xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
48 			       u8 opcode,
49 			       __le16 echo,
50 			       union event_ring_data *data, u8 fw_return_code);
51 
52 
53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
54 {
55 	u8 legacy = 0;
56 
57 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
58 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
59 		legacy |= QED_QCID_LEGACY_VF_RX_PROD;
60 
61 	if (!(p_vf->acquire.vfdev_info.capabilities &
62 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
63 		legacy |= QED_QCID_LEGACY_VF_CID;
64 
65 	return legacy;
66 }
67 
68 /* IOV ramrods */
69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
70 {
71 	struct vf_start_ramrod_data *p_ramrod = NULL;
72 	struct qed_spq_entry *p_ent = NULL;
73 	struct qed_sp_init_data init_data;
74 	int rc = -EINVAL;
75 	u8 fp_minor;
76 
77 	/* Get SPQ entry */
78 	memset(&init_data, 0, sizeof(init_data));
79 	init_data.cid = qed_spq_get_cid(p_hwfn);
80 	init_data.opaque_fid = p_vf->opaque_fid;
81 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
82 
83 	rc = qed_sp_init_request(p_hwfn, &p_ent,
84 				 COMMON_RAMROD_VF_START,
85 				 PROTOCOLID_COMMON, &init_data);
86 	if (rc)
87 		return rc;
88 
89 	p_ramrod = &p_ent->ramrod.vf_start;
90 
91 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
92 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
93 
94 	switch (p_hwfn->hw_info.personality) {
95 	case QED_PCI_ETH:
96 		p_ramrod->personality = PERSONALITY_ETH;
97 		break;
98 	case QED_PCI_ETH_ROCE:
99 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
100 		break;
101 	default:
102 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
103 			  p_hwfn->hw_info.personality);
104 		return -EINVAL;
105 	}
106 
107 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
108 	if (fp_minor > ETH_HSI_VER_MINOR &&
109 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
110 		DP_VERBOSE(p_hwfn,
111 			   QED_MSG_IOV,
112 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
113 			   p_vf->abs_vf_id,
114 			   ETH_HSI_VER_MAJOR,
115 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
116 		fp_minor = ETH_HSI_VER_MINOR;
117 	}
118 
119 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
120 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
121 
122 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
123 		   "VF[%d] - Starting using HSI %02x.%02x\n",
124 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
125 
126 	return qed_spq_post(p_hwfn, p_ent, NULL);
127 }
128 
129 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
130 			  u32 concrete_vfid, u16 opaque_vfid)
131 {
132 	struct vf_stop_ramrod_data *p_ramrod = NULL;
133 	struct qed_spq_entry *p_ent = NULL;
134 	struct qed_sp_init_data init_data;
135 	int rc = -EINVAL;
136 
137 	/* Get SPQ entry */
138 	memset(&init_data, 0, sizeof(init_data));
139 	init_data.cid = qed_spq_get_cid(p_hwfn);
140 	init_data.opaque_fid = opaque_vfid;
141 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
142 
143 	rc = qed_sp_init_request(p_hwfn, &p_ent,
144 				 COMMON_RAMROD_VF_STOP,
145 				 PROTOCOLID_COMMON, &init_data);
146 	if (rc)
147 		return rc;
148 
149 	p_ramrod = &p_ent->ramrod.vf_stop;
150 
151 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
152 
153 	return qed_spq_post(p_hwfn, p_ent, NULL);
154 }
155 
156 static bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
157 				  int rel_vf_id,
158 				  bool b_enabled_only, bool b_non_malicious)
159 {
160 	if (!p_hwfn->pf_iov_info) {
161 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
162 		return false;
163 	}
164 
165 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
166 	    (rel_vf_id < 0))
167 		return false;
168 
169 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
170 	    b_enabled_only)
171 		return false;
172 
173 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
174 	    b_non_malicious)
175 		return false;
176 
177 	return true;
178 }
179 
180 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
181 					       u16 relative_vf_id,
182 					       bool b_enabled_only)
183 {
184 	struct qed_vf_info *vf = NULL;
185 
186 	if (!p_hwfn->pf_iov_info) {
187 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
188 		return NULL;
189 	}
190 
191 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
192 				  b_enabled_only, false))
193 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
194 	else
195 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
196 		       relative_vf_id);
197 
198 	return vf;
199 }
200 
201 static struct qed_queue_cid *
202 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
203 {
204 	int i;
205 
206 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
207 		if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
208 			return p_queue->cids[i].p_cid;
209 	}
210 
211 	return NULL;
212 }
213 
214 enum qed_iov_validate_q_mode {
215 	QED_IOV_VALIDATE_Q_NA,
216 	QED_IOV_VALIDATE_Q_ENABLE,
217 	QED_IOV_VALIDATE_Q_DISABLE,
218 };
219 
220 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
221 					struct qed_vf_info *p_vf,
222 					u16 qid,
223 					enum qed_iov_validate_q_mode mode,
224 					bool b_is_tx)
225 {
226 	int i;
227 
228 	if (mode == QED_IOV_VALIDATE_Q_NA)
229 		return true;
230 
231 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
232 		struct qed_vf_queue_cid *p_qcid;
233 
234 		p_qcid = &p_vf->vf_queues[qid].cids[i];
235 
236 		if (!p_qcid->p_cid)
237 			continue;
238 
239 		if (p_qcid->b_is_tx != b_is_tx)
240 			continue;
241 
242 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
243 	}
244 
245 	/* In case we haven't found any valid cid, then its disabled */
246 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
247 }
248 
249 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
250 				 struct qed_vf_info *p_vf,
251 				 u16 rx_qid,
252 				 enum qed_iov_validate_q_mode mode)
253 {
254 	if (rx_qid >= p_vf->num_rxqs) {
255 		DP_VERBOSE(p_hwfn,
256 			   QED_MSG_IOV,
257 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
258 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
259 		return false;
260 	}
261 
262 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
263 }
264 
265 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
266 				 struct qed_vf_info *p_vf,
267 				 u16 tx_qid,
268 				 enum qed_iov_validate_q_mode mode)
269 {
270 	if (tx_qid >= p_vf->num_txqs) {
271 		DP_VERBOSE(p_hwfn,
272 			   QED_MSG_IOV,
273 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
274 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
275 		return false;
276 	}
277 
278 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
279 }
280 
281 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
282 				struct qed_vf_info *p_vf, u16 sb_idx)
283 {
284 	int i;
285 
286 	for (i = 0; i < p_vf->num_sbs; i++)
287 		if (p_vf->igu_sbs[i] == sb_idx)
288 			return true;
289 
290 	DP_VERBOSE(p_hwfn,
291 		   QED_MSG_IOV,
292 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
293 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
294 
295 	return false;
296 }
297 
298 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
299 					struct qed_vf_info *p_vf)
300 {
301 	u8 i;
302 
303 	for (i = 0; i < p_vf->num_rxqs; i++)
304 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
305 						QED_IOV_VALIDATE_Q_ENABLE,
306 						false))
307 			return true;
308 
309 	return false;
310 }
311 
312 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
313 					struct qed_vf_info *p_vf)
314 {
315 	u8 i;
316 
317 	for (i = 0; i < p_vf->num_txqs; i++)
318 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
319 						QED_IOV_VALIDATE_Q_ENABLE,
320 						true))
321 			return true;
322 
323 	return false;
324 }
325 
326 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
327 				    int vfid, struct qed_ptt *p_ptt)
328 {
329 	struct qed_bulletin_content *p_bulletin;
330 	int crc_size = sizeof(p_bulletin->crc);
331 	struct qed_dmae_params params;
332 	struct qed_vf_info *p_vf;
333 
334 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
335 	if (!p_vf)
336 		return -EINVAL;
337 
338 	if (!p_vf->vf_bulletin)
339 		return -EINVAL;
340 
341 	p_bulletin = p_vf->bulletin.p_virt;
342 
343 	/* Increment bulletin board version and compute crc */
344 	p_bulletin->version++;
345 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
346 				p_vf->bulletin.size - crc_size);
347 
348 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
349 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
350 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
351 
352 	/* propagate bulletin board via dmae to vm memory */
353 	memset(&params, 0, sizeof(params));
354 	params.flags = QED_DMAE_FLAG_VF_DST;
355 	params.dst_vfid = p_vf->abs_vf_id;
356 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
357 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
358 				  &params);
359 }
360 
361 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
362 {
363 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
364 	int pos = iov->pos;
365 
366 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
367 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
368 
369 	pci_read_config_word(cdev->pdev,
370 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
371 	pci_read_config_word(cdev->pdev,
372 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
373 
374 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
375 	if (iov->num_vfs) {
376 		DP_VERBOSE(cdev,
377 			   QED_MSG_IOV,
378 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
379 		iov->num_vfs = 0;
380 	}
381 
382 	pci_read_config_word(cdev->pdev,
383 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
384 
385 	pci_read_config_word(cdev->pdev,
386 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
387 
388 	pci_read_config_word(cdev->pdev,
389 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
390 
391 	pci_read_config_dword(cdev->pdev,
392 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
393 
394 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
395 
396 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
397 
398 	DP_VERBOSE(cdev,
399 		   QED_MSG_IOV,
400 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
401 		   iov->nres,
402 		   iov->cap,
403 		   iov->ctrl,
404 		   iov->total_vfs,
405 		   iov->initial_vfs,
406 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
407 
408 	/* Some sanity checks */
409 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
410 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
411 		/* This can happen only due to a bug. In this case we set
412 		 * num_vfs to zero to avoid memory corruption in the code that
413 		 * assumes max number of vfs
414 		 */
415 		DP_NOTICE(cdev,
416 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
417 			  iov->num_vfs);
418 
419 		iov->num_vfs = 0;
420 		iov->total_vfs = 0;
421 	}
422 
423 	return 0;
424 }
425 
426 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
427 {
428 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
429 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
430 	struct qed_bulletin_content *p_bulletin_virt;
431 	dma_addr_t req_p, rply_p, bulletin_p;
432 	union pfvf_tlvs *p_reply_virt_addr;
433 	union vfpf_tlvs *p_req_virt_addr;
434 	u8 idx = 0;
435 
436 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
437 
438 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
439 	req_p = p_iov_info->mbx_msg_phys_addr;
440 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
441 	rply_p = p_iov_info->mbx_reply_phys_addr;
442 	p_bulletin_virt = p_iov_info->p_bulletins;
443 	bulletin_p = p_iov_info->bulletins_phys;
444 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
445 		DP_ERR(p_hwfn,
446 		       "qed_iov_setup_vfdb called without allocating mem first\n");
447 		return;
448 	}
449 
450 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
451 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
452 		u32 concrete;
453 
454 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
455 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
456 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
457 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
458 
459 		vf->state = VF_STOPPED;
460 		vf->b_init = false;
461 
462 		vf->bulletin.phys = idx *
463 				    sizeof(struct qed_bulletin_content) +
464 				    bulletin_p;
465 		vf->bulletin.p_virt = p_bulletin_virt + idx;
466 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
467 
468 		vf->relative_vf_id = idx;
469 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
470 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
471 		vf->concrete_fid = concrete;
472 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
473 				 (vf->abs_vf_id << 8);
474 		vf->vport_id = idx + 1;
475 
476 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
477 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
478 	}
479 }
480 
481 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
482 {
483 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
484 	void **p_v_addr;
485 	u16 num_vfs = 0;
486 
487 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
488 
489 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
490 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
491 
492 	/* Allocate PF Mailbox buffer (per-VF) */
493 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
494 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
495 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
496 				       p_iov_info->mbx_msg_size,
497 				       &p_iov_info->mbx_msg_phys_addr,
498 				       GFP_KERNEL);
499 	if (!*p_v_addr)
500 		return -ENOMEM;
501 
502 	/* Allocate PF Mailbox Reply buffer (per-VF) */
503 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
504 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
505 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
506 				       p_iov_info->mbx_reply_size,
507 				       &p_iov_info->mbx_reply_phys_addr,
508 				       GFP_KERNEL);
509 	if (!*p_v_addr)
510 		return -ENOMEM;
511 
512 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
513 				     num_vfs;
514 	p_v_addr = &p_iov_info->p_bulletins;
515 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
516 				       p_iov_info->bulletins_size,
517 				       &p_iov_info->bulletins_phys,
518 				       GFP_KERNEL);
519 	if (!*p_v_addr)
520 		return -ENOMEM;
521 
522 	DP_VERBOSE(p_hwfn,
523 		   QED_MSG_IOV,
524 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
525 		   p_iov_info->mbx_msg_virt_addr,
526 		   (u64) p_iov_info->mbx_msg_phys_addr,
527 		   p_iov_info->mbx_reply_virt_addr,
528 		   (u64) p_iov_info->mbx_reply_phys_addr,
529 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
530 
531 	return 0;
532 }
533 
534 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
535 {
536 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
537 
538 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
539 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
540 				  p_iov_info->mbx_msg_size,
541 				  p_iov_info->mbx_msg_virt_addr,
542 				  p_iov_info->mbx_msg_phys_addr);
543 
544 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
545 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
546 				  p_iov_info->mbx_reply_size,
547 				  p_iov_info->mbx_reply_virt_addr,
548 				  p_iov_info->mbx_reply_phys_addr);
549 
550 	if (p_iov_info->p_bulletins)
551 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
552 				  p_iov_info->bulletins_size,
553 				  p_iov_info->p_bulletins,
554 				  p_iov_info->bulletins_phys);
555 }
556 
557 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
558 {
559 	struct qed_pf_iov *p_sriov;
560 
561 	if (!IS_PF_SRIOV(p_hwfn)) {
562 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
563 			   "No SR-IOV - no need for IOV db\n");
564 		return 0;
565 	}
566 
567 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
568 	if (!p_sriov)
569 		return -ENOMEM;
570 
571 	p_hwfn->pf_iov_info = p_sriov;
572 
573 	qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
574 				  qed_sriov_eqe_event);
575 
576 	return qed_iov_allocate_vfdb(p_hwfn);
577 }
578 
579 void qed_iov_setup(struct qed_hwfn *p_hwfn)
580 {
581 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
582 		return;
583 
584 	qed_iov_setup_vfdb(p_hwfn);
585 }
586 
587 void qed_iov_free(struct qed_hwfn *p_hwfn)
588 {
589 	qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
590 
591 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
592 		qed_iov_free_vfdb(p_hwfn);
593 		kfree(p_hwfn->pf_iov_info);
594 	}
595 }
596 
597 void qed_iov_free_hw_info(struct qed_dev *cdev)
598 {
599 	kfree(cdev->p_iov_info);
600 	cdev->p_iov_info = NULL;
601 }
602 
603 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
604 {
605 	struct qed_dev *cdev = p_hwfn->cdev;
606 	int pos;
607 	int rc;
608 
609 	if (IS_VF(p_hwfn->cdev))
610 		return 0;
611 
612 	/* Learn the PCI configuration */
613 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
614 				      PCI_EXT_CAP_ID_SRIOV);
615 	if (!pos) {
616 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
617 		return 0;
618 	}
619 
620 	/* Allocate a new struct for IOV information */
621 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
622 	if (!cdev->p_iov_info)
623 		return -ENOMEM;
624 
625 	cdev->p_iov_info->pos = pos;
626 
627 	rc = qed_iov_pci_cfg_info(cdev);
628 	if (rc)
629 		return rc;
630 
631 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
632 	 * In case the capability is published but there are no VFs, simply
633 	 * de-allocate the struct.
634 	 */
635 	if (!cdev->p_iov_info->total_vfs) {
636 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
637 			   "IOV capabilities, but no VFs are published\n");
638 		kfree(cdev->p_iov_info);
639 		cdev->p_iov_info = NULL;
640 		return 0;
641 	}
642 
643 	/* First VF index based on offset is tricky:
644 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
645 	 *    provide the number for eng0. 2nd engine Vfs would begin
646 	 *    after the first engine's VFs.
647 	 *  - If !ARI, VFs would start on next device.
648 	 *    so offset - (256 - pf_id) would provide the number.
649 	 * Utilize the fact that (256 - pf_id) is achieved only by later
650 	 * to differentiate between the two.
651 	 */
652 
653 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
654 		u32 first = p_hwfn->cdev->p_iov_info->offset +
655 			    p_hwfn->abs_pf_id - 16;
656 
657 		cdev->p_iov_info->first_vf_in_pf = first;
658 
659 		if (QED_PATH_ID(p_hwfn))
660 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
661 	} else {
662 		u32 first = p_hwfn->cdev->p_iov_info->offset +
663 			    p_hwfn->abs_pf_id - 256;
664 
665 		cdev->p_iov_info->first_vf_in_pf = first;
666 	}
667 
668 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
669 		   "First VF in hwfn 0x%08x\n",
670 		   cdev->p_iov_info->first_vf_in_pf);
671 
672 	return 0;
673 }
674 
675 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
676 			      int vfid, bool b_fail_malicious)
677 {
678 	/* Check PF supports sriov */
679 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
680 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
681 		return false;
682 
683 	/* Check VF validity */
684 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
685 		return false;
686 
687 	return true;
688 }
689 
690 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
691 {
692 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
693 }
694 
695 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
696 				      u16 rel_vf_id, u8 to_disable)
697 {
698 	struct qed_vf_info *vf;
699 	int i;
700 
701 	for_each_hwfn(cdev, i) {
702 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
703 
704 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
705 		if (!vf)
706 			continue;
707 
708 		vf->to_disable = to_disable;
709 	}
710 }
711 
712 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
713 {
714 	u16 i;
715 
716 	if (!IS_QED_SRIOV(cdev))
717 		return;
718 
719 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
720 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
721 }
722 
723 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
724 				       struct qed_ptt *p_ptt, u8 abs_vfid)
725 {
726 	qed_wr(p_hwfn, p_ptt,
727 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
728 	       1 << (abs_vfid & 0x1f));
729 }
730 
731 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
732 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
733 {
734 	int i;
735 
736 	/* Set VF masks and configuration - pretend */
737 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
738 
739 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
740 
741 	/* unpretend */
742 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
743 
744 	/* iterate over all queues, clear sb consumer */
745 	for (i = 0; i < vf->num_sbs; i++)
746 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
747 						vf->igu_sbs[i],
748 						vf->opaque_fid, true);
749 }
750 
751 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
752 				   struct qed_ptt *p_ptt,
753 				   struct qed_vf_info *vf, bool enable)
754 {
755 	u32 igu_vf_conf;
756 
757 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
758 
759 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
760 
761 	if (enable)
762 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
763 	else
764 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
765 
766 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
767 
768 	/* unpretend */
769 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
770 }
771 
772 static int
773 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
774 			      struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
775 {
776 	u8 current_max = 0;
777 	int i;
778 
779 	/* For AH onward, configuration is per-PF. Find maximum of all
780 	 * the currently enabled child VFs, and set the number to be that.
781 	 */
782 	if (!QED_IS_BB(p_hwfn->cdev)) {
783 		qed_for_each_vf(p_hwfn, i) {
784 			struct qed_vf_info *p_vf;
785 
786 			p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
787 			if (!p_vf)
788 				continue;
789 
790 			current_max = max_t(u8, current_max, p_vf->num_sbs);
791 		}
792 	}
793 
794 	if (num_sbs > current_max)
795 		return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
796 					      abs_vf_id, num_sbs);
797 
798 	return 0;
799 }
800 
801 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
802 				    struct qed_ptt *p_ptt,
803 				    struct qed_vf_info *vf)
804 {
805 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
806 	int rc;
807 
808 	/* It's possible VF was previously considered malicious -
809 	 * clear the indication even if we're only going to disable VF.
810 	 */
811 	vf->b_malicious = false;
812 
813 	if (vf->to_disable)
814 		return 0;
815 
816 	DP_VERBOSE(p_hwfn,
817 		   QED_MSG_IOV,
818 		   "Enable internal access for vf %x [abs %x]\n",
819 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
820 
821 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
822 
823 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
824 
825 	rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
826 					   vf->abs_vf_id, vf->num_sbs);
827 	if (rc)
828 		return rc;
829 
830 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
831 
832 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
833 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
834 
835 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
836 		     p_hwfn->hw_info.hw_mode);
837 
838 	/* unpretend */
839 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
840 
841 	vf->state = VF_FREE;
842 
843 	return rc;
844 }
845 
846 /**
847  * @brief qed_iov_config_perm_table - configure the permission
848  *      zone table.
849  *      In E4, queue zone permission table size is 320x9. There
850  *      are 320 VF queues for single engine device (256 for dual
851  *      engine device), and each entry has the following format:
852  *      {Valid, VF[7:0]}
853  * @param p_hwfn
854  * @param p_ptt
855  * @param vf
856  * @param enable
857  */
858 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
859 				      struct qed_ptt *p_ptt,
860 				      struct qed_vf_info *vf, u8 enable)
861 {
862 	u32 reg_addr, val;
863 	u16 qzone_id = 0;
864 	int qid;
865 
866 	for (qid = 0; qid < vf->num_rxqs; qid++) {
867 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
868 				&qzone_id);
869 
870 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
871 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
872 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
873 	}
874 }
875 
876 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
877 				      struct qed_ptt *p_ptt,
878 				      struct qed_vf_info *vf)
879 {
880 	/* Reset vf in IGU - interrupts are still disabled */
881 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
882 
883 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
884 
885 	/* Permission Table */
886 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
887 }
888 
889 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
890 				   struct qed_ptt *p_ptt,
891 				   struct qed_vf_info *vf, u16 num_rx_queues)
892 {
893 	struct qed_igu_block *p_block;
894 	struct cau_sb_entry sb_entry;
895 	int qid = 0;
896 	u32 val = 0;
897 
898 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
899 		num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
900 	p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
901 
902 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
903 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
904 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
905 
906 	for (qid = 0; qid < num_rx_queues; qid++) {
907 		p_block = qed_get_igu_free_sb(p_hwfn, false);
908 		vf->igu_sbs[qid] = p_block->igu_sb_id;
909 		p_block->status &= ~QED_IGU_STATUS_FREE;
910 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
911 
912 		qed_wr(p_hwfn, p_ptt,
913 		       IGU_REG_MAPPING_MEMORY +
914 		       sizeof(u32) * p_block->igu_sb_id, val);
915 
916 		/* Configure igu sb in CAU which were marked valid */
917 		qed_init_cau_sb_entry(p_hwfn, &sb_entry,
918 				      p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
919 		qed_dmae_host2grc(p_hwfn, p_ptt,
920 				  (u64)(uintptr_t)&sb_entry,
921 				  CAU_REG_SB_VAR_MEMORY +
922 				  p_block->igu_sb_id * sizeof(u64), 2, 0);
923 	}
924 
925 	vf->num_sbs = (u8) num_rx_queues;
926 
927 	return vf->num_sbs;
928 }
929 
930 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
931 				    struct qed_ptt *p_ptt,
932 				    struct qed_vf_info *vf)
933 {
934 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
935 	int idx, igu_id;
936 	u32 addr, val;
937 
938 	/* Invalidate igu CAM lines and mark them as free */
939 	for (idx = 0; idx < vf->num_sbs; idx++) {
940 		igu_id = vf->igu_sbs[idx];
941 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
942 
943 		val = qed_rd(p_hwfn, p_ptt, addr);
944 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
945 		qed_wr(p_hwfn, p_ptt, addr, val);
946 
947 		p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
948 		p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
949 	}
950 
951 	vf->num_sbs = 0;
952 }
953 
954 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
955 			     u16 vfid,
956 			     struct qed_mcp_link_params *params,
957 			     struct qed_mcp_link_state *link,
958 			     struct qed_mcp_link_capabilities *p_caps)
959 {
960 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
961 						       vfid,
962 						       false);
963 	struct qed_bulletin_content *p_bulletin;
964 
965 	if (!p_vf)
966 		return;
967 
968 	p_bulletin = p_vf->bulletin.p_virt;
969 	p_bulletin->req_autoneg = params->speed.autoneg;
970 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
971 	p_bulletin->req_forced_speed = params->speed.forced_speed;
972 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
973 	p_bulletin->req_forced_rx = params->pause.forced_rx;
974 	p_bulletin->req_forced_tx = params->pause.forced_tx;
975 	p_bulletin->req_loopback = params->loopback_mode;
976 
977 	p_bulletin->link_up = link->link_up;
978 	p_bulletin->speed = link->speed;
979 	p_bulletin->full_duplex = link->full_duplex;
980 	p_bulletin->autoneg = link->an;
981 	p_bulletin->autoneg_complete = link->an_complete;
982 	p_bulletin->parallel_detection = link->parallel_detection;
983 	p_bulletin->pfc_enabled = link->pfc_enabled;
984 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
985 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
986 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
987 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
988 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
989 
990 	p_bulletin->capability_speed = p_caps->speed_capabilities;
991 }
992 
993 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
994 				  struct qed_ptt *p_ptt,
995 				  struct qed_iov_vf_init_params *p_params)
996 {
997 	struct qed_mcp_link_capabilities link_caps;
998 	struct qed_mcp_link_params link_params;
999 	struct qed_mcp_link_state link_state;
1000 	u8 num_of_vf_avaiable_chains = 0;
1001 	struct qed_vf_info *vf = NULL;
1002 	u16 qid, num_irqs;
1003 	int rc = 0;
1004 	u32 cids;
1005 	u8 i;
1006 
1007 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
1008 	if (!vf) {
1009 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
1010 		return -EINVAL;
1011 	}
1012 
1013 	if (vf->b_init) {
1014 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
1015 			  p_params->rel_vf_id);
1016 		return -EINVAL;
1017 	}
1018 
1019 	/* Perform sanity checking on the requested queue_id */
1020 	for (i = 0; i < p_params->num_queues; i++) {
1021 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1022 		u16 max_vf_qzone = min_vf_qzone +
1023 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1024 
1025 		qid = p_params->req_rx_queue[i];
1026 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
1027 			DP_NOTICE(p_hwfn,
1028 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1029 				  qid,
1030 				  p_params->rel_vf_id,
1031 				  min_vf_qzone, max_vf_qzone);
1032 			return -EINVAL;
1033 		}
1034 
1035 		qid = p_params->req_tx_queue[i];
1036 		if (qid > max_vf_qzone) {
1037 			DP_NOTICE(p_hwfn,
1038 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1039 				  qid, p_params->rel_vf_id, max_vf_qzone);
1040 			return -EINVAL;
1041 		}
1042 
1043 		/* If client *really* wants, Tx qid can be shared with PF */
1044 		if (qid < min_vf_qzone)
1045 			DP_VERBOSE(p_hwfn,
1046 				   QED_MSG_IOV,
1047 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1048 				   p_params->rel_vf_id, qid, i);
1049 	}
1050 
1051 	/* Limit number of queues according to number of CIDs */
1052 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1053 	DP_VERBOSE(p_hwfn,
1054 		   QED_MSG_IOV,
1055 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1056 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1057 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1058 
1059 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1060 							     p_ptt,
1061 							     vf, num_irqs);
1062 	if (!num_of_vf_avaiable_chains) {
1063 		DP_ERR(p_hwfn, "no available igu sbs\n");
1064 		return -ENOMEM;
1065 	}
1066 
1067 	/* Choose queue number and index ranges */
1068 	vf->num_rxqs = num_of_vf_avaiable_chains;
1069 	vf->num_txqs = num_of_vf_avaiable_chains;
1070 
1071 	for (i = 0; i < vf->num_rxqs; i++) {
1072 		struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1073 
1074 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1075 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1076 
1077 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1078 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1079 			   vf->relative_vf_id, i, vf->igu_sbs[i],
1080 			   p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1081 	}
1082 
1083 	/* Update the link configuration in bulletin */
1084 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1085 	       sizeof(link_params));
1086 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1087 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1088 	       sizeof(link_caps));
1089 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1090 			 &link_params, &link_state, &link_caps);
1091 
1092 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1093 	if (!rc) {
1094 		vf->b_init = true;
1095 
1096 		if (IS_LEAD_HWFN(p_hwfn))
1097 			p_hwfn->cdev->p_iov_info->num_vfs++;
1098 	}
1099 
1100 	return rc;
1101 }
1102 
1103 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1104 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1105 {
1106 	struct qed_mcp_link_capabilities caps;
1107 	struct qed_mcp_link_params params;
1108 	struct qed_mcp_link_state link;
1109 	struct qed_vf_info *vf = NULL;
1110 
1111 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1112 	if (!vf) {
1113 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1114 		return -EINVAL;
1115 	}
1116 
1117 	if (vf->bulletin.p_virt)
1118 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1119 
1120 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1121 
1122 	/* Get the link configuration back in bulletin so
1123 	 * that when VFs are re-enabled they get the actual
1124 	 * link configuration.
1125 	 */
1126 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1127 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1128 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1129 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1130 
1131 	/* Forget the VF's acquisition message */
1132 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1133 
1134 	/* disablng interrupts and resetting permission table was done during
1135 	 * vf-close, however, we could get here without going through vf_close
1136 	 */
1137 	/* Disable Interrupts for VF */
1138 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1139 
1140 	/* Reset Permission table */
1141 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1142 
1143 	vf->num_rxqs = 0;
1144 	vf->num_txqs = 0;
1145 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1146 
1147 	if (vf->b_init) {
1148 		vf->b_init = false;
1149 
1150 		if (IS_LEAD_HWFN(p_hwfn))
1151 			p_hwfn->cdev->p_iov_info->num_vfs--;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static bool qed_iov_tlv_supported(u16 tlvtype)
1158 {
1159 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1160 }
1161 
1162 /* place a given tlv on the tlv buffer, continuing current tlv list */
1163 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1164 {
1165 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1166 
1167 	tl->type = type;
1168 	tl->length = length;
1169 
1170 	/* Offset should keep pointing to next TLV (the end of the last) */
1171 	*offset += length;
1172 
1173 	/* Return a pointer to the start of the added tlv */
1174 	return *offset - length;
1175 }
1176 
1177 /* list the types and lengths of the tlvs on the buffer */
1178 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1179 {
1180 	u16 i = 1, total_length = 0;
1181 	struct channel_tlv *tlv;
1182 
1183 	do {
1184 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1185 
1186 		/* output tlv */
1187 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1188 			   "TLV number %d: type %d, length %d\n",
1189 			   i, tlv->type, tlv->length);
1190 
1191 		if (tlv->type == CHANNEL_TLV_LIST_END)
1192 			return;
1193 
1194 		/* Validate entry - protect against malicious VFs */
1195 		if (!tlv->length) {
1196 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1197 			return;
1198 		}
1199 
1200 		total_length += tlv->length;
1201 
1202 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1203 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1204 			return;
1205 		}
1206 
1207 		i++;
1208 	} while (1);
1209 }
1210 
1211 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1212 				  struct qed_ptt *p_ptt,
1213 				  struct qed_vf_info *p_vf,
1214 				  u16 length, u8 status)
1215 {
1216 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1217 	struct qed_dmae_params params;
1218 	u8 eng_vf_id;
1219 
1220 	mbx->reply_virt->default_resp.hdr.status = status;
1221 
1222 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1223 
1224 	eng_vf_id = p_vf->abs_vf_id;
1225 
1226 	memset(&params, 0, sizeof(struct qed_dmae_params));
1227 	params.flags = QED_DMAE_FLAG_VF_DST;
1228 	params.dst_vfid = eng_vf_id;
1229 
1230 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1231 			   mbx->req_virt->first_tlv.reply_address +
1232 			   sizeof(u64),
1233 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1234 			   &params);
1235 
1236 	/* Once PF copies the rc to the VF, the latter can continue
1237 	 * and send an additional message. So we have to make sure the
1238 	 * channel would be re-set to ready prior to that.
1239 	 */
1240 	REG_WR(p_hwfn,
1241 	       GTT_BAR0_MAP_REG_USDM_RAM +
1242 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1243 
1244 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1245 			   mbx->req_virt->first_tlv.reply_address,
1246 			   sizeof(u64) / 4, &params);
1247 }
1248 
1249 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1250 				enum qed_iov_vport_update_flag flag)
1251 {
1252 	switch (flag) {
1253 	case QED_IOV_VP_UPDATE_ACTIVATE:
1254 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1255 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1256 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1257 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1258 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1259 	case QED_IOV_VP_UPDATE_MCAST:
1260 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1261 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1262 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1263 	case QED_IOV_VP_UPDATE_RSS:
1264 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1265 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1266 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1267 	case QED_IOV_VP_UPDATE_SGE_TPA:
1268 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1269 	default:
1270 		return 0;
1271 	}
1272 }
1273 
1274 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1275 					    struct qed_vf_info *p_vf,
1276 					    struct qed_iov_vf_mbx *p_mbx,
1277 					    u8 status,
1278 					    u16 tlvs_mask, u16 tlvs_accepted)
1279 {
1280 	struct pfvf_def_resp_tlv *resp;
1281 	u16 size, total_len, i;
1282 
1283 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1284 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1285 	size = sizeof(struct pfvf_def_resp_tlv);
1286 	total_len = size;
1287 
1288 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1289 
1290 	/* Prepare response for all extended tlvs if they are found by PF */
1291 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1292 		if (!(tlvs_mask & BIT(i)))
1293 			continue;
1294 
1295 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1296 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1297 
1298 		if (tlvs_accepted & BIT(i))
1299 			resp->hdr.status = status;
1300 		else
1301 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1302 
1303 		DP_VERBOSE(p_hwfn,
1304 			   QED_MSG_IOV,
1305 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1306 			   p_vf->relative_vf_id,
1307 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1308 
1309 		total_len += size;
1310 	}
1311 
1312 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1313 		    sizeof(struct channel_list_end_tlv));
1314 
1315 	return total_len;
1316 }
1317 
1318 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1319 				 struct qed_ptt *p_ptt,
1320 				 struct qed_vf_info *vf_info,
1321 				 u16 type, u16 length, u8 status)
1322 {
1323 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1324 
1325 	mbx->offset = (u8 *)mbx->reply_virt;
1326 
1327 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1328 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1329 		    sizeof(struct channel_list_end_tlv));
1330 
1331 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1332 }
1333 
1334 static struct
1335 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1336 					       u16 relative_vf_id,
1337 					       bool b_enabled_only)
1338 {
1339 	struct qed_vf_info *vf = NULL;
1340 
1341 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1342 	if (!vf)
1343 		return NULL;
1344 
1345 	return &vf->p_vf_info;
1346 }
1347 
1348 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1349 {
1350 	struct qed_public_vf_info *vf_info;
1351 
1352 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1353 
1354 	if (!vf_info)
1355 		return;
1356 
1357 	/* Clear the VF mac */
1358 	eth_zero_addr(vf_info->mac);
1359 
1360 	vf_info->rx_accept_mode = 0;
1361 	vf_info->tx_accept_mode = 0;
1362 }
1363 
1364 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1365 			       struct qed_vf_info *p_vf)
1366 {
1367 	u32 i, j;
1368 
1369 	p_vf->vf_bulletin = 0;
1370 	p_vf->vport_instance = 0;
1371 	p_vf->configured_features = 0;
1372 
1373 	/* If VF previously requested less resources, go back to default */
1374 	p_vf->num_rxqs = p_vf->num_sbs;
1375 	p_vf->num_txqs = p_vf->num_sbs;
1376 
1377 	p_vf->num_active_rxqs = 0;
1378 
1379 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1380 		struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1381 
1382 		for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1383 			if (!p_queue->cids[j].p_cid)
1384 				continue;
1385 
1386 			qed_eth_queue_cid_release(p_hwfn,
1387 						  p_queue->cids[j].p_cid);
1388 			p_queue->cids[j].p_cid = NULL;
1389 		}
1390 	}
1391 
1392 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1393 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1394 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1395 }
1396 
1397 /* Returns either 0, or log(size) */
1398 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1399 				  struct qed_ptt *p_ptt)
1400 {
1401 	u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1402 
1403 	if (val)
1404 		return val + 11;
1405 	return 0;
1406 }
1407 
1408 static void
1409 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1410 				 struct qed_ptt *p_ptt,
1411 				 struct qed_vf_info *p_vf,
1412 				 struct vf_pf_resc_request *p_req,
1413 				 struct pf_vf_resc *p_resp)
1414 {
1415 	u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1416 	u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1417 		     qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1418 	u32 bar_size;
1419 
1420 	p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1421 
1422 	/* If VF didn't bother asking for QIDs than don't bother limiting
1423 	 * number of CIDs. The VF doesn't care about the number, and this
1424 	 * has the likely result of causing an additional acquisition.
1425 	 */
1426 	if (!(p_vf->acquire.vfdev_info.capabilities &
1427 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1428 		return;
1429 
1430 	/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1431 	 * that would make sure doorbells for all CIDs fall within the bar.
1432 	 * If it doesn't, make sure regview window is sufficient.
1433 	 */
1434 	if (p_vf->acquire.vfdev_info.capabilities &
1435 	    VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1436 		bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1437 		if (bar_size)
1438 			bar_size = 1 << bar_size;
1439 
1440 		if (p_hwfn->cdev->num_hwfns > 1)
1441 			bar_size /= 2;
1442 	} else {
1443 		bar_size = PXP_VF_BAR0_DQ_LENGTH;
1444 	}
1445 
1446 	if (bar_size / db_size < 256)
1447 		p_resp->num_cids = min_t(u8, p_resp->num_cids,
1448 					 (u8)(bar_size / db_size));
1449 }
1450 
1451 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1452 				      struct qed_ptt *p_ptt,
1453 				      struct qed_vf_info *p_vf,
1454 				      struct vf_pf_resc_request *p_req,
1455 				      struct pf_vf_resc *p_resp)
1456 {
1457 	u8 i;
1458 
1459 	/* Queue related information */
1460 	p_resp->num_rxqs = p_vf->num_rxqs;
1461 	p_resp->num_txqs = p_vf->num_txqs;
1462 	p_resp->num_sbs = p_vf->num_sbs;
1463 
1464 	for (i = 0; i < p_resp->num_sbs; i++) {
1465 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1466 		p_resp->hw_sbs[i].sb_qid = 0;
1467 	}
1468 
1469 	/* These fields are filled for backward compatibility.
1470 	 * Unused by modern vfs.
1471 	 */
1472 	for (i = 0; i < p_resp->num_rxqs; i++) {
1473 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1474 				(u16 *)&p_resp->hw_qid[i]);
1475 		p_resp->cid[i] = i;
1476 	}
1477 
1478 	/* Filter related information */
1479 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1480 					p_req->num_mac_filters);
1481 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1482 					 p_req->num_vlan_filters);
1483 
1484 	qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1485 
1486 	/* This isn't really needed/enforced, but some legacy VFs might depend
1487 	 * on the correct filling of this field.
1488 	 */
1489 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1490 
1491 	/* Validate sufficient resources for VF */
1492 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1493 	    p_resp->num_txqs < p_req->num_txqs ||
1494 	    p_resp->num_sbs < p_req->num_sbs ||
1495 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1496 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1497 	    p_resp->num_mc_filters < p_req->num_mc_filters ||
1498 	    p_resp->num_cids < p_req->num_cids) {
1499 		DP_VERBOSE(p_hwfn,
1500 			   QED_MSG_IOV,
1501 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1502 			   p_vf->abs_vf_id,
1503 			   p_req->num_rxqs,
1504 			   p_resp->num_rxqs,
1505 			   p_req->num_rxqs,
1506 			   p_resp->num_txqs,
1507 			   p_req->num_sbs,
1508 			   p_resp->num_sbs,
1509 			   p_req->num_mac_filters,
1510 			   p_resp->num_mac_filters,
1511 			   p_req->num_vlan_filters,
1512 			   p_resp->num_vlan_filters,
1513 			   p_req->num_mc_filters,
1514 			   p_resp->num_mc_filters,
1515 			   p_req->num_cids, p_resp->num_cids);
1516 
1517 		/* Some legacy OSes are incapable of correctly handling this
1518 		 * failure.
1519 		 */
1520 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1521 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1522 		    (p_vf->acquire.vfdev_info.os_type ==
1523 		     VFPF_ACQUIRE_OS_WINDOWS))
1524 			return PFVF_STATUS_SUCCESS;
1525 
1526 		return PFVF_STATUS_NO_RESOURCE;
1527 	}
1528 
1529 	return PFVF_STATUS_SUCCESS;
1530 }
1531 
1532 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1533 					 struct pfvf_stats_info *p_stats)
1534 {
1535 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1536 				  offsetof(struct mstorm_vf_zone,
1537 					   non_trigger.eth_queue_stat);
1538 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1539 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1540 				  offsetof(struct ustorm_vf_zone,
1541 					   non_trigger.eth_queue_stat);
1542 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1543 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1544 				  offsetof(struct pstorm_vf_zone,
1545 					   non_trigger.eth_queue_stat);
1546 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1547 	p_stats->tstats.address = 0;
1548 	p_stats->tstats.len = 0;
1549 }
1550 
1551 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1552 				   struct qed_ptt *p_ptt,
1553 				   struct qed_vf_info *vf)
1554 {
1555 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1556 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1557 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1558 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1559 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1560 	struct pf_vf_resc *resc = &resp->resc;
1561 	int rc;
1562 
1563 	memset(resp, 0, sizeof(*resp));
1564 
1565 	/* Write the PF version so that VF would know which version
1566 	 * is supported - might be later overriden. This guarantees that
1567 	 * VF could recognize legacy PF based on lack of versions in reply.
1568 	 */
1569 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1570 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1571 
1572 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1573 		DP_VERBOSE(p_hwfn,
1574 			   QED_MSG_IOV,
1575 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1576 			   vf->abs_vf_id, vf->state);
1577 		goto out;
1578 	}
1579 
1580 	/* Validate FW compatibility */
1581 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1582 		if (req->vfdev_info.capabilities &
1583 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1584 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1585 
1586 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1587 				   "VF[%d] is pre-fastpath HSI\n",
1588 				   vf->abs_vf_id);
1589 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1590 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1591 		} else {
1592 			DP_INFO(p_hwfn,
1593 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1594 				vf->abs_vf_id,
1595 				req->vfdev_info.eth_fp_hsi_major,
1596 				req->vfdev_info.eth_fp_hsi_minor,
1597 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1598 
1599 			goto out;
1600 		}
1601 	}
1602 
1603 	/* On 100g PFs, prevent old VFs from loading */
1604 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1605 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1606 		DP_INFO(p_hwfn,
1607 			"VF[%d] is running an old driver that doesn't support 100g\n",
1608 			vf->abs_vf_id);
1609 		goto out;
1610 	}
1611 
1612 	/* Store the acquire message */
1613 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1614 
1615 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1616 
1617 	vf->vf_bulletin = req->bulletin_addr;
1618 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1619 			    vf->bulletin.size : req->bulletin_size;
1620 
1621 	/* fill in pfdev info */
1622 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1623 	pfdev_info->db_size = 0;
1624 	pfdev_info->indices_per_sb = PIS_PER_SB;
1625 
1626 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1627 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1628 	if (p_hwfn->cdev->num_hwfns > 1)
1629 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1630 
1631 	/* Share our ability to use multiple queue-ids only with VFs
1632 	 * that request it.
1633 	 */
1634 	if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1635 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1636 
1637 	/* Share the sizes of the bars with VF */
1638 	resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1639 
1640 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1641 
1642 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1643 
1644 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1645 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1646 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1647 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1648 
1649 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1650 	 * this field.
1651 	 */
1652 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1653 					 req->vfdev_info.eth_fp_hsi_minor);
1654 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1655 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1656 
1657 	pfdev_info->dev_type = p_hwfn->cdev->type;
1658 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1659 
1660 	/* Fill resources available to VF; Make sure there are enough to
1661 	 * satisfy the VF's request.
1662 	 */
1663 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1664 						  &req->resc_request, resc);
1665 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1666 		goto out;
1667 
1668 	/* Start the VF in FW */
1669 	rc = qed_sp_vf_start(p_hwfn, vf);
1670 	if (rc) {
1671 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1672 		vfpf_status = PFVF_STATUS_FAILURE;
1673 		goto out;
1674 	}
1675 
1676 	/* Fill agreed size of bulletin board in response */
1677 	resp->bulletin_size = vf->bulletin.size;
1678 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1679 
1680 	DP_VERBOSE(p_hwfn,
1681 		   QED_MSG_IOV,
1682 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1683 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1684 		   vf->abs_vf_id,
1685 		   resp->pfdev_info.chip_num,
1686 		   resp->pfdev_info.db_size,
1687 		   resp->pfdev_info.indices_per_sb,
1688 		   resp->pfdev_info.capabilities,
1689 		   resc->num_rxqs,
1690 		   resc->num_txqs,
1691 		   resc->num_sbs,
1692 		   resc->num_mac_filters,
1693 		   resc->num_vlan_filters);
1694 	vf->state = VF_ACQUIRED;
1695 
1696 	/* Prepare Response */
1697 out:
1698 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1699 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1700 }
1701 
1702 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1703 				  struct qed_vf_info *p_vf, bool val)
1704 {
1705 	struct qed_sp_vport_update_params params;
1706 	int rc;
1707 
1708 	if (val == p_vf->spoof_chk) {
1709 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1710 			   "Spoofchk value[%d] is already configured\n", val);
1711 		return 0;
1712 	}
1713 
1714 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1715 	params.opaque_fid = p_vf->opaque_fid;
1716 	params.vport_id = p_vf->vport_id;
1717 	params.update_anti_spoofing_en_flg = 1;
1718 	params.anti_spoofing_en = val;
1719 
1720 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1721 	if (!rc) {
1722 		p_vf->spoof_chk = val;
1723 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1724 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1725 			   "Spoofchk val[%d] configured\n", val);
1726 	} else {
1727 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1728 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1729 			   val, p_vf->relative_vf_id);
1730 	}
1731 
1732 	return rc;
1733 }
1734 
1735 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1736 					    struct qed_vf_info *p_vf)
1737 {
1738 	struct qed_filter_ucast filter;
1739 	int rc = 0;
1740 	int i;
1741 
1742 	memset(&filter, 0, sizeof(filter));
1743 	filter.is_rx_filter = 1;
1744 	filter.is_tx_filter = 1;
1745 	filter.vport_to_add_to = p_vf->vport_id;
1746 	filter.opcode = QED_FILTER_ADD;
1747 
1748 	/* Reconfigure vlans */
1749 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1750 		if (!p_vf->shadow_config.vlans[i].used)
1751 			continue;
1752 
1753 		filter.type = QED_FILTER_VLAN;
1754 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1755 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1756 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1757 			   filter.vlan, p_vf->relative_vf_id);
1758 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1759 					     &filter, QED_SPQ_MODE_CB, NULL);
1760 		if (rc) {
1761 			DP_NOTICE(p_hwfn,
1762 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1763 				  filter.vlan, p_vf->relative_vf_id);
1764 			break;
1765 		}
1766 	}
1767 
1768 	return rc;
1769 }
1770 
1771 static int
1772 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1773 				   struct qed_vf_info *p_vf, u64 events)
1774 {
1775 	int rc = 0;
1776 
1777 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1778 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1779 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1780 
1781 	return rc;
1782 }
1783 
1784 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1785 					  struct qed_vf_info *p_vf, u64 events)
1786 {
1787 	int rc = 0;
1788 	struct qed_filter_ucast filter;
1789 
1790 	if (!p_vf->vport_instance)
1791 		return -EINVAL;
1792 
1793 	if (events & BIT(MAC_ADDR_FORCED)) {
1794 		/* Since there's no way [currently] of removing the MAC,
1795 		 * we can always assume this means we need to force it.
1796 		 */
1797 		memset(&filter, 0, sizeof(filter));
1798 		filter.type = QED_FILTER_MAC;
1799 		filter.opcode = QED_FILTER_REPLACE;
1800 		filter.is_rx_filter = 1;
1801 		filter.is_tx_filter = 1;
1802 		filter.vport_to_add_to = p_vf->vport_id;
1803 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1804 
1805 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1806 					     &filter, QED_SPQ_MODE_CB, NULL);
1807 		if (rc) {
1808 			DP_NOTICE(p_hwfn,
1809 				  "PF failed to configure MAC for VF\n");
1810 			return rc;
1811 		}
1812 
1813 		p_vf->configured_features |= 1 << MAC_ADDR_FORCED;
1814 	}
1815 
1816 	if (events & BIT(VLAN_ADDR_FORCED)) {
1817 		struct qed_sp_vport_update_params vport_update;
1818 		u8 removal;
1819 		int i;
1820 
1821 		memset(&filter, 0, sizeof(filter));
1822 		filter.type = QED_FILTER_VLAN;
1823 		filter.is_rx_filter = 1;
1824 		filter.is_tx_filter = 1;
1825 		filter.vport_to_add_to = p_vf->vport_id;
1826 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1827 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1828 					      QED_FILTER_FLUSH;
1829 
1830 		/* Send the ramrod */
1831 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1832 					     &filter, QED_SPQ_MODE_CB, NULL);
1833 		if (rc) {
1834 			DP_NOTICE(p_hwfn,
1835 				  "PF failed to configure VLAN for VF\n");
1836 			return rc;
1837 		}
1838 
1839 		/* Update the default-vlan & silent vlan stripping */
1840 		memset(&vport_update, 0, sizeof(vport_update));
1841 		vport_update.opaque_fid = p_vf->opaque_fid;
1842 		vport_update.vport_id = p_vf->vport_id;
1843 		vport_update.update_default_vlan_enable_flg = 1;
1844 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1845 		vport_update.update_default_vlan_flg = 1;
1846 		vport_update.default_vlan = filter.vlan;
1847 
1848 		vport_update.update_inner_vlan_removal_flg = 1;
1849 		removal = filter.vlan ? 1
1850 				      : p_vf->shadow_config.inner_vlan_removal;
1851 		vport_update.inner_vlan_removal_flg = removal;
1852 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1853 		rc = qed_sp_vport_update(p_hwfn,
1854 					 &vport_update,
1855 					 QED_SPQ_MODE_EBLOCK, NULL);
1856 		if (rc) {
1857 			DP_NOTICE(p_hwfn,
1858 				  "PF failed to configure VF vport for vlan\n");
1859 			return rc;
1860 		}
1861 
1862 		/* Update all the Rx queues */
1863 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1864 			struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1865 			struct qed_queue_cid *p_cid = NULL;
1866 
1867 			/* There can be at most 1 Rx queue on qzone. Find it */
1868 			p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1869 			if (!p_cid)
1870 				continue;
1871 
1872 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1873 							 (void **)&p_cid,
1874 							 1, 0, 1,
1875 							 QED_SPQ_MODE_EBLOCK,
1876 							 NULL);
1877 			if (rc) {
1878 				DP_NOTICE(p_hwfn,
1879 					  "Failed to send Rx update fo queue[0x%04x]\n",
1880 					  p_cid->rel.queue_id);
1881 				return rc;
1882 			}
1883 		}
1884 
1885 		if (filter.vlan)
1886 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1887 		else
1888 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1889 	}
1890 
1891 	/* If forced features are terminated, we need to configure the shadow
1892 	 * configuration back again.
1893 	 */
1894 	if (events)
1895 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1896 
1897 	return rc;
1898 }
1899 
1900 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1901 				       struct qed_ptt *p_ptt,
1902 				       struct qed_vf_info *vf)
1903 {
1904 	struct qed_sp_vport_start_params params = { 0 };
1905 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1906 	struct vfpf_vport_start_tlv *start;
1907 	u8 status = PFVF_STATUS_SUCCESS;
1908 	struct qed_vf_info *vf_info;
1909 	u64 *p_bitmap;
1910 	int sb_id;
1911 	int rc;
1912 
1913 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1914 	if (!vf_info) {
1915 		DP_NOTICE(p_hwfn->cdev,
1916 			  "Failed to get VF info, invalid vfid [%d]\n",
1917 			  vf->relative_vf_id);
1918 		return;
1919 	}
1920 
1921 	vf->state = VF_ENABLED;
1922 	start = &mbx->req_virt->start_vport;
1923 
1924 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1925 
1926 	/* Initialize Status block in CAU */
1927 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1928 		if (!start->sb_addr[sb_id]) {
1929 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1930 				   "VF[%d] did not fill the address of SB %d\n",
1931 				   vf->relative_vf_id, sb_id);
1932 			break;
1933 		}
1934 
1935 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1936 				    start->sb_addr[sb_id],
1937 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1938 	}
1939 
1940 	vf->mtu = start->mtu;
1941 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1942 
1943 	/* Take into consideration configuration forced by hypervisor;
1944 	 * If none is configured, use the supplied VF values [for old
1945 	 * vfs that would still be fine, since they passed '0' as padding].
1946 	 */
1947 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1948 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1949 		u8 vf_req = start->only_untagged;
1950 
1951 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1952 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1953 	}
1954 
1955 	params.tpa_mode = start->tpa_mode;
1956 	params.remove_inner_vlan = start->inner_vlan_removal;
1957 	params.tx_switching = true;
1958 
1959 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1960 	params.drop_ttl0 = false;
1961 	params.concrete_fid = vf->concrete_fid;
1962 	params.opaque_fid = vf->opaque_fid;
1963 	params.vport_id = vf->vport_id;
1964 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1965 	params.mtu = vf->mtu;
1966 	params.check_mac = true;
1967 
1968 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1969 	if (rc) {
1970 		DP_ERR(p_hwfn,
1971 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1972 		status = PFVF_STATUS_FAILURE;
1973 	} else {
1974 		vf->vport_instance++;
1975 
1976 		/* Force configuration if needed on the newly opened vport */
1977 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1978 
1979 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1980 	}
1981 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1982 			     sizeof(struct pfvf_def_resp_tlv), status);
1983 }
1984 
1985 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1986 				      struct qed_ptt *p_ptt,
1987 				      struct qed_vf_info *vf)
1988 {
1989 	u8 status = PFVF_STATUS_SUCCESS;
1990 	int rc;
1991 
1992 	vf->vport_instance--;
1993 	vf->spoof_chk = false;
1994 
1995 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
1996 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
1997 		vf->b_malicious = true;
1998 		DP_NOTICE(p_hwfn,
1999 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
2000 			  vf->abs_vf_id);
2001 		status = PFVF_STATUS_MALICIOUS;
2002 		goto out;
2003 	}
2004 
2005 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
2006 	if (rc) {
2007 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
2008 		       rc);
2009 		status = PFVF_STATUS_FAILURE;
2010 	}
2011 
2012 	/* Forget the configuration on the vport */
2013 	vf->configured_features = 0;
2014 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2015 
2016 out:
2017 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2018 			     sizeof(struct pfvf_def_resp_tlv), status);
2019 }
2020 
2021 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2022 					  struct qed_ptt *p_ptt,
2023 					  struct qed_vf_info *vf,
2024 					  u8 status, bool b_legacy)
2025 {
2026 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2027 	struct pfvf_start_queue_resp_tlv *p_tlv;
2028 	struct vfpf_start_rxq_tlv *req;
2029 	u16 length;
2030 
2031 	mbx->offset = (u8 *)mbx->reply_virt;
2032 
2033 	/* Taking a bigger struct instead of adding a TLV to list was a
2034 	 * mistake, but one which we're now stuck with, as some older
2035 	 * clients assume the size of the previous response.
2036 	 */
2037 	if (!b_legacy)
2038 		length = sizeof(*p_tlv);
2039 	else
2040 		length = sizeof(struct pfvf_def_resp_tlv);
2041 
2042 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2043 			    length);
2044 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2045 		    sizeof(struct channel_list_end_tlv));
2046 
2047 	/* Update the TLV with the response */
2048 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2049 		req = &mbx->req_virt->start_rxq;
2050 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2051 				offsetof(struct mstorm_vf_zone,
2052 					 non_trigger.eth_rx_queue_producers) +
2053 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
2054 	}
2055 
2056 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2057 }
2058 
2059 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2060 			     struct qed_vf_info *p_vf, bool b_is_tx)
2061 {
2062 	struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2063 	struct vfpf_qid_tlv *p_qid_tlv;
2064 
2065 	/* Search for the qid if the VF published its going to provide it */
2066 	if (!(p_vf->acquire.vfdev_info.capabilities &
2067 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2068 		if (b_is_tx)
2069 			return QED_IOV_LEGACY_QID_TX;
2070 		else
2071 			return QED_IOV_LEGACY_QID_RX;
2072 	}
2073 
2074 	p_qid_tlv = (struct vfpf_qid_tlv *)
2075 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2076 					     CHANNEL_TLV_QID);
2077 	if (!p_qid_tlv) {
2078 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2079 			   "VF[%2x]: Failed to provide qid\n",
2080 			   p_vf->relative_vf_id);
2081 
2082 		return QED_IOV_QID_INVALID;
2083 	}
2084 
2085 	if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2086 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2087 			   "VF[%02x]: Provided qid out-of-bounds %02x\n",
2088 			   p_vf->relative_vf_id, p_qid_tlv->qid);
2089 		return QED_IOV_QID_INVALID;
2090 	}
2091 
2092 	return p_qid_tlv->qid;
2093 }
2094 
2095 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2096 				     struct qed_ptt *p_ptt,
2097 				     struct qed_vf_info *vf)
2098 {
2099 	struct qed_queue_start_common_params params;
2100 	struct qed_queue_cid_vf_params vf_params;
2101 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2102 	u8 status = PFVF_STATUS_NO_RESOURCE;
2103 	u8 qid_usage_idx, vf_legacy = 0;
2104 	struct vfpf_start_rxq_tlv *req;
2105 	struct qed_vf_queue *p_queue;
2106 	struct qed_queue_cid *p_cid;
2107 	struct qed_sb_info sb_dummy;
2108 	int rc;
2109 
2110 	req = &mbx->req_virt->start_rxq;
2111 
2112 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2113 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2114 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2115 		goto out;
2116 
2117 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2118 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2119 		goto out;
2120 
2121 	p_queue = &vf->vf_queues[req->rx_qid];
2122 	if (p_queue->cids[qid_usage_idx].p_cid)
2123 		goto out;
2124 
2125 	vf_legacy = qed_vf_calculate_legacy(vf);
2126 
2127 	/* Acquire a new queue-cid */
2128 	memset(&params, 0, sizeof(params));
2129 	params.queue_id = p_queue->fw_rx_qid;
2130 	params.vport_id = vf->vport_id;
2131 	params.stats_id = vf->abs_vf_id + 0x10;
2132 	/* Since IGU index is passed via sb_info, construct a dummy one */
2133 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2134 	sb_dummy.igu_sb_id = req->hw_sb;
2135 	params.p_sb = &sb_dummy;
2136 	params.sb_idx = req->sb_index;
2137 
2138 	memset(&vf_params, 0, sizeof(vf_params));
2139 	vf_params.vfid = vf->relative_vf_id;
2140 	vf_params.vf_qid = (u8)req->rx_qid;
2141 	vf_params.vf_legacy = vf_legacy;
2142 	vf_params.qid_usage_idx = qid_usage_idx;
2143 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2144 				     &params, true, &vf_params);
2145 	if (!p_cid)
2146 		goto out;
2147 
2148 	/* Legacy VFs have their Producers in a different location, which they
2149 	 * calculate on their own and clean the producer prior to this.
2150 	 */
2151 	if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2152 		REG_WR(p_hwfn,
2153 		       GTT_BAR0_MAP_REG_MSDM_RAM +
2154 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2155 		       0);
2156 
2157 	rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2158 				      req->bd_max_bytes,
2159 				      req->rxq_addr,
2160 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2161 	if (rc) {
2162 		status = PFVF_STATUS_FAILURE;
2163 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2164 	} else {
2165 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2166 		p_queue->cids[qid_usage_idx].b_is_tx = false;
2167 		status = PFVF_STATUS_SUCCESS;
2168 		vf->num_active_rxqs++;
2169 	}
2170 
2171 out:
2172 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2173 				      !!(vf_legacy &
2174 					 QED_QCID_LEGACY_VF_RX_PROD));
2175 }
2176 
2177 static void
2178 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2179 			       struct qed_tunnel_info *p_tun,
2180 			       u16 tunn_feature_mask)
2181 {
2182 	p_resp->tunn_feature_mask = tunn_feature_mask;
2183 	p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2184 	p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2185 	p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2186 	p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2187 	p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2188 	p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2189 	p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2190 	p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2191 	p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2192 	p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2193 	p_resp->geneve_udp_port = p_tun->geneve_port.port;
2194 	p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2195 }
2196 
2197 static void
2198 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2199 			      struct qed_tunn_update_type *p_tun,
2200 			      enum qed_tunn_mode mask, u8 tun_cls)
2201 {
2202 	if (p_req->tun_mode_update_mask & BIT(mask)) {
2203 		p_tun->b_update_mode = true;
2204 
2205 		if (p_req->tunn_mode & BIT(mask))
2206 			p_tun->b_mode_enabled = true;
2207 	}
2208 
2209 	p_tun->tun_cls = tun_cls;
2210 }
2211 
2212 static void
2213 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2214 			    struct qed_tunn_update_type *p_tun,
2215 			    struct qed_tunn_update_udp_port *p_port,
2216 			    enum qed_tunn_mode mask,
2217 			    u8 tun_cls, u8 update_port, u16 port)
2218 {
2219 	if (update_port) {
2220 		p_port->b_update_port = true;
2221 		p_port->port = port;
2222 	}
2223 
2224 	__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2225 }
2226 
2227 static bool
2228 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2229 {
2230 	bool b_update_requested = false;
2231 
2232 	if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2233 	    p_req->update_geneve_port || p_req->update_vxlan_port)
2234 		b_update_requested = true;
2235 
2236 	return b_update_requested;
2237 }
2238 
2239 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2240 {
2241 	if (tun->b_update_mode && !tun->b_mode_enabled) {
2242 		tun->b_update_mode = false;
2243 		*rc = -EINVAL;
2244 	}
2245 }
2246 
2247 static int
2248 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2249 				   u16 *tun_features, bool *update,
2250 				   struct qed_tunnel_info *tun_src)
2251 {
2252 	struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2253 	struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2254 	u16 bultn_vxlan_port, bultn_geneve_port;
2255 	void *cookie = p_hwfn->cdev->ops_cookie;
2256 	int i, rc = 0;
2257 
2258 	*tun_features = p_hwfn->cdev->tunn_feature_mask;
2259 	bultn_vxlan_port = tun->vxlan_port.port;
2260 	bultn_geneve_port = tun->geneve_port.port;
2261 	qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2262 	qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2263 	qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2264 	qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2265 	qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2266 
2267 	if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2268 	    (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2269 	     tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2270 	     tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2271 	     tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2272 	     tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2273 		tun_src->b_update_rx_cls = false;
2274 		tun_src->b_update_tx_cls = false;
2275 		rc = -EINVAL;
2276 	}
2277 
2278 	if (tun_src->vxlan_port.b_update_port) {
2279 		if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2280 			tun_src->vxlan_port.b_update_port = false;
2281 		} else {
2282 			*update = true;
2283 			bultn_vxlan_port = tun_src->vxlan_port.port;
2284 		}
2285 	}
2286 
2287 	if (tun_src->geneve_port.b_update_port) {
2288 		if (tun_src->geneve_port.port == tun->geneve_port.port) {
2289 			tun_src->geneve_port.b_update_port = false;
2290 		} else {
2291 			*update = true;
2292 			bultn_geneve_port = tun_src->geneve_port.port;
2293 		}
2294 	}
2295 
2296 	qed_for_each_vf(p_hwfn, i) {
2297 		qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2298 					       bultn_geneve_port);
2299 	}
2300 
2301 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2302 	ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2303 
2304 	return rc;
2305 }
2306 
2307 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2308 					     struct qed_ptt *p_ptt,
2309 					     struct qed_vf_info *p_vf)
2310 {
2311 	struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2312 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2313 	struct pfvf_update_tunn_param_tlv *p_resp;
2314 	struct vfpf_update_tunn_param_tlv *p_req;
2315 	u8 status = PFVF_STATUS_SUCCESS;
2316 	bool b_update_required = false;
2317 	struct qed_tunnel_info tunn;
2318 	u16 tunn_feature_mask = 0;
2319 	int i, rc = 0;
2320 
2321 	mbx->offset = (u8 *)mbx->reply_virt;
2322 
2323 	memset(&tunn, 0, sizeof(tunn));
2324 	p_req = &mbx->req_virt->tunn_param_update;
2325 
2326 	if (!qed_iov_pf_validate_tunn_param(p_req)) {
2327 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2328 			   "No tunnel update requested by VF\n");
2329 		status = PFVF_STATUS_FAILURE;
2330 		goto send_resp;
2331 	}
2332 
2333 	tunn.b_update_rx_cls = p_req->update_tun_cls;
2334 	tunn.b_update_tx_cls = p_req->update_tun_cls;
2335 
2336 	qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2337 				    QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2338 				    p_req->update_vxlan_port,
2339 				    p_req->vxlan_port);
2340 	qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2341 				    QED_MODE_L2GENEVE_TUNN,
2342 				    p_req->l2geneve_clss,
2343 				    p_req->update_geneve_port,
2344 				    p_req->geneve_port);
2345 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2346 				      QED_MODE_IPGENEVE_TUNN,
2347 				      p_req->ipgeneve_clss);
2348 	__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2349 				      QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2350 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2351 				      QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2352 
2353 	/* If PF modifies VF's req then it should
2354 	 * still return an error in case of partial configuration
2355 	 * or modified configuration as opposed to requested one.
2356 	 */
2357 	rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2358 						&b_update_required, &tunn);
2359 
2360 	if (rc)
2361 		status = PFVF_STATUS_FAILURE;
2362 
2363 	/* If QED client is willing to update anything ? */
2364 	if (b_update_required) {
2365 		u16 geneve_port;
2366 
2367 		rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2368 					       QED_SPQ_MODE_EBLOCK, NULL);
2369 		if (rc)
2370 			status = PFVF_STATUS_FAILURE;
2371 
2372 		geneve_port = p_tun->geneve_port.port;
2373 		qed_for_each_vf(p_hwfn, i) {
2374 			qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2375 						       p_tun->vxlan_port.port,
2376 						       geneve_port);
2377 		}
2378 	}
2379 
2380 send_resp:
2381 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2382 			     CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2383 
2384 	qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2385 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2386 		    sizeof(struct channel_list_end_tlv));
2387 
2388 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2389 }
2390 
2391 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2392 					  struct qed_ptt *p_ptt,
2393 					  struct qed_vf_info *p_vf,
2394 					  u32 cid, u8 status)
2395 {
2396 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2397 	struct pfvf_start_queue_resp_tlv *p_tlv;
2398 	bool b_legacy = false;
2399 	u16 length;
2400 
2401 	mbx->offset = (u8 *)mbx->reply_virt;
2402 
2403 	/* Taking a bigger struct instead of adding a TLV to list was a
2404 	 * mistake, but one which we're now stuck with, as some older
2405 	 * clients assume the size of the previous response.
2406 	 */
2407 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2408 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2409 		b_legacy = true;
2410 
2411 	if (!b_legacy)
2412 		length = sizeof(*p_tlv);
2413 	else
2414 		length = sizeof(struct pfvf_def_resp_tlv);
2415 
2416 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2417 			    length);
2418 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2419 		    sizeof(struct channel_list_end_tlv));
2420 
2421 	/* Update the TLV with the response */
2422 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2423 		p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2424 
2425 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2426 }
2427 
2428 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2429 				     struct qed_ptt *p_ptt,
2430 				     struct qed_vf_info *vf)
2431 {
2432 	struct qed_queue_start_common_params params;
2433 	struct qed_queue_cid_vf_params vf_params;
2434 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2435 	u8 status = PFVF_STATUS_NO_RESOURCE;
2436 	struct vfpf_start_txq_tlv *req;
2437 	struct qed_vf_queue *p_queue;
2438 	struct qed_queue_cid *p_cid;
2439 	struct qed_sb_info sb_dummy;
2440 	u8 qid_usage_idx, vf_legacy;
2441 	u32 cid = 0;
2442 	int rc;
2443 	u16 pq;
2444 
2445 	memset(&params, 0, sizeof(params));
2446 	req = &mbx->req_virt->start_txq;
2447 
2448 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2449 				  QED_IOV_VALIDATE_Q_NA) ||
2450 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2451 		goto out;
2452 
2453 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2454 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2455 		goto out;
2456 
2457 	p_queue = &vf->vf_queues[req->tx_qid];
2458 	if (p_queue->cids[qid_usage_idx].p_cid)
2459 		goto out;
2460 
2461 	vf_legacy = qed_vf_calculate_legacy(vf);
2462 
2463 	/* Acquire a new queue-cid */
2464 	params.queue_id = p_queue->fw_tx_qid;
2465 	params.vport_id = vf->vport_id;
2466 	params.stats_id = vf->abs_vf_id + 0x10;
2467 
2468 	/* Since IGU index is passed via sb_info, construct a dummy one */
2469 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2470 	sb_dummy.igu_sb_id = req->hw_sb;
2471 	params.p_sb = &sb_dummy;
2472 	params.sb_idx = req->sb_index;
2473 
2474 	memset(&vf_params, 0, sizeof(vf_params));
2475 	vf_params.vfid = vf->relative_vf_id;
2476 	vf_params.vf_qid = (u8)req->tx_qid;
2477 	vf_params.vf_legacy = vf_legacy;
2478 	vf_params.qid_usage_idx = qid_usage_idx;
2479 
2480 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2481 				     &params, false, &vf_params);
2482 	if (!p_cid)
2483 		goto out;
2484 
2485 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2486 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2487 				      req->pbl_addr, req->pbl_size, pq);
2488 	if (rc) {
2489 		status = PFVF_STATUS_FAILURE;
2490 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2491 	} else {
2492 		status = PFVF_STATUS_SUCCESS;
2493 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2494 		p_queue->cids[qid_usage_idx].b_is_tx = true;
2495 		cid = p_cid->cid;
2496 	}
2497 
2498 out:
2499 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2500 }
2501 
2502 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2503 				struct qed_vf_info *vf,
2504 				u16 rxq_id,
2505 				u8 qid_usage_idx, bool cqe_completion)
2506 {
2507 	struct qed_vf_queue *p_queue;
2508 	int rc = 0;
2509 
2510 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2511 		DP_VERBOSE(p_hwfn,
2512 			   QED_MSG_IOV,
2513 			   "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2514 			   vf->relative_vf_id, rxq_id, qid_usage_idx);
2515 		return -EINVAL;
2516 	}
2517 
2518 	p_queue = &vf->vf_queues[rxq_id];
2519 
2520 	/* We've validated the index and the existence of the active RXQ -
2521 	 * now we need to make sure that it's using the correct qid.
2522 	 */
2523 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2524 	    p_queue->cids[qid_usage_idx].b_is_tx) {
2525 		struct qed_queue_cid *p_cid;
2526 
2527 		p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2528 		DP_VERBOSE(p_hwfn,
2529 			   QED_MSG_IOV,
2530 			   "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2531 			   vf->relative_vf_id,
2532 			   rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2533 		return -EINVAL;
2534 	}
2535 
2536 	/* Now that we know we have a valid Rx-queue - close it */
2537 	rc = qed_eth_rx_queue_stop(p_hwfn,
2538 				   p_queue->cids[qid_usage_idx].p_cid,
2539 				   false, cqe_completion);
2540 	if (rc)
2541 		return rc;
2542 
2543 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2544 	vf->num_active_rxqs--;
2545 
2546 	return 0;
2547 }
2548 
2549 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2550 				struct qed_vf_info *vf,
2551 				u16 txq_id, u8 qid_usage_idx)
2552 {
2553 	struct qed_vf_queue *p_queue;
2554 	int rc = 0;
2555 
2556 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2557 		return -EINVAL;
2558 
2559 	p_queue = &vf->vf_queues[txq_id];
2560 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2561 	    !p_queue->cids[qid_usage_idx].b_is_tx)
2562 		return -EINVAL;
2563 
2564 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2565 	if (rc)
2566 		return rc;
2567 
2568 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2569 	return 0;
2570 }
2571 
2572 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2573 				     struct qed_ptt *p_ptt,
2574 				     struct qed_vf_info *vf)
2575 {
2576 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2577 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2578 	u8 status = PFVF_STATUS_FAILURE;
2579 	struct vfpf_stop_rxqs_tlv *req;
2580 	u8 qid_usage_idx;
2581 	int rc;
2582 
2583 	/* There has never been an official driver that used this interface
2584 	 * for stopping multiple queues, and it is now considered deprecated.
2585 	 * Validate this isn't used here.
2586 	 */
2587 	req = &mbx->req_virt->stop_rxqs;
2588 	if (req->num_rxqs != 1) {
2589 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2590 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2591 			   vf->relative_vf_id);
2592 		status = PFVF_STATUS_NOT_SUPPORTED;
2593 		goto out;
2594 	}
2595 
2596 	/* Find which qid-index is associated with the queue */
2597 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2598 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2599 		goto out;
2600 
2601 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2602 				  qid_usage_idx, req->cqe_completion);
2603 	if (!rc)
2604 		status = PFVF_STATUS_SUCCESS;
2605 out:
2606 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2607 			     length, status);
2608 }
2609 
2610 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2611 				     struct qed_ptt *p_ptt,
2612 				     struct qed_vf_info *vf)
2613 {
2614 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2615 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2616 	u8 status = PFVF_STATUS_FAILURE;
2617 	struct vfpf_stop_txqs_tlv *req;
2618 	u8 qid_usage_idx;
2619 	int rc;
2620 
2621 	/* There has never been an official driver that used this interface
2622 	 * for stopping multiple queues, and it is now considered deprecated.
2623 	 * Validate this isn't used here.
2624 	 */
2625 	req = &mbx->req_virt->stop_txqs;
2626 	if (req->num_txqs != 1) {
2627 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2628 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2629 			   vf->relative_vf_id);
2630 		status = PFVF_STATUS_NOT_SUPPORTED;
2631 		goto out;
2632 	}
2633 
2634 	/* Find which qid-index is associated with the queue */
2635 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2636 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2637 		goto out;
2638 
2639 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2640 	if (!rc)
2641 		status = PFVF_STATUS_SUCCESS;
2642 
2643 out:
2644 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2645 			     length, status);
2646 }
2647 
2648 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2649 				       struct qed_ptt *p_ptt,
2650 				       struct qed_vf_info *vf)
2651 {
2652 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2653 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2654 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2655 	struct vfpf_update_rxq_tlv *req;
2656 	u8 status = PFVF_STATUS_FAILURE;
2657 	u8 complete_event_flg;
2658 	u8 complete_cqe_flg;
2659 	u8 qid_usage_idx;
2660 	int rc;
2661 	u8 i;
2662 
2663 	req = &mbx->req_virt->update_rxq;
2664 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2665 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2666 
2667 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2668 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2669 		goto out;
2670 
2671 	/* There shouldn't exist a VF that uses queue-qids yet uses this
2672 	 * API with multiple Rx queues. Validate this.
2673 	 */
2674 	if ((vf->acquire.vfdev_info.capabilities &
2675 	     VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2676 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2677 			   "VF[%d] supports QIDs but sends multiple queues\n",
2678 			   vf->relative_vf_id);
2679 		goto out;
2680 	}
2681 
2682 	/* Validate inputs - for the legacy case this is still true since
2683 	 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2684 	 */
2685 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2686 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2687 					  QED_IOV_VALIDATE_Q_NA) ||
2688 		    !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2689 		    vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2690 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2691 				   "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2692 				   vf->relative_vf_id, req->rx_qid,
2693 				   req->num_rxqs);
2694 			goto out;
2695 		}
2696 	}
2697 
2698 	/* Prepare the handlers */
2699 	for (i = 0; i < req->num_rxqs; i++) {
2700 		u16 qid = req->rx_qid + i;
2701 
2702 		handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2703 	}
2704 
2705 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2706 					 req->num_rxqs,
2707 					 complete_cqe_flg,
2708 					 complete_event_flg,
2709 					 QED_SPQ_MODE_EBLOCK, NULL);
2710 	if (rc)
2711 		goto out;
2712 
2713 	status = PFVF_STATUS_SUCCESS;
2714 out:
2715 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2716 			     length, status);
2717 }
2718 
2719 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2720 			       void *p_tlvs_list, u16 req_type)
2721 {
2722 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2723 	int len = 0;
2724 
2725 	do {
2726 		if (!p_tlv->length) {
2727 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2728 			return NULL;
2729 		}
2730 
2731 		if (p_tlv->type == req_type) {
2732 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2733 				   "Extended tlv type %d, length %d found\n",
2734 				   p_tlv->type, p_tlv->length);
2735 			return p_tlv;
2736 		}
2737 
2738 		len += p_tlv->length;
2739 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2740 
2741 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2742 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2743 			return NULL;
2744 		}
2745 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2746 
2747 	return NULL;
2748 }
2749 
2750 static void
2751 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2752 			    struct qed_sp_vport_update_params *p_data,
2753 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2754 {
2755 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2756 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2757 
2758 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2759 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2760 	if (!p_act_tlv)
2761 		return;
2762 
2763 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2764 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2765 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2766 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2767 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2768 }
2769 
2770 static void
2771 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2772 			     struct qed_sp_vport_update_params *p_data,
2773 			     struct qed_vf_info *p_vf,
2774 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2775 {
2776 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2777 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2778 
2779 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2780 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2781 	if (!p_vlan_tlv)
2782 		return;
2783 
2784 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2785 
2786 	/* Ignore the VF request if we're forcing a vlan */
2787 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2788 		p_data->update_inner_vlan_removal_flg = 1;
2789 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2790 	}
2791 
2792 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2793 }
2794 
2795 static void
2796 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2797 			    struct qed_sp_vport_update_params *p_data,
2798 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2799 {
2800 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2801 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2802 
2803 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2804 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2805 						   tlv);
2806 	if (!p_tx_switch_tlv)
2807 		return;
2808 
2809 	p_data->update_tx_switching_flg = 1;
2810 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2811 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2812 }
2813 
2814 static void
2815 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2816 				  struct qed_sp_vport_update_params *p_data,
2817 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2818 {
2819 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2820 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2821 
2822 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2823 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2824 	if (!p_mcast_tlv)
2825 		return;
2826 
2827 	p_data->update_approx_mcast_flg = 1;
2828 	memcpy(p_data->bins, p_mcast_tlv->bins,
2829 	       sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2830 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2831 }
2832 
2833 static void
2834 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2835 			      struct qed_sp_vport_update_params *p_data,
2836 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2837 {
2838 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2839 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2840 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2841 
2842 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2843 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2844 	if (!p_accept_tlv)
2845 		return;
2846 
2847 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2848 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2849 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2850 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2851 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2852 }
2853 
2854 static void
2855 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2856 				  struct qed_sp_vport_update_params *p_data,
2857 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2858 {
2859 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2860 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2861 
2862 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2863 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2864 						     tlv);
2865 	if (!p_accept_any_vlan)
2866 		return;
2867 
2868 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2869 	p_data->update_accept_any_vlan_flg =
2870 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2871 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2872 }
2873 
2874 static void
2875 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2876 			    struct qed_vf_info *vf,
2877 			    struct qed_sp_vport_update_params *p_data,
2878 			    struct qed_rss_params *p_rss,
2879 			    struct qed_iov_vf_mbx *p_mbx,
2880 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2881 {
2882 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2883 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2884 	bool b_reject = false;
2885 	u16 table_size;
2886 	u16 i, q_idx;
2887 
2888 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2889 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2890 	if (!p_rss_tlv) {
2891 		p_data->rss_params = NULL;
2892 		return;
2893 	}
2894 
2895 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2896 
2897 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2898 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2899 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2900 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2901 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2902 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2903 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2904 				   VFPF_UPDATE_RSS_KEY_FLAG);
2905 
2906 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2907 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2908 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2909 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2910 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2911 
2912 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2913 			   (1 << p_rss_tlv->rss_table_size_log));
2914 
2915 	for (i = 0; i < table_size; i++) {
2916 		struct qed_queue_cid *p_cid;
2917 
2918 		q_idx = p_rss_tlv->rss_ind_table[i];
2919 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2920 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2921 			DP_VERBOSE(p_hwfn,
2922 				   QED_MSG_IOV,
2923 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2924 				   vf->relative_vf_id, q_idx);
2925 			b_reject = true;
2926 			goto out;
2927 		}
2928 
2929 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2930 		p_rss->rss_ind_table[i] = p_cid;
2931 	}
2932 
2933 	p_data->rss_params = p_rss;
2934 out:
2935 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2936 	if (!b_reject)
2937 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2938 }
2939 
2940 static void
2941 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2942 				struct qed_vf_info *vf,
2943 				struct qed_sp_vport_update_params *p_data,
2944 				struct qed_sge_tpa_params *p_sge_tpa,
2945 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2946 {
2947 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2948 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2949 
2950 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2951 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2952 
2953 	if (!p_sge_tpa_tlv) {
2954 		p_data->sge_tpa_params = NULL;
2955 		return;
2956 	}
2957 
2958 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2959 
2960 	p_sge_tpa->update_tpa_en_flg =
2961 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2962 	p_sge_tpa->update_tpa_param_flg =
2963 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2964 		VFPF_UPDATE_TPA_PARAM_FLAG);
2965 
2966 	p_sge_tpa->tpa_ipv4_en_flg =
2967 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2968 	p_sge_tpa->tpa_ipv6_en_flg =
2969 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2970 	p_sge_tpa->tpa_pkt_split_flg =
2971 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2972 	p_sge_tpa->tpa_hdr_data_split_flg =
2973 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2974 	p_sge_tpa->tpa_gro_consistent_flg =
2975 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2976 
2977 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2978 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2979 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2980 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2981 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2982 
2983 	p_data->sge_tpa_params = p_sge_tpa;
2984 
2985 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2986 }
2987 
2988 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2989 				    u8 vfid,
2990 				    struct qed_sp_vport_update_params *params,
2991 				    u16 *tlvs)
2992 {
2993 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2994 	struct qed_filter_accept_flags *flags = &params->accept_flags;
2995 	struct qed_public_vf_info *vf_info;
2996 
2997 	/* Untrusted VFs can't even be trusted to know that fact.
2998 	 * Simply indicate everything is configured fine, and trace
2999 	 * configuration 'behind their back'.
3000 	 */
3001 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
3002 		return 0;
3003 
3004 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3005 
3006 	if (flags->update_rx_mode_config) {
3007 		vf_info->rx_accept_mode = flags->rx_accept_filter;
3008 		if (!vf_info->is_trusted_configured)
3009 			flags->rx_accept_filter &= ~mask;
3010 	}
3011 
3012 	if (flags->update_tx_mode_config) {
3013 		vf_info->tx_accept_mode = flags->tx_accept_filter;
3014 		if (!vf_info->is_trusted_configured)
3015 			flags->tx_accept_filter &= ~mask;
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3022 					struct qed_ptt *p_ptt,
3023 					struct qed_vf_info *vf)
3024 {
3025 	struct qed_rss_params *p_rss_params = NULL;
3026 	struct qed_sp_vport_update_params params;
3027 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3028 	struct qed_sge_tpa_params sge_tpa_params;
3029 	u16 tlvs_mask = 0, tlvs_accepted = 0;
3030 	u8 status = PFVF_STATUS_SUCCESS;
3031 	u16 length;
3032 	int rc;
3033 
3034 	/* Valiate PF can send such a request */
3035 	if (!vf->vport_instance) {
3036 		DP_VERBOSE(p_hwfn,
3037 			   QED_MSG_IOV,
3038 			   "No VPORT instance available for VF[%d], failing vport update\n",
3039 			   vf->abs_vf_id);
3040 		status = PFVF_STATUS_FAILURE;
3041 		goto out;
3042 	}
3043 	p_rss_params = vzalloc(sizeof(*p_rss_params));
3044 	if (p_rss_params == NULL) {
3045 		status = PFVF_STATUS_FAILURE;
3046 		goto out;
3047 	}
3048 
3049 	memset(&params, 0, sizeof(params));
3050 	params.opaque_fid = vf->opaque_fid;
3051 	params.vport_id = vf->vport_id;
3052 	params.rss_params = NULL;
3053 
3054 	/* Search for extended tlvs list and update values
3055 	 * from VF in struct qed_sp_vport_update_params.
3056 	 */
3057 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3058 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3059 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3060 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3061 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3062 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3063 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3064 					&sge_tpa_params, mbx, &tlvs_mask);
3065 
3066 	tlvs_accepted = tlvs_mask;
3067 
3068 	/* Some of the extended TLVs need to be validated first; In that case,
3069 	 * they can update the mask without updating the accepted [so that
3070 	 * PF could communicate to VF it has rejected request].
3071 	 */
3072 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3073 				    mbx, &tlvs_mask, &tlvs_accepted);
3074 
3075 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3076 				     &params, &tlvs_accepted)) {
3077 		tlvs_accepted = 0;
3078 		status = PFVF_STATUS_NOT_SUPPORTED;
3079 		goto out;
3080 	}
3081 
3082 	if (!tlvs_accepted) {
3083 		if (tlvs_mask)
3084 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3085 				   "Upper-layer prevents VF vport configuration\n");
3086 		else
3087 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3088 				   "No feature tlvs found for vport update\n");
3089 		status = PFVF_STATUS_NOT_SUPPORTED;
3090 		goto out;
3091 	}
3092 
3093 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3094 
3095 	if (rc)
3096 		status = PFVF_STATUS_FAILURE;
3097 
3098 out:
3099 	vfree(p_rss_params);
3100 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3101 						  tlvs_mask, tlvs_accepted);
3102 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3103 }
3104 
3105 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3106 					 struct qed_vf_info *p_vf,
3107 					 struct qed_filter_ucast *p_params)
3108 {
3109 	int i;
3110 
3111 	/* First remove entries and then add new ones */
3112 	if (p_params->opcode == QED_FILTER_REMOVE) {
3113 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3114 			if (p_vf->shadow_config.vlans[i].used &&
3115 			    p_vf->shadow_config.vlans[i].vid ==
3116 			    p_params->vlan) {
3117 				p_vf->shadow_config.vlans[i].used = false;
3118 				break;
3119 			}
3120 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3121 			DP_VERBOSE(p_hwfn,
3122 				   QED_MSG_IOV,
3123 				   "VF [%d] - Tries to remove a non-existing vlan\n",
3124 				   p_vf->relative_vf_id);
3125 			return -EINVAL;
3126 		}
3127 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3128 		   p_params->opcode == QED_FILTER_FLUSH) {
3129 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3130 			p_vf->shadow_config.vlans[i].used = false;
3131 	}
3132 
3133 	/* In forced mode, we're willing to remove entries - but we don't add
3134 	 * new ones.
3135 	 */
3136 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3137 		return 0;
3138 
3139 	if (p_params->opcode == QED_FILTER_ADD ||
3140 	    p_params->opcode == QED_FILTER_REPLACE) {
3141 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3142 			if (p_vf->shadow_config.vlans[i].used)
3143 				continue;
3144 
3145 			p_vf->shadow_config.vlans[i].used = true;
3146 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3147 			break;
3148 		}
3149 
3150 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3151 			DP_VERBOSE(p_hwfn,
3152 				   QED_MSG_IOV,
3153 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
3154 				   p_vf->relative_vf_id,
3155 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3156 			return -EINVAL;
3157 		}
3158 	}
3159 
3160 	return 0;
3161 }
3162 
3163 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3164 					struct qed_vf_info *p_vf,
3165 					struct qed_filter_ucast *p_params)
3166 {
3167 	int i;
3168 
3169 	/* If we're in forced-mode, we don't allow any change */
3170 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3171 		return 0;
3172 
3173 	/* First remove entries and then add new ones */
3174 	if (p_params->opcode == QED_FILTER_REMOVE) {
3175 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3176 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
3177 					     p_params->mac)) {
3178 				eth_zero_addr(p_vf->shadow_config.macs[i]);
3179 				break;
3180 			}
3181 		}
3182 
3183 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3184 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3185 				   "MAC isn't configured\n");
3186 			return -EINVAL;
3187 		}
3188 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3189 		   p_params->opcode == QED_FILTER_FLUSH) {
3190 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3191 			eth_zero_addr(p_vf->shadow_config.macs[i]);
3192 	}
3193 
3194 	/* List the new MAC address */
3195 	if (p_params->opcode != QED_FILTER_ADD &&
3196 	    p_params->opcode != QED_FILTER_REPLACE)
3197 		return 0;
3198 
3199 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3200 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3201 			ether_addr_copy(p_vf->shadow_config.macs[i],
3202 					p_params->mac);
3203 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3204 				   "Added MAC at %d entry in shadow\n", i);
3205 			break;
3206 		}
3207 	}
3208 
3209 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3210 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3211 		return -EINVAL;
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 static int
3218 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3219 				 struct qed_vf_info *p_vf,
3220 				 struct qed_filter_ucast *p_params)
3221 {
3222 	int rc = 0;
3223 
3224 	if (p_params->type == QED_FILTER_MAC) {
3225 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3226 		if (rc)
3227 			return rc;
3228 	}
3229 
3230 	if (p_params->type == QED_FILTER_VLAN)
3231 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3232 
3233 	return rc;
3234 }
3235 
3236 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3237 			     int vfid, struct qed_filter_ucast *params)
3238 {
3239 	struct qed_public_vf_info *vf;
3240 
3241 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3242 	if (!vf)
3243 		return -EINVAL;
3244 
3245 	/* No real decision to make; Store the configured MAC */
3246 	if (params->type == QED_FILTER_MAC ||
3247 	    params->type == QED_FILTER_MAC_VLAN)
3248 		ether_addr_copy(vf->mac, params->mac);
3249 
3250 	return 0;
3251 }
3252 
3253 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3254 					struct qed_ptt *p_ptt,
3255 					struct qed_vf_info *vf)
3256 {
3257 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3258 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3259 	struct vfpf_ucast_filter_tlv *req;
3260 	u8 status = PFVF_STATUS_SUCCESS;
3261 	struct qed_filter_ucast params;
3262 	int rc;
3263 
3264 	/* Prepare the unicast filter params */
3265 	memset(&params, 0, sizeof(struct qed_filter_ucast));
3266 	req = &mbx->req_virt->ucast_filter;
3267 	params.opcode = (enum qed_filter_opcode)req->opcode;
3268 	params.type = (enum qed_filter_ucast_type)req->type;
3269 
3270 	params.is_rx_filter = 1;
3271 	params.is_tx_filter = 1;
3272 	params.vport_to_remove_from = vf->vport_id;
3273 	params.vport_to_add_to = vf->vport_id;
3274 	memcpy(params.mac, req->mac, ETH_ALEN);
3275 	params.vlan = req->vlan;
3276 
3277 	DP_VERBOSE(p_hwfn,
3278 		   QED_MSG_IOV,
3279 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
3280 		   vf->abs_vf_id, params.opcode, params.type,
3281 		   params.is_rx_filter ? "RX" : "",
3282 		   params.is_tx_filter ? "TX" : "",
3283 		   params.vport_to_add_to,
3284 		   params.mac[0], params.mac[1],
3285 		   params.mac[2], params.mac[3],
3286 		   params.mac[4], params.mac[5], params.vlan);
3287 
3288 	if (!vf->vport_instance) {
3289 		DP_VERBOSE(p_hwfn,
3290 			   QED_MSG_IOV,
3291 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3292 			   vf->abs_vf_id);
3293 		status = PFVF_STATUS_FAILURE;
3294 		goto out;
3295 	}
3296 
3297 	/* Update shadow copy of the VF configuration */
3298 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3299 		status = PFVF_STATUS_FAILURE;
3300 		goto out;
3301 	}
3302 
3303 	/* Determine if the unicast filtering is acceptible by PF */
3304 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3305 	    (params.type == QED_FILTER_VLAN ||
3306 	     params.type == QED_FILTER_MAC_VLAN)) {
3307 		/* Once VLAN is forced or PVID is set, do not allow
3308 		 * to add/replace any further VLANs.
3309 		 */
3310 		if (params.opcode == QED_FILTER_ADD ||
3311 		    params.opcode == QED_FILTER_REPLACE)
3312 			status = PFVF_STATUS_FORCED;
3313 		goto out;
3314 	}
3315 
3316 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3317 	    (params.type == QED_FILTER_MAC ||
3318 	     params.type == QED_FILTER_MAC_VLAN)) {
3319 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3320 		    (params.opcode != QED_FILTER_ADD &&
3321 		     params.opcode != QED_FILTER_REPLACE))
3322 			status = PFVF_STATUS_FORCED;
3323 		goto out;
3324 	}
3325 
3326 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3327 	if (rc) {
3328 		status = PFVF_STATUS_FAILURE;
3329 		goto out;
3330 	}
3331 
3332 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3333 				     QED_SPQ_MODE_CB, NULL);
3334 	if (rc)
3335 		status = PFVF_STATUS_FAILURE;
3336 
3337 out:
3338 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3339 			     sizeof(struct pfvf_def_resp_tlv), status);
3340 }
3341 
3342 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3343 				       struct qed_ptt *p_ptt,
3344 				       struct qed_vf_info *vf)
3345 {
3346 	int i;
3347 
3348 	/* Reset the SBs */
3349 	for (i = 0; i < vf->num_sbs; i++)
3350 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3351 						vf->igu_sbs[i],
3352 						vf->opaque_fid, false);
3353 
3354 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3355 			     sizeof(struct pfvf_def_resp_tlv),
3356 			     PFVF_STATUS_SUCCESS);
3357 }
3358 
3359 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3360 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3361 {
3362 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3363 	u8 status = PFVF_STATUS_SUCCESS;
3364 
3365 	/* Disable Interrupts for VF */
3366 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3367 
3368 	/* Reset Permission table */
3369 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3370 
3371 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3372 			     length, status);
3373 }
3374 
3375 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3376 				   struct qed_ptt *p_ptt,
3377 				   struct qed_vf_info *p_vf)
3378 {
3379 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3380 	u8 status = PFVF_STATUS_SUCCESS;
3381 	int rc = 0;
3382 
3383 	qed_iov_vf_cleanup(p_hwfn, p_vf);
3384 
3385 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3386 		/* Stopping the VF */
3387 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3388 				    p_vf->opaque_fid);
3389 
3390 		if (rc) {
3391 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3392 			       rc);
3393 			status = PFVF_STATUS_FAILURE;
3394 		}
3395 
3396 		p_vf->state = VF_STOPPED;
3397 	}
3398 
3399 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3400 			     length, status);
3401 }
3402 
3403 static int
3404 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3405 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3406 {
3407 	int cnt;
3408 	u32 val;
3409 
3410 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
3411 
3412 	for (cnt = 0; cnt < 50; cnt++) {
3413 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3414 		if (!val)
3415 			break;
3416 		msleep(20);
3417 	}
3418 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
3419 
3420 	if (cnt == 50) {
3421 		DP_ERR(p_hwfn,
3422 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3423 		       p_vf->abs_vf_id, val);
3424 		return -EBUSY;
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static int
3431 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3432 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3433 {
3434 	u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS];
3435 	int i, cnt;
3436 
3437 	/* Read initial consumers & producers */
3438 	for (i = 0; i < MAX_NUM_VOQS; i++) {
3439 		u32 prod;
3440 
3441 		cons[i] = qed_rd(p_hwfn, p_ptt,
3442 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3443 				 i * 0x40);
3444 		prod = qed_rd(p_hwfn, p_ptt,
3445 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
3446 			      i * 0x40);
3447 		distance[i] = prod - cons[i];
3448 	}
3449 
3450 	/* Wait for consumers to pass the producers */
3451 	i = 0;
3452 	for (cnt = 0; cnt < 50; cnt++) {
3453 		for (; i < MAX_NUM_VOQS; i++) {
3454 			u32 tmp;
3455 
3456 			tmp = qed_rd(p_hwfn, p_ptt,
3457 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3458 				     i * 0x40);
3459 			if (distance[i] > tmp - cons[i])
3460 				break;
3461 		}
3462 
3463 		if (i == MAX_NUM_VOQS)
3464 			break;
3465 
3466 		msleep(20);
3467 	}
3468 
3469 	if (cnt == 50) {
3470 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3471 		       p_vf->abs_vf_id, i);
3472 		return -EBUSY;
3473 	}
3474 
3475 	return 0;
3476 }
3477 
3478 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3479 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3480 {
3481 	int rc;
3482 
3483 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3484 	if (rc)
3485 		return rc;
3486 
3487 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3488 	if (rc)
3489 		return rc;
3490 
3491 	return 0;
3492 }
3493 
3494 static int
3495 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3496 			       struct qed_ptt *p_ptt,
3497 			       u16 rel_vf_id, u32 *ack_vfs)
3498 {
3499 	struct qed_vf_info *p_vf;
3500 	int rc = 0;
3501 
3502 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3503 	if (!p_vf)
3504 		return 0;
3505 
3506 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3507 	    (1ULL << (rel_vf_id % 64))) {
3508 		u16 vfid = p_vf->abs_vf_id;
3509 
3510 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3511 			   "VF[%d] - Handling FLR\n", vfid);
3512 
3513 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3514 
3515 		/* If VF isn't active, no need for anything but SW */
3516 		if (!p_vf->b_init)
3517 			goto cleanup;
3518 
3519 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3520 		if (rc)
3521 			goto cleanup;
3522 
3523 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3524 		if (rc) {
3525 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3526 			return rc;
3527 		}
3528 
3529 		/* Workaround to make VF-PF channel ready, as FW
3530 		 * doesn't do that as a part of FLR.
3531 		 */
3532 		REG_WR(p_hwfn,
3533 		       GTT_BAR0_MAP_REG_USDM_RAM +
3534 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3535 
3536 		/* VF_STOPPED has to be set only after final cleanup
3537 		 * but prior to re-enabling the VF.
3538 		 */
3539 		p_vf->state = VF_STOPPED;
3540 
3541 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3542 		if (rc) {
3543 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3544 			       vfid);
3545 			return rc;
3546 		}
3547 cleanup:
3548 		/* Mark VF for ack and clean pending state */
3549 		if (p_vf->state == VF_RESET)
3550 			p_vf->state = VF_STOPPED;
3551 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3552 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3553 		    ~(1ULL << (rel_vf_id % 64));
3554 		p_vf->vf_mbx.b_pending_msg = false;
3555 	}
3556 
3557 	return rc;
3558 }
3559 
3560 static int
3561 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3562 {
3563 	u32 ack_vfs[VF_MAX_STATIC / 32];
3564 	int rc = 0;
3565 	u16 i;
3566 
3567 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3568 
3569 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3570 	 * polling due to HW limitations, simply sleep a bit. And since
3571 	 * there's no need to wait per-vf, do it before looping.
3572 	 */
3573 	msleep(100);
3574 
3575 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3576 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3577 
3578 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3579 	return rc;
3580 }
3581 
3582 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3583 {
3584 	bool found = false;
3585 	u16 i;
3586 
3587 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3588 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3589 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3590 			   "[%08x,...,%08x]: %08x\n",
3591 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3592 
3593 	if (!p_hwfn->cdev->p_iov_info) {
3594 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3595 		return false;
3596 	}
3597 
3598 	/* Mark VFs */
3599 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3600 		struct qed_vf_info *p_vf;
3601 		u8 vfid;
3602 
3603 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3604 		if (!p_vf)
3605 			continue;
3606 
3607 		vfid = p_vf->abs_vf_id;
3608 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3609 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3610 			u16 rel_vf_id = p_vf->relative_vf_id;
3611 
3612 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3613 				   "VF[%d] [rel %d] got FLR-ed\n",
3614 				   vfid, rel_vf_id);
3615 
3616 			p_vf->state = VF_RESET;
3617 
3618 			/* No need to lock here, since pending_flr should
3619 			 * only change here and before ACKing MFw. Since
3620 			 * MFW will not trigger an additional attention for
3621 			 * VF flr until ACKs, we're safe.
3622 			 */
3623 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3624 			found = true;
3625 		}
3626 	}
3627 
3628 	return found;
3629 }
3630 
3631 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3632 			     u16 vfid,
3633 			     struct qed_mcp_link_params *p_params,
3634 			     struct qed_mcp_link_state *p_link,
3635 			     struct qed_mcp_link_capabilities *p_caps)
3636 {
3637 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3638 						       vfid,
3639 						       false);
3640 	struct qed_bulletin_content *p_bulletin;
3641 
3642 	if (!p_vf)
3643 		return;
3644 
3645 	p_bulletin = p_vf->bulletin.p_virt;
3646 
3647 	if (p_params)
3648 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3649 	if (p_link)
3650 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3651 	if (p_caps)
3652 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3653 }
3654 
3655 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3656 				    struct qed_ptt *p_ptt, int vfid)
3657 {
3658 	struct qed_iov_vf_mbx *mbx;
3659 	struct qed_vf_info *p_vf;
3660 
3661 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3662 	if (!p_vf)
3663 		return;
3664 
3665 	mbx = &p_vf->vf_mbx;
3666 
3667 	/* qed_iov_process_mbx_request */
3668 	if (!mbx->b_pending_msg) {
3669 		DP_NOTICE(p_hwfn,
3670 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3671 			  p_vf->abs_vf_id);
3672 		return;
3673 	}
3674 	mbx->b_pending_msg = false;
3675 
3676 	mbx->first_tlv = mbx->req_virt->first_tlv;
3677 
3678 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3679 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3680 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3681 
3682 	/* check if tlv type is known */
3683 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3684 	    !p_vf->b_malicious) {
3685 		switch (mbx->first_tlv.tl.type) {
3686 		case CHANNEL_TLV_ACQUIRE:
3687 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3688 			break;
3689 		case CHANNEL_TLV_VPORT_START:
3690 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3691 			break;
3692 		case CHANNEL_TLV_VPORT_TEARDOWN:
3693 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3694 			break;
3695 		case CHANNEL_TLV_START_RXQ:
3696 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3697 			break;
3698 		case CHANNEL_TLV_START_TXQ:
3699 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3700 			break;
3701 		case CHANNEL_TLV_STOP_RXQS:
3702 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3703 			break;
3704 		case CHANNEL_TLV_STOP_TXQS:
3705 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3706 			break;
3707 		case CHANNEL_TLV_UPDATE_RXQ:
3708 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3709 			break;
3710 		case CHANNEL_TLV_VPORT_UPDATE:
3711 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3712 			break;
3713 		case CHANNEL_TLV_UCAST_FILTER:
3714 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3715 			break;
3716 		case CHANNEL_TLV_CLOSE:
3717 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3718 			break;
3719 		case CHANNEL_TLV_INT_CLEANUP:
3720 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3721 			break;
3722 		case CHANNEL_TLV_RELEASE:
3723 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3724 			break;
3725 		case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3726 			qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3727 			break;
3728 		}
3729 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3730 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3731 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3732 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3733 
3734 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3735 				     mbx->first_tlv.tl.type,
3736 				     sizeof(struct pfvf_def_resp_tlv),
3737 				     PFVF_STATUS_MALICIOUS);
3738 	} else {
3739 		/* unknown TLV - this may belong to a VF driver from the future
3740 		 * - a version written after this PF driver was written, which
3741 		 * supports features unknown as of yet. Too bad since we don't
3742 		 * support them. Or this may be because someone wrote a crappy
3743 		 * VF driver and is sending garbage over the channel.
3744 		 */
3745 		DP_NOTICE(p_hwfn,
3746 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3747 			  p_vf->abs_vf_id,
3748 			  mbx->first_tlv.tl.type,
3749 			  mbx->first_tlv.tl.length,
3750 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3751 
3752 		/* Try replying in case reply address matches the acquisition's
3753 		 * posted address.
3754 		 */
3755 		if (p_vf->acquire.first_tlv.reply_address &&
3756 		    (mbx->first_tlv.reply_address ==
3757 		     p_vf->acquire.first_tlv.reply_address)) {
3758 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3759 					     mbx->first_tlv.tl.type,
3760 					     sizeof(struct pfvf_def_resp_tlv),
3761 					     PFVF_STATUS_NOT_SUPPORTED);
3762 		} else {
3763 			DP_VERBOSE(p_hwfn,
3764 				   QED_MSG_IOV,
3765 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3766 				   p_vf->abs_vf_id);
3767 		}
3768 	}
3769 }
3770 
3771 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3772 {
3773 	int i;
3774 
3775 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3776 
3777 	qed_for_each_vf(p_hwfn, i) {
3778 		struct qed_vf_info *p_vf;
3779 
3780 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3781 		if (p_vf->vf_mbx.b_pending_msg)
3782 			events[i / 64] |= 1ULL << (i % 64);
3783 	}
3784 }
3785 
3786 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
3787 						       u16 abs_vfid)
3788 {
3789 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
3790 
3791 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
3792 		DP_VERBOSE(p_hwfn,
3793 			   QED_MSG_IOV,
3794 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
3795 			   abs_vfid);
3796 		return NULL;
3797 	}
3798 
3799 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
3800 }
3801 
3802 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
3803 			      u16 abs_vfid, struct regpair *vf_msg)
3804 {
3805 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
3806 			   abs_vfid);
3807 
3808 	if (!p_vf)
3809 		return 0;
3810 
3811 	/* List the physical address of the request so that handler
3812 	 * could later on copy the message from it.
3813 	 */
3814 	p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
3815 
3816 	/* Mark the event and schedule the workqueue */
3817 	p_vf->vf_mbx.b_pending_msg = true;
3818 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
3819 
3820 	return 0;
3821 }
3822 
3823 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
3824 				     struct malicious_vf_eqe_data *p_data)
3825 {
3826 	struct qed_vf_info *p_vf;
3827 
3828 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
3829 
3830 	if (!p_vf)
3831 		return;
3832 
3833 	if (!p_vf->b_malicious) {
3834 		DP_NOTICE(p_hwfn,
3835 			  "VF [%d] - Malicious behavior [%02x]\n",
3836 			  p_vf->abs_vf_id, p_data->err_id);
3837 
3838 		p_vf->b_malicious = true;
3839 	} else {
3840 		DP_INFO(p_hwfn,
3841 			"VF [%d] - Malicious behavior [%02x]\n",
3842 			p_vf->abs_vf_id, p_data->err_id);
3843 	}
3844 }
3845 
3846 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
3847 			       u8 opcode,
3848 			       __le16 echo,
3849 			       union event_ring_data *data, u8 fw_return_code)
3850 {
3851 	switch (opcode) {
3852 	case COMMON_EVENT_VF_PF_CHANNEL:
3853 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
3854 					  &data->vf_pf_channel.msg_addr);
3855 	case COMMON_EVENT_MALICIOUS_VF:
3856 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
3857 		return 0;
3858 	default:
3859 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
3860 			opcode);
3861 		return -EINVAL;
3862 	}
3863 }
3864 
3865 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
3866 {
3867 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
3868 	u16 i;
3869 
3870 	if (!p_iov)
3871 		goto out;
3872 
3873 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
3874 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
3875 			return i;
3876 
3877 out:
3878 	return MAX_NUM_VFS;
3879 }
3880 
3881 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
3882 			       int vfid)
3883 {
3884 	struct qed_dmae_params params;
3885 	struct qed_vf_info *vf_info;
3886 
3887 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3888 	if (!vf_info)
3889 		return -EINVAL;
3890 
3891 	memset(&params, 0, sizeof(struct qed_dmae_params));
3892 	params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
3893 	params.src_vfid = vf_info->abs_vf_id;
3894 
3895 	if (qed_dmae_host2host(p_hwfn, ptt,
3896 			       vf_info->vf_mbx.pending_req,
3897 			       vf_info->vf_mbx.req_phys,
3898 			       sizeof(union vfpf_tlvs) / 4, &params)) {
3899 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3900 			   "Failed to copy message from VF 0x%02x\n", vfid);
3901 
3902 		return -EIO;
3903 	}
3904 
3905 	return 0;
3906 }
3907 
3908 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
3909 					    u8 *mac, int vfid)
3910 {
3911 	struct qed_vf_info *vf_info;
3912 	u64 feature;
3913 
3914 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3915 	if (!vf_info) {
3916 		DP_NOTICE(p_hwfn->cdev,
3917 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3918 		return;
3919 	}
3920 
3921 	if (vf_info->b_malicious) {
3922 		DP_NOTICE(p_hwfn->cdev,
3923 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
3924 		return;
3925 	}
3926 
3927 	feature = 1 << MAC_ADDR_FORCED;
3928 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
3929 
3930 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
3931 	/* Forced MAC will disable MAC_ADDR */
3932 	vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR);
3933 
3934 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3935 }
3936 
3937 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
3938 					     u16 pvid, int vfid)
3939 {
3940 	struct qed_vf_info *vf_info;
3941 	u64 feature;
3942 
3943 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3944 	if (!vf_info) {
3945 		DP_NOTICE(p_hwfn->cdev,
3946 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3947 		return;
3948 	}
3949 
3950 	if (vf_info->b_malicious) {
3951 		DP_NOTICE(p_hwfn->cdev,
3952 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
3953 		return;
3954 	}
3955 
3956 	feature = 1 << VLAN_ADDR_FORCED;
3957 	vf_info->bulletin.p_virt->pvid = pvid;
3958 	if (pvid)
3959 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
3960 	else
3961 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
3962 
3963 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3964 }
3965 
3966 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
3967 				    int vfid, u16 vxlan_port, u16 geneve_port)
3968 {
3969 	struct qed_vf_info *vf_info;
3970 
3971 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3972 	if (!vf_info) {
3973 		DP_NOTICE(p_hwfn->cdev,
3974 			  "Can not set udp ports, invalid vfid [%d]\n", vfid);
3975 		return;
3976 	}
3977 
3978 	if (vf_info->b_malicious) {
3979 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3980 			   "Can not set udp ports to malicious VF [%d]\n",
3981 			   vfid);
3982 		return;
3983 	}
3984 
3985 	vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
3986 	vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
3987 }
3988 
3989 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
3990 {
3991 	struct qed_vf_info *p_vf_info;
3992 
3993 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3994 	if (!p_vf_info)
3995 		return false;
3996 
3997 	return !!p_vf_info->vport_instance;
3998 }
3999 
4000 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4001 {
4002 	struct qed_vf_info *p_vf_info;
4003 
4004 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4005 	if (!p_vf_info)
4006 		return true;
4007 
4008 	return p_vf_info->state == VF_STOPPED;
4009 }
4010 
4011 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4012 {
4013 	struct qed_vf_info *vf_info;
4014 
4015 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4016 	if (!vf_info)
4017 		return false;
4018 
4019 	return vf_info->spoof_chk;
4020 }
4021 
4022 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4023 {
4024 	struct qed_vf_info *vf;
4025 	int rc = -EINVAL;
4026 
4027 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4028 		DP_NOTICE(p_hwfn,
4029 			  "SR-IOV sanity check failed, can't set spoofchk\n");
4030 		goto out;
4031 	}
4032 
4033 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4034 	if (!vf)
4035 		goto out;
4036 
4037 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4038 		/* After VF VPORT start PF will configure spoof check */
4039 		vf->req_spoofchk_val = val;
4040 		rc = 0;
4041 		goto out;
4042 	}
4043 
4044 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4045 
4046 out:
4047 	return rc;
4048 }
4049 
4050 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4051 					   u16 rel_vf_id)
4052 {
4053 	struct qed_vf_info *p_vf;
4054 
4055 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4056 	if (!p_vf || !p_vf->bulletin.p_virt)
4057 		return NULL;
4058 
4059 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4060 		return NULL;
4061 
4062 	return p_vf->bulletin.p_virt->mac;
4063 }
4064 
4065 static u16
4066 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4067 {
4068 	struct qed_vf_info *p_vf;
4069 
4070 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4071 	if (!p_vf || !p_vf->bulletin.p_virt)
4072 		return 0;
4073 
4074 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4075 		return 0;
4076 
4077 	return p_vf->bulletin.p_virt->pvid;
4078 }
4079 
4080 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4081 				     struct qed_ptt *p_ptt, int vfid, int val)
4082 {
4083 	struct qed_vf_info *vf;
4084 	u8 abs_vp_id = 0;
4085 	int rc;
4086 
4087 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4088 	if (!vf)
4089 		return -EINVAL;
4090 
4091 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4092 	if (rc)
4093 		return rc;
4094 
4095 	return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val);
4096 }
4097 
4098 static int
4099 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4100 {
4101 	struct qed_vf_info *vf;
4102 	u8 vport_id;
4103 	int i;
4104 
4105 	for_each_hwfn(cdev, i) {
4106 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4107 
4108 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4109 			DP_NOTICE(p_hwfn,
4110 				  "SR-IOV sanity check failed, can't set min rate\n");
4111 			return -EINVAL;
4112 		}
4113 	}
4114 
4115 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4116 	vport_id = vf->vport_id;
4117 
4118 	return qed_configure_vport_wfq(cdev, vport_id, rate);
4119 }
4120 
4121 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4122 {
4123 	struct qed_wfq_data *vf_vp_wfq;
4124 	struct qed_vf_info *vf_info;
4125 
4126 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4127 	if (!vf_info)
4128 		return 0;
4129 
4130 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4131 
4132 	if (vf_vp_wfq->configured)
4133 		return vf_vp_wfq->min_speed;
4134 	else
4135 		return 0;
4136 }
4137 
4138 /**
4139  * qed_schedule_iov - schedules IOV task for VF and PF
4140  * @hwfn: hardware function pointer
4141  * @flag: IOV flag for VF/PF
4142  */
4143 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4144 {
4145 	smp_mb__before_atomic();
4146 	set_bit(flag, &hwfn->iov_task_flags);
4147 	smp_mb__after_atomic();
4148 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4149 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4150 }
4151 
4152 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4153 {
4154 	int i;
4155 
4156 	for_each_hwfn(cdev, i)
4157 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
4158 			       &cdev->hwfns[i].iov_task, 0);
4159 }
4160 
4161 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4162 {
4163 	int i, j;
4164 
4165 	for_each_hwfn(cdev, i)
4166 	    if (cdev->hwfns[i].iov_wq)
4167 		flush_workqueue(cdev->hwfns[i].iov_wq);
4168 
4169 	/* Mark VFs for disablement */
4170 	qed_iov_set_vfs_to_disable(cdev, true);
4171 
4172 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4173 		pci_disable_sriov(cdev->pdev);
4174 
4175 	for_each_hwfn(cdev, i) {
4176 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4177 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4178 
4179 		/* Failure to acquire the ptt in 100g creates an odd error
4180 		 * where the first engine has already relased IOV.
4181 		 */
4182 		if (!ptt) {
4183 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4184 			return -EBUSY;
4185 		}
4186 
4187 		/* Clean WFQ db and configure equal weight for all vports */
4188 		qed_clean_wfq_db(hwfn, ptt);
4189 
4190 		qed_for_each_vf(hwfn, j) {
4191 			int k;
4192 
4193 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4194 				continue;
4195 
4196 			/* Wait until VF is disabled before releasing */
4197 			for (k = 0; k < 100; k++) {
4198 				if (!qed_iov_is_vf_stopped(hwfn, j))
4199 					msleep(20);
4200 				else
4201 					break;
4202 			}
4203 
4204 			if (k < 100)
4205 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4206 							  ptt, j);
4207 			else
4208 				DP_ERR(hwfn,
4209 				       "Timeout waiting for VF's FLR to end\n");
4210 		}
4211 
4212 		qed_ptt_release(hwfn, ptt);
4213 	}
4214 
4215 	qed_iov_set_vfs_to_disable(cdev, false);
4216 
4217 	return 0;
4218 }
4219 
4220 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4221 					u16 vfid,
4222 					struct qed_iov_vf_init_params *params)
4223 {
4224 	u16 base, i;
4225 
4226 	/* Since we have an equal resource distribution per-VF, and we assume
4227 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4228 	 * sequentially from there.
4229 	 */
4230 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4231 
4232 	params->rel_vf_id = vfid;
4233 	for (i = 0; i < params->num_queues; i++) {
4234 		params->req_rx_queue[i] = base + i;
4235 		params->req_tx_queue[i] = base + i;
4236 	}
4237 }
4238 
4239 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4240 {
4241 	struct qed_iov_vf_init_params params;
4242 	int i, j, rc;
4243 
4244 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4245 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
4246 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4247 		return -EINVAL;
4248 	}
4249 
4250 	memset(&params, 0, sizeof(params));
4251 
4252 	/* Initialize HW for VF access */
4253 	for_each_hwfn(cdev, j) {
4254 		struct qed_hwfn *hwfn = &cdev->hwfns[j];
4255 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4256 
4257 		/* Make sure not to use more than 16 queues per VF */
4258 		params.num_queues = min_t(int,
4259 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4260 					  16);
4261 
4262 		if (!ptt) {
4263 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4264 			rc = -EBUSY;
4265 			goto err;
4266 		}
4267 
4268 		for (i = 0; i < num; i++) {
4269 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4270 				continue;
4271 
4272 			qed_sriov_enable_qid_config(hwfn, i, &params);
4273 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4274 			if (rc) {
4275 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4276 				qed_ptt_release(hwfn, ptt);
4277 				goto err;
4278 			}
4279 		}
4280 
4281 		qed_ptt_release(hwfn, ptt);
4282 	}
4283 
4284 	/* Enable SRIOV PCIe functions */
4285 	rc = pci_enable_sriov(cdev->pdev, num);
4286 	if (rc) {
4287 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4288 		goto err;
4289 	}
4290 
4291 	return num;
4292 
4293 err:
4294 	qed_sriov_disable(cdev, false);
4295 	return rc;
4296 }
4297 
4298 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4299 {
4300 	if (!IS_QED_SRIOV(cdev)) {
4301 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4302 		return -EOPNOTSUPP;
4303 	}
4304 
4305 	if (num_vfs_param)
4306 		return qed_sriov_enable(cdev, num_vfs_param);
4307 	else
4308 		return qed_sriov_disable(cdev, true);
4309 }
4310 
4311 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4312 {
4313 	int i;
4314 
4315 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4316 		DP_VERBOSE(cdev, QED_MSG_IOV,
4317 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4318 		return -EINVAL;
4319 	}
4320 
4321 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4322 		DP_VERBOSE(cdev, QED_MSG_IOV,
4323 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4324 		return -EINVAL;
4325 	}
4326 
4327 	for_each_hwfn(cdev, i) {
4328 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4329 		struct qed_public_vf_info *vf_info;
4330 
4331 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4332 		if (!vf_info)
4333 			continue;
4334 
4335 		/* Set the forced MAC, and schedule the IOV task */
4336 		ether_addr_copy(vf_info->forced_mac, mac);
4337 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4338 	}
4339 
4340 	return 0;
4341 }
4342 
4343 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4344 {
4345 	int i;
4346 
4347 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4348 		DP_VERBOSE(cdev, QED_MSG_IOV,
4349 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4350 		return -EINVAL;
4351 	}
4352 
4353 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4354 		DP_VERBOSE(cdev, QED_MSG_IOV,
4355 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4356 		return -EINVAL;
4357 	}
4358 
4359 	for_each_hwfn(cdev, i) {
4360 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4361 		struct qed_public_vf_info *vf_info;
4362 
4363 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4364 		if (!vf_info)
4365 			continue;
4366 
4367 		/* Set the forced vlan, and schedule the IOV task */
4368 		vf_info->forced_vlan = vid;
4369 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4370 	}
4371 
4372 	return 0;
4373 }
4374 
4375 static int qed_get_vf_config(struct qed_dev *cdev,
4376 			     int vf_id, struct ifla_vf_info *ivi)
4377 {
4378 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4379 	struct qed_public_vf_info *vf_info;
4380 	struct qed_mcp_link_state link;
4381 	u32 tx_rate;
4382 
4383 	/* Sanitize request */
4384 	if (IS_VF(cdev))
4385 		return -EINVAL;
4386 
4387 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4388 		DP_VERBOSE(cdev, QED_MSG_IOV,
4389 			   "VF index [%d] isn't active\n", vf_id);
4390 		return -EINVAL;
4391 	}
4392 
4393 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4394 
4395 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4396 
4397 	/* Fill information about VF */
4398 	ivi->vf = vf_id;
4399 
4400 	if (is_valid_ether_addr(vf_info->forced_mac))
4401 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
4402 	else
4403 		ether_addr_copy(ivi->mac, vf_info->mac);
4404 
4405 	ivi->vlan = vf_info->forced_vlan;
4406 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4407 	ivi->linkstate = vf_info->link_state;
4408 	tx_rate = vf_info->tx_rate;
4409 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4410 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4411 
4412 	return 0;
4413 }
4414 
4415 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4416 {
4417 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4418 	struct qed_mcp_link_capabilities caps;
4419 	struct qed_mcp_link_params params;
4420 	struct qed_mcp_link_state link;
4421 	int i;
4422 
4423 	if (!hwfn->pf_iov_info)
4424 		return;
4425 
4426 	/* Update bulletin of all future possible VFs with link configuration */
4427 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4428 		struct qed_public_vf_info *vf_info;
4429 
4430 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4431 		if (!vf_info)
4432 			continue;
4433 
4434 		/* Only hwfn0 is actually interested in the link speed.
4435 		 * But since only it would receive an MFW indication of link,
4436 		 * need to take configuration from it - otherwise things like
4437 		 * rate limiting for hwfn1 VF would not work.
4438 		 */
4439 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4440 		       sizeof(params));
4441 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4442 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4443 		       sizeof(caps));
4444 
4445 		/* Modify link according to the VF's configured link state */
4446 		switch (vf_info->link_state) {
4447 		case IFLA_VF_LINK_STATE_DISABLE:
4448 			link.link_up = false;
4449 			break;
4450 		case IFLA_VF_LINK_STATE_ENABLE:
4451 			link.link_up = true;
4452 			/* Set speed according to maximum supported by HW.
4453 			 * that is 40G for regular devices and 100G for CMT
4454 			 * mode devices.
4455 			 */
4456 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
4457 				     100000 : 40000;
4458 		default:
4459 			/* In auto mode pass PF link image to VF */
4460 			break;
4461 		}
4462 
4463 		if (link.link_up && vf_info->tx_rate) {
4464 			struct qed_ptt *ptt;
4465 			int rate;
4466 
4467 			rate = min_t(int, vf_info->tx_rate, link.speed);
4468 
4469 			ptt = qed_ptt_acquire(hwfn);
4470 			if (!ptt) {
4471 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4472 				return;
4473 			}
4474 
4475 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4476 				vf_info->tx_rate = rate;
4477 				link.speed = rate;
4478 			}
4479 
4480 			qed_ptt_release(hwfn, ptt);
4481 		}
4482 
4483 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4484 	}
4485 
4486 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4487 }
4488 
4489 static int qed_set_vf_link_state(struct qed_dev *cdev,
4490 				 int vf_id, int link_state)
4491 {
4492 	int i;
4493 
4494 	/* Sanitize request */
4495 	if (IS_VF(cdev))
4496 		return -EINVAL;
4497 
4498 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4499 		DP_VERBOSE(cdev, QED_MSG_IOV,
4500 			   "VF index [%d] isn't active\n", vf_id);
4501 		return -EINVAL;
4502 	}
4503 
4504 	/* Handle configuration of link state */
4505 	for_each_hwfn(cdev, i) {
4506 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4507 		struct qed_public_vf_info *vf;
4508 
4509 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4510 		if (!vf)
4511 			continue;
4512 
4513 		if (vf->link_state == link_state)
4514 			continue;
4515 
4516 		vf->link_state = link_state;
4517 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4524 {
4525 	int i, rc = -EINVAL;
4526 
4527 	for_each_hwfn(cdev, i) {
4528 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4529 
4530 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4531 		if (rc)
4532 			break;
4533 	}
4534 
4535 	return rc;
4536 }
4537 
4538 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4539 {
4540 	int i;
4541 
4542 	for_each_hwfn(cdev, i) {
4543 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4544 		struct qed_public_vf_info *vf;
4545 
4546 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4547 			DP_NOTICE(p_hwfn,
4548 				  "SR-IOV sanity check failed, can't set tx rate\n");
4549 			return -EINVAL;
4550 		}
4551 
4552 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4553 
4554 		vf->tx_rate = rate;
4555 
4556 		qed_inform_vf_link_state(p_hwfn);
4557 	}
4558 
4559 	return 0;
4560 }
4561 
4562 static int qed_set_vf_rate(struct qed_dev *cdev,
4563 			   int vfid, u32 min_rate, u32 max_rate)
4564 {
4565 	int rc_min = 0, rc_max = 0;
4566 
4567 	if (max_rate)
4568 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4569 
4570 	if (min_rate)
4571 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4572 
4573 	if (rc_max | rc_min)
4574 		return -EINVAL;
4575 
4576 	return 0;
4577 }
4578 
4579 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4580 {
4581 	int i;
4582 
4583 	for_each_hwfn(cdev, i) {
4584 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4585 		struct qed_public_vf_info *vf;
4586 
4587 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4588 			DP_NOTICE(hwfn,
4589 				  "SR-IOV sanity check failed, can't set trust\n");
4590 			return -EINVAL;
4591 		}
4592 
4593 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4594 
4595 		if (vf->is_trusted_request == trust)
4596 			return 0;
4597 		vf->is_trusted_request = trust;
4598 
4599 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4600 	}
4601 
4602 	return 0;
4603 }
4604 
4605 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4606 {
4607 	u64 events[QED_VF_ARRAY_LENGTH];
4608 	struct qed_ptt *ptt;
4609 	int i;
4610 
4611 	ptt = qed_ptt_acquire(hwfn);
4612 	if (!ptt) {
4613 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4614 			   "Can't acquire PTT; re-scheduling\n");
4615 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4616 		return;
4617 	}
4618 
4619 	qed_iov_pf_get_pending_events(hwfn, events);
4620 
4621 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4622 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4623 		   events[0], events[1], events[2]);
4624 
4625 	qed_for_each_vf(hwfn, i) {
4626 		/* Skip VFs with no pending messages */
4627 		if (!(events[i / 64] & (1ULL << (i % 64))))
4628 			continue;
4629 
4630 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4631 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4632 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4633 
4634 		/* Copy VF's message to PF's request buffer for that VF */
4635 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4636 			continue;
4637 
4638 		qed_iov_process_mbx_req(hwfn, ptt, i);
4639 	}
4640 
4641 	qed_ptt_release(hwfn, ptt);
4642 }
4643 
4644 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4645 {
4646 	int i;
4647 
4648 	qed_for_each_vf(hwfn, i) {
4649 		struct qed_public_vf_info *info;
4650 		bool update = false;
4651 		u8 *mac;
4652 
4653 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4654 		if (!info)
4655 			continue;
4656 
4657 		/* Update data on bulletin board */
4658 		mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4659 		if (is_valid_ether_addr(info->forced_mac) &&
4660 		    (!mac || !ether_addr_equal(mac, info->forced_mac))) {
4661 			DP_VERBOSE(hwfn,
4662 				   QED_MSG_IOV,
4663 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4664 				   i,
4665 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4666 
4667 			/* Update bulletin board with forced MAC */
4668 			qed_iov_bulletin_set_forced_mac(hwfn,
4669 							info->forced_mac, i);
4670 			update = true;
4671 		}
4672 
4673 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
4674 		    info->forced_vlan) {
4675 			DP_VERBOSE(hwfn,
4676 				   QED_MSG_IOV,
4677 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
4678 				   info->forced_vlan,
4679 				   i,
4680 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4681 			qed_iov_bulletin_set_forced_vlan(hwfn,
4682 							 info->forced_vlan, i);
4683 			update = true;
4684 		}
4685 
4686 		if (update)
4687 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4688 	}
4689 }
4690 
4691 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
4692 {
4693 	struct qed_ptt *ptt;
4694 	int i;
4695 
4696 	ptt = qed_ptt_acquire(hwfn);
4697 	if (!ptt) {
4698 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
4699 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4700 		return;
4701 	}
4702 
4703 	qed_for_each_vf(hwfn, i)
4704 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
4705 
4706 	qed_ptt_release(hwfn, ptt);
4707 }
4708 
4709 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
4710 {
4711 	struct qed_sp_vport_update_params params;
4712 	struct qed_filter_accept_flags *flags;
4713 	struct qed_public_vf_info *vf_info;
4714 	struct qed_vf_info *vf;
4715 	u8 mask;
4716 	int i;
4717 
4718 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
4719 	flags = &params.accept_flags;
4720 
4721 	qed_for_each_vf(hwfn, i) {
4722 		/* Need to make sure current requested configuration didn't
4723 		 * flip so that we'll end up configuring something that's not
4724 		 * needed.
4725 		 */
4726 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
4727 		if (vf_info->is_trusted_configured ==
4728 		    vf_info->is_trusted_request)
4729 			continue;
4730 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
4731 
4732 		/* Validate that the VF has a configured vport */
4733 		vf = qed_iov_get_vf_info(hwfn, i, true);
4734 		if (!vf->vport_instance)
4735 			continue;
4736 
4737 		memset(&params, 0, sizeof(params));
4738 		params.opaque_fid = vf->opaque_fid;
4739 		params.vport_id = vf->vport_id;
4740 
4741 		if (vf_info->rx_accept_mode & mask) {
4742 			flags->update_rx_mode_config = 1;
4743 			flags->rx_accept_filter = vf_info->rx_accept_mode;
4744 		}
4745 
4746 		if (vf_info->tx_accept_mode & mask) {
4747 			flags->update_tx_mode_config = 1;
4748 			flags->tx_accept_filter = vf_info->tx_accept_mode;
4749 		}
4750 
4751 		/* Remove if needed; Otherwise this would set the mask */
4752 		if (!vf_info->is_trusted_configured) {
4753 			flags->rx_accept_filter &= ~mask;
4754 			flags->tx_accept_filter &= ~mask;
4755 		}
4756 
4757 		if (flags->update_rx_mode_config ||
4758 		    flags->update_tx_mode_config)
4759 			qed_sp_vport_update(hwfn, &params,
4760 					    QED_SPQ_MODE_EBLOCK, NULL);
4761 	}
4762 }
4763 
4764 static void qed_iov_pf_task(struct work_struct *work)
4765 
4766 {
4767 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
4768 					     iov_task.work);
4769 	int rc;
4770 
4771 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
4772 		return;
4773 
4774 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
4775 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4776 
4777 		if (!ptt) {
4778 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4779 			return;
4780 		}
4781 
4782 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
4783 		if (rc)
4784 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4785 
4786 		qed_ptt_release(hwfn, ptt);
4787 	}
4788 
4789 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
4790 		qed_handle_vf_msg(hwfn);
4791 
4792 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
4793 			       &hwfn->iov_task_flags))
4794 		qed_handle_pf_set_vf_unicast(hwfn);
4795 
4796 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
4797 			       &hwfn->iov_task_flags))
4798 		qed_handle_bulletin_post(hwfn);
4799 
4800 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
4801 		qed_iov_handle_trust_change(hwfn);
4802 }
4803 
4804 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
4805 {
4806 	int i;
4807 
4808 	for_each_hwfn(cdev, i) {
4809 		if (!cdev->hwfns[i].iov_wq)
4810 			continue;
4811 
4812 		if (schedule_first) {
4813 			qed_schedule_iov(&cdev->hwfns[i],
4814 					 QED_IOV_WQ_STOP_WQ_FLAG);
4815 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
4816 		}
4817 
4818 		flush_workqueue(cdev->hwfns[i].iov_wq);
4819 		destroy_workqueue(cdev->hwfns[i].iov_wq);
4820 	}
4821 }
4822 
4823 int qed_iov_wq_start(struct qed_dev *cdev)
4824 {
4825 	char name[NAME_SIZE];
4826 	int i;
4827 
4828 	for_each_hwfn(cdev, i) {
4829 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4830 
4831 		/* PFs needs a dedicated workqueue only if they support IOV.
4832 		 * VFs always require one.
4833 		 */
4834 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
4835 			continue;
4836 
4837 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
4838 			 cdev->pdev->bus->number,
4839 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
4840 
4841 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
4842 		if (!p_hwfn->iov_wq) {
4843 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
4844 			return -ENOMEM;
4845 		}
4846 
4847 		if (IS_PF(cdev))
4848 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
4849 		else
4850 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
4851 	}
4852 
4853 	return 0;
4854 }
4855 
4856 const struct qed_iov_hv_ops qed_iov_ops_pass = {
4857 	.configure = &qed_sriov_configure,
4858 	.set_mac = &qed_sriov_pf_set_mac,
4859 	.set_vlan = &qed_sriov_pf_set_vlan,
4860 	.get_config = &qed_get_vf_config,
4861 	.set_link_state = &qed_set_vf_link_state,
4862 	.set_spoof = &qed_spoof_configure,
4863 	.set_rate = &qed_set_vf_rate,
4864 	.set_trust = &qed_set_vf_trust,
4865 };
4866