1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/etherdevice.h> 34 #include <linux/crc32.h> 35 #include <linux/vmalloc.h> 36 #include <linux/qed/qed_iov_if.h> 37 #include "qed_cxt.h" 38 #include "qed_hsi.h" 39 #include "qed_hw.h" 40 #include "qed_init_ops.h" 41 #include "qed_int.h" 42 #include "qed_mcp.h" 43 #include "qed_reg_addr.h" 44 #include "qed_sp.h" 45 #include "qed_sriov.h" 46 #include "qed_vf.h" 47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 48 u8 opcode, 49 __le16 echo, 50 union event_ring_data *data, u8 fw_return_code); 51 52 53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) 54 { 55 u8 legacy = 0; 56 57 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 58 ETH_HSI_VER_NO_PKT_LEN_TUNN) 59 legacy |= QED_QCID_LEGACY_VF_RX_PROD; 60 61 if (!(p_vf->acquire.vfdev_info.capabilities & 62 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 63 legacy |= QED_QCID_LEGACY_VF_CID; 64 65 return legacy; 66 } 67 68 /* IOV ramrods */ 69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 70 { 71 struct vf_start_ramrod_data *p_ramrod = NULL; 72 struct qed_spq_entry *p_ent = NULL; 73 struct qed_sp_init_data init_data; 74 int rc = -EINVAL; 75 u8 fp_minor; 76 77 /* Get SPQ entry */ 78 memset(&init_data, 0, sizeof(init_data)); 79 init_data.cid = qed_spq_get_cid(p_hwfn); 80 init_data.opaque_fid = p_vf->opaque_fid; 81 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 82 83 rc = qed_sp_init_request(p_hwfn, &p_ent, 84 COMMON_RAMROD_VF_START, 85 PROTOCOLID_COMMON, &init_data); 86 if (rc) 87 return rc; 88 89 p_ramrod = &p_ent->ramrod.vf_start; 90 91 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 92 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 93 94 switch (p_hwfn->hw_info.personality) { 95 case QED_PCI_ETH: 96 p_ramrod->personality = PERSONALITY_ETH; 97 break; 98 case QED_PCI_ETH_ROCE: 99 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 100 break; 101 default: 102 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 103 p_hwfn->hw_info.personality); 104 return -EINVAL; 105 } 106 107 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 108 if (fp_minor > ETH_HSI_VER_MINOR && 109 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 110 DP_VERBOSE(p_hwfn, 111 QED_MSG_IOV, 112 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 113 p_vf->abs_vf_id, 114 ETH_HSI_VER_MAJOR, 115 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 116 fp_minor = ETH_HSI_VER_MINOR; 117 } 118 119 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 120 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 121 122 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 123 "VF[%d] - Starting using HSI %02x.%02x\n", 124 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 125 126 return qed_spq_post(p_hwfn, p_ent, NULL); 127 } 128 129 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 130 u32 concrete_vfid, u16 opaque_vfid) 131 { 132 struct vf_stop_ramrod_data *p_ramrod = NULL; 133 struct qed_spq_entry *p_ent = NULL; 134 struct qed_sp_init_data init_data; 135 int rc = -EINVAL; 136 137 /* Get SPQ entry */ 138 memset(&init_data, 0, sizeof(init_data)); 139 init_data.cid = qed_spq_get_cid(p_hwfn); 140 init_data.opaque_fid = opaque_vfid; 141 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 142 143 rc = qed_sp_init_request(p_hwfn, &p_ent, 144 COMMON_RAMROD_VF_STOP, 145 PROTOCOLID_COMMON, &init_data); 146 if (rc) 147 return rc; 148 149 p_ramrod = &p_ent->ramrod.vf_stop; 150 151 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 152 153 return qed_spq_post(p_hwfn, p_ent, NULL); 154 } 155 156 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 157 int rel_vf_id, 158 bool b_enabled_only, bool b_non_malicious) 159 { 160 if (!p_hwfn->pf_iov_info) { 161 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 162 return false; 163 } 164 165 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 166 (rel_vf_id < 0)) 167 return false; 168 169 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 170 b_enabled_only) 171 return false; 172 173 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 174 b_non_malicious) 175 return false; 176 177 return true; 178 } 179 180 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 181 u16 relative_vf_id, 182 bool b_enabled_only) 183 { 184 struct qed_vf_info *vf = NULL; 185 186 if (!p_hwfn->pf_iov_info) { 187 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 188 return NULL; 189 } 190 191 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 192 b_enabled_only, false)) 193 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 194 else 195 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 196 relative_vf_id); 197 198 return vf; 199 } 200 201 static struct qed_queue_cid * 202 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) 203 { 204 int i; 205 206 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 207 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) 208 return p_queue->cids[i].p_cid; 209 } 210 211 return NULL; 212 } 213 214 enum qed_iov_validate_q_mode { 215 QED_IOV_VALIDATE_Q_NA, 216 QED_IOV_VALIDATE_Q_ENABLE, 217 QED_IOV_VALIDATE_Q_DISABLE, 218 }; 219 220 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 221 struct qed_vf_info *p_vf, 222 u16 qid, 223 enum qed_iov_validate_q_mode mode, 224 bool b_is_tx) 225 { 226 int i; 227 228 if (mode == QED_IOV_VALIDATE_Q_NA) 229 return true; 230 231 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 232 struct qed_vf_queue_cid *p_qcid; 233 234 p_qcid = &p_vf->vf_queues[qid].cids[i]; 235 236 if (!p_qcid->p_cid) 237 continue; 238 239 if (p_qcid->b_is_tx != b_is_tx) 240 continue; 241 242 return mode == QED_IOV_VALIDATE_Q_ENABLE; 243 } 244 245 /* In case we haven't found any valid cid, then its disabled */ 246 return mode == QED_IOV_VALIDATE_Q_DISABLE; 247 } 248 249 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 250 struct qed_vf_info *p_vf, 251 u16 rx_qid, 252 enum qed_iov_validate_q_mode mode) 253 { 254 if (rx_qid >= p_vf->num_rxqs) { 255 DP_VERBOSE(p_hwfn, 256 QED_MSG_IOV, 257 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 258 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 259 return false; 260 } 261 262 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 263 } 264 265 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 266 struct qed_vf_info *p_vf, 267 u16 tx_qid, 268 enum qed_iov_validate_q_mode mode) 269 { 270 if (tx_qid >= p_vf->num_txqs) { 271 DP_VERBOSE(p_hwfn, 272 QED_MSG_IOV, 273 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 274 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 275 return false; 276 } 277 278 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 279 } 280 281 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 282 struct qed_vf_info *p_vf, u16 sb_idx) 283 { 284 int i; 285 286 for (i = 0; i < p_vf->num_sbs; i++) 287 if (p_vf->igu_sbs[i] == sb_idx) 288 return true; 289 290 DP_VERBOSE(p_hwfn, 291 QED_MSG_IOV, 292 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 293 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 294 295 return false; 296 } 297 298 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 299 struct qed_vf_info *p_vf) 300 { 301 u8 i; 302 303 for (i = 0; i < p_vf->num_rxqs; i++) 304 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 305 QED_IOV_VALIDATE_Q_ENABLE, 306 false)) 307 return true; 308 309 return false; 310 } 311 312 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 313 struct qed_vf_info *p_vf) 314 { 315 u8 i; 316 317 for (i = 0; i < p_vf->num_txqs; i++) 318 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 319 QED_IOV_VALIDATE_Q_ENABLE, 320 true)) 321 return true; 322 323 return false; 324 } 325 326 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 327 int vfid, struct qed_ptt *p_ptt) 328 { 329 struct qed_bulletin_content *p_bulletin; 330 int crc_size = sizeof(p_bulletin->crc); 331 struct qed_dmae_params params; 332 struct qed_vf_info *p_vf; 333 334 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 335 if (!p_vf) 336 return -EINVAL; 337 338 if (!p_vf->vf_bulletin) 339 return -EINVAL; 340 341 p_bulletin = p_vf->bulletin.p_virt; 342 343 /* Increment bulletin board version and compute crc */ 344 p_bulletin->version++; 345 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 346 p_vf->bulletin.size - crc_size); 347 348 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 349 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 350 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 351 352 /* propagate bulletin board via dmae to vm memory */ 353 memset(¶ms, 0, sizeof(params)); 354 params.flags = QED_DMAE_FLAG_VF_DST; 355 params.dst_vfid = p_vf->abs_vf_id; 356 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 357 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 358 ¶ms); 359 } 360 361 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 362 { 363 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 364 int pos = iov->pos; 365 366 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 367 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 368 369 pci_read_config_word(cdev->pdev, 370 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 371 pci_read_config_word(cdev->pdev, 372 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 373 374 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 375 if (iov->num_vfs) { 376 DP_VERBOSE(cdev, 377 QED_MSG_IOV, 378 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 379 iov->num_vfs = 0; 380 } 381 382 pci_read_config_word(cdev->pdev, 383 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 384 385 pci_read_config_word(cdev->pdev, 386 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 387 388 pci_read_config_word(cdev->pdev, 389 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 390 391 pci_read_config_dword(cdev->pdev, 392 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 393 394 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 395 396 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 397 398 DP_VERBOSE(cdev, 399 QED_MSG_IOV, 400 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 401 iov->nres, 402 iov->cap, 403 iov->ctrl, 404 iov->total_vfs, 405 iov->initial_vfs, 406 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 407 408 /* Some sanity checks */ 409 if (iov->num_vfs > NUM_OF_VFS(cdev) || 410 iov->total_vfs > NUM_OF_VFS(cdev)) { 411 /* This can happen only due to a bug. In this case we set 412 * num_vfs to zero to avoid memory corruption in the code that 413 * assumes max number of vfs 414 */ 415 DP_NOTICE(cdev, 416 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 417 iov->num_vfs); 418 419 iov->num_vfs = 0; 420 iov->total_vfs = 0; 421 } 422 423 return 0; 424 } 425 426 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 427 { 428 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 429 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 430 struct qed_bulletin_content *p_bulletin_virt; 431 dma_addr_t req_p, rply_p, bulletin_p; 432 union pfvf_tlvs *p_reply_virt_addr; 433 union vfpf_tlvs *p_req_virt_addr; 434 u8 idx = 0; 435 436 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 437 438 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 439 req_p = p_iov_info->mbx_msg_phys_addr; 440 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 441 rply_p = p_iov_info->mbx_reply_phys_addr; 442 p_bulletin_virt = p_iov_info->p_bulletins; 443 bulletin_p = p_iov_info->bulletins_phys; 444 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 445 DP_ERR(p_hwfn, 446 "qed_iov_setup_vfdb called without allocating mem first\n"); 447 return; 448 } 449 450 for (idx = 0; idx < p_iov->total_vfs; idx++) { 451 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 452 u32 concrete; 453 454 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 455 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 456 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 457 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 458 459 vf->state = VF_STOPPED; 460 vf->b_init = false; 461 462 vf->bulletin.phys = idx * 463 sizeof(struct qed_bulletin_content) + 464 bulletin_p; 465 vf->bulletin.p_virt = p_bulletin_virt + idx; 466 vf->bulletin.size = sizeof(struct qed_bulletin_content); 467 468 vf->relative_vf_id = idx; 469 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 470 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 471 vf->concrete_fid = concrete; 472 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 473 (vf->abs_vf_id << 8); 474 vf->vport_id = idx + 1; 475 476 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 477 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 478 } 479 } 480 481 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 482 { 483 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 484 void **p_v_addr; 485 u16 num_vfs = 0; 486 487 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 488 489 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 490 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 491 492 /* Allocate PF Mailbox buffer (per-VF) */ 493 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 494 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 495 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 496 p_iov_info->mbx_msg_size, 497 &p_iov_info->mbx_msg_phys_addr, 498 GFP_KERNEL); 499 if (!*p_v_addr) 500 return -ENOMEM; 501 502 /* Allocate PF Mailbox Reply buffer (per-VF) */ 503 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 504 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 505 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 506 p_iov_info->mbx_reply_size, 507 &p_iov_info->mbx_reply_phys_addr, 508 GFP_KERNEL); 509 if (!*p_v_addr) 510 return -ENOMEM; 511 512 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 513 num_vfs; 514 p_v_addr = &p_iov_info->p_bulletins; 515 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 516 p_iov_info->bulletins_size, 517 &p_iov_info->bulletins_phys, 518 GFP_KERNEL); 519 if (!*p_v_addr) 520 return -ENOMEM; 521 522 DP_VERBOSE(p_hwfn, 523 QED_MSG_IOV, 524 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 525 p_iov_info->mbx_msg_virt_addr, 526 (u64) p_iov_info->mbx_msg_phys_addr, 527 p_iov_info->mbx_reply_virt_addr, 528 (u64) p_iov_info->mbx_reply_phys_addr, 529 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 530 531 return 0; 532 } 533 534 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 535 { 536 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 537 538 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 539 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 540 p_iov_info->mbx_msg_size, 541 p_iov_info->mbx_msg_virt_addr, 542 p_iov_info->mbx_msg_phys_addr); 543 544 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 545 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 546 p_iov_info->mbx_reply_size, 547 p_iov_info->mbx_reply_virt_addr, 548 p_iov_info->mbx_reply_phys_addr); 549 550 if (p_iov_info->p_bulletins) 551 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 552 p_iov_info->bulletins_size, 553 p_iov_info->p_bulletins, 554 p_iov_info->bulletins_phys); 555 } 556 557 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 558 { 559 struct qed_pf_iov *p_sriov; 560 561 if (!IS_PF_SRIOV(p_hwfn)) { 562 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 563 "No SR-IOV - no need for IOV db\n"); 564 return 0; 565 } 566 567 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 568 if (!p_sriov) 569 return -ENOMEM; 570 571 p_hwfn->pf_iov_info = p_sriov; 572 573 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 574 qed_sriov_eqe_event); 575 576 return qed_iov_allocate_vfdb(p_hwfn); 577 } 578 579 void qed_iov_setup(struct qed_hwfn *p_hwfn) 580 { 581 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 582 return; 583 584 qed_iov_setup_vfdb(p_hwfn); 585 } 586 587 void qed_iov_free(struct qed_hwfn *p_hwfn) 588 { 589 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 590 591 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 592 qed_iov_free_vfdb(p_hwfn); 593 kfree(p_hwfn->pf_iov_info); 594 } 595 } 596 597 void qed_iov_free_hw_info(struct qed_dev *cdev) 598 { 599 kfree(cdev->p_iov_info); 600 cdev->p_iov_info = NULL; 601 } 602 603 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 604 { 605 struct qed_dev *cdev = p_hwfn->cdev; 606 int pos; 607 int rc; 608 609 if (IS_VF(p_hwfn->cdev)) 610 return 0; 611 612 /* Learn the PCI configuration */ 613 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 614 PCI_EXT_CAP_ID_SRIOV); 615 if (!pos) { 616 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 617 return 0; 618 } 619 620 /* Allocate a new struct for IOV information */ 621 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 622 if (!cdev->p_iov_info) 623 return -ENOMEM; 624 625 cdev->p_iov_info->pos = pos; 626 627 rc = qed_iov_pci_cfg_info(cdev); 628 if (rc) 629 return rc; 630 631 /* We want PF IOV to be synonemous with the existance of p_iov_info; 632 * In case the capability is published but there are no VFs, simply 633 * de-allocate the struct. 634 */ 635 if (!cdev->p_iov_info->total_vfs) { 636 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 637 "IOV capabilities, but no VFs are published\n"); 638 kfree(cdev->p_iov_info); 639 cdev->p_iov_info = NULL; 640 return 0; 641 } 642 643 /* First VF index based on offset is tricky: 644 * - If ARI is supported [likely], offset - (16 - pf_id) would 645 * provide the number for eng0. 2nd engine Vfs would begin 646 * after the first engine's VFs. 647 * - If !ARI, VFs would start on next device. 648 * so offset - (256 - pf_id) would provide the number. 649 * Utilize the fact that (256 - pf_id) is achieved only by later 650 * to differentiate between the two. 651 */ 652 653 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 654 u32 first = p_hwfn->cdev->p_iov_info->offset + 655 p_hwfn->abs_pf_id - 16; 656 657 cdev->p_iov_info->first_vf_in_pf = first; 658 659 if (QED_PATH_ID(p_hwfn)) 660 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 661 } else { 662 u32 first = p_hwfn->cdev->p_iov_info->offset + 663 p_hwfn->abs_pf_id - 256; 664 665 cdev->p_iov_info->first_vf_in_pf = first; 666 } 667 668 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 669 "First VF in hwfn 0x%08x\n", 670 cdev->p_iov_info->first_vf_in_pf); 671 672 return 0; 673 } 674 675 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 676 int vfid, bool b_fail_malicious) 677 { 678 /* Check PF supports sriov */ 679 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 680 !IS_PF_SRIOV_ALLOC(p_hwfn)) 681 return false; 682 683 /* Check VF validity */ 684 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 685 return false; 686 687 return true; 688 } 689 690 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 691 { 692 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 693 } 694 695 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 696 u16 rel_vf_id, u8 to_disable) 697 { 698 struct qed_vf_info *vf; 699 int i; 700 701 for_each_hwfn(cdev, i) { 702 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 703 704 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 705 if (!vf) 706 continue; 707 708 vf->to_disable = to_disable; 709 } 710 } 711 712 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 713 { 714 u16 i; 715 716 if (!IS_QED_SRIOV(cdev)) 717 return; 718 719 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 720 qed_iov_set_vf_to_disable(cdev, i, to_disable); 721 } 722 723 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 724 struct qed_ptt *p_ptt, u8 abs_vfid) 725 { 726 qed_wr(p_hwfn, p_ptt, 727 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 728 1 << (abs_vfid & 0x1f)); 729 } 730 731 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 732 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 733 { 734 int i; 735 736 /* Set VF masks and configuration - pretend */ 737 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 738 739 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 740 741 /* unpretend */ 742 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 743 744 /* iterate over all queues, clear sb consumer */ 745 for (i = 0; i < vf->num_sbs; i++) 746 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 747 vf->igu_sbs[i], 748 vf->opaque_fid, true); 749 } 750 751 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 752 struct qed_ptt *p_ptt, 753 struct qed_vf_info *vf, bool enable) 754 { 755 u32 igu_vf_conf; 756 757 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 758 759 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 760 761 if (enable) 762 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 763 else 764 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 765 766 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 767 768 /* unpretend */ 769 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 770 } 771 772 static int 773 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, 774 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) 775 { 776 u8 current_max = 0; 777 int i; 778 779 /* For AH onward, configuration is per-PF. Find maximum of all 780 * the currently enabled child VFs, and set the number to be that. 781 */ 782 if (!QED_IS_BB(p_hwfn->cdev)) { 783 qed_for_each_vf(p_hwfn, i) { 784 struct qed_vf_info *p_vf; 785 786 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); 787 if (!p_vf) 788 continue; 789 790 current_max = max_t(u8, current_max, p_vf->num_sbs); 791 } 792 } 793 794 if (num_sbs > current_max) 795 return qed_mcp_config_vf_msix(p_hwfn, p_ptt, 796 abs_vf_id, num_sbs); 797 798 return 0; 799 } 800 801 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 802 struct qed_ptt *p_ptt, 803 struct qed_vf_info *vf) 804 { 805 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 806 int rc; 807 808 /* It's possible VF was previously considered malicious - 809 * clear the indication even if we're only going to disable VF. 810 */ 811 vf->b_malicious = false; 812 813 if (vf->to_disable) 814 return 0; 815 816 DP_VERBOSE(p_hwfn, 817 QED_MSG_IOV, 818 "Enable internal access for vf %x [abs %x]\n", 819 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 820 821 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 822 823 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 824 825 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, 826 vf->abs_vf_id, vf->num_sbs); 827 if (rc) 828 return rc; 829 830 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 831 832 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 833 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 834 835 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 836 p_hwfn->hw_info.hw_mode); 837 838 /* unpretend */ 839 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 840 841 vf->state = VF_FREE; 842 843 return rc; 844 } 845 846 /** 847 * @brief qed_iov_config_perm_table - configure the permission 848 * zone table. 849 * In E4, queue zone permission table size is 320x9. There 850 * are 320 VF queues for single engine device (256 for dual 851 * engine device), and each entry has the following format: 852 * {Valid, VF[7:0]} 853 * @param p_hwfn 854 * @param p_ptt 855 * @param vf 856 * @param enable 857 */ 858 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 859 struct qed_ptt *p_ptt, 860 struct qed_vf_info *vf, u8 enable) 861 { 862 u32 reg_addr, val; 863 u16 qzone_id = 0; 864 int qid; 865 866 for (qid = 0; qid < vf->num_rxqs; qid++) { 867 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 868 &qzone_id); 869 870 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 871 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 872 qed_wr(p_hwfn, p_ptt, reg_addr, val); 873 } 874 } 875 876 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 877 struct qed_ptt *p_ptt, 878 struct qed_vf_info *vf) 879 { 880 /* Reset vf in IGU - interrupts are still disabled */ 881 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 882 883 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 884 885 /* Permission Table */ 886 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 887 } 888 889 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 890 struct qed_ptt *p_ptt, 891 struct qed_vf_info *vf, u16 num_rx_queues) 892 { 893 struct qed_igu_block *p_block; 894 struct cau_sb_entry sb_entry; 895 int qid = 0; 896 u32 val = 0; 897 898 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 899 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 900 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 901 902 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 903 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 904 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 905 906 for (qid = 0; qid < num_rx_queues; qid++) { 907 p_block = qed_get_igu_free_sb(p_hwfn, false); 908 vf->igu_sbs[qid] = p_block->igu_sb_id; 909 p_block->status &= ~QED_IGU_STATUS_FREE; 910 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 911 912 qed_wr(p_hwfn, p_ptt, 913 IGU_REG_MAPPING_MEMORY + 914 sizeof(u32) * p_block->igu_sb_id, val); 915 916 /* Configure igu sb in CAU which were marked valid */ 917 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 918 p_hwfn->rel_pf_id, vf->abs_vf_id, 1); 919 qed_dmae_host2grc(p_hwfn, p_ptt, 920 (u64)(uintptr_t)&sb_entry, 921 CAU_REG_SB_VAR_MEMORY + 922 p_block->igu_sb_id * sizeof(u64), 2, 0); 923 } 924 925 vf->num_sbs = (u8) num_rx_queues; 926 927 return vf->num_sbs; 928 } 929 930 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 931 struct qed_ptt *p_ptt, 932 struct qed_vf_info *vf) 933 { 934 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 935 int idx, igu_id; 936 u32 addr, val; 937 938 /* Invalidate igu CAM lines and mark them as free */ 939 for (idx = 0; idx < vf->num_sbs; idx++) { 940 igu_id = vf->igu_sbs[idx]; 941 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 942 943 val = qed_rd(p_hwfn, p_ptt, addr); 944 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 945 qed_wr(p_hwfn, p_ptt, addr, val); 946 947 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; 948 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 949 } 950 951 vf->num_sbs = 0; 952 } 953 954 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 955 u16 vfid, 956 struct qed_mcp_link_params *params, 957 struct qed_mcp_link_state *link, 958 struct qed_mcp_link_capabilities *p_caps) 959 { 960 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 961 vfid, 962 false); 963 struct qed_bulletin_content *p_bulletin; 964 965 if (!p_vf) 966 return; 967 968 p_bulletin = p_vf->bulletin.p_virt; 969 p_bulletin->req_autoneg = params->speed.autoneg; 970 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 971 p_bulletin->req_forced_speed = params->speed.forced_speed; 972 p_bulletin->req_autoneg_pause = params->pause.autoneg; 973 p_bulletin->req_forced_rx = params->pause.forced_rx; 974 p_bulletin->req_forced_tx = params->pause.forced_tx; 975 p_bulletin->req_loopback = params->loopback_mode; 976 977 p_bulletin->link_up = link->link_up; 978 p_bulletin->speed = link->speed; 979 p_bulletin->full_duplex = link->full_duplex; 980 p_bulletin->autoneg = link->an; 981 p_bulletin->autoneg_complete = link->an_complete; 982 p_bulletin->parallel_detection = link->parallel_detection; 983 p_bulletin->pfc_enabled = link->pfc_enabled; 984 p_bulletin->partner_adv_speed = link->partner_adv_speed; 985 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 986 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 987 p_bulletin->partner_adv_pause = link->partner_adv_pause; 988 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 989 990 p_bulletin->capability_speed = p_caps->speed_capabilities; 991 } 992 993 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 994 struct qed_ptt *p_ptt, 995 struct qed_iov_vf_init_params *p_params) 996 { 997 struct qed_mcp_link_capabilities link_caps; 998 struct qed_mcp_link_params link_params; 999 struct qed_mcp_link_state link_state; 1000 u8 num_of_vf_avaiable_chains = 0; 1001 struct qed_vf_info *vf = NULL; 1002 u16 qid, num_irqs; 1003 int rc = 0; 1004 u32 cids; 1005 u8 i; 1006 1007 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 1008 if (!vf) { 1009 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 1010 return -EINVAL; 1011 } 1012 1013 if (vf->b_init) { 1014 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 1015 p_params->rel_vf_id); 1016 return -EINVAL; 1017 } 1018 1019 /* Perform sanity checking on the requested queue_id */ 1020 for (i = 0; i < p_params->num_queues; i++) { 1021 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 1022 u16 max_vf_qzone = min_vf_qzone + 1023 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 1024 1025 qid = p_params->req_rx_queue[i]; 1026 if (qid < min_vf_qzone || qid > max_vf_qzone) { 1027 DP_NOTICE(p_hwfn, 1028 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 1029 qid, 1030 p_params->rel_vf_id, 1031 min_vf_qzone, max_vf_qzone); 1032 return -EINVAL; 1033 } 1034 1035 qid = p_params->req_tx_queue[i]; 1036 if (qid > max_vf_qzone) { 1037 DP_NOTICE(p_hwfn, 1038 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 1039 qid, p_params->rel_vf_id, max_vf_qzone); 1040 return -EINVAL; 1041 } 1042 1043 /* If client *really* wants, Tx qid can be shared with PF */ 1044 if (qid < min_vf_qzone) 1045 DP_VERBOSE(p_hwfn, 1046 QED_MSG_IOV, 1047 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1048 p_params->rel_vf_id, qid, i); 1049 } 1050 1051 /* Limit number of queues according to number of CIDs */ 1052 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1053 DP_VERBOSE(p_hwfn, 1054 QED_MSG_IOV, 1055 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1056 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1057 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1058 1059 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1060 p_ptt, 1061 vf, num_irqs); 1062 if (!num_of_vf_avaiable_chains) { 1063 DP_ERR(p_hwfn, "no available igu sbs\n"); 1064 return -ENOMEM; 1065 } 1066 1067 /* Choose queue number and index ranges */ 1068 vf->num_rxqs = num_of_vf_avaiable_chains; 1069 vf->num_txqs = num_of_vf_avaiable_chains; 1070 1071 for (i = 0; i < vf->num_rxqs; i++) { 1072 struct qed_vf_queue *p_queue = &vf->vf_queues[i]; 1073 1074 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1075 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1076 1077 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1078 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1079 vf->relative_vf_id, i, vf->igu_sbs[i], 1080 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1081 } 1082 1083 /* Update the link configuration in bulletin */ 1084 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1085 sizeof(link_params)); 1086 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1087 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1088 sizeof(link_caps)); 1089 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1090 &link_params, &link_state, &link_caps); 1091 1092 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1093 if (!rc) { 1094 vf->b_init = true; 1095 1096 if (IS_LEAD_HWFN(p_hwfn)) 1097 p_hwfn->cdev->p_iov_info->num_vfs++; 1098 } 1099 1100 return rc; 1101 } 1102 1103 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1104 struct qed_ptt *p_ptt, u16 rel_vf_id) 1105 { 1106 struct qed_mcp_link_capabilities caps; 1107 struct qed_mcp_link_params params; 1108 struct qed_mcp_link_state link; 1109 struct qed_vf_info *vf = NULL; 1110 1111 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1112 if (!vf) { 1113 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1114 return -EINVAL; 1115 } 1116 1117 if (vf->bulletin.p_virt) 1118 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1119 1120 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1121 1122 /* Get the link configuration back in bulletin so 1123 * that when VFs are re-enabled they get the actual 1124 * link configuration. 1125 */ 1126 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1127 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1128 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1129 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1130 1131 /* Forget the VF's acquisition message */ 1132 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1133 1134 /* disablng interrupts and resetting permission table was done during 1135 * vf-close, however, we could get here without going through vf_close 1136 */ 1137 /* Disable Interrupts for VF */ 1138 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1139 1140 /* Reset Permission table */ 1141 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1142 1143 vf->num_rxqs = 0; 1144 vf->num_txqs = 0; 1145 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1146 1147 if (vf->b_init) { 1148 vf->b_init = false; 1149 1150 if (IS_LEAD_HWFN(p_hwfn)) 1151 p_hwfn->cdev->p_iov_info->num_vfs--; 1152 } 1153 1154 return 0; 1155 } 1156 1157 static bool qed_iov_tlv_supported(u16 tlvtype) 1158 { 1159 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1160 } 1161 1162 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1163 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1164 { 1165 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1166 1167 tl->type = type; 1168 tl->length = length; 1169 1170 /* Offset should keep pointing to next TLV (the end of the last) */ 1171 *offset += length; 1172 1173 /* Return a pointer to the start of the added tlv */ 1174 return *offset - length; 1175 } 1176 1177 /* list the types and lengths of the tlvs on the buffer */ 1178 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1179 { 1180 u16 i = 1, total_length = 0; 1181 struct channel_tlv *tlv; 1182 1183 do { 1184 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1185 1186 /* output tlv */ 1187 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1188 "TLV number %d: type %d, length %d\n", 1189 i, tlv->type, tlv->length); 1190 1191 if (tlv->type == CHANNEL_TLV_LIST_END) 1192 return; 1193 1194 /* Validate entry - protect against malicious VFs */ 1195 if (!tlv->length) { 1196 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1197 return; 1198 } 1199 1200 total_length += tlv->length; 1201 1202 if (total_length >= sizeof(struct tlv_buffer_size)) { 1203 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1204 return; 1205 } 1206 1207 i++; 1208 } while (1); 1209 } 1210 1211 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1212 struct qed_ptt *p_ptt, 1213 struct qed_vf_info *p_vf, 1214 u16 length, u8 status) 1215 { 1216 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1217 struct qed_dmae_params params; 1218 u8 eng_vf_id; 1219 1220 mbx->reply_virt->default_resp.hdr.status = status; 1221 1222 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1223 1224 eng_vf_id = p_vf->abs_vf_id; 1225 1226 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 1227 params.flags = QED_DMAE_FLAG_VF_DST; 1228 params.dst_vfid = eng_vf_id; 1229 1230 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1231 mbx->req_virt->first_tlv.reply_address + 1232 sizeof(u64), 1233 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1234 ¶ms); 1235 1236 /* Once PF copies the rc to the VF, the latter can continue 1237 * and send an additional message. So we have to make sure the 1238 * channel would be re-set to ready prior to that. 1239 */ 1240 REG_WR(p_hwfn, 1241 GTT_BAR0_MAP_REG_USDM_RAM + 1242 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1243 1244 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1245 mbx->req_virt->first_tlv.reply_address, 1246 sizeof(u64) / 4, ¶ms); 1247 } 1248 1249 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1250 enum qed_iov_vport_update_flag flag) 1251 { 1252 switch (flag) { 1253 case QED_IOV_VP_UPDATE_ACTIVATE: 1254 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1255 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1256 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1257 case QED_IOV_VP_UPDATE_TX_SWITCH: 1258 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1259 case QED_IOV_VP_UPDATE_MCAST: 1260 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1261 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1262 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1263 case QED_IOV_VP_UPDATE_RSS: 1264 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1265 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1266 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1267 case QED_IOV_VP_UPDATE_SGE_TPA: 1268 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1269 default: 1270 return 0; 1271 } 1272 } 1273 1274 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1275 struct qed_vf_info *p_vf, 1276 struct qed_iov_vf_mbx *p_mbx, 1277 u8 status, 1278 u16 tlvs_mask, u16 tlvs_accepted) 1279 { 1280 struct pfvf_def_resp_tlv *resp; 1281 u16 size, total_len, i; 1282 1283 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1284 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1285 size = sizeof(struct pfvf_def_resp_tlv); 1286 total_len = size; 1287 1288 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1289 1290 /* Prepare response for all extended tlvs if they are found by PF */ 1291 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1292 if (!(tlvs_mask & BIT(i))) 1293 continue; 1294 1295 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1296 qed_iov_vport_to_tlv(p_hwfn, i), size); 1297 1298 if (tlvs_accepted & BIT(i)) 1299 resp->hdr.status = status; 1300 else 1301 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1302 1303 DP_VERBOSE(p_hwfn, 1304 QED_MSG_IOV, 1305 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1306 p_vf->relative_vf_id, 1307 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1308 1309 total_len += size; 1310 } 1311 1312 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1313 sizeof(struct channel_list_end_tlv)); 1314 1315 return total_len; 1316 } 1317 1318 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1319 struct qed_ptt *p_ptt, 1320 struct qed_vf_info *vf_info, 1321 u16 type, u16 length, u8 status) 1322 { 1323 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1324 1325 mbx->offset = (u8 *)mbx->reply_virt; 1326 1327 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1328 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1329 sizeof(struct channel_list_end_tlv)); 1330 1331 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1332 } 1333 1334 static struct 1335 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1336 u16 relative_vf_id, 1337 bool b_enabled_only) 1338 { 1339 struct qed_vf_info *vf = NULL; 1340 1341 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1342 if (!vf) 1343 return NULL; 1344 1345 return &vf->p_vf_info; 1346 } 1347 1348 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1349 { 1350 struct qed_public_vf_info *vf_info; 1351 1352 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1353 1354 if (!vf_info) 1355 return; 1356 1357 /* Clear the VF mac */ 1358 eth_zero_addr(vf_info->mac); 1359 1360 vf_info->rx_accept_mode = 0; 1361 vf_info->tx_accept_mode = 0; 1362 } 1363 1364 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1365 struct qed_vf_info *p_vf) 1366 { 1367 u32 i, j; 1368 1369 p_vf->vf_bulletin = 0; 1370 p_vf->vport_instance = 0; 1371 p_vf->configured_features = 0; 1372 1373 /* If VF previously requested less resources, go back to default */ 1374 p_vf->num_rxqs = p_vf->num_sbs; 1375 p_vf->num_txqs = p_vf->num_sbs; 1376 1377 p_vf->num_active_rxqs = 0; 1378 1379 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1380 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1381 1382 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1383 if (!p_queue->cids[j].p_cid) 1384 continue; 1385 1386 qed_eth_queue_cid_release(p_hwfn, 1387 p_queue->cids[j].p_cid); 1388 p_queue->cids[j].p_cid = NULL; 1389 } 1390 } 1391 1392 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1393 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1394 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1395 } 1396 1397 /* Returns either 0, or log(size) */ 1398 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, 1399 struct qed_ptt *p_ptt) 1400 { 1401 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1402 1403 if (val) 1404 return val + 11; 1405 return 0; 1406 } 1407 1408 static void 1409 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, 1410 struct qed_ptt *p_ptt, 1411 struct qed_vf_info *p_vf, 1412 struct vf_pf_resc_request *p_req, 1413 struct pf_vf_resc *p_resp) 1414 { 1415 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1416 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - 1417 qed_db_addr_vf(0, DQ_DEMS_LEGACY); 1418 u32 bar_size; 1419 1420 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); 1421 1422 /* If VF didn't bother asking for QIDs than don't bother limiting 1423 * number of CIDs. The VF doesn't care about the number, and this 1424 * has the likely result of causing an additional acquisition. 1425 */ 1426 if (!(p_vf->acquire.vfdev_info.capabilities & 1427 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1428 return; 1429 1430 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1431 * that would make sure doorbells for all CIDs fall within the bar. 1432 * If it doesn't, make sure regview window is sufficient. 1433 */ 1434 if (p_vf->acquire.vfdev_info.capabilities & 1435 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1436 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1437 if (bar_size) 1438 bar_size = 1 << bar_size; 1439 1440 if (p_hwfn->cdev->num_hwfns > 1) 1441 bar_size /= 2; 1442 } else { 1443 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1444 } 1445 1446 if (bar_size / db_size < 256) 1447 p_resp->num_cids = min_t(u8, p_resp->num_cids, 1448 (u8)(bar_size / db_size)); 1449 } 1450 1451 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1452 struct qed_ptt *p_ptt, 1453 struct qed_vf_info *p_vf, 1454 struct vf_pf_resc_request *p_req, 1455 struct pf_vf_resc *p_resp) 1456 { 1457 u8 i; 1458 1459 /* Queue related information */ 1460 p_resp->num_rxqs = p_vf->num_rxqs; 1461 p_resp->num_txqs = p_vf->num_txqs; 1462 p_resp->num_sbs = p_vf->num_sbs; 1463 1464 for (i = 0; i < p_resp->num_sbs; i++) { 1465 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1466 p_resp->hw_sbs[i].sb_qid = 0; 1467 } 1468 1469 /* These fields are filled for backward compatibility. 1470 * Unused by modern vfs. 1471 */ 1472 for (i = 0; i < p_resp->num_rxqs; i++) { 1473 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1474 (u16 *)&p_resp->hw_qid[i]); 1475 p_resp->cid[i] = i; 1476 } 1477 1478 /* Filter related information */ 1479 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1480 p_req->num_mac_filters); 1481 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1482 p_req->num_vlan_filters); 1483 1484 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1485 1486 /* This isn't really needed/enforced, but some legacy VFs might depend 1487 * on the correct filling of this field. 1488 */ 1489 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1490 1491 /* Validate sufficient resources for VF */ 1492 if (p_resp->num_rxqs < p_req->num_rxqs || 1493 p_resp->num_txqs < p_req->num_txqs || 1494 p_resp->num_sbs < p_req->num_sbs || 1495 p_resp->num_mac_filters < p_req->num_mac_filters || 1496 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1497 p_resp->num_mc_filters < p_req->num_mc_filters || 1498 p_resp->num_cids < p_req->num_cids) { 1499 DP_VERBOSE(p_hwfn, 1500 QED_MSG_IOV, 1501 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1502 p_vf->abs_vf_id, 1503 p_req->num_rxqs, 1504 p_resp->num_rxqs, 1505 p_req->num_rxqs, 1506 p_resp->num_txqs, 1507 p_req->num_sbs, 1508 p_resp->num_sbs, 1509 p_req->num_mac_filters, 1510 p_resp->num_mac_filters, 1511 p_req->num_vlan_filters, 1512 p_resp->num_vlan_filters, 1513 p_req->num_mc_filters, 1514 p_resp->num_mc_filters, 1515 p_req->num_cids, p_resp->num_cids); 1516 1517 /* Some legacy OSes are incapable of correctly handling this 1518 * failure. 1519 */ 1520 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1521 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1522 (p_vf->acquire.vfdev_info.os_type == 1523 VFPF_ACQUIRE_OS_WINDOWS)) 1524 return PFVF_STATUS_SUCCESS; 1525 1526 return PFVF_STATUS_NO_RESOURCE; 1527 } 1528 1529 return PFVF_STATUS_SUCCESS; 1530 } 1531 1532 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1533 struct pfvf_stats_info *p_stats) 1534 { 1535 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1536 offsetof(struct mstorm_vf_zone, 1537 non_trigger.eth_queue_stat); 1538 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1539 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1540 offsetof(struct ustorm_vf_zone, 1541 non_trigger.eth_queue_stat); 1542 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1543 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1544 offsetof(struct pstorm_vf_zone, 1545 non_trigger.eth_queue_stat); 1546 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1547 p_stats->tstats.address = 0; 1548 p_stats->tstats.len = 0; 1549 } 1550 1551 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1552 struct qed_ptt *p_ptt, 1553 struct qed_vf_info *vf) 1554 { 1555 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1556 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1557 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1558 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1559 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1560 struct pf_vf_resc *resc = &resp->resc; 1561 int rc; 1562 1563 memset(resp, 0, sizeof(*resp)); 1564 1565 /* Write the PF version so that VF would know which version 1566 * is supported - might be later overriden. This guarantees that 1567 * VF could recognize legacy PF based on lack of versions in reply. 1568 */ 1569 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1570 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1571 1572 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1573 DP_VERBOSE(p_hwfn, 1574 QED_MSG_IOV, 1575 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1576 vf->abs_vf_id, vf->state); 1577 goto out; 1578 } 1579 1580 /* Validate FW compatibility */ 1581 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1582 if (req->vfdev_info.capabilities & 1583 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1584 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1585 1586 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1587 "VF[%d] is pre-fastpath HSI\n", 1588 vf->abs_vf_id); 1589 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1590 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1591 } else { 1592 DP_INFO(p_hwfn, 1593 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1594 vf->abs_vf_id, 1595 req->vfdev_info.eth_fp_hsi_major, 1596 req->vfdev_info.eth_fp_hsi_minor, 1597 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1598 1599 goto out; 1600 } 1601 } 1602 1603 /* On 100g PFs, prevent old VFs from loading */ 1604 if ((p_hwfn->cdev->num_hwfns > 1) && 1605 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1606 DP_INFO(p_hwfn, 1607 "VF[%d] is running an old driver that doesn't support 100g\n", 1608 vf->abs_vf_id); 1609 goto out; 1610 } 1611 1612 /* Store the acquire message */ 1613 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1614 1615 vf->opaque_fid = req->vfdev_info.opaque_fid; 1616 1617 vf->vf_bulletin = req->bulletin_addr; 1618 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1619 vf->bulletin.size : req->bulletin_size; 1620 1621 /* fill in pfdev info */ 1622 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1623 pfdev_info->db_size = 0; 1624 pfdev_info->indices_per_sb = PIS_PER_SB_E4; 1625 1626 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1627 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1628 if (p_hwfn->cdev->num_hwfns > 1) 1629 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1630 1631 /* Share our ability to use multiple queue-ids only with VFs 1632 * that request it. 1633 */ 1634 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1635 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1636 1637 /* Share the sizes of the bars with VF */ 1638 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1639 1640 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1641 1642 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1643 1644 pfdev_info->fw_major = FW_MAJOR_VERSION; 1645 pfdev_info->fw_minor = FW_MINOR_VERSION; 1646 pfdev_info->fw_rev = FW_REVISION_VERSION; 1647 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1648 1649 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1650 * this field. 1651 */ 1652 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1653 req->vfdev_info.eth_fp_hsi_minor); 1654 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1655 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1656 1657 pfdev_info->dev_type = p_hwfn->cdev->type; 1658 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1659 1660 /* Fill resources available to VF; Make sure there are enough to 1661 * satisfy the VF's request. 1662 */ 1663 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1664 &req->resc_request, resc); 1665 if (vfpf_status != PFVF_STATUS_SUCCESS) 1666 goto out; 1667 1668 /* Start the VF in FW */ 1669 rc = qed_sp_vf_start(p_hwfn, vf); 1670 if (rc) { 1671 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1672 vfpf_status = PFVF_STATUS_FAILURE; 1673 goto out; 1674 } 1675 1676 /* Fill agreed size of bulletin board in response */ 1677 resp->bulletin_size = vf->bulletin.size; 1678 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1679 1680 DP_VERBOSE(p_hwfn, 1681 QED_MSG_IOV, 1682 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1683 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1684 vf->abs_vf_id, 1685 resp->pfdev_info.chip_num, 1686 resp->pfdev_info.db_size, 1687 resp->pfdev_info.indices_per_sb, 1688 resp->pfdev_info.capabilities, 1689 resc->num_rxqs, 1690 resc->num_txqs, 1691 resc->num_sbs, 1692 resc->num_mac_filters, 1693 resc->num_vlan_filters); 1694 vf->state = VF_ACQUIRED; 1695 1696 /* Prepare Response */ 1697 out: 1698 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1699 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1700 } 1701 1702 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1703 struct qed_vf_info *p_vf, bool val) 1704 { 1705 struct qed_sp_vport_update_params params; 1706 int rc; 1707 1708 if (val == p_vf->spoof_chk) { 1709 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1710 "Spoofchk value[%d] is already configured\n", val); 1711 return 0; 1712 } 1713 1714 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1715 params.opaque_fid = p_vf->opaque_fid; 1716 params.vport_id = p_vf->vport_id; 1717 params.update_anti_spoofing_en_flg = 1; 1718 params.anti_spoofing_en = val; 1719 1720 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1721 if (!rc) { 1722 p_vf->spoof_chk = val; 1723 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1724 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1725 "Spoofchk val[%d] configured\n", val); 1726 } else { 1727 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1728 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1729 val, p_vf->relative_vf_id); 1730 } 1731 1732 return rc; 1733 } 1734 1735 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1736 struct qed_vf_info *p_vf) 1737 { 1738 struct qed_filter_ucast filter; 1739 int rc = 0; 1740 int i; 1741 1742 memset(&filter, 0, sizeof(filter)); 1743 filter.is_rx_filter = 1; 1744 filter.is_tx_filter = 1; 1745 filter.vport_to_add_to = p_vf->vport_id; 1746 filter.opcode = QED_FILTER_ADD; 1747 1748 /* Reconfigure vlans */ 1749 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1750 if (!p_vf->shadow_config.vlans[i].used) 1751 continue; 1752 1753 filter.type = QED_FILTER_VLAN; 1754 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1755 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1756 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1757 filter.vlan, p_vf->relative_vf_id); 1758 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1759 &filter, QED_SPQ_MODE_CB, NULL); 1760 if (rc) { 1761 DP_NOTICE(p_hwfn, 1762 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1763 filter.vlan, p_vf->relative_vf_id); 1764 break; 1765 } 1766 } 1767 1768 return rc; 1769 } 1770 1771 static int 1772 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1773 struct qed_vf_info *p_vf, u64 events) 1774 { 1775 int rc = 0; 1776 1777 if ((events & BIT(VLAN_ADDR_FORCED)) && 1778 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1779 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1780 1781 return rc; 1782 } 1783 1784 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1785 struct qed_vf_info *p_vf, u64 events) 1786 { 1787 int rc = 0; 1788 struct qed_filter_ucast filter; 1789 1790 if (!p_vf->vport_instance) 1791 return -EINVAL; 1792 1793 if (events & BIT(MAC_ADDR_FORCED)) { 1794 /* Since there's no way [currently] of removing the MAC, 1795 * we can always assume this means we need to force it. 1796 */ 1797 memset(&filter, 0, sizeof(filter)); 1798 filter.type = QED_FILTER_MAC; 1799 filter.opcode = QED_FILTER_REPLACE; 1800 filter.is_rx_filter = 1; 1801 filter.is_tx_filter = 1; 1802 filter.vport_to_add_to = p_vf->vport_id; 1803 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1804 1805 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1806 &filter, QED_SPQ_MODE_CB, NULL); 1807 if (rc) { 1808 DP_NOTICE(p_hwfn, 1809 "PF failed to configure MAC for VF\n"); 1810 return rc; 1811 } 1812 1813 p_vf->configured_features |= 1 << MAC_ADDR_FORCED; 1814 } 1815 1816 if (events & BIT(VLAN_ADDR_FORCED)) { 1817 struct qed_sp_vport_update_params vport_update; 1818 u8 removal; 1819 int i; 1820 1821 memset(&filter, 0, sizeof(filter)); 1822 filter.type = QED_FILTER_VLAN; 1823 filter.is_rx_filter = 1; 1824 filter.is_tx_filter = 1; 1825 filter.vport_to_add_to = p_vf->vport_id; 1826 filter.vlan = p_vf->bulletin.p_virt->pvid; 1827 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1828 QED_FILTER_FLUSH; 1829 1830 /* Send the ramrod */ 1831 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1832 &filter, QED_SPQ_MODE_CB, NULL); 1833 if (rc) { 1834 DP_NOTICE(p_hwfn, 1835 "PF failed to configure VLAN for VF\n"); 1836 return rc; 1837 } 1838 1839 /* Update the default-vlan & silent vlan stripping */ 1840 memset(&vport_update, 0, sizeof(vport_update)); 1841 vport_update.opaque_fid = p_vf->opaque_fid; 1842 vport_update.vport_id = p_vf->vport_id; 1843 vport_update.update_default_vlan_enable_flg = 1; 1844 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1845 vport_update.update_default_vlan_flg = 1; 1846 vport_update.default_vlan = filter.vlan; 1847 1848 vport_update.update_inner_vlan_removal_flg = 1; 1849 removal = filter.vlan ? 1 1850 : p_vf->shadow_config.inner_vlan_removal; 1851 vport_update.inner_vlan_removal_flg = removal; 1852 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1853 rc = qed_sp_vport_update(p_hwfn, 1854 &vport_update, 1855 QED_SPQ_MODE_EBLOCK, NULL); 1856 if (rc) { 1857 DP_NOTICE(p_hwfn, 1858 "PF failed to configure VF vport for vlan\n"); 1859 return rc; 1860 } 1861 1862 /* Update all the Rx queues */ 1863 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1864 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1865 struct qed_queue_cid *p_cid = NULL; 1866 1867 /* There can be at most 1 Rx queue on qzone. Find it */ 1868 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 1869 if (!p_cid) 1870 continue; 1871 1872 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1873 (void **)&p_cid, 1874 1, 0, 1, 1875 QED_SPQ_MODE_EBLOCK, 1876 NULL); 1877 if (rc) { 1878 DP_NOTICE(p_hwfn, 1879 "Failed to send Rx update fo queue[0x%04x]\n", 1880 p_cid->rel.queue_id); 1881 return rc; 1882 } 1883 } 1884 1885 if (filter.vlan) 1886 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1887 else 1888 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1889 } 1890 1891 /* If forced features are terminated, we need to configure the shadow 1892 * configuration back again. 1893 */ 1894 if (events) 1895 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1896 1897 return rc; 1898 } 1899 1900 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1901 struct qed_ptt *p_ptt, 1902 struct qed_vf_info *vf) 1903 { 1904 struct qed_sp_vport_start_params params = { 0 }; 1905 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1906 struct vfpf_vport_start_tlv *start; 1907 u8 status = PFVF_STATUS_SUCCESS; 1908 struct qed_vf_info *vf_info; 1909 u64 *p_bitmap; 1910 int sb_id; 1911 int rc; 1912 1913 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1914 if (!vf_info) { 1915 DP_NOTICE(p_hwfn->cdev, 1916 "Failed to get VF info, invalid vfid [%d]\n", 1917 vf->relative_vf_id); 1918 return; 1919 } 1920 1921 vf->state = VF_ENABLED; 1922 start = &mbx->req_virt->start_vport; 1923 1924 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1925 1926 /* Initialize Status block in CAU */ 1927 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1928 if (!start->sb_addr[sb_id]) { 1929 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1930 "VF[%d] did not fill the address of SB %d\n", 1931 vf->relative_vf_id, sb_id); 1932 break; 1933 } 1934 1935 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1936 start->sb_addr[sb_id], 1937 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1938 } 1939 1940 vf->mtu = start->mtu; 1941 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1942 1943 /* Take into consideration configuration forced by hypervisor; 1944 * If none is configured, use the supplied VF values [for old 1945 * vfs that would still be fine, since they passed '0' as padding]. 1946 */ 1947 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1948 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1949 u8 vf_req = start->only_untagged; 1950 1951 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1952 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1953 } 1954 1955 params.tpa_mode = start->tpa_mode; 1956 params.remove_inner_vlan = start->inner_vlan_removal; 1957 params.tx_switching = true; 1958 1959 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1960 params.drop_ttl0 = false; 1961 params.concrete_fid = vf->concrete_fid; 1962 params.opaque_fid = vf->opaque_fid; 1963 params.vport_id = vf->vport_id; 1964 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1965 params.mtu = vf->mtu; 1966 params.check_mac = true; 1967 1968 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1969 if (rc) { 1970 DP_ERR(p_hwfn, 1971 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1972 status = PFVF_STATUS_FAILURE; 1973 } else { 1974 vf->vport_instance++; 1975 1976 /* Force configuration if needed on the newly opened vport */ 1977 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1978 1979 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1980 } 1981 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1982 sizeof(struct pfvf_def_resp_tlv), status); 1983 } 1984 1985 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1986 struct qed_ptt *p_ptt, 1987 struct qed_vf_info *vf) 1988 { 1989 u8 status = PFVF_STATUS_SUCCESS; 1990 int rc; 1991 1992 vf->vport_instance--; 1993 vf->spoof_chk = false; 1994 1995 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 1996 (qed_iov_validate_active_txq(p_hwfn, vf))) { 1997 vf->b_malicious = true; 1998 DP_NOTICE(p_hwfn, 1999 "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n", 2000 vf->abs_vf_id); 2001 status = PFVF_STATUS_MALICIOUS; 2002 goto out; 2003 } 2004 2005 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 2006 if (rc) { 2007 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 2008 rc); 2009 status = PFVF_STATUS_FAILURE; 2010 } 2011 2012 /* Forget the configuration on the vport */ 2013 vf->configured_features = 0; 2014 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2015 2016 out: 2017 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2018 sizeof(struct pfvf_def_resp_tlv), status); 2019 } 2020 2021 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 2022 struct qed_ptt *p_ptt, 2023 struct qed_vf_info *vf, 2024 u8 status, bool b_legacy) 2025 { 2026 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2027 struct pfvf_start_queue_resp_tlv *p_tlv; 2028 struct vfpf_start_rxq_tlv *req; 2029 u16 length; 2030 2031 mbx->offset = (u8 *)mbx->reply_virt; 2032 2033 /* Taking a bigger struct instead of adding a TLV to list was a 2034 * mistake, but one which we're now stuck with, as some older 2035 * clients assume the size of the previous response. 2036 */ 2037 if (!b_legacy) 2038 length = sizeof(*p_tlv); 2039 else 2040 length = sizeof(struct pfvf_def_resp_tlv); 2041 2042 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 2043 length); 2044 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2045 sizeof(struct channel_list_end_tlv)); 2046 2047 /* Update the TLV with the response */ 2048 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2049 req = &mbx->req_virt->start_rxq; 2050 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2051 offsetof(struct mstorm_vf_zone, 2052 non_trigger.eth_rx_queue_producers) + 2053 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2054 } 2055 2056 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2057 } 2058 2059 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, 2060 struct qed_vf_info *p_vf, bool b_is_tx) 2061 { 2062 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2063 struct vfpf_qid_tlv *p_qid_tlv; 2064 2065 /* Search for the qid if the VF published its going to provide it */ 2066 if (!(p_vf->acquire.vfdev_info.capabilities & 2067 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2068 if (b_is_tx) 2069 return QED_IOV_LEGACY_QID_TX; 2070 else 2071 return QED_IOV_LEGACY_QID_RX; 2072 } 2073 2074 p_qid_tlv = (struct vfpf_qid_tlv *) 2075 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2076 CHANNEL_TLV_QID); 2077 if (!p_qid_tlv) { 2078 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2079 "VF[%2x]: Failed to provide qid\n", 2080 p_vf->relative_vf_id); 2081 2082 return QED_IOV_QID_INVALID; 2083 } 2084 2085 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2086 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2087 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2088 p_vf->relative_vf_id, p_qid_tlv->qid); 2089 return QED_IOV_QID_INVALID; 2090 } 2091 2092 return p_qid_tlv->qid; 2093 } 2094 2095 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 2096 struct qed_ptt *p_ptt, 2097 struct qed_vf_info *vf) 2098 { 2099 struct qed_queue_start_common_params params; 2100 struct qed_queue_cid_vf_params vf_params; 2101 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2102 u8 status = PFVF_STATUS_NO_RESOURCE; 2103 u8 qid_usage_idx, vf_legacy = 0; 2104 struct vfpf_start_rxq_tlv *req; 2105 struct qed_vf_queue *p_queue; 2106 struct qed_queue_cid *p_cid; 2107 struct qed_sb_info sb_dummy; 2108 int rc; 2109 2110 req = &mbx->req_virt->start_rxq; 2111 2112 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2113 QED_IOV_VALIDATE_Q_DISABLE) || 2114 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2115 goto out; 2116 2117 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2118 if (qid_usage_idx == QED_IOV_QID_INVALID) 2119 goto out; 2120 2121 p_queue = &vf->vf_queues[req->rx_qid]; 2122 if (p_queue->cids[qid_usage_idx].p_cid) 2123 goto out; 2124 2125 vf_legacy = qed_vf_calculate_legacy(vf); 2126 2127 /* Acquire a new queue-cid */ 2128 memset(¶ms, 0, sizeof(params)); 2129 params.queue_id = p_queue->fw_rx_qid; 2130 params.vport_id = vf->vport_id; 2131 params.stats_id = vf->abs_vf_id + 0x10; 2132 /* Since IGU index is passed via sb_info, construct a dummy one */ 2133 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2134 sb_dummy.igu_sb_id = req->hw_sb; 2135 params.p_sb = &sb_dummy; 2136 params.sb_idx = req->sb_index; 2137 2138 memset(&vf_params, 0, sizeof(vf_params)); 2139 vf_params.vfid = vf->relative_vf_id; 2140 vf_params.vf_qid = (u8)req->rx_qid; 2141 vf_params.vf_legacy = vf_legacy; 2142 vf_params.qid_usage_idx = qid_usage_idx; 2143 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2144 ¶ms, true, &vf_params); 2145 if (!p_cid) 2146 goto out; 2147 2148 /* Legacy VFs have their Producers in a different location, which they 2149 * calculate on their own and clean the producer prior to this. 2150 */ 2151 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) 2152 REG_WR(p_hwfn, 2153 GTT_BAR0_MAP_REG_MSDM_RAM + 2154 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2155 0); 2156 2157 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, 2158 req->bd_max_bytes, 2159 req->rxq_addr, 2160 req->cqe_pbl_addr, req->cqe_pbl_size); 2161 if (rc) { 2162 status = PFVF_STATUS_FAILURE; 2163 qed_eth_queue_cid_release(p_hwfn, p_cid); 2164 } else { 2165 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2166 p_queue->cids[qid_usage_idx].b_is_tx = false; 2167 status = PFVF_STATUS_SUCCESS; 2168 vf->num_active_rxqs++; 2169 } 2170 2171 out: 2172 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2173 !!(vf_legacy & 2174 QED_QCID_LEGACY_VF_RX_PROD)); 2175 } 2176 2177 static void 2178 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2179 struct qed_tunnel_info *p_tun, 2180 u16 tunn_feature_mask) 2181 { 2182 p_resp->tunn_feature_mask = tunn_feature_mask; 2183 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2184 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2185 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2186 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2187 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2188 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2189 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2190 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2191 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2192 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2193 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2194 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2195 } 2196 2197 static void 2198 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2199 struct qed_tunn_update_type *p_tun, 2200 enum qed_tunn_mode mask, u8 tun_cls) 2201 { 2202 if (p_req->tun_mode_update_mask & BIT(mask)) { 2203 p_tun->b_update_mode = true; 2204 2205 if (p_req->tunn_mode & BIT(mask)) 2206 p_tun->b_mode_enabled = true; 2207 } 2208 2209 p_tun->tun_cls = tun_cls; 2210 } 2211 2212 static void 2213 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2214 struct qed_tunn_update_type *p_tun, 2215 struct qed_tunn_update_udp_port *p_port, 2216 enum qed_tunn_mode mask, 2217 u8 tun_cls, u8 update_port, u16 port) 2218 { 2219 if (update_port) { 2220 p_port->b_update_port = true; 2221 p_port->port = port; 2222 } 2223 2224 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2225 } 2226 2227 static bool 2228 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2229 { 2230 bool b_update_requested = false; 2231 2232 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2233 p_req->update_geneve_port || p_req->update_vxlan_port) 2234 b_update_requested = true; 2235 2236 return b_update_requested; 2237 } 2238 2239 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2240 { 2241 if (tun->b_update_mode && !tun->b_mode_enabled) { 2242 tun->b_update_mode = false; 2243 *rc = -EINVAL; 2244 } 2245 } 2246 2247 static int 2248 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2249 u16 *tun_features, bool *update, 2250 struct qed_tunnel_info *tun_src) 2251 { 2252 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2253 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2254 u16 bultn_vxlan_port, bultn_geneve_port; 2255 void *cookie = p_hwfn->cdev->ops_cookie; 2256 int i, rc = 0; 2257 2258 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2259 bultn_vxlan_port = tun->vxlan_port.port; 2260 bultn_geneve_port = tun->geneve_port.port; 2261 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2262 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2263 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2264 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2265 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2266 2267 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2268 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2269 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2270 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2271 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2272 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2273 tun_src->b_update_rx_cls = false; 2274 tun_src->b_update_tx_cls = false; 2275 rc = -EINVAL; 2276 } 2277 2278 if (tun_src->vxlan_port.b_update_port) { 2279 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2280 tun_src->vxlan_port.b_update_port = false; 2281 } else { 2282 *update = true; 2283 bultn_vxlan_port = tun_src->vxlan_port.port; 2284 } 2285 } 2286 2287 if (tun_src->geneve_port.b_update_port) { 2288 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2289 tun_src->geneve_port.b_update_port = false; 2290 } else { 2291 *update = true; 2292 bultn_geneve_port = tun_src->geneve_port.port; 2293 } 2294 } 2295 2296 qed_for_each_vf(p_hwfn, i) { 2297 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2298 bultn_geneve_port); 2299 } 2300 2301 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2302 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2303 2304 return rc; 2305 } 2306 2307 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2308 struct qed_ptt *p_ptt, 2309 struct qed_vf_info *p_vf) 2310 { 2311 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2312 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2313 struct pfvf_update_tunn_param_tlv *p_resp; 2314 struct vfpf_update_tunn_param_tlv *p_req; 2315 u8 status = PFVF_STATUS_SUCCESS; 2316 bool b_update_required = false; 2317 struct qed_tunnel_info tunn; 2318 u16 tunn_feature_mask = 0; 2319 int i, rc = 0; 2320 2321 mbx->offset = (u8 *)mbx->reply_virt; 2322 2323 memset(&tunn, 0, sizeof(tunn)); 2324 p_req = &mbx->req_virt->tunn_param_update; 2325 2326 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2327 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2328 "No tunnel update requested by VF\n"); 2329 status = PFVF_STATUS_FAILURE; 2330 goto send_resp; 2331 } 2332 2333 tunn.b_update_rx_cls = p_req->update_tun_cls; 2334 tunn.b_update_tx_cls = p_req->update_tun_cls; 2335 2336 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2337 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2338 p_req->update_vxlan_port, 2339 p_req->vxlan_port); 2340 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2341 QED_MODE_L2GENEVE_TUNN, 2342 p_req->l2geneve_clss, 2343 p_req->update_geneve_port, 2344 p_req->geneve_port); 2345 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2346 QED_MODE_IPGENEVE_TUNN, 2347 p_req->ipgeneve_clss); 2348 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2349 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2350 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2351 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2352 2353 /* If PF modifies VF's req then it should 2354 * still return an error in case of partial configuration 2355 * or modified configuration as opposed to requested one. 2356 */ 2357 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2358 &b_update_required, &tunn); 2359 2360 if (rc) 2361 status = PFVF_STATUS_FAILURE; 2362 2363 /* If QED client is willing to update anything ? */ 2364 if (b_update_required) { 2365 u16 geneve_port; 2366 2367 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2368 QED_SPQ_MODE_EBLOCK, NULL); 2369 if (rc) 2370 status = PFVF_STATUS_FAILURE; 2371 2372 geneve_port = p_tun->geneve_port.port; 2373 qed_for_each_vf(p_hwfn, i) { 2374 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2375 p_tun->vxlan_port.port, 2376 geneve_port); 2377 } 2378 } 2379 2380 send_resp: 2381 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2382 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2383 2384 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2385 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2386 sizeof(struct channel_list_end_tlv)); 2387 2388 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2389 } 2390 2391 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2392 struct qed_ptt *p_ptt, 2393 struct qed_vf_info *p_vf, 2394 u32 cid, u8 status) 2395 { 2396 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2397 struct pfvf_start_queue_resp_tlv *p_tlv; 2398 bool b_legacy = false; 2399 u16 length; 2400 2401 mbx->offset = (u8 *)mbx->reply_virt; 2402 2403 /* Taking a bigger struct instead of adding a TLV to list was a 2404 * mistake, but one which we're now stuck with, as some older 2405 * clients assume the size of the previous response. 2406 */ 2407 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2408 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2409 b_legacy = true; 2410 2411 if (!b_legacy) 2412 length = sizeof(*p_tlv); 2413 else 2414 length = sizeof(struct pfvf_def_resp_tlv); 2415 2416 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2417 length); 2418 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2419 sizeof(struct channel_list_end_tlv)); 2420 2421 /* Update the TLV with the response */ 2422 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2423 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); 2424 2425 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2426 } 2427 2428 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2429 struct qed_ptt *p_ptt, 2430 struct qed_vf_info *vf) 2431 { 2432 struct qed_queue_start_common_params params; 2433 struct qed_queue_cid_vf_params vf_params; 2434 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2435 u8 status = PFVF_STATUS_NO_RESOURCE; 2436 struct vfpf_start_txq_tlv *req; 2437 struct qed_vf_queue *p_queue; 2438 struct qed_queue_cid *p_cid; 2439 struct qed_sb_info sb_dummy; 2440 u8 qid_usage_idx, vf_legacy; 2441 u32 cid = 0; 2442 int rc; 2443 u16 pq; 2444 2445 memset(¶ms, 0, sizeof(params)); 2446 req = &mbx->req_virt->start_txq; 2447 2448 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2449 QED_IOV_VALIDATE_Q_NA) || 2450 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2451 goto out; 2452 2453 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2454 if (qid_usage_idx == QED_IOV_QID_INVALID) 2455 goto out; 2456 2457 p_queue = &vf->vf_queues[req->tx_qid]; 2458 if (p_queue->cids[qid_usage_idx].p_cid) 2459 goto out; 2460 2461 vf_legacy = qed_vf_calculate_legacy(vf); 2462 2463 /* Acquire a new queue-cid */ 2464 params.queue_id = p_queue->fw_tx_qid; 2465 params.vport_id = vf->vport_id; 2466 params.stats_id = vf->abs_vf_id + 0x10; 2467 2468 /* Since IGU index is passed via sb_info, construct a dummy one */ 2469 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2470 sb_dummy.igu_sb_id = req->hw_sb; 2471 params.p_sb = &sb_dummy; 2472 params.sb_idx = req->sb_index; 2473 2474 memset(&vf_params, 0, sizeof(vf_params)); 2475 vf_params.vfid = vf->relative_vf_id; 2476 vf_params.vf_qid = (u8)req->tx_qid; 2477 vf_params.vf_legacy = vf_legacy; 2478 vf_params.qid_usage_idx = qid_usage_idx; 2479 2480 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2481 ¶ms, false, &vf_params); 2482 if (!p_cid) 2483 goto out; 2484 2485 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2486 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, 2487 req->pbl_addr, req->pbl_size, pq); 2488 if (rc) { 2489 status = PFVF_STATUS_FAILURE; 2490 qed_eth_queue_cid_release(p_hwfn, p_cid); 2491 } else { 2492 status = PFVF_STATUS_SUCCESS; 2493 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2494 p_queue->cids[qid_usage_idx].b_is_tx = true; 2495 cid = p_cid->cid; 2496 } 2497 2498 out: 2499 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); 2500 } 2501 2502 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2503 struct qed_vf_info *vf, 2504 u16 rxq_id, 2505 u8 qid_usage_idx, bool cqe_completion) 2506 { 2507 struct qed_vf_queue *p_queue; 2508 int rc = 0; 2509 2510 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { 2511 DP_VERBOSE(p_hwfn, 2512 QED_MSG_IOV, 2513 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2514 vf->relative_vf_id, rxq_id, qid_usage_idx); 2515 return -EINVAL; 2516 } 2517 2518 p_queue = &vf->vf_queues[rxq_id]; 2519 2520 /* We've validated the index and the existence of the active RXQ - 2521 * now we need to make sure that it's using the correct qid. 2522 */ 2523 if (!p_queue->cids[qid_usage_idx].p_cid || 2524 p_queue->cids[qid_usage_idx].b_is_tx) { 2525 struct qed_queue_cid *p_cid; 2526 2527 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 2528 DP_VERBOSE(p_hwfn, 2529 QED_MSG_IOV, 2530 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2531 vf->relative_vf_id, 2532 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); 2533 return -EINVAL; 2534 } 2535 2536 /* Now that we know we have a valid Rx-queue - close it */ 2537 rc = qed_eth_rx_queue_stop(p_hwfn, 2538 p_queue->cids[qid_usage_idx].p_cid, 2539 false, cqe_completion); 2540 if (rc) 2541 return rc; 2542 2543 p_queue->cids[qid_usage_idx].p_cid = NULL; 2544 vf->num_active_rxqs--; 2545 2546 return 0; 2547 } 2548 2549 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2550 struct qed_vf_info *vf, 2551 u16 txq_id, u8 qid_usage_idx) 2552 { 2553 struct qed_vf_queue *p_queue; 2554 int rc = 0; 2555 2556 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) 2557 return -EINVAL; 2558 2559 p_queue = &vf->vf_queues[txq_id]; 2560 if (!p_queue->cids[qid_usage_idx].p_cid || 2561 !p_queue->cids[qid_usage_idx].b_is_tx) 2562 return -EINVAL; 2563 2564 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); 2565 if (rc) 2566 return rc; 2567 2568 p_queue->cids[qid_usage_idx].p_cid = NULL; 2569 return 0; 2570 } 2571 2572 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2573 struct qed_ptt *p_ptt, 2574 struct qed_vf_info *vf) 2575 { 2576 u16 length = sizeof(struct pfvf_def_resp_tlv); 2577 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2578 u8 status = PFVF_STATUS_FAILURE; 2579 struct vfpf_stop_rxqs_tlv *req; 2580 u8 qid_usage_idx; 2581 int rc; 2582 2583 /* There has never been an official driver that used this interface 2584 * for stopping multiple queues, and it is now considered deprecated. 2585 * Validate this isn't used here. 2586 */ 2587 req = &mbx->req_virt->stop_rxqs; 2588 if (req->num_rxqs != 1) { 2589 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2590 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2591 vf->relative_vf_id); 2592 status = PFVF_STATUS_NOT_SUPPORTED; 2593 goto out; 2594 } 2595 2596 /* Find which qid-index is associated with the queue */ 2597 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2598 if (qid_usage_idx == QED_IOV_QID_INVALID) 2599 goto out; 2600 2601 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2602 qid_usage_idx, req->cqe_completion); 2603 if (!rc) 2604 status = PFVF_STATUS_SUCCESS; 2605 out: 2606 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2607 length, status); 2608 } 2609 2610 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2611 struct qed_ptt *p_ptt, 2612 struct qed_vf_info *vf) 2613 { 2614 u16 length = sizeof(struct pfvf_def_resp_tlv); 2615 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2616 u8 status = PFVF_STATUS_FAILURE; 2617 struct vfpf_stop_txqs_tlv *req; 2618 u8 qid_usage_idx; 2619 int rc; 2620 2621 /* There has never been an official driver that used this interface 2622 * for stopping multiple queues, and it is now considered deprecated. 2623 * Validate this isn't used here. 2624 */ 2625 req = &mbx->req_virt->stop_txqs; 2626 if (req->num_txqs != 1) { 2627 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2628 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2629 vf->relative_vf_id); 2630 status = PFVF_STATUS_NOT_SUPPORTED; 2631 goto out; 2632 } 2633 2634 /* Find which qid-index is associated with the queue */ 2635 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2636 if (qid_usage_idx == QED_IOV_QID_INVALID) 2637 goto out; 2638 2639 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); 2640 if (!rc) 2641 status = PFVF_STATUS_SUCCESS; 2642 2643 out: 2644 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2645 length, status); 2646 } 2647 2648 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2649 struct qed_ptt *p_ptt, 2650 struct qed_vf_info *vf) 2651 { 2652 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2653 u16 length = sizeof(struct pfvf_def_resp_tlv); 2654 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2655 struct vfpf_update_rxq_tlv *req; 2656 u8 status = PFVF_STATUS_FAILURE; 2657 u8 complete_event_flg; 2658 u8 complete_cqe_flg; 2659 u8 qid_usage_idx; 2660 int rc; 2661 u8 i; 2662 2663 req = &mbx->req_virt->update_rxq; 2664 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2665 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2666 2667 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2668 if (qid_usage_idx == QED_IOV_QID_INVALID) 2669 goto out; 2670 2671 /* There shouldn't exist a VF that uses queue-qids yet uses this 2672 * API with multiple Rx queues. Validate this. 2673 */ 2674 if ((vf->acquire.vfdev_info.capabilities & 2675 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { 2676 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2677 "VF[%d] supports QIDs but sends multiple queues\n", 2678 vf->relative_vf_id); 2679 goto out; 2680 } 2681 2682 /* Validate inputs - for the legacy case this is still true since 2683 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2684 */ 2685 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2686 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2687 QED_IOV_VALIDATE_Q_NA) || 2688 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2689 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2690 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2691 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2692 vf->relative_vf_id, req->rx_qid, 2693 req->num_rxqs); 2694 goto out; 2695 } 2696 } 2697 2698 /* Prepare the handlers */ 2699 for (i = 0; i < req->num_rxqs; i++) { 2700 u16 qid = req->rx_qid + i; 2701 2702 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2703 } 2704 2705 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2706 req->num_rxqs, 2707 complete_cqe_flg, 2708 complete_event_flg, 2709 QED_SPQ_MODE_EBLOCK, NULL); 2710 if (rc) 2711 goto out; 2712 2713 status = PFVF_STATUS_SUCCESS; 2714 out: 2715 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2716 length, status); 2717 } 2718 2719 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2720 void *p_tlvs_list, u16 req_type) 2721 { 2722 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2723 int len = 0; 2724 2725 do { 2726 if (!p_tlv->length) { 2727 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2728 return NULL; 2729 } 2730 2731 if (p_tlv->type == req_type) { 2732 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2733 "Extended tlv type %d, length %d found\n", 2734 p_tlv->type, p_tlv->length); 2735 return p_tlv; 2736 } 2737 2738 len += p_tlv->length; 2739 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2740 2741 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2742 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2743 return NULL; 2744 } 2745 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2746 2747 return NULL; 2748 } 2749 2750 static void 2751 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2752 struct qed_sp_vport_update_params *p_data, 2753 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2754 { 2755 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2756 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2757 2758 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2759 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2760 if (!p_act_tlv) 2761 return; 2762 2763 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2764 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2765 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2766 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2767 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2768 } 2769 2770 static void 2771 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2772 struct qed_sp_vport_update_params *p_data, 2773 struct qed_vf_info *p_vf, 2774 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2775 { 2776 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2777 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2778 2779 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2780 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2781 if (!p_vlan_tlv) 2782 return; 2783 2784 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2785 2786 /* Ignore the VF request if we're forcing a vlan */ 2787 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2788 p_data->update_inner_vlan_removal_flg = 1; 2789 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2790 } 2791 2792 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2793 } 2794 2795 static void 2796 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2797 struct qed_sp_vport_update_params *p_data, 2798 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2799 { 2800 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2801 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2802 2803 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2804 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2805 tlv); 2806 if (!p_tx_switch_tlv) 2807 return; 2808 2809 p_data->update_tx_switching_flg = 1; 2810 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2811 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2812 } 2813 2814 static void 2815 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2816 struct qed_sp_vport_update_params *p_data, 2817 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2818 { 2819 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2820 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2821 2822 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2823 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2824 if (!p_mcast_tlv) 2825 return; 2826 2827 p_data->update_approx_mcast_flg = 1; 2828 memcpy(p_data->bins, p_mcast_tlv->bins, 2829 sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2830 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2831 } 2832 2833 static void 2834 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2835 struct qed_sp_vport_update_params *p_data, 2836 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2837 { 2838 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2839 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2840 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2841 2842 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2843 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2844 if (!p_accept_tlv) 2845 return; 2846 2847 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2848 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2849 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2850 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2851 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2852 } 2853 2854 static void 2855 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2856 struct qed_sp_vport_update_params *p_data, 2857 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2858 { 2859 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2860 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2861 2862 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2863 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2864 tlv); 2865 if (!p_accept_any_vlan) 2866 return; 2867 2868 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2869 p_data->update_accept_any_vlan_flg = 2870 p_accept_any_vlan->update_accept_any_vlan_flg; 2871 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2872 } 2873 2874 static void 2875 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2876 struct qed_vf_info *vf, 2877 struct qed_sp_vport_update_params *p_data, 2878 struct qed_rss_params *p_rss, 2879 struct qed_iov_vf_mbx *p_mbx, 2880 u16 *tlvs_mask, u16 *tlvs_accepted) 2881 { 2882 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2883 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2884 bool b_reject = false; 2885 u16 table_size; 2886 u16 i, q_idx; 2887 2888 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2889 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2890 if (!p_rss_tlv) { 2891 p_data->rss_params = NULL; 2892 return; 2893 } 2894 2895 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2896 2897 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2898 VFPF_UPDATE_RSS_CONFIG_FLAG); 2899 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2900 VFPF_UPDATE_RSS_CAPS_FLAG); 2901 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2902 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2903 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2904 VFPF_UPDATE_RSS_KEY_FLAG); 2905 2906 p_rss->rss_enable = p_rss_tlv->rss_enable; 2907 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2908 p_rss->rss_caps = p_rss_tlv->rss_caps; 2909 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2910 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2911 2912 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2913 (1 << p_rss_tlv->rss_table_size_log)); 2914 2915 for (i = 0; i < table_size; i++) { 2916 struct qed_queue_cid *p_cid; 2917 2918 q_idx = p_rss_tlv->rss_ind_table[i]; 2919 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2920 QED_IOV_VALIDATE_Q_ENABLE)) { 2921 DP_VERBOSE(p_hwfn, 2922 QED_MSG_IOV, 2923 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2924 vf->relative_vf_id, q_idx); 2925 b_reject = true; 2926 goto out; 2927 } 2928 2929 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 2930 p_rss->rss_ind_table[i] = p_cid; 2931 } 2932 2933 p_data->rss_params = p_rss; 2934 out: 2935 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2936 if (!b_reject) 2937 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2938 } 2939 2940 static void 2941 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2942 struct qed_vf_info *vf, 2943 struct qed_sp_vport_update_params *p_data, 2944 struct qed_sge_tpa_params *p_sge_tpa, 2945 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2946 { 2947 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2948 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2949 2950 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2951 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2952 2953 if (!p_sge_tpa_tlv) { 2954 p_data->sge_tpa_params = NULL; 2955 return; 2956 } 2957 2958 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2959 2960 p_sge_tpa->update_tpa_en_flg = 2961 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2962 p_sge_tpa->update_tpa_param_flg = 2963 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2964 VFPF_UPDATE_TPA_PARAM_FLAG); 2965 2966 p_sge_tpa->tpa_ipv4_en_flg = 2967 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2968 p_sge_tpa->tpa_ipv6_en_flg = 2969 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2970 p_sge_tpa->tpa_pkt_split_flg = 2971 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2972 p_sge_tpa->tpa_hdr_data_split_flg = 2973 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2974 p_sge_tpa->tpa_gro_consistent_flg = 2975 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2976 2977 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2978 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2979 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2980 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2981 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2982 2983 p_data->sge_tpa_params = p_sge_tpa; 2984 2985 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2986 } 2987 2988 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2989 u8 vfid, 2990 struct qed_sp_vport_update_params *params, 2991 u16 *tlvs) 2992 { 2993 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 2994 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 2995 struct qed_public_vf_info *vf_info; 2996 2997 /* Untrusted VFs can't even be trusted to know that fact. 2998 * Simply indicate everything is configured fine, and trace 2999 * configuration 'behind their back'. 3000 */ 3001 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 3002 return 0; 3003 3004 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3005 3006 if (flags->update_rx_mode_config) { 3007 vf_info->rx_accept_mode = flags->rx_accept_filter; 3008 if (!vf_info->is_trusted_configured) 3009 flags->rx_accept_filter &= ~mask; 3010 } 3011 3012 if (flags->update_tx_mode_config) { 3013 vf_info->tx_accept_mode = flags->tx_accept_filter; 3014 if (!vf_info->is_trusted_configured) 3015 flags->tx_accept_filter &= ~mask; 3016 } 3017 3018 return 0; 3019 } 3020 3021 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 3022 struct qed_ptt *p_ptt, 3023 struct qed_vf_info *vf) 3024 { 3025 struct qed_rss_params *p_rss_params = NULL; 3026 struct qed_sp_vport_update_params params; 3027 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3028 struct qed_sge_tpa_params sge_tpa_params; 3029 u16 tlvs_mask = 0, tlvs_accepted = 0; 3030 u8 status = PFVF_STATUS_SUCCESS; 3031 u16 length; 3032 int rc; 3033 3034 /* Valiate PF can send such a request */ 3035 if (!vf->vport_instance) { 3036 DP_VERBOSE(p_hwfn, 3037 QED_MSG_IOV, 3038 "No VPORT instance available for VF[%d], failing vport update\n", 3039 vf->abs_vf_id); 3040 status = PFVF_STATUS_FAILURE; 3041 goto out; 3042 } 3043 p_rss_params = vzalloc(sizeof(*p_rss_params)); 3044 if (p_rss_params == NULL) { 3045 status = PFVF_STATUS_FAILURE; 3046 goto out; 3047 } 3048 3049 memset(¶ms, 0, sizeof(params)); 3050 params.opaque_fid = vf->opaque_fid; 3051 params.vport_id = vf->vport_id; 3052 params.rss_params = NULL; 3053 3054 /* Search for extended tlvs list and update values 3055 * from VF in struct qed_sp_vport_update_params. 3056 */ 3057 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3058 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3059 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3060 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3061 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3062 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3063 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 3064 &sge_tpa_params, mbx, &tlvs_mask); 3065 3066 tlvs_accepted = tlvs_mask; 3067 3068 /* Some of the extended TLVs need to be validated first; In that case, 3069 * they can update the mask without updating the accepted [so that 3070 * PF could communicate to VF it has rejected request]. 3071 */ 3072 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3073 mbx, &tlvs_mask, &tlvs_accepted); 3074 3075 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 3076 ¶ms, &tlvs_accepted)) { 3077 tlvs_accepted = 0; 3078 status = PFVF_STATUS_NOT_SUPPORTED; 3079 goto out; 3080 } 3081 3082 if (!tlvs_accepted) { 3083 if (tlvs_mask) 3084 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3085 "Upper-layer prevents VF vport configuration\n"); 3086 else 3087 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3088 "No feature tlvs found for vport update\n"); 3089 status = PFVF_STATUS_NOT_SUPPORTED; 3090 goto out; 3091 } 3092 3093 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 3094 3095 if (rc) 3096 status = PFVF_STATUS_FAILURE; 3097 3098 out: 3099 vfree(p_rss_params); 3100 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3101 tlvs_mask, tlvs_accepted); 3102 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3103 } 3104 3105 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 3106 struct qed_vf_info *p_vf, 3107 struct qed_filter_ucast *p_params) 3108 { 3109 int i; 3110 3111 /* First remove entries and then add new ones */ 3112 if (p_params->opcode == QED_FILTER_REMOVE) { 3113 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3114 if (p_vf->shadow_config.vlans[i].used && 3115 p_vf->shadow_config.vlans[i].vid == 3116 p_params->vlan) { 3117 p_vf->shadow_config.vlans[i].used = false; 3118 break; 3119 } 3120 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3121 DP_VERBOSE(p_hwfn, 3122 QED_MSG_IOV, 3123 "VF [%d] - Tries to remove a non-existing vlan\n", 3124 p_vf->relative_vf_id); 3125 return -EINVAL; 3126 } 3127 } else if (p_params->opcode == QED_FILTER_REPLACE || 3128 p_params->opcode == QED_FILTER_FLUSH) { 3129 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3130 p_vf->shadow_config.vlans[i].used = false; 3131 } 3132 3133 /* In forced mode, we're willing to remove entries - but we don't add 3134 * new ones. 3135 */ 3136 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 3137 return 0; 3138 3139 if (p_params->opcode == QED_FILTER_ADD || 3140 p_params->opcode == QED_FILTER_REPLACE) { 3141 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3142 if (p_vf->shadow_config.vlans[i].used) 3143 continue; 3144 3145 p_vf->shadow_config.vlans[i].used = true; 3146 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3147 break; 3148 } 3149 3150 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3151 DP_VERBOSE(p_hwfn, 3152 QED_MSG_IOV, 3153 "VF [%d] - Tries to configure more than %d vlan filters\n", 3154 p_vf->relative_vf_id, 3155 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 3156 return -EINVAL; 3157 } 3158 } 3159 3160 return 0; 3161 } 3162 3163 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 3164 struct qed_vf_info *p_vf, 3165 struct qed_filter_ucast *p_params) 3166 { 3167 int i; 3168 3169 /* If we're in forced-mode, we don't allow any change */ 3170 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 3171 return 0; 3172 3173 /* First remove entries and then add new ones */ 3174 if (p_params->opcode == QED_FILTER_REMOVE) { 3175 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3176 if (ether_addr_equal(p_vf->shadow_config.macs[i], 3177 p_params->mac)) { 3178 eth_zero_addr(p_vf->shadow_config.macs[i]); 3179 break; 3180 } 3181 } 3182 3183 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3184 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3185 "MAC isn't configured\n"); 3186 return -EINVAL; 3187 } 3188 } else if (p_params->opcode == QED_FILTER_REPLACE || 3189 p_params->opcode == QED_FILTER_FLUSH) { 3190 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 3191 eth_zero_addr(p_vf->shadow_config.macs[i]); 3192 } 3193 3194 /* List the new MAC address */ 3195 if (p_params->opcode != QED_FILTER_ADD && 3196 p_params->opcode != QED_FILTER_REPLACE) 3197 return 0; 3198 3199 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3200 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 3201 ether_addr_copy(p_vf->shadow_config.macs[i], 3202 p_params->mac); 3203 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3204 "Added MAC at %d entry in shadow\n", i); 3205 break; 3206 } 3207 } 3208 3209 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3210 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 3211 return -EINVAL; 3212 } 3213 3214 return 0; 3215 } 3216 3217 static int 3218 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 3219 struct qed_vf_info *p_vf, 3220 struct qed_filter_ucast *p_params) 3221 { 3222 int rc = 0; 3223 3224 if (p_params->type == QED_FILTER_MAC) { 3225 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3226 if (rc) 3227 return rc; 3228 } 3229 3230 if (p_params->type == QED_FILTER_VLAN) 3231 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3232 3233 return rc; 3234 } 3235 3236 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3237 int vfid, struct qed_filter_ucast *params) 3238 { 3239 struct qed_public_vf_info *vf; 3240 3241 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3242 if (!vf) 3243 return -EINVAL; 3244 3245 /* No real decision to make; Store the configured MAC */ 3246 if (params->type == QED_FILTER_MAC || 3247 params->type == QED_FILTER_MAC_VLAN) 3248 ether_addr_copy(vf->mac, params->mac); 3249 3250 return 0; 3251 } 3252 3253 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3254 struct qed_ptt *p_ptt, 3255 struct qed_vf_info *vf) 3256 { 3257 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3258 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3259 struct vfpf_ucast_filter_tlv *req; 3260 u8 status = PFVF_STATUS_SUCCESS; 3261 struct qed_filter_ucast params; 3262 int rc; 3263 3264 /* Prepare the unicast filter params */ 3265 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3266 req = &mbx->req_virt->ucast_filter; 3267 params.opcode = (enum qed_filter_opcode)req->opcode; 3268 params.type = (enum qed_filter_ucast_type)req->type; 3269 3270 params.is_rx_filter = 1; 3271 params.is_tx_filter = 1; 3272 params.vport_to_remove_from = vf->vport_id; 3273 params.vport_to_add_to = vf->vport_id; 3274 memcpy(params.mac, req->mac, ETH_ALEN); 3275 params.vlan = req->vlan; 3276 3277 DP_VERBOSE(p_hwfn, 3278 QED_MSG_IOV, 3279 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 3280 vf->abs_vf_id, params.opcode, params.type, 3281 params.is_rx_filter ? "RX" : "", 3282 params.is_tx_filter ? "TX" : "", 3283 params.vport_to_add_to, 3284 params.mac[0], params.mac[1], 3285 params.mac[2], params.mac[3], 3286 params.mac[4], params.mac[5], params.vlan); 3287 3288 if (!vf->vport_instance) { 3289 DP_VERBOSE(p_hwfn, 3290 QED_MSG_IOV, 3291 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3292 vf->abs_vf_id); 3293 status = PFVF_STATUS_FAILURE; 3294 goto out; 3295 } 3296 3297 /* Update shadow copy of the VF configuration */ 3298 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3299 status = PFVF_STATUS_FAILURE; 3300 goto out; 3301 } 3302 3303 /* Determine if the unicast filtering is acceptible by PF */ 3304 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3305 (params.type == QED_FILTER_VLAN || 3306 params.type == QED_FILTER_MAC_VLAN)) { 3307 /* Once VLAN is forced or PVID is set, do not allow 3308 * to add/replace any further VLANs. 3309 */ 3310 if (params.opcode == QED_FILTER_ADD || 3311 params.opcode == QED_FILTER_REPLACE) 3312 status = PFVF_STATUS_FORCED; 3313 goto out; 3314 } 3315 3316 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3317 (params.type == QED_FILTER_MAC || 3318 params.type == QED_FILTER_MAC_VLAN)) { 3319 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3320 (params.opcode != QED_FILTER_ADD && 3321 params.opcode != QED_FILTER_REPLACE)) 3322 status = PFVF_STATUS_FORCED; 3323 goto out; 3324 } 3325 3326 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3327 if (rc) { 3328 status = PFVF_STATUS_FAILURE; 3329 goto out; 3330 } 3331 3332 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3333 QED_SPQ_MODE_CB, NULL); 3334 if (rc) 3335 status = PFVF_STATUS_FAILURE; 3336 3337 out: 3338 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3339 sizeof(struct pfvf_def_resp_tlv), status); 3340 } 3341 3342 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3343 struct qed_ptt *p_ptt, 3344 struct qed_vf_info *vf) 3345 { 3346 int i; 3347 3348 /* Reset the SBs */ 3349 for (i = 0; i < vf->num_sbs; i++) 3350 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3351 vf->igu_sbs[i], 3352 vf->opaque_fid, false); 3353 3354 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3355 sizeof(struct pfvf_def_resp_tlv), 3356 PFVF_STATUS_SUCCESS); 3357 } 3358 3359 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3360 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3361 { 3362 u16 length = sizeof(struct pfvf_def_resp_tlv); 3363 u8 status = PFVF_STATUS_SUCCESS; 3364 3365 /* Disable Interrupts for VF */ 3366 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3367 3368 /* Reset Permission table */ 3369 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3370 3371 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3372 length, status); 3373 } 3374 3375 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3376 struct qed_ptt *p_ptt, 3377 struct qed_vf_info *p_vf) 3378 { 3379 u16 length = sizeof(struct pfvf_def_resp_tlv); 3380 u8 status = PFVF_STATUS_SUCCESS; 3381 int rc = 0; 3382 3383 qed_iov_vf_cleanup(p_hwfn, p_vf); 3384 3385 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3386 /* Stopping the VF */ 3387 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3388 p_vf->opaque_fid); 3389 3390 if (rc) { 3391 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3392 rc); 3393 status = PFVF_STATUS_FAILURE; 3394 } 3395 3396 p_vf->state = VF_STOPPED; 3397 } 3398 3399 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3400 length, status); 3401 } 3402 3403 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, 3404 struct qed_ptt *p_ptt, 3405 struct qed_vf_info *p_vf) 3406 { 3407 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3408 struct pfvf_read_coal_resp_tlv *p_resp; 3409 struct vfpf_read_coal_req_tlv *req; 3410 u8 status = PFVF_STATUS_FAILURE; 3411 struct qed_vf_queue *p_queue; 3412 struct qed_queue_cid *p_cid; 3413 u16 coal = 0, qid, i; 3414 bool b_is_rx; 3415 int rc = 0; 3416 3417 mbx->offset = (u8 *)mbx->reply_virt; 3418 req = &mbx->req_virt->read_coal_req; 3419 3420 qid = req->qid; 3421 b_is_rx = req->is_rx ? true : false; 3422 3423 if (b_is_rx) { 3424 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, 3425 QED_IOV_VALIDATE_Q_ENABLE)) { 3426 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3427 "VF[%d]: Invalid Rx queue_id = %d\n", 3428 p_vf->abs_vf_id, qid); 3429 goto send_resp; 3430 } 3431 3432 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3433 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3434 if (rc) 3435 goto send_resp; 3436 } else { 3437 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, 3438 QED_IOV_VALIDATE_Q_ENABLE)) { 3439 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3440 "VF[%d]: Invalid Tx queue_id = %d\n", 3441 p_vf->abs_vf_id, qid); 3442 goto send_resp; 3443 } 3444 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3445 p_queue = &p_vf->vf_queues[qid]; 3446 if ((!p_queue->cids[i].p_cid) || 3447 (!p_queue->cids[i].b_is_tx)) 3448 continue; 3449 3450 p_cid = p_queue->cids[i].p_cid; 3451 3452 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3453 if (rc) 3454 goto send_resp; 3455 break; 3456 } 3457 } 3458 3459 status = PFVF_STATUS_SUCCESS; 3460 3461 send_resp: 3462 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, 3463 sizeof(*p_resp)); 3464 p_resp->coal = coal; 3465 3466 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 3467 sizeof(struct channel_list_end_tlv)); 3468 3469 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3470 } 3471 3472 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, 3473 struct qed_ptt *p_ptt, 3474 struct qed_vf_info *vf) 3475 { 3476 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3477 struct vfpf_update_coalesce *req; 3478 u8 status = PFVF_STATUS_FAILURE; 3479 struct qed_queue_cid *p_cid; 3480 u16 rx_coal, tx_coal; 3481 int rc = 0, i; 3482 u16 qid; 3483 3484 req = &mbx->req_virt->update_coalesce; 3485 3486 rx_coal = req->rx_coal; 3487 tx_coal = req->tx_coal; 3488 qid = req->qid; 3489 3490 if (!qed_iov_validate_rxq(p_hwfn, vf, qid, 3491 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { 3492 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3493 "VF[%d]: Invalid Rx queue_id = %d\n", 3494 vf->abs_vf_id, qid); 3495 goto out; 3496 } 3497 3498 if (!qed_iov_validate_txq(p_hwfn, vf, qid, 3499 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { 3500 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3501 "VF[%d]: Invalid Tx queue_id = %d\n", 3502 vf->abs_vf_id, qid); 3503 goto out; 3504 } 3505 3506 DP_VERBOSE(p_hwfn, 3507 QED_MSG_IOV, 3508 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3509 vf->abs_vf_id, rx_coal, tx_coal, qid); 3510 3511 if (rx_coal) { 3512 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3513 3514 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3515 if (rc) { 3516 DP_VERBOSE(p_hwfn, 3517 QED_MSG_IOV, 3518 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3519 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3520 goto out; 3521 } 3522 vf->rx_coal = rx_coal; 3523 } 3524 3525 if (tx_coal) { 3526 struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; 3527 3528 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3529 if (!p_queue->cids[i].p_cid) 3530 continue; 3531 3532 if (!p_queue->cids[i].b_is_tx) 3533 continue; 3534 3535 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3536 p_queue->cids[i].p_cid); 3537 3538 if (rc) { 3539 DP_VERBOSE(p_hwfn, 3540 QED_MSG_IOV, 3541 "VF[%d]: Unable to set tx queue coalesce\n", 3542 vf->abs_vf_id); 3543 goto out; 3544 } 3545 } 3546 vf->tx_coal = tx_coal; 3547 } 3548 3549 status = PFVF_STATUS_SUCCESS; 3550 out: 3551 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3552 sizeof(struct pfvf_def_resp_tlv), status); 3553 } 3554 static int 3555 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3556 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3557 { 3558 int cnt; 3559 u32 val; 3560 3561 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 3562 3563 for (cnt = 0; cnt < 50; cnt++) { 3564 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3565 if (!val) 3566 break; 3567 msleep(20); 3568 } 3569 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 3570 3571 if (cnt == 50) { 3572 DP_ERR(p_hwfn, 3573 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3574 p_vf->abs_vf_id, val); 3575 return -EBUSY; 3576 } 3577 3578 return 0; 3579 } 3580 3581 static int 3582 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3583 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3584 { 3585 u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4]; 3586 int i, cnt; 3587 3588 /* Read initial consumers & producers */ 3589 for (i = 0; i < MAX_NUM_VOQS_E4; i++) { 3590 u32 prod; 3591 3592 cons[i] = qed_rd(p_hwfn, p_ptt, 3593 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3594 i * 0x40); 3595 prod = qed_rd(p_hwfn, p_ptt, 3596 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3597 i * 0x40); 3598 distance[i] = prod - cons[i]; 3599 } 3600 3601 /* Wait for consumers to pass the producers */ 3602 i = 0; 3603 for (cnt = 0; cnt < 50; cnt++) { 3604 for (; i < MAX_NUM_VOQS_E4; i++) { 3605 u32 tmp; 3606 3607 tmp = qed_rd(p_hwfn, p_ptt, 3608 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3609 i * 0x40); 3610 if (distance[i] > tmp - cons[i]) 3611 break; 3612 } 3613 3614 if (i == MAX_NUM_VOQS_E4) 3615 break; 3616 3617 msleep(20); 3618 } 3619 3620 if (cnt == 50) { 3621 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3622 p_vf->abs_vf_id, i); 3623 return -EBUSY; 3624 } 3625 3626 return 0; 3627 } 3628 3629 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3630 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3631 { 3632 int rc; 3633 3634 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3635 if (rc) 3636 return rc; 3637 3638 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3639 if (rc) 3640 return rc; 3641 3642 return 0; 3643 } 3644 3645 static int 3646 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3647 struct qed_ptt *p_ptt, 3648 u16 rel_vf_id, u32 *ack_vfs) 3649 { 3650 struct qed_vf_info *p_vf; 3651 int rc = 0; 3652 3653 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3654 if (!p_vf) 3655 return 0; 3656 3657 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3658 (1ULL << (rel_vf_id % 64))) { 3659 u16 vfid = p_vf->abs_vf_id; 3660 3661 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3662 "VF[%d] - Handling FLR\n", vfid); 3663 3664 qed_iov_vf_cleanup(p_hwfn, p_vf); 3665 3666 /* If VF isn't active, no need for anything but SW */ 3667 if (!p_vf->b_init) 3668 goto cleanup; 3669 3670 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3671 if (rc) 3672 goto cleanup; 3673 3674 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3675 if (rc) { 3676 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3677 return rc; 3678 } 3679 3680 /* Workaround to make VF-PF channel ready, as FW 3681 * doesn't do that as a part of FLR. 3682 */ 3683 REG_WR(p_hwfn, 3684 GTT_BAR0_MAP_REG_USDM_RAM + 3685 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3686 3687 /* VF_STOPPED has to be set only after final cleanup 3688 * but prior to re-enabling the VF. 3689 */ 3690 p_vf->state = VF_STOPPED; 3691 3692 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3693 if (rc) { 3694 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3695 vfid); 3696 return rc; 3697 } 3698 cleanup: 3699 /* Mark VF for ack and clean pending state */ 3700 if (p_vf->state == VF_RESET) 3701 p_vf->state = VF_STOPPED; 3702 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3703 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3704 ~(1ULL << (rel_vf_id % 64)); 3705 p_vf->vf_mbx.b_pending_msg = false; 3706 } 3707 3708 return rc; 3709 } 3710 3711 static int 3712 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3713 { 3714 u32 ack_vfs[VF_MAX_STATIC / 32]; 3715 int rc = 0; 3716 u16 i; 3717 3718 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3719 3720 /* Since BRB <-> PRS interface can't be tested as part of the flr 3721 * polling due to HW limitations, simply sleep a bit. And since 3722 * there's no need to wait per-vf, do it before looping. 3723 */ 3724 msleep(100); 3725 3726 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3727 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3728 3729 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3730 return rc; 3731 } 3732 3733 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3734 { 3735 bool found = false; 3736 u16 i; 3737 3738 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3739 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3740 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3741 "[%08x,...,%08x]: %08x\n", 3742 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3743 3744 if (!p_hwfn->cdev->p_iov_info) { 3745 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3746 return false; 3747 } 3748 3749 /* Mark VFs */ 3750 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3751 struct qed_vf_info *p_vf; 3752 u8 vfid; 3753 3754 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3755 if (!p_vf) 3756 continue; 3757 3758 vfid = p_vf->abs_vf_id; 3759 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3760 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3761 u16 rel_vf_id = p_vf->relative_vf_id; 3762 3763 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3764 "VF[%d] [rel %d] got FLR-ed\n", 3765 vfid, rel_vf_id); 3766 3767 p_vf->state = VF_RESET; 3768 3769 /* No need to lock here, since pending_flr should 3770 * only change here and before ACKing MFw. Since 3771 * MFW will not trigger an additional attention for 3772 * VF flr until ACKs, we're safe. 3773 */ 3774 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3775 found = true; 3776 } 3777 } 3778 3779 return found; 3780 } 3781 3782 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3783 u16 vfid, 3784 struct qed_mcp_link_params *p_params, 3785 struct qed_mcp_link_state *p_link, 3786 struct qed_mcp_link_capabilities *p_caps) 3787 { 3788 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3789 vfid, 3790 false); 3791 struct qed_bulletin_content *p_bulletin; 3792 3793 if (!p_vf) 3794 return; 3795 3796 p_bulletin = p_vf->bulletin.p_virt; 3797 3798 if (p_params) 3799 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3800 if (p_link) 3801 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3802 if (p_caps) 3803 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3804 } 3805 3806 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3807 struct qed_ptt *p_ptt, int vfid) 3808 { 3809 struct qed_iov_vf_mbx *mbx; 3810 struct qed_vf_info *p_vf; 3811 3812 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3813 if (!p_vf) 3814 return; 3815 3816 mbx = &p_vf->vf_mbx; 3817 3818 /* qed_iov_process_mbx_request */ 3819 if (!mbx->b_pending_msg) { 3820 DP_NOTICE(p_hwfn, 3821 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3822 p_vf->abs_vf_id); 3823 return; 3824 } 3825 mbx->b_pending_msg = false; 3826 3827 mbx->first_tlv = mbx->req_virt->first_tlv; 3828 3829 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3830 "VF[%02x]: Processing mailbox message [type %04x]\n", 3831 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3832 3833 /* check if tlv type is known */ 3834 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3835 !p_vf->b_malicious) { 3836 switch (mbx->first_tlv.tl.type) { 3837 case CHANNEL_TLV_ACQUIRE: 3838 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3839 break; 3840 case CHANNEL_TLV_VPORT_START: 3841 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3842 break; 3843 case CHANNEL_TLV_VPORT_TEARDOWN: 3844 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3845 break; 3846 case CHANNEL_TLV_START_RXQ: 3847 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3848 break; 3849 case CHANNEL_TLV_START_TXQ: 3850 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3851 break; 3852 case CHANNEL_TLV_STOP_RXQS: 3853 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3854 break; 3855 case CHANNEL_TLV_STOP_TXQS: 3856 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3857 break; 3858 case CHANNEL_TLV_UPDATE_RXQ: 3859 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3860 break; 3861 case CHANNEL_TLV_VPORT_UPDATE: 3862 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3863 break; 3864 case CHANNEL_TLV_UCAST_FILTER: 3865 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3866 break; 3867 case CHANNEL_TLV_CLOSE: 3868 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3869 break; 3870 case CHANNEL_TLV_INT_CLEANUP: 3871 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3872 break; 3873 case CHANNEL_TLV_RELEASE: 3874 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3875 break; 3876 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3877 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3878 break; 3879 case CHANNEL_TLV_COALESCE_UPDATE: 3880 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 3881 break; 3882 case CHANNEL_TLV_COALESCE_READ: 3883 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 3884 break; 3885 } 3886 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3887 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3888 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3889 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3890 3891 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3892 mbx->first_tlv.tl.type, 3893 sizeof(struct pfvf_def_resp_tlv), 3894 PFVF_STATUS_MALICIOUS); 3895 } else { 3896 /* unknown TLV - this may belong to a VF driver from the future 3897 * - a version written after this PF driver was written, which 3898 * supports features unknown as of yet. Too bad since we don't 3899 * support them. Or this may be because someone wrote a crappy 3900 * VF driver and is sending garbage over the channel. 3901 */ 3902 DP_NOTICE(p_hwfn, 3903 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3904 p_vf->abs_vf_id, 3905 mbx->first_tlv.tl.type, 3906 mbx->first_tlv.tl.length, 3907 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3908 3909 /* Try replying in case reply address matches the acquisition's 3910 * posted address. 3911 */ 3912 if (p_vf->acquire.first_tlv.reply_address && 3913 (mbx->first_tlv.reply_address == 3914 p_vf->acquire.first_tlv.reply_address)) { 3915 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3916 mbx->first_tlv.tl.type, 3917 sizeof(struct pfvf_def_resp_tlv), 3918 PFVF_STATUS_NOT_SUPPORTED); 3919 } else { 3920 DP_VERBOSE(p_hwfn, 3921 QED_MSG_IOV, 3922 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3923 p_vf->abs_vf_id); 3924 } 3925 } 3926 } 3927 3928 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3929 { 3930 int i; 3931 3932 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3933 3934 qed_for_each_vf(p_hwfn, i) { 3935 struct qed_vf_info *p_vf; 3936 3937 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3938 if (p_vf->vf_mbx.b_pending_msg) 3939 events[i / 64] |= 1ULL << (i % 64); 3940 } 3941 } 3942 3943 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3944 u16 abs_vfid) 3945 { 3946 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 3947 3948 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 3949 DP_VERBOSE(p_hwfn, 3950 QED_MSG_IOV, 3951 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 3952 abs_vfid); 3953 return NULL; 3954 } 3955 3956 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 3957 } 3958 3959 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 3960 u16 abs_vfid, struct regpair *vf_msg) 3961 { 3962 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 3963 abs_vfid); 3964 3965 if (!p_vf) 3966 return 0; 3967 3968 /* List the physical address of the request so that handler 3969 * could later on copy the message from it. 3970 */ 3971 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 3972 3973 /* Mark the event and schedule the workqueue */ 3974 p_vf->vf_mbx.b_pending_msg = true; 3975 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 3976 3977 return 0; 3978 } 3979 3980 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 3981 struct malicious_vf_eqe_data *p_data) 3982 { 3983 struct qed_vf_info *p_vf; 3984 3985 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 3986 3987 if (!p_vf) 3988 return; 3989 3990 if (!p_vf->b_malicious) { 3991 DP_NOTICE(p_hwfn, 3992 "VF [%d] - Malicious behavior [%02x]\n", 3993 p_vf->abs_vf_id, p_data->err_id); 3994 3995 p_vf->b_malicious = true; 3996 } else { 3997 DP_INFO(p_hwfn, 3998 "VF [%d] - Malicious behavior [%02x]\n", 3999 p_vf->abs_vf_id, p_data->err_id); 4000 } 4001 } 4002 4003 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 4004 u8 opcode, 4005 __le16 echo, 4006 union event_ring_data *data, u8 fw_return_code) 4007 { 4008 switch (opcode) { 4009 case COMMON_EVENT_VF_PF_CHANNEL: 4010 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 4011 &data->vf_pf_channel.msg_addr); 4012 case COMMON_EVENT_MALICIOUS_VF: 4013 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 4014 return 0; 4015 default: 4016 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 4017 opcode); 4018 return -EINVAL; 4019 } 4020 } 4021 4022 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4023 { 4024 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 4025 u16 i; 4026 4027 if (!p_iov) 4028 goto out; 4029 4030 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4031 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4032 return i; 4033 4034 out: 4035 return MAX_NUM_VFS; 4036 } 4037 4038 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 4039 int vfid) 4040 { 4041 struct qed_dmae_params params; 4042 struct qed_vf_info *vf_info; 4043 4044 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4045 if (!vf_info) 4046 return -EINVAL; 4047 4048 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 4049 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 4050 params.src_vfid = vf_info->abs_vf_id; 4051 4052 if (qed_dmae_host2host(p_hwfn, ptt, 4053 vf_info->vf_mbx.pending_req, 4054 vf_info->vf_mbx.req_phys, 4055 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 4056 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4057 "Failed to copy message from VF 0x%02x\n", vfid); 4058 4059 return -EIO; 4060 } 4061 4062 return 0; 4063 } 4064 4065 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 4066 u8 *mac, int vfid) 4067 { 4068 struct qed_vf_info *vf_info; 4069 u64 feature; 4070 4071 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4072 if (!vf_info) { 4073 DP_NOTICE(p_hwfn->cdev, 4074 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4075 return; 4076 } 4077 4078 if (vf_info->b_malicious) { 4079 DP_NOTICE(p_hwfn->cdev, 4080 "Can't set forced MAC to malicious VF [%d]\n", vfid); 4081 return; 4082 } 4083 4084 feature = 1 << MAC_ADDR_FORCED; 4085 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 4086 4087 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4088 /* Forced MAC will disable MAC_ADDR */ 4089 vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR); 4090 4091 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4092 } 4093 4094 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 4095 u16 pvid, int vfid) 4096 { 4097 struct qed_vf_info *vf_info; 4098 u64 feature; 4099 4100 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4101 if (!vf_info) { 4102 DP_NOTICE(p_hwfn->cdev, 4103 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4104 return; 4105 } 4106 4107 if (vf_info->b_malicious) { 4108 DP_NOTICE(p_hwfn->cdev, 4109 "Can't set forced vlan to malicious VF [%d]\n", vfid); 4110 return; 4111 } 4112 4113 feature = 1 << VLAN_ADDR_FORCED; 4114 vf_info->bulletin.p_virt->pvid = pvid; 4115 if (pvid) 4116 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4117 else 4118 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4119 4120 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4121 } 4122 4123 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 4124 int vfid, u16 vxlan_port, u16 geneve_port) 4125 { 4126 struct qed_vf_info *vf_info; 4127 4128 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4129 if (!vf_info) { 4130 DP_NOTICE(p_hwfn->cdev, 4131 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4132 return; 4133 } 4134 4135 if (vf_info->b_malicious) { 4136 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4137 "Can not set udp ports to malicious VF [%d]\n", 4138 vfid); 4139 return; 4140 } 4141 4142 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4143 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4144 } 4145 4146 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 4147 { 4148 struct qed_vf_info *p_vf_info; 4149 4150 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4151 if (!p_vf_info) 4152 return false; 4153 4154 return !!p_vf_info->vport_instance; 4155 } 4156 4157 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 4158 { 4159 struct qed_vf_info *p_vf_info; 4160 4161 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4162 if (!p_vf_info) 4163 return true; 4164 4165 return p_vf_info->state == VF_STOPPED; 4166 } 4167 4168 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 4169 { 4170 struct qed_vf_info *vf_info; 4171 4172 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4173 if (!vf_info) 4174 return false; 4175 4176 return vf_info->spoof_chk; 4177 } 4178 4179 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 4180 { 4181 struct qed_vf_info *vf; 4182 int rc = -EINVAL; 4183 4184 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4185 DP_NOTICE(p_hwfn, 4186 "SR-IOV sanity check failed, can't set spoofchk\n"); 4187 goto out; 4188 } 4189 4190 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4191 if (!vf) 4192 goto out; 4193 4194 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4195 /* After VF VPORT start PF will configure spoof check */ 4196 vf->req_spoofchk_val = val; 4197 rc = 0; 4198 goto out; 4199 } 4200 4201 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 4202 4203 out: 4204 return rc; 4205 } 4206 4207 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 4208 u16 rel_vf_id) 4209 { 4210 struct qed_vf_info *p_vf; 4211 4212 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4213 if (!p_vf || !p_vf->bulletin.p_virt) 4214 return NULL; 4215 4216 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 4217 return NULL; 4218 4219 return p_vf->bulletin.p_virt->mac; 4220 } 4221 4222 static u16 4223 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4224 { 4225 struct qed_vf_info *p_vf; 4226 4227 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4228 if (!p_vf || !p_vf->bulletin.p_virt) 4229 return 0; 4230 4231 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 4232 return 0; 4233 4234 return p_vf->bulletin.p_virt->pvid; 4235 } 4236 4237 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 4238 struct qed_ptt *p_ptt, int vfid, int val) 4239 { 4240 struct qed_mcp_link_state *p_link; 4241 struct qed_vf_info *vf; 4242 u8 abs_vp_id = 0; 4243 int rc; 4244 4245 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4246 if (!vf) 4247 return -EINVAL; 4248 4249 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4250 if (rc) 4251 return rc; 4252 4253 p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output; 4254 4255 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val, 4256 p_link->speed); 4257 } 4258 4259 static int 4260 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 4261 { 4262 struct qed_vf_info *vf; 4263 u8 vport_id; 4264 int i; 4265 4266 for_each_hwfn(cdev, i) { 4267 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4268 4269 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4270 DP_NOTICE(p_hwfn, 4271 "SR-IOV sanity check failed, can't set min rate\n"); 4272 return -EINVAL; 4273 } 4274 } 4275 4276 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 4277 vport_id = vf->vport_id; 4278 4279 return qed_configure_vport_wfq(cdev, vport_id, rate); 4280 } 4281 4282 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 4283 { 4284 struct qed_wfq_data *vf_vp_wfq; 4285 struct qed_vf_info *vf_info; 4286 4287 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4288 if (!vf_info) 4289 return 0; 4290 4291 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4292 4293 if (vf_vp_wfq->configured) 4294 return vf_vp_wfq->min_speed; 4295 else 4296 return 0; 4297 } 4298 4299 /** 4300 * qed_schedule_iov - schedules IOV task for VF and PF 4301 * @hwfn: hardware function pointer 4302 * @flag: IOV flag for VF/PF 4303 */ 4304 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 4305 { 4306 smp_mb__before_atomic(); 4307 set_bit(flag, &hwfn->iov_task_flags); 4308 smp_mb__after_atomic(); 4309 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 4310 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 4311 } 4312 4313 void qed_vf_start_iov_wq(struct qed_dev *cdev) 4314 { 4315 int i; 4316 4317 for_each_hwfn(cdev, i) 4318 queue_delayed_work(cdev->hwfns[i].iov_wq, 4319 &cdev->hwfns[i].iov_task, 0); 4320 } 4321 4322 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 4323 { 4324 int i, j; 4325 4326 for_each_hwfn(cdev, i) 4327 if (cdev->hwfns[i].iov_wq) 4328 flush_workqueue(cdev->hwfns[i].iov_wq); 4329 4330 /* Mark VFs for disablement */ 4331 qed_iov_set_vfs_to_disable(cdev, true); 4332 4333 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 4334 pci_disable_sriov(cdev->pdev); 4335 4336 for_each_hwfn(cdev, i) { 4337 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4338 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4339 4340 /* Failure to acquire the ptt in 100g creates an odd error 4341 * where the first engine has already relased IOV. 4342 */ 4343 if (!ptt) { 4344 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4345 return -EBUSY; 4346 } 4347 4348 /* Clean WFQ db and configure equal weight for all vports */ 4349 qed_clean_wfq_db(hwfn, ptt); 4350 4351 qed_for_each_vf(hwfn, j) { 4352 int k; 4353 4354 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 4355 continue; 4356 4357 /* Wait until VF is disabled before releasing */ 4358 for (k = 0; k < 100; k++) { 4359 if (!qed_iov_is_vf_stopped(hwfn, j)) 4360 msleep(20); 4361 else 4362 break; 4363 } 4364 4365 if (k < 100) 4366 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 4367 ptt, j); 4368 else 4369 DP_ERR(hwfn, 4370 "Timeout waiting for VF's FLR to end\n"); 4371 } 4372 4373 qed_ptt_release(hwfn, ptt); 4374 } 4375 4376 qed_iov_set_vfs_to_disable(cdev, false); 4377 4378 return 0; 4379 } 4380 4381 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 4382 u16 vfid, 4383 struct qed_iov_vf_init_params *params) 4384 { 4385 u16 base, i; 4386 4387 /* Since we have an equal resource distribution per-VF, and we assume 4388 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 4389 * sequentially from there. 4390 */ 4391 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 4392 4393 params->rel_vf_id = vfid; 4394 for (i = 0; i < params->num_queues; i++) { 4395 params->req_rx_queue[i] = base + i; 4396 params->req_tx_queue[i] = base + i; 4397 } 4398 } 4399 4400 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4401 { 4402 struct qed_iov_vf_init_params params; 4403 int i, j, rc; 4404 4405 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4406 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4407 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4408 return -EINVAL; 4409 } 4410 4411 memset(¶ms, 0, sizeof(params)); 4412 4413 /* Initialize HW for VF access */ 4414 for_each_hwfn(cdev, j) { 4415 struct qed_hwfn *hwfn = &cdev->hwfns[j]; 4416 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4417 4418 /* Make sure not to use more than 16 queues per VF */ 4419 params.num_queues = min_t(int, 4420 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4421 16); 4422 4423 if (!ptt) { 4424 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4425 rc = -EBUSY; 4426 goto err; 4427 } 4428 4429 for (i = 0; i < num; i++) { 4430 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4431 continue; 4432 4433 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4434 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4435 if (rc) { 4436 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4437 qed_ptt_release(hwfn, ptt); 4438 goto err; 4439 } 4440 } 4441 4442 qed_ptt_release(hwfn, ptt); 4443 } 4444 4445 /* Enable SRIOV PCIe functions */ 4446 rc = pci_enable_sriov(cdev->pdev, num); 4447 if (rc) { 4448 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4449 goto err; 4450 } 4451 4452 return num; 4453 4454 err: 4455 qed_sriov_disable(cdev, false); 4456 return rc; 4457 } 4458 4459 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4460 { 4461 if (!IS_QED_SRIOV(cdev)) { 4462 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4463 return -EOPNOTSUPP; 4464 } 4465 4466 if (num_vfs_param) 4467 return qed_sriov_enable(cdev, num_vfs_param); 4468 else 4469 return qed_sriov_disable(cdev, true); 4470 } 4471 4472 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4473 { 4474 int i; 4475 4476 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4477 DP_VERBOSE(cdev, QED_MSG_IOV, 4478 "Cannot set a VF MAC; Sriov is not enabled\n"); 4479 return -EINVAL; 4480 } 4481 4482 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4483 DP_VERBOSE(cdev, QED_MSG_IOV, 4484 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4485 return -EINVAL; 4486 } 4487 4488 for_each_hwfn(cdev, i) { 4489 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4490 struct qed_public_vf_info *vf_info; 4491 4492 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4493 if (!vf_info) 4494 continue; 4495 4496 /* Set the forced MAC, and schedule the IOV task */ 4497 ether_addr_copy(vf_info->forced_mac, mac); 4498 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4499 } 4500 4501 return 0; 4502 } 4503 4504 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4505 { 4506 int i; 4507 4508 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4509 DP_VERBOSE(cdev, QED_MSG_IOV, 4510 "Cannot set a VF MAC; Sriov is not enabled\n"); 4511 return -EINVAL; 4512 } 4513 4514 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4515 DP_VERBOSE(cdev, QED_MSG_IOV, 4516 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4517 return -EINVAL; 4518 } 4519 4520 for_each_hwfn(cdev, i) { 4521 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4522 struct qed_public_vf_info *vf_info; 4523 4524 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4525 if (!vf_info) 4526 continue; 4527 4528 /* Set the forced vlan, and schedule the IOV task */ 4529 vf_info->forced_vlan = vid; 4530 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4531 } 4532 4533 return 0; 4534 } 4535 4536 static int qed_get_vf_config(struct qed_dev *cdev, 4537 int vf_id, struct ifla_vf_info *ivi) 4538 { 4539 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4540 struct qed_public_vf_info *vf_info; 4541 struct qed_mcp_link_state link; 4542 u32 tx_rate; 4543 4544 /* Sanitize request */ 4545 if (IS_VF(cdev)) 4546 return -EINVAL; 4547 4548 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4549 DP_VERBOSE(cdev, QED_MSG_IOV, 4550 "VF index [%d] isn't active\n", vf_id); 4551 return -EINVAL; 4552 } 4553 4554 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4555 4556 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4557 4558 /* Fill information about VF */ 4559 ivi->vf = vf_id; 4560 4561 if (is_valid_ether_addr(vf_info->forced_mac)) 4562 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4563 else 4564 ether_addr_copy(ivi->mac, vf_info->mac); 4565 4566 ivi->vlan = vf_info->forced_vlan; 4567 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4568 ivi->linkstate = vf_info->link_state; 4569 tx_rate = vf_info->tx_rate; 4570 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4571 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4572 4573 return 0; 4574 } 4575 4576 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4577 { 4578 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4579 struct qed_mcp_link_capabilities caps; 4580 struct qed_mcp_link_params params; 4581 struct qed_mcp_link_state link; 4582 int i; 4583 4584 if (!hwfn->pf_iov_info) 4585 return; 4586 4587 /* Update bulletin of all future possible VFs with link configuration */ 4588 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4589 struct qed_public_vf_info *vf_info; 4590 4591 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4592 if (!vf_info) 4593 continue; 4594 4595 /* Only hwfn0 is actually interested in the link speed. 4596 * But since only it would receive an MFW indication of link, 4597 * need to take configuration from it - otherwise things like 4598 * rate limiting for hwfn1 VF would not work. 4599 */ 4600 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4601 sizeof(params)); 4602 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4603 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4604 sizeof(caps)); 4605 4606 /* Modify link according to the VF's configured link state */ 4607 switch (vf_info->link_state) { 4608 case IFLA_VF_LINK_STATE_DISABLE: 4609 link.link_up = false; 4610 break; 4611 case IFLA_VF_LINK_STATE_ENABLE: 4612 link.link_up = true; 4613 /* Set speed according to maximum supported by HW. 4614 * that is 40G for regular devices and 100G for CMT 4615 * mode devices. 4616 */ 4617 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4618 100000 : 40000; 4619 default: 4620 /* In auto mode pass PF link image to VF */ 4621 break; 4622 } 4623 4624 if (link.link_up && vf_info->tx_rate) { 4625 struct qed_ptt *ptt; 4626 int rate; 4627 4628 rate = min_t(int, vf_info->tx_rate, link.speed); 4629 4630 ptt = qed_ptt_acquire(hwfn); 4631 if (!ptt) { 4632 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4633 return; 4634 } 4635 4636 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4637 vf_info->tx_rate = rate; 4638 link.speed = rate; 4639 } 4640 4641 qed_ptt_release(hwfn, ptt); 4642 } 4643 4644 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4645 } 4646 4647 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4648 } 4649 4650 static int qed_set_vf_link_state(struct qed_dev *cdev, 4651 int vf_id, int link_state) 4652 { 4653 int i; 4654 4655 /* Sanitize request */ 4656 if (IS_VF(cdev)) 4657 return -EINVAL; 4658 4659 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4660 DP_VERBOSE(cdev, QED_MSG_IOV, 4661 "VF index [%d] isn't active\n", vf_id); 4662 return -EINVAL; 4663 } 4664 4665 /* Handle configuration of link state */ 4666 for_each_hwfn(cdev, i) { 4667 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4668 struct qed_public_vf_info *vf; 4669 4670 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4671 if (!vf) 4672 continue; 4673 4674 if (vf->link_state == link_state) 4675 continue; 4676 4677 vf->link_state = link_state; 4678 qed_inform_vf_link_state(&cdev->hwfns[i]); 4679 } 4680 4681 return 0; 4682 } 4683 4684 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4685 { 4686 int i, rc = -EINVAL; 4687 4688 for_each_hwfn(cdev, i) { 4689 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4690 4691 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4692 if (rc) 4693 break; 4694 } 4695 4696 return rc; 4697 } 4698 4699 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4700 { 4701 int i; 4702 4703 for_each_hwfn(cdev, i) { 4704 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4705 struct qed_public_vf_info *vf; 4706 4707 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4708 DP_NOTICE(p_hwfn, 4709 "SR-IOV sanity check failed, can't set tx rate\n"); 4710 return -EINVAL; 4711 } 4712 4713 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4714 4715 vf->tx_rate = rate; 4716 4717 qed_inform_vf_link_state(p_hwfn); 4718 } 4719 4720 return 0; 4721 } 4722 4723 static int qed_set_vf_rate(struct qed_dev *cdev, 4724 int vfid, u32 min_rate, u32 max_rate) 4725 { 4726 int rc_min = 0, rc_max = 0; 4727 4728 if (max_rate) 4729 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4730 4731 if (min_rate) 4732 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4733 4734 if (rc_max | rc_min) 4735 return -EINVAL; 4736 4737 return 0; 4738 } 4739 4740 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4741 { 4742 int i; 4743 4744 for_each_hwfn(cdev, i) { 4745 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4746 struct qed_public_vf_info *vf; 4747 4748 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4749 DP_NOTICE(hwfn, 4750 "SR-IOV sanity check failed, can't set trust\n"); 4751 return -EINVAL; 4752 } 4753 4754 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4755 4756 if (vf->is_trusted_request == trust) 4757 return 0; 4758 vf->is_trusted_request = trust; 4759 4760 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4761 } 4762 4763 return 0; 4764 } 4765 4766 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4767 { 4768 u64 events[QED_VF_ARRAY_LENGTH]; 4769 struct qed_ptt *ptt; 4770 int i; 4771 4772 ptt = qed_ptt_acquire(hwfn); 4773 if (!ptt) { 4774 DP_VERBOSE(hwfn, QED_MSG_IOV, 4775 "Can't acquire PTT; re-scheduling\n"); 4776 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4777 return; 4778 } 4779 4780 qed_iov_pf_get_pending_events(hwfn, events); 4781 4782 DP_VERBOSE(hwfn, QED_MSG_IOV, 4783 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4784 events[0], events[1], events[2]); 4785 4786 qed_for_each_vf(hwfn, i) { 4787 /* Skip VFs with no pending messages */ 4788 if (!(events[i / 64] & (1ULL << (i % 64)))) 4789 continue; 4790 4791 DP_VERBOSE(hwfn, QED_MSG_IOV, 4792 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4793 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4794 4795 /* Copy VF's message to PF's request buffer for that VF */ 4796 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4797 continue; 4798 4799 qed_iov_process_mbx_req(hwfn, ptt, i); 4800 } 4801 4802 qed_ptt_release(hwfn, ptt); 4803 } 4804 4805 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4806 { 4807 int i; 4808 4809 qed_for_each_vf(hwfn, i) { 4810 struct qed_public_vf_info *info; 4811 bool update = false; 4812 u8 *mac; 4813 4814 info = qed_iov_get_public_vf_info(hwfn, i, true); 4815 if (!info) 4816 continue; 4817 4818 /* Update data on bulletin board */ 4819 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4820 if (is_valid_ether_addr(info->forced_mac) && 4821 (!mac || !ether_addr_equal(mac, info->forced_mac))) { 4822 DP_VERBOSE(hwfn, 4823 QED_MSG_IOV, 4824 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4825 i, 4826 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4827 4828 /* Update bulletin board with forced MAC */ 4829 qed_iov_bulletin_set_forced_mac(hwfn, 4830 info->forced_mac, i); 4831 update = true; 4832 } 4833 4834 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 4835 info->forced_vlan) { 4836 DP_VERBOSE(hwfn, 4837 QED_MSG_IOV, 4838 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 4839 info->forced_vlan, 4840 i, 4841 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4842 qed_iov_bulletin_set_forced_vlan(hwfn, 4843 info->forced_vlan, i); 4844 update = true; 4845 } 4846 4847 if (update) 4848 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4849 } 4850 } 4851 4852 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 4853 { 4854 struct qed_ptt *ptt; 4855 int i; 4856 4857 ptt = qed_ptt_acquire(hwfn); 4858 if (!ptt) { 4859 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 4860 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4861 return; 4862 } 4863 4864 qed_for_each_vf(hwfn, i) 4865 qed_iov_post_vf_bulletin(hwfn, i, ptt); 4866 4867 qed_ptt_release(hwfn, ptt); 4868 } 4869 4870 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 4871 { 4872 struct qed_sp_vport_update_params params; 4873 struct qed_filter_accept_flags *flags; 4874 struct qed_public_vf_info *vf_info; 4875 struct qed_vf_info *vf; 4876 u8 mask; 4877 int i; 4878 4879 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 4880 flags = ¶ms.accept_flags; 4881 4882 qed_for_each_vf(hwfn, i) { 4883 /* Need to make sure current requested configuration didn't 4884 * flip so that we'll end up configuring something that's not 4885 * needed. 4886 */ 4887 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 4888 if (vf_info->is_trusted_configured == 4889 vf_info->is_trusted_request) 4890 continue; 4891 vf_info->is_trusted_configured = vf_info->is_trusted_request; 4892 4893 /* Validate that the VF has a configured vport */ 4894 vf = qed_iov_get_vf_info(hwfn, i, true); 4895 if (!vf->vport_instance) 4896 continue; 4897 4898 memset(¶ms, 0, sizeof(params)); 4899 params.opaque_fid = vf->opaque_fid; 4900 params.vport_id = vf->vport_id; 4901 4902 if (vf_info->rx_accept_mode & mask) { 4903 flags->update_rx_mode_config = 1; 4904 flags->rx_accept_filter = vf_info->rx_accept_mode; 4905 } 4906 4907 if (vf_info->tx_accept_mode & mask) { 4908 flags->update_tx_mode_config = 1; 4909 flags->tx_accept_filter = vf_info->tx_accept_mode; 4910 } 4911 4912 /* Remove if needed; Otherwise this would set the mask */ 4913 if (!vf_info->is_trusted_configured) { 4914 flags->rx_accept_filter &= ~mask; 4915 flags->tx_accept_filter &= ~mask; 4916 } 4917 4918 if (flags->update_rx_mode_config || 4919 flags->update_tx_mode_config) 4920 qed_sp_vport_update(hwfn, ¶ms, 4921 QED_SPQ_MODE_EBLOCK, NULL); 4922 } 4923 } 4924 4925 static void qed_iov_pf_task(struct work_struct *work) 4926 4927 { 4928 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 4929 iov_task.work); 4930 int rc; 4931 4932 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 4933 return; 4934 4935 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 4936 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4937 4938 if (!ptt) { 4939 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4940 return; 4941 } 4942 4943 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 4944 if (rc) 4945 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 4946 4947 qed_ptt_release(hwfn, ptt); 4948 } 4949 4950 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 4951 qed_handle_vf_msg(hwfn); 4952 4953 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 4954 &hwfn->iov_task_flags)) 4955 qed_handle_pf_set_vf_unicast(hwfn); 4956 4957 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 4958 &hwfn->iov_task_flags)) 4959 qed_handle_bulletin_post(hwfn); 4960 4961 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 4962 qed_iov_handle_trust_change(hwfn); 4963 } 4964 4965 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 4966 { 4967 int i; 4968 4969 for_each_hwfn(cdev, i) { 4970 if (!cdev->hwfns[i].iov_wq) 4971 continue; 4972 4973 if (schedule_first) { 4974 qed_schedule_iov(&cdev->hwfns[i], 4975 QED_IOV_WQ_STOP_WQ_FLAG); 4976 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 4977 } 4978 4979 flush_workqueue(cdev->hwfns[i].iov_wq); 4980 destroy_workqueue(cdev->hwfns[i].iov_wq); 4981 } 4982 } 4983 4984 int qed_iov_wq_start(struct qed_dev *cdev) 4985 { 4986 char name[NAME_SIZE]; 4987 int i; 4988 4989 for_each_hwfn(cdev, i) { 4990 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4991 4992 /* PFs needs a dedicated workqueue only if they support IOV. 4993 * VFs always require one. 4994 */ 4995 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 4996 continue; 4997 4998 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 4999 cdev->pdev->bus->number, 5000 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 5001 5002 p_hwfn->iov_wq = create_singlethread_workqueue(name); 5003 if (!p_hwfn->iov_wq) { 5004 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 5005 return -ENOMEM; 5006 } 5007 5008 if (IS_PF(cdev)) 5009 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 5010 else 5011 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 5012 } 5013 5014 return 0; 5015 } 5016 5017 const struct qed_iov_hv_ops qed_iov_ops_pass = { 5018 .configure = &qed_sriov_configure, 5019 .set_mac = &qed_sriov_pf_set_mac, 5020 .set_vlan = &qed_sriov_pf_set_vlan, 5021 .get_config = &qed_get_vf_config, 5022 .set_link_state = &qed_set_vf_link_state, 5023 .set_spoof = &qed_spoof_configure, 5024 .set_rate = &qed_set_vf_rate, 5025 .set_trust = &qed_set_vf_trust, 5026 }; 5027