xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
48 			       u8 opcode,
49 			       __le16 echo,
50 			       union event_ring_data *data, u8 fw_return_code);
51 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
52 
53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
54 {
55 	u8 legacy = 0;
56 
57 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
58 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
59 		legacy |= QED_QCID_LEGACY_VF_RX_PROD;
60 
61 	if (!(p_vf->acquire.vfdev_info.capabilities &
62 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
63 		legacy |= QED_QCID_LEGACY_VF_CID;
64 
65 	return legacy;
66 }
67 
68 /* IOV ramrods */
69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
70 {
71 	struct vf_start_ramrod_data *p_ramrod = NULL;
72 	struct qed_spq_entry *p_ent = NULL;
73 	struct qed_sp_init_data init_data;
74 	int rc = -EINVAL;
75 	u8 fp_minor;
76 
77 	/* Get SPQ entry */
78 	memset(&init_data, 0, sizeof(init_data));
79 	init_data.cid = qed_spq_get_cid(p_hwfn);
80 	init_data.opaque_fid = p_vf->opaque_fid;
81 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
82 
83 	rc = qed_sp_init_request(p_hwfn, &p_ent,
84 				 COMMON_RAMROD_VF_START,
85 				 PROTOCOLID_COMMON, &init_data);
86 	if (rc)
87 		return rc;
88 
89 	p_ramrod = &p_ent->ramrod.vf_start;
90 
91 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
92 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
93 
94 	switch (p_hwfn->hw_info.personality) {
95 	case QED_PCI_ETH:
96 		p_ramrod->personality = PERSONALITY_ETH;
97 		break;
98 	case QED_PCI_ETH_ROCE:
99 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
100 		break;
101 	default:
102 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
103 			  p_hwfn->hw_info.personality);
104 		return -EINVAL;
105 	}
106 
107 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
108 	if (fp_minor > ETH_HSI_VER_MINOR &&
109 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
110 		DP_VERBOSE(p_hwfn,
111 			   QED_MSG_IOV,
112 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
113 			   p_vf->abs_vf_id,
114 			   ETH_HSI_VER_MAJOR,
115 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
116 		fp_minor = ETH_HSI_VER_MINOR;
117 	}
118 
119 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
120 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
121 
122 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
123 		   "VF[%d] - Starting using HSI %02x.%02x\n",
124 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
125 
126 	return qed_spq_post(p_hwfn, p_ent, NULL);
127 }
128 
129 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
130 			  u32 concrete_vfid, u16 opaque_vfid)
131 {
132 	struct vf_stop_ramrod_data *p_ramrod = NULL;
133 	struct qed_spq_entry *p_ent = NULL;
134 	struct qed_sp_init_data init_data;
135 	int rc = -EINVAL;
136 
137 	/* Get SPQ entry */
138 	memset(&init_data, 0, sizeof(init_data));
139 	init_data.cid = qed_spq_get_cid(p_hwfn);
140 	init_data.opaque_fid = opaque_vfid;
141 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
142 
143 	rc = qed_sp_init_request(p_hwfn, &p_ent,
144 				 COMMON_RAMROD_VF_STOP,
145 				 PROTOCOLID_COMMON, &init_data);
146 	if (rc)
147 		return rc;
148 
149 	p_ramrod = &p_ent->ramrod.vf_stop;
150 
151 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
152 
153 	return qed_spq_post(p_hwfn, p_ent, NULL);
154 }
155 
156 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
157 			   int rel_vf_id,
158 			   bool b_enabled_only, bool b_non_malicious)
159 {
160 	if (!p_hwfn->pf_iov_info) {
161 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
162 		return false;
163 	}
164 
165 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
166 	    (rel_vf_id < 0))
167 		return false;
168 
169 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
170 	    b_enabled_only)
171 		return false;
172 
173 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
174 	    b_non_malicious)
175 		return false;
176 
177 	return true;
178 }
179 
180 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
181 					       u16 relative_vf_id,
182 					       bool b_enabled_only)
183 {
184 	struct qed_vf_info *vf = NULL;
185 
186 	if (!p_hwfn->pf_iov_info) {
187 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
188 		return NULL;
189 	}
190 
191 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
192 				  b_enabled_only, false))
193 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
194 	else
195 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
196 		       relative_vf_id);
197 
198 	return vf;
199 }
200 
201 static struct qed_queue_cid *
202 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
203 {
204 	int i;
205 
206 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
207 		if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
208 			return p_queue->cids[i].p_cid;
209 	}
210 
211 	return NULL;
212 }
213 
214 enum qed_iov_validate_q_mode {
215 	QED_IOV_VALIDATE_Q_NA,
216 	QED_IOV_VALIDATE_Q_ENABLE,
217 	QED_IOV_VALIDATE_Q_DISABLE,
218 };
219 
220 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
221 					struct qed_vf_info *p_vf,
222 					u16 qid,
223 					enum qed_iov_validate_q_mode mode,
224 					bool b_is_tx)
225 {
226 	int i;
227 
228 	if (mode == QED_IOV_VALIDATE_Q_NA)
229 		return true;
230 
231 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
232 		struct qed_vf_queue_cid *p_qcid;
233 
234 		p_qcid = &p_vf->vf_queues[qid].cids[i];
235 
236 		if (!p_qcid->p_cid)
237 			continue;
238 
239 		if (p_qcid->b_is_tx != b_is_tx)
240 			continue;
241 
242 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
243 	}
244 
245 	/* In case we haven't found any valid cid, then its disabled */
246 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
247 }
248 
249 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
250 				 struct qed_vf_info *p_vf,
251 				 u16 rx_qid,
252 				 enum qed_iov_validate_q_mode mode)
253 {
254 	if (rx_qid >= p_vf->num_rxqs) {
255 		DP_VERBOSE(p_hwfn,
256 			   QED_MSG_IOV,
257 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
258 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
259 		return false;
260 	}
261 
262 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
263 }
264 
265 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
266 				 struct qed_vf_info *p_vf,
267 				 u16 tx_qid,
268 				 enum qed_iov_validate_q_mode mode)
269 {
270 	if (tx_qid >= p_vf->num_txqs) {
271 		DP_VERBOSE(p_hwfn,
272 			   QED_MSG_IOV,
273 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
274 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
275 		return false;
276 	}
277 
278 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
279 }
280 
281 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
282 				struct qed_vf_info *p_vf, u16 sb_idx)
283 {
284 	int i;
285 
286 	for (i = 0; i < p_vf->num_sbs; i++)
287 		if (p_vf->igu_sbs[i] == sb_idx)
288 			return true;
289 
290 	DP_VERBOSE(p_hwfn,
291 		   QED_MSG_IOV,
292 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
293 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
294 
295 	return false;
296 }
297 
298 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
299 					struct qed_vf_info *p_vf)
300 {
301 	u8 i;
302 
303 	for (i = 0; i < p_vf->num_rxqs; i++)
304 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
305 						QED_IOV_VALIDATE_Q_ENABLE,
306 						false))
307 			return true;
308 
309 	return false;
310 }
311 
312 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
313 					struct qed_vf_info *p_vf)
314 {
315 	u8 i;
316 
317 	for (i = 0; i < p_vf->num_txqs; i++)
318 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
319 						QED_IOV_VALIDATE_Q_ENABLE,
320 						true))
321 			return true;
322 
323 	return false;
324 }
325 
326 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
327 				    int vfid, struct qed_ptt *p_ptt)
328 {
329 	struct qed_bulletin_content *p_bulletin;
330 	int crc_size = sizeof(p_bulletin->crc);
331 	struct qed_dmae_params params;
332 	struct qed_vf_info *p_vf;
333 
334 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
335 	if (!p_vf)
336 		return -EINVAL;
337 
338 	if (!p_vf->vf_bulletin)
339 		return -EINVAL;
340 
341 	p_bulletin = p_vf->bulletin.p_virt;
342 
343 	/* Increment bulletin board version and compute crc */
344 	p_bulletin->version++;
345 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
346 				p_vf->bulletin.size - crc_size);
347 
348 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
349 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
350 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
351 
352 	/* propagate bulletin board via dmae to vm memory */
353 	memset(&params, 0, sizeof(params));
354 	params.flags = QED_DMAE_FLAG_VF_DST;
355 	params.dst_vfid = p_vf->abs_vf_id;
356 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
357 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
358 				  &params);
359 }
360 
361 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
362 {
363 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
364 	int pos = iov->pos;
365 
366 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
367 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
368 
369 	pci_read_config_word(cdev->pdev,
370 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
371 	pci_read_config_word(cdev->pdev,
372 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
373 
374 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
375 	if (iov->num_vfs) {
376 		DP_VERBOSE(cdev,
377 			   QED_MSG_IOV,
378 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
379 		iov->num_vfs = 0;
380 	}
381 
382 	pci_read_config_word(cdev->pdev,
383 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
384 
385 	pci_read_config_word(cdev->pdev,
386 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
387 
388 	pci_read_config_word(cdev->pdev,
389 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
390 
391 	pci_read_config_dword(cdev->pdev,
392 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
393 
394 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
395 
396 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
397 
398 	DP_VERBOSE(cdev,
399 		   QED_MSG_IOV,
400 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
401 		   iov->nres,
402 		   iov->cap,
403 		   iov->ctrl,
404 		   iov->total_vfs,
405 		   iov->initial_vfs,
406 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
407 
408 	/* Some sanity checks */
409 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
410 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
411 		/* This can happen only due to a bug. In this case we set
412 		 * num_vfs to zero to avoid memory corruption in the code that
413 		 * assumes max number of vfs
414 		 */
415 		DP_NOTICE(cdev,
416 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
417 			  iov->num_vfs);
418 
419 		iov->num_vfs = 0;
420 		iov->total_vfs = 0;
421 	}
422 
423 	return 0;
424 }
425 
426 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
427 {
428 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
429 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
430 	struct qed_bulletin_content *p_bulletin_virt;
431 	dma_addr_t req_p, rply_p, bulletin_p;
432 	union pfvf_tlvs *p_reply_virt_addr;
433 	union vfpf_tlvs *p_req_virt_addr;
434 	u8 idx = 0;
435 
436 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
437 
438 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
439 	req_p = p_iov_info->mbx_msg_phys_addr;
440 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
441 	rply_p = p_iov_info->mbx_reply_phys_addr;
442 	p_bulletin_virt = p_iov_info->p_bulletins;
443 	bulletin_p = p_iov_info->bulletins_phys;
444 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
445 		DP_ERR(p_hwfn,
446 		       "qed_iov_setup_vfdb called without allocating mem first\n");
447 		return;
448 	}
449 
450 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
451 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
452 		u32 concrete;
453 
454 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
455 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
456 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
457 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
458 
459 		vf->state = VF_STOPPED;
460 		vf->b_init = false;
461 
462 		vf->bulletin.phys = idx *
463 				    sizeof(struct qed_bulletin_content) +
464 				    bulletin_p;
465 		vf->bulletin.p_virt = p_bulletin_virt + idx;
466 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
467 
468 		vf->relative_vf_id = idx;
469 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
470 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
471 		vf->concrete_fid = concrete;
472 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
473 				 (vf->abs_vf_id << 8);
474 		vf->vport_id = idx + 1;
475 
476 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
477 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
478 	}
479 }
480 
481 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
482 {
483 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
484 	void **p_v_addr;
485 	u16 num_vfs = 0;
486 
487 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
488 
489 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
490 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
491 
492 	/* Allocate PF Mailbox buffer (per-VF) */
493 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
494 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
495 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
496 				       p_iov_info->mbx_msg_size,
497 				       &p_iov_info->mbx_msg_phys_addr,
498 				       GFP_KERNEL);
499 	if (!*p_v_addr)
500 		return -ENOMEM;
501 
502 	/* Allocate PF Mailbox Reply buffer (per-VF) */
503 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
504 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
505 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
506 				       p_iov_info->mbx_reply_size,
507 				       &p_iov_info->mbx_reply_phys_addr,
508 				       GFP_KERNEL);
509 	if (!*p_v_addr)
510 		return -ENOMEM;
511 
512 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
513 				     num_vfs;
514 	p_v_addr = &p_iov_info->p_bulletins;
515 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
516 				       p_iov_info->bulletins_size,
517 				       &p_iov_info->bulletins_phys,
518 				       GFP_KERNEL);
519 	if (!*p_v_addr)
520 		return -ENOMEM;
521 
522 	DP_VERBOSE(p_hwfn,
523 		   QED_MSG_IOV,
524 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
525 		   p_iov_info->mbx_msg_virt_addr,
526 		   (u64) p_iov_info->mbx_msg_phys_addr,
527 		   p_iov_info->mbx_reply_virt_addr,
528 		   (u64) p_iov_info->mbx_reply_phys_addr,
529 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
530 
531 	return 0;
532 }
533 
534 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
535 {
536 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
537 
538 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
539 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
540 				  p_iov_info->mbx_msg_size,
541 				  p_iov_info->mbx_msg_virt_addr,
542 				  p_iov_info->mbx_msg_phys_addr);
543 
544 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
545 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
546 				  p_iov_info->mbx_reply_size,
547 				  p_iov_info->mbx_reply_virt_addr,
548 				  p_iov_info->mbx_reply_phys_addr);
549 
550 	if (p_iov_info->p_bulletins)
551 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
552 				  p_iov_info->bulletins_size,
553 				  p_iov_info->p_bulletins,
554 				  p_iov_info->bulletins_phys);
555 }
556 
557 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
558 {
559 	struct qed_pf_iov *p_sriov;
560 
561 	if (!IS_PF_SRIOV(p_hwfn)) {
562 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
563 			   "No SR-IOV - no need for IOV db\n");
564 		return 0;
565 	}
566 
567 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
568 	if (!p_sriov)
569 		return -ENOMEM;
570 
571 	p_hwfn->pf_iov_info = p_sriov;
572 
573 	qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
574 				  qed_sriov_eqe_event);
575 
576 	return qed_iov_allocate_vfdb(p_hwfn);
577 }
578 
579 void qed_iov_setup(struct qed_hwfn *p_hwfn)
580 {
581 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
582 		return;
583 
584 	qed_iov_setup_vfdb(p_hwfn);
585 }
586 
587 void qed_iov_free(struct qed_hwfn *p_hwfn)
588 {
589 	qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
590 
591 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
592 		qed_iov_free_vfdb(p_hwfn);
593 		kfree(p_hwfn->pf_iov_info);
594 	}
595 }
596 
597 void qed_iov_free_hw_info(struct qed_dev *cdev)
598 {
599 	kfree(cdev->p_iov_info);
600 	cdev->p_iov_info = NULL;
601 }
602 
603 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
604 {
605 	struct qed_dev *cdev = p_hwfn->cdev;
606 	int pos;
607 	int rc;
608 
609 	if (IS_VF(p_hwfn->cdev))
610 		return 0;
611 
612 	/* Learn the PCI configuration */
613 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
614 				      PCI_EXT_CAP_ID_SRIOV);
615 	if (!pos) {
616 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
617 		return 0;
618 	}
619 
620 	/* Allocate a new struct for IOV information */
621 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
622 	if (!cdev->p_iov_info)
623 		return -ENOMEM;
624 
625 	cdev->p_iov_info->pos = pos;
626 
627 	rc = qed_iov_pci_cfg_info(cdev);
628 	if (rc)
629 		return rc;
630 
631 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
632 	 * In case the capability is published but there are no VFs, simply
633 	 * de-allocate the struct.
634 	 */
635 	if (!cdev->p_iov_info->total_vfs) {
636 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
637 			   "IOV capabilities, but no VFs are published\n");
638 		kfree(cdev->p_iov_info);
639 		cdev->p_iov_info = NULL;
640 		return 0;
641 	}
642 
643 	/* First VF index based on offset is tricky:
644 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
645 	 *    provide the number for eng0. 2nd engine Vfs would begin
646 	 *    after the first engine's VFs.
647 	 *  - If !ARI, VFs would start on next device.
648 	 *    so offset - (256 - pf_id) would provide the number.
649 	 * Utilize the fact that (256 - pf_id) is achieved only by later
650 	 * to differentiate between the two.
651 	 */
652 
653 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
654 		u32 first = p_hwfn->cdev->p_iov_info->offset +
655 			    p_hwfn->abs_pf_id - 16;
656 
657 		cdev->p_iov_info->first_vf_in_pf = first;
658 
659 		if (QED_PATH_ID(p_hwfn))
660 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
661 	} else {
662 		u32 first = p_hwfn->cdev->p_iov_info->offset +
663 			    p_hwfn->abs_pf_id - 256;
664 
665 		cdev->p_iov_info->first_vf_in_pf = first;
666 	}
667 
668 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
669 		   "First VF in hwfn 0x%08x\n",
670 		   cdev->p_iov_info->first_vf_in_pf);
671 
672 	return 0;
673 }
674 
675 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
676 				     int vfid, bool b_fail_malicious)
677 {
678 	/* Check PF supports sriov */
679 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
680 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
681 		return false;
682 
683 	/* Check VF validity */
684 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
685 		return false;
686 
687 	return true;
688 }
689 
690 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
691 {
692 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
693 }
694 
695 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
696 				      u16 rel_vf_id, u8 to_disable)
697 {
698 	struct qed_vf_info *vf;
699 	int i;
700 
701 	for_each_hwfn(cdev, i) {
702 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
703 
704 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
705 		if (!vf)
706 			continue;
707 
708 		vf->to_disable = to_disable;
709 	}
710 }
711 
712 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
713 {
714 	u16 i;
715 
716 	if (!IS_QED_SRIOV(cdev))
717 		return;
718 
719 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
720 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
721 }
722 
723 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
724 				       struct qed_ptt *p_ptt, u8 abs_vfid)
725 {
726 	qed_wr(p_hwfn, p_ptt,
727 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
728 	       1 << (abs_vfid & 0x1f));
729 }
730 
731 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
732 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
733 {
734 	int i;
735 
736 	/* Set VF masks and configuration - pretend */
737 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
738 
739 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
740 
741 	/* unpretend */
742 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
743 
744 	/* iterate over all queues, clear sb consumer */
745 	for (i = 0; i < vf->num_sbs; i++)
746 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
747 						vf->igu_sbs[i],
748 						vf->opaque_fid, true);
749 }
750 
751 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
752 				   struct qed_ptt *p_ptt,
753 				   struct qed_vf_info *vf, bool enable)
754 {
755 	u32 igu_vf_conf;
756 
757 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
758 
759 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
760 
761 	if (enable)
762 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
763 	else
764 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
765 
766 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
767 
768 	/* unpretend */
769 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
770 }
771 
772 static int
773 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
774 			      struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
775 {
776 	u8 current_max = 0;
777 	int i;
778 
779 	/* For AH onward, configuration is per-PF. Find maximum of all
780 	 * the currently enabled child VFs, and set the number to be that.
781 	 */
782 	if (!QED_IS_BB(p_hwfn->cdev)) {
783 		qed_for_each_vf(p_hwfn, i) {
784 			struct qed_vf_info *p_vf;
785 
786 			p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
787 			if (!p_vf)
788 				continue;
789 
790 			current_max = max_t(u8, current_max, p_vf->num_sbs);
791 		}
792 	}
793 
794 	if (num_sbs > current_max)
795 		return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
796 					      abs_vf_id, num_sbs);
797 
798 	return 0;
799 }
800 
801 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
802 				    struct qed_ptt *p_ptt,
803 				    struct qed_vf_info *vf)
804 {
805 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
806 	int rc;
807 
808 	/* It's possible VF was previously considered malicious -
809 	 * clear the indication even if we're only going to disable VF.
810 	 */
811 	vf->b_malicious = false;
812 
813 	if (vf->to_disable)
814 		return 0;
815 
816 	DP_VERBOSE(p_hwfn,
817 		   QED_MSG_IOV,
818 		   "Enable internal access for vf %x [abs %x]\n",
819 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
820 
821 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
822 
823 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
824 
825 	rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
826 					   vf->abs_vf_id, vf->num_sbs);
827 	if (rc)
828 		return rc;
829 
830 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
831 
832 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
833 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
834 
835 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
836 		     p_hwfn->hw_info.hw_mode);
837 
838 	/* unpretend */
839 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
840 
841 	vf->state = VF_FREE;
842 
843 	return rc;
844 }
845 
846 /**
847  * @brief qed_iov_config_perm_table - configure the permission
848  *      zone table.
849  *      In E4, queue zone permission table size is 320x9. There
850  *      are 320 VF queues for single engine device (256 for dual
851  *      engine device), and each entry has the following format:
852  *      {Valid, VF[7:0]}
853  * @param p_hwfn
854  * @param p_ptt
855  * @param vf
856  * @param enable
857  */
858 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
859 				      struct qed_ptt *p_ptt,
860 				      struct qed_vf_info *vf, u8 enable)
861 {
862 	u32 reg_addr, val;
863 	u16 qzone_id = 0;
864 	int qid;
865 
866 	for (qid = 0; qid < vf->num_rxqs; qid++) {
867 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
868 				&qzone_id);
869 
870 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
871 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
872 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
873 	}
874 }
875 
876 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
877 				      struct qed_ptt *p_ptt,
878 				      struct qed_vf_info *vf)
879 {
880 	/* Reset vf in IGU - interrupts are still disabled */
881 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
882 
883 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
884 
885 	/* Permission Table */
886 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
887 }
888 
889 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
890 				   struct qed_ptt *p_ptt,
891 				   struct qed_vf_info *vf, u16 num_rx_queues)
892 {
893 	struct qed_igu_block *p_block;
894 	struct cau_sb_entry sb_entry;
895 	int qid = 0;
896 	u32 val = 0;
897 
898 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
899 		num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
900 	p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
901 
902 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
903 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
904 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
905 
906 	for (qid = 0; qid < num_rx_queues; qid++) {
907 		p_block = qed_get_igu_free_sb(p_hwfn, false);
908 		vf->igu_sbs[qid] = p_block->igu_sb_id;
909 		p_block->status &= ~QED_IGU_STATUS_FREE;
910 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
911 
912 		qed_wr(p_hwfn, p_ptt,
913 		       IGU_REG_MAPPING_MEMORY +
914 		       sizeof(u32) * p_block->igu_sb_id, val);
915 
916 		/* Configure igu sb in CAU which were marked valid */
917 		qed_init_cau_sb_entry(p_hwfn, &sb_entry,
918 				      p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
919 		qed_dmae_host2grc(p_hwfn, p_ptt,
920 				  (u64)(uintptr_t)&sb_entry,
921 				  CAU_REG_SB_VAR_MEMORY +
922 				  p_block->igu_sb_id * sizeof(u64), 2, 0);
923 	}
924 
925 	vf->num_sbs = (u8) num_rx_queues;
926 
927 	return vf->num_sbs;
928 }
929 
930 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
931 				    struct qed_ptt *p_ptt,
932 				    struct qed_vf_info *vf)
933 {
934 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
935 	int idx, igu_id;
936 	u32 addr, val;
937 
938 	/* Invalidate igu CAM lines and mark them as free */
939 	for (idx = 0; idx < vf->num_sbs; idx++) {
940 		igu_id = vf->igu_sbs[idx];
941 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
942 
943 		val = qed_rd(p_hwfn, p_ptt, addr);
944 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
945 		qed_wr(p_hwfn, p_ptt, addr, val);
946 
947 		p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
948 		p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
949 	}
950 
951 	vf->num_sbs = 0;
952 }
953 
954 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
955 			     u16 vfid,
956 			     struct qed_mcp_link_params *params,
957 			     struct qed_mcp_link_state *link,
958 			     struct qed_mcp_link_capabilities *p_caps)
959 {
960 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
961 						       vfid,
962 						       false);
963 	struct qed_bulletin_content *p_bulletin;
964 
965 	if (!p_vf)
966 		return;
967 
968 	p_bulletin = p_vf->bulletin.p_virt;
969 	p_bulletin->req_autoneg = params->speed.autoneg;
970 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
971 	p_bulletin->req_forced_speed = params->speed.forced_speed;
972 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
973 	p_bulletin->req_forced_rx = params->pause.forced_rx;
974 	p_bulletin->req_forced_tx = params->pause.forced_tx;
975 	p_bulletin->req_loopback = params->loopback_mode;
976 
977 	p_bulletin->link_up = link->link_up;
978 	p_bulletin->speed = link->speed;
979 	p_bulletin->full_duplex = link->full_duplex;
980 	p_bulletin->autoneg = link->an;
981 	p_bulletin->autoneg_complete = link->an_complete;
982 	p_bulletin->parallel_detection = link->parallel_detection;
983 	p_bulletin->pfc_enabled = link->pfc_enabled;
984 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
985 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
986 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
987 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
988 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
989 
990 	p_bulletin->capability_speed = p_caps->speed_capabilities;
991 }
992 
993 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
994 				  struct qed_ptt *p_ptt,
995 				  struct qed_iov_vf_init_params *p_params)
996 {
997 	struct qed_mcp_link_capabilities link_caps;
998 	struct qed_mcp_link_params link_params;
999 	struct qed_mcp_link_state link_state;
1000 	u8 num_of_vf_avaiable_chains = 0;
1001 	struct qed_vf_info *vf = NULL;
1002 	u16 qid, num_irqs;
1003 	int rc = 0;
1004 	u32 cids;
1005 	u8 i;
1006 
1007 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
1008 	if (!vf) {
1009 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
1010 		return -EINVAL;
1011 	}
1012 
1013 	if (vf->b_init) {
1014 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
1015 			  p_params->rel_vf_id);
1016 		return -EINVAL;
1017 	}
1018 
1019 	/* Perform sanity checking on the requested queue_id */
1020 	for (i = 0; i < p_params->num_queues; i++) {
1021 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1022 		u16 max_vf_qzone = min_vf_qzone +
1023 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1024 
1025 		qid = p_params->req_rx_queue[i];
1026 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
1027 			DP_NOTICE(p_hwfn,
1028 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1029 				  qid,
1030 				  p_params->rel_vf_id,
1031 				  min_vf_qzone, max_vf_qzone);
1032 			return -EINVAL;
1033 		}
1034 
1035 		qid = p_params->req_tx_queue[i];
1036 		if (qid > max_vf_qzone) {
1037 			DP_NOTICE(p_hwfn,
1038 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1039 				  qid, p_params->rel_vf_id, max_vf_qzone);
1040 			return -EINVAL;
1041 		}
1042 
1043 		/* If client *really* wants, Tx qid can be shared with PF */
1044 		if (qid < min_vf_qzone)
1045 			DP_VERBOSE(p_hwfn,
1046 				   QED_MSG_IOV,
1047 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1048 				   p_params->rel_vf_id, qid, i);
1049 	}
1050 
1051 	/* Limit number of queues according to number of CIDs */
1052 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1053 	DP_VERBOSE(p_hwfn,
1054 		   QED_MSG_IOV,
1055 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1056 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1057 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1058 
1059 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1060 							     p_ptt,
1061 							     vf, num_irqs);
1062 	if (!num_of_vf_avaiable_chains) {
1063 		DP_ERR(p_hwfn, "no available igu sbs\n");
1064 		return -ENOMEM;
1065 	}
1066 
1067 	/* Choose queue number and index ranges */
1068 	vf->num_rxqs = num_of_vf_avaiable_chains;
1069 	vf->num_txqs = num_of_vf_avaiable_chains;
1070 
1071 	for (i = 0; i < vf->num_rxqs; i++) {
1072 		struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1073 
1074 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1075 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1076 
1077 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1078 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1079 			   vf->relative_vf_id, i, vf->igu_sbs[i],
1080 			   p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1081 	}
1082 
1083 	/* Update the link configuration in bulletin */
1084 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1085 	       sizeof(link_params));
1086 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1087 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1088 	       sizeof(link_caps));
1089 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1090 			 &link_params, &link_state, &link_caps);
1091 
1092 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1093 	if (!rc) {
1094 		vf->b_init = true;
1095 
1096 		if (IS_LEAD_HWFN(p_hwfn))
1097 			p_hwfn->cdev->p_iov_info->num_vfs++;
1098 	}
1099 
1100 	return rc;
1101 }
1102 
1103 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1104 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1105 {
1106 	struct qed_mcp_link_capabilities caps;
1107 	struct qed_mcp_link_params params;
1108 	struct qed_mcp_link_state link;
1109 	struct qed_vf_info *vf = NULL;
1110 
1111 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1112 	if (!vf) {
1113 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1114 		return -EINVAL;
1115 	}
1116 
1117 	if (vf->bulletin.p_virt)
1118 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1119 
1120 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1121 
1122 	/* Get the link configuration back in bulletin so
1123 	 * that when VFs are re-enabled they get the actual
1124 	 * link configuration.
1125 	 */
1126 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1127 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1128 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1129 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1130 
1131 	/* Forget the VF's acquisition message */
1132 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1133 
1134 	/* disablng interrupts and resetting permission table was done during
1135 	 * vf-close, however, we could get here without going through vf_close
1136 	 */
1137 	/* Disable Interrupts for VF */
1138 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1139 
1140 	/* Reset Permission table */
1141 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1142 
1143 	vf->num_rxqs = 0;
1144 	vf->num_txqs = 0;
1145 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1146 
1147 	if (vf->b_init) {
1148 		vf->b_init = false;
1149 
1150 		if (IS_LEAD_HWFN(p_hwfn))
1151 			p_hwfn->cdev->p_iov_info->num_vfs--;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static bool qed_iov_tlv_supported(u16 tlvtype)
1158 {
1159 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1160 }
1161 
1162 /* place a given tlv on the tlv buffer, continuing current tlv list */
1163 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1164 {
1165 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1166 
1167 	tl->type = type;
1168 	tl->length = length;
1169 
1170 	/* Offset should keep pointing to next TLV (the end of the last) */
1171 	*offset += length;
1172 
1173 	/* Return a pointer to the start of the added tlv */
1174 	return *offset - length;
1175 }
1176 
1177 /* list the types and lengths of the tlvs on the buffer */
1178 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1179 {
1180 	u16 i = 1, total_length = 0;
1181 	struct channel_tlv *tlv;
1182 
1183 	do {
1184 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1185 
1186 		/* output tlv */
1187 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1188 			   "TLV number %d: type %d, length %d\n",
1189 			   i, tlv->type, tlv->length);
1190 
1191 		if (tlv->type == CHANNEL_TLV_LIST_END)
1192 			return;
1193 
1194 		/* Validate entry - protect against malicious VFs */
1195 		if (!tlv->length) {
1196 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1197 			return;
1198 		}
1199 
1200 		total_length += tlv->length;
1201 
1202 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1203 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1204 			return;
1205 		}
1206 
1207 		i++;
1208 	} while (1);
1209 }
1210 
1211 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1212 				  struct qed_ptt *p_ptt,
1213 				  struct qed_vf_info *p_vf,
1214 				  u16 length, u8 status)
1215 {
1216 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1217 	struct qed_dmae_params params;
1218 	u8 eng_vf_id;
1219 
1220 	mbx->reply_virt->default_resp.hdr.status = status;
1221 
1222 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1223 
1224 	eng_vf_id = p_vf->abs_vf_id;
1225 
1226 	memset(&params, 0, sizeof(struct qed_dmae_params));
1227 	params.flags = QED_DMAE_FLAG_VF_DST;
1228 	params.dst_vfid = eng_vf_id;
1229 
1230 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1231 			   mbx->req_virt->first_tlv.reply_address +
1232 			   sizeof(u64),
1233 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1234 			   &params);
1235 
1236 	/* Once PF copies the rc to the VF, the latter can continue
1237 	 * and send an additional message. So we have to make sure the
1238 	 * channel would be re-set to ready prior to that.
1239 	 */
1240 	REG_WR(p_hwfn,
1241 	       GTT_BAR0_MAP_REG_USDM_RAM +
1242 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1243 
1244 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1245 			   mbx->req_virt->first_tlv.reply_address,
1246 			   sizeof(u64) / 4, &params);
1247 }
1248 
1249 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1250 				enum qed_iov_vport_update_flag flag)
1251 {
1252 	switch (flag) {
1253 	case QED_IOV_VP_UPDATE_ACTIVATE:
1254 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1255 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1256 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1257 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1258 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1259 	case QED_IOV_VP_UPDATE_MCAST:
1260 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1261 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1262 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1263 	case QED_IOV_VP_UPDATE_RSS:
1264 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1265 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1266 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1267 	case QED_IOV_VP_UPDATE_SGE_TPA:
1268 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1269 	default:
1270 		return 0;
1271 	}
1272 }
1273 
1274 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1275 					    struct qed_vf_info *p_vf,
1276 					    struct qed_iov_vf_mbx *p_mbx,
1277 					    u8 status,
1278 					    u16 tlvs_mask, u16 tlvs_accepted)
1279 {
1280 	struct pfvf_def_resp_tlv *resp;
1281 	u16 size, total_len, i;
1282 
1283 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1284 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1285 	size = sizeof(struct pfvf_def_resp_tlv);
1286 	total_len = size;
1287 
1288 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1289 
1290 	/* Prepare response for all extended tlvs if they are found by PF */
1291 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1292 		if (!(tlvs_mask & BIT(i)))
1293 			continue;
1294 
1295 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1296 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1297 
1298 		if (tlvs_accepted & BIT(i))
1299 			resp->hdr.status = status;
1300 		else
1301 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1302 
1303 		DP_VERBOSE(p_hwfn,
1304 			   QED_MSG_IOV,
1305 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1306 			   p_vf->relative_vf_id,
1307 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1308 
1309 		total_len += size;
1310 	}
1311 
1312 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1313 		    sizeof(struct channel_list_end_tlv));
1314 
1315 	return total_len;
1316 }
1317 
1318 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1319 				 struct qed_ptt *p_ptt,
1320 				 struct qed_vf_info *vf_info,
1321 				 u16 type, u16 length, u8 status)
1322 {
1323 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1324 
1325 	mbx->offset = (u8 *)mbx->reply_virt;
1326 
1327 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1328 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1329 		    sizeof(struct channel_list_end_tlv));
1330 
1331 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1332 }
1333 
1334 static struct
1335 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1336 					       u16 relative_vf_id,
1337 					       bool b_enabled_only)
1338 {
1339 	struct qed_vf_info *vf = NULL;
1340 
1341 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1342 	if (!vf)
1343 		return NULL;
1344 
1345 	return &vf->p_vf_info;
1346 }
1347 
1348 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1349 {
1350 	struct qed_public_vf_info *vf_info;
1351 
1352 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1353 
1354 	if (!vf_info)
1355 		return;
1356 
1357 	/* Clear the VF mac */
1358 	eth_zero_addr(vf_info->mac);
1359 
1360 	vf_info->rx_accept_mode = 0;
1361 	vf_info->tx_accept_mode = 0;
1362 }
1363 
1364 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1365 			       struct qed_vf_info *p_vf)
1366 {
1367 	u32 i, j;
1368 
1369 	p_vf->vf_bulletin = 0;
1370 	p_vf->vport_instance = 0;
1371 	p_vf->configured_features = 0;
1372 
1373 	/* If VF previously requested less resources, go back to default */
1374 	p_vf->num_rxqs = p_vf->num_sbs;
1375 	p_vf->num_txqs = p_vf->num_sbs;
1376 
1377 	p_vf->num_active_rxqs = 0;
1378 
1379 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1380 		struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1381 
1382 		for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1383 			if (!p_queue->cids[j].p_cid)
1384 				continue;
1385 
1386 			qed_eth_queue_cid_release(p_hwfn,
1387 						  p_queue->cids[j].p_cid);
1388 			p_queue->cids[j].p_cid = NULL;
1389 		}
1390 	}
1391 
1392 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1393 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1394 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1395 }
1396 
1397 /* Returns either 0, or log(size) */
1398 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1399 				  struct qed_ptt *p_ptt)
1400 {
1401 	u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1402 
1403 	if (val)
1404 		return val + 11;
1405 	return 0;
1406 }
1407 
1408 static void
1409 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1410 				 struct qed_ptt *p_ptt,
1411 				 struct qed_vf_info *p_vf,
1412 				 struct vf_pf_resc_request *p_req,
1413 				 struct pf_vf_resc *p_resp)
1414 {
1415 	u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1416 	u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1417 		     qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1418 	u32 bar_size;
1419 
1420 	p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1421 
1422 	/* If VF didn't bother asking for QIDs than don't bother limiting
1423 	 * number of CIDs. The VF doesn't care about the number, and this
1424 	 * has the likely result of causing an additional acquisition.
1425 	 */
1426 	if (!(p_vf->acquire.vfdev_info.capabilities &
1427 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1428 		return;
1429 
1430 	/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1431 	 * that would make sure doorbells for all CIDs fall within the bar.
1432 	 * If it doesn't, make sure regview window is sufficient.
1433 	 */
1434 	if (p_vf->acquire.vfdev_info.capabilities &
1435 	    VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1436 		bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1437 		if (bar_size)
1438 			bar_size = 1 << bar_size;
1439 
1440 		if (p_hwfn->cdev->num_hwfns > 1)
1441 			bar_size /= 2;
1442 	} else {
1443 		bar_size = PXP_VF_BAR0_DQ_LENGTH;
1444 	}
1445 
1446 	if (bar_size / db_size < 256)
1447 		p_resp->num_cids = min_t(u8, p_resp->num_cids,
1448 					 (u8)(bar_size / db_size));
1449 }
1450 
1451 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1452 				      struct qed_ptt *p_ptt,
1453 				      struct qed_vf_info *p_vf,
1454 				      struct vf_pf_resc_request *p_req,
1455 				      struct pf_vf_resc *p_resp)
1456 {
1457 	u8 i;
1458 
1459 	/* Queue related information */
1460 	p_resp->num_rxqs = p_vf->num_rxqs;
1461 	p_resp->num_txqs = p_vf->num_txqs;
1462 	p_resp->num_sbs = p_vf->num_sbs;
1463 
1464 	for (i = 0; i < p_resp->num_sbs; i++) {
1465 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1466 		p_resp->hw_sbs[i].sb_qid = 0;
1467 	}
1468 
1469 	/* These fields are filled for backward compatibility.
1470 	 * Unused by modern vfs.
1471 	 */
1472 	for (i = 0; i < p_resp->num_rxqs; i++) {
1473 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1474 				(u16 *)&p_resp->hw_qid[i]);
1475 		p_resp->cid[i] = i;
1476 	}
1477 
1478 	/* Filter related information */
1479 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1480 					p_req->num_mac_filters);
1481 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1482 					 p_req->num_vlan_filters);
1483 
1484 	qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1485 
1486 	/* This isn't really needed/enforced, but some legacy VFs might depend
1487 	 * on the correct filling of this field.
1488 	 */
1489 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1490 
1491 	/* Validate sufficient resources for VF */
1492 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1493 	    p_resp->num_txqs < p_req->num_txqs ||
1494 	    p_resp->num_sbs < p_req->num_sbs ||
1495 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1496 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1497 	    p_resp->num_mc_filters < p_req->num_mc_filters ||
1498 	    p_resp->num_cids < p_req->num_cids) {
1499 		DP_VERBOSE(p_hwfn,
1500 			   QED_MSG_IOV,
1501 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1502 			   p_vf->abs_vf_id,
1503 			   p_req->num_rxqs,
1504 			   p_resp->num_rxqs,
1505 			   p_req->num_rxqs,
1506 			   p_resp->num_txqs,
1507 			   p_req->num_sbs,
1508 			   p_resp->num_sbs,
1509 			   p_req->num_mac_filters,
1510 			   p_resp->num_mac_filters,
1511 			   p_req->num_vlan_filters,
1512 			   p_resp->num_vlan_filters,
1513 			   p_req->num_mc_filters,
1514 			   p_resp->num_mc_filters,
1515 			   p_req->num_cids, p_resp->num_cids);
1516 
1517 		/* Some legacy OSes are incapable of correctly handling this
1518 		 * failure.
1519 		 */
1520 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1521 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1522 		    (p_vf->acquire.vfdev_info.os_type ==
1523 		     VFPF_ACQUIRE_OS_WINDOWS))
1524 			return PFVF_STATUS_SUCCESS;
1525 
1526 		return PFVF_STATUS_NO_RESOURCE;
1527 	}
1528 
1529 	return PFVF_STATUS_SUCCESS;
1530 }
1531 
1532 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1533 					 struct pfvf_stats_info *p_stats)
1534 {
1535 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1536 				  offsetof(struct mstorm_vf_zone,
1537 					   non_trigger.eth_queue_stat);
1538 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1539 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1540 				  offsetof(struct ustorm_vf_zone,
1541 					   non_trigger.eth_queue_stat);
1542 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1543 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1544 				  offsetof(struct pstorm_vf_zone,
1545 					   non_trigger.eth_queue_stat);
1546 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1547 	p_stats->tstats.address = 0;
1548 	p_stats->tstats.len = 0;
1549 }
1550 
1551 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1552 				   struct qed_ptt *p_ptt,
1553 				   struct qed_vf_info *vf)
1554 {
1555 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1556 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1557 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1558 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1559 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1560 	struct pf_vf_resc *resc = &resp->resc;
1561 	int rc;
1562 
1563 	memset(resp, 0, sizeof(*resp));
1564 
1565 	/* Write the PF version so that VF would know which version
1566 	 * is supported - might be later overriden. This guarantees that
1567 	 * VF could recognize legacy PF based on lack of versions in reply.
1568 	 */
1569 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1570 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1571 
1572 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1573 		DP_VERBOSE(p_hwfn,
1574 			   QED_MSG_IOV,
1575 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1576 			   vf->abs_vf_id, vf->state);
1577 		goto out;
1578 	}
1579 
1580 	/* Validate FW compatibility */
1581 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1582 		if (req->vfdev_info.capabilities &
1583 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1584 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1585 
1586 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1587 				   "VF[%d] is pre-fastpath HSI\n",
1588 				   vf->abs_vf_id);
1589 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1590 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1591 		} else {
1592 			DP_INFO(p_hwfn,
1593 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1594 				vf->abs_vf_id,
1595 				req->vfdev_info.eth_fp_hsi_major,
1596 				req->vfdev_info.eth_fp_hsi_minor,
1597 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1598 
1599 			goto out;
1600 		}
1601 	}
1602 
1603 	/* On 100g PFs, prevent old VFs from loading */
1604 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1605 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1606 		DP_INFO(p_hwfn,
1607 			"VF[%d] is running an old driver that doesn't support 100g\n",
1608 			vf->abs_vf_id);
1609 		goto out;
1610 	}
1611 
1612 	/* Store the acquire message */
1613 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1614 
1615 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1616 
1617 	vf->vf_bulletin = req->bulletin_addr;
1618 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1619 			    vf->bulletin.size : req->bulletin_size;
1620 
1621 	/* fill in pfdev info */
1622 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1623 	pfdev_info->db_size = 0;
1624 	pfdev_info->indices_per_sb = PIS_PER_SB_E4;
1625 
1626 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1627 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1628 	if (p_hwfn->cdev->num_hwfns > 1)
1629 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1630 
1631 	/* Share our ability to use multiple queue-ids only with VFs
1632 	 * that request it.
1633 	 */
1634 	if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1635 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1636 
1637 	/* Share the sizes of the bars with VF */
1638 	resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1639 
1640 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1641 
1642 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1643 
1644 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1645 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1646 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1647 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1648 
1649 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1650 	 * this field.
1651 	 */
1652 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1653 					 req->vfdev_info.eth_fp_hsi_minor);
1654 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1655 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1656 
1657 	pfdev_info->dev_type = p_hwfn->cdev->type;
1658 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1659 
1660 	/* Fill resources available to VF; Make sure there are enough to
1661 	 * satisfy the VF's request.
1662 	 */
1663 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1664 						  &req->resc_request, resc);
1665 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1666 		goto out;
1667 
1668 	/* Start the VF in FW */
1669 	rc = qed_sp_vf_start(p_hwfn, vf);
1670 	if (rc) {
1671 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1672 		vfpf_status = PFVF_STATUS_FAILURE;
1673 		goto out;
1674 	}
1675 
1676 	/* Fill agreed size of bulletin board in response */
1677 	resp->bulletin_size = vf->bulletin.size;
1678 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1679 
1680 	DP_VERBOSE(p_hwfn,
1681 		   QED_MSG_IOV,
1682 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1683 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1684 		   vf->abs_vf_id,
1685 		   resp->pfdev_info.chip_num,
1686 		   resp->pfdev_info.db_size,
1687 		   resp->pfdev_info.indices_per_sb,
1688 		   resp->pfdev_info.capabilities,
1689 		   resc->num_rxqs,
1690 		   resc->num_txqs,
1691 		   resc->num_sbs,
1692 		   resc->num_mac_filters,
1693 		   resc->num_vlan_filters);
1694 	vf->state = VF_ACQUIRED;
1695 
1696 	/* Prepare Response */
1697 out:
1698 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1699 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1700 }
1701 
1702 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1703 				  struct qed_vf_info *p_vf, bool val)
1704 {
1705 	struct qed_sp_vport_update_params params;
1706 	int rc;
1707 
1708 	if (val == p_vf->spoof_chk) {
1709 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1710 			   "Spoofchk value[%d] is already configured\n", val);
1711 		return 0;
1712 	}
1713 
1714 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1715 	params.opaque_fid = p_vf->opaque_fid;
1716 	params.vport_id = p_vf->vport_id;
1717 	params.update_anti_spoofing_en_flg = 1;
1718 	params.anti_spoofing_en = val;
1719 
1720 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1721 	if (!rc) {
1722 		p_vf->spoof_chk = val;
1723 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1724 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1725 			   "Spoofchk val[%d] configured\n", val);
1726 	} else {
1727 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1728 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1729 			   val, p_vf->relative_vf_id);
1730 	}
1731 
1732 	return rc;
1733 }
1734 
1735 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1736 					    struct qed_vf_info *p_vf)
1737 {
1738 	struct qed_filter_ucast filter;
1739 	int rc = 0;
1740 	int i;
1741 
1742 	memset(&filter, 0, sizeof(filter));
1743 	filter.is_rx_filter = 1;
1744 	filter.is_tx_filter = 1;
1745 	filter.vport_to_add_to = p_vf->vport_id;
1746 	filter.opcode = QED_FILTER_ADD;
1747 
1748 	/* Reconfigure vlans */
1749 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1750 		if (!p_vf->shadow_config.vlans[i].used)
1751 			continue;
1752 
1753 		filter.type = QED_FILTER_VLAN;
1754 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1755 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1756 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1757 			   filter.vlan, p_vf->relative_vf_id);
1758 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1759 					     &filter, QED_SPQ_MODE_CB, NULL);
1760 		if (rc) {
1761 			DP_NOTICE(p_hwfn,
1762 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1763 				  filter.vlan, p_vf->relative_vf_id);
1764 			break;
1765 		}
1766 	}
1767 
1768 	return rc;
1769 }
1770 
1771 static int
1772 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1773 				   struct qed_vf_info *p_vf, u64 events)
1774 {
1775 	int rc = 0;
1776 
1777 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1778 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1779 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1780 
1781 	return rc;
1782 }
1783 
1784 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1785 					  struct qed_vf_info *p_vf, u64 events)
1786 {
1787 	int rc = 0;
1788 	struct qed_filter_ucast filter;
1789 
1790 	if (!p_vf->vport_instance)
1791 		return -EINVAL;
1792 
1793 	if ((events & BIT(MAC_ADDR_FORCED)) ||
1794 	    p_vf->p_vf_info.is_trusted_configured) {
1795 		/* Since there's no way [currently] of removing the MAC,
1796 		 * we can always assume this means we need to force it.
1797 		 */
1798 		memset(&filter, 0, sizeof(filter));
1799 		filter.type = QED_FILTER_MAC;
1800 		filter.opcode = QED_FILTER_REPLACE;
1801 		filter.is_rx_filter = 1;
1802 		filter.is_tx_filter = 1;
1803 		filter.vport_to_add_to = p_vf->vport_id;
1804 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1805 
1806 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1807 					     &filter, QED_SPQ_MODE_CB, NULL);
1808 		if (rc) {
1809 			DP_NOTICE(p_hwfn,
1810 				  "PF failed to configure MAC for VF\n");
1811 			return rc;
1812 		}
1813 		if (p_vf->p_vf_info.is_trusted_configured)
1814 			p_vf->configured_features |=
1815 				BIT(VFPF_BULLETIN_MAC_ADDR);
1816 		else
1817 			p_vf->configured_features |=
1818 				BIT(MAC_ADDR_FORCED);
1819 	}
1820 
1821 	if (events & BIT(VLAN_ADDR_FORCED)) {
1822 		struct qed_sp_vport_update_params vport_update;
1823 		u8 removal;
1824 		int i;
1825 
1826 		memset(&filter, 0, sizeof(filter));
1827 		filter.type = QED_FILTER_VLAN;
1828 		filter.is_rx_filter = 1;
1829 		filter.is_tx_filter = 1;
1830 		filter.vport_to_add_to = p_vf->vport_id;
1831 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1832 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1833 					      QED_FILTER_FLUSH;
1834 
1835 		/* Send the ramrod */
1836 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1837 					     &filter, QED_SPQ_MODE_CB, NULL);
1838 		if (rc) {
1839 			DP_NOTICE(p_hwfn,
1840 				  "PF failed to configure VLAN for VF\n");
1841 			return rc;
1842 		}
1843 
1844 		/* Update the default-vlan & silent vlan stripping */
1845 		memset(&vport_update, 0, sizeof(vport_update));
1846 		vport_update.opaque_fid = p_vf->opaque_fid;
1847 		vport_update.vport_id = p_vf->vport_id;
1848 		vport_update.update_default_vlan_enable_flg = 1;
1849 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1850 		vport_update.update_default_vlan_flg = 1;
1851 		vport_update.default_vlan = filter.vlan;
1852 
1853 		vport_update.update_inner_vlan_removal_flg = 1;
1854 		removal = filter.vlan ? 1
1855 				      : p_vf->shadow_config.inner_vlan_removal;
1856 		vport_update.inner_vlan_removal_flg = removal;
1857 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1858 		rc = qed_sp_vport_update(p_hwfn,
1859 					 &vport_update,
1860 					 QED_SPQ_MODE_EBLOCK, NULL);
1861 		if (rc) {
1862 			DP_NOTICE(p_hwfn,
1863 				  "PF failed to configure VF vport for vlan\n");
1864 			return rc;
1865 		}
1866 
1867 		/* Update all the Rx queues */
1868 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1869 			struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1870 			struct qed_queue_cid *p_cid = NULL;
1871 
1872 			/* There can be at most 1 Rx queue on qzone. Find it */
1873 			p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1874 			if (!p_cid)
1875 				continue;
1876 
1877 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1878 							 (void **)&p_cid,
1879 							 1, 0, 1,
1880 							 QED_SPQ_MODE_EBLOCK,
1881 							 NULL);
1882 			if (rc) {
1883 				DP_NOTICE(p_hwfn,
1884 					  "Failed to send Rx update fo queue[0x%04x]\n",
1885 					  p_cid->rel.queue_id);
1886 				return rc;
1887 			}
1888 		}
1889 
1890 		if (filter.vlan)
1891 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1892 		else
1893 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1894 	}
1895 
1896 	/* If forced features are terminated, we need to configure the shadow
1897 	 * configuration back again.
1898 	 */
1899 	if (events)
1900 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1901 
1902 	return rc;
1903 }
1904 
1905 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1906 				       struct qed_ptt *p_ptt,
1907 				       struct qed_vf_info *vf)
1908 {
1909 	struct qed_sp_vport_start_params params = { 0 };
1910 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1911 	struct vfpf_vport_start_tlv *start;
1912 	u8 status = PFVF_STATUS_SUCCESS;
1913 	struct qed_vf_info *vf_info;
1914 	u64 *p_bitmap;
1915 	int sb_id;
1916 	int rc;
1917 
1918 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1919 	if (!vf_info) {
1920 		DP_NOTICE(p_hwfn->cdev,
1921 			  "Failed to get VF info, invalid vfid [%d]\n",
1922 			  vf->relative_vf_id);
1923 		return;
1924 	}
1925 
1926 	vf->state = VF_ENABLED;
1927 	start = &mbx->req_virt->start_vport;
1928 
1929 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1930 
1931 	/* Initialize Status block in CAU */
1932 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1933 		if (!start->sb_addr[sb_id]) {
1934 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1935 				   "VF[%d] did not fill the address of SB %d\n",
1936 				   vf->relative_vf_id, sb_id);
1937 			break;
1938 		}
1939 
1940 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1941 				    start->sb_addr[sb_id],
1942 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1943 	}
1944 
1945 	vf->mtu = start->mtu;
1946 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1947 
1948 	/* Take into consideration configuration forced by hypervisor;
1949 	 * If none is configured, use the supplied VF values [for old
1950 	 * vfs that would still be fine, since they passed '0' as padding].
1951 	 */
1952 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1953 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1954 		u8 vf_req = start->only_untagged;
1955 
1956 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1957 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1958 	}
1959 
1960 	params.tpa_mode = start->tpa_mode;
1961 	params.remove_inner_vlan = start->inner_vlan_removal;
1962 	params.tx_switching = true;
1963 
1964 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1965 	params.drop_ttl0 = false;
1966 	params.concrete_fid = vf->concrete_fid;
1967 	params.opaque_fid = vf->opaque_fid;
1968 	params.vport_id = vf->vport_id;
1969 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1970 	params.mtu = vf->mtu;
1971 	params.check_mac = true;
1972 
1973 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1974 	if (rc) {
1975 		DP_ERR(p_hwfn,
1976 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1977 		status = PFVF_STATUS_FAILURE;
1978 	} else {
1979 		vf->vport_instance++;
1980 
1981 		/* Force configuration if needed on the newly opened vport */
1982 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1983 
1984 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1985 	}
1986 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1987 			     sizeof(struct pfvf_def_resp_tlv), status);
1988 }
1989 
1990 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1991 				      struct qed_ptt *p_ptt,
1992 				      struct qed_vf_info *vf)
1993 {
1994 	u8 status = PFVF_STATUS_SUCCESS;
1995 	int rc;
1996 
1997 	vf->vport_instance--;
1998 	vf->spoof_chk = false;
1999 
2000 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
2001 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
2002 		vf->b_malicious = true;
2003 		DP_NOTICE(p_hwfn,
2004 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
2005 			  vf->abs_vf_id);
2006 		status = PFVF_STATUS_MALICIOUS;
2007 		goto out;
2008 	}
2009 
2010 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
2011 	if (rc) {
2012 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
2013 		       rc);
2014 		status = PFVF_STATUS_FAILURE;
2015 	}
2016 
2017 	/* Forget the configuration on the vport */
2018 	vf->configured_features = 0;
2019 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2020 
2021 out:
2022 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2023 			     sizeof(struct pfvf_def_resp_tlv), status);
2024 }
2025 
2026 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2027 					  struct qed_ptt *p_ptt,
2028 					  struct qed_vf_info *vf,
2029 					  u8 status, bool b_legacy)
2030 {
2031 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2032 	struct pfvf_start_queue_resp_tlv *p_tlv;
2033 	struct vfpf_start_rxq_tlv *req;
2034 	u16 length;
2035 
2036 	mbx->offset = (u8 *)mbx->reply_virt;
2037 
2038 	/* Taking a bigger struct instead of adding a TLV to list was a
2039 	 * mistake, but one which we're now stuck with, as some older
2040 	 * clients assume the size of the previous response.
2041 	 */
2042 	if (!b_legacy)
2043 		length = sizeof(*p_tlv);
2044 	else
2045 		length = sizeof(struct pfvf_def_resp_tlv);
2046 
2047 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2048 			    length);
2049 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2050 		    sizeof(struct channel_list_end_tlv));
2051 
2052 	/* Update the TLV with the response */
2053 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2054 		req = &mbx->req_virt->start_rxq;
2055 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2056 				offsetof(struct mstorm_vf_zone,
2057 					 non_trigger.eth_rx_queue_producers) +
2058 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
2059 	}
2060 
2061 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2062 }
2063 
2064 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2065 			     struct qed_vf_info *p_vf, bool b_is_tx)
2066 {
2067 	struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2068 	struct vfpf_qid_tlv *p_qid_tlv;
2069 
2070 	/* Search for the qid if the VF published its going to provide it */
2071 	if (!(p_vf->acquire.vfdev_info.capabilities &
2072 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2073 		if (b_is_tx)
2074 			return QED_IOV_LEGACY_QID_TX;
2075 		else
2076 			return QED_IOV_LEGACY_QID_RX;
2077 	}
2078 
2079 	p_qid_tlv = (struct vfpf_qid_tlv *)
2080 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2081 					     CHANNEL_TLV_QID);
2082 	if (!p_qid_tlv) {
2083 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2084 			   "VF[%2x]: Failed to provide qid\n",
2085 			   p_vf->relative_vf_id);
2086 
2087 		return QED_IOV_QID_INVALID;
2088 	}
2089 
2090 	if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2091 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2092 			   "VF[%02x]: Provided qid out-of-bounds %02x\n",
2093 			   p_vf->relative_vf_id, p_qid_tlv->qid);
2094 		return QED_IOV_QID_INVALID;
2095 	}
2096 
2097 	return p_qid_tlv->qid;
2098 }
2099 
2100 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2101 				     struct qed_ptt *p_ptt,
2102 				     struct qed_vf_info *vf)
2103 {
2104 	struct qed_queue_start_common_params params;
2105 	struct qed_queue_cid_vf_params vf_params;
2106 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2107 	u8 status = PFVF_STATUS_NO_RESOURCE;
2108 	u8 qid_usage_idx, vf_legacy = 0;
2109 	struct vfpf_start_rxq_tlv *req;
2110 	struct qed_vf_queue *p_queue;
2111 	struct qed_queue_cid *p_cid;
2112 	struct qed_sb_info sb_dummy;
2113 	int rc;
2114 
2115 	req = &mbx->req_virt->start_rxq;
2116 
2117 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2118 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2119 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2120 		goto out;
2121 
2122 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2123 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2124 		goto out;
2125 
2126 	p_queue = &vf->vf_queues[req->rx_qid];
2127 	if (p_queue->cids[qid_usage_idx].p_cid)
2128 		goto out;
2129 
2130 	vf_legacy = qed_vf_calculate_legacy(vf);
2131 
2132 	/* Acquire a new queue-cid */
2133 	memset(&params, 0, sizeof(params));
2134 	params.queue_id = p_queue->fw_rx_qid;
2135 	params.vport_id = vf->vport_id;
2136 	params.stats_id = vf->abs_vf_id + 0x10;
2137 	/* Since IGU index is passed via sb_info, construct a dummy one */
2138 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2139 	sb_dummy.igu_sb_id = req->hw_sb;
2140 	params.p_sb = &sb_dummy;
2141 	params.sb_idx = req->sb_index;
2142 
2143 	memset(&vf_params, 0, sizeof(vf_params));
2144 	vf_params.vfid = vf->relative_vf_id;
2145 	vf_params.vf_qid = (u8)req->rx_qid;
2146 	vf_params.vf_legacy = vf_legacy;
2147 	vf_params.qid_usage_idx = qid_usage_idx;
2148 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2149 				     &params, true, &vf_params);
2150 	if (!p_cid)
2151 		goto out;
2152 
2153 	/* Legacy VFs have their Producers in a different location, which they
2154 	 * calculate on their own and clean the producer prior to this.
2155 	 */
2156 	if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2157 		REG_WR(p_hwfn,
2158 		       GTT_BAR0_MAP_REG_MSDM_RAM +
2159 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2160 		       0);
2161 
2162 	rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2163 				      req->bd_max_bytes,
2164 				      req->rxq_addr,
2165 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2166 	if (rc) {
2167 		status = PFVF_STATUS_FAILURE;
2168 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2169 	} else {
2170 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2171 		p_queue->cids[qid_usage_idx].b_is_tx = false;
2172 		status = PFVF_STATUS_SUCCESS;
2173 		vf->num_active_rxqs++;
2174 	}
2175 
2176 out:
2177 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2178 				      !!(vf_legacy &
2179 					 QED_QCID_LEGACY_VF_RX_PROD));
2180 }
2181 
2182 static void
2183 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2184 			       struct qed_tunnel_info *p_tun,
2185 			       u16 tunn_feature_mask)
2186 {
2187 	p_resp->tunn_feature_mask = tunn_feature_mask;
2188 	p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2189 	p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2190 	p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2191 	p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2192 	p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2193 	p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2194 	p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2195 	p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2196 	p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2197 	p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2198 	p_resp->geneve_udp_port = p_tun->geneve_port.port;
2199 	p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2200 }
2201 
2202 static void
2203 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2204 			      struct qed_tunn_update_type *p_tun,
2205 			      enum qed_tunn_mode mask, u8 tun_cls)
2206 {
2207 	if (p_req->tun_mode_update_mask & BIT(mask)) {
2208 		p_tun->b_update_mode = true;
2209 
2210 		if (p_req->tunn_mode & BIT(mask))
2211 			p_tun->b_mode_enabled = true;
2212 	}
2213 
2214 	p_tun->tun_cls = tun_cls;
2215 }
2216 
2217 static void
2218 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2219 			    struct qed_tunn_update_type *p_tun,
2220 			    struct qed_tunn_update_udp_port *p_port,
2221 			    enum qed_tunn_mode mask,
2222 			    u8 tun_cls, u8 update_port, u16 port)
2223 {
2224 	if (update_port) {
2225 		p_port->b_update_port = true;
2226 		p_port->port = port;
2227 	}
2228 
2229 	__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2230 }
2231 
2232 static bool
2233 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2234 {
2235 	bool b_update_requested = false;
2236 
2237 	if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2238 	    p_req->update_geneve_port || p_req->update_vxlan_port)
2239 		b_update_requested = true;
2240 
2241 	return b_update_requested;
2242 }
2243 
2244 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2245 {
2246 	if (tun->b_update_mode && !tun->b_mode_enabled) {
2247 		tun->b_update_mode = false;
2248 		*rc = -EINVAL;
2249 	}
2250 }
2251 
2252 static int
2253 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2254 				   u16 *tun_features, bool *update,
2255 				   struct qed_tunnel_info *tun_src)
2256 {
2257 	struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2258 	struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2259 	u16 bultn_vxlan_port, bultn_geneve_port;
2260 	void *cookie = p_hwfn->cdev->ops_cookie;
2261 	int i, rc = 0;
2262 
2263 	*tun_features = p_hwfn->cdev->tunn_feature_mask;
2264 	bultn_vxlan_port = tun->vxlan_port.port;
2265 	bultn_geneve_port = tun->geneve_port.port;
2266 	qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2267 	qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2268 	qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2269 	qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2270 	qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2271 
2272 	if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2273 	    (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2274 	     tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2275 	     tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2276 	     tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2277 	     tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2278 		tun_src->b_update_rx_cls = false;
2279 		tun_src->b_update_tx_cls = false;
2280 		rc = -EINVAL;
2281 	}
2282 
2283 	if (tun_src->vxlan_port.b_update_port) {
2284 		if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2285 			tun_src->vxlan_port.b_update_port = false;
2286 		} else {
2287 			*update = true;
2288 			bultn_vxlan_port = tun_src->vxlan_port.port;
2289 		}
2290 	}
2291 
2292 	if (tun_src->geneve_port.b_update_port) {
2293 		if (tun_src->geneve_port.port == tun->geneve_port.port) {
2294 			tun_src->geneve_port.b_update_port = false;
2295 		} else {
2296 			*update = true;
2297 			bultn_geneve_port = tun_src->geneve_port.port;
2298 		}
2299 	}
2300 
2301 	qed_for_each_vf(p_hwfn, i) {
2302 		qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2303 					       bultn_geneve_port);
2304 	}
2305 
2306 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2307 	ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2308 
2309 	return rc;
2310 }
2311 
2312 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2313 					     struct qed_ptt *p_ptt,
2314 					     struct qed_vf_info *p_vf)
2315 {
2316 	struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2317 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2318 	struct pfvf_update_tunn_param_tlv *p_resp;
2319 	struct vfpf_update_tunn_param_tlv *p_req;
2320 	u8 status = PFVF_STATUS_SUCCESS;
2321 	bool b_update_required = false;
2322 	struct qed_tunnel_info tunn;
2323 	u16 tunn_feature_mask = 0;
2324 	int i, rc = 0;
2325 
2326 	mbx->offset = (u8 *)mbx->reply_virt;
2327 
2328 	memset(&tunn, 0, sizeof(tunn));
2329 	p_req = &mbx->req_virt->tunn_param_update;
2330 
2331 	if (!qed_iov_pf_validate_tunn_param(p_req)) {
2332 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2333 			   "No tunnel update requested by VF\n");
2334 		status = PFVF_STATUS_FAILURE;
2335 		goto send_resp;
2336 	}
2337 
2338 	tunn.b_update_rx_cls = p_req->update_tun_cls;
2339 	tunn.b_update_tx_cls = p_req->update_tun_cls;
2340 
2341 	qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2342 				    QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2343 				    p_req->update_vxlan_port,
2344 				    p_req->vxlan_port);
2345 	qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2346 				    QED_MODE_L2GENEVE_TUNN,
2347 				    p_req->l2geneve_clss,
2348 				    p_req->update_geneve_port,
2349 				    p_req->geneve_port);
2350 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2351 				      QED_MODE_IPGENEVE_TUNN,
2352 				      p_req->ipgeneve_clss);
2353 	__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2354 				      QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2355 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2356 				      QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2357 
2358 	/* If PF modifies VF's req then it should
2359 	 * still return an error in case of partial configuration
2360 	 * or modified configuration as opposed to requested one.
2361 	 */
2362 	rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2363 						&b_update_required, &tunn);
2364 
2365 	if (rc)
2366 		status = PFVF_STATUS_FAILURE;
2367 
2368 	/* If QED client is willing to update anything ? */
2369 	if (b_update_required) {
2370 		u16 geneve_port;
2371 
2372 		rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2373 					       QED_SPQ_MODE_EBLOCK, NULL);
2374 		if (rc)
2375 			status = PFVF_STATUS_FAILURE;
2376 
2377 		geneve_port = p_tun->geneve_port.port;
2378 		qed_for_each_vf(p_hwfn, i) {
2379 			qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2380 						       p_tun->vxlan_port.port,
2381 						       geneve_port);
2382 		}
2383 	}
2384 
2385 send_resp:
2386 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2387 			     CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2388 
2389 	qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2390 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2391 		    sizeof(struct channel_list_end_tlv));
2392 
2393 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2394 }
2395 
2396 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2397 					  struct qed_ptt *p_ptt,
2398 					  struct qed_vf_info *p_vf,
2399 					  u32 cid, u8 status)
2400 {
2401 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2402 	struct pfvf_start_queue_resp_tlv *p_tlv;
2403 	bool b_legacy = false;
2404 	u16 length;
2405 
2406 	mbx->offset = (u8 *)mbx->reply_virt;
2407 
2408 	/* Taking a bigger struct instead of adding a TLV to list was a
2409 	 * mistake, but one which we're now stuck with, as some older
2410 	 * clients assume the size of the previous response.
2411 	 */
2412 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2413 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2414 		b_legacy = true;
2415 
2416 	if (!b_legacy)
2417 		length = sizeof(*p_tlv);
2418 	else
2419 		length = sizeof(struct pfvf_def_resp_tlv);
2420 
2421 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2422 			    length);
2423 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2424 		    sizeof(struct channel_list_end_tlv));
2425 
2426 	/* Update the TLV with the response */
2427 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2428 		p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2429 
2430 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2431 }
2432 
2433 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2434 				     struct qed_ptt *p_ptt,
2435 				     struct qed_vf_info *vf)
2436 {
2437 	struct qed_queue_start_common_params params;
2438 	struct qed_queue_cid_vf_params vf_params;
2439 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2440 	u8 status = PFVF_STATUS_NO_RESOURCE;
2441 	struct vfpf_start_txq_tlv *req;
2442 	struct qed_vf_queue *p_queue;
2443 	struct qed_queue_cid *p_cid;
2444 	struct qed_sb_info sb_dummy;
2445 	u8 qid_usage_idx, vf_legacy;
2446 	u32 cid = 0;
2447 	int rc;
2448 	u16 pq;
2449 
2450 	memset(&params, 0, sizeof(params));
2451 	req = &mbx->req_virt->start_txq;
2452 
2453 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2454 				  QED_IOV_VALIDATE_Q_NA) ||
2455 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2456 		goto out;
2457 
2458 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2459 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2460 		goto out;
2461 
2462 	p_queue = &vf->vf_queues[req->tx_qid];
2463 	if (p_queue->cids[qid_usage_idx].p_cid)
2464 		goto out;
2465 
2466 	vf_legacy = qed_vf_calculate_legacy(vf);
2467 
2468 	/* Acquire a new queue-cid */
2469 	params.queue_id = p_queue->fw_tx_qid;
2470 	params.vport_id = vf->vport_id;
2471 	params.stats_id = vf->abs_vf_id + 0x10;
2472 
2473 	/* Since IGU index is passed via sb_info, construct a dummy one */
2474 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2475 	sb_dummy.igu_sb_id = req->hw_sb;
2476 	params.p_sb = &sb_dummy;
2477 	params.sb_idx = req->sb_index;
2478 
2479 	memset(&vf_params, 0, sizeof(vf_params));
2480 	vf_params.vfid = vf->relative_vf_id;
2481 	vf_params.vf_qid = (u8)req->tx_qid;
2482 	vf_params.vf_legacy = vf_legacy;
2483 	vf_params.qid_usage_idx = qid_usage_idx;
2484 
2485 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2486 				     &params, false, &vf_params);
2487 	if (!p_cid)
2488 		goto out;
2489 
2490 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2491 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2492 				      req->pbl_addr, req->pbl_size, pq);
2493 	if (rc) {
2494 		status = PFVF_STATUS_FAILURE;
2495 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2496 	} else {
2497 		status = PFVF_STATUS_SUCCESS;
2498 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2499 		p_queue->cids[qid_usage_idx].b_is_tx = true;
2500 		cid = p_cid->cid;
2501 	}
2502 
2503 out:
2504 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2505 }
2506 
2507 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2508 				struct qed_vf_info *vf,
2509 				u16 rxq_id,
2510 				u8 qid_usage_idx, bool cqe_completion)
2511 {
2512 	struct qed_vf_queue *p_queue;
2513 	int rc = 0;
2514 
2515 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2516 		DP_VERBOSE(p_hwfn,
2517 			   QED_MSG_IOV,
2518 			   "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2519 			   vf->relative_vf_id, rxq_id, qid_usage_idx);
2520 		return -EINVAL;
2521 	}
2522 
2523 	p_queue = &vf->vf_queues[rxq_id];
2524 
2525 	/* We've validated the index and the existence of the active RXQ -
2526 	 * now we need to make sure that it's using the correct qid.
2527 	 */
2528 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2529 	    p_queue->cids[qid_usage_idx].b_is_tx) {
2530 		struct qed_queue_cid *p_cid;
2531 
2532 		p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2533 		DP_VERBOSE(p_hwfn,
2534 			   QED_MSG_IOV,
2535 			   "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2536 			   vf->relative_vf_id,
2537 			   rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2538 		return -EINVAL;
2539 	}
2540 
2541 	/* Now that we know we have a valid Rx-queue - close it */
2542 	rc = qed_eth_rx_queue_stop(p_hwfn,
2543 				   p_queue->cids[qid_usage_idx].p_cid,
2544 				   false, cqe_completion);
2545 	if (rc)
2546 		return rc;
2547 
2548 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2549 	vf->num_active_rxqs--;
2550 
2551 	return 0;
2552 }
2553 
2554 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2555 				struct qed_vf_info *vf,
2556 				u16 txq_id, u8 qid_usage_idx)
2557 {
2558 	struct qed_vf_queue *p_queue;
2559 	int rc = 0;
2560 
2561 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2562 		return -EINVAL;
2563 
2564 	p_queue = &vf->vf_queues[txq_id];
2565 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2566 	    !p_queue->cids[qid_usage_idx].b_is_tx)
2567 		return -EINVAL;
2568 
2569 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2570 	if (rc)
2571 		return rc;
2572 
2573 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2574 	return 0;
2575 }
2576 
2577 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2578 				     struct qed_ptt *p_ptt,
2579 				     struct qed_vf_info *vf)
2580 {
2581 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2582 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2583 	u8 status = PFVF_STATUS_FAILURE;
2584 	struct vfpf_stop_rxqs_tlv *req;
2585 	u8 qid_usage_idx;
2586 	int rc;
2587 
2588 	/* There has never been an official driver that used this interface
2589 	 * for stopping multiple queues, and it is now considered deprecated.
2590 	 * Validate this isn't used here.
2591 	 */
2592 	req = &mbx->req_virt->stop_rxqs;
2593 	if (req->num_rxqs != 1) {
2594 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2595 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2596 			   vf->relative_vf_id);
2597 		status = PFVF_STATUS_NOT_SUPPORTED;
2598 		goto out;
2599 	}
2600 
2601 	/* Find which qid-index is associated with the queue */
2602 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2603 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2604 		goto out;
2605 
2606 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2607 				  qid_usage_idx, req->cqe_completion);
2608 	if (!rc)
2609 		status = PFVF_STATUS_SUCCESS;
2610 out:
2611 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2612 			     length, status);
2613 }
2614 
2615 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2616 				     struct qed_ptt *p_ptt,
2617 				     struct qed_vf_info *vf)
2618 {
2619 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2620 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2621 	u8 status = PFVF_STATUS_FAILURE;
2622 	struct vfpf_stop_txqs_tlv *req;
2623 	u8 qid_usage_idx;
2624 	int rc;
2625 
2626 	/* There has never been an official driver that used this interface
2627 	 * for stopping multiple queues, and it is now considered deprecated.
2628 	 * Validate this isn't used here.
2629 	 */
2630 	req = &mbx->req_virt->stop_txqs;
2631 	if (req->num_txqs != 1) {
2632 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2633 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2634 			   vf->relative_vf_id);
2635 		status = PFVF_STATUS_NOT_SUPPORTED;
2636 		goto out;
2637 	}
2638 
2639 	/* Find which qid-index is associated with the queue */
2640 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2641 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2642 		goto out;
2643 
2644 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2645 	if (!rc)
2646 		status = PFVF_STATUS_SUCCESS;
2647 
2648 out:
2649 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2650 			     length, status);
2651 }
2652 
2653 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2654 				       struct qed_ptt *p_ptt,
2655 				       struct qed_vf_info *vf)
2656 {
2657 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2658 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2659 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2660 	struct vfpf_update_rxq_tlv *req;
2661 	u8 status = PFVF_STATUS_FAILURE;
2662 	u8 complete_event_flg;
2663 	u8 complete_cqe_flg;
2664 	u8 qid_usage_idx;
2665 	int rc;
2666 	u8 i;
2667 
2668 	req = &mbx->req_virt->update_rxq;
2669 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2670 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2671 
2672 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2673 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2674 		goto out;
2675 
2676 	/* There shouldn't exist a VF that uses queue-qids yet uses this
2677 	 * API with multiple Rx queues. Validate this.
2678 	 */
2679 	if ((vf->acquire.vfdev_info.capabilities &
2680 	     VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2681 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2682 			   "VF[%d] supports QIDs but sends multiple queues\n",
2683 			   vf->relative_vf_id);
2684 		goto out;
2685 	}
2686 
2687 	/* Validate inputs - for the legacy case this is still true since
2688 	 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2689 	 */
2690 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2691 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2692 					  QED_IOV_VALIDATE_Q_NA) ||
2693 		    !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2694 		    vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2695 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2696 				   "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2697 				   vf->relative_vf_id, req->rx_qid,
2698 				   req->num_rxqs);
2699 			goto out;
2700 		}
2701 	}
2702 
2703 	/* Prepare the handlers */
2704 	for (i = 0; i < req->num_rxqs; i++) {
2705 		u16 qid = req->rx_qid + i;
2706 
2707 		handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2708 	}
2709 
2710 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2711 					 req->num_rxqs,
2712 					 complete_cqe_flg,
2713 					 complete_event_flg,
2714 					 QED_SPQ_MODE_EBLOCK, NULL);
2715 	if (rc)
2716 		goto out;
2717 
2718 	status = PFVF_STATUS_SUCCESS;
2719 out:
2720 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2721 			     length, status);
2722 }
2723 
2724 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2725 			       void *p_tlvs_list, u16 req_type)
2726 {
2727 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2728 	int len = 0;
2729 
2730 	do {
2731 		if (!p_tlv->length) {
2732 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2733 			return NULL;
2734 		}
2735 
2736 		if (p_tlv->type == req_type) {
2737 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2738 				   "Extended tlv type %d, length %d found\n",
2739 				   p_tlv->type, p_tlv->length);
2740 			return p_tlv;
2741 		}
2742 
2743 		len += p_tlv->length;
2744 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2745 
2746 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2747 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2748 			return NULL;
2749 		}
2750 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2751 
2752 	return NULL;
2753 }
2754 
2755 static void
2756 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2757 			    struct qed_sp_vport_update_params *p_data,
2758 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2759 {
2760 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2761 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2762 
2763 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2764 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2765 	if (!p_act_tlv)
2766 		return;
2767 
2768 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2769 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2770 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2771 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2772 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2773 }
2774 
2775 static void
2776 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2777 			     struct qed_sp_vport_update_params *p_data,
2778 			     struct qed_vf_info *p_vf,
2779 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2780 {
2781 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2782 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2783 
2784 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2785 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2786 	if (!p_vlan_tlv)
2787 		return;
2788 
2789 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2790 
2791 	/* Ignore the VF request if we're forcing a vlan */
2792 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2793 		p_data->update_inner_vlan_removal_flg = 1;
2794 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2795 	}
2796 
2797 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2798 }
2799 
2800 static void
2801 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2802 			    struct qed_sp_vport_update_params *p_data,
2803 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2804 {
2805 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2806 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2807 
2808 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2809 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2810 						   tlv);
2811 	if (!p_tx_switch_tlv)
2812 		return;
2813 
2814 	p_data->update_tx_switching_flg = 1;
2815 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2816 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2817 }
2818 
2819 static void
2820 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2821 				  struct qed_sp_vport_update_params *p_data,
2822 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2823 {
2824 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2825 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2826 
2827 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2828 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2829 	if (!p_mcast_tlv)
2830 		return;
2831 
2832 	p_data->update_approx_mcast_flg = 1;
2833 	memcpy(p_data->bins, p_mcast_tlv->bins,
2834 	       sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2835 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2836 }
2837 
2838 static void
2839 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2840 			      struct qed_sp_vport_update_params *p_data,
2841 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2842 {
2843 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2844 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2845 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2846 
2847 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2848 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2849 	if (!p_accept_tlv)
2850 		return;
2851 
2852 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2853 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2854 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2855 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2856 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2857 }
2858 
2859 static void
2860 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2861 				  struct qed_sp_vport_update_params *p_data,
2862 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2863 {
2864 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2865 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2866 
2867 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2868 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2869 						     tlv);
2870 	if (!p_accept_any_vlan)
2871 		return;
2872 
2873 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2874 	p_data->update_accept_any_vlan_flg =
2875 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2876 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2877 }
2878 
2879 static void
2880 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2881 			    struct qed_vf_info *vf,
2882 			    struct qed_sp_vport_update_params *p_data,
2883 			    struct qed_rss_params *p_rss,
2884 			    struct qed_iov_vf_mbx *p_mbx,
2885 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2886 {
2887 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2888 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2889 	bool b_reject = false;
2890 	u16 table_size;
2891 	u16 i, q_idx;
2892 
2893 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2894 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2895 	if (!p_rss_tlv) {
2896 		p_data->rss_params = NULL;
2897 		return;
2898 	}
2899 
2900 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2901 
2902 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2903 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2904 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2905 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2906 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2907 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2908 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2909 				   VFPF_UPDATE_RSS_KEY_FLAG);
2910 
2911 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2912 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2913 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2914 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2915 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2916 
2917 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2918 			   (1 << p_rss_tlv->rss_table_size_log));
2919 
2920 	for (i = 0; i < table_size; i++) {
2921 		struct qed_queue_cid *p_cid;
2922 
2923 		q_idx = p_rss_tlv->rss_ind_table[i];
2924 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2925 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2926 			DP_VERBOSE(p_hwfn,
2927 				   QED_MSG_IOV,
2928 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2929 				   vf->relative_vf_id, q_idx);
2930 			b_reject = true;
2931 			goto out;
2932 		}
2933 
2934 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2935 		p_rss->rss_ind_table[i] = p_cid;
2936 	}
2937 
2938 	p_data->rss_params = p_rss;
2939 out:
2940 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2941 	if (!b_reject)
2942 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2943 }
2944 
2945 static void
2946 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2947 				struct qed_vf_info *vf,
2948 				struct qed_sp_vport_update_params *p_data,
2949 				struct qed_sge_tpa_params *p_sge_tpa,
2950 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2951 {
2952 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2953 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2954 
2955 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2956 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2957 
2958 	if (!p_sge_tpa_tlv) {
2959 		p_data->sge_tpa_params = NULL;
2960 		return;
2961 	}
2962 
2963 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2964 
2965 	p_sge_tpa->update_tpa_en_flg =
2966 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2967 	p_sge_tpa->update_tpa_param_flg =
2968 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2969 		VFPF_UPDATE_TPA_PARAM_FLAG);
2970 
2971 	p_sge_tpa->tpa_ipv4_en_flg =
2972 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2973 	p_sge_tpa->tpa_ipv6_en_flg =
2974 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2975 	p_sge_tpa->tpa_pkt_split_flg =
2976 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2977 	p_sge_tpa->tpa_hdr_data_split_flg =
2978 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2979 	p_sge_tpa->tpa_gro_consistent_flg =
2980 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2981 
2982 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2983 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2984 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2985 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2986 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2987 
2988 	p_data->sge_tpa_params = p_sge_tpa;
2989 
2990 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2991 }
2992 
2993 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2994 				    u8 vfid,
2995 				    struct qed_sp_vport_update_params *params,
2996 				    u16 *tlvs)
2997 {
2998 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2999 	struct qed_filter_accept_flags *flags = &params->accept_flags;
3000 	struct qed_public_vf_info *vf_info;
3001 
3002 	/* Untrusted VFs can't even be trusted to know that fact.
3003 	 * Simply indicate everything is configured fine, and trace
3004 	 * configuration 'behind their back'.
3005 	 */
3006 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
3007 		return 0;
3008 
3009 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3010 
3011 	if (flags->update_rx_mode_config) {
3012 		vf_info->rx_accept_mode = flags->rx_accept_filter;
3013 		if (!vf_info->is_trusted_configured)
3014 			flags->rx_accept_filter &= ~mask;
3015 	}
3016 
3017 	if (flags->update_tx_mode_config) {
3018 		vf_info->tx_accept_mode = flags->tx_accept_filter;
3019 		if (!vf_info->is_trusted_configured)
3020 			flags->tx_accept_filter &= ~mask;
3021 	}
3022 
3023 	return 0;
3024 }
3025 
3026 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3027 					struct qed_ptt *p_ptt,
3028 					struct qed_vf_info *vf)
3029 {
3030 	struct qed_rss_params *p_rss_params = NULL;
3031 	struct qed_sp_vport_update_params params;
3032 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3033 	struct qed_sge_tpa_params sge_tpa_params;
3034 	u16 tlvs_mask = 0, tlvs_accepted = 0;
3035 	u8 status = PFVF_STATUS_SUCCESS;
3036 	u16 length;
3037 	int rc;
3038 
3039 	/* Valiate PF can send such a request */
3040 	if (!vf->vport_instance) {
3041 		DP_VERBOSE(p_hwfn,
3042 			   QED_MSG_IOV,
3043 			   "No VPORT instance available for VF[%d], failing vport update\n",
3044 			   vf->abs_vf_id);
3045 		status = PFVF_STATUS_FAILURE;
3046 		goto out;
3047 	}
3048 	p_rss_params = vzalloc(sizeof(*p_rss_params));
3049 	if (p_rss_params == NULL) {
3050 		status = PFVF_STATUS_FAILURE;
3051 		goto out;
3052 	}
3053 
3054 	memset(&params, 0, sizeof(params));
3055 	params.opaque_fid = vf->opaque_fid;
3056 	params.vport_id = vf->vport_id;
3057 	params.rss_params = NULL;
3058 
3059 	/* Search for extended tlvs list and update values
3060 	 * from VF in struct qed_sp_vport_update_params.
3061 	 */
3062 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3063 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3064 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3065 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3066 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3067 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3068 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3069 					&sge_tpa_params, mbx, &tlvs_mask);
3070 
3071 	tlvs_accepted = tlvs_mask;
3072 
3073 	/* Some of the extended TLVs need to be validated first; In that case,
3074 	 * they can update the mask without updating the accepted [so that
3075 	 * PF could communicate to VF it has rejected request].
3076 	 */
3077 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3078 				    mbx, &tlvs_mask, &tlvs_accepted);
3079 
3080 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3081 				     &params, &tlvs_accepted)) {
3082 		tlvs_accepted = 0;
3083 		status = PFVF_STATUS_NOT_SUPPORTED;
3084 		goto out;
3085 	}
3086 
3087 	if (!tlvs_accepted) {
3088 		if (tlvs_mask)
3089 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3090 				   "Upper-layer prevents VF vport configuration\n");
3091 		else
3092 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3093 				   "No feature tlvs found for vport update\n");
3094 		status = PFVF_STATUS_NOT_SUPPORTED;
3095 		goto out;
3096 	}
3097 
3098 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3099 
3100 	if (rc)
3101 		status = PFVF_STATUS_FAILURE;
3102 
3103 out:
3104 	vfree(p_rss_params);
3105 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3106 						  tlvs_mask, tlvs_accepted);
3107 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3108 }
3109 
3110 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3111 					 struct qed_vf_info *p_vf,
3112 					 struct qed_filter_ucast *p_params)
3113 {
3114 	int i;
3115 
3116 	/* First remove entries and then add new ones */
3117 	if (p_params->opcode == QED_FILTER_REMOVE) {
3118 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3119 			if (p_vf->shadow_config.vlans[i].used &&
3120 			    p_vf->shadow_config.vlans[i].vid ==
3121 			    p_params->vlan) {
3122 				p_vf->shadow_config.vlans[i].used = false;
3123 				break;
3124 			}
3125 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3126 			DP_VERBOSE(p_hwfn,
3127 				   QED_MSG_IOV,
3128 				   "VF [%d] - Tries to remove a non-existing vlan\n",
3129 				   p_vf->relative_vf_id);
3130 			return -EINVAL;
3131 		}
3132 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3133 		   p_params->opcode == QED_FILTER_FLUSH) {
3134 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3135 			p_vf->shadow_config.vlans[i].used = false;
3136 	}
3137 
3138 	/* In forced mode, we're willing to remove entries - but we don't add
3139 	 * new ones.
3140 	 */
3141 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3142 		return 0;
3143 
3144 	if (p_params->opcode == QED_FILTER_ADD ||
3145 	    p_params->opcode == QED_FILTER_REPLACE) {
3146 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3147 			if (p_vf->shadow_config.vlans[i].used)
3148 				continue;
3149 
3150 			p_vf->shadow_config.vlans[i].used = true;
3151 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3152 			break;
3153 		}
3154 
3155 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3156 			DP_VERBOSE(p_hwfn,
3157 				   QED_MSG_IOV,
3158 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
3159 				   p_vf->relative_vf_id,
3160 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3161 			return -EINVAL;
3162 		}
3163 	}
3164 
3165 	return 0;
3166 }
3167 
3168 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3169 					struct qed_vf_info *p_vf,
3170 					struct qed_filter_ucast *p_params)
3171 {
3172 	int i;
3173 
3174 	/* If we're in forced-mode, we don't allow any change */
3175 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3176 		return 0;
3177 
3178 	/* Don't keep track of shadow copy since we don't intend to restore. */
3179 	if (p_vf->p_vf_info.is_trusted_configured)
3180 		return 0;
3181 
3182 	/* First remove entries and then add new ones */
3183 	if (p_params->opcode == QED_FILTER_REMOVE) {
3184 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3185 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
3186 					     p_params->mac)) {
3187 				eth_zero_addr(p_vf->shadow_config.macs[i]);
3188 				break;
3189 			}
3190 		}
3191 
3192 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3193 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3194 				   "MAC isn't configured\n");
3195 			return -EINVAL;
3196 		}
3197 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3198 		   p_params->opcode == QED_FILTER_FLUSH) {
3199 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3200 			eth_zero_addr(p_vf->shadow_config.macs[i]);
3201 	}
3202 
3203 	/* List the new MAC address */
3204 	if (p_params->opcode != QED_FILTER_ADD &&
3205 	    p_params->opcode != QED_FILTER_REPLACE)
3206 		return 0;
3207 
3208 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3209 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3210 			ether_addr_copy(p_vf->shadow_config.macs[i],
3211 					p_params->mac);
3212 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3213 				   "Added MAC at %d entry in shadow\n", i);
3214 			break;
3215 		}
3216 	}
3217 
3218 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3219 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3220 		return -EINVAL;
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 static int
3227 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3228 				 struct qed_vf_info *p_vf,
3229 				 struct qed_filter_ucast *p_params)
3230 {
3231 	int rc = 0;
3232 
3233 	if (p_params->type == QED_FILTER_MAC) {
3234 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3235 		if (rc)
3236 			return rc;
3237 	}
3238 
3239 	if (p_params->type == QED_FILTER_VLAN)
3240 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3241 
3242 	return rc;
3243 }
3244 
3245 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3246 			     int vfid, struct qed_filter_ucast *params)
3247 {
3248 	struct qed_public_vf_info *vf;
3249 
3250 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3251 	if (!vf)
3252 		return -EINVAL;
3253 
3254 	/* No real decision to make; Store the configured MAC */
3255 	if (params->type == QED_FILTER_MAC ||
3256 	    params->type == QED_FILTER_MAC_VLAN) {
3257 		ether_addr_copy(vf->mac, params->mac);
3258 
3259 		if (vf->is_trusted_configured) {
3260 			qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
3261 
3262 			/* Update and post bulleitin again */
3263 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3264 		}
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3271 					struct qed_ptt *p_ptt,
3272 					struct qed_vf_info *vf)
3273 {
3274 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3275 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3276 	struct vfpf_ucast_filter_tlv *req;
3277 	u8 status = PFVF_STATUS_SUCCESS;
3278 	struct qed_filter_ucast params;
3279 	int rc;
3280 
3281 	/* Prepare the unicast filter params */
3282 	memset(&params, 0, sizeof(struct qed_filter_ucast));
3283 	req = &mbx->req_virt->ucast_filter;
3284 	params.opcode = (enum qed_filter_opcode)req->opcode;
3285 	params.type = (enum qed_filter_ucast_type)req->type;
3286 
3287 	params.is_rx_filter = 1;
3288 	params.is_tx_filter = 1;
3289 	params.vport_to_remove_from = vf->vport_id;
3290 	params.vport_to_add_to = vf->vport_id;
3291 	memcpy(params.mac, req->mac, ETH_ALEN);
3292 	params.vlan = req->vlan;
3293 
3294 	DP_VERBOSE(p_hwfn,
3295 		   QED_MSG_IOV,
3296 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
3297 		   vf->abs_vf_id, params.opcode, params.type,
3298 		   params.is_rx_filter ? "RX" : "",
3299 		   params.is_tx_filter ? "TX" : "",
3300 		   params.vport_to_add_to,
3301 		   params.mac[0], params.mac[1],
3302 		   params.mac[2], params.mac[3],
3303 		   params.mac[4], params.mac[5], params.vlan);
3304 
3305 	if (!vf->vport_instance) {
3306 		DP_VERBOSE(p_hwfn,
3307 			   QED_MSG_IOV,
3308 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3309 			   vf->abs_vf_id);
3310 		status = PFVF_STATUS_FAILURE;
3311 		goto out;
3312 	}
3313 
3314 	/* Update shadow copy of the VF configuration */
3315 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3316 		status = PFVF_STATUS_FAILURE;
3317 		goto out;
3318 	}
3319 
3320 	/* Determine if the unicast filtering is acceptible by PF */
3321 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3322 	    (params.type == QED_FILTER_VLAN ||
3323 	     params.type == QED_FILTER_MAC_VLAN)) {
3324 		/* Once VLAN is forced or PVID is set, do not allow
3325 		 * to add/replace any further VLANs.
3326 		 */
3327 		if (params.opcode == QED_FILTER_ADD ||
3328 		    params.opcode == QED_FILTER_REPLACE)
3329 			status = PFVF_STATUS_FORCED;
3330 		goto out;
3331 	}
3332 
3333 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3334 	    (params.type == QED_FILTER_MAC ||
3335 	     params.type == QED_FILTER_MAC_VLAN)) {
3336 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3337 		    (params.opcode != QED_FILTER_ADD &&
3338 		     params.opcode != QED_FILTER_REPLACE))
3339 			status = PFVF_STATUS_FORCED;
3340 		goto out;
3341 	}
3342 
3343 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3344 	if (rc) {
3345 		status = PFVF_STATUS_FAILURE;
3346 		goto out;
3347 	}
3348 
3349 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3350 				     QED_SPQ_MODE_CB, NULL);
3351 	if (rc)
3352 		status = PFVF_STATUS_FAILURE;
3353 
3354 out:
3355 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3356 			     sizeof(struct pfvf_def_resp_tlv), status);
3357 }
3358 
3359 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3360 				       struct qed_ptt *p_ptt,
3361 				       struct qed_vf_info *vf)
3362 {
3363 	int i;
3364 
3365 	/* Reset the SBs */
3366 	for (i = 0; i < vf->num_sbs; i++)
3367 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3368 						vf->igu_sbs[i],
3369 						vf->opaque_fid, false);
3370 
3371 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3372 			     sizeof(struct pfvf_def_resp_tlv),
3373 			     PFVF_STATUS_SUCCESS);
3374 }
3375 
3376 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3377 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3378 {
3379 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3380 	u8 status = PFVF_STATUS_SUCCESS;
3381 
3382 	/* Disable Interrupts for VF */
3383 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3384 
3385 	/* Reset Permission table */
3386 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3387 
3388 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3389 			     length, status);
3390 }
3391 
3392 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3393 				   struct qed_ptt *p_ptt,
3394 				   struct qed_vf_info *p_vf)
3395 {
3396 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3397 	u8 status = PFVF_STATUS_SUCCESS;
3398 	int rc = 0;
3399 
3400 	qed_iov_vf_cleanup(p_hwfn, p_vf);
3401 
3402 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3403 		/* Stopping the VF */
3404 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3405 				    p_vf->opaque_fid);
3406 
3407 		if (rc) {
3408 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3409 			       rc);
3410 			status = PFVF_STATUS_FAILURE;
3411 		}
3412 
3413 		p_vf->state = VF_STOPPED;
3414 	}
3415 
3416 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3417 			     length, status);
3418 }
3419 
3420 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3421 				       struct qed_ptt *p_ptt,
3422 				       struct qed_vf_info *p_vf)
3423 {
3424 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3425 	struct pfvf_read_coal_resp_tlv *p_resp;
3426 	struct vfpf_read_coal_req_tlv *req;
3427 	u8 status = PFVF_STATUS_FAILURE;
3428 	struct qed_vf_queue *p_queue;
3429 	struct qed_queue_cid *p_cid;
3430 	u16 coal = 0, qid, i;
3431 	bool b_is_rx;
3432 	int rc = 0;
3433 
3434 	mbx->offset = (u8 *)mbx->reply_virt;
3435 	req = &mbx->req_virt->read_coal_req;
3436 
3437 	qid = req->qid;
3438 	b_is_rx = req->is_rx ? true : false;
3439 
3440 	if (b_is_rx) {
3441 		if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3442 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3443 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3444 				   "VF[%d]: Invalid Rx queue_id = %d\n",
3445 				   p_vf->abs_vf_id, qid);
3446 			goto send_resp;
3447 		}
3448 
3449 		p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3450 		rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3451 		if (rc)
3452 			goto send_resp;
3453 	} else {
3454 		if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3455 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3456 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3457 				   "VF[%d]: Invalid Tx queue_id = %d\n",
3458 				   p_vf->abs_vf_id, qid);
3459 			goto send_resp;
3460 		}
3461 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3462 			p_queue = &p_vf->vf_queues[qid];
3463 			if ((!p_queue->cids[i].p_cid) ||
3464 			    (!p_queue->cids[i].b_is_tx))
3465 				continue;
3466 
3467 			p_cid = p_queue->cids[i].p_cid;
3468 
3469 			rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3470 			if (rc)
3471 				goto send_resp;
3472 			break;
3473 		}
3474 	}
3475 
3476 	status = PFVF_STATUS_SUCCESS;
3477 
3478 send_resp:
3479 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3480 			     sizeof(*p_resp));
3481 	p_resp->coal = coal;
3482 
3483 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3484 		    sizeof(struct channel_list_end_tlv));
3485 
3486 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3487 }
3488 
3489 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3490 				       struct qed_ptt *p_ptt,
3491 				       struct qed_vf_info *vf)
3492 {
3493 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3494 	struct vfpf_update_coalesce *req;
3495 	u8 status = PFVF_STATUS_FAILURE;
3496 	struct qed_queue_cid *p_cid;
3497 	u16 rx_coal, tx_coal;
3498 	int rc = 0, i;
3499 	u16 qid;
3500 
3501 	req = &mbx->req_virt->update_coalesce;
3502 
3503 	rx_coal = req->rx_coal;
3504 	tx_coal = req->tx_coal;
3505 	qid = req->qid;
3506 
3507 	if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3508 				  QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3509 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3510 			   "VF[%d]: Invalid Rx queue_id = %d\n",
3511 			   vf->abs_vf_id, qid);
3512 		goto out;
3513 	}
3514 
3515 	if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3516 				  QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3517 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3518 			   "VF[%d]: Invalid Tx queue_id = %d\n",
3519 			   vf->abs_vf_id, qid);
3520 		goto out;
3521 	}
3522 
3523 	DP_VERBOSE(p_hwfn,
3524 		   QED_MSG_IOV,
3525 		   "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3526 		   vf->abs_vf_id, rx_coal, tx_coal, qid);
3527 
3528 	if (rx_coal) {
3529 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3530 
3531 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3532 		if (rc) {
3533 			DP_VERBOSE(p_hwfn,
3534 				   QED_MSG_IOV,
3535 				   "VF[%d]: Unable to set rx queue = %d coalesce\n",
3536 				   vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3537 			goto out;
3538 		}
3539 		vf->rx_coal = rx_coal;
3540 	}
3541 
3542 	if (tx_coal) {
3543 		struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3544 
3545 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3546 			if (!p_queue->cids[i].p_cid)
3547 				continue;
3548 
3549 			if (!p_queue->cids[i].b_is_tx)
3550 				continue;
3551 
3552 			rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3553 						  p_queue->cids[i].p_cid);
3554 
3555 			if (rc) {
3556 				DP_VERBOSE(p_hwfn,
3557 					   QED_MSG_IOV,
3558 					   "VF[%d]: Unable to set tx queue coalesce\n",
3559 					   vf->abs_vf_id);
3560 				goto out;
3561 			}
3562 		}
3563 		vf->tx_coal = tx_coal;
3564 	}
3565 
3566 	status = PFVF_STATUS_SUCCESS;
3567 out:
3568 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3569 			     sizeof(struct pfvf_def_resp_tlv), status);
3570 }
3571 static int
3572 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3573 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3574 {
3575 	int cnt;
3576 	u32 val;
3577 
3578 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
3579 
3580 	for (cnt = 0; cnt < 50; cnt++) {
3581 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3582 		if (!val)
3583 			break;
3584 		msleep(20);
3585 	}
3586 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
3587 
3588 	if (cnt == 50) {
3589 		DP_ERR(p_hwfn,
3590 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3591 		       p_vf->abs_vf_id, val);
3592 		return -EBUSY;
3593 	}
3594 
3595 	return 0;
3596 }
3597 
3598 static int
3599 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3600 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3601 {
3602 	u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4];
3603 	int i, cnt;
3604 
3605 	/* Read initial consumers & producers */
3606 	for (i = 0; i < MAX_NUM_VOQS_E4; i++) {
3607 		u32 prod;
3608 
3609 		cons[i] = qed_rd(p_hwfn, p_ptt,
3610 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3611 				 i * 0x40);
3612 		prod = qed_rd(p_hwfn, p_ptt,
3613 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
3614 			      i * 0x40);
3615 		distance[i] = prod - cons[i];
3616 	}
3617 
3618 	/* Wait for consumers to pass the producers */
3619 	i = 0;
3620 	for (cnt = 0; cnt < 50; cnt++) {
3621 		for (; i < MAX_NUM_VOQS_E4; i++) {
3622 			u32 tmp;
3623 
3624 			tmp = qed_rd(p_hwfn, p_ptt,
3625 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3626 				     i * 0x40);
3627 			if (distance[i] > tmp - cons[i])
3628 				break;
3629 		}
3630 
3631 		if (i == MAX_NUM_VOQS_E4)
3632 			break;
3633 
3634 		msleep(20);
3635 	}
3636 
3637 	if (cnt == 50) {
3638 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3639 		       p_vf->abs_vf_id, i);
3640 		return -EBUSY;
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3647 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3648 {
3649 	int rc;
3650 
3651 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3652 	if (rc)
3653 		return rc;
3654 
3655 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3656 	if (rc)
3657 		return rc;
3658 
3659 	return 0;
3660 }
3661 
3662 static int
3663 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3664 			       struct qed_ptt *p_ptt,
3665 			       u16 rel_vf_id, u32 *ack_vfs)
3666 {
3667 	struct qed_vf_info *p_vf;
3668 	int rc = 0;
3669 
3670 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3671 	if (!p_vf)
3672 		return 0;
3673 
3674 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3675 	    (1ULL << (rel_vf_id % 64))) {
3676 		u16 vfid = p_vf->abs_vf_id;
3677 
3678 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3679 			   "VF[%d] - Handling FLR\n", vfid);
3680 
3681 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3682 
3683 		/* If VF isn't active, no need for anything but SW */
3684 		if (!p_vf->b_init)
3685 			goto cleanup;
3686 
3687 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3688 		if (rc)
3689 			goto cleanup;
3690 
3691 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3692 		if (rc) {
3693 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3694 			return rc;
3695 		}
3696 
3697 		/* Workaround to make VF-PF channel ready, as FW
3698 		 * doesn't do that as a part of FLR.
3699 		 */
3700 		REG_WR(p_hwfn,
3701 		       GTT_BAR0_MAP_REG_USDM_RAM +
3702 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3703 
3704 		/* VF_STOPPED has to be set only after final cleanup
3705 		 * but prior to re-enabling the VF.
3706 		 */
3707 		p_vf->state = VF_STOPPED;
3708 
3709 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3710 		if (rc) {
3711 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3712 			       vfid);
3713 			return rc;
3714 		}
3715 cleanup:
3716 		/* Mark VF for ack and clean pending state */
3717 		if (p_vf->state == VF_RESET)
3718 			p_vf->state = VF_STOPPED;
3719 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3720 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3721 		    ~(1ULL << (rel_vf_id % 64));
3722 		p_vf->vf_mbx.b_pending_msg = false;
3723 	}
3724 
3725 	return rc;
3726 }
3727 
3728 static int
3729 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3730 {
3731 	u32 ack_vfs[VF_MAX_STATIC / 32];
3732 	int rc = 0;
3733 	u16 i;
3734 
3735 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3736 
3737 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3738 	 * polling due to HW limitations, simply sleep a bit. And since
3739 	 * there's no need to wait per-vf, do it before looping.
3740 	 */
3741 	msleep(100);
3742 
3743 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3744 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3745 
3746 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3747 	return rc;
3748 }
3749 
3750 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3751 {
3752 	bool found = false;
3753 	u16 i;
3754 
3755 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3756 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3757 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3758 			   "[%08x,...,%08x]: %08x\n",
3759 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3760 
3761 	if (!p_hwfn->cdev->p_iov_info) {
3762 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3763 		return false;
3764 	}
3765 
3766 	/* Mark VFs */
3767 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3768 		struct qed_vf_info *p_vf;
3769 		u8 vfid;
3770 
3771 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3772 		if (!p_vf)
3773 			continue;
3774 
3775 		vfid = p_vf->abs_vf_id;
3776 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3777 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3778 			u16 rel_vf_id = p_vf->relative_vf_id;
3779 
3780 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3781 				   "VF[%d] [rel %d] got FLR-ed\n",
3782 				   vfid, rel_vf_id);
3783 
3784 			p_vf->state = VF_RESET;
3785 
3786 			/* No need to lock here, since pending_flr should
3787 			 * only change here and before ACKing MFw. Since
3788 			 * MFW will not trigger an additional attention for
3789 			 * VF flr until ACKs, we're safe.
3790 			 */
3791 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3792 			found = true;
3793 		}
3794 	}
3795 
3796 	return found;
3797 }
3798 
3799 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3800 			     u16 vfid,
3801 			     struct qed_mcp_link_params *p_params,
3802 			     struct qed_mcp_link_state *p_link,
3803 			     struct qed_mcp_link_capabilities *p_caps)
3804 {
3805 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3806 						       vfid,
3807 						       false);
3808 	struct qed_bulletin_content *p_bulletin;
3809 
3810 	if (!p_vf)
3811 		return;
3812 
3813 	p_bulletin = p_vf->bulletin.p_virt;
3814 
3815 	if (p_params)
3816 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3817 	if (p_link)
3818 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3819 	if (p_caps)
3820 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3821 }
3822 
3823 static int
3824 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
3825 				  struct qed_ptt *p_ptt,
3826 				  struct qed_vf_info *p_vf)
3827 {
3828 	struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
3829 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3830 	struct vfpf_bulletin_update_mac_tlv *p_req;
3831 	u8 status = PFVF_STATUS_SUCCESS;
3832 	int rc = 0;
3833 
3834 	if (!p_vf->p_vf_info.is_trusted_configured) {
3835 		DP_VERBOSE(p_hwfn,
3836 			   QED_MSG_IOV,
3837 			   "Blocking bulletin update request from untrusted VF[%d]\n",
3838 			   p_vf->abs_vf_id);
3839 		status = PFVF_STATUS_NOT_SUPPORTED;
3840 		rc = -EINVAL;
3841 		goto send_status;
3842 	}
3843 
3844 	p_req = &mbx->req_virt->bulletin_update_mac;
3845 	ether_addr_copy(p_bulletin->mac, p_req->mac);
3846 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3847 		   "Updated bulletin of VF[%d] with requested MAC[%pM]\n",
3848 		   p_vf->abs_vf_id, p_req->mac);
3849 
3850 send_status:
3851 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3852 			     CHANNEL_TLV_BULLETIN_UPDATE_MAC,
3853 			     sizeof(struct pfvf_def_resp_tlv), status);
3854 	return rc;
3855 }
3856 
3857 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3858 				    struct qed_ptt *p_ptt, int vfid)
3859 {
3860 	struct qed_iov_vf_mbx *mbx;
3861 	struct qed_vf_info *p_vf;
3862 
3863 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3864 	if (!p_vf)
3865 		return;
3866 
3867 	mbx = &p_vf->vf_mbx;
3868 
3869 	/* qed_iov_process_mbx_request */
3870 	if (!mbx->b_pending_msg) {
3871 		DP_NOTICE(p_hwfn,
3872 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3873 			  p_vf->abs_vf_id);
3874 		return;
3875 	}
3876 	mbx->b_pending_msg = false;
3877 
3878 	mbx->first_tlv = mbx->req_virt->first_tlv;
3879 
3880 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3881 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3882 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3883 
3884 	/* check if tlv type is known */
3885 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3886 	    !p_vf->b_malicious) {
3887 		switch (mbx->first_tlv.tl.type) {
3888 		case CHANNEL_TLV_ACQUIRE:
3889 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3890 			break;
3891 		case CHANNEL_TLV_VPORT_START:
3892 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3893 			break;
3894 		case CHANNEL_TLV_VPORT_TEARDOWN:
3895 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3896 			break;
3897 		case CHANNEL_TLV_START_RXQ:
3898 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3899 			break;
3900 		case CHANNEL_TLV_START_TXQ:
3901 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3902 			break;
3903 		case CHANNEL_TLV_STOP_RXQS:
3904 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3905 			break;
3906 		case CHANNEL_TLV_STOP_TXQS:
3907 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3908 			break;
3909 		case CHANNEL_TLV_UPDATE_RXQ:
3910 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3911 			break;
3912 		case CHANNEL_TLV_VPORT_UPDATE:
3913 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3914 			break;
3915 		case CHANNEL_TLV_UCAST_FILTER:
3916 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3917 			break;
3918 		case CHANNEL_TLV_CLOSE:
3919 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3920 			break;
3921 		case CHANNEL_TLV_INT_CLEANUP:
3922 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3923 			break;
3924 		case CHANNEL_TLV_RELEASE:
3925 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3926 			break;
3927 		case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3928 			qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3929 			break;
3930 		case CHANNEL_TLV_COALESCE_UPDATE:
3931 			qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3932 			break;
3933 		case CHANNEL_TLV_COALESCE_READ:
3934 			qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3935 			break;
3936 		case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
3937 			qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
3938 			break;
3939 		}
3940 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3941 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3942 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3943 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3944 
3945 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3946 				     mbx->first_tlv.tl.type,
3947 				     sizeof(struct pfvf_def_resp_tlv),
3948 				     PFVF_STATUS_MALICIOUS);
3949 	} else {
3950 		/* unknown TLV - this may belong to a VF driver from the future
3951 		 * - a version written after this PF driver was written, which
3952 		 * supports features unknown as of yet. Too bad since we don't
3953 		 * support them. Or this may be because someone wrote a crappy
3954 		 * VF driver and is sending garbage over the channel.
3955 		 */
3956 		DP_NOTICE(p_hwfn,
3957 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3958 			  p_vf->abs_vf_id,
3959 			  mbx->first_tlv.tl.type,
3960 			  mbx->first_tlv.tl.length,
3961 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3962 
3963 		/* Try replying in case reply address matches the acquisition's
3964 		 * posted address.
3965 		 */
3966 		if (p_vf->acquire.first_tlv.reply_address &&
3967 		    (mbx->first_tlv.reply_address ==
3968 		     p_vf->acquire.first_tlv.reply_address)) {
3969 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3970 					     mbx->first_tlv.tl.type,
3971 					     sizeof(struct pfvf_def_resp_tlv),
3972 					     PFVF_STATUS_NOT_SUPPORTED);
3973 		} else {
3974 			DP_VERBOSE(p_hwfn,
3975 				   QED_MSG_IOV,
3976 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3977 				   p_vf->abs_vf_id);
3978 		}
3979 	}
3980 }
3981 
3982 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3983 {
3984 	int i;
3985 
3986 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3987 
3988 	qed_for_each_vf(p_hwfn, i) {
3989 		struct qed_vf_info *p_vf;
3990 
3991 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3992 		if (p_vf->vf_mbx.b_pending_msg)
3993 			events[i / 64] |= 1ULL << (i % 64);
3994 	}
3995 }
3996 
3997 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
3998 						       u16 abs_vfid)
3999 {
4000 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
4001 
4002 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
4003 		DP_VERBOSE(p_hwfn,
4004 			   QED_MSG_IOV,
4005 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
4006 			   abs_vfid);
4007 		return NULL;
4008 	}
4009 
4010 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
4011 }
4012 
4013 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
4014 			      u16 abs_vfid, struct regpair *vf_msg)
4015 {
4016 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
4017 			   abs_vfid);
4018 
4019 	if (!p_vf)
4020 		return 0;
4021 
4022 	/* List the physical address of the request so that handler
4023 	 * could later on copy the message from it.
4024 	 */
4025 	p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
4026 
4027 	/* Mark the event and schedule the workqueue */
4028 	p_vf->vf_mbx.b_pending_msg = true;
4029 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
4030 
4031 	return 0;
4032 }
4033 
4034 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
4035 				     struct malicious_vf_eqe_data *p_data)
4036 {
4037 	struct qed_vf_info *p_vf;
4038 
4039 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
4040 
4041 	if (!p_vf)
4042 		return;
4043 
4044 	if (!p_vf->b_malicious) {
4045 		DP_NOTICE(p_hwfn,
4046 			  "VF [%d] - Malicious behavior [%02x]\n",
4047 			  p_vf->abs_vf_id, p_data->err_id);
4048 
4049 		p_vf->b_malicious = true;
4050 	} else {
4051 		DP_INFO(p_hwfn,
4052 			"VF [%d] - Malicious behavior [%02x]\n",
4053 			p_vf->abs_vf_id, p_data->err_id);
4054 	}
4055 }
4056 
4057 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
4058 			       u8 opcode,
4059 			       __le16 echo,
4060 			       union event_ring_data *data, u8 fw_return_code)
4061 {
4062 	switch (opcode) {
4063 	case COMMON_EVENT_VF_PF_CHANNEL:
4064 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4065 					  &data->vf_pf_channel.msg_addr);
4066 	case COMMON_EVENT_MALICIOUS_VF:
4067 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
4068 		return 0;
4069 	default:
4070 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4071 			opcode);
4072 		return -EINVAL;
4073 	}
4074 }
4075 
4076 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4077 {
4078 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4079 	u16 i;
4080 
4081 	if (!p_iov)
4082 		goto out;
4083 
4084 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4085 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4086 			return i;
4087 
4088 out:
4089 	return MAX_NUM_VFS;
4090 }
4091 
4092 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4093 			       int vfid)
4094 {
4095 	struct qed_dmae_params params;
4096 	struct qed_vf_info *vf_info;
4097 
4098 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4099 	if (!vf_info)
4100 		return -EINVAL;
4101 
4102 	memset(&params, 0, sizeof(struct qed_dmae_params));
4103 	params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
4104 	params.src_vfid = vf_info->abs_vf_id;
4105 
4106 	if (qed_dmae_host2host(p_hwfn, ptt,
4107 			       vf_info->vf_mbx.pending_req,
4108 			       vf_info->vf_mbx.req_phys,
4109 			       sizeof(union vfpf_tlvs) / 4, &params)) {
4110 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4111 			   "Failed to copy message from VF 0x%02x\n", vfid);
4112 
4113 		return -EIO;
4114 	}
4115 
4116 	return 0;
4117 }
4118 
4119 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4120 					    u8 *mac, int vfid)
4121 {
4122 	struct qed_vf_info *vf_info;
4123 	u64 feature;
4124 
4125 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4126 	if (!vf_info) {
4127 		DP_NOTICE(p_hwfn->cdev,
4128 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4129 		return;
4130 	}
4131 
4132 	if (vf_info->b_malicious) {
4133 		DP_NOTICE(p_hwfn->cdev,
4134 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
4135 		return;
4136 	}
4137 
4138 	if (vf_info->p_vf_info.is_trusted_configured) {
4139 		feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4140 		/* Trust mode will disable Forced MAC */
4141 		vf_info->bulletin.p_virt->valid_bitmap &=
4142 			~BIT(MAC_ADDR_FORCED);
4143 	} else {
4144 		feature = BIT(MAC_ADDR_FORCED);
4145 		/* Forced MAC will disable MAC_ADDR */
4146 		vf_info->bulletin.p_virt->valid_bitmap &=
4147 			~BIT(VFPF_BULLETIN_MAC_ADDR);
4148 	}
4149 
4150 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4151 
4152 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4153 
4154 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4155 }
4156 
4157 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
4158 {
4159 	struct qed_vf_info *vf_info;
4160 	u64 feature;
4161 
4162 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4163 	if (!vf_info) {
4164 		DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
4165 			  vfid);
4166 		return -EINVAL;
4167 	}
4168 
4169 	if (vf_info->b_malicious) {
4170 		DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
4171 			  vfid);
4172 		return -EINVAL;
4173 	}
4174 
4175 	if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
4176 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4177 			   "Can not set MAC, Forced MAC is configured\n");
4178 		return -EINVAL;
4179 	}
4180 
4181 	feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4182 	ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
4183 
4184 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4185 
4186 	if (vf_info->p_vf_info.is_trusted_configured)
4187 		qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4188 
4189 	return 0;
4190 }
4191 
4192 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4193 					     u16 pvid, int vfid)
4194 {
4195 	struct qed_vf_info *vf_info;
4196 	u64 feature;
4197 
4198 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4199 	if (!vf_info) {
4200 		DP_NOTICE(p_hwfn->cdev,
4201 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4202 		return;
4203 	}
4204 
4205 	if (vf_info->b_malicious) {
4206 		DP_NOTICE(p_hwfn->cdev,
4207 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
4208 		return;
4209 	}
4210 
4211 	feature = 1 << VLAN_ADDR_FORCED;
4212 	vf_info->bulletin.p_virt->pvid = pvid;
4213 	if (pvid)
4214 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
4215 	else
4216 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4217 
4218 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4219 }
4220 
4221 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4222 				    int vfid, u16 vxlan_port, u16 geneve_port)
4223 {
4224 	struct qed_vf_info *vf_info;
4225 
4226 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4227 	if (!vf_info) {
4228 		DP_NOTICE(p_hwfn->cdev,
4229 			  "Can not set udp ports, invalid vfid [%d]\n", vfid);
4230 		return;
4231 	}
4232 
4233 	if (vf_info->b_malicious) {
4234 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4235 			   "Can not set udp ports to malicious VF [%d]\n",
4236 			   vfid);
4237 		return;
4238 	}
4239 
4240 	vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4241 	vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4242 }
4243 
4244 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4245 {
4246 	struct qed_vf_info *p_vf_info;
4247 
4248 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4249 	if (!p_vf_info)
4250 		return false;
4251 
4252 	return !!p_vf_info->vport_instance;
4253 }
4254 
4255 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4256 {
4257 	struct qed_vf_info *p_vf_info;
4258 
4259 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4260 	if (!p_vf_info)
4261 		return true;
4262 
4263 	return p_vf_info->state == VF_STOPPED;
4264 }
4265 
4266 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4267 {
4268 	struct qed_vf_info *vf_info;
4269 
4270 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4271 	if (!vf_info)
4272 		return false;
4273 
4274 	return vf_info->spoof_chk;
4275 }
4276 
4277 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4278 {
4279 	struct qed_vf_info *vf;
4280 	int rc = -EINVAL;
4281 
4282 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4283 		DP_NOTICE(p_hwfn,
4284 			  "SR-IOV sanity check failed, can't set spoofchk\n");
4285 		goto out;
4286 	}
4287 
4288 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4289 	if (!vf)
4290 		goto out;
4291 
4292 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4293 		/* After VF VPORT start PF will configure spoof check */
4294 		vf->req_spoofchk_val = val;
4295 		rc = 0;
4296 		goto out;
4297 	}
4298 
4299 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4300 
4301 out:
4302 	return rc;
4303 }
4304 
4305 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4306 {
4307 	struct qed_vf_info *p_vf;
4308 
4309 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4310 	if (!p_vf || !p_vf->bulletin.p_virt)
4311 		return NULL;
4312 
4313 	if (!(p_vf->bulletin.p_virt->valid_bitmap &
4314 	      BIT(VFPF_BULLETIN_MAC_ADDR)))
4315 		return NULL;
4316 
4317 	return p_vf->bulletin.p_virt->mac;
4318 }
4319 
4320 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4321 					   u16 rel_vf_id)
4322 {
4323 	struct qed_vf_info *p_vf;
4324 
4325 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4326 	if (!p_vf || !p_vf->bulletin.p_virt)
4327 		return NULL;
4328 
4329 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4330 		return NULL;
4331 
4332 	return p_vf->bulletin.p_virt->mac;
4333 }
4334 
4335 static u16
4336 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4337 {
4338 	struct qed_vf_info *p_vf;
4339 
4340 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4341 	if (!p_vf || !p_vf->bulletin.p_virt)
4342 		return 0;
4343 
4344 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4345 		return 0;
4346 
4347 	return p_vf->bulletin.p_virt->pvid;
4348 }
4349 
4350 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4351 				     struct qed_ptt *p_ptt, int vfid, int val)
4352 {
4353 	struct qed_mcp_link_state *p_link;
4354 	struct qed_vf_info *vf;
4355 	u8 abs_vp_id = 0;
4356 	int rc;
4357 
4358 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4359 	if (!vf)
4360 		return -EINVAL;
4361 
4362 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4363 	if (rc)
4364 		return rc;
4365 
4366 	p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output;
4367 
4368 	return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val,
4369 				 p_link->speed);
4370 }
4371 
4372 static int
4373 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4374 {
4375 	struct qed_vf_info *vf;
4376 	u8 vport_id;
4377 	int i;
4378 
4379 	for_each_hwfn(cdev, i) {
4380 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4381 
4382 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4383 			DP_NOTICE(p_hwfn,
4384 				  "SR-IOV sanity check failed, can't set min rate\n");
4385 			return -EINVAL;
4386 		}
4387 	}
4388 
4389 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4390 	vport_id = vf->vport_id;
4391 
4392 	return qed_configure_vport_wfq(cdev, vport_id, rate);
4393 }
4394 
4395 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4396 {
4397 	struct qed_wfq_data *vf_vp_wfq;
4398 	struct qed_vf_info *vf_info;
4399 
4400 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4401 	if (!vf_info)
4402 		return 0;
4403 
4404 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4405 
4406 	if (vf_vp_wfq->configured)
4407 		return vf_vp_wfq->min_speed;
4408 	else
4409 		return 0;
4410 }
4411 
4412 /**
4413  * qed_schedule_iov - schedules IOV task for VF and PF
4414  * @hwfn: hardware function pointer
4415  * @flag: IOV flag for VF/PF
4416  */
4417 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4418 {
4419 	smp_mb__before_atomic();
4420 	set_bit(flag, &hwfn->iov_task_flags);
4421 	smp_mb__after_atomic();
4422 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4423 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4424 }
4425 
4426 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4427 {
4428 	int i;
4429 
4430 	for_each_hwfn(cdev, i)
4431 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
4432 			       &cdev->hwfns[i].iov_task, 0);
4433 }
4434 
4435 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4436 {
4437 	int i, j;
4438 
4439 	for_each_hwfn(cdev, i)
4440 	    if (cdev->hwfns[i].iov_wq)
4441 		flush_workqueue(cdev->hwfns[i].iov_wq);
4442 
4443 	/* Mark VFs for disablement */
4444 	qed_iov_set_vfs_to_disable(cdev, true);
4445 
4446 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4447 		pci_disable_sriov(cdev->pdev);
4448 
4449 	for_each_hwfn(cdev, i) {
4450 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4451 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4452 
4453 		/* Failure to acquire the ptt in 100g creates an odd error
4454 		 * where the first engine has already relased IOV.
4455 		 */
4456 		if (!ptt) {
4457 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4458 			return -EBUSY;
4459 		}
4460 
4461 		/* Clean WFQ db and configure equal weight for all vports */
4462 		qed_clean_wfq_db(hwfn, ptt);
4463 
4464 		qed_for_each_vf(hwfn, j) {
4465 			int k;
4466 
4467 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4468 				continue;
4469 
4470 			/* Wait until VF is disabled before releasing */
4471 			for (k = 0; k < 100; k++) {
4472 				if (!qed_iov_is_vf_stopped(hwfn, j))
4473 					msleep(20);
4474 				else
4475 					break;
4476 			}
4477 
4478 			if (k < 100)
4479 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4480 							  ptt, j);
4481 			else
4482 				DP_ERR(hwfn,
4483 				       "Timeout waiting for VF's FLR to end\n");
4484 		}
4485 
4486 		qed_ptt_release(hwfn, ptt);
4487 	}
4488 
4489 	qed_iov_set_vfs_to_disable(cdev, false);
4490 
4491 	return 0;
4492 }
4493 
4494 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4495 					u16 vfid,
4496 					struct qed_iov_vf_init_params *params)
4497 {
4498 	u16 base, i;
4499 
4500 	/* Since we have an equal resource distribution per-VF, and we assume
4501 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4502 	 * sequentially from there.
4503 	 */
4504 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4505 
4506 	params->rel_vf_id = vfid;
4507 	for (i = 0; i < params->num_queues; i++) {
4508 		params->req_rx_queue[i] = base + i;
4509 		params->req_tx_queue[i] = base + i;
4510 	}
4511 }
4512 
4513 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4514 {
4515 	struct qed_iov_vf_init_params params;
4516 	struct qed_hwfn *hwfn;
4517 	struct qed_ptt *ptt;
4518 	int i, j, rc;
4519 
4520 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4521 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
4522 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4523 		return -EINVAL;
4524 	}
4525 
4526 	memset(&params, 0, sizeof(params));
4527 
4528 	/* Initialize HW for VF access */
4529 	for_each_hwfn(cdev, j) {
4530 		hwfn = &cdev->hwfns[j];
4531 		ptt = qed_ptt_acquire(hwfn);
4532 
4533 		/* Make sure not to use more than 16 queues per VF */
4534 		params.num_queues = min_t(int,
4535 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4536 					  16);
4537 
4538 		if (!ptt) {
4539 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4540 			rc = -EBUSY;
4541 			goto err;
4542 		}
4543 
4544 		for (i = 0; i < num; i++) {
4545 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4546 				continue;
4547 
4548 			qed_sriov_enable_qid_config(hwfn, i, &params);
4549 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4550 			if (rc) {
4551 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4552 				qed_ptt_release(hwfn, ptt);
4553 				goto err;
4554 			}
4555 		}
4556 
4557 		qed_ptt_release(hwfn, ptt);
4558 	}
4559 
4560 	/* Enable SRIOV PCIe functions */
4561 	rc = pci_enable_sriov(cdev->pdev, num);
4562 	if (rc) {
4563 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4564 		goto err;
4565 	}
4566 
4567 	hwfn = QED_LEADING_HWFN(cdev);
4568 	ptt = qed_ptt_acquire(hwfn);
4569 	if (!ptt) {
4570 		DP_ERR(hwfn, "Failed to acquire ptt\n");
4571 		rc = -EBUSY;
4572 		goto err;
4573 	}
4574 
4575 	rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4576 	if (rc)
4577 		DP_INFO(cdev, "Failed to update eswitch mode\n");
4578 	qed_ptt_release(hwfn, ptt);
4579 
4580 	return num;
4581 
4582 err:
4583 	qed_sriov_disable(cdev, false);
4584 	return rc;
4585 }
4586 
4587 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4588 {
4589 	if (!IS_QED_SRIOV(cdev)) {
4590 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4591 		return -EOPNOTSUPP;
4592 	}
4593 
4594 	if (num_vfs_param)
4595 		return qed_sriov_enable(cdev, num_vfs_param);
4596 	else
4597 		return qed_sriov_disable(cdev, true);
4598 }
4599 
4600 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4601 {
4602 	int i;
4603 
4604 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4605 		DP_VERBOSE(cdev, QED_MSG_IOV,
4606 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4607 		return -EINVAL;
4608 	}
4609 
4610 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4611 		DP_VERBOSE(cdev, QED_MSG_IOV,
4612 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4613 		return -EINVAL;
4614 	}
4615 
4616 	for_each_hwfn(cdev, i) {
4617 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4618 		struct qed_public_vf_info *vf_info;
4619 
4620 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4621 		if (!vf_info)
4622 			continue;
4623 
4624 		/* Set the MAC, and schedule the IOV task */
4625 		if (vf_info->is_trusted_configured)
4626 			ether_addr_copy(vf_info->mac, mac);
4627 		else
4628 			ether_addr_copy(vf_info->forced_mac, mac);
4629 
4630 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4631 	}
4632 
4633 	return 0;
4634 }
4635 
4636 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4637 {
4638 	int i;
4639 
4640 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4641 		DP_VERBOSE(cdev, QED_MSG_IOV,
4642 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4643 		return -EINVAL;
4644 	}
4645 
4646 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4647 		DP_VERBOSE(cdev, QED_MSG_IOV,
4648 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4649 		return -EINVAL;
4650 	}
4651 
4652 	for_each_hwfn(cdev, i) {
4653 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4654 		struct qed_public_vf_info *vf_info;
4655 
4656 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4657 		if (!vf_info)
4658 			continue;
4659 
4660 		/* Set the forced vlan, and schedule the IOV task */
4661 		vf_info->forced_vlan = vid;
4662 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4663 	}
4664 
4665 	return 0;
4666 }
4667 
4668 static int qed_get_vf_config(struct qed_dev *cdev,
4669 			     int vf_id, struct ifla_vf_info *ivi)
4670 {
4671 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4672 	struct qed_public_vf_info *vf_info;
4673 	struct qed_mcp_link_state link;
4674 	u32 tx_rate;
4675 
4676 	/* Sanitize request */
4677 	if (IS_VF(cdev))
4678 		return -EINVAL;
4679 
4680 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4681 		DP_VERBOSE(cdev, QED_MSG_IOV,
4682 			   "VF index [%d] isn't active\n", vf_id);
4683 		return -EINVAL;
4684 	}
4685 
4686 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4687 
4688 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4689 
4690 	/* Fill information about VF */
4691 	ivi->vf = vf_id;
4692 
4693 	if (is_valid_ether_addr(vf_info->forced_mac))
4694 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
4695 	else
4696 		ether_addr_copy(ivi->mac, vf_info->mac);
4697 
4698 	ivi->vlan = vf_info->forced_vlan;
4699 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4700 	ivi->linkstate = vf_info->link_state;
4701 	tx_rate = vf_info->tx_rate;
4702 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4703 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4704 
4705 	return 0;
4706 }
4707 
4708 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4709 {
4710 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4711 	struct qed_mcp_link_capabilities caps;
4712 	struct qed_mcp_link_params params;
4713 	struct qed_mcp_link_state link;
4714 	int i;
4715 
4716 	if (!hwfn->pf_iov_info)
4717 		return;
4718 
4719 	/* Update bulletin of all future possible VFs with link configuration */
4720 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4721 		struct qed_public_vf_info *vf_info;
4722 
4723 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4724 		if (!vf_info)
4725 			continue;
4726 
4727 		/* Only hwfn0 is actually interested in the link speed.
4728 		 * But since only it would receive an MFW indication of link,
4729 		 * need to take configuration from it - otherwise things like
4730 		 * rate limiting for hwfn1 VF would not work.
4731 		 */
4732 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4733 		       sizeof(params));
4734 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4735 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4736 		       sizeof(caps));
4737 
4738 		/* Modify link according to the VF's configured link state */
4739 		switch (vf_info->link_state) {
4740 		case IFLA_VF_LINK_STATE_DISABLE:
4741 			link.link_up = false;
4742 			break;
4743 		case IFLA_VF_LINK_STATE_ENABLE:
4744 			link.link_up = true;
4745 			/* Set speed according to maximum supported by HW.
4746 			 * that is 40G for regular devices and 100G for CMT
4747 			 * mode devices.
4748 			 */
4749 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
4750 				     100000 : 40000;
4751 		default:
4752 			/* In auto mode pass PF link image to VF */
4753 			break;
4754 		}
4755 
4756 		if (link.link_up && vf_info->tx_rate) {
4757 			struct qed_ptt *ptt;
4758 			int rate;
4759 
4760 			rate = min_t(int, vf_info->tx_rate, link.speed);
4761 
4762 			ptt = qed_ptt_acquire(hwfn);
4763 			if (!ptt) {
4764 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4765 				return;
4766 			}
4767 
4768 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4769 				vf_info->tx_rate = rate;
4770 				link.speed = rate;
4771 			}
4772 
4773 			qed_ptt_release(hwfn, ptt);
4774 		}
4775 
4776 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4777 	}
4778 
4779 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4780 }
4781 
4782 static int qed_set_vf_link_state(struct qed_dev *cdev,
4783 				 int vf_id, int link_state)
4784 {
4785 	int i;
4786 
4787 	/* Sanitize request */
4788 	if (IS_VF(cdev))
4789 		return -EINVAL;
4790 
4791 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4792 		DP_VERBOSE(cdev, QED_MSG_IOV,
4793 			   "VF index [%d] isn't active\n", vf_id);
4794 		return -EINVAL;
4795 	}
4796 
4797 	/* Handle configuration of link state */
4798 	for_each_hwfn(cdev, i) {
4799 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4800 		struct qed_public_vf_info *vf;
4801 
4802 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4803 		if (!vf)
4804 			continue;
4805 
4806 		if (vf->link_state == link_state)
4807 			continue;
4808 
4809 		vf->link_state = link_state;
4810 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4811 	}
4812 
4813 	return 0;
4814 }
4815 
4816 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4817 {
4818 	int i, rc = -EINVAL;
4819 
4820 	for_each_hwfn(cdev, i) {
4821 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4822 
4823 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4824 		if (rc)
4825 			break;
4826 	}
4827 
4828 	return rc;
4829 }
4830 
4831 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4832 {
4833 	int i;
4834 
4835 	for_each_hwfn(cdev, i) {
4836 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4837 		struct qed_public_vf_info *vf;
4838 
4839 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4840 			DP_NOTICE(p_hwfn,
4841 				  "SR-IOV sanity check failed, can't set tx rate\n");
4842 			return -EINVAL;
4843 		}
4844 
4845 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4846 
4847 		vf->tx_rate = rate;
4848 
4849 		qed_inform_vf_link_state(p_hwfn);
4850 	}
4851 
4852 	return 0;
4853 }
4854 
4855 static int qed_set_vf_rate(struct qed_dev *cdev,
4856 			   int vfid, u32 min_rate, u32 max_rate)
4857 {
4858 	int rc_min = 0, rc_max = 0;
4859 
4860 	if (max_rate)
4861 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4862 
4863 	if (min_rate)
4864 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4865 
4866 	if (rc_max | rc_min)
4867 		return -EINVAL;
4868 
4869 	return 0;
4870 }
4871 
4872 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4873 {
4874 	int i;
4875 
4876 	for_each_hwfn(cdev, i) {
4877 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4878 		struct qed_public_vf_info *vf;
4879 
4880 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4881 			DP_NOTICE(hwfn,
4882 				  "SR-IOV sanity check failed, can't set trust\n");
4883 			return -EINVAL;
4884 		}
4885 
4886 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4887 
4888 		if (vf->is_trusted_request == trust)
4889 			return 0;
4890 		vf->is_trusted_request = trust;
4891 
4892 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4893 	}
4894 
4895 	return 0;
4896 }
4897 
4898 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4899 {
4900 	u64 events[QED_VF_ARRAY_LENGTH];
4901 	struct qed_ptt *ptt;
4902 	int i;
4903 
4904 	ptt = qed_ptt_acquire(hwfn);
4905 	if (!ptt) {
4906 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4907 			   "Can't acquire PTT; re-scheduling\n");
4908 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4909 		return;
4910 	}
4911 
4912 	qed_iov_pf_get_pending_events(hwfn, events);
4913 
4914 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4915 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4916 		   events[0], events[1], events[2]);
4917 
4918 	qed_for_each_vf(hwfn, i) {
4919 		/* Skip VFs with no pending messages */
4920 		if (!(events[i / 64] & (1ULL << (i % 64))))
4921 			continue;
4922 
4923 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4924 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4925 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4926 
4927 		/* Copy VF's message to PF's request buffer for that VF */
4928 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4929 			continue;
4930 
4931 		qed_iov_process_mbx_req(hwfn, ptt, i);
4932 	}
4933 
4934 	qed_ptt_release(hwfn, ptt);
4935 }
4936 
4937 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
4938 				       u8 *mac,
4939 				       struct qed_public_vf_info *info)
4940 {
4941 	if (info->is_trusted_configured) {
4942 		if (is_valid_ether_addr(info->mac) &&
4943 		    (!mac || !ether_addr_equal(mac, info->mac)))
4944 			return true;
4945 	} else {
4946 		if (is_valid_ether_addr(info->forced_mac) &&
4947 		    (!mac || !ether_addr_equal(mac, info->forced_mac)))
4948 			return true;
4949 	}
4950 
4951 	return false;
4952 }
4953 
4954 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
4955 				 struct qed_public_vf_info *info,
4956 				 int vfid)
4957 {
4958 	if (info->is_trusted_configured)
4959 		qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
4960 	else
4961 		qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
4962 }
4963 
4964 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4965 {
4966 	int i;
4967 
4968 	qed_for_each_vf(hwfn, i) {
4969 		struct qed_public_vf_info *info;
4970 		bool update = false;
4971 		u8 *mac;
4972 
4973 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4974 		if (!info)
4975 			continue;
4976 
4977 		/* Update data on bulletin board */
4978 		if (info->is_trusted_configured)
4979 			mac = qed_iov_bulletin_get_mac(hwfn, i);
4980 		else
4981 			mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4982 
4983 		if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
4984 			DP_VERBOSE(hwfn,
4985 				   QED_MSG_IOV,
4986 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4987 				   i,
4988 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4989 
4990 			/* Update bulletin board with MAC */
4991 			qed_set_bulletin_mac(hwfn, info, i);
4992 			update = true;
4993 		}
4994 
4995 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
4996 		    info->forced_vlan) {
4997 			DP_VERBOSE(hwfn,
4998 				   QED_MSG_IOV,
4999 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
5000 				   info->forced_vlan,
5001 				   i,
5002 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5003 			qed_iov_bulletin_set_forced_vlan(hwfn,
5004 							 info->forced_vlan, i);
5005 			update = true;
5006 		}
5007 
5008 		if (update)
5009 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5010 	}
5011 }
5012 
5013 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
5014 {
5015 	struct qed_ptt *ptt;
5016 	int i;
5017 
5018 	ptt = qed_ptt_acquire(hwfn);
5019 	if (!ptt) {
5020 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
5021 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5022 		return;
5023 	}
5024 
5025 	qed_for_each_vf(hwfn, i)
5026 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
5027 
5028 	qed_ptt_release(hwfn, ptt);
5029 }
5030 
5031 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
5032 {
5033 	struct qed_public_vf_info *vf_info;
5034 	struct qed_vf_info *vf;
5035 	u8 *force_mac;
5036 	int i;
5037 
5038 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
5039 	vf = qed_iov_get_vf_info(hwfn, vf_id, true);
5040 
5041 	if (!vf_info || !vf)
5042 		return;
5043 
5044 	/* Force MAC converted to generic MAC in case of VF trust on */
5045 	if (vf_info->is_trusted_configured &&
5046 	    (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
5047 		force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
5048 
5049 		if (force_mac) {
5050 			/* Clear existing shadow copy of MAC to have a clean
5051 			 * slate.
5052 			 */
5053 			for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5054 				if (ether_addr_equal(vf->shadow_config.macs[i],
5055 						     vf_info->mac)) {
5056 					memset(vf->shadow_config.macs[i], 0,
5057 					       ETH_ALEN);
5058 					DP_VERBOSE(hwfn, QED_MSG_IOV,
5059 						   "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
5060 						    vf_info->mac, vf_id);
5061 					break;
5062 				}
5063 			}
5064 
5065 			ether_addr_copy(vf_info->mac, force_mac);
5066 			memset(vf_info->forced_mac, 0, ETH_ALEN);
5067 			vf->bulletin.p_virt->valid_bitmap &=
5068 					~BIT(MAC_ADDR_FORCED);
5069 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5070 		}
5071 	}
5072 
5073 	/* Update shadow copy with VF MAC when trust mode is turned off */
5074 	if (!vf_info->is_trusted_configured) {
5075 		u8 empty_mac[ETH_ALEN];
5076 
5077 		memset(empty_mac, 0, ETH_ALEN);
5078 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5079 			if (ether_addr_equal(vf->shadow_config.macs[i],
5080 					     empty_mac)) {
5081 				ether_addr_copy(vf->shadow_config.macs[i],
5082 						vf_info->mac);
5083 				DP_VERBOSE(hwfn, QED_MSG_IOV,
5084 					   "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
5085 					    vf_info->mac, vf_id);
5086 				break;
5087 			}
5088 		}
5089 		/* Clear bulletin when trust mode is turned off,
5090 		 * to have a clean slate for next (normal) operations.
5091 		 */
5092 		qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
5093 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5094 	}
5095 }
5096 
5097 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
5098 {
5099 	struct qed_sp_vport_update_params params;
5100 	struct qed_filter_accept_flags *flags;
5101 	struct qed_public_vf_info *vf_info;
5102 	struct qed_vf_info *vf;
5103 	u8 mask;
5104 	int i;
5105 
5106 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
5107 	flags = &params.accept_flags;
5108 
5109 	qed_for_each_vf(hwfn, i) {
5110 		/* Need to make sure current requested configuration didn't
5111 		 * flip so that we'll end up configuring something that's not
5112 		 * needed.
5113 		 */
5114 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
5115 		if (vf_info->is_trusted_configured ==
5116 		    vf_info->is_trusted_request)
5117 			continue;
5118 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
5119 
5120 		/* Handle forced MAC mode */
5121 		qed_update_mac_for_vf_trust_change(hwfn, i);
5122 
5123 		/* Validate that the VF has a configured vport */
5124 		vf = qed_iov_get_vf_info(hwfn, i, true);
5125 		if (!vf->vport_instance)
5126 			continue;
5127 
5128 		memset(&params, 0, sizeof(params));
5129 		params.opaque_fid = vf->opaque_fid;
5130 		params.vport_id = vf->vport_id;
5131 
5132 		if (vf_info->rx_accept_mode & mask) {
5133 			flags->update_rx_mode_config = 1;
5134 			flags->rx_accept_filter = vf_info->rx_accept_mode;
5135 		}
5136 
5137 		if (vf_info->tx_accept_mode & mask) {
5138 			flags->update_tx_mode_config = 1;
5139 			flags->tx_accept_filter = vf_info->tx_accept_mode;
5140 		}
5141 
5142 		/* Remove if needed; Otherwise this would set the mask */
5143 		if (!vf_info->is_trusted_configured) {
5144 			flags->rx_accept_filter &= ~mask;
5145 			flags->tx_accept_filter &= ~mask;
5146 		}
5147 
5148 		if (flags->update_rx_mode_config ||
5149 		    flags->update_tx_mode_config)
5150 			qed_sp_vport_update(hwfn, &params,
5151 					    QED_SPQ_MODE_EBLOCK, NULL);
5152 	}
5153 }
5154 
5155 static void qed_iov_pf_task(struct work_struct *work)
5156 
5157 {
5158 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
5159 					     iov_task.work);
5160 	int rc;
5161 
5162 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
5163 		return;
5164 
5165 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
5166 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
5167 
5168 		if (!ptt) {
5169 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5170 			return;
5171 		}
5172 
5173 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
5174 		if (rc)
5175 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5176 
5177 		qed_ptt_release(hwfn, ptt);
5178 	}
5179 
5180 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
5181 		qed_handle_vf_msg(hwfn);
5182 
5183 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
5184 			       &hwfn->iov_task_flags))
5185 		qed_handle_pf_set_vf_unicast(hwfn);
5186 
5187 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
5188 			       &hwfn->iov_task_flags))
5189 		qed_handle_bulletin_post(hwfn);
5190 
5191 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
5192 		qed_iov_handle_trust_change(hwfn);
5193 }
5194 
5195 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
5196 {
5197 	int i;
5198 
5199 	for_each_hwfn(cdev, i) {
5200 		if (!cdev->hwfns[i].iov_wq)
5201 			continue;
5202 
5203 		if (schedule_first) {
5204 			qed_schedule_iov(&cdev->hwfns[i],
5205 					 QED_IOV_WQ_STOP_WQ_FLAG);
5206 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
5207 		}
5208 
5209 		flush_workqueue(cdev->hwfns[i].iov_wq);
5210 		destroy_workqueue(cdev->hwfns[i].iov_wq);
5211 	}
5212 }
5213 
5214 int qed_iov_wq_start(struct qed_dev *cdev)
5215 {
5216 	char name[NAME_SIZE];
5217 	int i;
5218 
5219 	for_each_hwfn(cdev, i) {
5220 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5221 
5222 		/* PFs needs a dedicated workqueue only if they support IOV.
5223 		 * VFs always require one.
5224 		 */
5225 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5226 			continue;
5227 
5228 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5229 			 cdev->pdev->bus->number,
5230 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5231 
5232 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
5233 		if (!p_hwfn->iov_wq) {
5234 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5235 			return -ENOMEM;
5236 		}
5237 
5238 		if (IS_PF(cdev))
5239 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5240 		else
5241 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5242 	}
5243 
5244 	return 0;
5245 }
5246 
5247 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5248 	.configure = &qed_sriov_configure,
5249 	.set_mac = &qed_sriov_pf_set_mac,
5250 	.set_vlan = &qed_sriov_pf_set_vlan,
5251 	.get_config = &qed_get_vf_config,
5252 	.set_link_state = &qed_set_vf_link_state,
5253 	.set_spoof = &qed_spoof_configure,
5254 	.set_rate = &qed_set_vf_rate,
5255 	.set_trust = &qed_set_vf_trust,
5256 };
5257