xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 
48 /* IOV ramrods */
49 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
50 {
51 	struct vf_start_ramrod_data *p_ramrod = NULL;
52 	struct qed_spq_entry *p_ent = NULL;
53 	struct qed_sp_init_data init_data;
54 	int rc = -EINVAL;
55 	u8 fp_minor;
56 
57 	/* Get SPQ entry */
58 	memset(&init_data, 0, sizeof(init_data));
59 	init_data.cid = qed_spq_get_cid(p_hwfn);
60 	init_data.opaque_fid = p_vf->opaque_fid;
61 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
62 
63 	rc = qed_sp_init_request(p_hwfn, &p_ent,
64 				 COMMON_RAMROD_VF_START,
65 				 PROTOCOLID_COMMON, &init_data);
66 	if (rc)
67 		return rc;
68 
69 	p_ramrod = &p_ent->ramrod.vf_start;
70 
71 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
72 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
73 
74 	switch (p_hwfn->hw_info.personality) {
75 	case QED_PCI_ETH:
76 		p_ramrod->personality = PERSONALITY_ETH;
77 		break;
78 	case QED_PCI_ETH_ROCE:
79 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
80 		break;
81 	default:
82 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
83 			  p_hwfn->hw_info.personality);
84 		return -EINVAL;
85 	}
86 
87 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
88 	if (fp_minor > ETH_HSI_VER_MINOR &&
89 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
90 		DP_VERBOSE(p_hwfn,
91 			   QED_MSG_IOV,
92 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
93 			   p_vf->abs_vf_id,
94 			   ETH_HSI_VER_MAJOR,
95 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
96 		fp_minor = ETH_HSI_VER_MINOR;
97 	}
98 
99 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
100 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
101 
102 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
103 		   "VF[%d] - Starting using HSI %02x.%02x\n",
104 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
105 
106 	return qed_spq_post(p_hwfn, p_ent, NULL);
107 }
108 
109 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
110 			  u32 concrete_vfid, u16 opaque_vfid)
111 {
112 	struct vf_stop_ramrod_data *p_ramrod = NULL;
113 	struct qed_spq_entry *p_ent = NULL;
114 	struct qed_sp_init_data init_data;
115 	int rc = -EINVAL;
116 
117 	/* Get SPQ entry */
118 	memset(&init_data, 0, sizeof(init_data));
119 	init_data.cid = qed_spq_get_cid(p_hwfn);
120 	init_data.opaque_fid = opaque_vfid;
121 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
122 
123 	rc = qed_sp_init_request(p_hwfn, &p_ent,
124 				 COMMON_RAMROD_VF_STOP,
125 				 PROTOCOLID_COMMON, &init_data);
126 	if (rc)
127 		return rc;
128 
129 	p_ramrod = &p_ent->ramrod.vf_stop;
130 
131 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
132 
133 	return qed_spq_post(p_hwfn, p_ent, NULL);
134 }
135 
136 static bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
137 				  int rel_vf_id,
138 				  bool b_enabled_only, bool b_non_malicious)
139 {
140 	if (!p_hwfn->pf_iov_info) {
141 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
142 		return false;
143 	}
144 
145 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
146 	    (rel_vf_id < 0))
147 		return false;
148 
149 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
150 	    b_enabled_only)
151 		return false;
152 
153 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
154 	    b_non_malicious)
155 		return false;
156 
157 	return true;
158 }
159 
160 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
161 					       u16 relative_vf_id,
162 					       bool b_enabled_only)
163 {
164 	struct qed_vf_info *vf = NULL;
165 
166 	if (!p_hwfn->pf_iov_info) {
167 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
168 		return NULL;
169 	}
170 
171 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
172 				  b_enabled_only, false))
173 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
174 	else
175 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
176 		       relative_vf_id);
177 
178 	return vf;
179 }
180 
181 enum qed_iov_validate_q_mode {
182 	QED_IOV_VALIDATE_Q_NA,
183 	QED_IOV_VALIDATE_Q_ENABLE,
184 	QED_IOV_VALIDATE_Q_DISABLE,
185 };
186 
187 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
188 					struct qed_vf_info *p_vf,
189 					u16 qid,
190 					enum qed_iov_validate_q_mode mode,
191 					bool b_is_tx)
192 {
193 	if (mode == QED_IOV_VALIDATE_Q_NA)
194 		return true;
195 
196 	if ((b_is_tx && p_vf->vf_queues[qid].p_tx_cid) ||
197 	    (!b_is_tx && p_vf->vf_queues[qid].p_rx_cid))
198 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
199 
200 	/* In case we haven't found any valid cid, then its disabled */
201 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
202 }
203 
204 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
205 				 struct qed_vf_info *p_vf,
206 				 u16 rx_qid,
207 				 enum qed_iov_validate_q_mode mode)
208 {
209 	if (rx_qid >= p_vf->num_rxqs) {
210 		DP_VERBOSE(p_hwfn,
211 			   QED_MSG_IOV,
212 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
213 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
214 		return false;
215 	}
216 
217 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
218 }
219 
220 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
221 				 struct qed_vf_info *p_vf,
222 				 u16 tx_qid,
223 				 enum qed_iov_validate_q_mode mode)
224 {
225 	if (tx_qid >= p_vf->num_txqs) {
226 		DP_VERBOSE(p_hwfn,
227 			   QED_MSG_IOV,
228 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
229 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
230 		return false;
231 	}
232 
233 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
234 }
235 
236 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
237 				struct qed_vf_info *p_vf, u16 sb_idx)
238 {
239 	int i;
240 
241 	for (i = 0; i < p_vf->num_sbs; i++)
242 		if (p_vf->igu_sbs[i] == sb_idx)
243 			return true;
244 
245 	DP_VERBOSE(p_hwfn,
246 		   QED_MSG_IOV,
247 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
248 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
249 
250 	return false;
251 }
252 
253 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
254 					struct qed_vf_info *p_vf)
255 {
256 	u8 i;
257 
258 	for (i = 0; i < p_vf->num_rxqs; i++)
259 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
260 						QED_IOV_VALIDATE_Q_ENABLE,
261 						false))
262 			return true;
263 
264 	return false;
265 }
266 
267 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
268 					struct qed_vf_info *p_vf)
269 {
270 	u8 i;
271 
272 	for (i = 0; i < p_vf->num_txqs; i++)
273 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
274 						QED_IOV_VALIDATE_Q_ENABLE,
275 						true))
276 			return true;
277 
278 	return false;
279 }
280 
281 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
282 				    int vfid, struct qed_ptt *p_ptt)
283 {
284 	struct qed_bulletin_content *p_bulletin;
285 	int crc_size = sizeof(p_bulletin->crc);
286 	struct qed_dmae_params params;
287 	struct qed_vf_info *p_vf;
288 
289 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
290 	if (!p_vf)
291 		return -EINVAL;
292 
293 	if (!p_vf->vf_bulletin)
294 		return -EINVAL;
295 
296 	p_bulletin = p_vf->bulletin.p_virt;
297 
298 	/* Increment bulletin board version and compute crc */
299 	p_bulletin->version++;
300 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
301 				p_vf->bulletin.size - crc_size);
302 
303 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
304 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
305 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
306 
307 	/* propagate bulletin board via dmae to vm memory */
308 	memset(&params, 0, sizeof(params));
309 	params.flags = QED_DMAE_FLAG_VF_DST;
310 	params.dst_vfid = p_vf->abs_vf_id;
311 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
312 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
313 				  &params);
314 }
315 
316 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
317 {
318 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
319 	int pos = iov->pos;
320 
321 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
322 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
323 
324 	pci_read_config_word(cdev->pdev,
325 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
326 	pci_read_config_word(cdev->pdev,
327 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
328 
329 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
330 	if (iov->num_vfs) {
331 		DP_VERBOSE(cdev,
332 			   QED_MSG_IOV,
333 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
334 		iov->num_vfs = 0;
335 	}
336 
337 	pci_read_config_word(cdev->pdev,
338 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
339 
340 	pci_read_config_word(cdev->pdev,
341 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
342 
343 	pci_read_config_word(cdev->pdev,
344 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
345 
346 	pci_read_config_dword(cdev->pdev,
347 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
348 
349 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
350 
351 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
352 
353 	DP_VERBOSE(cdev,
354 		   QED_MSG_IOV,
355 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
356 		   iov->nres,
357 		   iov->cap,
358 		   iov->ctrl,
359 		   iov->total_vfs,
360 		   iov->initial_vfs,
361 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
362 
363 	/* Some sanity checks */
364 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
365 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
366 		/* This can happen only due to a bug. In this case we set
367 		 * num_vfs to zero to avoid memory corruption in the code that
368 		 * assumes max number of vfs
369 		 */
370 		DP_NOTICE(cdev,
371 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
372 			  iov->num_vfs);
373 
374 		iov->num_vfs = 0;
375 		iov->total_vfs = 0;
376 	}
377 
378 	return 0;
379 }
380 
381 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn,
382 					struct qed_ptt *p_ptt)
383 {
384 	struct qed_igu_block *p_sb;
385 	u16 sb_id;
386 	u32 val;
387 
388 	if (!p_hwfn->hw_info.p_igu_info) {
389 		DP_ERR(p_hwfn,
390 		       "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n");
391 		return;
392 	}
393 
394 	for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
395 	     sb_id++) {
396 		p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
397 		if ((p_sb->status & QED_IGU_STATUS_FREE) &&
398 		    !(p_sb->status & QED_IGU_STATUS_PF)) {
399 			val = qed_rd(p_hwfn, p_ptt,
400 				     IGU_REG_MAPPING_MEMORY + sb_id * 4);
401 			SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
402 			qed_wr(p_hwfn, p_ptt,
403 			       IGU_REG_MAPPING_MEMORY + 4 * sb_id, val);
404 		}
405 	}
406 }
407 
408 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
409 {
410 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
411 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
412 	struct qed_bulletin_content *p_bulletin_virt;
413 	dma_addr_t req_p, rply_p, bulletin_p;
414 	union pfvf_tlvs *p_reply_virt_addr;
415 	union vfpf_tlvs *p_req_virt_addr;
416 	u8 idx = 0;
417 
418 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
419 
420 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
421 	req_p = p_iov_info->mbx_msg_phys_addr;
422 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
423 	rply_p = p_iov_info->mbx_reply_phys_addr;
424 	p_bulletin_virt = p_iov_info->p_bulletins;
425 	bulletin_p = p_iov_info->bulletins_phys;
426 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
427 		DP_ERR(p_hwfn,
428 		       "qed_iov_setup_vfdb called without allocating mem first\n");
429 		return;
430 	}
431 
432 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
433 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
434 		u32 concrete;
435 
436 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
437 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
438 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
439 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
440 
441 		vf->state = VF_STOPPED;
442 		vf->b_init = false;
443 
444 		vf->bulletin.phys = idx *
445 				    sizeof(struct qed_bulletin_content) +
446 				    bulletin_p;
447 		vf->bulletin.p_virt = p_bulletin_virt + idx;
448 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
449 
450 		vf->relative_vf_id = idx;
451 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
452 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
453 		vf->concrete_fid = concrete;
454 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
455 				 (vf->abs_vf_id << 8);
456 		vf->vport_id = idx + 1;
457 
458 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
459 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
460 	}
461 }
462 
463 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
464 {
465 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
466 	void **p_v_addr;
467 	u16 num_vfs = 0;
468 
469 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
470 
471 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
472 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
473 
474 	/* Allocate PF Mailbox buffer (per-VF) */
475 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
476 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
477 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
478 				       p_iov_info->mbx_msg_size,
479 				       &p_iov_info->mbx_msg_phys_addr,
480 				       GFP_KERNEL);
481 	if (!*p_v_addr)
482 		return -ENOMEM;
483 
484 	/* Allocate PF Mailbox Reply buffer (per-VF) */
485 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
486 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
487 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
488 				       p_iov_info->mbx_reply_size,
489 				       &p_iov_info->mbx_reply_phys_addr,
490 				       GFP_KERNEL);
491 	if (!*p_v_addr)
492 		return -ENOMEM;
493 
494 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
495 				     num_vfs;
496 	p_v_addr = &p_iov_info->p_bulletins;
497 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
498 				       p_iov_info->bulletins_size,
499 				       &p_iov_info->bulletins_phys,
500 				       GFP_KERNEL);
501 	if (!*p_v_addr)
502 		return -ENOMEM;
503 
504 	DP_VERBOSE(p_hwfn,
505 		   QED_MSG_IOV,
506 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
507 		   p_iov_info->mbx_msg_virt_addr,
508 		   (u64) p_iov_info->mbx_msg_phys_addr,
509 		   p_iov_info->mbx_reply_virt_addr,
510 		   (u64) p_iov_info->mbx_reply_phys_addr,
511 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
512 
513 	return 0;
514 }
515 
516 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
517 {
518 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
519 
520 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
521 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
522 				  p_iov_info->mbx_msg_size,
523 				  p_iov_info->mbx_msg_virt_addr,
524 				  p_iov_info->mbx_msg_phys_addr);
525 
526 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
527 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
528 				  p_iov_info->mbx_reply_size,
529 				  p_iov_info->mbx_reply_virt_addr,
530 				  p_iov_info->mbx_reply_phys_addr);
531 
532 	if (p_iov_info->p_bulletins)
533 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
534 				  p_iov_info->bulletins_size,
535 				  p_iov_info->p_bulletins,
536 				  p_iov_info->bulletins_phys);
537 }
538 
539 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
540 {
541 	struct qed_pf_iov *p_sriov;
542 
543 	if (!IS_PF_SRIOV(p_hwfn)) {
544 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
545 			   "No SR-IOV - no need for IOV db\n");
546 		return 0;
547 	}
548 
549 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
550 	if (!p_sriov)
551 		return -ENOMEM;
552 
553 	p_hwfn->pf_iov_info = p_sriov;
554 
555 	return qed_iov_allocate_vfdb(p_hwfn);
556 }
557 
558 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
559 {
560 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
561 		return;
562 
563 	qed_iov_setup_vfdb(p_hwfn);
564 	qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt);
565 }
566 
567 void qed_iov_free(struct qed_hwfn *p_hwfn)
568 {
569 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
570 		qed_iov_free_vfdb(p_hwfn);
571 		kfree(p_hwfn->pf_iov_info);
572 	}
573 }
574 
575 void qed_iov_free_hw_info(struct qed_dev *cdev)
576 {
577 	kfree(cdev->p_iov_info);
578 	cdev->p_iov_info = NULL;
579 }
580 
581 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
582 {
583 	struct qed_dev *cdev = p_hwfn->cdev;
584 	int pos;
585 	int rc;
586 
587 	if (IS_VF(p_hwfn->cdev))
588 		return 0;
589 
590 	/* Learn the PCI configuration */
591 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
592 				      PCI_EXT_CAP_ID_SRIOV);
593 	if (!pos) {
594 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
595 		return 0;
596 	}
597 
598 	/* Allocate a new struct for IOV information */
599 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
600 	if (!cdev->p_iov_info)
601 		return -ENOMEM;
602 
603 	cdev->p_iov_info->pos = pos;
604 
605 	rc = qed_iov_pci_cfg_info(cdev);
606 	if (rc)
607 		return rc;
608 
609 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
610 	 * In case the capability is published but there are no VFs, simply
611 	 * de-allocate the struct.
612 	 */
613 	if (!cdev->p_iov_info->total_vfs) {
614 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
615 			   "IOV capabilities, but no VFs are published\n");
616 		kfree(cdev->p_iov_info);
617 		cdev->p_iov_info = NULL;
618 		return 0;
619 	}
620 
621 	/* First VF index based on offset is tricky:
622 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
623 	 *    provide the number for eng0. 2nd engine Vfs would begin
624 	 *    after the first engine's VFs.
625 	 *  - If !ARI, VFs would start on next device.
626 	 *    so offset - (256 - pf_id) would provide the number.
627 	 * Utilize the fact that (256 - pf_id) is achieved only by later
628 	 * to diffrentiate between the two.
629 	 */
630 
631 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
632 		u32 first = p_hwfn->cdev->p_iov_info->offset +
633 			    p_hwfn->abs_pf_id - 16;
634 
635 		cdev->p_iov_info->first_vf_in_pf = first;
636 
637 		if (QED_PATH_ID(p_hwfn))
638 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
639 	} else {
640 		u32 first = p_hwfn->cdev->p_iov_info->offset +
641 			    p_hwfn->abs_pf_id - 256;
642 
643 		cdev->p_iov_info->first_vf_in_pf = first;
644 	}
645 
646 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
647 		   "First VF in hwfn 0x%08x\n",
648 		   cdev->p_iov_info->first_vf_in_pf);
649 
650 	return 0;
651 }
652 
653 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
654 			      int vfid, bool b_fail_malicious)
655 {
656 	/* Check PF supports sriov */
657 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
658 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
659 		return false;
660 
661 	/* Check VF validity */
662 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
663 		return false;
664 
665 	return true;
666 }
667 
668 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
669 {
670 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
671 }
672 
673 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
674 				      u16 rel_vf_id, u8 to_disable)
675 {
676 	struct qed_vf_info *vf;
677 	int i;
678 
679 	for_each_hwfn(cdev, i) {
680 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
681 
682 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
683 		if (!vf)
684 			continue;
685 
686 		vf->to_disable = to_disable;
687 	}
688 }
689 
690 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
691 {
692 	u16 i;
693 
694 	if (!IS_QED_SRIOV(cdev))
695 		return;
696 
697 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
698 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
699 }
700 
701 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
702 				       struct qed_ptt *p_ptt, u8 abs_vfid)
703 {
704 	qed_wr(p_hwfn, p_ptt,
705 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
706 	       1 << (abs_vfid & 0x1f));
707 }
708 
709 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
710 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
711 {
712 	int i;
713 
714 	/* Set VF masks and configuration - pretend */
715 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
716 
717 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
718 
719 	/* unpretend */
720 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
721 
722 	/* iterate over all queues, clear sb consumer */
723 	for (i = 0; i < vf->num_sbs; i++)
724 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
725 						vf->igu_sbs[i],
726 						vf->opaque_fid, true);
727 }
728 
729 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
730 				   struct qed_ptt *p_ptt,
731 				   struct qed_vf_info *vf, bool enable)
732 {
733 	u32 igu_vf_conf;
734 
735 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
736 
737 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
738 
739 	if (enable)
740 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
741 	else
742 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
743 
744 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
745 
746 	/* unpretend */
747 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
748 }
749 
750 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
751 				    struct qed_ptt *p_ptt,
752 				    struct qed_vf_info *vf)
753 {
754 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
755 	int rc;
756 
757 	/* It's possible VF was previously considered malicious -
758 	 * clear the indication even if we're only going to disable VF.
759 	 */
760 	vf->b_malicious = false;
761 
762 	if (vf->to_disable)
763 		return 0;
764 
765 	DP_VERBOSE(p_hwfn,
766 		   QED_MSG_IOV,
767 		   "Enable internal access for vf %x [abs %x]\n",
768 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
769 
770 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
771 
772 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
773 
774 	rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs);
775 	if (rc)
776 		return rc;
777 
778 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
779 
780 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
781 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
782 
783 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
784 		     p_hwfn->hw_info.hw_mode);
785 
786 	/* unpretend */
787 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
788 
789 	vf->state = VF_FREE;
790 
791 	return rc;
792 }
793 
794 /**
795  * @brief qed_iov_config_perm_table - configure the permission
796  *      zone table.
797  *      In E4, queue zone permission table size is 320x9. There
798  *      are 320 VF queues for single engine device (256 for dual
799  *      engine device), and each entry has the following format:
800  *      {Valid, VF[7:0]}
801  * @param p_hwfn
802  * @param p_ptt
803  * @param vf
804  * @param enable
805  */
806 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
807 				      struct qed_ptt *p_ptt,
808 				      struct qed_vf_info *vf, u8 enable)
809 {
810 	u32 reg_addr, val;
811 	u16 qzone_id = 0;
812 	int qid;
813 
814 	for (qid = 0; qid < vf->num_rxqs; qid++) {
815 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
816 				&qzone_id);
817 
818 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
819 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
820 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
821 	}
822 }
823 
824 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
825 				      struct qed_ptt *p_ptt,
826 				      struct qed_vf_info *vf)
827 {
828 	/* Reset vf in IGU - interrupts are still disabled */
829 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
830 
831 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
832 
833 	/* Permission Table */
834 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
835 }
836 
837 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
838 				   struct qed_ptt *p_ptt,
839 				   struct qed_vf_info *vf, u16 num_rx_queues)
840 {
841 	struct qed_igu_block *igu_blocks;
842 	int qid = 0, igu_id = 0;
843 	u32 val = 0;
844 
845 	igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks;
846 
847 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks)
848 		num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks;
849 	p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues;
850 
851 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
852 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
853 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
854 
855 	while ((qid < num_rx_queues) &&
856 	       (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) {
857 		if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) {
858 			struct cau_sb_entry sb_entry;
859 
860 			vf->igu_sbs[qid] = (u16)igu_id;
861 			igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE;
862 
863 			SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
864 
865 			qed_wr(p_hwfn, p_ptt,
866 			       IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id,
867 			       val);
868 
869 			/* Configure igu sb in CAU which were marked valid */
870 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
871 					      p_hwfn->rel_pf_id,
872 					      vf->abs_vf_id, 1);
873 			qed_dmae_host2grc(p_hwfn, p_ptt,
874 					  (u64)(uintptr_t)&sb_entry,
875 					  CAU_REG_SB_VAR_MEMORY +
876 					  igu_id * sizeof(u64), 2, 0);
877 			qid++;
878 		}
879 		igu_id++;
880 	}
881 
882 	vf->num_sbs = (u8) num_rx_queues;
883 
884 	return vf->num_sbs;
885 }
886 
887 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
888 				    struct qed_ptt *p_ptt,
889 				    struct qed_vf_info *vf)
890 {
891 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
892 	int idx, igu_id;
893 	u32 addr, val;
894 
895 	/* Invalidate igu CAM lines and mark them as free */
896 	for (idx = 0; idx < vf->num_sbs; idx++) {
897 		igu_id = vf->igu_sbs[idx];
898 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
899 
900 		val = qed_rd(p_hwfn, p_ptt, addr);
901 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
902 		qed_wr(p_hwfn, p_ptt, addr, val);
903 
904 		p_info->igu_map.igu_blocks[igu_id].status |=
905 		    QED_IGU_STATUS_FREE;
906 
907 		p_hwfn->hw_info.p_igu_info->free_blks++;
908 	}
909 
910 	vf->num_sbs = 0;
911 }
912 
913 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
914 			     u16 vfid,
915 			     struct qed_mcp_link_params *params,
916 			     struct qed_mcp_link_state *link,
917 			     struct qed_mcp_link_capabilities *p_caps)
918 {
919 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
920 						       vfid,
921 						       false);
922 	struct qed_bulletin_content *p_bulletin;
923 
924 	if (!p_vf)
925 		return;
926 
927 	p_bulletin = p_vf->bulletin.p_virt;
928 	p_bulletin->req_autoneg = params->speed.autoneg;
929 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
930 	p_bulletin->req_forced_speed = params->speed.forced_speed;
931 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
932 	p_bulletin->req_forced_rx = params->pause.forced_rx;
933 	p_bulletin->req_forced_tx = params->pause.forced_tx;
934 	p_bulletin->req_loopback = params->loopback_mode;
935 
936 	p_bulletin->link_up = link->link_up;
937 	p_bulletin->speed = link->speed;
938 	p_bulletin->full_duplex = link->full_duplex;
939 	p_bulletin->autoneg = link->an;
940 	p_bulletin->autoneg_complete = link->an_complete;
941 	p_bulletin->parallel_detection = link->parallel_detection;
942 	p_bulletin->pfc_enabled = link->pfc_enabled;
943 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
944 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
945 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
946 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
947 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
948 
949 	p_bulletin->capability_speed = p_caps->speed_capabilities;
950 }
951 
952 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
953 				  struct qed_ptt *p_ptt,
954 				  struct qed_iov_vf_init_params *p_params)
955 {
956 	struct qed_mcp_link_capabilities link_caps;
957 	struct qed_mcp_link_params link_params;
958 	struct qed_mcp_link_state link_state;
959 	u8 num_of_vf_avaiable_chains = 0;
960 	struct qed_vf_info *vf = NULL;
961 	u16 qid, num_irqs;
962 	int rc = 0;
963 	u32 cids;
964 	u8 i;
965 
966 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
967 	if (!vf) {
968 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
969 		return -EINVAL;
970 	}
971 
972 	if (vf->b_init) {
973 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
974 			  p_params->rel_vf_id);
975 		return -EINVAL;
976 	}
977 
978 	/* Perform sanity checking on the requested queue_id */
979 	for (i = 0; i < p_params->num_queues; i++) {
980 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
981 		u16 max_vf_qzone = min_vf_qzone +
982 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
983 
984 		qid = p_params->req_rx_queue[i];
985 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
986 			DP_NOTICE(p_hwfn,
987 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
988 				  qid,
989 				  p_params->rel_vf_id,
990 				  min_vf_qzone, max_vf_qzone);
991 			return -EINVAL;
992 		}
993 
994 		qid = p_params->req_tx_queue[i];
995 		if (qid > max_vf_qzone) {
996 			DP_NOTICE(p_hwfn,
997 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
998 				  qid, p_params->rel_vf_id, max_vf_qzone);
999 			return -EINVAL;
1000 		}
1001 
1002 		/* If client *really* wants, Tx qid can be shared with PF */
1003 		if (qid < min_vf_qzone)
1004 			DP_VERBOSE(p_hwfn,
1005 				   QED_MSG_IOV,
1006 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1007 				   p_params->rel_vf_id, qid, i);
1008 	}
1009 
1010 	/* Limit number of queues according to number of CIDs */
1011 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1012 	DP_VERBOSE(p_hwfn,
1013 		   QED_MSG_IOV,
1014 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1015 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1016 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1017 
1018 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1019 							     p_ptt,
1020 							     vf, num_irqs);
1021 	if (!num_of_vf_avaiable_chains) {
1022 		DP_ERR(p_hwfn, "no available igu sbs\n");
1023 		return -ENOMEM;
1024 	}
1025 
1026 	/* Choose queue number and index ranges */
1027 	vf->num_rxqs = num_of_vf_avaiable_chains;
1028 	vf->num_txqs = num_of_vf_avaiable_chains;
1029 
1030 	for (i = 0; i < vf->num_rxqs; i++) {
1031 		struct qed_vf_q_info *p_queue = &vf->vf_queues[i];
1032 
1033 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1034 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1035 
1036 		/* CIDs are per-VF, so no problem having them 0-based. */
1037 		p_queue->fw_cid = i;
1038 
1039 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1040 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]  CID %04x\n",
1041 			   vf->relative_vf_id,
1042 			   i, vf->igu_sbs[i],
1043 			   p_queue->fw_rx_qid,
1044 			   p_queue->fw_tx_qid, p_queue->fw_cid);
1045 	}
1046 
1047 	/* Update the link configuration in bulletin */
1048 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1049 	       sizeof(link_params));
1050 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1051 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1052 	       sizeof(link_caps));
1053 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1054 			 &link_params, &link_state, &link_caps);
1055 
1056 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1057 	if (!rc) {
1058 		vf->b_init = true;
1059 
1060 		if (IS_LEAD_HWFN(p_hwfn))
1061 			p_hwfn->cdev->p_iov_info->num_vfs++;
1062 	}
1063 
1064 	return rc;
1065 }
1066 
1067 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1068 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1069 {
1070 	struct qed_mcp_link_capabilities caps;
1071 	struct qed_mcp_link_params params;
1072 	struct qed_mcp_link_state link;
1073 	struct qed_vf_info *vf = NULL;
1074 
1075 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1076 	if (!vf) {
1077 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1078 		return -EINVAL;
1079 	}
1080 
1081 	if (vf->bulletin.p_virt)
1082 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1083 
1084 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1085 
1086 	/* Get the link configuration back in bulletin so
1087 	 * that when VFs are re-enabled they get the actual
1088 	 * link configuration.
1089 	 */
1090 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1091 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1092 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1093 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1094 
1095 	/* Forget the VF's acquisition message */
1096 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1097 
1098 	/* disablng interrupts and resetting permission table was done during
1099 	 * vf-close, however, we could get here without going through vf_close
1100 	 */
1101 	/* Disable Interrupts for VF */
1102 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1103 
1104 	/* Reset Permission table */
1105 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1106 
1107 	vf->num_rxqs = 0;
1108 	vf->num_txqs = 0;
1109 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1110 
1111 	if (vf->b_init) {
1112 		vf->b_init = false;
1113 
1114 		if (IS_LEAD_HWFN(p_hwfn))
1115 			p_hwfn->cdev->p_iov_info->num_vfs--;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 static bool qed_iov_tlv_supported(u16 tlvtype)
1122 {
1123 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1124 }
1125 
1126 /* place a given tlv on the tlv buffer, continuing current tlv list */
1127 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1128 {
1129 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1130 
1131 	tl->type = type;
1132 	tl->length = length;
1133 
1134 	/* Offset should keep pointing to next TLV (the end of the last) */
1135 	*offset += length;
1136 
1137 	/* Return a pointer to the start of the added tlv */
1138 	return *offset - length;
1139 }
1140 
1141 /* list the types and lengths of the tlvs on the buffer */
1142 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1143 {
1144 	u16 i = 1, total_length = 0;
1145 	struct channel_tlv *tlv;
1146 
1147 	do {
1148 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1149 
1150 		/* output tlv */
1151 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1152 			   "TLV number %d: type %d, length %d\n",
1153 			   i, tlv->type, tlv->length);
1154 
1155 		if (tlv->type == CHANNEL_TLV_LIST_END)
1156 			return;
1157 
1158 		/* Validate entry - protect against malicious VFs */
1159 		if (!tlv->length) {
1160 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1161 			return;
1162 		}
1163 
1164 		total_length += tlv->length;
1165 
1166 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1167 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1168 			return;
1169 		}
1170 
1171 		i++;
1172 	} while (1);
1173 }
1174 
1175 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1176 				  struct qed_ptt *p_ptt,
1177 				  struct qed_vf_info *p_vf,
1178 				  u16 length, u8 status)
1179 {
1180 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1181 	struct qed_dmae_params params;
1182 	u8 eng_vf_id;
1183 
1184 	mbx->reply_virt->default_resp.hdr.status = status;
1185 
1186 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1187 
1188 	eng_vf_id = p_vf->abs_vf_id;
1189 
1190 	memset(&params, 0, sizeof(struct qed_dmae_params));
1191 	params.flags = QED_DMAE_FLAG_VF_DST;
1192 	params.dst_vfid = eng_vf_id;
1193 
1194 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1195 			   mbx->req_virt->first_tlv.reply_address +
1196 			   sizeof(u64),
1197 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1198 			   &params);
1199 
1200 	/* Once PF copies the rc to the VF, the latter can continue
1201 	 * and send an additional message. So we have to make sure the
1202 	 * channel would be re-set to ready prior to that.
1203 	 */
1204 	REG_WR(p_hwfn,
1205 	       GTT_BAR0_MAP_REG_USDM_RAM +
1206 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1207 
1208 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1209 			   mbx->req_virt->first_tlv.reply_address,
1210 			   sizeof(u64) / 4, &params);
1211 }
1212 
1213 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1214 				enum qed_iov_vport_update_flag flag)
1215 {
1216 	switch (flag) {
1217 	case QED_IOV_VP_UPDATE_ACTIVATE:
1218 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1219 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1220 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1221 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1222 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1223 	case QED_IOV_VP_UPDATE_MCAST:
1224 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1225 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1226 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1227 	case QED_IOV_VP_UPDATE_RSS:
1228 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1229 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1230 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1231 	case QED_IOV_VP_UPDATE_SGE_TPA:
1232 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1233 	default:
1234 		return 0;
1235 	}
1236 }
1237 
1238 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1239 					    struct qed_vf_info *p_vf,
1240 					    struct qed_iov_vf_mbx *p_mbx,
1241 					    u8 status,
1242 					    u16 tlvs_mask, u16 tlvs_accepted)
1243 {
1244 	struct pfvf_def_resp_tlv *resp;
1245 	u16 size, total_len, i;
1246 
1247 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1248 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1249 	size = sizeof(struct pfvf_def_resp_tlv);
1250 	total_len = size;
1251 
1252 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1253 
1254 	/* Prepare response for all extended tlvs if they are found by PF */
1255 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1256 		if (!(tlvs_mask & BIT(i)))
1257 			continue;
1258 
1259 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1260 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1261 
1262 		if (tlvs_accepted & BIT(i))
1263 			resp->hdr.status = status;
1264 		else
1265 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1266 
1267 		DP_VERBOSE(p_hwfn,
1268 			   QED_MSG_IOV,
1269 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1270 			   p_vf->relative_vf_id,
1271 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1272 
1273 		total_len += size;
1274 	}
1275 
1276 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1277 		    sizeof(struct channel_list_end_tlv));
1278 
1279 	return total_len;
1280 }
1281 
1282 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1283 				 struct qed_ptt *p_ptt,
1284 				 struct qed_vf_info *vf_info,
1285 				 u16 type, u16 length, u8 status)
1286 {
1287 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1288 
1289 	mbx->offset = (u8 *)mbx->reply_virt;
1290 
1291 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1292 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1293 		    sizeof(struct channel_list_end_tlv));
1294 
1295 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1296 }
1297 
1298 static struct
1299 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1300 					       u16 relative_vf_id,
1301 					       bool b_enabled_only)
1302 {
1303 	struct qed_vf_info *vf = NULL;
1304 
1305 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1306 	if (!vf)
1307 		return NULL;
1308 
1309 	return &vf->p_vf_info;
1310 }
1311 
1312 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1313 {
1314 	struct qed_public_vf_info *vf_info;
1315 
1316 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1317 
1318 	if (!vf_info)
1319 		return;
1320 
1321 	/* Clear the VF mac */
1322 	eth_zero_addr(vf_info->mac);
1323 
1324 	vf_info->rx_accept_mode = 0;
1325 	vf_info->tx_accept_mode = 0;
1326 }
1327 
1328 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1329 			       struct qed_vf_info *p_vf)
1330 {
1331 	u32 i;
1332 
1333 	p_vf->vf_bulletin = 0;
1334 	p_vf->vport_instance = 0;
1335 	p_vf->configured_features = 0;
1336 
1337 	/* If VF previously requested less resources, go back to default */
1338 	p_vf->num_rxqs = p_vf->num_sbs;
1339 	p_vf->num_txqs = p_vf->num_sbs;
1340 
1341 	p_vf->num_active_rxqs = 0;
1342 
1343 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1344 		struct qed_vf_q_info *p_queue = &p_vf->vf_queues[i];
1345 
1346 		if (p_queue->p_rx_cid) {
1347 			qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid);
1348 			p_queue->p_rx_cid = NULL;
1349 		}
1350 
1351 		if (p_queue->p_tx_cid) {
1352 			qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid);
1353 			p_queue->p_tx_cid = NULL;
1354 		}
1355 	}
1356 
1357 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1358 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1359 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1360 }
1361 
1362 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1363 				      struct qed_ptt *p_ptt,
1364 				      struct qed_vf_info *p_vf,
1365 				      struct vf_pf_resc_request *p_req,
1366 				      struct pf_vf_resc *p_resp)
1367 {
1368 	int i;
1369 
1370 	/* Queue related information */
1371 	p_resp->num_rxqs = p_vf->num_rxqs;
1372 	p_resp->num_txqs = p_vf->num_txqs;
1373 	p_resp->num_sbs = p_vf->num_sbs;
1374 
1375 	for (i = 0; i < p_resp->num_sbs; i++) {
1376 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1377 		p_resp->hw_sbs[i].sb_qid = 0;
1378 	}
1379 
1380 	/* These fields are filled for backward compatibility.
1381 	 * Unused by modern vfs.
1382 	 */
1383 	for (i = 0; i < p_resp->num_rxqs; i++) {
1384 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1385 				(u16 *)&p_resp->hw_qid[i]);
1386 		p_resp->cid[i] = p_vf->vf_queues[i].fw_cid;
1387 	}
1388 
1389 	/* Filter related information */
1390 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1391 					p_req->num_mac_filters);
1392 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1393 					 p_req->num_vlan_filters);
1394 
1395 	/* This isn't really needed/enforced, but some legacy VFs might depend
1396 	 * on the correct filling of this field.
1397 	 */
1398 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1399 
1400 	/* Validate sufficient resources for VF */
1401 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1402 	    p_resp->num_txqs < p_req->num_txqs ||
1403 	    p_resp->num_sbs < p_req->num_sbs ||
1404 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1405 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1406 	    p_resp->num_mc_filters < p_req->num_mc_filters) {
1407 		DP_VERBOSE(p_hwfn,
1408 			   QED_MSG_IOV,
1409 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x]\n",
1410 			   p_vf->abs_vf_id,
1411 			   p_req->num_rxqs,
1412 			   p_resp->num_rxqs,
1413 			   p_req->num_rxqs,
1414 			   p_resp->num_txqs,
1415 			   p_req->num_sbs,
1416 			   p_resp->num_sbs,
1417 			   p_req->num_mac_filters,
1418 			   p_resp->num_mac_filters,
1419 			   p_req->num_vlan_filters,
1420 			   p_resp->num_vlan_filters,
1421 			   p_req->num_mc_filters, p_resp->num_mc_filters);
1422 
1423 		/* Some legacy OSes are incapable of correctly handling this
1424 		 * failure.
1425 		 */
1426 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1427 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1428 		    (p_vf->acquire.vfdev_info.os_type ==
1429 		     VFPF_ACQUIRE_OS_WINDOWS))
1430 			return PFVF_STATUS_SUCCESS;
1431 
1432 		return PFVF_STATUS_NO_RESOURCE;
1433 	}
1434 
1435 	return PFVF_STATUS_SUCCESS;
1436 }
1437 
1438 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1439 					 struct pfvf_stats_info *p_stats)
1440 {
1441 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1442 				  offsetof(struct mstorm_vf_zone,
1443 					   non_trigger.eth_queue_stat);
1444 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1445 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1446 				  offsetof(struct ustorm_vf_zone,
1447 					   non_trigger.eth_queue_stat);
1448 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1449 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1450 				  offsetof(struct pstorm_vf_zone,
1451 					   non_trigger.eth_queue_stat);
1452 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1453 	p_stats->tstats.address = 0;
1454 	p_stats->tstats.len = 0;
1455 }
1456 
1457 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1458 				   struct qed_ptt *p_ptt,
1459 				   struct qed_vf_info *vf)
1460 {
1461 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1462 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1463 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1464 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1465 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1466 	struct pf_vf_resc *resc = &resp->resc;
1467 	int rc;
1468 
1469 	memset(resp, 0, sizeof(*resp));
1470 
1471 	/* Write the PF version so that VF would know which version
1472 	 * is supported - might be later overriden. This guarantees that
1473 	 * VF could recognize legacy PF based on lack of versions in reply.
1474 	 */
1475 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1476 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1477 
1478 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1479 		DP_VERBOSE(p_hwfn,
1480 			   QED_MSG_IOV,
1481 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1482 			   vf->abs_vf_id, vf->state);
1483 		goto out;
1484 	}
1485 
1486 	/* Validate FW compatibility */
1487 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1488 		if (req->vfdev_info.capabilities &
1489 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1490 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1491 
1492 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1493 				   "VF[%d] is pre-fastpath HSI\n",
1494 				   vf->abs_vf_id);
1495 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1496 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1497 		} else {
1498 			DP_INFO(p_hwfn,
1499 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1500 				vf->abs_vf_id,
1501 				req->vfdev_info.eth_fp_hsi_major,
1502 				req->vfdev_info.eth_fp_hsi_minor,
1503 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1504 
1505 			goto out;
1506 		}
1507 	}
1508 
1509 	/* On 100g PFs, prevent old VFs from loading */
1510 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1511 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1512 		DP_INFO(p_hwfn,
1513 			"VF[%d] is running an old driver that doesn't support 100g\n",
1514 			vf->abs_vf_id);
1515 		goto out;
1516 	}
1517 
1518 	/* Store the acquire message */
1519 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1520 
1521 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1522 
1523 	vf->vf_bulletin = req->bulletin_addr;
1524 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1525 			    vf->bulletin.size : req->bulletin_size;
1526 
1527 	/* fill in pfdev info */
1528 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1529 	pfdev_info->db_size = 0;
1530 	pfdev_info->indices_per_sb = PIS_PER_SB;
1531 
1532 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1533 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1534 	if (p_hwfn->cdev->num_hwfns > 1)
1535 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1536 
1537 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1538 
1539 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1540 
1541 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1542 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1543 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1544 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1545 
1546 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1547 	 * this field.
1548 	 */
1549 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1550 					 req->vfdev_info.eth_fp_hsi_minor);
1551 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1552 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1553 
1554 	pfdev_info->dev_type = p_hwfn->cdev->type;
1555 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1556 
1557 	/* Fill resources available to VF; Make sure there are enough to
1558 	 * satisfy the VF's request.
1559 	 */
1560 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1561 						  &req->resc_request, resc);
1562 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1563 		goto out;
1564 
1565 	/* Start the VF in FW */
1566 	rc = qed_sp_vf_start(p_hwfn, vf);
1567 	if (rc) {
1568 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1569 		vfpf_status = PFVF_STATUS_FAILURE;
1570 		goto out;
1571 	}
1572 
1573 	/* Fill agreed size of bulletin board in response */
1574 	resp->bulletin_size = vf->bulletin.size;
1575 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1576 
1577 	DP_VERBOSE(p_hwfn,
1578 		   QED_MSG_IOV,
1579 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1580 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1581 		   vf->abs_vf_id,
1582 		   resp->pfdev_info.chip_num,
1583 		   resp->pfdev_info.db_size,
1584 		   resp->pfdev_info.indices_per_sb,
1585 		   resp->pfdev_info.capabilities,
1586 		   resc->num_rxqs,
1587 		   resc->num_txqs,
1588 		   resc->num_sbs,
1589 		   resc->num_mac_filters,
1590 		   resc->num_vlan_filters);
1591 	vf->state = VF_ACQUIRED;
1592 
1593 	/* Prepare Response */
1594 out:
1595 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1596 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1597 }
1598 
1599 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1600 				  struct qed_vf_info *p_vf, bool val)
1601 {
1602 	struct qed_sp_vport_update_params params;
1603 	int rc;
1604 
1605 	if (val == p_vf->spoof_chk) {
1606 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1607 			   "Spoofchk value[%d] is already configured\n", val);
1608 		return 0;
1609 	}
1610 
1611 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1612 	params.opaque_fid = p_vf->opaque_fid;
1613 	params.vport_id = p_vf->vport_id;
1614 	params.update_anti_spoofing_en_flg = 1;
1615 	params.anti_spoofing_en = val;
1616 
1617 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1618 	if (!rc) {
1619 		p_vf->spoof_chk = val;
1620 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1621 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1622 			   "Spoofchk val[%d] configured\n", val);
1623 	} else {
1624 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1625 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1626 			   val, p_vf->relative_vf_id);
1627 	}
1628 
1629 	return rc;
1630 }
1631 
1632 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1633 					    struct qed_vf_info *p_vf)
1634 {
1635 	struct qed_filter_ucast filter;
1636 	int rc = 0;
1637 	int i;
1638 
1639 	memset(&filter, 0, sizeof(filter));
1640 	filter.is_rx_filter = 1;
1641 	filter.is_tx_filter = 1;
1642 	filter.vport_to_add_to = p_vf->vport_id;
1643 	filter.opcode = QED_FILTER_ADD;
1644 
1645 	/* Reconfigure vlans */
1646 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1647 		if (!p_vf->shadow_config.vlans[i].used)
1648 			continue;
1649 
1650 		filter.type = QED_FILTER_VLAN;
1651 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1652 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1653 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1654 			   filter.vlan, p_vf->relative_vf_id);
1655 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1656 					     &filter, QED_SPQ_MODE_CB, NULL);
1657 		if (rc) {
1658 			DP_NOTICE(p_hwfn,
1659 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1660 				  filter.vlan, p_vf->relative_vf_id);
1661 			break;
1662 		}
1663 	}
1664 
1665 	return rc;
1666 }
1667 
1668 static int
1669 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1670 				   struct qed_vf_info *p_vf, u64 events)
1671 {
1672 	int rc = 0;
1673 
1674 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1675 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1676 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1677 
1678 	return rc;
1679 }
1680 
1681 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1682 					  struct qed_vf_info *p_vf, u64 events)
1683 {
1684 	int rc = 0;
1685 	struct qed_filter_ucast filter;
1686 
1687 	if (!p_vf->vport_instance)
1688 		return -EINVAL;
1689 
1690 	if (events & BIT(MAC_ADDR_FORCED)) {
1691 		/* Since there's no way [currently] of removing the MAC,
1692 		 * we can always assume this means we need to force it.
1693 		 */
1694 		memset(&filter, 0, sizeof(filter));
1695 		filter.type = QED_FILTER_MAC;
1696 		filter.opcode = QED_FILTER_REPLACE;
1697 		filter.is_rx_filter = 1;
1698 		filter.is_tx_filter = 1;
1699 		filter.vport_to_add_to = p_vf->vport_id;
1700 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1701 
1702 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1703 					     &filter, QED_SPQ_MODE_CB, NULL);
1704 		if (rc) {
1705 			DP_NOTICE(p_hwfn,
1706 				  "PF failed to configure MAC for VF\n");
1707 			return rc;
1708 		}
1709 
1710 		p_vf->configured_features |= 1 << MAC_ADDR_FORCED;
1711 	}
1712 
1713 	if (events & BIT(VLAN_ADDR_FORCED)) {
1714 		struct qed_sp_vport_update_params vport_update;
1715 		u8 removal;
1716 		int i;
1717 
1718 		memset(&filter, 0, sizeof(filter));
1719 		filter.type = QED_FILTER_VLAN;
1720 		filter.is_rx_filter = 1;
1721 		filter.is_tx_filter = 1;
1722 		filter.vport_to_add_to = p_vf->vport_id;
1723 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1724 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1725 					      QED_FILTER_FLUSH;
1726 
1727 		/* Send the ramrod */
1728 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1729 					     &filter, QED_SPQ_MODE_CB, NULL);
1730 		if (rc) {
1731 			DP_NOTICE(p_hwfn,
1732 				  "PF failed to configure VLAN for VF\n");
1733 			return rc;
1734 		}
1735 
1736 		/* Update the default-vlan & silent vlan stripping */
1737 		memset(&vport_update, 0, sizeof(vport_update));
1738 		vport_update.opaque_fid = p_vf->opaque_fid;
1739 		vport_update.vport_id = p_vf->vport_id;
1740 		vport_update.update_default_vlan_enable_flg = 1;
1741 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1742 		vport_update.update_default_vlan_flg = 1;
1743 		vport_update.default_vlan = filter.vlan;
1744 
1745 		vport_update.update_inner_vlan_removal_flg = 1;
1746 		removal = filter.vlan ? 1
1747 				      : p_vf->shadow_config.inner_vlan_removal;
1748 		vport_update.inner_vlan_removal_flg = removal;
1749 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1750 		rc = qed_sp_vport_update(p_hwfn,
1751 					 &vport_update,
1752 					 QED_SPQ_MODE_EBLOCK, NULL);
1753 		if (rc) {
1754 			DP_NOTICE(p_hwfn,
1755 				  "PF failed to configure VF vport for vlan\n");
1756 			return rc;
1757 		}
1758 
1759 		/* Update all the Rx queues */
1760 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1761 			struct qed_queue_cid *p_cid;
1762 
1763 			p_cid = p_vf->vf_queues[i].p_rx_cid;
1764 			if (!p_cid)
1765 				continue;
1766 
1767 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1768 							 (void **)&p_cid,
1769 							 1, 0, 1,
1770 							 QED_SPQ_MODE_EBLOCK,
1771 							 NULL);
1772 			if (rc) {
1773 				DP_NOTICE(p_hwfn,
1774 					  "Failed to send Rx update fo queue[0x%04x]\n",
1775 					  p_cid->rel.queue_id);
1776 				return rc;
1777 			}
1778 		}
1779 
1780 		if (filter.vlan)
1781 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1782 		else
1783 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1784 	}
1785 
1786 	/* If forced features are terminated, we need to configure the shadow
1787 	 * configuration back again.
1788 	 */
1789 	if (events)
1790 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1791 
1792 	return rc;
1793 }
1794 
1795 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1796 				       struct qed_ptt *p_ptt,
1797 				       struct qed_vf_info *vf)
1798 {
1799 	struct qed_sp_vport_start_params params = { 0 };
1800 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1801 	struct vfpf_vport_start_tlv *start;
1802 	u8 status = PFVF_STATUS_SUCCESS;
1803 	struct qed_vf_info *vf_info;
1804 	u64 *p_bitmap;
1805 	int sb_id;
1806 	int rc;
1807 
1808 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1809 	if (!vf_info) {
1810 		DP_NOTICE(p_hwfn->cdev,
1811 			  "Failed to get VF info, invalid vfid [%d]\n",
1812 			  vf->relative_vf_id);
1813 		return;
1814 	}
1815 
1816 	vf->state = VF_ENABLED;
1817 	start = &mbx->req_virt->start_vport;
1818 
1819 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1820 
1821 	/* Initialize Status block in CAU */
1822 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1823 		if (!start->sb_addr[sb_id]) {
1824 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1825 				   "VF[%d] did not fill the address of SB %d\n",
1826 				   vf->relative_vf_id, sb_id);
1827 			break;
1828 		}
1829 
1830 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1831 				    start->sb_addr[sb_id],
1832 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1833 	}
1834 
1835 	vf->mtu = start->mtu;
1836 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1837 
1838 	/* Take into consideration configuration forced by hypervisor;
1839 	 * If none is configured, use the supplied VF values [for old
1840 	 * vfs that would still be fine, since they passed '0' as padding].
1841 	 */
1842 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1843 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1844 		u8 vf_req = start->only_untagged;
1845 
1846 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1847 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1848 	}
1849 
1850 	params.tpa_mode = start->tpa_mode;
1851 	params.remove_inner_vlan = start->inner_vlan_removal;
1852 	params.tx_switching = true;
1853 
1854 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1855 	params.drop_ttl0 = false;
1856 	params.concrete_fid = vf->concrete_fid;
1857 	params.opaque_fid = vf->opaque_fid;
1858 	params.vport_id = vf->vport_id;
1859 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1860 	params.mtu = vf->mtu;
1861 	params.check_mac = true;
1862 
1863 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1864 	if (rc) {
1865 		DP_ERR(p_hwfn,
1866 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1867 		status = PFVF_STATUS_FAILURE;
1868 	} else {
1869 		vf->vport_instance++;
1870 
1871 		/* Force configuration if needed on the newly opened vport */
1872 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1873 
1874 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1875 	}
1876 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1877 			     sizeof(struct pfvf_def_resp_tlv), status);
1878 }
1879 
1880 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1881 				      struct qed_ptt *p_ptt,
1882 				      struct qed_vf_info *vf)
1883 {
1884 	u8 status = PFVF_STATUS_SUCCESS;
1885 	int rc;
1886 
1887 	vf->vport_instance--;
1888 	vf->spoof_chk = false;
1889 
1890 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
1891 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
1892 		vf->b_malicious = true;
1893 		DP_NOTICE(p_hwfn,
1894 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
1895 			  vf->abs_vf_id);
1896 		status = PFVF_STATUS_MALICIOUS;
1897 		goto out;
1898 	}
1899 
1900 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
1901 	if (rc) {
1902 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
1903 		       rc);
1904 		status = PFVF_STATUS_FAILURE;
1905 	}
1906 
1907 	/* Forget the configuration on the vport */
1908 	vf->configured_features = 0;
1909 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
1910 
1911 out:
1912 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
1913 			     sizeof(struct pfvf_def_resp_tlv), status);
1914 }
1915 
1916 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
1917 					  struct qed_ptt *p_ptt,
1918 					  struct qed_vf_info *vf,
1919 					  u8 status, bool b_legacy)
1920 {
1921 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1922 	struct pfvf_start_queue_resp_tlv *p_tlv;
1923 	struct vfpf_start_rxq_tlv *req;
1924 	u16 length;
1925 
1926 	mbx->offset = (u8 *)mbx->reply_virt;
1927 
1928 	/* Taking a bigger struct instead of adding a TLV to list was a
1929 	 * mistake, but one which we're now stuck with, as some older
1930 	 * clients assume the size of the previous response.
1931 	 */
1932 	if (!b_legacy)
1933 		length = sizeof(*p_tlv);
1934 	else
1935 		length = sizeof(struct pfvf_def_resp_tlv);
1936 
1937 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
1938 			    length);
1939 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1940 		    sizeof(struct channel_list_end_tlv));
1941 
1942 	/* Update the TLV with the response */
1943 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
1944 		req = &mbx->req_virt->start_rxq;
1945 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
1946 				offsetof(struct mstorm_vf_zone,
1947 					 non_trigger.eth_rx_queue_producers) +
1948 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
1949 	}
1950 
1951 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
1952 }
1953 
1954 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
1955 				     struct qed_ptt *p_ptt,
1956 				     struct qed_vf_info *vf)
1957 {
1958 	struct qed_queue_start_common_params params;
1959 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1960 	u8 status = PFVF_STATUS_NO_RESOURCE;
1961 	struct qed_vf_q_info *p_queue;
1962 	struct vfpf_start_rxq_tlv *req;
1963 	bool b_legacy_vf = false;
1964 	int rc;
1965 
1966 	req = &mbx->req_virt->start_rxq;
1967 
1968 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
1969 				  QED_IOV_VALIDATE_Q_DISABLE) ||
1970 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
1971 		goto out;
1972 
1973 	/* Acquire a new queue-cid */
1974 	p_queue = &vf->vf_queues[req->rx_qid];
1975 
1976 	memset(&params, 0, sizeof(params));
1977 	params.queue_id = p_queue->fw_rx_qid;
1978 	params.vport_id = vf->vport_id;
1979 	params.stats_id = vf->abs_vf_id + 0x10;
1980 	params.sb = req->hw_sb;
1981 	params.sb_idx = req->sb_index;
1982 
1983 	p_queue->p_rx_cid = _qed_eth_queue_to_cid(p_hwfn,
1984 						  vf->opaque_fid,
1985 						  p_queue->fw_cid,
1986 						  req->rx_qid, &params);
1987 	if (!p_queue->p_rx_cid)
1988 		goto out;
1989 
1990 	/* Legacy VFs have their Producers in a different location, which they
1991 	 * calculate on their own and clean the producer prior to this.
1992 	 */
1993 	if (vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1994 	    ETH_HSI_VER_NO_PKT_LEN_TUNN) {
1995 		b_legacy_vf = true;
1996 	} else {
1997 		REG_WR(p_hwfn,
1998 		       GTT_BAR0_MAP_REG_MSDM_RAM +
1999 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2000 		       0);
2001 	}
2002 	p_queue->p_rx_cid->b_legacy_vf = b_legacy_vf;
2003 
2004 	rc = qed_eth_rxq_start_ramrod(p_hwfn,
2005 				      p_queue->p_rx_cid,
2006 				      req->bd_max_bytes,
2007 				      req->rxq_addr,
2008 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2009 	if (rc) {
2010 		status = PFVF_STATUS_FAILURE;
2011 		qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid);
2012 		p_queue->p_rx_cid = NULL;
2013 	} else {
2014 		status = PFVF_STATUS_SUCCESS;
2015 		vf->num_active_rxqs++;
2016 	}
2017 
2018 out:
2019 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, b_legacy_vf);
2020 }
2021 
2022 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2023 					  struct qed_ptt *p_ptt,
2024 					  struct qed_vf_info *p_vf, u8 status)
2025 {
2026 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2027 	struct pfvf_start_queue_resp_tlv *p_tlv;
2028 	bool b_legacy = false;
2029 	u16 length;
2030 
2031 	mbx->offset = (u8 *)mbx->reply_virt;
2032 
2033 	/* Taking a bigger struct instead of adding a TLV to list was a
2034 	 * mistake, but one which we're now stuck with, as some older
2035 	 * clients assume the size of the previous response.
2036 	 */
2037 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2038 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2039 		b_legacy = true;
2040 
2041 	if (!b_legacy)
2042 		length = sizeof(*p_tlv);
2043 	else
2044 		length = sizeof(struct pfvf_def_resp_tlv);
2045 
2046 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2047 			    length);
2048 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2049 		    sizeof(struct channel_list_end_tlv));
2050 
2051 	/* Update the TLV with the response */
2052 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2053 		u16 qid = mbx->req_virt->start_txq.tx_qid;
2054 
2055 		p_tlv->offset = qed_db_addr_vf(p_vf->vf_queues[qid].fw_cid,
2056 					       DQ_DEMS_LEGACY);
2057 	}
2058 
2059 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2060 }
2061 
2062 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2063 				     struct qed_ptt *p_ptt,
2064 				     struct qed_vf_info *vf)
2065 {
2066 	struct qed_queue_start_common_params params;
2067 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2068 	u8 status = PFVF_STATUS_NO_RESOURCE;
2069 	struct vfpf_start_txq_tlv *req;
2070 	struct qed_vf_q_info *p_queue;
2071 	int rc;
2072 	u16 pq;
2073 
2074 	memset(&params, 0, sizeof(params));
2075 	req = &mbx->req_virt->start_txq;
2076 
2077 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2078 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2079 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2080 		goto out;
2081 
2082 	/* Acquire a new queue-cid */
2083 	p_queue = &vf->vf_queues[req->tx_qid];
2084 
2085 	params.queue_id = p_queue->fw_tx_qid;
2086 	params.vport_id = vf->vport_id;
2087 	params.stats_id = vf->abs_vf_id + 0x10;
2088 	params.sb = req->hw_sb;
2089 	params.sb_idx = req->sb_index;
2090 
2091 	p_queue->p_tx_cid = _qed_eth_queue_to_cid(p_hwfn,
2092 						  vf->opaque_fid,
2093 						  p_queue->fw_cid,
2094 						  req->tx_qid, &params);
2095 	if (!p_queue->p_tx_cid)
2096 		goto out;
2097 
2098 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2099 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_queue->p_tx_cid,
2100 				      req->pbl_addr, req->pbl_size, pq);
2101 	if (rc) {
2102 		status = PFVF_STATUS_FAILURE;
2103 		qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid);
2104 		p_queue->p_tx_cid = NULL;
2105 	} else {
2106 		status = PFVF_STATUS_SUCCESS;
2107 	}
2108 
2109 out:
2110 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, status);
2111 }
2112 
2113 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2114 				struct qed_vf_info *vf,
2115 				u16 rxq_id, bool cqe_completion)
2116 {
2117 	struct qed_vf_q_info *p_queue;
2118 	int rc = 0;
2119 
2120 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id,
2121 				  QED_IOV_VALIDATE_Q_ENABLE)) {
2122 		DP_VERBOSE(p_hwfn,
2123 			   QED_MSG_IOV,
2124 			   "VF[%d] Tried Closing Rx 0x%04x which is inactive\n",
2125 			   vf->relative_vf_id, rxq_id);
2126 		return -EINVAL;
2127 	}
2128 
2129 	p_queue = &vf->vf_queues[rxq_id];
2130 
2131 	rc = qed_eth_rx_queue_stop(p_hwfn,
2132 				   p_queue->p_rx_cid,
2133 				   false, cqe_completion);
2134 	if (rc)
2135 		return rc;
2136 
2137 	p_queue->p_rx_cid = NULL;
2138 	vf->num_active_rxqs--;
2139 
2140 	return 0;
2141 }
2142 
2143 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2144 				struct qed_vf_info *vf, u16 txq_id)
2145 {
2146 	struct qed_vf_q_info *p_queue;
2147 	int rc = 0;
2148 
2149 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id,
2150 				  QED_IOV_VALIDATE_Q_ENABLE))
2151 		return -EINVAL;
2152 
2153 	p_queue = &vf->vf_queues[txq_id];
2154 
2155 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->p_tx_cid);
2156 	if (rc)
2157 		return rc;
2158 
2159 	p_queue->p_tx_cid = NULL;
2160 
2161 	return 0;
2162 }
2163 
2164 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2165 				     struct qed_ptt *p_ptt,
2166 				     struct qed_vf_info *vf)
2167 {
2168 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2169 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2170 	u8 status = PFVF_STATUS_FAILURE;
2171 	struct vfpf_stop_rxqs_tlv *req;
2172 	int rc;
2173 
2174 	/* There has never been an official driver that used this interface
2175 	 * for stopping multiple queues, and it is now considered deprecated.
2176 	 * Validate this isn't used here.
2177 	 */
2178 	req = &mbx->req_virt->stop_rxqs;
2179 	if (req->num_rxqs != 1) {
2180 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2181 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2182 			   vf->relative_vf_id);
2183 		status = PFVF_STATUS_NOT_SUPPORTED;
2184 		goto out;
2185 	}
2186 
2187 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2188 				  req->cqe_completion);
2189 	if (!rc)
2190 		status = PFVF_STATUS_SUCCESS;
2191 out:
2192 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2193 			     length, status);
2194 }
2195 
2196 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2197 				     struct qed_ptt *p_ptt,
2198 				     struct qed_vf_info *vf)
2199 {
2200 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2201 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2202 	u8 status = PFVF_STATUS_FAILURE;
2203 	struct vfpf_stop_txqs_tlv *req;
2204 	int rc;
2205 
2206 	/* There has never been an official driver that used this interface
2207 	 * for stopping multiple queues, and it is now considered deprecated.
2208 	 * Validate this isn't used here.
2209 	 */
2210 	req = &mbx->req_virt->stop_txqs;
2211 	if (req->num_txqs != 1) {
2212 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2213 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2214 			   vf->relative_vf_id);
2215 		status = PFVF_STATUS_NOT_SUPPORTED;
2216 		goto out;
2217 	}
2218 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid);
2219 	if (!rc)
2220 		status = PFVF_STATUS_SUCCESS;
2221 
2222 out:
2223 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2224 			     length, status);
2225 }
2226 
2227 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2228 				       struct qed_ptt *p_ptt,
2229 				       struct qed_vf_info *vf)
2230 {
2231 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2232 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2233 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2234 	struct vfpf_update_rxq_tlv *req;
2235 	u8 status = PFVF_STATUS_FAILURE;
2236 	u8 complete_event_flg;
2237 	u8 complete_cqe_flg;
2238 	u16 qid;
2239 	int rc;
2240 	u8 i;
2241 
2242 	req = &mbx->req_virt->update_rxq;
2243 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2244 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2245 
2246 	/* Validate inputs */
2247 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++)
2248 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2249 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2250 			DP_INFO(p_hwfn, "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2251 				vf->relative_vf_id, req->rx_qid, req->num_rxqs);
2252 			goto out;
2253 		}
2254 
2255 	/* Prepare the handlers */
2256 	for (i = 0; i < req->num_rxqs; i++) {
2257 		qid = req->rx_qid + i;
2258 		handlers[i] = vf->vf_queues[qid].p_rx_cid;
2259 	}
2260 
2261 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2262 					 req->num_rxqs,
2263 					 complete_cqe_flg,
2264 					 complete_event_flg,
2265 					 QED_SPQ_MODE_EBLOCK, NULL);
2266 	if (rc)
2267 		goto out;
2268 
2269 	status = PFVF_STATUS_SUCCESS;
2270 out:
2271 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2272 			     length, status);
2273 }
2274 
2275 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2276 			       void *p_tlvs_list, u16 req_type)
2277 {
2278 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2279 	int len = 0;
2280 
2281 	do {
2282 		if (!p_tlv->length) {
2283 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2284 			return NULL;
2285 		}
2286 
2287 		if (p_tlv->type == req_type) {
2288 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2289 				   "Extended tlv type %d, length %d found\n",
2290 				   p_tlv->type, p_tlv->length);
2291 			return p_tlv;
2292 		}
2293 
2294 		len += p_tlv->length;
2295 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2296 
2297 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2298 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2299 			return NULL;
2300 		}
2301 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2302 
2303 	return NULL;
2304 }
2305 
2306 static void
2307 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2308 			    struct qed_sp_vport_update_params *p_data,
2309 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2310 {
2311 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2312 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2313 
2314 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2315 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2316 	if (!p_act_tlv)
2317 		return;
2318 
2319 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2320 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2321 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2322 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2323 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2324 }
2325 
2326 static void
2327 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2328 			     struct qed_sp_vport_update_params *p_data,
2329 			     struct qed_vf_info *p_vf,
2330 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2331 {
2332 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2333 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2334 
2335 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2336 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2337 	if (!p_vlan_tlv)
2338 		return;
2339 
2340 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2341 
2342 	/* Ignore the VF request if we're forcing a vlan */
2343 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2344 		p_data->update_inner_vlan_removal_flg = 1;
2345 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2346 	}
2347 
2348 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2349 }
2350 
2351 static void
2352 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2353 			    struct qed_sp_vport_update_params *p_data,
2354 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2355 {
2356 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2357 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2358 
2359 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2360 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2361 						   tlv);
2362 	if (!p_tx_switch_tlv)
2363 		return;
2364 
2365 	p_data->update_tx_switching_flg = 1;
2366 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2367 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2368 }
2369 
2370 static void
2371 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2372 				  struct qed_sp_vport_update_params *p_data,
2373 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2374 {
2375 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2376 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2377 
2378 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2379 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2380 	if (!p_mcast_tlv)
2381 		return;
2382 
2383 	p_data->update_approx_mcast_flg = 1;
2384 	memcpy(p_data->bins, p_mcast_tlv->bins,
2385 	       sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2386 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2387 }
2388 
2389 static void
2390 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2391 			      struct qed_sp_vport_update_params *p_data,
2392 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2393 {
2394 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2395 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2396 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2397 
2398 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2399 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2400 	if (!p_accept_tlv)
2401 		return;
2402 
2403 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2404 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2405 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2406 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2407 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2408 }
2409 
2410 static void
2411 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2412 				  struct qed_sp_vport_update_params *p_data,
2413 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2414 {
2415 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2416 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2417 
2418 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2419 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2420 						     tlv);
2421 	if (!p_accept_any_vlan)
2422 		return;
2423 
2424 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2425 	p_data->update_accept_any_vlan_flg =
2426 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2427 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2428 }
2429 
2430 static void
2431 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2432 			    struct qed_vf_info *vf,
2433 			    struct qed_sp_vport_update_params *p_data,
2434 			    struct qed_rss_params *p_rss,
2435 			    struct qed_iov_vf_mbx *p_mbx,
2436 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2437 {
2438 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2439 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2440 	bool b_reject = false;
2441 	u16 table_size;
2442 	u16 i, q_idx;
2443 
2444 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2445 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2446 	if (!p_rss_tlv) {
2447 		p_data->rss_params = NULL;
2448 		return;
2449 	}
2450 
2451 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2452 
2453 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2454 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2455 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2456 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2457 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2458 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2459 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2460 				   VFPF_UPDATE_RSS_KEY_FLAG);
2461 
2462 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2463 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2464 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2465 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2466 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2467 
2468 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2469 			   (1 << p_rss_tlv->rss_table_size_log));
2470 
2471 	for (i = 0; i < table_size; i++) {
2472 		q_idx = p_rss_tlv->rss_ind_table[i];
2473 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2474 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2475 			DP_VERBOSE(p_hwfn,
2476 				   QED_MSG_IOV,
2477 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2478 				   vf->relative_vf_id, q_idx);
2479 			b_reject = true;
2480 			goto out;
2481 		}
2482 
2483 		p_rss->rss_ind_table[i] = vf->vf_queues[q_idx].p_rx_cid;
2484 	}
2485 
2486 	p_data->rss_params = p_rss;
2487 out:
2488 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2489 	if (!b_reject)
2490 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2491 }
2492 
2493 static void
2494 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2495 				struct qed_vf_info *vf,
2496 				struct qed_sp_vport_update_params *p_data,
2497 				struct qed_sge_tpa_params *p_sge_tpa,
2498 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2499 {
2500 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2501 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2502 
2503 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2504 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2505 
2506 	if (!p_sge_tpa_tlv) {
2507 		p_data->sge_tpa_params = NULL;
2508 		return;
2509 	}
2510 
2511 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2512 
2513 	p_sge_tpa->update_tpa_en_flg =
2514 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2515 	p_sge_tpa->update_tpa_param_flg =
2516 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2517 		VFPF_UPDATE_TPA_PARAM_FLAG);
2518 
2519 	p_sge_tpa->tpa_ipv4_en_flg =
2520 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2521 	p_sge_tpa->tpa_ipv6_en_flg =
2522 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2523 	p_sge_tpa->tpa_pkt_split_flg =
2524 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2525 	p_sge_tpa->tpa_hdr_data_split_flg =
2526 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2527 	p_sge_tpa->tpa_gro_consistent_flg =
2528 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2529 
2530 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2531 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2532 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2533 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2534 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2535 
2536 	p_data->sge_tpa_params = p_sge_tpa;
2537 
2538 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2539 }
2540 
2541 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2542 				    u8 vfid,
2543 				    struct qed_sp_vport_update_params *params,
2544 				    u16 *tlvs)
2545 {
2546 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2547 	struct qed_filter_accept_flags *flags = &params->accept_flags;
2548 	struct qed_public_vf_info *vf_info;
2549 
2550 	/* Untrusted VFs can't even be trusted to know that fact.
2551 	 * Simply indicate everything is configured fine, and trace
2552 	 * configuration 'behind their back'.
2553 	 */
2554 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
2555 		return 0;
2556 
2557 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
2558 
2559 	if (flags->update_rx_mode_config) {
2560 		vf_info->rx_accept_mode = flags->rx_accept_filter;
2561 		if (!vf_info->is_trusted_configured)
2562 			flags->rx_accept_filter &= ~mask;
2563 	}
2564 
2565 	if (flags->update_tx_mode_config) {
2566 		vf_info->tx_accept_mode = flags->tx_accept_filter;
2567 		if (!vf_info->is_trusted_configured)
2568 			flags->tx_accept_filter &= ~mask;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
2575 					struct qed_ptt *p_ptt,
2576 					struct qed_vf_info *vf)
2577 {
2578 	struct qed_rss_params *p_rss_params = NULL;
2579 	struct qed_sp_vport_update_params params;
2580 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2581 	struct qed_sge_tpa_params sge_tpa_params;
2582 	u16 tlvs_mask = 0, tlvs_accepted = 0;
2583 	u8 status = PFVF_STATUS_SUCCESS;
2584 	u16 length;
2585 	int rc;
2586 
2587 	/* Valiate PF can send such a request */
2588 	if (!vf->vport_instance) {
2589 		DP_VERBOSE(p_hwfn,
2590 			   QED_MSG_IOV,
2591 			   "No VPORT instance available for VF[%d], failing vport update\n",
2592 			   vf->abs_vf_id);
2593 		status = PFVF_STATUS_FAILURE;
2594 		goto out;
2595 	}
2596 	p_rss_params = vzalloc(sizeof(*p_rss_params));
2597 	if (p_rss_params == NULL) {
2598 		status = PFVF_STATUS_FAILURE;
2599 		goto out;
2600 	}
2601 
2602 	memset(&params, 0, sizeof(params));
2603 	params.opaque_fid = vf->opaque_fid;
2604 	params.vport_id = vf->vport_id;
2605 	params.rss_params = NULL;
2606 
2607 	/* Search for extended tlvs list and update values
2608 	 * from VF in struct qed_sp_vport_update_params.
2609 	 */
2610 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
2611 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
2612 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
2613 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
2614 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
2615 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
2616 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
2617 					&sge_tpa_params, mbx, &tlvs_mask);
2618 
2619 	tlvs_accepted = tlvs_mask;
2620 
2621 	/* Some of the extended TLVs need to be validated first; In that case,
2622 	 * they can update the mask without updating the accepted [so that
2623 	 * PF could communicate to VF it has rejected request].
2624 	 */
2625 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
2626 				    mbx, &tlvs_mask, &tlvs_accepted);
2627 
2628 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
2629 				     &params, &tlvs_accepted)) {
2630 		tlvs_accepted = 0;
2631 		status = PFVF_STATUS_NOT_SUPPORTED;
2632 		goto out;
2633 	}
2634 
2635 	if (!tlvs_accepted) {
2636 		if (tlvs_mask)
2637 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2638 				   "Upper-layer prevents VF vport configuration\n");
2639 		else
2640 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2641 				   "No feature tlvs found for vport update\n");
2642 		status = PFVF_STATUS_NOT_SUPPORTED;
2643 		goto out;
2644 	}
2645 
2646 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
2647 
2648 	if (rc)
2649 		status = PFVF_STATUS_FAILURE;
2650 
2651 out:
2652 	vfree(p_rss_params);
2653 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
2654 						  tlvs_mask, tlvs_accepted);
2655 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2656 }
2657 
2658 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
2659 					 struct qed_vf_info *p_vf,
2660 					 struct qed_filter_ucast *p_params)
2661 {
2662 	int i;
2663 
2664 	/* First remove entries and then add new ones */
2665 	if (p_params->opcode == QED_FILTER_REMOVE) {
2666 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2667 			if (p_vf->shadow_config.vlans[i].used &&
2668 			    p_vf->shadow_config.vlans[i].vid ==
2669 			    p_params->vlan) {
2670 				p_vf->shadow_config.vlans[i].used = false;
2671 				break;
2672 			}
2673 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2674 			DP_VERBOSE(p_hwfn,
2675 				   QED_MSG_IOV,
2676 				   "VF [%d] - Tries to remove a non-existing vlan\n",
2677 				   p_vf->relative_vf_id);
2678 			return -EINVAL;
2679 		}
2680 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
2681 		   p_params->opcode == QED_FILTER_FLUSH) {
2682 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2683 			p_vf->shadow_config.vlans[i].used = false;
2684 	}
2685 
2686 	/* In forced mode, we're willing to remove entries - but we don't add
2687 	 * new ones.
2688 	 */
2689 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
2690 		return 0;
2691 
2692 	if (p_params->opcode == QED_FILTER_ADD ||
2693 	    p_params->opcode == QED_FILTER_REPLACE) {
2694 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
2695 			if (p_vf->shadow_config.vlans[i].used)
2696 				continue;
2697 
2698 			p_vf->shadow_config.vlans[i].used = true;
2699 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
2700 			break;
2701 		}
2702 
2703 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2704 			DP_VERBOSE(p_hwfn,
2705 				   QED_MSG_IOV,
2706 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
2707 				   p_vf->relative_vf_id,
2708 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
2709 			return -EINVAL;
2710 		}
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
2717 					struct qed_vf_info *p_vf,
2718 					struct qed_filter_ucast *p_params)
2719 {
2720 	int i;
2721 
2722 	/* If we're in forced-mode, we don't allow any change */
2723 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
2724 		return 0;
2725 
2726 	/* First remove entries and then add new ones */
2727 	if (p_params->opcode == QED_FILTER_REMOVE) {
2728 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
2729 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
2730 					     p_params->mac)) {
2731 				eth_zero_addr(p_vf->shadow_config.macs[i]);
2732 				break;
2733 			}
2734 		}
2735 
2736 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
2737 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2738 				   "MAC isn't configured\n");
2739 			return -EINVAL;
2740 		}
2741 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
2742 		   p_params->opcode == QED_FILTER_FLUSH) {
2743 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
2744 			eth_zero_addr(p_vf->shadow_config.macs[i]);
2745 	}
2746 
2747 	/* List the new MAC address */
2748 	if (p_params->opcode != QED_FILTER_ADD &&
2749 	    p_params->opcode != QED_FILTER_REPLACE)
2750 		return 0;
2751 
2752 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
2753 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
2754 			ether_addr_copy(p_vf->shadow_config.macs[i],
2755 					p_params->mac);
2756 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2757 				   "Added MAC at %d entry in shadow\n", i);
2758 			break;
2759 		}
2760 	}
2761 
2762 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
2763 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
2764 		return -EINVAL;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static int
2771 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
2772 				 struct qed_vf_info *p_vf,
2773 				 struct qed_filter_ucast *p_params)
2774 {
2775 	int rc = 0;
2776 
2777 	if (p_params->type == QED_FILTER_MAC) {
2778 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
2779 		if (rc)
2780 			return rc;
2781 	}
2782 
2783 	if (p_params->type == QED_FILTER_VLAN)
2784 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
2785 
2786 	return rc;
2787 }
2788 
2789 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
2790 			     int vfid, struct qed_filter_ucast *params)
2791 {
2792 	struct qed_public_vf_info *vf;
2793 
2794 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
2795 	if (!vf)
2796 		return -EINVAL;
2797 
2798 	/* No real decision to make; Store the configured MAC */
2799 	if (params->type == QED_FILTER_MAC ||
2800 	    params->type == QED_FILTER_MAC_VLAN)
2801 		ether_addr_copy(vf->mac, params->mac);
2802 
2803 	return 0;
2804 }
2805 
2806 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
2807 					struct qed_ptt *p_ptt,
2808 					struct qed_vf_info *vf)
2809 {
2810 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
2811 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2812 	struct vfpf_ucast_filter_tlv *req;
2813 	u8 status = PFVF_STATUS_SUCCESS;
2814 	struct qed_filter_ucast params;
2815 	int rc;
2816 
2817 	/* Prepare the unicast filter params */
2818 	memset(&params, 0, sizeof(struct qed_filter_ucast));
2819 	req = &mbx->req_virt->ucast_filter;
2820 	params.opcode = (enum qed_filter_opcode)req->opcode;
2821 	params.type = (enum qed_filter_ucast_type)req->type;
2822 
2823 	params.is_rx_filter = 1;
2824 	params.is_tx_filter = 1;
2825 	params.vport_to_remove_from = vf->vport_id;
2826 	params.vport_to_add_to = vf->vport_id;
2827 	memcpy(params.mac, req->mac, ETH_ALEN);
2828 	params.vlan = req->vlan;
2829 
2830 	DP_VERBOSE(p_hwfn,
2831 		   QED_MSG_IOV,
2832 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
2833 		   vf->abs_vf_id, params.opcode, params.type,
2834 		   params.is_rx_filter ? "RX" : "",
2835 		   params.is_tx_filter ? "TX" : "",
2836 		   params.vport_to_add_to,
2837 		   params.mac[0], params.mac[1],
2838 		   params.mac[2], params.mac[3],
2839 		   params.mac[4], params.mac[5], params.vlan);
2840 
2841 	if (!vf->vport_instance) {
2842 		DP_VERBOSE(p_hwfn,
2843 			   QED_MSG_IOV,
2844 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
2845 			   vf->abs_vf_id);
2846 		status = PFVF_STATUS_FAILURE;
2847 		goto out;
2848 	}
2849 
2850 	/* Update shadow copy of the VF configuration */
2851 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
2852 		status = PFVF_STATUS_FAILURE;
2853 		goto out;
2854 	}
2855 
2856 	/* Determine if the unicast filtering is acceptible by PF */
2857 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
2858 	    (params.type == QED_FILTER_VLAN ||
2859 	     params.type == QED_FILTER_MAC_VLAN)) {
2860 		/* Once VLAN is forced or PVID is set, do not allow
2861 		 * to add/replace any further VLANs.
2862 		 */
2863 		if (params.opcode == QED_FILTER_ADD ||
2864 		    params.opcode == QED_FILTER_REPLACE)
2865 			status = PFVF_STATUS_FORCED;
2866 		goto out;
2867 	}
2868 
2869 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
2870 	    (params.type == QED_FILTER_MAC ||
2871 	     params.type == QED_FILTER_MAC_VLAN)) {
2872 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
2873 		    (params.opcode != QED_FILTER_ADD &&
2874 		     params.opcode != QED_FILTER_REPLACE))
2875 			status = PFVF_STATUS_FORCED;
2876 		goto out;
2877 	}
2878 
2879 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
2880 	if (rc) {
2881 		status = PFVF_STATUS_FAILURE;
2882 		goto out;
2883 	}
2884 
2885 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
2886 				     QED_SPQ_MODE_CB, NULL);
2887 	if (rc)
2888 		status = PFVF_STATUS_FAILURE;
2889 
2890 out:
2891 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
2892 			     sizeof(struct pfvf_def_resp_tlv), status);
2893 }
2894 
2895 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
2896 				       struct qed_ptt *p_ptt,
2897 				       struct qed_vf_info *vf)
2898 {
2899 	int i;
2900 
2901 	/* Reset the SBs */
2902 	for (i = 0; i < vf->num_sbs; i++)
2903 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2904 						vf->igu_sbs[i],
2905 						vf->opaque_fid, false);
2906 
2907 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
2908 			     sizeof(struct pfvf_def_resp_tlv),
2909 			     PFVF_STATUS_SUCCESS);
2910 }
2911 
2912 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
2913 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
2914 {
2915 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2916 	u8 status = PFVF_STATUS_SUCCESS;
2917 
2918 	/* Disable Interrupts for VF */
2919 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
2920 
2921 	/* Reset Permission table */
2922 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
2923 
2924 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
2925 			     length, status);
2926 }
2927 
2928 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
2929 				   struct qed_ptt *p_ptt,
2930 				   struct qed_vf_info *p_vf)
2931 {
2932 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2933 	u8 status = PFVF_STATUS_SUCCESS;
2934 	int rc = 0;
2935 
2936 	qed_iov_vf_cleanup(p_hwfn, p_vf);
2937 
2938 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
2939 		/* Stopping the VF */
2940 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
2941 				    p_vf->opaque_fid);
2942 
2943 		if (rc) {
2944 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
2945 			       rc);
2946 			status = PFVF_STATUS_FAILURE;
2947 		}
2948 
2949 		p_vf->state = VF_STOPPED;
2950 	}
2951 
2952 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
2953 			     length, status);
2954 }
2955 
2956 static int
2957 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
2958 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2959 {
2960 	int cnt;
2961 	u32 val;
2962 
2963 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
2964 
2965 	for (cnt = 0; cnt < 50; cnt++) {
2966 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
2967 		if (!val)
2968 			break;
2969 		msleep(20);
2970 	}
2971 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
2972 
2973 	if (cnt == 50) {
2974 		DP_ERR(p_hwfn,
2975 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
2976 		       p_vf->abs_vf_id, val);
2977 		return -EBUSY;
2978 	}
2979 
2980 	return 0;
2981 }
2982 
2983 static int
2984 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
2985 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2986 {
2987 	u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS];
2988 	int i, cnt;
2989 
2990 	/* Read initial consumers & producers */
2991 	for (i = 0; i < MAX_NUM_VOQS; i++) {
2992 		u32 prod;
2993 
2994 		cons[i] = qed_rd(p_hwfn, p_ptt,
2995 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
2996 				 i * 0x40);
2997 		prod = qed_rd(p_hwfn, p_ptt,
2998 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
2999 			      i * 0x40);
3000 		distance[i] = prod - cons[i];
3001 	}
3002 
3003 	/* Wait for consumers to pass the producers */
3004 	i = 0;
3005 	for (cnt = 0; cnt < 50; cnt++) {
3006 		for (; i < MAX_NUM_VOQS; i++) {
3007 			u32 tmp;
3008 
3009 			tmp = qed_rd(p_hwfn, p_ptt,
3010 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3011 				     i * 0x40);
3012 			if (distance[i] > tmp - cons[i])
3013 				break;
3014 		}
3015 
3016 		if (i == MAX_NUM_VOQS)
3017 			break;
3018 
3019 		msleep(20);
3020 	}
3021 
3022 	if (cnt == 50) {
3023 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3024 		       p_vf->abs_vf_id, i);
3025 		return -EBUSY;
3026 	}
3027 
3028 	return 0;
3029 }
3030 
3031 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3032 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3033 {
3034 	int rc;
3035 
3036 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3037 	if (rc)
3038 		return rc;
3039 
3040 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3041 	if (rc)
3042 		return rc;
3043 
3044 	return 0;
3045 }
3046 
3047 static int
3048 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3049 			       struct qed_ptt *p_ptt,
3050 			       u16 rel_vf_id, u32 *ack_vfs)
3051 {
3052 	struct qed_vf_info *p_vf;
3053 	int rc = 0;
3054 
3055 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3056 	if (!p_vf)
3057 		return 0;
3058 
3059 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3060 	    (1ULL << (rel_vf_id % 64))) {
3061 		u16 vfid = p_vf->abs_vf_id;
3062 
3063 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3064 			   "VF[%d] - Handling FLR\n", vfid);
3065 
3066 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3067 
3068 		/* If VF isn't active, no need for anything but SW */
3069 		if (!p_vf->b_init)
3070 			goto cleanup;
3071 
3072 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3073 		if (rc)
3074 			goto cleanup;
3075 
3076 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3077 		if (rc) {
3078 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3079 			return rc;
3080 		}
3081 
3082 		/* Workaround to make VF-PF channel ready, as FW
3083 		 * doesn't do that as a part of FLR.
3084 		 */
3085 		REG_WR(p_hwfn,
3086 		       GTT_BAR0_MAP_REG_USDM_RAM +
3087 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3088 
3089 		/* VF_STOPPED has to be set only after final cleanup
3090 		 * but prior to re-enabling the VF.
3091 		 */
3092 		p_vf->state = VF_STOPPED;
3093 
3094 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3095 		if (rc) {
3096 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3097 			       vfid);
3098 			return rc;
3099 		}
3100 cleanup:
3101 		/* Mark VF for ack and clean pending state */
3102 		if (p_vf->state == VF_RESET)
3103 			p_vf->state = VF_STOPPED;
3104 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3105 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3106 		    ~(1ULL << (rel_vf_id % 64));
3107 		p_vf->vf_mbx.b_pending_msg = false;
3108 	}
3109 
3110 	return rc;
3111 }
3112 
3113 static int
3114 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3115 {
3116 	u32 ack_vfs[VF_MAX_STATIC / 32];
3117 	int rc = 0;
3118 	u16 i;
3119 
3120 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3121 
3122 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3123 	 * polling due to HW limitations, simply sleep a bit. And since
3124 	 * there's no need to wait per-vf, do it before looping.
3125 	 */
3126 	msleep(100);
3127 
3128 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3129 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3130 
3131 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3132 	return rc;
3133 }
3134 
3135 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3136 {
3137 	bool found = false;
3138 	u16 i;
3139 
3140 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3141 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3142 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3143 			   "[%08x,...,%08x]: %08x\n",
3144 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3145 
3146 	if (!p_hwfn->cdev->p_iov_info) {
3147 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3148 		return false;
3149 	}
3150 
3151 	/* Mark VFs */
3152 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3153 		struct qed_vf_info *p_vf;
3154 		u8 vfid;
3155 
3156 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3157 		if (!p_vf)
3158 			continue;
3159 
3160 		vfid = p_vf->abs_vf_id;
3161 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3162 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3163 			u16 rel_vf_id = p_vf->relative_vf_id;
3164 
3165 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3166 				   "VF[%d] [rel %d] got FLR-ed\n",
3167 				   vfid, rel_vf_id);
3168 
3169 			p_vf->state = VF_RESET;
3170 
3171 			/* No need to lock here, since pending_flr should
3172 			 * only change here and before ACKing MFw. Since
3173 			 * MFW will not trigger an additional attention for
3174 			 * VF flr until ACKs, we're safe.
3175 			 */
3176 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3177 			found = true;
3178 		}
3179 	}
3180 
3181 	return found;
3182 }
3183 
3184 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3185 			     u16 vfid,
3186 			     struct qed_mcp_link_params *p_params,
3187 			     struct qed_mcp_link_state *p_link,
3188 			     struct qed_mcp_link_capabilities *p_caps)
3189 {
3190 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3191 						       vfid,
3192 						       false);
3193 	struct qed_bulletin_content *p_bulletin;
3194 
3195 	if (!p_vf)
3196 		return;
3197 
3198 	p_bulletin = p_vf->bulletin.p_virt;
3199 
3200 	if (p_params)
3201 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3202 	if (p_link)
3203 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3204 	if (p_caps)
3205 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3206 }
3207 
3208 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3209 				    struct qed_ptt *p_ptt, int vfid)
3210 {
3211 	struct qed_iov_vf_mbx *mbx;
3212 	struct qed_vf_info *p_vf;
3213 
3214 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3215 	if (!p_vf)
3216 		return;
3217 
3218 	mbx = &p_vf->vf_mbx;
3219 
3220 	/* qed_iov_process_mbx_request */
3221 	if (!mbx->b_pending_msg) {
3222 		DP_NOTICE(p_hwfn,
3223 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3224 			  p_vf->abs_vf_id);
3225 		return;
3226 	}
3227 	mbx->b_pending_msg = false;
3228 
3229 	mbx->first_tlv = mbx->req_virt->first_tlv;
3230 
3231 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3232 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3233 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3234 
3235 	/* check if tlv type is known */
3236 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3237 	    !p_vf->b_malicious) {
3238 		switch (mbx->first_tlv.tl.type) {
3239 		case CHANNEL_TLV_ACQUIRE:
3240 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3241 			break;
3242 		case CHANNEL_TLV_VPORT_START:
3243 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3244 			break;
3245 		case CHANNEL_TLV_VPORT_TEARDOWN:
3246 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3247 			break;
3248 		case CHANNEL_TLV_START_RXQ:
3249 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3250 			break;
3251 		case CHANNEL_TLV_START_TXQ:
3252 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3253 			break;
3254 		case CHANNEL_TLV_STOP_RXQS:
3255 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3256 			break;
3257 		case CHANNEL_TLV_STOP_TXQS:
3258 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3259 			break;
3260 		case CHANNEL_TLV_UPDATE_RXQ:
3261 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3262 			break;
3263 		case CHANNEL_TLV_VPORT_UPDATE:
3264 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3265 			break;
3266 		case CHANNEL_TLV_UCAST_FILTER:
3267 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3268 			break;
3269 		case CHANNEL_TLV_CLOSE:
3270 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3271 			break;
3272 		case CHANNEL_TLV_INT_CLEANUP:
3273 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3274 			break;
3275 		case CHANNEL_TLV_RELEASE:
3276 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3277 			break;
3278 		}
3279 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3280 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3281 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3282 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3283 
3284 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3285 				     mbx->first_tlv.tl.type,
3286 				     sizeof(struct pfvf_def_resp_tlv),
3287 				     PFVF_STATUS_MALICIOUS);
3288 	} else {
3289 		/* unknown TLV - this may belong to a VF driver from the future
3290 		 * - a version written after this PF driver was written, which
3291 		 * supports features unknown as of yet. Too bad since we don't
3292 		 * support them. Or this may be because someone wrote a crappy
3293 		 * VF driver and is sending garbage over the channel.
3294 		 */
3295 		DP_NOTICE(p_hwfn,
3296 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3297 			  p_vf->abs_vf_id,
3298 			  mbx->first_tlv.tl.type,
3299 			  mbx->first_tlv.tl.length,
3300 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3301 
3302 		/* Try replying in case reply address matches the acquisition's
3303 		 * posted address.
3304 		 */
3305 		if (p_vf->acquire.first_tlv.reply_address &&
3306 		    (mbx->first_tlv.reply_address ==
3307 		     p_vf->acquire.first_tlv.reply_address)) {
3308 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3309 					     mbx->first_tlv.tl.type,
3310 					     sizeof(struct pfvf_def_resp_tlv),
3311 					     PFVF_STATUS_NOT_SUPPORTED);
3312 		} else {
3313 			DP_VERBOSE(p_hwfn,
3314 				   QED_MSG_IOV,
3315 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3316 				   p_vf->abs_vf_id);
3317 		}
3318 	}
3319 }
3320 
3321 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3322 {
3323 	int i;
3324 
3325 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3326 
3327 	qed_for_each_vf(p_hwfn, i) {
3328 		struct qed_vf_info *p_vf;
3329 
3330 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3331 		if (p_vf->vf_mbx.b_pending_msg)
3332 			events[i / 64] |= 1ULL << (i % 64);
3333 	}
3334 }
3335 
3336 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
3337 						       u16 abs_vfid)
3338 {
3339 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
3340 
3341 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
3342 		DP_VERBOSE(p_hwfn,
3343 			   QED_MSG_IOV,
3344 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
3345 			   abs_vfid);
3346 		return NULL;
3347 	}
3348 
3349 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
3350 }
3351 
3352 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
3353 			      u16 abs_vfid, struct regpair *vf_msg)
3354 {
3355 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
3356 			   abs_vfid);
3357 
3358 	if (!p_vf)
3359 		return 0;
3360 
3361 	/* List the physical address of the request so that handler
3362 	 * could later on copy the message from it.
3363 	 */
3364 	p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
3365 
3366 	/* Mark the event and schedule the workqueue */
3367 	p_vf->vf_mbx.b_pending_msg = true;
3368 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
3369 
3370 	return 0;
3371 }
3372 
3373 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
3374 				     struct malicious_vf_eqe_data *p_data)
3375 {
3376 	struct qed_vf_info *p_vf;
3377 
3378 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
3379 
3380 	if (!p_vf)
3381 		return;
3382 
3383 	if (!p_vf->b_malicious) {
3384 		DP_NOTICE(p_hwfn,
3385 			  "VF [%d] - Malicious behavior [%02x]\n",
3386 			  p_vf->abs_vf_id, p_data->err_id);
3387 
3388 		p_vf->b_malicious = true;
3389 	} else {
3390 		DP_INFO(p_hwfn,
3391 			"VF [%d] - Malicious behavior [%02x]\n",
3392 			p_vf->abs_vf_id, p_data->err_id);
3393 	}
3394 }
3395 
3396 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
3397 			u8 opcode, __le16 echo, union event_ring_data *data)
3398 {
3399 	switch (opcode) {
3400 	case COMMON_EVENT_VF_PF_CHANNEL:
3401 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
3402 					  &data->vf_pf_channel.msg_addr);
3403 	case COMMON_EVENT_MALICIOUS_VF:
3404 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
3405 		return 0;
3406 	default:
3407 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
3408 			opcode);
3409 		return -EINVAL;
3410 	}
3411 }
3412 
3413 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
3414 {
3415 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
3416 	u16 i;
3417 
3418 	if (!p_iov)
3419 		goto out;
3420 
3421 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
3422 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
3423 			return i;
3424 
3425 out:
3426 	return MAX_NUM_VFS;
3427 }
3428 
3429 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
3430 			       int vfid)
3431 {
3432 	struct qed_dmae_params params;
3433 	struct qed_vf_info *vf_info;
3434 
3435 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3436 	if (!vf_info)
3437 		return -EINVAL;
3438 
3439 	memset(&params, 0, sizeof(struct qed_dmae_params));
3440 	params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
3441 	params.src_vfid = vf_info->abs_vf_id;
3442 
3443 	if (qed_dmae_host2host(p_hwfn, ptt,
3444 			       vf_info->vf_mbx.pending_req,
3445 			       vf_info->vf_mbx.req_phys,
3446 			       sizeof(union vfpf_tlvs) / 4, &params)) {
3447 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3448 			   "Failed to copy message from VF 0x%02x\n", vfid);
3449 
3450 		return -EIO;
3451 	}
3452 
3453 	return 0;
3454 }
3455 
3456 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
3457 					    u8 *mac, int vfid)
3458 {
3459 	struct qed_vf_info *vf_info;
3460 	u64 feature;
3461 
3462 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3463 	if (!vf_info) {
3464 		DP_NOTICE(p_hwfn->cdev,
3465 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3466 		return;
3467 	}
3468 
3469 	if (vf_info->b_malicious) {
3470 		DP_NOTICE(p_hwfn->cdev,
3471 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
3472 		return;
3473 	}
3474 
3475 	feature = 1 << MAC_ADDR_FORCED;
3476 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
3477 
3478 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
3479 	/* Forced MAC will disable MAC_ADDR */
3480 	vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR);
3481 
3482 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3483 }
3484 
3485 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
3486 					     u16 pvid, int vfid)
3487 {
3488 	struct qed_vf_info *vf_info;
3489 	u64 feature;
3490 
3491 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3492 	if (!vf_info) {
3493 		DP_NOTICE(p_hwfn->cdev,
3494 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3495 		return;
3496 	}
3497 
3498 	if (vf_info->b_malicious) {
3499 		DP_NOTICE(p_hwfn->cdev,
3500 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
3501 		return;
3502 	}
3503 
3504 	feature = 1 << VLAN_ADDR_FORCED;
3505 	vf_info->bulletin.p_virt->pvid = pvid;
3506 	if (pvid)
3507 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
3508 	else
3509 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
3510 
3511 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3512 }
3513 
3514 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
3515 {
3516 	struct qed_vf_info *p_vf_info;
3517 
3518 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3519 	if (!p_vf_info)
3520 		return false;
3521 
3522 	return !!p_vf_info->vport_instance;
3523 }
3524 
3525 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
3526 {
3527 	struct qed_vf_info *p_vf_info;
3528 
3529 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3530 	if (!p_vf_info)
3531 		return true;
3532 
3533 	return p_vf_info->state == VF_STOPPED;
3534 }
3535 
3536 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
3537 {
3538 	struct qed_vf_info *vf_info;
3539 
3540 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3541 	if (!vf_info)
3542 		return false;
3543 
3544 	return vf_info->spoof_chk;
3545 }
3546 
3547 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
3548 {
3549 	struct qed_vf_info *vf;
3550 	int rc = -EINVAL;
3551 
3552 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3553 		DP_NOTICE(p_hwfn,
3554 			  "SR-IOV sanity check failed, can't set spoofchk\n");
3555 		goto out;
3556 	}
3557 
3558 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3559 	if (!vf)
3560 		goto out;
3561 
3562 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
3563 		/* After VF VPORT start PF will configure spoof check */
3564 		vf->req_spoofchk_val = val;
3565 		rc = 0;
3566 		goto out;
3567 	}
3568 
3569 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
3570 
3571 out:
3572 	return rc;
3573 }
3574 
3575 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
3576 					   u16 rel_vf_id)
3577 {
3578 	struct qed_vf_info *p_vf;
3579 
3580 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
3581 	if (!p_vf || !p_vf->bulletin.p_virt)
3582 		return NULL;
3583 
3584 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
3585 		return NULL;
3586 
3587 	return p_vf->bulletin.p_virt->mac;
3588 }
3589 
3590 static u16
3591 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
3592 {
3593 	struct qed_vf_info *p_vf;
3594 
3595 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
3596 	if (!p_vf || !p_vf->bulletin.p_virt)
3597 		return 0;
3598 
3599 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
3600 		return 0;
3601 
3602 	return p_vf->bulletin.p_virt->pvid;
3603 }
3604 
3605 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
3606 				     struct qed_ptt *p_ptt, int vfid, int val)
3607 {
3608 	struct qed_vf_info *vf;
3609 	u8 abs_vp_id = 0;
3610 	int rc;
3611 
3612 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3613 	if (!vf)
3614 		return -EINVAL;
3615 
3616 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
3617 	if (rc)
3618 		return rc;
3619 
3620 	return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val);
3621 }
3622 
3623 static int
3624 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
3625 {
3626 	struct qed_vf_info *vf;
3627 	u8 vport_id;
3628 	int i;
3629 
3630 	for_each_hwfn(cdev, i) {
3631 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3632 
3633 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3634 			DP_NOTICE(p_hwfn,
3635 				  "SR-IOV sanity check failed, can't set min rate\n");
3636 			return -EINVAL;
3637 		}
3638 	}
3639 
3640 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
3641 	vport_id = vf->vport_id;
3642 
3643 	return qed_configure_vport_wfq(cdev, vport_id, rate);
3644 }
3645 
3646 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
3647 {
3648 	struct qed_wfq_data *vf_vp_wfq;
3649 	struct qed_vf_info *vf_info;
3650 
3651 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3652 	if (!vf_info)
3653 		return 0;
3654 
3655 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
3656 
3657 	if (vf_vp_wfq->configured)
3658 		return vf_vp_wfq->min_speed;
3659 	else
3660 		return 0;
3661 }
3662 
3663 /**
3664  * qed_schedule_iov - schedules IOV task for VF and PF
3665  * @hwfn: hardware function pointer
3666  * @flag: IOV flag for VF/PF
3667  */
3668 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
3669 {
3670 	smp_mb__before_atomic();
3671 	set_bit(flag, &hwfn->iov_task_flags);
3672 	smp_mb__after_atomic();
3673 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3674 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
3675 }
3676 
3677 void qed_vf_start_iov_wq(struct qed_dev *cdev)
3678 {
3679 	int i;
3680 
3681 	for_each_hwfn(cdev, i)
3682 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
3683 			       &cdev->hwfns[i].iov_task, 0);
3684 }
3685 
3686 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
3687 {
3688 	int i, j;
3689 
3690 	for_each_hwfn(cdev, i)
3691 	    if (cdev->hwfns[i].iov_wq)
3692 		flush_workqueue(cdev->hwfns[i].iov_wq);
3693 
3694 	/* Mark VFs for disablement */
3695 	qed_iov_set_vfs_to_disable(cdev, true);
3696 
3697 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
3698 		pci_disable_sriov(cdev->pdev);
3699 
3700 	for_each_hwfn(cdev, i) {
3701 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
3702 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3703 
3704 		/* Failure to acquire the ptt in 100g creates an odd error
3705 		 * where the first engine has already relased IOV.
3706 		 */
3707 		if (!ptt) {
3708 			DP_ERR(hwfn, "Failed to acquire ptt\n");
3709 			return -EBUSY;
3710 		}
3711 
3712 		/* Clean WFQ db and configure equal weight for all vports */
3713 		qed_clean_wfq_db(hwfn, ptt);
3714 
3715 		qed_for_each_vf(hwfn, j) {
3716 			int k;
3717 
3718 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
3719 				continue;
3720 
3721 			/* Wait until VF is disabled before releasing */
3722 			for (k = 0; k < 100; k++) {
3723 				if (!qed_iov_is_vf_stopped(hwfn, j))
3724 					msleep(20);
3725 				else
3726 					break;
3727 			}
3728 
3729 			if (k < 100)
3730 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
3731 							  ptt, j);
3732 			else
3733 				DP_ERR(hwfn,
3734 				       "Timeout waiting for VF's FLR to end\n");
3735 		}
3736 
3737 		qed_ptt_release(hwfn, ptt);
3738 	}
3739 
3740 	qed_iov_set_vfs_to_disable(cdev, false);
3741 
3742 	return 0;
3743 }
3744 
3745 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
3746 					u16 vfid,
3747 					struct qed_iov_vf_init_params *params)
3748 {
3749 	u16 base, i;
3750 
3751 	/* Since we have an equal resource distribution per-VF, and we assume
3752 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
3753 	 * sequentially from there.
3754 	 */
3755 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
3756 
3757 	params->rel_vf_id = vfid;
3758 	for (i = 0; i < params->num_queues; i++) {
3759 		params->req_rx_queue[i] = base + i;
3760 		params->req_tx_queue[i] = base + i;
3761 	}
3762 }
3763 
3764 static int qed_sriov_enable(struct qed_dev *cdev, int num)
3765 {
3766 	struct qed_iov_vf_init_params params;
3767 	int i, j, rc;
3768 
3769 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
3770 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
3771 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
3772 		return -EINVAL;
3773 	}
3774 
3775 	memset(&params, 0, sizeof(params));
3776 
3777 	/* Initialize HW for VF access */
3778 	for_each_hwfn(cdev, j) {
3779 		struct qed_hwfn *hwfn = &cdev->hwfns[j];
3780 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3781 
3782 		/* Make sure not to use more than 16 queues per VF */
3783 		params.num_queues = min_t(int,
3784 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
3785 					  16);
3786 
3787 		if (!ptt) {
3788 			DP_ERR(hwfn, "Failed to acquire ptt\n");
3789 			rc = -EBUSY;
3790 			goto err;
3791 		}
3792 
3793 		for (i = 0; i < num; i++) {
3794 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
3795 				continue;
3796 
3797 			qed_sriov_enable_qid_config(hwfn, i, &params);
3798 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
3799 			if (rc) {
3800 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
3801 				qed_ptt_release(hwfn, ptt);
3802 				goto err;
3803 			}
3804 		}
3805 
3806 		qed_ptt_release(hwfn, ptt);
3807 	}
3808 
3809 	/* Enable SRIOV PCIe functions */
3810 	rc = pci_enable_sriov(cdev->pdev, num);
3811 	if (rc) {
3812 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
3813 		goto err;
3814 	}
3815 
3816 	return num;
3817 
3818 err:
3819 	qed_sriov_disable(cdev, false);
3820 	return rc;
3821 }
3822 
3823 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
3824 {
3825 	if (!IS_QED_SRIOV(cdev)) {
3826 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
3827 		return -EOPNOTSUPP;
3828 	}
3829 
3830 	if (num_vfs_param)
3831 		return qed_sriov_enable(cdev, num_vfs_param);
3832 	else
3833 		return qed_sriov_disable(cdev, true);
3834 }
3835 
3836 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
3837 {
3838 	int i;
3839 
3840 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3841 		DP_VERBOSE(cdev, QED_MSG_IOV,
3842 			   "Cannot set a VF MAC; Sriov is not enabled\n");
3843 		return -EINVAL;
3844 	}
3845 
3846 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
3847 		DP_VERBOSE(cdev, QED_MSG_IOV,
3848 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3849 		return -EINVAL;
3850 	}
3851 
3852 	for_each_hwfn(cdev, i) {
3853 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
3854 		struct qed_public_vf_info *vf_info;
3855 
3856 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3857 		if (!vf_info)
3858 			continue;
3859 
3860 		/* Set the forced MAC, and schedule the IOV task */
3861 		ether_addr_copy(vf_info->forced_mac, mac);
3862 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
3869 {
3870 	int i;
3871 
3872 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3873 		DP_VERBOSE(cdev, QED_MSG_IOV,
3874 			   "Cannot set a VF MAC; Sriov is not enabled\n");
3875 		return -EINVAL;
3876 	}
3877 
3878 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
3879 		DP_VERBOSE(cdev, QED_MSG_IOV,
3880 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3881 		return -EINVAL;
3882 	}
3883 
3884 	for_each_hwfn(cdev, i) {
3885 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
3886 		struct qed_public_vf_info *vf_info;
3887 
3888 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3889 		if (!vf_info)
3890 			continue;
3891 
3892 		/* Set the forced vlan, and schedule the IOV task */
3893 		vf_info->forced_vlan = vid;
3894 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3895 	}
3896 
3897 	return 0;
3898 }
3899 
3900 static int qed_get_vf_config(struct qed_dev *cdev,
3901 			     int vf_id, struct ifla_vf_info *ivi)
3902 {
3903 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
3904 	struct qed_public_vf_info *vf_info;
3905 	struct qed_mcp_link_state link;
3906 	u32 tx_rate;
3907 
3908 	/* Sanitize request */
3909 	if (IS_VF(cdev))
3910 		return -EINVAL;
3911 
3912 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
3913 		DP_VERBOSE(cdev, QED_MSG_IOV,
3914 			   "VF index [%d] isn't active\n", vf_id);
3915 		return -EINVAL;
3916 	}
3917 
3918 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
3919 
3920 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
3921 
3922 	/* Fill information about VF */
3923 	ivi->vf = vf_id;
3924 
3925 	if (is_valid_ether_addr(vf_info->forced_mac))
3926 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
3927 	else
3928 		ether_addr_copy(ivi->mac, vf_info->mac);
3929 
3930 	ivi->vlan = vf_info->forced_vlan;
3931 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
3932 	ivi->linkstate = vf_info->link_state;
3933 	tx_rate = vf_info->tx_rate;
3934 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
3935 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
3936 
3937 	return 0;
3938 }
3939 
3940 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
3941 {
3942 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
3943 	struct qed_mcp_link_capabilities caps;
3944 	struct qed_mcp_link_params params;
3945 	struct qed_mcp_link_state link;
3946 	int i;
3947 
3948 	if (!hwfn->pf_iov_info)
3949 		return;
3950 
3951 	/* Update bulletin of all future possible VFs with link configuration */
3952 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
3953 		struct qed_public_vf_info *vf_info;
3954 
3955 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
3956 		if (!vf_info)
3957 			continue;
3958 
3959 		/* Only hwfn0 is actually interested in the link speed.
3960 		 * But since only it would receive an MFW indication of link,
3961 		 * need to take configuration from it - otherwise things like
3962 		 * rate limiting for hwfn1 VF would not work.
3963 		 */
3964 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
3965 		       sizeof(params));
3966 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
3967 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
3968 		       sizeof(caps));
3969 
3970 		/* Modify link according to the VF's configured link state */
3971 		switch (vf_info->link_state) {
3972 		case IFLA_VF_LINK_STATE_DISABLE:
3973 			link.link_up = false;
3974 			break;
3975 		case IFLA_VF_LINK_STATE_ENABLE:
3976 			link.link_up = true;
3977 			/* Set speed according to maximum supported by HW.
3978 			 * that is 40G for regular devices and 100G for CMT
3979 			 * mode devices.
3980 			 */
3981 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
3982 				     100000 : 40000;
3983 		default:
3984 			/* In auto mode pass PF link image to VF */
3985 			break;
3986 		}
3987 
3988 		if (link.link_up && vf_info->tx_rate) {
3989 			struct qed_ptt *ptt;
3990 			int rate;
3991 
3992 			rate = min_t(int, vf_info->tx_rate, link.speed);
3993 
3994 			ptt = qed_ptt_acquire(hwfn);
3995 			if (!ptt) {
3996 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
3997 				return;
3998 			}
3999 
4000 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4001 				vf_info->tx_rate = rate;
4002 				link.speed = rate;
4003 			}
4004 
4005 			qed_ptt_release(hwfn, ptt);
4006 		}
4007 
4008 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4009 	}
4010 
4011 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4012 }
4013 
4014 static int qed_set_vf_link_state(struct qed_dev *cdev,
4015 				 int vf_id, int link_state)
4016 {
4017 	int i;
4018 
4019 	/* Sanitize request */
4020 	if (IS_VF(cdev))
4021 		return -EINVAL;
4022 
4023 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4024 		DP_VERBOSE(cdev, QED_MSG_IOV,
4025 			   "VF index [%d] isn't active\n", vf_id);
4026 		return -EINVAL;
4027 	}
4028 
4029 	/* Handle configuration of link state */
4030 	for_each_hwfn(cdev, i) {
4031 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4032 		struct qed_public_vf_info *vf;
4033 
4034 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4035 		if (!vf)
4036 			continue;
4037 
4038 		if (vf->link_state == link_state)
4039 			continue;
4040 
4041 		vf->link_state = link_state;
4042 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4043 	}
4044 
4045 	return 0;
4046 }
4047 
4048 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4049 {
4050 	int i, rc = -EINVAL;
4051 
4052 	for_each_hwfn(cdev, i) {
4053 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4054 
4055 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4056 		if (rc)
4057 			break;
4058 	}
4059 
4060 	return rc;
4061 }
4062 
4063 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4064 {
4065 	int i;
4066 
4067 	for_each_hwfn(cdev, i) {
4068 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4069 		struct qed_public_vf_info *vf;
4070 
4071 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4072 			DP_NOTICE(p_hwfn,
4073 				  "SR-IOV sanity check failed, can't set tx rate\n");
4074 			return -EINVAL;
4075 		}
4076 
4077 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4078 
4079 		vf->tx_rate = rate;
4080 
4081 		qed_inform_vf_link_state(p_hwfn);
4082 	}
4083 
4084 	return 0;
4085 }
4086 
4087 static int qed_set_vf_rate(struct qed_dev *cdev,
4088 			   int vfid, u32 min_rate, u32 max_rate)
4089 {
4090 	int rc_min = 0, rc_max = 0;
4091 
4092 	if (max_rate)
4093 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4094 
4095 	if (min_rate)
4096 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4097 
4098 	if (rc_max | rc_min)
4099 		return -EINVAL;
4100 
4101 	return 0;
4102 }
4103 
4104 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4105 {
4106 	int i;
4107 
4108 	for_each_hwfn(cdev, i) {
4109 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4110 		struct qed_public_vf_info *vf;
4111 
4112 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4113 			DP_NOTICE(hwfn,
4114 				  "SR-IOV sanity check failed, can't set trust\n");
4115 			return -EINVAL;
4116 		}
4117 
4118 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4119 
4120 		if (vf->is_trusted_request == trust)
4121 			return 0;
4122 		vf->is_trusted_request = trust;
4123 
4124 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4125 	}
4126 
4127 	return 0;
4128 }
4129 
4130 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4131 {
4132 	u64 events[QED_VF_ARRAY_LENGTH];
4133 	struct qed_ptt *ptt;
4134 	int i;
4135 
4136 	ptt = qed_ptt_acquire(hwfn);
4137 	if (!ptt) {
4138 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4139 			   "Can't acquire PTT; re-scheduling\n");
4140 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4141 		return;
4142 	}
4143 
4144 	qed_iov_pf_get_pending_events(hwfn, events);
4145 
4146 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4147 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4148 		   events[0], events[1], events[2]);
4149 
4150 	qed_for_each_vf(hwfn, i) {
4151 		/* Skip VFs with no pending messages */
4152 		if (!(events[i / 64] & (1ULL << (i % 64))))
4153 			continue;
4154 
4155 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4156 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4157 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4158 
4159 		/* Copy VF's message to PF's request buffer for that VF */
4160 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4161 			continue;
4162 
4163 		qed_iov_process_mbx_req(hwfn, ptt, i);
4164 	}
4165 
4166 	qed_ptt_release(hwfn, ptt);
4167 }
4168 
4169 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4170 {
4171 	int i;
4172 
4173 	qed_for_each_vf(hwfn, i) {
4174 		struct qed_public_vf_info *info;
4175 		bool update = false;
4176 		u8 *mac;
4177 
4178 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4179 		if (!info)
4180 			continue;
4181 
4182 		/* Update data on bulletin board */
4183 		mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4184 		if (is_valid_ether_addr(info->forced_mac) &&
4185 		    (!mac || !ether_addr_equal(mac, info->forced_mac))) {
4186 			DP_VERBOSE(hwfn,
4187 				   QED_MSG_IOV,
4188 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4189 				   i,
4190 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4191 
4192 			/* Update bulletin board with forced MAC */
4193 			qed_iov_bulletin_set_forced_mac(hwfn,
4194 							info->forced_mac, i);
4195 			update = true;
4196 		}
4197 
4198 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
4199 		    info->forced_vlan) {
4200 			DP_VERBOSE(hwfn,
4201 				   QED_MSG_IOV,
4202 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
4203 				   info->forced_vlan,
4204 				   i,
4205 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4206 			qed_iov_bulletin_set_forced_vlan(hwfn,
4207 							 info->forced_vlan, i);
4208 			update = true;
4209 		}
4210 
4211 		if (update)
4212 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4213 	}
4214 }
4215 
4216 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
4217 {
4218 	struct qed_ptt *ptt;
4219 	int i;
4220 
4221 	ptt = qed_ptt_acquire(hwfn);
4222 	if (!ptt) {
4223 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
4224 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4225 		return;
4226 	}
4227 
4228 	qed_for_each_vf(hwfn, i)
4229 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
4230 
4231 	qed_ptt_release(hwfn, ptt);
4232 }
4233 
4234 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
4235 {
4236 	struct qed_sp_vport_update_params params;
4237 	struct qed_filter_accept_flags *flags;
4238 	struct qed_public_vf_info *vf_info;
4239 	struct qed_vf_info *vf;
4240 	u8 mask;
4241 	int i;
4242 
4243 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
4244 	flags = &params.accept_flags;
4245 
4246 	qed_for_each_vf(hwfn, i) {
4247 		/* Need to make sure current requested configuration didn't
4248 		 * flip so that we'll end up configuring something that's not
4249 		 * needed.
4250 		 */
4251 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
4252 		if (vf_info->is_trusted_configured ==
4253 		    vf_info->is_trusted_request)
4254 			continue;
4255 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
4256 
4257 		/* Validate that the VF has a configured vport */
4258 		vf = qed_iov_get_vf_info(hwfn, i, true);
4259 		if (!vf->vport_instance)
4260 			continue;
4261 
4262 		memset(&params, 0, sizeof(params));
4263 		params.opaque_fid = vf->opaque_fid;
4264 		params.vport_id = vf->vport_id;
4265 
4266 		if (vf_info->rx_accept_mode & mask) {
4267 			flags->update_rx_mode_config = 1;
4268 			flags->rx_accept_filter = vf_info->rx_accept_mode;
4269 		}
4270 
4271 		if (vf_info->tx_accept_mode & mask) {
4272 			flags->update_tx_mode_config = 1;
4273 			flags->tx_accept_filter = vf_info->tx_accept_mode;
4274 		}
4275 
4276 		/* Remove if needed; Otherwise this would set the mask */
4277 		if (!vf_info->is_trusted_configured) {
4278 			flags->rx_accept_filter &= ~mask;
4279 			flags->tx_accept_filter &= ~mask;
4280 		}
4281 
4282 		if (flags->update_rx_mode_config ||
4283 		    flags->update_tx_mode_config)
4284 			qed_sp_vport_update(hwfn, &params,
4285 					    QED_SPQ_MODE_EBLOCK, NULL);
4286 	}
4287 }
4288 
4289 static void qed_iov_pf_task(struct work_struct *work)
4290 
4291 {
4292 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
4293 					     iov_task.work);
4294 	int rc;
4295 
4296 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
4297 		return;
4298 
4299 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
4300 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4301 
4302 		if (!ptt) {
4303 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4304 			return;
4305 		}
4306 
4307 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
4308 		if (rc)
4309 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4310 
4311 		qed_ptt_release(hwfn, ptt);
4312 	}
4313 
4314 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
4315 		qed_handle_vf_msg(hwfn);
4316 
4317 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
4318 			       &hwfn->iov_task_flags))
4319 		qed_handle_pf_set_vf_unicast(hwfn);
4320 
4321 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
4322 			       &hwfn->iov_task_flags))
4323 		qed_handle_bulletin_post(hwfn);
4324 
4325 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
4326 		qed_iov_handle_trust_change(hwfn);
4327 }
4328 
4329 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
4330 {
4331 	int i;
4332 
4333 	for_each_hwfn(cdev, i) {
4334 		if (!cdev->hwfns[i].iov_wq)
4335 			continue;
4336 
4337 		if (schedule_first) {
4338 			qed_schedule_iov(&cdev->hwfns[i],
4339 					 QED_IOV_WQ_STOP_WQ_FLAG);
4340 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
4341 		}
4342 
4343 		flush_workqueue(cdev->hwfns[i].iov_wq);
4344 		destroy_workqueue(cdev->hwfns[i].iov_wq);
4345 	}
4346 }
4347 
4348 int qed_iov_wq_start(struct qed_dev *cdev)
4349 {
4350 	char name[NAME_SIZE];
4351 	int i;
4352 
4353 	for_each_hwfn(cdev, i) {
4354 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4355 
4356 		/* PFs needs a dedicated workqueue only if they support IOV.
4357 		 * VFs always require one.
4358 		 */
4359 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
4360 			continue;
4361 
4362 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
4363 			 cdev->pdev->bus->number,
4364 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
4365 
4366 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
4367 		if (!p_hwfn->iov_wq) {
4368 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
4369 			return -ENOMEM;
4370 		}
4371 
4372 		if (IS_PF(cdev))
4373 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
4374 		else
4375 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
4376 	}
4377 
4378 	return 0;
4379 }
4380 
4381 const struct qed_iov_hv_ops qed_iov_ops_pass = {
4382 	.configure = &qed_sriov_configure,
4383 	.set_mac = &qed_sriov_pf_set_mac,
4384 	.set_vlan = &qed_sriov_pf_set_vlan,
4385 	.get_config = &qed_get_vf_config,
4386 	.set_link_state = &qed_set_vf_link_state,
4387 	.set_spoof = &qed_spoof_configure,
4388 	.set_rate = &qed_set_vf_rate,
4389 	.set_trust = &qed_set_vf_trust,
4390 };
4391