcp_link_params *params, 916 struct qed_mcp_link_state *link, 917 struct qed_mcp_link_capabilities *p_caps) 918 { 919 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 920 vfid, 921 false); 922 struct qed_bulletin_content *p_bulletin; 923 924 if (!p_vf) 925 return; 926 927 p_bulletin = p_vf->bulletin.p_virt; 928 p_bulletin->req_autoneg = params->speed.autoneg; 929 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 930 p_bulletin->req_forced_speed = params->speed.forced_speed; 931 p_bulletin->req_autoneg_pause = params->pause.autoneg; 932 p_bulletin->req_forced_rx = params->pause.forced_rx; 933 p_bulletin->req_forced_tx = params->pause.forced_tx; 934 p_bulletin->req_loopback = params->loopback_mode; 935 936 p_bulletin->link_up = link->link_up; 937 p_bulletin->speed = link->speed; 938 p_bulletin->full_duplex = link->full_duplex; 939 p_bulletin->autoneg = link->an; 940 p_bulletin->autoneg_complete = link->an_complete; 941 p_bulletin->parallel_detection = link->parallel_detection; 942 p_bulletin->pfc_enabled = link->pfc_enabled; 943 p_bulletin->partner_adv_speed = link->partner_adv_speed; 944 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 945 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 946 p_bulletin->partner_adv_pause = link->partner_adv_pause; 947 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 948 949 p_bulletin->capability_speed = p_caps->speed_capabilities; 950 } 951 952 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 953 struct qed_ptt *p_ptt, 954 struct qed_iov_vf_init_params *p_params) 955 { 956 struct qed_mcp_link_capabilities link_caps; 957 struct qed_mcp_link_params link_params; 958 struct qed_mcp_link_state link_state; 959 u8 num_of_vf_avaiable_chains = 0; 960 struct qed_vf_info *vf = NULL; 961 u16 qid, num_irqs; 962 int rc = 0; 963 u32 cids; 964 u8 i; 965 966 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 967 if (!vf) { 968 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 969 return -EINVAL; 970 } 971 972 if (vf->b_init) { 973 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 974 p_params->rel_vf_id); 975 return -EINVAL; 976 } 977 978 /* Perform sanity checking on the requested queue_id */ 979 for (i = 0; i < p_params->num_queues; i++) { 980 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 981 u16 max_vf_qzone = min_vf_qzone + 982 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 983 984 qid = p_params->req_rx_queue[i]; 985 if (qid < min_vf_qzone || qid > max_vf_qzone) { 986 DP_NOTICE(p_hwfn, 987 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 988 qid, 989 p_params->rel_vf_id, 990 min_vf_qzone, max_vf_qzone); 991 return -EINVAL; 992 } 993 994 qid = p_params->req_tx_queue[i]; 995 if (qid > max_vf_qzone) { 996 DP_NOTICE(p_hwfn, 997 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 998 qid, p_params->rel_vf_id, max_vf_qzone); 999 return -EINVAL; 1000 } 1001 1002 /* If client *really* wants, Tx qid can be shared with PF */ 1003 if (qid < min_vf_qzone) 1004 DP_VERBOSE(p_hwfn, 1005 QED_MSG_IOV, 1006 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1007 p_params->rel_vf_id, qid, i); 1008 } 1009 1010 /* Limit number of queues according to number of CIDs */ 1011 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1012 DP_VERBOSE(p_hwfn, 1013 QED_MSG_IOV, 1014 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1015 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1016 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1017 1018 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1019 p_ptt, 1020 vf, num_irqs); 1021 if (!num_of_vf_avaiable_chains) { 1022 DP_ERR(p_hwfn, "no available igu sbs\n"); 1023 return -ENOMEM; 1024 } 1025 1026 /* Choose queue number and index ranges */ 1027 vf->num_rxqs = num_of_vf_avaiable_chains; 1028 vf->num_txqs = num_of_vf_avaiable_chains; 1029 1030 for (i = 0; i < vf->num_rxqs; i++) { 1031 struct qed_vf_q_info *p_queue = &vf->vf_queues[i]; 1032 1033 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1034 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1035 1036 /* CIDs are per-VF, so no problem having them 0-based. */ 1037 p_queue->fw_cid = i; 1038 1039 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1040 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x] CID %04x\n", 1041 vf->relative_vf_id, 1042 i, vf->igu_sbs[i], 1043 p_queue->fw_rx_qid, 1044 p_queue->fw_tx_qid, p_queue->fw_cid); 1045 } 1046 1047 /* Update the link configuration in bulletin */ 1048 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1049 sizeof(link_params)); 1050 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1051 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1052 sizeof(link_caps)); 1053 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1054 &link_params, &link_state, &link_caps); 1055 1056 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1057 if (!rc) { 1058 vf->b_init = true; 1059 1060 if (IS_LEAD_HWFN(p_hwfn)) 1061 p_hwfn->cdev->p_iov_info->num_vfs++; 1062 } 1063 1064 return rc; 1065 } 1066 1067 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1068 struct qed_ptt *p_ptt, u16 rel_vf_id) 1069 { 1070 struct qed_mcp_link_capabilities caps; 1071 struct qed_mcp_link_params params; 1072 struct qed_mcp_link_state link; 1073 struct qed_vf_info *vf = NULL; 1074 1075 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1076 if (!vf) { 1077 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1078 return -EINVAL; 1079 } 1080 1081 if (vf->bulletin.p_virt) 1082 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1083 1084 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1085 1086 /* Get the link configuration back in bulletin so 1087 * that when VFs are re-enabled they get the actual 1088 * link configuration. 1089 */ 1090 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1091 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1092 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1093 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1094 1095 /* Forget the VF's acquisition message */ 1096 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1097 1098 /* disablng interrupts and resetting permission table was done during 1099 * vf-close, however, we could get here without going through vf_close 1100 */ 1101 /* Disable Interrupts for VF */ 1102 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1103 1104 /* Reset Permission table */ 1105 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1106 1107 vf->num_rxqs = 0; 1108 vf->num_txqs = 0; 1109 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1110 1111 if (vf->b_init) { 1112 vf->b_init = false; 1113 1114 if (IS_LEAD_HWFN(p_hwfn)) 1115 p_hwfn->cdev->p_iov_info->num_vfs--; 1116 } 1117 1118 return 0; 1119 } 1120 1121 static bool qed_iov_tlv_supported(u16 tlvtype) 1122 { 1123 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1124 } 1125 1126 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1127 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1128 { 1129 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1130 1131 tl->type = type; 1132 tl->length = length; 1133 1134 /* Offset should keep pointing to next TLV (the end of the last) */ 1135 *offset += length; 1136 1137 /* Return a pointer to the start of the added tlv */ 1138 return *offset - length; 1139 } 1140 1141 /* list the types and lengths of the tlvs on the buffer */ 1142 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1143 { 1144 u16 i = 1, total_length = 0; 1145 struct channel_tlv *tlv; 1146 1147 do { 1148 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1149 1150 /* output tlv */ 1151 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1152 "TLV number %d: type %d, length %d\n", 1153 i, tlv->type, tlv->length); 1154 1155 if (tlv->type == CHANNEL_TLV_LIST_END) 1156 return; 1157 1158 /* Validate entry - protect against malicious VFs */ 1159 if (!tlv->length) { 1160 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1161 return; 1162 } 1163 1164 total_length += tlv->length; 1165 1166 if (total_length >= sizeof(struct tlv_buffer_size)) { 1167 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1168 return; 1169 } 1170 1171 i++; 1172 } while (1); 1173 } 1174 1175 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1176 struct qed_ptt *p_ptt, 1177 struct qed_vf_info *p_vf, 1178 u16 length, u8 status) 1179 { 1180 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1181 struct qed_dmae_params params; 1182 u8 eng_vf_id; 1183 1184 mbx->reply_virt->default_resp.hdr.status = status; 1185 1186 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1187 1188 eng_vf_id = p_vf->abs_vf_id; 1189 1190 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 1191 params.flags = QED_DMAE_FLAG_VF_DST; 1192 params.dst_vfid = eng_vf_id; 1193 1194 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1195 mbx->req_virt->first_tlv.reply_address + 1196 sizeof(u64), 1197 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1198 ¶ms); 1199 1200 /* Once PF copies the rc to the VF, the latter can continue 1201 * and send an additional message. So we have to make sure the 1202 * channel would be re-set to ready prior to that. 1203 */ 1204 REG_WR(p_hwfn, 1205 GTT_BAR0_MAP_REG_USDM_RAM + 1206 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1207 1208 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1209 mbx->req_virt->first_tlv.reply_address, 1210 sizeof(u64) / 4, ¶ms); 1211 } 1212 1213 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1214 enum qed_iov_vport_update_flag flag) 1215 { 1216 switch (flag) { 1217 case QED_IOV_VP_UPDATE_ACTIVATE: 1218 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1219 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1220 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1221 case QED_IOV_VP_UPDATE_TX_SWITCH: 1222 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1223 case QED_IOV_VP_UPDATE_MCAST: 1224 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1225 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1226 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1227 case QED_IOV_VP_UPDATE_RSS: 1228 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1229 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1230 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1231 case QED_IOV_VP_UPDATE_SGE_TPA: 1232 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1233 default: 1234 return 0; 1235 } 1236 } 1237 1238 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1239 struct qed_vf_info *p_vf, 1240 struct qed_iov_vf_mbx *p_mbx, 1241 u8 status, 1242 u16 tlvs_mask, u16 tlvs_accepted) 1243 { 1244 struct pfvf_def_resp_tlv *resp; 1245 u16 size, total_len, i; 1246 1247 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1248 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1249 size = sizeof(struct pfvf_def_resp_tlv); 1250 total_len = size; 1251 1252 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1253 1254 /* Prepare response for all extended tlvs if they are found by PF */ 1255 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1256 if (!(tlvs_mask & BIT(i))) 1257 continue; 1258 1259 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1260 qed_iov_vport_to_tlv(p_hwfn, i), size); 1261 1262 if (tlvs_accepted & BIT(i)) 1263 resp->hdr.status = status; 1264 else 1265 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1266 1267 DP_VERBOSE(p_hwfn, 1268 QED_MSG_IOV, 1269 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1270 p_vf->relative_vf_id, 1271 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1272 1273 total_len += size; 1274 } 1275 1276 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1277 sizeof(struct channel_list_end_tlv)); 1278 1279 return total_len; 1280 } 1281 1282 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1283 struct qed_ptt *p_ptt, 1284 struct qed_vf_info *vf_info, 1285 u16 type, u16 length, u8 status) 1286 { 1287 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1288 1289 mbx->offset = (u8 *)mbx->reply_virt; 1290 1291 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1292 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1293 sizeof(struct channel_list_end_tlv)); 1294 1295 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1296 } 1297 1298 static struct 1299 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1300 u16 relative_vf_id, 1301 bool b_enabled_only) 1302 { 1303 struct qed_vf_info *vf = NULL; 1304 1305 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1306 if (!vf) 1307 return NULL; 1308 1309 return &vf->p_vf_info; 1310 } 1311 1312 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1313 { 1314 struct qed_public_vf_info *vf_info; 1315 1316 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1317 1318 if (!vf_info) 1319 return; 1320 1321 /* Clear the VF mac */ 1322 eth_zero_addr(vf_info->mac); 1323 1324 vf_info->rx_accept_mode = 0; 1325 vf_info->tx_accept_mode = 0; 1326 } 1327 1328 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1329 struct qed_vf_info *p_vf) 1330 { 1331 u32 i; 1332 1333 p_vf->vf_bulletin = 0; 1334 p_vf->vport_instance = 0; 1335 p_vf->configured_features = 0; 1336 1337 /* If VF previously requested less resources, go back to default */ 1338 p_vf->num_rxqs = p_vf->num_sbs; 1339 p_vf->num_txqs = p_vf->num_sbs; 1340 1341 p_vf->num_active_rxqs = 0; 1342 1343 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1344 struct qed_vf_q_info *p_queue = &p_vf->vf_queues[i]; 1345 1346 if (p_queue->p_rx_cid) { 1347 qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid); 1348 p_queue->p_rx_cid = NULL; 1349 } 1350 1351 if (p_queue->p_tx_cid) { 1352 qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid); 1353 p_queue->p_tx_cid = NULL; 1354 } 1355 } 1356 1357 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1358 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1359 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1360 } 1361 1362 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1363 struct qed_ptt *p_ptt, 1364 struct qed_vf_info *p_vf, 1365 struct vf_pf_resc_request *p_req, 1366 struct pf_vf_resc *p_resp) 1367 { 1368 int i; 1369 1370 /* Queue related information */ 1371 p_resp->num_rxqs = p_vf->num_rxqs; 1372 p_resp->num_txqs = p_vf->num_txqs; 1373 p_resp->num_sbs = p_vf->num_sbs; 1374 1375 for (i = 0; i < p_resp->num_sbs; i++) { 1376 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1377 p_resp->hw_sbs[i].sb_qid = 0; 1378 } 1379 1380 /* These fields are filled for backward compatibility. 1381 * Unused by modern vfs. 1382 */ 1383 for (i = 0; i < p_resp->num_rxqs; i++) { 1384 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1385 (u16 *)&p_resp->hw_qid[i]); 1386 p_resp->cid[i] = p_vf->vf_queues[i].fw_cid; 1387 } 1388 1389 /* Filter related information */ 1390 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1391 p_req->num_mac_filters); 1392 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1393 p_req->num_vlan_filters); 1394 1395 /* This isn't really needed/enforced, but some legacy VFs might depend 1396 * on the correct filling of this field. 1397 */ 1398 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1399 1400 /* Validate sufficient resources for VF */ 1401 if (p_resp->num_rxqs < p_req->num_rxqs || 1402 p_resp->num_txqs < p_req->num_txqs || 1403 p_resp->num_sbs < p_req->num_sbs || 1404 p_resp->num_mac_filters < p_req->num_mac_filters || 1405 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1406 p_resp->num_mc_filters < p_req->num_mc_filters) { 1407 DP_VERBOSE(p_hwfn, 1408 QED_MSG_IOV, 1409 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x]\n", 1410 p_vf->abs_vf_id, 1411 p_req->num_rxqs, 1412 p_resp->num_rxqs, 1413 p_req->num_rxqs, 1414 p_resp->num_txqs, 1415 p_req->num_sbs, 1416 p_resp->num_sbs, 1417 p_req->num_mac_filters, 1418 p_resp->num_mac_filters, 1419 p_req->num_vlan_filters, 1420 p_resp->num_vlan_filters, 1421 p_req->num_mc_filters, p_resp->num_mc_filters); 1422 1423 /* Some legacy OSes are incapable of correctly handling this 1424 * failure. 1425 */ 1426 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1427 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1428 (p_vf->acquire.vfdev_info.os_type == 1429 VFPF_ACQUIRE_OS_WINDOWS)) 1430 return PFVF_STATUS_SUCCESS; 1431 1432 return PFVF_STATUS_NO_RESOURCE; 1433 } 1434 1435 return PFVF_STATUS_SUCCESS; 1436 } 1437 1438 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1439 struct pfvf_stats_info *p_stats) 1440 { 1441 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1442 offsetof(struct mstorm_vf_zone, 1443 non_trigger.eth_queue_stat); 1444 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1445 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1446 offsetof(struct ustorm_vf_zone, 1447 non_trigger.eth_queue_stat); 1448 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1449 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1450 offsetof(struct pstorm_vf_zone, 1451 non_trigger.eth_queue_stat); 1452 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1453 p_stats->tstats.address = 0; 1454 p_stats->tstats.len = 0; 1455 } 1456 1457 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1458 struct qed_ptt *p_ptt, 1459 struct qed_vf_info *vf) 1460 { 1461 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1462 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1463 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1464 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1465 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1466 struct pf_vf_resc *resc = &resp->resc; 1467 int rc; 1468 1469 memset(resp, 0, sizeof(*resp)); 1470 1471 /* Write the PF version so that VF would know which version 1472 * is supported - might be later overriden. This guarantees that 1473 * VF could recognize legacy PF based on lack of versions in reply. 1474 */ 1475 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1476 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1477 1478 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1479 DP_VERBOSE(p_hwfn, 1480 QED_MSG_IOV, 1481 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1482 vf->abs_vf_id, vf->state); 1483 goto out; 1484 } 1485 1486 /* Validate FW compatibility */ 1487 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1488 if (req->vfdev_info.capabilities & 1489 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1490 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1491 1492 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1493 "VF[%d] is pre-fastpath HSI\n", 1494 vf->abs_vf_id); 1495 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1496 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1497 } else { 1498 DP_INFO(p_hwfn, 1499 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1500 vf->abs_vf_id, 1501 req->vfdev_info.eth_fp_hsi_major, 1502 req->vfdev_info.eth_fp_hsi_minor, 1503 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1504 1505 goto out; 1506 } 1507 } 1508 1509 /* On 100g PFs, prevent old VFs from loading */ 1510 if ((p_hwfn->cdev->num_hwfns > 1) && 1511 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1512 DP_INFO(p_hwfn, 1513 "VF[%d] is running an old driver that doesn't support 100g\n", 1514 vf->abs_vf_id); 1515 goto out; 1516 } 1517 1518 /* Store the acquire message */ 1519 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1520 1521 vf->opaque_fid = req->vfdev_info.opaque_fid; 1522 1523 vf->vf_bulletin = req->bulletin_addr; 1524 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1525 vf->bulletin.size : req->bulletin_size; 1526 1527 /* fill in pfdev info */ 1528 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1529 pfdev_info->db_size = 0; 1530 pfdev_info->indices_per_sb = PIS_PER_SB; 1531 1532 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1533 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1534 if (p_hwfn->cdev->num_hwfns > 1) 1535 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1536 1537 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1538 1539 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1540 1541 pfdev_info->fw_major = FW_MAJOR_VERSION; 1542 pfdev_info->fw_minor = FW_MINOR_VERSION; 1543 pfdev_info->fw_rev = FW_REVISION_VERSION; 1544 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1545 1546 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1547 * this field. 1548 */ 1549 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1550 req->vfdev_info.eth_fp_hsi_minor); 1551 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1552 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1553 1554 pfdev_info->dev_type = p_hwfn->cdev->type; 1555 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1556 1557 /* Fill resources available to VF; Make sure there are enough to 1558 * satisfy the VF's request. 1559 */ 1560 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1561 &req->resc_request, resc); 1562 if (vfpf_status != PFVF_STATUS_SUCCESS) 1563 goto out; 1564 1565 /* Start the VF in FW */ 1566 rc = qed_sp_vf_start(p_hwfn, vf); 1567 if (rc) { 1568 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1569 vfpf_status = PFVF_STATUS_FAILURE; 1570 goto out; 1571 } 1572 1573 /* Fill agreed size of bulletin board in response */ 1574 resp->bulletin_size = vf->bulletin.size; 1575 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1576 1577 DP_VERBOSE(p_hwfn, 1578 QED_MSG_IOV, 1579 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1580 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1581 vf->abs_vf_id, 1582 resp->pfdev_info.chip_num, 1583 resp->pfdev_info.db_size, 1584 resp->pfdev_info.indices_per_sb, 1585 resp->pfdev_info.capabilities, 1586 resc->num_rxqs, 1587 resc->num_txqs, 1588 resc->num_sbs, 1589 resc->num_mac_filters, 1590 resc->num_vlan_filters); 1591 vf->state = VF_ACQUIRED; 1592 1593 /* Prepare Response */ 1594 out: 1595 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1596 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1597 } 1598 1599 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1600 struct qed_vf_info *p_vf, bool val) 1601 { 1602 struct qed_sp_vport_update_params params; 1603 int rc; 1604 1605 if (val == p_vf->spoof_chk) { 1606 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1607 "Spoofchk value[%d] is already configured\n", val); 1608 return 0; 1609 } 1610 1611 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1612 params.opaque_fid = p_vf->opaque_fid; 1613 params.vport_id = p_vf->vport_id; 1614 params.update_anti_spoofing_en_flg = 1; 1615 params.anti_spoofing_en = val; 1616 1617 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1618 if (!rc) { 1619 p_vf->spoof_chk = val; 1620 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1621 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1622 "Spoofchk val[%d] configured\n", val); 1623 } else { 1624 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1625 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1626 val, p_vf->relative_vf_id); 1627 } 1628 1629 return rc; 1630 } 1631 1632 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1633 struct qed_vf_info *p_vf) 1634 { 1635 struct qed_filter_ucast filter; 1636 int rc = 0; 1637 int i; 1638 1639 memset(&filter, 0, sizeof(filter)); 1640 filter.is_rx_filter = 1; 1641 filter.is_tx_filter = 1; 1642 filter.vport_to_add_to = p_vf->vport_id; 1643 filter.opcode = QED_FILTER_ADD; 1644 1645 /* Reconfigure vlans */ 1646 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1647 if (!p_vf->shadow_config.vlans[i].used) 1648 continue; 1649 1650 filter.type = QED_FILTER_VLAN; 1651 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1652 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1653 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1654 filter.vlan, p_vf->relative_vf_id); 1655 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1656 &filter, QED_SPQ_MODE_CB, NULL); 1657 if (rc) { 1658 DP_NOTICE(p_hwfn, 1659 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1660 filter.vlan, p_vf->relative_vf_id); 1661 break; 1662 } 1663 } 1664 1665 return rc; 1666 } 1667 1668 static int 1669 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1670 struct qed_vf_info *p_vf, u64 events) 1671 { 1672 int rc = 0; 1673 1674 if ((events & BIT(VLAN_ADDR_FORCED)) && 1675 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1676 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1677 1678 return rc; 1679 } 1680 1681 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1682 struct qed_vf_info *p_vf, u64 events) 1683 { 1684 int rc = 0; 1685 struct qed_filter_ucast filter; 1686 1687 if (!p_vf->vport_instance) 1688 return -EINVAL; 1689 1690 if (events & BIT(MAC_ADDR_FORCED)) { 1691 /* Since there's no way [currently] of removing the MAC, 1692 * we can always assume this means we need to force it. 1693 */ 1694 memset(&filter, 0, sizeof(filter)); 1695 filter.type = QED_FILTER_MAC; 1696 filter.opcode = QED_FILTER_REPLACE; 1697 filter.is_rx_filter = 1; 1698 filter.is_tx_filter = 1; 1699 filter.vport_to_add_to = p_vf->vport_id; 1700 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1701 1702 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1703 &filter, QED_SPQ_MODE_CB, NULL); 1704 if (rc) { 1705 DP_NOTICE(p_hwfn, 1706 "PF failed to configure MAC for VF\n"); 1707 return rc; 1708 } 1709 1710 p_vf->configured_features |= 1 << MAC_ADDR_FORCED; 1711 } 1712 1713 if (events & BIT(VLAN_ADDR_FORCED)) { 1714 struct qed_sp_vport_update_params vport_update; 1715 u8 removal; 1716 int i; 1717 1718 memset(&filter, 0, sizeof(filter)); 1719 filter.type = QED_FILTER_VLAN; 1720 filter.is_rx_filter = 1; 1721 filter.is_tx_filter = 1; 1722 filter.vport_to_add_to = p_vf->vport_id; 1723 filter.vlan = p_vf->bulletin.p_virt->pvid; 1724 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1725 QED_FILTER_FLUSH; 1726 1727 /* Send the ramrod */ 1728 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1729 &filter, QED_SPQ_MODE_CB, NULL); 1730 if (rc) { 1731 DP_NOTICE(p_hwfn, 1732 "PF failed to configure VLAN for VF\n"); 1733 return rc; 1734 } 1735 1736 /* Update the default-vlan & silent vlan stripping */ 1737 memset(&vport_update, 0, sizeof(vport_update)); 1738 vport_update.opaque_fid = p_vf->opaque_fid; 1739 vport_update.vport_id = p_vf->vport_id; 1740 vport_update.update_default_vlan_enable_flg = 1; 1741 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1742 vport_update.update_default_vlan_flg = 1; 1743 vport_update.default_vlan = filter.vlan; 1744 1745 vport_update.update_inner_vlan_removal_flg = 1; 1746 removal = filter.vlan ? 1 1747 : p_vf->shadow_config.inner_vlan_removal; 1748 vport_update.inner_vlan_removal_flg = removal; 1749 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1750 rc = qed_sp_vport_update(p_hwfn, 1751 &vport_update, 1752 QED_SPQ_MODE_EBLOCK, NULL); 1753 if (rc) { 1754 DP_NOTICE(p_hwfn, 1755 "PF failed to configure VF vport for vlan\n"); 1756 return rc; 1757 } 1758 1759 /* Update all the Rx queues */ 1760 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1761 struct qed_queue_cid *p_cid; 1762 1763 p_cid = p_vf->vf_queues[i].p_rx_cid; 1764 if (!p_cid) 1765 continue; 1766 1767 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1768 (void **)&p_cid, 1769 1, 0, 1, 1770 QED_SPQ_MODE_EBLOCK, 1771 NULL); 1772 if (rc) { 1773 DP_NOTICE(p_hwfn, 1774 "Failed to send Rx update fo queue[0x%04x]\n", 1775 p_cid->rel.queue_id); 1776 return rc; 1777 } 1778 } 1779 1780 if (filter.vlan) 1781 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1782 else 1783 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1784 } 1785 1786 /* If forced features are terminated, we need to configure the shadow 1787 * configuration back again. 1788 */ 1789 if (events) 1790 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1791 1792 return rc; 1793 } 1794 1795 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1796 struct qed_ptt *p_ptt, 1797 struct qed_vf_info *vf) 1798 { 1799 struct qed_sp_vport_start_params params = { 0 }; 1800 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1801 struct vfpf_vport_start_tlv *start; 1802 u8 status = PFVF_STATUS_SUCCESS; 1803 struct qed_vf_info *vf_info; 1804 u64 *p_bitmap; 1805 int sb_id; 1806 int rc; 1807 1808 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1809 if (!vf_info) { 1810 DP_NOTICE(p_hwfn->cdev, 1811 "Failed to get VF info, invalid vfid [%d]\n", 1812 vf->relative_vf_id); 1813 return; 1814 } 1815 1816 vf->state = VF_ENABLED; 1817 start = &mbx->req_virt->start_vport; 1818 1819 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1820 1821 /* Initialize Status block in CAU */ 1822 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1823 if (!start->sb_addr[sb_id]) { 1824 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1825 "VF[%d] did not fill the address of SB %d\n", 1826 vf->relative_vf_id, sb_id); 1827 break; 1828 } 1829 1830 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1831 start->sb_addr[sb_id], 1832 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1833 } 1834 1835 vf->mtu = start->mtu; 1836 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1837 1838 /* Take into consideration configuration forced by hypervisor; 1839 * If none is configured, use the supplied VF values [for old 1840 * vfs that would still be fine, since they passed '0' as padding]. 1841 */ 1842 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1843 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1844 u8 vf_req = start->only_untagged; 1845 1846 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1847 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1848 } 1849 1850 params.tpa_mode = start->tpa_mode; 1851 params.remove_inner_vlan = start->inner_vlan_removal; 1852 params.tx_switching = true; 1853 1854 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1855 params.drop_ttl0 = false; 1856 params.concrete_fid = vf->concrete_fid; 1857 params.opaque_fid = vf->opaque_fid; 1858 params.vport_id = vf->vport_id; 1859 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1860 params.mtu = vf->mtu; 1861 params.check_mac = true; 1862 1863 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1864 if (rc) { 1865 DP_ERR(p_hwfn, 1866 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1867 status = PFVF_STATUS_FAILURE; 1868 } else { 1869 vf->vport_instance++; 1870 1871 /* Force configuration if needed on the newly opened vport */ 1872 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1873 1874 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1875 } 1876 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1877 sizeof(struct pfvf_def_resp_tlv), status); 1878 } 1879 1880 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1881 struct qed_ptt *p_ptt, 1882 struct qed_vf_info *vf) 1883 { 1884 u8 status = PFVF_STATUS_SUCCESS; 1885 int rc; 1886 1887 vf->vport_instance--; 1888 vf->spoof_chk = false; 1889 1890 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 1891 (qed_iov_validate_active_txq(p_hwfn, vf))) { 1892 vf->b_malicious = true; 1893 DP_NOTICE(p_hwfn, 1894 "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n", 1895 vf->abs_vf_id); 1896 status = PFVF_STATUS_MALICIOUS; 1897 goto out; 1898 } 1899 1900 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 1901 if (rc) { 1902 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 1903 rc); 1904 status = PFVF_STATUS_FAILURE; 1905 } 1906 1907 /* Forget the configuration on the vport */ 1908 vf->configured_features = 0; 1909 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 1910 1911 out: 1912 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 1913 sizeof(struct pfvf_def_resp_tlv), status); 1914 } 1915 1916 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 1917 struct qed_ptt *p_ptt, 1918 struct qed_vf_info *vf, 1919 u8 status, bool b_legacy) 1920 { 1921 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1922 struct pfvf_start_queue_resp_tlv *p_tlv; 1923 struct vfpf_start_rxq_tlv *req; 1924 u16 length; 1925 1926 mbx->offset = (u8 *)mbx->reply_virt; 1927 1928 /* Taking a bigger struct instead of adding a TLV to list was a 1929 * mistake, but one which we're now stuck with, as some older 1930 * clients assume the size of the previous response. 1931 */ 1932 if (!b_legacy) 1933 length = sizeof(*p_tlv); 1934 else 1935 length = sizeof(struct pfvf_def_resp_tlv); 1936 1937 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 1938 length); 1939 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1940 sizeof(struct channel_list_end_tlv)); 1941 1942 /* Update the TLV with the response */ 1943 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 1944 req = &mbx->req_virt->start_rxq; 1945 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 1946 offsetof(struct mstorm_vf_zone, 1947 non_trigger.eth_rx_queue_producers) + 1948 sizeof(struct eth_rx_prod_data) * req->rx_qid; 1949 } 1950 1951 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 1952 } 1953 1954 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 1955 struct qed_ptt *p_ptt, 1956 struct qed_vf_info *vf) 1957 { 1958 struct qed_queue_start_common_params params; 1959 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1960 u8 status = PFVF_STATUS_NO_RESOURCE; 1961 struct qed_vf_q_info *p_queue; 1962 struct vfpf_start_rxq_tlv *req; 1963 bool b_legacy_vf = false; 1964 int rc; 1965 1966 req = &mbx->req_virt->start_rxq; 1967 1968 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 1969 QED_IOV_VALIDATE_Q_DISABLE) || 1970 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 1971 goto out; 1972 1973 /* Acquire a new queue-cid */ 1974 p_queue = &vf->vf_queues[req->rx_qid]; 1975 1976 memset(¶ms, 0, sizeof(params)); 1977 params.queue_id = p_queue->fw_rx_qid; 1978 params.vport_id = vf->vport_id; 1979 params.stats_id = vf->abs_vf_id + 0x10; 1980 params.sb = req->hw_sb; 1981 params.sb_idx = req->sb_index; 1982 1983 p_queue->p_rx_cid = _qed_eth_queue_to_cid(p_hwfn, 1984 vf->opaque_fid, 1985 p_queue->fw_cid, 1986 req->rx_qid, ¶ms); 1987 if (!p_queue->p_rx_cid) 1988 goto out; 1989 1990 /* Legacy VFs have their Producers in a different location, which they 1991 * calculate on their own and clean the producer prior to this. 1992 */ 1993 if (vf->acquire.vfdev_info.eth_fp_hsi_minor == 1994 ETH_HSI_VER_NO_PKT_LEN_TUNN) { 1995 b_legacy_vf = true; 1996 } else { 1997 REG_WR(p_hwfn, 1998 GTT_BAR0_MAP_REG_MSDM_RAM + 1999 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2000 0); 2001 } 2002 p_queue->p_rx_cid->b_legacy_vf = b_legacy_vf; 2003 2004 rc = qed_eth_rxq_start_ramrod(p_hwfn, 2005 p_queue->p_rx_cid, 2006 req->bd_max_bytes, 2007 req->rxq_addr, 2008 req->cqe_pbl_addr, req->cqe_pbl_size); 2009 if (rc) { 2010 status = PFVF_STATUS_FAILURE; 2011 qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid); 2012 p_queue->p_rx_cid = NULL; 2013 } else { 2014 status = PFVF_STATUS_SUCCESS; 2015 vf->num_active_rxqs++; 2016 } 2017 2018 out: 2019 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, b_legacy_vf); 2020 } 2021 2022 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2023 struct qed_ptt *p_ptt, 2024 struct qed_vf_info *p_vf, u8 status) 2025 { 2026 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2027 struct pfvf_start_queue_resp_tlv *p_tlv; 2028 bool b_legacy = false; 2029 u16 length; 2030 2031 mbx->offset = (u8 *)mbx->reply_virt; 2032 2033 /* Taking a bigger struct instead of adding a TLV to list was a 2034 * mistake, but one which we're now stuck with, as some older 2035 * clients assume the size of the previous response. 2036 */ 2037 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2038 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2039 b_legacy = true; 2040 2041 if (!b_legacy) 2042 length = sizeof(*p_tlv); 2043 else 2044 length = sizeof(struct pfvf_def_resp_tlv); 2045 2046 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2047 length); 2048 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2049 sizeof(struct channel_list_end_tlv)); 2050 2051 /* Update the TLV with the response */ 2052 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2053 u16 qid = mbx->req_virt->start_txq.tx_qid; 2054 2055 p_tlv->offset = qed_db_addr_vf(p_vf->vf_queues[qid].fw_cid, 2056 DQ_DEMS_LEGACY); 2057 } 2058 2059 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2060 } 2061 2062 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2063 struct qed_ptt *p_ptt, 2064 struct qed_vf_info *vf) 2065 { 2066 struct qed_queue_start_common_params params; 2067 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2068 u8 status = PFVF_STATUS_NO_RESOURCE; 2069 struct vfpf_start_txq_tlv *req; 2070 struct qed_vf_q_info *p_queue; 2071 int rc; 2072 u16 pq; 2073 2074 memset(¶ms, 0, sizeof(params)); 2075 req = &mbx->req_virt->start_txq; 2076 2077 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2078 QED_IOV_VALIDATE_Q_DISABLE) || 2079 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2080 goto out; 2081 2082 /* Acquire a new queue-cid */ 2083 p_queue = &vf->vf_queues[req->tx_qid]; 2084 2085 params.queue_id = p_queue->fw_tx_qid; 2086 params.vport_id = vf->vport_id; 2087 params.stats_id = vf->abs_vf_id + 0x10; 2088 params.sb = req->hw_sb; 2089 params.sb_idx = req->sb_index; 2090 2091 p_queue->p_tx_cid = _qed_eth_queue_to_cid(p_hwfn, 2092 vf->opaque_fid, 2093 p_queue->fw_cid, 2094 req->tx_qid, ¶ms); 2095 if (!p_queue->p_tx_cid) 2096 goto out; 2097 2098 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2099 rc = qed_eth_txq_start_ramrod(p_hwfn, p_queue->p_tx_cid, 2100 req->pbl_addr, req->pbl_size, pq); 2101 if (rc) { 2102 status = PFVF_STATUS_FAILURE; 2103 qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid); 2104 p_queue->p_tx_cid = NULL; 2105 } else { 2106 status = PFVF_STATUS_SUCCESS; 2107 } 2108 2109 out: 2110 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, status); 2111 } 2112 2113 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2114 struct qed_vf_info *vf, 2115 u16 rxq_id, bool cqe_completion) 2116 { 2117 struct qed_vf_q_info *p_queue; 2118 int rc = 0; 2119 2120 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, 2121 QED_IOV_VALIDATE_Q_ENABLE)) { 2122 DP_VERBOSE(p_hwfn, 2123 QED_MSG_IOV, 2124 "VF[%d] Tried Closing Rx 0x%04x which is inactive\n", 2125 vf->relative_vf_id, rxq_id); 2126 return -EINVAL; 2127 } 2128 2129 p_queue = &vf->vf_queues[rxq_id]; 2130 2131 rc = qed_eth_rx_queue_stop(p_hwfn, 2132 p_queue->p_rx_cid, 2133 false, cqe_completion); 2134 if (rc) 2135 return rc; 2136 2137 p_queue->p_rx_cid = NULL; 2138 vf->num_active_rxqs--; 2139 2140 return 0; 2141 } 2142 2143 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2144 struct qed_vf_info *vf, u16 txq_id) 2145 { 2146 struct qed_vf_q_info *p_queue; 2147 int rc = 0; 2148 2149 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, 2150 QED_IOV_VALIDATE_Q_ENABLE)) 2151 return -EINVAL; 2152 2153 p_queue = &vf->vf_queues[txq_id]; 2154 2155 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->p_tx_cid); 2156 if (rc) 2157 return rc; 2158 2159 p_queue->p_tx_cid = NULL; 2160 2161 return 0; 2162 } 2163 2164 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2165 struct qed_ptt *p_ptt, 2166 struct qed_vf_info *vf) 2167 { 2168 u16 length = sizeof(struct pfvf_def_resp_tlv); 2169 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2170 u8 status = PFVF_STATUS_FAILURE; 2171 struct vfpf_stop_rxqs_tlv *req; 2172 int rc; 2173 2174 /* There has never been an official driver that used this interface 2175 * for stopping multiple queues, and it is now considered deprecated. 2176 * Validate this isn't used here. 2177 */ 2178 req = &mbx->req_virt->stop_rxqs; 2179 if (req->num_rxqs != 1) { 2180 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2181 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2182 vf->relative_vf_id); 2183 status = PFVF_STATUS_NOT_SUPPORTED; 2184 goto out; 2185 } 2186 2187 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2188 req->cqe_completion); 2189 if (!rc) 2190 status = PFVF_STATUS_SUCCESS; 2191 out: 2192 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2193 length, status); 2194 } 2195 2196 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2197 struct qed_ptt *p_ptt, 2198 struct qed_vf_info *vf) 2199 { 2200 u16 length = sizeof(struct pfvf_def_resp_tlv); 2201 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2202 u8 status = PFVF_STATUS_FAILURE; 2203 struct vfpf_stop_txqs_tlv *req; 2204 int rc; 2205 2206 /* There has never been an official driver that used this interface 2207 * for stopping multiple queues, and it is now considered deprecated. 2208 * Validate this isn't used here. 2209 */ 2210 req = &mbx->req_virt->stop_txqs; 2211 if (req->num_txqs != 1) { 2212 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2213 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2214 vf->relative_vf_id); 2215 status = PFVF_STATUS_NOT_SUPPORTED; 2216 goto out; 2217 } 2218 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid); 2219 if (!rc) 2220 status = PFVF_STATUS_SUCCESS; 2221 2222 out: 2223 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2224 length, status); 2225 } 2226 2227 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2228 struct qed_ptt *p_ptt, 2229 struct qed_vf_info *vf) 2230 { 2231 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2232 u16 length = sizeof(struct pfvf_def_resp_tlv); 2233 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2234 struct vfpf_update_rxq_tlv *req; 2235 u8 status = PFVF_STATUS_FAILURE; 2236 u8 complete_event_flg; 2237 u8 complete_cqe_flg; 2238 u16 qid; 2239 int rc; 2240 u8 i; 2241 2242 req = &mbx->req_virt->update_rxq; 2243 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2244 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2245 2246 /* Validate inputs */ 2247 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) 2248 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2249 QED_IOV_VALIDATE_Q_ENABLE)) { 2250 DP_INFO(p_hwfn, "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2251 vf->relative_vf_id, req->rx_qid, req->num_rxqs); 2252 goto out; 2253 } 2254 2255 /* Prepare the handlers */ 2256 for (i = 0; i < req->num_rxqs; i++) { 2257 qid = req->rx_qid + i; 2258 handlers[i] = vf->vf_queues[qid].p_rx_cid; 2259 } 2260 2261 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2262 req->num_rxqs, 2263 complete_cqe_flg, 2264 complete_event_flg, 2265 QED_SPQ_MODE_EBLOCK, NULL); 2266 if (rc) 2267 goto out; 2268 2269 status = PFVF_STATUS_SUCCESS; 2270 out: 2271 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2272 length, status); 2273 } 2274 2275 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2276 void *p_tlvs_list, u16 req_type) 2277 { 2278 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2279 int len = 0; 2280 2281 do { 2282 if (!p_tlv->length) { 2283 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2284 return NULL; 2285 } 2286 2287 if (p_tlv->type == req_type) { 2288 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2289 "Extended tlv type %d, length %d found\n", 2290 p_tlv->type, p_tlv->length); 2291 return p_tlv; 2292 } 2293 2294 len += p_tlv->length; 2295 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2296 2297 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2298 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2299 return NULL; 2300 } 2301 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2302 2303 return NULL; 2304 } 2305 2306 static void 2307 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2308 struct qed_sp_vport_update_params *p_data, 2309 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2310 { 2311 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2312 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2313 2314 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2315 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2316 if (!p_act_tlv) 2317 return; 2318 2319 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2320 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2321 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2322 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2323 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2324 } 2325 2326 static void 2327 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2328 struct qed_sp_vport_update_params *p_data, 2329 struct qed_vf_info *p_vf, 2330 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2331 { 2332 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2333 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2334 2335 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2336 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2337 if (!p_vlan_tlv) 2338 return; 2339 2340 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2341 2342 /* Ignore the VF request if we're forcing a vlan */ 2343 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2344 p_data->update_inner_vlan_removal_flg = 1; 2345 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2346 } 2347 2348 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2349 } 2350 2351 static void 2352 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2353 struct qed_sp_vport_update_params *p_data, 2354 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2355 { 2356 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2357 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2358 2359 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2360 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2361 tlv); 2362 if (!p_tx_switch_tlv) 2363 return; 2364 2365 p_data->update_tx_switching_flg = 1; 2366 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2367 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2368 } 2369 2370 static void 2371 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2372 struct qed_sp_vport_update_params *p_data, 2373 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2374 { 2375 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2376 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2377 2378 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2379 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2380 if (!p_mcast_tlv) 2381 return; 2382 2383 p_data->update_approx_mcast_flg = 1; 2384 memcpy(p_data->bins, p_mcast_tlv->bins, 2385 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2386 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2387 } 2388 2389 static void 2390 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2391 struct qed_sp_vport_update_params *p_data, 2392 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2393 { 2394 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2395 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2396 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2397 2398 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2399 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2400 if (!p_accept_tlv) 2401 return; 2402 2403 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2404 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2405 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2406 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2407 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2408 } 2409 2410 static void 2411 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2412 struct qed_sp_vport_update_params *p_data, 2413 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2414 { 2415 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2416 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2417 2418 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2419 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2420 tlv); 2421 if (!p_accept_any_vlan) 2422 return; 2423 2424 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2425 p_data->update_accept_any_vlan_flg = 2426 p_accept_any_vlan->update_accept_any_vlan_flg; 2427 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2428 } 2429 2430 static void 2431 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2432 struct qed_vf_info *vf, 2433 struct qed_sp_vport_update_params *p_data, 2434 struct qed_rss_params *p_rss, 2435 struct qed_iov_vf_mbx *p_mbx, 2436 u16 *tlvs_mask, u16 *tlvs_accepted) 2437 { 2438 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2439 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2440 bool b_reject = false; 2441 u16 table_size; 2442 u16 i, q_idx; 2443 2444 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2445 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2446 if (!p_rss_tlv) { 2447 p_data->rss_params = NULL; 2448 return; 2449 } 2450 2451 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2452 2453 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2454 VFPF_UPDATE_RSS_CONFIG_FLAG); 2455 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2456 VFPF_UPDATE_RSS_CAPS_FLAG); 2457 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2458 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2459 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2460 VFPF_UPDATE_RSS_KEY_FLAG); 2461 2462 p_rss->rss_enable = p_rss_tlv->rss_enable; 2463 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2464 p_rss->rss_caps = p_rss_tlv->rss_caps; 2465 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2466 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2467 2468 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2469 (1 << p_rss_tlv->rss_table_size_log)); 2470 2471 for (i = 0; i < table_size; i++) { 2472 q_idx = p_rss_tlv->rss_ind_table[i]; 2473 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2474 QED_IOV_VALIDATE_Q_ENABLE)) { 2475 DP_VERBOSE(p_hwfn, 2476 QED_MSG_IOV, 2477 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2478 vf->relative_vf_id, q_idx); 2479 b_reject = true; 2480 goto out; 2481 } 2482 2483 p_rss->rss_ind_table[i] = vf->vf_queues[q_idx].p_rx_cid; 2484 } 2485 2486 p_data->rss_params = p_rss; 2487 out: 2488 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2489 if (!b_reject) 2490 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2491 } 2492 2493 static void 2494 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2495 struct qed_vf_info *vf, 2496 struct qed_sp_vport_update_params *p_data, 2497 struct qed_sge_tpa_params *p_sge_tpa, 2498 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2499 { 2500 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2501 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2502 2503 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2504 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2505 2506 if (!p_sge_tpa_tlv) { 2507 p_data->sge_tpa_params = NULL; 2508 return; 2509 } 2510 2511 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2512 2513 p_sge_tpa->update_tpa_en_flg = 2514 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2515 p_sge_tpa->update_tpa_param_flg = 2516 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2517 VFPF_UPDATE_TPA_PARAM_FLAG); 2518 2519 p_sge_tpa->tpa_ipv4_en_flg = 2520 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2521 p_sge_tpa->tpa_ipv6_en_flg = 2522 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2523 p_sge_tpa->tpa_pkt_split_flg = 2524 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2525 p_sge_tpa->tpa_hdr_data_split_flg = 2526 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2527 p_sge_tpa->tpa_gro_consistent_flg = 2528 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2529 2530 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2531 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2532 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2533 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2534 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2535 2536 p_data->sge_tpa_params = p_sge_tpa; 2537 2538 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2539 } 2540 2541 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2542 u8 vfid, 2543 struct qed_sp_vport_update_params *params, 2544 u16 *tlvs) 2545 { 2546 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 2547 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 2548 struct qed_public_vf_info *vf_info; 2549 2550 /* Untrusted VFs can't even be trusted to know that fact. 2551 * Simply indicate everything is configured fine, and trace 2552 * configuration 'behind their back'. 2553 */ 2554 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 2555 return 0; 2556 2557 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 2558 2559 if (flags->update_rx_mode_config) { 2560 vf_info->rx_accept_mode = flags->rx_accept_filter; 2561 if (!vf_info->is_trusted_configured) 2562 flags->rx_accept_filter &= ~mask; 2563 } 2564 2565 if (flags->update_tx_mode_config) { 2566 vf_info->tx_accept_mode = flags->tx_accept_filter; 2567 if (!vf_info->is_trusted_configured) 2568 flags->tx_accept_filter &= ~mask; 2569 } 2570 2571 return 0; 2572 } 2573 2574 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 2575 struct qed_ptt *p_ptt, 2576 struct qed_vf_info *vf) 2577 { 2578 struct qed_rss_params *p_rss_params = NULL; 2579 struct qed_sp_vport_update_params params; 2580 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2581 struct qed_sge_tpa_params sge_tpa_params; 2582 u16 tlvs_mask = 0, tlvs_accepted = 0; 2583 u8 status = PFVF_STATUS_SUCCESS; 2584 u16 length; 2585 int rc; 2586 2587 /* Valiate PF can send such a request */ 2588 if (!vf->vport_instance) { 2589 DP_VERBOSE(p_hwfn, 2590 QED_MSG_IOV, 2591 "No VPORT instance available for VF[%d], failing vport update\n", 2592 vf->abs_vf_id); 2593 status = PFVF_STATUS_FAILURE; 2594 goto out; 2595 } 2596 p_rss_params = vzalloc(sizeof(*p_rss_params)); 2597 if (p_rss_params == NULL) { 2598 status = PFVF_STATUS_FAILURE; 2599 goto out; 2600 } 2601 2602 memset(¶ms, 0, sizeof(params)); 2603 params.opaque_fid = vf->opaque_fid; 2604 params.vport_id = vf->vport_id; 2605 params.rss_params = NULL; 2606 2607 /* Search for extended tlvs list and update values 2608 * from VF in struct qed_sp_vport_update_params. 2609 */ 2610 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2611 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 2612 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 2613 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 2614 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 2615 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 2616 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 2617 &sge_tpa_params, mbx, &tlvs_mask); 2618 2619 tlvs_accepted = tlvs_mask; 2620 2621 /* Some of the extended TLVs need to be validated first; In that case, 2622 * they can update the mask without updating the accepted [so that 2623 * PF could communicate to VF it has rejected request]. 2624 */ 2625 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 2626 mbx, &tlvs_mask, &tlvs_accepted); 2627 2628 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 2629 ¶ms, &tlvs_accepted)) { 2630 tlvs_accepted = 0; 2631 status = PFVF_STATUS_NOT_SUPPORTED; 2632 goto out; 2633 } 2634 2635 if (!tlvs_accepted) { 2636 if (tlvs_mask) 2637 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2638 "Upper-layer prevents VF vport configuration\n"); 2639 else 2640 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2641 "No feature tlvs found for vport update\n"); 2642 status = PFVF_STATUS_NOT_SUPPORTED; 2643 goto out; 2644 } 2645 2646 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 2647 2648 if (rc) 2649 status = PFVF_STATUS_FAILURE; 2650 2651 out: 2652 vfree(p_rss_params); 2653 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 2654 tlvs_mask, tlvs_accepted); 2655 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2656 } 2657 2658 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 2659 struct qed_vf_info *p_vf, 2660 struct qed_filter_ucast *p_params) 2661 { 2662 int i; 2663 2664 /* First remove entries and then add new ones */ 2665 if (p_params->opcode == QED_FILTER_REMOVE) { 2666 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2667 if (p_vf->shadow_config.vlans[i].used && 2668 p_vf->shadow_config.vlans[i].vid == 2669 p_params->vlan) { 2670 p_vf->shadow_config.vlans[i].used = false; 2671 break; 2672 } 2673 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2674 DP_VERBOSE(p_hwfn, 2675 QED_MSG_IOV, 2676 "VF [%d] - Tries to remove a non-existing vlan\n", 2677 p_vf->relative_vf_id); 2678 return -EINVAL; 2679 } 2680 } else if (p_params->opcode == QED_FILTER_REPLACE || 2681 p_params->opcode == QED_FILTER_FLUSH) { 2682 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 2683 p_vf->shadow_config.vlans[i].used = false; 2684 } 2685 2686 /* In forced mode, we're willing to remove entries - but we don't add 2687 * new ones. 2688 */ 2689 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 2690 return 0; 2691 2692 if (p_params->opcode == QED_FILTER_ADD || 2693 p_params->opcode == QED_FILTER_REPLACE) { 2694 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 2695 if (p_vf->shadow_config.vlans[i].used) 2696 continue; 2697 2698 p_vf->shadow_config.vlans[i].used = true; 2699 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 2700 break; 2701 } 2702 2703 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 2704 DP_VERBOSE(p_hwfn, 2705 QED_MSG_IOV, 2706 "VF [%d] - Tries to configure more than %d vlan filters\n", 2707 p_vf->relative_vf_id, 2708 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 2709 return -EINVAL; 2710 } 2711 } 2712 2713 return 0; 2714 } 2715 2716 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 2717 struct qed_vf_info *p_vf, 2718 struct qed_filter_ucast *p_params) 2719 { 2720 int i; 2721 2722 /* If we're in forced-mode, we don't allow any change */ 2723 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 2724 return 0; 2725 2726 /* First remove entries and then add new ones */ 2727 if (p_params->opcode == QED_FILTER_REMOVE) { 2728 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 2729 if (ether_addr_equal(p_vf->shadow_config.macs[i], 2730 p_params->mac)) { 2731 eth_zero_addr(p_vf->shadow_config.macs[i]); 2732 break; 2733 } 2734 } 2735 2736 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 2737 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2738 "MAC isn't configured\n"); 2739 return -EINVAL; 2740 } 2741 } else if (p_params->opcode == QED_FILTER_REPLACE || 2742 p_params->opcode == QED_FILTER_FLUSH) { 2743 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 2744 eth_zero_addr(p_vf->shadow_config.macs[i]); 2745 } 2746 2747 /* List the new MAC address */ 2748 if (p_params->opcode != QED_FILTER_ADD && 2749 p_params->opcode != QED_FILTER_REPLACE) 2750 return 0; 2751 2752 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 2753 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 2754 ether_addr_copy(p_vf->shadow_config.macs[i], 2755 p_params->mac); 2756 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2757 "Added MAC at %d entry in shadow\n", i); 2758 break; 2759 } 2760 } 2761 2762 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 2763 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 2764 return -EINVAL; 2765 } 2766 2767 return 0; 2768 } 2769 2770 static int 2771 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 2772 struct qed_vf_info *p_vf, 2773 struct qed_filter_ucast *p_params) 2774 { 2775 int rc = 0; 2776 2777 if (p_params->type == QED_FILTER_MAC) { 2778 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 2779 if (rc) 2780 return rc; 2781 } 2782 2783 if (p_params->type == QED_FILTER_VLAN) 2784 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 2785 2786 return rc; 2787 } 2788 2789 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 2790 int vfid, struct qed_filter_ucast *params) 2791 { 2792 struct qed_public_vf_info *vf; 2793 2794 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 2795 if (!vf) 2796 return -EINVAL; 2797 2798 /* No real decision to make; Store the configured MAC */ 2799 if (params->type == QED_FILTER_MAC || 2800 params->type == QED_FILTER_MAC_VLAN) 2801 ether_addr_copy(vf->mac, params->mac); 2802 2803 return 0; 2804 } 2805 2806 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 2807 struct qed_ptt *p_ptt, 2808 struct qed_vf_info *vf) 2809 { 2810 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 2811 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2812 struct vfpf_ucast_filter_tlv *req; 2813 u8 status = PFVF_STATUS_SUCCESS; 2814 struct qed_filter_ucast params; 2815 int rc; 2816 2817 /* Prepare the unicast filter params */ 2818 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 2819 req = &mbx->req_virt->ucast_filter; 2820 params.opcode = (enum qed_filter_opcode)req->opcode; 2821 params.type = (enum qed_filter_ucast_type)req->type; 2822 2823 params.is_rx_filter = 1; 2824 params.is_tx_filter = 1; 2825 params.vport_to_remove_from = vf->vport_id; 2826 params.vport_to_add_to = vf->vport_id; 2827 memcpy(params.mac, req->mac, ETH_ALEN); 2828 params.vlan = req->vlan; 2829 2830 DP_VERBOSE(p_hwfn, 2831 QED_MSG_IOV, 2832 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 2833 vf->abs_vf_id, params.opcode, params.type, 2834 params.is_rx_filter ? "RX" : "", 2835 params.is_tx_filter ? "TX" : "", 2836 params.vport_to_add_to, 2837 params.mac[0], params.mac[1], 2838 params.mac[2], params.mac[3], 2839 params.mac[4], params.mac[5], params.vlan); 2840 2841 if (!vf->vport_instance) { 2842 DP_VERBOSE(p_hwfn, 2843 QED_MSG_IOV, 2844 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 2845 vf->abs_vf_id); 2846 status = PFVF_STATUS_FAILURE; 2847 goto out; 2848 } 2849 2850 /* Update shadow copy of the VF configuration */ 2851 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 2852 status = PFVF_STATUS_FAILURE; 2853 goto out; 2854 } 2855 2856 /* Determine if the unicast filtering is acceptible by PF */ 2857 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 2858 (params.type == QED_FILTER_VLAN || 2859 params.type == QED_FILTER_MAC_VLAN)) { 2860 /* Once VLAN is forced or PVID is set, do not allow 2861 * to add/replace any further VLANs. 2862 */ 2863 if (params.opcode == QED_FILTER_ADD || 2864 params.opcode == QED_FILTER_REPLACE) 2865 status = PFVF_STATUS_FORCED; 2866 goto out; 2867 } 2868 2869 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 2870 (params.type == QED_FILTER_MAC || 2871 params.type == QED_FILTER_MAC_VLAN)) { 2872 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 2873 (params.opcode != QED_FILTER_ADD && 2874 params.opcode != QED_FILTER_REPLACE)) 2875 status = PFVF_STATUS_FORCED; 2876 goto out; 2877 } 2878 2879 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 2880 if (rc) { 2881 status = PFVF_STATUS_FAILURE; 2882 goto out; 2883 } 2884 2885 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 2886 QED_SPQ_MODE_CB, NULL); 2887 if (rc) 2888 status = PFVF_STATUS_FAILURE; 2889 2890 out: 2891 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 2892 sizeof(struct pfvf_def_resp_tlv), status); 2893 } 2894 2895 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 2896 struct qed_ptt *p_ptt, 2897 struct qed_vf_info *vf) 2898 { 2899 int i; 2900 2901 /* Reset the SBs */ 2902 for (i = 0; i < vf->num_sbs; i++) 2903 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 2904 vf->igu_sbs[i], 2905 vf->opaque_fid, false); 2906 2907 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 2908 sizeof(struct pfvf_def_resp_tlv), 2909 PFVF_STATUS_SUCCESS); 2910 } 2911 2912 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 2913 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 2914 { 2915 u16 length = sizeof(struct pfvf_def_resp_tlv); 2916 u8 status = PFVF_STATUS_SUCCESS; 2917 2918 /* Disable Interrupts for VF */ 2919 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 2920 2921 /* Reset Permission table */ 2922 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 2923 2924 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 2925 length, status); 2926 } 2927 2928 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 2929 struct qed_ptt *p_ptt, 2930 struct qed_vf_info *p_vf) 2931 { 2932 u16 length = sizeof(struct pfvf_def_resp_tlv); 2933 u8 status = PFVF_STATUS_SUCCESS; 2934 int rc = 0; 2935 2936 qed_iov_vf_cleanup(p_hwfn, p_vf); 2937 2938 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 2939 /* Stopping the VF */ 2940 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 2941 p_vf->opaque_fid); 2942 2943 if (rc) { 2944 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 2945 rc); 2946 status = PFVF_STATUS_FAILURE; 2947 } 2948 2949 p_vf->state = VF_STOPPED; 2950 } 2951 2952 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 2953 length, status); 2954 } 2955 2956 static int 2957 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 2958 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2959 { 2960 int cnt; 2961 u32 val; 2962 2963 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 2964 2965 for (cnt = 0; cnt < 50; cnt++) { 2966 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 2967 if (!val) 2968 break; 2969 msleep(20); 2970 } 2971 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 2972 2973 if (cnt == 50) { 2974 DP_ERR(p_hwfn, 2975 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 2976 p_vf->abs_vf_id, val); 2977 return -EBUSY; 2978 } 2979 2980 return 0; 2981 } 2982 2983 static int 2984 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 2985 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 2986 { 2987 u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS]; 2988 int i, cnt; 2989 2990 /* Read initial consumers & producers */ 2991 for (i = 0; i < MAX_NUM_VOQS; i++) { 2992 u32 prod; 2993 2994 cons[i] = qed_rd(p_hwfn, p_ptt, 2995 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 2996 i * 0x40); 2997 prod = qed_rd(p_hwfn, p_ptt, 2998 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 2999 i * 0x40); 3000 distance[i] = prod - cons[i]; 3001 } 3002 3003 /* Wait for consumers to pass the producers */ 3004 i = 0; 3005 for (cnt = 0; cnt < 50; cnt++) { 3006 for (; i < MAX_NUM_VOQS; i++) { 3007 u32 tmp; 3008 3009 tmp = qed_rd(p_hwfn, p_ptt, 3010 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3011 i * 0x40); 3012 if (distance[i] > tmp - cons[i]) 3013 break; 3014 } 3015 3016 if (i == MAX_NUM_VOQS) 3017 break; 3018 3019 msleep(20); 3020 } 3021 3022 if (cnt == 50) { 3023 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3024 p_vf->abs_vf_id, i); 3025 return -EBUSY; 3026 } 3027 3028 return 0; 3029 } 3030 3031 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3032 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3033 { 3034 int rc; 3035 3036 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3037 if (rc) 3038 return rc; 3039 3040 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3041 if (rc) 3042 return rc; 3043 3044 return 0; 3045 } 3046 3047 static int 3048 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3049 struct qed_ptt *p_ptt, 3050 u16 rel_vf_id, u32 *ack_vfs) 3051 { 3052 struct qed_vf_info *p_vf; 3053 int rc = 0; 3054 3055 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3056 if (!p_vf) 3057 return 0; 3058 3059 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3060 (1ULL << (rel_vf_id % 64))) { 3061 u16 vfid = p_vf->abs_vf_id; 3062 3063 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3064 "VF[%d] - Handling FLR\n", vfid); 3065 3066 qed_iov_vf_cleanup(p_hwfn, p_vf); 3067 3068 /* If VF isn't active, no need for anything but SW */ 3069 if (!p_vf->b_init) 3070 goto cleanup; 3071 3072 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3073 if (rc) 3074 goto cleanup; 3075 3076 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3077 if (rc) { 3078 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3079 return rc; 3080 } 3081 3082 /* Workaround to make VF-PF channel ready, as FW 3083 * doesn't do that as a part of FLR. 3084 */ 3085 REG_WR(p_hwfn, 3086 GTT_BAR0_MAP_REG_USDM_RAM + 3087 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3088 3089 /* VF_STOPPED has to be set only after final cleanup 3090 * but prior to re-enabling the VF. 3091 */ 3092 p_vf->state = VF_STOPPED; 3093 3094 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3095 if (rc) { 3096 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3097 vfid); 3098 return rc; 3099 } 3100 cleanup: 3101 /* Mark VF for ack and clean pending state */ 3102 if (p_vf->state == VF_RESET) 3103 p_vf->state = VF_STOPPED; 3104 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3105 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3106 ~(1ULL << (rel_vf_id % 64)); 3107 p_vf->vf_mbx.b_pending_msg = false; 3108 } 3109 3110 return rc; 3111 } 3112 3113 static int 3114 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3115 { 3116 u32 ack_vfs[VF_MAX_STATIC / 32]; 3117 int rc = 0; 3118 u16 i; 3119 3120 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3121 3122 /* Since BRB <-> PRS interface can't be tested as part of the flr 3123 * polling due to HW limitations, simply sleep a bit. And since 3124 * there's no need to wait per-vf, do it before looping. 3125 */ 3126 msleep(100); 3127 3128 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3129 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3130 3131 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3132 return rc; 3133 } 3134 3135 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3136 { 3137 bool found = false; 3138 u16 i; 3139 3140 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3141 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3142 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3143 "[%08x,...,%08x]: %08x\n", 3144 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3145 3146 if (!p_hwfn->cdev->p_iov_info) { 3147 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3148 return false; 3149 } 3150 3151 /* Mark VFs */ 3152 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3153 struct qed_vf_info *p_vf; 3154 u8 vfid; 3155 3156 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3157 if (!p_vf) 3158 continue; 3159 3160 vfid = p_vf->abs_vf_id; 3161 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3162 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3163 u16 rel_vf_id = p_vf->relative_vf_id; 3164 3165 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3166 "VF[%d] [rel %d] got FLR-ed\n", 3167 vfid, rel_vf_id); 3168 3169 p_vf->state = VF_RESET; 3170 3171 /* No need to lock here, since pending_flr should 3172 * only change here and before ACKing MFw. Since 3173 * MFW will not trigger an additional attention for 3174 * VF flr until ACKs, we're safe. 3175 */ 3176 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3177 found = true; 3178 } 3179 } 3180 3181 return found; 3182 } 3183 3184 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3185 u16 vfid, 3186 struct qed_mcp_link_params *p_params, 3187 struct qed_mcp_link_state *p_link, 3188 struct qed_mcp_link_capabilities *p_caps) 3189 { 3190 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3191 vfid, 3192 false); 3193 struct qed_bulletin_content *p_bulletin; 3194 3195 if (!p_vf) 3196 return; 3197 3198 p_bulletin = p_vf->bulletin.p_virt; 3199 3200 if (p_params) 3201 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3202 if (p_link) 3203 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3204 if (p_caps) 3205 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3206 } 3207 3208 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3209 struct qed_ptt *p_ptt, int vfid) 3210 { 3211 struct qed_iov_vf_mbx *mbx; 3212 struct qed_vf_info *p_vf; 3213 3214 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3215 if (!p_vf) 3216 return; 3217 3218 mbx = &p_vf->vf_mbx; 3219 3220 /* qed_iov_process_mbx_request */ 3221 if (!mbx->b_pending_msg) { 3222 DP_NOTICE(p_hwfn, 3223 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3224 p_vf->abs_vf_id); 3225 return; 3226 } 3227 mbx->b_pending_msg = false; 3228 3229 mbx->first_tlv = mbx->req_virt->first_tlv; 3230 3231 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3232 "VF[%02x]: Processing mailbox message [type %04x]\n", 3233 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3234 3235 /* check if tlv type is known */ 3236 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3237 !p_vf->b_malicious) { 3238 switch (mbx->first_tlv.tl.type) { 3239 case CHANNEL_TLV_ACQUIRE: 3240 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3241 break; 3242 case CHANNEL_TLV_VPORT_START: 3243 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3244 break; 3245 case CHANNEL_TLV_VPORT_TEARDOWN: 3246 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3247 break; 3248 case CHANNEL_TLV_START_RXQ: 3249 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3250 break; 3251 case CHANNEL_TLV_START_TXQ: 3252 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3253 break; 3254 case CHANNEL_TLV_STOP_RXQS: 3255 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3256 break; 3257 case CHANNEL_TLV_STOP_TXQS: 3258 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3259 break; 3260 case CHANNEL_TLV_UPDATE_RXQ: 3261 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3262 break; 3263 case CHANNEL_TLV_VPORT_UPDATE: 3264 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3265 break; 3266 case CHANNEL_TLV_UCAST_FILTER: 3267 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3268 break; 3269 case CHANNEL_TLV_CLOSE: 3270 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3271 break; 3272 case CHANNEL_TLV_INT_CLEANUP: 3273 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3274 break; 3275 case CHANNEL_TLV_RELEASE: 3276 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3277 break; 3278 } 3279 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3280 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3281 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3282 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3283 3284 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3285 mbx->first_tlv.tl.type, 3286 sizeof(struct pfvf_def_resp_tlv), 3287 PFVF_STATUS_MALICIOUS); 3288 } else { 3289 /* unknown TLV - this may belong to a VF driver from the future 3290 * - a version written after this PF driver was written, which 3291 * supports features unknown as of yet. Too bad since we don't 3292 * support them. Or this may be because someone wrote a crappy 3293 * VF driver and is sending garbage over the channel. 3294 */ 3295 DP_NOTICE(p_hwfn, 3296 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3297 p_vf->abs_vf_id, 3298 mbx->first_tlv.tl.type, 3299 mbx->first_tlv.tl.length, 3300 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3301 3302 /* Try replying in case reply address matches the acquisition's 3303 * posted address. 3304 */ 3305 if (p_vf->acquire.first_tlv.reply_address && 3306 (mbx->first_tlv.reply_address == 3307 p_vf->acquire.first_tlv.reply_address)) { 3308 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3309 mbx->first_tlv.tl.type, 3310 sizeof(struct pfvf_def_resp_tlv), 3311 PFVF_STATUS_NOT_SUPPORTED); 3312 } else { 3313 DP_VERBOSE(p_hwfn, 3314 QED_MSG_IOV, 3315 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3316 p_vf->abs_vf_id); 3317 } 3318 } 3319 } 3320 3321 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3322 { 3323 int i; 3324 3325 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3326 3327 qed_for_each_vf(p_hwfn, i) { 3328 struct qed_vf_info *p_vf; 3329 3330 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3331 if (p_vf->vf_mbx.b_pending_msg) 3332 events[i / 64] |= 1ULL << (i % 64); 3333 } 3334 } 3335 3336 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3337 u16 abs_vfid) 3338 { 3339 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 3340 3341 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 3342 DP_VERBOSE(p_hwfn, 3343 QED_MSG_IOV, 3344 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 3345 abs_vfid); 3346 return NULL; 3347 } 3348 3349 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 3350 } 3351 3352 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 3353 u16 abs_vfid, struct regpair *vf_msg) 3354 { 3355 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 3356 abs_vfid); 3357 3358 if (!p_vf) 3359 return 0; 3360 3361 /* List the physical address of the request so that handler 3362 * could later on copy the message from it. 3363 */ 3364 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 3365 3366 /* Mark the event and schedule the workqueue */ 3367 p_vf->vf_mbx.b_pending_msg = true; 3368 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 3369 3370 return 0; 3371 } 3372 3373 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 3374 struct malicious_vf_eqe_data *p_data) 3375 { 3376 struct qed_vf_info *p_vf; 3377 3378 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 3379 3380 if (!p_vf) 3381 return; 3382 3383 if (!p_vf->b_malicious) { 3384 DP_NOTICE(p_hwfn, 3385 "VF [%d] - Malicious behavior [%02x]\n", 3386 p_vf->abs_vf_id, p_data->err_id); 3387 3388 p_vf->b_malicious = true; 3389 } else { 3390 DP_INFO(p_hwfn, 3391 "VF [%d] - Malicious behavior [%02x]\n", 3392 p_vf->abs_vf_id, p_data->err_id); 3393 } 3394 } 3395 3396 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 3397 u8 opcode, __le16 echo, union event_ring_data *data) 3398 { 3399 switch (opcode) { 3400 case COMMON_EVENT_VF_PF_CHANNEL: 3401 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 3402 &data->vf_pf_channel.msg_addr); 3403 case COMMON_EVENT_MALICIOUS_VF: 3404 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 3405 return 0; 3406 default: 3407 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 3408 opcode); 3409 return -EINVAL; 3410 } 3411 } 3412 3413 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 3414 { 3415 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 3416 u16 i; 3417 3418 if (!p_iov) 3419 goto out; 3420 3421 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 3422 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 3423 return i; 3424 3425 out: 3426 return MAX_NUM_VFS; 3427 } 3428 3429 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 3430 int vfid) 3431 { 3432 struct qed_dmae_params params; 3433 struct qed_vf_info *vf_info; 3434 3435 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3436 if (!vf_info) 3437 return -EINVAL; 3438 3439 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 3440 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 3441 params.src_vfid = vf_info->abs_vf_id; 3442 3443 if (qed_dmae_host2host(p_hwfn, ptt, 3444 vf_info->vf_mbx.pending_req, 3445 vf_info->vf_mbx.req_phys, 3446 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 3447 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3448 "Failed to copy message from VF 0x%02x\n", vfid); 3449 3450 return -EIO; 3451 } 3452 3453 return 0; 3454 } 3455 3456 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 3457 u8 *mac, int vfid) 3458 { 3459 struct qed_vf_info *vf_info; 3460 u64 feature; 3461 3462 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3463 if (!vf_info) { 3464 DP_NOTICE(p_hwfn->cdev, 3465 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 3466 return; 3467 } 3468 3469 if (vf_info->b_malicious) { 3470 DP_NOTICE(p_hwfn->cdev, 3471 "Can't set forced MAC to malicious VF [%d]\n", vfid); 3472 return; 3473 } 3474 3475 feature = 1 << MAC_ADDR_FORCED; 3476 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 3477 3478 vf_info->bulletin.p_virt->valid_bitmap |= feature; 3479 /* Forced MAC will disable MAC_ADDR */ 3480 vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR); 3481 3482 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 3483 } 3484 3485 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 3486 u16 pvid, int vfid) 3487 { 3488 struct qed_vf_info *vf_info; 3489 u64 feature; 3490 3491 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3492 if (!vf_info) { 3493 DP_NOTICE(p_hwfn->cdev, 3494 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 3495 return; 3496 } 3497 3498 if (vf_info->b_malicious) { 3499 DP_NOTICE(p_hwfn->cdev, 3500 "Can't set forced vlan to malicious VF [%d]\n", vfid); 3501 return; 3502 } 3503 3504 feature = 1 << VLAN_ADDR_FORCED; 3505 vf_info->bulletin.p_virt->pvid = pvid; 3506 if (pvid) 3507 vf_info->bulletin.p_virt->valid_bitmap |= feature; 3508 else 3509 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 3510 3511 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 3512 } 3513 3514 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 3515 { 3516 struct qed_vf_info *p_vf_info; 3517 3518 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3519 if (!p_vf_info) 3520 return false; 3521 3522 return !!p_vf_info->vport_instance; 3523 } 3524 3525 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 3526 { 3527 struct qed_vf_info *p_vf_info; 3528 3529 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3530 if (!p_vf_info) 3531 return true; 3532 3533 return p_vf_info->state == VF_STOPPED; 3534 } 3535 3536 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 3537 { 3538 struct qed_vf_info *vf_info; 3539 3540 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3541 if (!vf_info) 3542 return false; 3543 3544 return vf_info->spoof_chk; 3545 } 3546 3547 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 3548 { 3549 struct qed_vf_info *vf; 3550 int rc = -EINVAL; 3551 3552 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3553 DP_NOTICE(p_hwfn, 3554 "SR-IOV sanity check failed, can't set spoofchk\n"); 3555 goto out; 3556 } 3557 3558 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3559 if (!vf) 3560 goto out; 3561 3562 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 3563 /* After VF VPORT start PF will configure spoof check */ 3564 vf->req_spoofchk_val = val; 3565 rc = 0; 3566 goto out; 3567 } 3568 3569 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 3570 3571 out: 3572 return rc; 3573 } 3574 3575 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 3576 u16 rel_vf_id) 3577 { 3578 struct qed_vf_info *p_vf; 3579 3580 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 3581 if (!p_vf || !p_vf->bulletin.p_virt) 3582 return NULL; 3583 3584 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 3585 return NULL; 3586 3587 return p_vf->bulletin.p_virt->mac; 3588 } 3589 3590 static u16 3591 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 3592 { 3593 struct qed_vf_info *p_vf; 3594 3595 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 3596 if (!p_vf || !p_vf->bulletin.p_virt) 3597 return 0; 3598 3599 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 3600 return 0; 3601 3602 return p_vf->bulletin.p_virt->pvid; 3603 } 3604 3605 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 3606 struct qed_ptt *p_ptt, int vfid, int val) 3607 { 3608 struct qed_vf_info *vf; 3609 u8 abs_vp_id = 0; 3610 int rc; 3611 3612 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 3613 if (!vf) 3614 return -EINVAL; 3615 3616 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 3617 if (rc) 3618 return rc; 3619 3620 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val); 3621 } 3622 3623 static int 3624 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 3625 { 3626 struct qed_vf_info *vf; 3627 u8 vport_id; 3628 int i; 3629 3630 for_each_hwfn(cdev, i) { 3631 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 3632 3633 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 3634 DP_NOTICE(p_hwfn, 3635 "SR-IOV sanity check failed, can't set min rate\n"); 3636 return -EINVAL; 3637 } 3638 } 3639 3640 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 3641 vport_id = vf->vport_id; 3642 3643 return qed_configure_vport_wfq(cdev, vport_id, rate); 3644 } 3645 3646 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 3647 { 3648 struct qed_wfq_data *vf_vp_wfq; 3649 struct qed_vf_info *vf_info; 3650 3651 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3652 if (!vf_info) 3653 return 0; 3654 3655 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 3656 3657 if (vf_vp_wfq->configured) 3658 return vf_vp_wfq->min_speed; 3659 else 3660 return 0; 3661 } 3662 3663 /** 3664 * qed_schedule_iov - schedules IOV task for VF and PF 3665 * @hwfn: hardware function pointer 3666 * @flag: IOV flag for VF/PF 3667 */ 3668 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 3669 { 3670 smp_mb__before_atomic(); 3671 set_bit(flag, &hwfn->iov_task_flags); 3672 smp_mb__after_atomic(); 3673 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 3674 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 3675 } 3676 3677 void qed_vf_start_iov_wq(struct qed_dev *cdev) 3678 { 3679 int i; 3680 3681 for_each_hwfn(cdev, i) 3682 queue_delayed_work(cdev->hwfns[i].iov_wq, 3683 &cdev->hwfns[i].iov_task, 0); 3684 } 3685 3686 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 3687 { 3688 int i, j; 3689 3690 for_each_hwfn(cdev, i) 3691 if (cdev->hwfns[i].iov_wq) 3692 flush_workqueue(cdev->hwfns[i].iov_wq); 3693 3694 /* Mark VFs for disablement */ 3695 qed_iov_set_vfs_to_disable(cdev, true); 3696 3697 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 3698 pci_disable_sriov(cdev->pdev); 3699 3700 for_each_hwfn(cdev, i) { 3701 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3702 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3703 3704 /* Failure to acquire the ptt in 100g creates an odd error 3705 * where the first engine has already relased IOV. 3706 */ 3707 if (!ptt) { 3708 DP_ERR(hwfn, "Failed to acquire ptt\n"); 3709 return -EBUSY; 3710 } 3711 3712 /* Clean WFQ db and configure equal weight for all vports */ 3713 qed_clean_wfq_db(hwfn, ptt); 3714 3715 qed_for_each_vf(hwfn, j) { 3716 int k; 3717 3718 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 3719 continue; 3720 3721 /* Wait until VF is disabled before releasing */ 3722 for (k = 0; k < 100; k++) { 3723 if (!qed_iov_is_vf_stopped(hwfn, j)) 3724 msleep(20); 3725 else 3726 break; 3727 } 3728 3729 if (k < 100) 3730 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 3731 ptt, j); 3732 else 3733 DP_ERR(hwfn, 3734 "Timeout waiting for VF's FLR to end\n"); 3735 } 3736 3737 qed_ptt_release(hwfn, ptt); 3738 } 3739 3740 qed_iov_set_vfs_to_disable(cdev, false); 3741 3742 return 0; 3743 } 3744 3745 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 3746 u16 vfid, 3747 struct qed_iov_vf_init_params *params) 3748 { 3749 u16 base, i; 3750 3751 /* Since we have an equal resource distribution per-VF, and we assume 3752 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 3753 * sequentially from there. 3754 */ 3755 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 3756 3757 params->rel_vf_id = vfid; 3758 for (i = 0; i < params->num_queues; i++) { 3759 params->req_rx_queue[i] = base + i; 3760 params->req_tx_queue[i] = base + i; 3761 } 3762 } 3763 3764 static int qed_sriov_enable(struct qed_dev *cdev, int num) 3765 { 3766 struct qed_iov_vf_init_params params; 3767 int i, j, rc; 3768 3769 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 3770 DP_NOTICE(cdev, "Can start at most %d VFs\n", 3771 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 3772 return -EINVAL; 3773 } 3774 3775 memset(¶ms, 0, sizeof(params)); 3776 3777 /* Initialize HW for VF access */ 3778 for_each_hwfn(cdev, j) { 3779 struct qed_hwfn *hwfn = &cdev->hwfns[j]; 3780 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 3781 3782 /* Make sure not to use more than 16 queues per VF */ 3783 params.num_queues = min_t(int, 3784 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 3785 16); 3786 3787 if (!ptt) { 3788 DP_ERR(hwfn, "Failed to acquire ptt\n"); 3789 rc = -EBUSY; 3790 goto err; 3791 } 3792 3793 for (i = 0; i < num; i++) { 3794 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 3795 continue; 3796 3797 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 3798 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 3799 if (rc) { 3800 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 3801 qed_ptt_release(hwfn, ptt); 3802 goto err; 3803 } 3804 } 3805 3806 qed_ptt_release(hwfn, ptt); 3807 } 3808 3809 /* Enable SRIOV PCIe functions */ 3810 rc = pci_enable_sriov(cdev->pdev, num); 3811 if (rc) { 3812 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 3813 goto err; 3814 } 3815 3816 return num; 3817 3818 err: 3819 qed_sriov_disable(cdev, false); 3820 return rc; 3821 } 3822 3823 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 3824 { 3825 if (!IS_QED_SRIOV(cdev)) { 3826 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 3827 return -EOPNOTSUPP; 3828 } 3829 3830 if (num_vfs_param) 3831 return qed_sriov_enable(cdev, num_vfs_param); 3832 else 3833 return qed_sriov_disable(cdev, true); 3834 } 3835 3836 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 3837 { 3838 int i; 3839 3840 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 3841 DP_VERBOSE(cdev, QED_MSG_IOV, 3842 "Cannot set a VF MAC; Sriov is not enabled\n"); 3843 return -EINVAL; 3844 } 3845 3846 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 3847 DP_VERBOSE(cdev, QED_MSG_IOV, 3848 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 3849 return -EINVAL; 3850 } 3851 3852 for_each_hwfn(cdev, i) { 3853 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3854 struct qed_public_vf_info *vf_info; 3855 3856 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3857 if (!vf_info) 3858 continue; 3859 3860 /* Set the forced MAC, and schedule the IOV task */ 3861 ether_addr_copy(vf_info->forced_mac, mac); 3862 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 3863 } 3864 3865 return 0; 3866 } 3867 3868 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 3869 { 3870 int i; 3871 3872 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 3873 DP_VERBOSE(cdev, QED_MSG_IOV, 3874 "Cannot set a VF MAC; Sriov is not enabled\n"); 3875 return -EINVAL; 3876 } 3877 3878 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 3879 DP_VERBOSE(cdev, QED_MSG_IOV, 3880 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 3881 return -EINVAL; 3882 } 3883 3884 for_each_hwfn(cdev, i) { 3885 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 3886 struct qed_public_vf_info *vf_info; 3887 3888 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3889 if (!vf_info) 3890 continue; 3891 3892 /* Set the forced vlan, and schedule the IOV task */ 3893 vf_info->forced_vlan = vid; 3894 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 3895 } 3896 3897 return 0; 3898 } 3899 3900 static int qed_get_vf_config(struct qed_dev *cdev, 3901 int vf_id, struct ifla_vf_info *ivi) 3902 { 3903 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 3904 struct qed_public_vf_info *vf_info; 3905 struct qed_mcp_link_state link; 3906 u32 tx_rate; 3907 3908 /* Sanitize request */ 3909 if (IS_VF(cdev)) 3910 return -EINVAL; 3911 3912 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 3913 DP_VERBOSE(cdev, QED_MSG_IOV, 3914 "VF index [%d] isn't active\n", vf_id); 3915 return -EINVAL; 3916 } 3917 3918 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 3919 3920 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 3921 3922 /* Fill information about VF */ 3923 ivi->vf = vf_id; 3924 3925 if (is_valid_ether_addr(vf_info->forced_mac)) 3926 ether_addr_copy(ivi->mac, vf_info->forced_mac); 3927 else 3928 ether_addr_copy(ivi->mac, vf_info->mac); 3929 3930 ivi->vlan = vf_info->forced_vlan; 3931 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 3932 ivi->linkstate = vf_info->link_state; 3933 tx_rate = vf_info->tx_rate; 3934 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 3935 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 3936 3937 return 0; 3938 } 3939 3940 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 3941 { 3942 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 3943 struct qed_mcp_link_capabilities caps; 3944 struct qed_mcp_link_params params; 3945 struct qed_mcp_link_state link; 3946 int i; 3947 3948 if (!hwfn->pf_iov_info) 3949 return; 3950 3951 /* Update bulletin of all future possible VFs with link configuration */ 3952 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 3953 struct qed_public_vf_info *vf_info; 3954 3955 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 3956 if (!vf_info) 3957 continue; 3958 3959 /* Only hwfn0 is actually interested in the link speed. 3960 * But since only it would receive an MFW indication of link, 3961 * need to take configuration from it - otherwise things like 3962 * rate limiting for hwfn1 VF would not work. 3963 */ 3964 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 3965 sizeof(params)); 3966 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 3967 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 3968 sizeof(caps)); 3969 3970 /* Modify link according to the VF's configured link state */ 3971 switch (vf_info->link_state) { 3972 case IFLA_VF_LINK_STATE_DISABLE: 3973 link.link_up = false; 3974 break; 3975 case IFLA_VF_LINK_STATE_ENABLE: 3976 link.link_up = true; 3977 /* Set speed according to maximum supported by HW. 3978 * that is 40G for regular devices and 100G for CMT 3979 * mode devices. 3980 */ 3981 link.speed = (hwfn->cdev->num_hwfns > 1) ? 3982 100000 : 40000; 3983 default: 3984 /* In auto mode pass PF link image to VF */ 3985 break; 3986 } 3987 3988 if (link.link_up && vf_info->tx_rate) { 3989 struct qed_ptt *ptt; 3990 int rate; 3991 3992 rate = min_t(int, vf_info->tx_rate, link.speed); 3993 3994 ptt = qed_ptt_acquire(hwfn); 3995 if (!ptt) { 3996 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 3997 return; 3998 } 3999 4000 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4001 vf_info->tx_rate = rate; 4002 link.speed = rate; 4003 } 4004 4005 qed_ptt_release(hwfn, ptt); 4006 } 4007 4008 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4009 } 4010 4011 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4012 } 4013 4014 static int qed_set_vf_link_state(struct qed_dev *cdev, 4015 int vf_id, int link_state) 4016 { 4017 int i; 4018 4019 /* Sanitize request */ 4020 if (IS_VF(cdev)) 4021 return -EINVAL; 4022 4023 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4024 DP_VERBOSE(cdev, QED_MSG_IOV, 4025 "VF index [%d] isn't active\n", vf_id); 4026 return -EINVAL; 4027 } 4028 4029 /* Handle configuration of link state */ 4030 for_each_hwfn(cdev, i) { 4031 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4032 struct qed_public_vf_info *vf; 4033 4034 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4035 if (!vf) 4036 continue; 4037 4038 if (vf->link_state == link_state) 4039 continue; 4040 4041 vf->link_state = link_state; 4042 qed_inform_vf_link_state(&cdev->hwfns[i]); 4043 } 4044 4045 return 0; 4046 } 4047 4048 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4049 { 4050 int i, rc = -EINVAL; 4051 4052 for_each_hwfn(cdev, i) { 4053 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4054 4055 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4056 if (rc) 4057 break; 4058 } 4059 4060 return rc; 4061 } 4062 4063 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4064 { 4065 int i; 4066 4067 for_each_hwfn(cdev, i) { 4068 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4069 struct qed_public_vf_info *vf; 4070 4071 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4072 DP_NOTICE(p_hwfn, 4073 "SR-IOV sanity check failed, can't set tx rate\n"); 4074 return -EINVAL; 4075 } 4076 4077 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4078 4079 vf->tx_rate = rate; 4080 4081 qed_inform_vf_link_state(p_hwfn); 4082 } 4083 4084 return 0; 4085 } 4086 4087 static int qed_set_vf_rate(struct qed_dev *cdev, 4088 int vfid, u32 min_rate, u32 max_rate) 4089 { 4090 int rc_min = 0, rc_max = 0; 4091 4092 if (max_rate) 4093 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4094 4095 if (min_rate) 4096 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4097 4098 if (rc_max | rc_min) 4099 return -EINVAL; 4100 4101 return 0; 4102 } 4103 4104 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4105 { 4106 int i; 4107 4108 for_each_hwfn(cdev, i) { 4109 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4110 struct qed_public_vf_info *vf; 4111 4112 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4113 DP_NOTICE(hwfn, 4114 "SR-IOV sanity check failed, can't set trust\n"); 4115 return -EINVAL; 4116 } 4117 4118 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4119 4120 if (vf->is_trusted_request == trust) 4121 return 0; 4122 vf->is_trusted_request = trust; 4123 4124 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4125 } 4126 4127 return 0; 4128 } 4129 4130 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4131 { 4132 u64 events[QED_VF_ARRAY_LENGTH]; 4133 struct qed_ptt *ptt; 4134 int i; 4135 4136 ptt = qed_ptt_acquire(hwfn); 4137 if (!ptt) { 4138 DP_VERBOSE(hwfn, QED_MSG_IOV, 4139 "Can't acquire PTT; re-scheduling\n"); 4140 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4141 return; 4142 } 4143 4144 qed_iov_pf_get_pending_events(hwfn, events); 4145 4146 DP_VERBOSE(hwfn, QED_MSG_IOV, 4147 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4148 events[0], events[1], events[2]); 4149 4150 qed_for_each_vf(hwfn, i) { 4151 /* Skip VFs with no pending messages */ 4152 if (!(events[i / 64] & (1ULL << (i % 64)))) 4153 continue; 4154 4155 DP_VERBOSE(hwfn, QED_MSG_IOV, 4156 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4157 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4158 4159 /* Copy VF's message to PF's request buffer for that VF */ 4160 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4161 continue; 4162 4163 qed_iov_process_mbx_req(hwfn, ptt, i); 4164 } 4165 4166 qed_ptt_release(hwfn, ptt); 4167 } 4168 4169 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4170 { 4171 int i; 4172 4173 qed_for_each_vf(hwfn, i) { 4174 struct qed_public_vf_info *info; 4175 bool update = false; 4176 u8 *mac; 4177 4178 info = qed_iov_get_public_vf_info(hwfn, i, true); 4179 if (!info) 4180 continue; 4181 4182 /* Update data on bulletin board */ 4183 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4184 if (is_valid_ether_addr(info->forced_mac) && 4185 (!mac || !ether_addr_equal(mac, info->forced_mac))) { 4186 DP_VERBOSE(hwfn, 4187 QED_MSG_IOV, 4188 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4189 i, 4190 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4191 4192 /* Update bulletin board with forced MAC */ 4193 qed_iov_bulletin_set_forced_mac(hwfn, 4194 info->forced_mac, i); 4195 update = true; 4196 } 4197 4198 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 4199 info->forced_vlan) { 4200 DP_VERBOSE(hwfn, 4201 QED_MSG_IOV, 4202 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 4203 info->forced_vlan, 4204 i, 4205 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4206 qed_iov_bulletin_set_forced_vlan(hwfn, 4207 info->forced_vlan, i); 4208 update = true; 4209 } 4210 4211 if (update) 4212 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4213 } 4214 } 4215 4216 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 4217 { 4218 struct qed_ptt *ptt; 4219 int i; 4220 4221 ptt = qed_ptt_acquire(hwfn); 4222 if (!ptt) { 4223 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 4224 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4225 return; 4226 } 4227 4228 qed_for_each_vf(hwfn, i) 4229 qed_iov_post_vf_bulletin(hwfn, i, ptt); 4230 4231 qed_ptt_release(hwfn, ptt); 4232 } 4233 4234 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 4235 { 4236 struct qed_sp_vport_update_params params; 4237 struct qed_filter_accept_flags *flags; 4238 struct qed_public_vf_info *vf_info; 4239 struct qed_vf_info *vf; 4240 u8 mask; 4241 int i; 4242 4243 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 4244 flags = ¶ms.accept_flags; 4245 4246 qed_for_each_vf(hwfn, i) { 4247 /* Need to make sure current requested configuration didn't 4248 * flip so that we'll end up configuring something that's not 4249 * needed. 4250 */ 4251 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 4252 if (vf_info->is_trusted_configured == 4253 vf_info->is_trusted_request) 4254 continue; 4255 vf_info->is_trusted_configured = vf_info->is_trusted_request; 4256 4257 /* Validate that the VF has a configured vport */ 4258 vf = qed_iov_get_vf_info(hwfn, i, true); 4259 if (!vf->vport_instance) 4260 continue; 4261 4262 memset(¶ms, 0, sizeof(params)); 4263 params.opaque_fid = vf->opaque_fid; 4264 params.vport_id = vf->vport_id; 4265 4266 if (vf_info->rx_accept_mode & mask) { 4267 flags->update_rx_mode_config = 1; 4268 flags->rx_accept_filter = vf_info->rx_accept_mode; 4269 } 4270 4271 if (vf_info->tx_accept_mode & mask) { 4272 flags->update_tx_mode_config = 1; 4273 flags->tx_accept_filter = vf_info->tx_accept_mode; 4274 } 4275 4276 /* Remove if needed; Otherwise this would set the mask */ 4277 if (!vf_info->is_trusted_configured) { 4278 flags->rx_accept_filter &= ~mask; 4279 flags->tx_accept_filter &= ~mask; 4280 } 4281 4282 if (flags->update_rx_mode_config || 4283 flags->update_tx_mode_config) 4284 qed_sp_vport_update(hwfn, ¶ms, 4285 QED_SPQ_MODE_EBLOCK, NULL); 4286 } 4287 } 4288 4289 static void qed_iov_pf_task(struct work_struct *work) 4290 4291 { 4292 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 4293 iov_task.work); 4294 int rc; 4295 4296 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 4297 return; 4298 4299 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 4300 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4301 4302 if (!ptt) { 4303 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4304 return; 4305 } 4306 4307 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 4308 if (rc) 4309 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4310 4311 qed_ptt_release(hwfn, ptt); 4312 } 4313 4314 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 4315 qed_handle_vf_msg(hwfn); 4316 4317 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 4318 &hwfn->iov_task_flags)) 4319 qed_handle_pf_set_vf_unicast(hwfn); 4320 4321 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 4322 &hwfn->iov_task_flags)) 4323 qed_handle_bulletin_post(hwfn); 4324 4325 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 4326 qed_iov_handle_trust_change(hwfn); 4327 } 4328 4329 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 4330 { 4331 int i; 4332 4333 for_each_hwfn(cdev, i) { 4334 if (!cdev->hwfns[i].iov_wq) 4335 continue; 4336 4337 if (schedule_first) { 4338 qed_schedule_iov(&cdev->hwfns[i], 4339 QED_IOV_WQ_STOP_WQ_FLAG); 4340 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 4341 } 4342 4343 flush_workqueue(cdev->hwfns[i].iov_wq); 4344 destroy_workqueue(cdev->hwfns[i].iov_wq); 4345 } 4346 } 4347 4348 int qed_iov_wq_start(struct qed_dev *cdev) 4349 { 4350 char name[NAME_SIZE]; 4351 int i; 4352 4353 for_each_hwfn(cdev, i) { 4354 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4355 4356 /* PFs needs a dedicated workqueue only if they support IOV. 4357 * VFs always require one. 4358 */ 4359 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 4360 continue; 4361 4362 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 4363 cdev->pdev->bus->number, 4364 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 4365 4366 p_hwfn->iov_wq = create_singlethread_workqueue(name); 4367 if (!p_hwfn->iov_wq) { 4368 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 4369 return -ENOMEM; 4370 } 4371 4372 if (IS_PF(cdev)) 4373 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 4374 else 4375 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 4376 } 4377 4378 return 0; 4379 } 4380 4381 const struct qed_iov_hv_ops qed_iov_ops_pass = { 4382 .configure = &qed_sriov_configure, 4383 .set_mac = &qed_sriov_pf_set_mac, 4384 .set_vlan = &qed_sriov_pf_set_vlan, 4385 .get_config = &qed_get_vf_config, 4386 .set_link_state = &qed_set_vf_link_state, 4387 .set_spoof = &qed_spoof_configure, 4388 .set_rate = &qed_set_vf_rate, 4389 .set_trust = &qed_set_vf_trust, 4390 }; 4391