1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 
48 /* IOV ramrods */
49 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
50 {
51 	struct vf_start_ramrod_data *p_ramrod = NULL;
52 	struct qed_spq_entry *p_ent = NULL;
53 	struct qed_sp_init_data init_data;
54 	int rc = -EINVAL;
55 	u8 fp_minor;
56 
57 	/* Get SPQ entry */
58 	memset(&init_data, 0, sizeof(init_data));
59 	init_data.cid = qed_spq_get_cid(p_hwfn);
60 	init_data.opaque_fid = p_vf->opaque_fid;
61 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
62 
63 	rc = qed_sp_init_request(p_hwfn, &p_ent,
64 				 COMMON_RAMROD_VF_START,
65 				 PROTOCOLID_COMMON, &init_data);
66 	if (rc)
67 		return rc;
68 
69 	p_ramrod = &p_ent->ramrod.vf_start;
70 
71 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
72 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
73 
74 	switch (p_hwfn->hw_info.personality) {
75 	case QED_PCI_ETH:
76 		p_ramrod->personality = PERSONALITY_ETH;
77 		break;
78 	case QED_PCI_ETH_ROCE:
79 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
80 		break;
81 	default:
82 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
83 			  p_hwfn->hw_info.personality);
84 		return -EINVAL;
85 	}
86 
87 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
88 	if (fp_minor > ETH_HSI_VER_MINOR &&
89 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
90 		DP_VERBOSE(p_hwfn,
91 			   QED_MSG_IOV,
92 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
93 			   p_vf->abs_vf_id,
94 			   ETH_HSI_VER_MAJOR,
95 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
96 		fp_minor = ETH_HSI_VER_MINOR;
97 	}
98 
99 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
100 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
101 
102 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
103 		   "VF[%d] - Starting using HSI %02x.%02x\n",
104 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
105 
106 	return qed_spq_post(p_hwfn, p_ent, NULL);
107 }
108 
109 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
110 			  u32 concrete_vfid, u16 opaque_vfid)
111 {
112 	struct vf_stop_ramrod_data *p_ramrod = NULL;
113 	struct qed_spq_entry *p_ent = NULL;
114 	struct qed_sp_init_data init_data;
115 	int rc = -EINVAL;
116 
117 	/* Get SPQ entry */
118 	memset(&init_data, 0, sizeof(init_data));
119 	init_data.cid = qed_spq_get_cid(p_hwfn);
120 	init_data.opaque_fid = opaque_vfid;
121 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
122 
123 	rc = qed_sp_init_request(p_hwfn, &p_ent,
124 				 COMMON_RAMROD_VF_STOP,
125 				 PROTOCOLID_COMMON, &init_data);
126 	if (rc)
127 		return rc;
128 
129 	p_ramrod = &p_ent->ramrod.vf_stop;
130 
131 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
132 
133 	return qed_spq_post(p_hwfn, p_ent, NULL);
134 }
135 
136 static bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
137 				  int rel_vf_id,
138 				  bool b_enabled_only, bool b_non_malicious)
139 {
140 	if (!p_hwfn->pf_iov_info) {
141 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
142 		return false;
143 	}
144 
145 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
146 	    (rel_vf_id < 0))
147 		return false;
148 
149 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
150 	    b_enabled_only)
151 		return false;
152 
153 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
154 	    b_non_malicious)
155 		return false;
156 
157 	return true;
158 }
159 
160 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
161 					       u16 relative_vf_id,
162 					       bool b_enabled_only)
163 {
164 	struct qed_vf_info *vf = NULL;
165 
166 	if (!p_hwfn->pf_iov_info) {
167 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
168 		return NULL;
169 	}
170 
171 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
172 				  b_enabled_only, false))
173 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
174 	else
175 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
176 		       relative_vf_id);
177 
178 	return vf;
179 }
180 
181 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
182 				 struct qed_vf_info *p_vf, u16 rx_qid)
183 {
184 	if (rx_qid >= p_vf->num_rxqs)
185 		DP_VERBOSE(p_hwfn,
186 			   QED_MSG_IOV,
187 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
188 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
189 	return rx_qid < p_vf->num_rxqs;
190 }
191 
192 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
193 				 struct qed_vf_info *p_vf, u16 tx_qid)
194 {
195 	if (tx_qid >= p_vf->num_txqs)
196 		DP_VERBOSE(p_hwfn,
197 			   QED_MSG_IOV,
198 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
199 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
200 	return tx_qid < p_vf->num_txqs;
201 }
202 
203 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
204 				struct qed_vf_info *p_vf, u16 sb_idx)
205 {
206 	int i;
207 
208 	for (i = 0; i < p_vf->num_sbs; i++)
209 		if (p_vf->igu_sbs[i] == sb_idx)
210 			return true;
211 
212 	DP_VERBOSE(p_hwfn,
213 		   QED_MSG_IOV,
214 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
215 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
216 
217 	return false;
218 }
219 
220 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
221 				    int vfid, struct qed_ptt *p_ptt)
222 {
223 	struct qed_bulletin_content *p_bulletin;
224 	int crc_size = sizeof(p_bulletin->crc);
225 	struct qed_dmae_params params;
226 	struct qed_vf_info *p_vf;
227 
228 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
229 	if (!p_vf)
230 		return -EINVAL;
231 
232 	if (!p_vf->vf_bulletin)
233 		return -EINVAL;
234 
235 	p_bulletin = p_vf->bulletin.p_virt;
236 
237 	/* Increment bulletin board version and compute crc */
238 	p_bulletin->version++;
239 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
240 				p_vf->bulletin.size - crc_size);
241 
242 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
243 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
244 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
245 
246 	/* propagate bulletin board via dmae to vm memory */
247 	memset(&params, 0, sizeof(params));
248 	params.flags = QED_DMAE_FLAG_VF_DST;
249 	params.dst_vfid = p_vf->abs_vf_id;
250 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
251 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
252 				  &params);
253 }
254 
255 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
256 {
257 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
258 	int pos = iov->pos;
259 
260 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
261 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
262 
263 	pci_read_config_word(cdev->pdev,
264 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
265 	pci_read_config_word(cdev->pdev,
266 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
267 
268 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
269 	if (iov->num_vfs) {
270 		DP_VERBOSE(cdev,
271 			   QED_MSG_IOV,
272 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
273 		iov->num_vfs = 0;
274 	}
275 
276 	pci_read_config_word(cdev->pdev,
277 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
278 
279 	pci_read_config_word(cdev->pdev,
280 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
281 
282 	pci_read_config_word(cdev->pdev,
283 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
284 
285 	pci_read_config_dword(cdev->pdev,
286 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
287 
288 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
289 
290 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
291 
292 	DP_VERBOSE(cdev,
293 		   QED_MSG_IOV,
294 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
295 		   iov->nres,
296 		   iov->cap,
297 		   iov->ctrl,
298 		   iov->total_vfs,
299 		   iov->initial_vfs,
300 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
301 
302 	/* Some sanity checks */
303 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
304 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
305 		/* This can happen only due to a bug. In this case we set
306 		 * num_vfs to zero to avoid memory corruption in the code that
307 		 * assumes max number of vfs
308 		 */
309 		DP_NOTICE(cdev,
310 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
311 			  iov->num_vfs);
312 
313 		iov->num_vfs = 0;
314 		iov->total_vfs = 0;
315 	}
316 
317 	return 0;
318 }
319 
320 static void qed_iov_clear_vf_igu_blocks(struct qed_hwfn *p_hwfn,
321 					struct qed_ptt *p_ptt)
322 {
323 	struct qed_igu_block *p_sb;
324 	u16 sb_id;
325 	u32 val;
326 
327 	if (!p_hwfn->hw_info.p_igu_info) {
328 		DP_ERR(p_hwfn,
329 		       "qed_iov_clear_vf_igu_blocks IGU Info not initialized\n");
330 		return;
331 	}
332 
333 	for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
334 	     sb_id++) {
335 		p_sb = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
336 		if ((p_sb->status & QED_IGU_STATUS_FREE) &&
337 		    !(p_sb->status & QED_IGU_STATUS_PF)) {
338 			val = qed_rd(p_hwfn, p_ptt,
339 				     IGU_REG_MAPPING_MEMORY + sb_id * 4);
340 			SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
341 			qed_wr(p_hwfn, p_ptt,
342 			       IGU_REG_MAPPING_MEMORY + 4 * sb_id, val);
343 		}
344 	}
345 }
346 
347 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
348 {
349 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
350 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
351 	struct qed_bulletin_content *p_bulletin_virt;
352 	dma_addr_t req_p, rply_p, bulletin_p;
353 	union pfvf_tlvs *p_reply_virt_addr;
354 	union vfpf_tlvs *p_req_virt_addr;
355 	u8 idx = 0;
356 
357 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
358 
359 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
360 	req_p = p_iov_info->mbx_msg_phys_addr;
361 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
362 	rply_p = p_iov_info->mbx_reply_phys_addr;
363 	p_bulletin_virt = p_iov_info->p_bulletins;
364 	bulletin_p = p_iov_info->bulletins_phys;
365 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
366 		DP_ERR(p_hwfn,
367 		       "qed_iov_setup_vfdb called without allocating mem first\n");
368 		return;
369 	}
370 
371 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
372 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
373 		u32 concrete;
374 
375 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
376 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
377 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
378 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
379 
380 		vf->state = VF_STOPPED;
381 		vf->b_init = false;
382 
383 		vf->bulletin.phys = idx *
384 				    sizeof(struct qed_bulletin_content) +
385 				    bulletin_p;
386 		vf->bulletin.p_virt = p_bulletin_virt + idx;
387 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
388 
389 		vf->relative_vf_id = idx;
390 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
391 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
392 		vf->concrete_fid = concrete;
393 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
394 				 (vf->abs_vf_id << 8);
395 		vf->vport_id = idx + 1;
396 
397 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
398 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
399 	}
400 }
401 
402 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
403 {
404 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
405 	void **p_v_addr;
406 	u16 num_vfs = 0;
407 
408 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
409 
410 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
411 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
412 
413 	/* Allocate PF Mailbox buffer (per-VF) */
414 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
415 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
416 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
417 				       p_iov_info->mbx_msg_size,
418 				       &p_iov_info->mbx_msg_phys_addr,
419 				       GFP_KERNEL);
420 	if (!*p_v_addr)
421 		return -ENOMEM;
422 
423 	/* Allocate PF Mailbox Reply buffer (per-VF) */
424 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
425 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
426 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
427 				       p_iov_info->mbx_reply_size,
428 				       &p_iov_info->mbx_reply_phys_addr,
429 				       GFP_KERNEL);
430 	if (!*p_v_addr)
431 		return -ENOMEM;
432 
433 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
434 				     num_vfs;
435 	p_v_addr = &p_iov_info->p_bulletins;
436 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
437 				       p_iov_info->bulletins_size,
438 				       &p_iov_info->bulletins_phys,
439 				       GFP_KERNEL);
440 	if (!*p_v_addr)
441 		return -ENOMEM;
442 
443 	DP_VERBOSE(p_hwfn,
444 		   QED_MSG_IOV,
445 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
446 		   p_iov_info->mbx_msg_virt_addr,
447 		   (u64) p_iov_info->mbx_msg_phys_addr,
448 		   p_iov_info->mbx_reply_virt_addr,
449 		   (u64) p_iov_info->mbx_reply_phys_addr,
450 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
451 
452 	return 0;
453 }
454 
455 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
456 {
457 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
458 
459 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
460 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
461 				  p_iov_info->mbx_msg_size,
462 				  p_iov_info->mbx_msg_virt_addr,
463 				  p_iov_info->mbx_msg_phys_addr);
464 
465 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
466 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
467 				  p_iov_info->mbx_reply_size,
468 				  p_iov_info->mbx_reply_virt_addr,
469 				  p_iov_info->mbx_reply_phys_addr);
470 
471 	if (p_iov_info->p_bulletins)
472 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
473 				  p_iov_info->bulletins_size,
474 				  p_iov_info->p_bulletins,
475 				  p_iov_info->bulletins_phys);
476 }
477 
478 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
479 {
480 	struct qed_pf_iov *p_sriov;
481 
482 	if (!IS_PF_SRIOV(p_hwfn)) {
483 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
484 			   "No SR-IOV - no need for IOV db\n");
485 		return 0;
486 	}
487 
488 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
489 	if (!p_sriov)
490 		return -ENOMEM;
491 
492 	p_hwfn->pf_iov_info = p_sriov;
493 
494 	return qed_iov_allocate_vfdb(p_hwfn);
495 }
496 
497 void qed_iov_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
498 {
499 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
500 		return;
501 
502 	qed_iov_setup_vfdb(p_hwfn);
503 	qed_iov_clear_vf_igu_blocks(p_hwfn, p_ptt);
504 }
505 
506 void qed_iov_free(struct qed_hwfn *p_hwfn)
507 {
508 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
509 		qed_iov_free_vfdb(p_hwfn);
510 		kfree(p_hwfn->pf_iov_info);
511 	}
512 }
513 
514 void qed_iov_free_hw_info(struct qed_dev *cdev)
515 {
516 	kfree(cdev->p_iov_info);
517 	cdev->p_iov_info = NULL;
518 }
519 
520 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
521 {
522 	struct qed_dev *cdev = p_hwfn->cdev;
523 	int pos;
524 	int rc;
525 
526 	if (IS_VF(p_hwfn->cdev))
527 		return 0;
528 
529 	/* Learn the PCI configuration */
530 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
531 				      PCI_EXT_CAP_ID_SRIOV);
532 	if (!pos) {
533 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
534 		return 0;
535 	}
536 
537 	/* Allocate a new struct for IOV information */
538 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
539 	if (!cdev->p_iov_info)
540 		return -ENOMEM;
541 
542 	cdev->p_iov_info->pos = pos;
543 
544 	rc = qed_iov_pci_cfg_info(cdev);
545 	if (rc)
546 		return rc;
547 
548 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
549 	 * In case the capability is published but there are no VFs, simply
550 	 * de-allocate the struct.
551 	 */
552 	if (!cdev->p_iov_info->total_vfs) {
553 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
554 			   "IOV capabilities, but no VFs are published\n");
555 		kfree(cdev->p_iov_info);
556 		cdev->p_iov_info = NULL;
557 		return 0;
558 	}
559 
560 	/* Calculate the first VF index - this is a bit tricky; Basically,
561 	 * VFs start at offset 16 relative to PF0, and 2nd engine VFs begin
562 	 * after the first engine's VFs.
563 	 */
564 	cdev->p_iov_info->first_vf_in_pf = p_hwfn->cdev->p_iov_info->offset +
565 					   p_hwfn->abs_pf_id - 16;
566 	if (QED_PATH_ID(p_hwfn))
567 		cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
568 
569 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
570 		   "First VF in hwfn 0x%08x\n",
571 		   cdev->p_iov_info->first_vf_in_pf);
572 
573 	return 0;
574 }
575 
576 bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
577 			      int vfid, bool b_fail_malicious)
578 {
579 	/* Check PF supports sriov */
580 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
581 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
582 		return false;
583 
584 	/* Check VF validity */
585 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
586 		return false;
587 
588 	return true;
589 }
590 
591 bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
592 {
593 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
594 }
595 
596 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
597 				      u16 rel_vf_id, u8 to_disable)
598 {
599 	struct qed_vf_info *vf;
600 	int i;
601 
602 	for_each_hwfn(cdev, i) {
603 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
604 
605 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
606 		if (!vf)
607 			continue;
608 
609 		vf->to_disable = to_disable;
610 	}
611 }
612 
613 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
614 {
615 	u16 i;
616 
617 	if (!IS_QED_SRIOV(cdev))
618 		return;
619 
620 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
621 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
622 }
623 
624 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
625 				       struct qed_ptt *p_ptt, u8 abs_vfid)
626 {
627 	qed_wr(p_hwfn, p_ptt,
628 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
629 	       1 << (abs_vfid & 0x1f));
630 }
631 
632 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
633 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
634 {
635 	int i;
636 
637 	/* Set VF masks and configuration - pretend */
638 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
639 
640 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
641 
642 	/* unpretend */
643 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
644 
645 	/* iterate over all queues, clear sb consumer */
646 	for (i = 0; i < vf->num_sbs; i++)
647 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
648 						vf->igu_sbs[i],
649 						vf->opaque_fid, true);
650 }
651 
652 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
653 				   struct qed_ptt *p_ptt,
654 				   struct qed_vf_info *vf, bool enable)
655 {
656 	u32 igu_vf_conf;
657 
658 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
659 
660 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
661 
662 	if (enable)
663 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
664 	else
665 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
666 
667 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
668 
669 	/* unpretend */
670 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
671 }
672 
673 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
674 				    struct qed_ptt *p_ptt,
675 				    struct qed_vf_info *vf)
676 {
677 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
678 	int rc;
679 
680 	if (vf->to_disable)
681 		return 0;
682 
683 	DP_VERBOSE(p_hwfn,
684 		   QED_MSG_IOV,
685 		   "Enable internal access for vf %x [abs %x]\n",
686 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
687 
688 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
689 
690 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
691 
692 	/* It's possible VF was previously considered malicious */
693 	vf->b_malicious = false;
694 
695 	rc = qed_mcp_config_vf_msix(p_hwfn, p_ptt, vf->abs_vf_id, vf->num_sbs);
696 	if (rc)
697 		return rc;
698 
699 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
700 
701 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
702 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
703 
704 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
705 		     p_hwfn->hw_info.hw_mode);
706 
707 	/* unpretend */
708 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
709 
710 	vf->state = VF_FREE;
711 
712 	return rc;
713 }
714 
715 /**
716  * @brief qed_iov_config_perm_table - configure the permission
717  *      zone table.
718  *      In E4, queue zone permission table size is 320x9. There
719  *      are 320 VF queues for single engine device (256 for dual
720  *      engine device), and each entry has the following format:
721  *      {Valid, VF[7:0]}
722  * @param p_hwfn
723  * @param p_ptt
724  * @param vf
725  * @param enable
726  */
727 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
728 				      struct qed_ptt *p_ptt,
729 				      struct qed_vf_info *vf, u8 enable)
730 {
731 	u32 reg_addr, val;
732 	u16 qzone_id = 0;
733 	int qid;
734 
735 	for (qid = 0; qid < vf->num_rxqs; qid++) {
736 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
737 				&qzone_id);
738 
739 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
740 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
741 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
742 	}
743 }
744 
745 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
746 				      struct qed_ptt *p_ptt,
747 				      struct qed_vf_info *vf)
748 {
749 	/* Reset vf in IGU - interrupts are still disabled */
750 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
751 
752 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
753 
754 	/* Permission Table */
755 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
756 }
757 
758 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
759 				   struct qed_ptt *p_ptt,
760 				   struct qed_vf_info *vf, u16 num_rx_queues)
761 {
762 	struct qed_igu_block *igu_blocks;
763 	int qid = 0, igu_id = 0;
764 	u32 val = 0;
765 
766 	igu_blocks = p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks;
767 
768 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->free_blks)
769 		num_rx_queues = p_hwfn->hw_info.p_igu_info->free_blks;
770 	p_hwfn->hw_info.p_igu_info->free_blks -= num_rx_queues;
771 
772 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
773 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
774 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
775 
776 	while ((qid < num_rx_queues) &&
777 	       (igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev))) {
778 		if (igu_blocks[igu_id].status & QED_IGU_STATUS_FREE) {
779 			struct cau_sb_entry sb_entry;
780 
781 			vf->igu_sbs[qid] = (u16)igu_id;
782 			igu_blocks[igu_id].status &= ~QED_IGU_STATUS_FREE;
783 
784 			SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
785 
786 			qed_wr(p_hwfn, p_ptt,
787 			       IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id,
788 			       val);
789 
790 			/* Configure igu sb in CAU which were marked valid */
791 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
792 					      p_hwfn->rel_pf_id,
793 					      vf->abs_vf_id, 1);
794 			qed_dmae_host2grc(p_hwfn, p_ptt,
795 					  (u64)(uintptr_t)&sb_entry,
796 					  CAU_REG_SB_VAR_MEMORY +
797 					  igu_id * sizeof(u64), 2, 0);
798 			qid++;
799 		}
800 		igu_id++;
801 	}
802 
803 	vf->num_sbs = (u8) num_rx_queues;
804 
805 	return vf->num_sbs;
806 }
807 
808 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
809 				    struct qed_ptt *p_ptt,
810 				    struct qed_vf_info *vf)
811 {
812 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
813 	int idx, igu_id;
814 	u32 addr, val;
815 
816 	/* Invalidate igu CAM lines and mark them as free */
817 	for (idx = 0; idx < vf->num_sbs; idx++) {
818 		igu_id = vf->igu_sbs[idx];
819 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
820 
821 		val = qed_rd(p_hwfn, p_ptt, addr);
822 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
823 		qed_wr(p_hwfn, p_ptt, addr, val);
824 
825 		p_info->igu_map.igu_blocks[igu_id].status |=
826 		    QED_IGU_STATUS_FREE;
827 
828 		p_hwfn->hw_info.p_igu_info->free_blks++;
829 	}
830 
831 	vf->num_sbs = 0;
832 }
833 
834 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
835 			     u16 vfid,
836 			     struct qed_mcp_link_params *params,
837 			     struct qed_mcp_link_state *link,
838 			     struct qed_mcp_link_capabilities *p_caps)
839 {
840 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
841 						       vfid,
842 						       false);
843 	struct qed_bulletin_content *p_bulletin;
844 
845 	if (!p_vf)
846 		return;
847 
848 	p_bulletin = p_vf->bulletin.p_virt;
849 	p_bulletin->req_autoneg = params->speed.autoneg;
850 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
851 	p_bulletin->req_forced_speed = params->speed.forced_speed;
852 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
853 	p_bulletin->req_forced_rx = params->pause.forced_rx;
854 	p_bulletin->req_forced_tx = params->pause.forced_tx;
855 	p_bulletin->req_loopback = params->loopback_mode;
856 
857 	p_bulletin->link_up = link->link_up;
858 	p_bulletin->speed = link->speed;
859 	p_bulletin->full_duplex = link->full_duplex;
860 	p_bulletin->autoneg = link->an;
861 	p_bulletin->autoneg_complete = link->an_complete;
862 	p_bulletin->parallel_detection = link->parallel_detection;
863 	p_bulletin->pfc_enabled = link->pfc_enabled;
864 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
865 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
866 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
867 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
868 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
869 
870 	p_bulletin->capability_speed = p_caps->speed_capabilities;
871 }
872 
873 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
874 				  struct qed_ptt *p_ptt,
875 				  struct qed_iov_vf_init_params *p_params)
876 {
877 	struct qed_mcp_link_capabilities link_caps;
878 	struct qed_mcp_link_params link_params;
879 	struct qed_mcp_link_state link_state;
880 	u8 num_of_vf_avaiable_chains = 0;
881 	struct qed_vf_info *vf = NULL;
882 	u16 qid, num_irqs;
883 	int rc = 0;
884 	u32 cids;
885 	u8 i;
886 
887 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
888 	if (!vf) {
889 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
890 		return -EINVAL;
891 	}
892 
893 	if (vf->b_init) {
894 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
895 			  p_params->rel_vf_id);
896 		return -EINVAL;
897 	}
898 
899 	/* Perform sanity checking on the requested queue_id */
900 	for (i = 0; i < p_params->num_queues; i++) {
901 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
902 		u16 max_vf_qzone = min_vf_qzone +
903 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
904 
905 		qid = p_params->req_rx_queue[i];
906 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
907 			DP_NOTICE(p_hwfn,
908 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
909 				  qid,
910 				  p_params->rel_vf_id,
911 				  min_vf_qzone, max_vf_qzone);
912 			return -EINVAL;
913 		}
914 
915 		qid = p_params->req_tx_queue[i];
916 		if (qid > max_vf_qzone) {
917 			DP_NOTICE(p_hwfn,
918 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
919 				  qid, p_params->rel_vf_id, max_vf_qzone);
920 			return -EINVAL;
921 		}
922 
923 		/* If client *really* wants, Tx qid can be shared with PF */
924 		if (qid < min_vf_qzone)
925 			DP_VERBOSE(p_hwfn,
926 				   QED_MSG_IOV,
927 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
928 				   p_params->rel_vf_id, qid, i);
929 	}
930 
931 	/* Limit number of queues according to number of CIDs */
932 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
933 	DP_VERBOSE(p_hwfn,
934 		   QED_MSG_IOV,
935 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
936 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
937 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
938 
939 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
940 							     p_ptt,
941 							     vf, num_irqs);
942 	if (!num_of_vf_avaiable_chains) {
943 		DP_ERR(p_hwfn, "no available igu sbs\n");
944 		return -ENOMEM;
945 	}
946 
947 	/* Choose queue number and index ranges */
948 	vf->num_rxqs = num_of_vf_avaiable_chains;
949 	vf->num_txqs = num_of_vf_avaiable_chains;
950 
951 	for (i = 0; i < vf->num_rxqs; i++) {
952 		struct qed_vf_q_info *p_queue = &vf->vf_queues[i];
953 
954 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
955 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
956 
957 		/* CIDs are per-VF, so no problem having them 0-based. */
958 		p_queue->fw_cid = i;
959 
960 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
961 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]  CID %04x\n",
962 			   vf->relative_vf_id,
963 			   i, vf->igu_sbs[i],
964 			   p_queue->fw_rx_qid,
965 			   p_queue->fw_tx_qid, p_queue->fw_cid);
966 	}
967 
968 	/* Update the link configuration in bulletin */
969 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
970 	       sizeof(link_params));
971 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
972 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
973 	       sizeof(link_caps));
974 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
975 			 &link_params, &link_state, &link_caps);
976 
977 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
978 	if (!rc) {
979 		vf->b_init = true;
980 
981 		if (IS_LEAD_HWFN(p_hwfn))
982 			p_hwfn->cdev->p_iov_info->num_vfs++;
983 	}
984 
985 	return rc;
986 }
987 
988 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
989 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
990 {
991 	struct qed_mcp_link_capabilities caps;
992 	struct qed_mcp_link_params params;
993 	struct qed_mcp_link_state link;
994 	struct qed_vf_info *vf = NULL;
995 
996 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
997 	if (!vf) {
998 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
999 		return -EINVAL;
1000 	}
1001 
1002 	if (vf->bulletin.p_virt)
1003 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1004 
1005 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1006 
1007 	/* Get the link configuration back in bulletin so
1008 	 * that when VFs are re-enabled they get the actual
1009 	 * link configuration.
1010 	 */
1011 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1012 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1013 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1014 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1015 
1016 	/* Forget the VF's acquisition message */
1017 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1018 
1019 	/* disablng interrupts and resetting permission table was done during
1020 	 * vf-close, however, we could get here without going through vf_close
1021 	 */
1022 	/* Disable Interrupts for VF */
1023 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1024 
1025 	/* Reset Permission table */
1026 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1027 
1028 	vf->num_rxqs = 0;
1029 	vf->num_txqs = 0;
1030 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1031 
1032 	if (vf->b_init) {
1033 		vf->b_init = false;
1034 
1035 		if (IS_LEAD_HWFN(p_hwfn))
1036 			p_hwfn->cdev->p_iov_info->num_vfs--;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static bool qed_iov_tlv_supported(u16 tlvtype)
1043 {
1044 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1045 }
1046 
1047 /* place a given tlv on the tlv buffer, continuing current tlv list */
1048 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1049 {
1050 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1051 
1052 	tl->type = type;
1053 	tl->length = length;
1054 
1055 	/* Offset should keep pointing to next TLV (the end of the last) */
1056 	*offset += length;
1057 
1058 	/* Return a pointer to the start of the added tlv */
1059 	return *offset - length;
1060 }
1061 
1062 /* list the types and lengths of the tlvs on the buffer */
1063 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1064 {
1065 	u16 i = 1, total_length = 0;
1066 	struct channel_tlv *tlv;
1067 
1068 	do {
1069 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1070 
1071 		/* output tlv */
1072 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1073 			   "TLV number %d: type %d, length %d\n",
1074 			   i, tlv->type, tlv->length);
1075 
1076 		if (tlv->type == CHANNEL_TLV_LIST_END)
1077 			return;
1078 
1079 		/* Validate entry - protect against malicious VFs */
1080 		if (!tlv->length) {
1081 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1082 			return;
1083 		}
1084 
1085 		total_length += tlv->length;
1086 
1087 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1088 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1089 			return;
1090 		}
1091 
1092 		i++;
1093 	} while (1);
1094 }
1095 
1096 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1097 				  struct qed_ptt *p_ptt,
1098 				  struct qed_vf_info *p_vf,
1099 				  u16 length, u8 status)
1100 {
1101 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1102 	struct qed_dmae_params params;
1103 	u8 eng_vf_id;
1104 
1105 	mbx->reply_virt->default_resp.hdr.status = status;
1106 
1107 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1108 
1109 	eng_vf_id = p_vf->abs_vf_id;
1110 
1111 	memset(&params, 0, sizeof(struct qed_dmae_params));
1112 	params.flags = QED_DMAE_FLAG_VF_DST;
1113 	params.dst_vfid = eng_vf_id;
1114 
1115 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1116 			   mbx->req_virt->first_tlv.reply_address +
1117 			   sizeof(u64),
1118 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1119 			   &params);
1120 
1121 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1122 			   mbx->req_virt->first_tlv.reply_address,
1123 			   sizeof(u64) / 4, &params);
1124 
1125 	REG_WR(p_hwfn,
1126 	       GTT_BAR0_MAP_REG_USDM_RAM +
1127 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1128 }
1129 
1130 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1131 				enum qed_iov_vport_update_flag flag)
1132 {
1133 	switch (flag) {
1134 	case QED_IOV_VP_UPDATE_ACTIVATE:
1135 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1136 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1137 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1138 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1139 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1140 	case QED_IOV_VP_UPDATE_MCAST:
1141 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1142 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1143 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1144 	case QED_IOV_VP_UPDATE_RSS:
1145 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1146 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1147 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1148 	case QED_IOV_VP_UPDATE_SGE_TPA:
1149 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1150 	default:
1151 		return 0;
1152 	}
1153 }
1154 
1155 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1156 					    struct qed_vf_info *p_vf,
1157 					    struct qed_iov_vf_mbx *p_mbx,
1158 					    u8 status,
1159 					    u16 tlvs_mask, u16 tlvs_accepted)
1160 {
1161 	struct pfvf_def_resp_tlv *resp;
1162 	u16 size, total_len, i;
1163 
1164 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1165 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1166 	size = sizeof(struct pfvf_def_resp_tlv);
1167 	total_len = size;
1168 
1169 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1170 
1171 	/* Prepare response for all extended tlvs if they are found by PF */
1172 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1173 		if (!(tlvs_mask & BIT(i)))
1174 			continue;
1175 
1176 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1177 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1178 
1179 		if (tlvs_accepted & BIT(i))
1180 			resp->hdr.status = status;
1181 		else
1182 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1183 
1184 		DP_VERBOSE(p_hwfn,
1185 			   QED_MSG_IOV,
1186 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1187 			   p_vf->relative_vf_id,
1188 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1189 
1190 		total_len += size;
1191 	}
1192 
1193 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1194 		    sizeof(struct channel_list_end_tlv));
1195 
1196 	return total_len;
1197 }
1198 
1199 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1200 				 struct qed_ptt *p_ptt,
1201 				 struct qed_vf_info *vf_info,
1202 				 u16 type, u16 length, u8 status)
1203 {
1204 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1205 
1206 	mbx->offset = (u8 *)mbx->reply_virt;
1207 
1208 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1209 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1210 		    sizeof(struct channel_list_end_tlv));
1211 
1212 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1213 }
1214 
1215 static struct
1216 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1217 					       u16 relative_vf_id,
1218 					       bool b_enabled_only)
1219 {
1220 	struct qed_vf_info *vf = NULL;
1221 
1222 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1223 	if (!vf)
1224 		return NULL;
1225 
1226 	return &vf->p_vf_info;
1227 }
1228 
1229 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1230 {
1231 	struct qed_public_vf_info *vf_info;
1232 
1233 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1234 
1235 	if (!vf_info)
1236 		return;
1237 
1238 	/* Clear the VF mac */
1239 	eth_zero_addr(vf_info->mac);
1240 
1241 	vf_info->rx_accept_mode = 0;
1242 	vf_info->tx_accept_mode = 0;
1243 }
1244 
1245 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1246 			       struct qed_vf_info *p_vf)
1247 {
1248 	u32 i;
1249 
1250 	p_vf->vf_bulletin = 0;
1251 	p_vf->vport_instance = 0;
1252 	p_vf->configured_features = 0;
1253 
1254 	/* If VF previously requested less resources, go back to default */
1255 	p_vf->num_rxqs = p_vf->num_sbs;
1256 	p_vf->num_txqs = p_vf->num_sbs;
1257 
1258 	p_vf->num_active_rxqs = 0;
1259 
1260 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1261 		struct qed_vf_q_info *p_queue = &p_vf->vf_queues[i];
1262 
1263 		if (p_queue->p_rx_cid) {
1264 			qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid);
1265 			p_queue->p_rx_cid = NULL;
1266 		}
1267 
1268 		if (p_queue->p_tx_cid) {
1269 			qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid);
1270 			p_queue->p_tx_cid = NULL;
1271 		}
1272 	}
1273 
1274 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1275 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1276 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1277 }
1278 
1279 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1280 				      struct qed_ptt *p_ptt,
1281 				      struct qed_vf_info *p_vf,
1282 				      struct vf_pf_resc_request *p_req,
1283 				      struct pf_vf_resc *p_resp)
1284 {
1285 	int i;
1286 
1287 	/* Queue related information */
1288 	p_resp->num_rxqs = p_vf->num_rxqs;
1289 	p_resp->num_txqs = p_vf->num_txqs;
1290 	p_resp->num_sbs = p_vf->num_sbs;
1291 
1292 	for (i = 0; i < p_resp->num_sbs; i++) {
1293 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1294 		p_resp->hw_sbs[i].sb_qid = 0;
1295 	}
1296 
1297 	/* These fields are filled for backward compatibility.
1298 	 * Unused by modern vfs.
1299 	 */
1300 	for (i = 0; i < p_resp->num_rxqs; i++) {
1301 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1302 				(u16 *)&p_resp->hw_qid[i]);
1303 		p_resp->cid[i] = p_vf->vf_queues[i].fw_cid;
1304 	}
1305 
1306 	/* Filter related information */
1307 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1308 					p_req->num_mac_filters);
1309 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1310 					 p_req->num_vlan_filters);
1311 
1312 	/* This isn't really needed/enforced, but some legacy VFs might depend
1313 	 * on the correct filling of this field.
1314 	 */
1315 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1316 
1317 	/* Validate sufficient resources for VF */
1318 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1319 	    p_resp->num_txqs < p_req->num_txqs ||
1320 	    p_resp->num_sbs < p_req->num_sbs ||
1321 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1322 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1323 	    p_resp->num_mc_filters < p_req->num_mc_filters) {
1324 		DP_VERBOSE(p_hwfn,
1325 			   QED_MSG_IOV,
1326 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x]\n",
1327 			   p_vf->abs_vf_id,
1328 			   p_req->num_rxqs,
1329 			   p_resp->num_rxqs,
1330 			   p_req->num_rxqs,
1331 			   p_resp->num_txqs,
1332 			   p_req->num_sbs,
1333 			   p_resp->num_sbs,
1334 			   p_req->num_mac_filters,
1335 			   p_resp->num_mac_filters,
1336 			   p_req->num_vlan_filters,
1337 			   p_resp->num_vlan_filters,
1338 			   p_req->num_mc_filters, p_resp->num_mc_filters);
1339 
1340 		/* Some legacy OSes are incapable of correctly handling this
1341 		 * failure.
1342 		 */
1343 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1344 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1345 		    (p_vf->acquire.vfdev_info.os_type ==
1346 		     VFPF_ACQUIRE_OS_WINDOWS))
1347 			return PFVF_STATUS_SUCCESS;
1348 
1349 		return PFVF_STATUS_NO_RESOURCE;
1350 	}
1351 
1352 	return PFVF_STATUS_SUCCESS;
1353 }
1354 
1355 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1356 					 struct pfvf_stats_info *p_stats)
1357 {
1358 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1359 				  offsetof(struct mstorm_vf_zone,
1360 					   non_trigger.eth_queue_stat);
1361 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1362 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1363 				  offsetof(struct ustorm_vf_zone,
1364 					   non_trigger.eth_queue_stat);
1365 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1366 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1367 				  offsetof(struct pstorm_vf_zone,
1368 					   non_trigger.eth_queue_stat);
1369 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1370 	p_stats->tstats.address = 0;
1371 	p_stats->tstats.len = 0;
1372 }
1373 
1374 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1375 				   struct qed_ptt *p_ptt,
1376 				   struct qed_vf_info *vf)
1377 {
1378 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1379 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1380 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1381 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1382 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1383 	struct pf_vf_resc *resc = &resp->resc;
1384 	int rc;
1385 
1386 	memset(resp, 0, sizeof(*resp));
1387 
1388 	/* Write the PF version so that VF would know which version
1389 	 * is supported - might be later overriden. This guarantees that
1390 	 * VF could recognize legacy PF based on lack of versions in reply.
1391 	 */
1392 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1393 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1394 
1395 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1396 		DP_VERBOSE(p_hwfn,
1397 			   QED_MSG_IOV,
1398 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1399 			   vf->abs_vf_id, vf->state);
1400 		goto out;
1401 	}
1402 
1403 	/* Validate FW compatibility */
1404 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1405 		if (req->vfdev_info.capabilities &
1406 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1407 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1408 
1409 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1410 				   "VF[%d] is pre-fastpath HSI\n",
1411 				   vf->abs_vf_id);
1412 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1413 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1414 		} else {
1415 			DP_INFO(p_hwfn,
1416 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1417 				vf->abs_vf_id,
1418 				req->vfdev_info.eth_fp_hsi_major,
1419 				req->vfdev_info.eth_fp_hsi_minor,
1420 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1421 
1422 			goto out;
1423 		}
1424 	}
1425 
1426 	/* On 100g PFs, prevent old VFs from loading */
1427 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1428 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1429 		DP_INFO(p_hwfn,
1430 			"VF[%d] is running an old driver that doesn't support 100g\n",
1431 			vf->abs_vf_id);
1432 		goto out;
1433 	}
1434 
1435 	/* Store the acquire message */
1436 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1437 
1438 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1439 
1440 	vf->vf_bulletin = req->bulletin_addr;
1441 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1442 			    vf->bulletin.size : req->bulletin_size;
1443 
1444 	/* fill in pfdev info */
1445 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1446 	pfdev_info->db_size = 0;
1447 	pfdev_info->indices_per_sb = PIS_PER_SB;
1448 
1449 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1450 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1451 	if (p_hwfn->cdev->num_hwfns > 1)
1452 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1453 
1454 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1455 
1456 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1457 
1458 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1459 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1460 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1461 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1462 
1463 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1464 	 * this field.
1465 	 */
1466 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1467 					 req->vfdev_info.eth_fp_hsi_minor);
1468 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1469 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1470 
1471 	pfdev_info->dev_type = p_hwfn->cdev->type;
1472 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1473 
1474 	/* Fill resources available to VF; Make sure there are enough to
1475 	 * satisfy the VF's request.
1476 	 */
1477 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1478 						  &req->resc_request, resc);
1479 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1480 		goto out;
1481 
1482 	/* Start the VF in FW */
1483 	rc = qed_sp_vf_start(p_hwfn, vf);
1484 	if (rc) {
1485 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1486 		vfpf_status = PFVF_STATUS_FAILURE;
1487 		goto out;
1488 	}
1489 
1490 	/* Fill agreed size of bulletin board in response */
1491 	resp->bulletin_size = vf->bulletin.size;
1492 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1493 
1494 	DP_VERBOSE(p_hwfn,
1495 		   QED_MSG_IOV,
1496 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1497 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1498 		   vf->abs_vf_id,
1499 		   resp->pfdev_info.chip_num,
1500 		   resp->pfdev_info.db_size,
1501 		   resp->pfdev_info.indices_per_sb,
1502 		   resp->pfdev_info.capabilities,
1503 		   resc->num_rxqs,
1504 		   resc->num_txqs,
1505 		   resc->num_sbs,
1506 		   resc->num_mac_filters,
1507 		   resc->num_vlan_filters);
1508 	vf->state = VF_ACQUIRED;
1509 
1510 	/* Prepare Response */
1511 out:
1512 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1513 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1514 }
1515 
1516 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1517 				  struct qed_vf_info *p_vf, bool val)
1518 {
1519 	struct qed_sp_vport_update_params params;
1520 	int rc;
1521 
1522 	if (val == p_vf->spoof_chk) {
1523 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1524 			   "Spoofchk value[%d] is already configured\n", val);
1525 		return 0;
1526 	}
1527 
1528 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1529 	params.opaque_fid = p_vf->opaque_fid;
1530 	params.vport_id = p_vf->vport_id;
1531 	params.update_anti_spoofing_en_flg = 1;
1532 	params.anti_spoofing_en = val;
1533 
1534 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1535 	if (!rc) {
1536 		p_vf->spoof_chk = val;
1537 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1538 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1539 			   "Spoofchk val[%d] configured\n", val);
1540 	} else {
1541 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1542 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1543 			   val, p_vf->relative_vf_id);
1544 	}
1545 
1546 	return rc;
1547 }
1548 
1549 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1550 					    struct qed_vf_info *p_vf)
1551 {
1552 	struct qed_filter_ucast filter;
1553 	int rc = 0;
1554 	int i;
1555 
1556 	memset(&filter, 0, sizeof(filter));
1557 	filter.is_rx_filter = 1;
1558 	filter.is_tx_filter = 1;
1559 	filter.vport_to_add_to = p_vf->vport_id;
1560 	filter.opcode = QED_FILTER_ADD;
1561 
1562 	/* Reconfigure vlans */
1563 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1564 		if (!p_vf->shadow_config.vlans[i].used)
1565 			continue;
1566 
1567 		filter.type = QED_FILTER_VLAN;
1568 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1569 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1570 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1571 			   filter.vlan, p_vf->relative_vf_id);
1572 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1573 					     &filter, QED_SPQ_MODE_CB, NULL);
1574 		if (rc) {
1575 			DP_NOTICE(p_hwfn,
1576 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1577 				  filter.vlan, p_vf->relative_vf_id);
1578 			break;
1579 		}
1580 	}
1581 
1582 	return rc;
1583 }
1584 
1585 static int
1586 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1587 				   struct qed_vf_info *p_vf, u64 events)
1588 {
1589 	int rc = 0;
1590 
1591 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1592 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1593 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1594 
1595 	return rc;
1596 }
1597 
1598 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1599 					  struct qed_vf_info *p_vf, u64 events)
1600 {
1601 	int rc = 0;
1602 	struct qed_filter_ucast filter;
1603 
1604 	if (!p_vf->vport_instance)
1605 		return -EINVAL;
1606 
1607 	if (events & BIT(MAC_ADDR_FORCED)) {
1608 		/* Since there's no way [currently] of removing the MAC,
1609 		 * we can always assume this means we need to force it.
1610 		 */
1611 		memset(&filter, 0, sizeof(filter));
1612 		filter.type = QED_FILTER_MAC;
1613 		filter.opcode = QED_FILTER_REPLACE;
1614 		filter.is_rx_filter = 1;
1615 		filter.is_tx_filter = 1;
1616 		filter.vport_to_add_to = p_vf->vport_id;
1617 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1618 
1619 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1620 					     &filter, QED_SPQ_MODE_CB, NULL);
1621 		if (rc) {
1622 			DP_NOTICE(p_hwfn,
1623 				  "PF failed to configure MAC for VF\n");
1624 			return rc;
1625 		}
1626 
1627 		p_vf->configured_features |= 1 << MAC_ADDR_FORCED;
1628 	}
1629 
1630 	if (events & BIT(VLAN_ADDR_FORCED)) {
1631 		struct qed_sp_vport_update_params vport_update;
1632 		u8 removal;
1633 		int i;
1634 
1635 		memset(&filter, 0, sizeof(filter));
1636 		filter.type = QED_FILTER_VLAN;
1637 		filter.is_rx_filter = 1;
1638 		filter.is_tx_filter = 1;
1639 		filter.vport_to_add_to = p_vf->vport_id;
1640 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1641 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1642 					      QED_FILTER_FLUSH;
1643 
1644 		/* Send the ramrod */
1645 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1646 					     &filter, QED_SPQ_MODE_CB, NULL);
1647 		if (rc) {
1648 			DP_NOTICE(p_hwfn,
1649 				  "PF failed to configure VLAN for VF\n");
1650 			return rc;
1651 		}
1652 
1653 		/* Update the default-vlan & silent vlan stripping */
1654 		memset(&vport_update, 0, sizeof(vport_update));
1655 		vport_update.opaque_fid = p_vf->opaque_fid;
1656 		vport_update.vport_id = p_vf->vport_id;
1657 		vport_update.update_default_vlan_enable_flg = 1;
1658 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1659 		vport_update.update_default_vlan_flg = 1;
1660 		vport_update.default_vlan = filter.vlan;
1661 
1662 		vport_update.update_inner_vlan_removal_flg = 1;
1663 		removal = filter.vlan ? 1
1664 				      : p_vf->shadow_config.inner_vlan_removal;
1665 		vport_update.inner_vlan_removal_flg = removal;
1666 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1667 		rc = qed_sp_vport_update(p_hwfn,
1668 					 &vport_update,
1669 					 QED_SPQ_MODE_EBLOCK, NULL);
1670 		if (rc) {
1671 			DP_NOTICE(p_hwfn,
1672 				  "PF failed to configure VF vport for vlan\n");
1673 			return rc;
1674 		}
1675 
1676 		/* Update all the Rx queues */
1677 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1678 			struct qed_queue_cid *p_cid;
1679 
1680 			p_cid = p_vf->vf_queues[i].p_rx_cid;
1681 			if (!p_cid)
1682 				continue;
1683 
1684 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1685 							 (void **)&p_cid,
1686 							 1, 0, 1,
1687 							 QED_SPQ_MODE_EBLOCK,
1688 							 NULL);
1689 			if (rc) {
1690 				DP_NOTICE(p_hwfn,
1691 					  "Failed to send Rx update fo queue[0x%04x]\n",
1692 					  p_cid->rel.queue_id);
1693 				return rc;
1694 			}
1695 		}
1696 
1697 		if (filter.vlan)
1698 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1699 		else
1700 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1701 	}
1702 
1703 	/* If forced features are terminated, we need to configure the shadow
1704 	 * configuration back again.
1705 	 */
1706 	if (events)
1707 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1708 
1709 	return rc;
1710 }
1711 
1712 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1713 				       struct qed_ptt *p_ptt,
1714 				       struct qed_vf_info *vf)
1715 {
1716 	struct qed_sp_vport_start_params params = { 0 };
1717 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1718 	struct vfpf_vport_start_tlv *start;
1719 	u8 status = PFVF_STATUS_SUCCESS;
1720 	struct qed_vf_info *vf_info;
1721 	u64 *p_bitmap;
1722 	int sb_id;
1723 	int rc;
1724 
1725 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1726 	if (!vf_info) {
1727 		DP_NOTICE(p_hwfn->cdev,
1728 			  "Failed to get VF info, invalid vfid [%d]\n",
1729 			  vf->relative_vf_id);
1730 		return;
1731 	}
1732 
1733 	vf->state = VF_ENABLED;
1734 	start = &mbx->req_virt->start_vport;
1735 
1736 	/* Initialize Status block in CAU */
1737 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1738 		if (!start->sb_addr[sb_id]) {
1739 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1740 				   "VF[%d] did not fill the address of SB %d\n",
1741 				   vf->relative_vf_id, sb_id);
1742 			break;
1743 		}
1744 
1745 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1746 				    start->sb_addr[sb_id],
1747 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1748 	}
1749 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1750 
1751 	vf->mtu = start->mtu;
1752 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1753 
1754 	/* Take into consideration configuration forced by hypervisor;
1755 	 * If none is configured, use the supplied VF values [for old
1756 	 * vfs that would still be fine, since they passed '0' as padding].
1757 	 */
1758 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1759 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1760 		u8 vf_req = start->only_untagged;
1761 
1762 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1763 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1764 	}
1765 
1766 	params.tpa_mode = start->tpa_mode;
1767 	params.remove_inner_vlan = start->inner_vlan_removal;
1768 	params.tx_switching = true;
1769 
1770 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1771 	params.drop_ttl0 = false;
1772 	params.concrete_fid = vf->concrete_fid;
1773 	params.opaque_fid = vf->opaque_fid;
1774 	params.vport_id = vf->vport_id;
1775 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1776 	params.mtu = vf->mtu;
1777 	params.check_mac = true;
1778 
1779 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1780 	if (rc) {
1781 		DP_ERR(p_hwfn,
1782 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1783 		status = PFVF_STATUS_FAILURE;
1784 	} else {
1785 		vf->vport_instance++;
1786 
1787 		/* Force configuration if needed on the newly opened vport */
1788 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1789 
1790 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1791 	}
1792 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1793 			     sizeof(struct pfvf_def_resp_tlv), status);
1794 }
1795 
1796 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1797 				      struct qed_ptt *p_ptt,
1798 				      struct qed_vf_info *vf)
1799 {
1800 	u8 status = PFVF_STATUS_SUCCESS;
1801 	int rc;
1802 
1803 	vf->vport_instance--;
1804 	vf->spoof_chk = false;
1805 
1806 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
1807 	if (rc) {
1808 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
1809 		       rc);
1810 		status = PFVF_STATUS_FAILURE;
1811 	}
1812 
1813 	/* Forget the configuration on the vport */
1814 	vf->configured_features = 0;
1815 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
1816 
1817 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
1818 			     sizeof(struct pfvf_def_resp_tlv), status);
1819 }
1820 
1821 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
1822 					  struct qed_ptt *p_ptt,
1823 					  struct qed_vf_info *vf,
1824 					  u8 status, bool b_legacy)
1825 {
1826 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1827 	struct pfvf_start_queue_resp_tlv *p_tlv;
1828 	struct vfpf_start_rxq_tlv *req;
1829 	u16 length;
1830 
1831 	mbx->offset = (u8 *)mbx->reply_virt;
1832 
1833 	/* Taking a bigger struct instead of adding a TLV to list was a
1834 	 * mistake, but one which we're now stuck with, as some older
1835 	 * clients assume the size of the previous response.
1836 	 */
1837 	if (!b_legacy)
1838 		length = sizeof(*p_tlv);
1839 	else
1840 		length = sizeof(struct pfvf_def_resp_tlv);
1841 
1842 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
1843 			    length);
1844 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1845 		    sizeof(struct channel_list_end_tlv));
1846 
1847 	/* Update the TLV with the response */
1848 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
1849 		req = &mbx->req_virt->start_rxq;
1850 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
1851 				offsetof(struct mstorm_vf_zone,
1852 					 non_trigger.eth_rx_queue_producers) +
1853 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
1854 	}
1855 
1856 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
1857 }
1858 
1859 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
1860 				     struct qed_ptt *p_ptt,
1861 				     struct qed_vf_info *vf)
1862 {
1863 	struct qed_queue_start_common_params params;
1864 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1865 	u8 status = PFVF_STATUS_NO_RESOURCE;
1866 	struct qed_vf_q_info *p_queue;
1867 	struct vfpf_start_rxq_tlv *req;
1868 	bool b_legacy_vf = false;
1869 	int rc;
1870 
1871 	req = &mbx->req_virt->start_rxq;
1872 
1873 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid) ||
1874 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
1875 		goto out;
1876 
1877 	/* Acquire a new queue-cid */
1878 	p_queue = &vf->vf_queues[req->rx_qid];
1879 
1880 	memset(&params, 0, sizeof(params));
1881 	params.queue_id = p_queue->fw_rx_qid;
1882 	params.vport_id = vf->vport_id;
1883 	params.stats_id = vf->abs_vf_id + 0x10;
1884 	params.sb = req->hw_sb;
1885 	params.sb_idx = req->sb_index;
1886 
1887 	p_queue->p_rx_cid = _qed_eth_queue_to_cid(p_hwfn,
1888 						  vf->opaque_fid,
1889 						  p_queue->fw_cid,
1890 						  req->rx_qid, &params);
1891 	if (!p_queue->p_rx_cid)
1892 		goto out;
1893 
1894 	/* Legacy VFs have their Producers in a different location, which they
1895 	 * calculate on their own and clean the producer prior to this.
1896 	 */
1897 	if (vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1898 	    ETH_HSI_VER_NO_PKT_LEN_TUNN) {
1899 		b_legacy_vf = true;
1900 	} else {
1901 		REG_WR(p_hwfn,
1902 		       GTT_BAR0_MAP_REG_MSDM_RAM +
1903 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
1904 		       0);
1905 	}
1906 	p_queue->p_rx_cid->b_legacy_vf = b_legacy_vf;
1907 
1908 	rc = qed_eth_rxq_start_ramrod(p_hwfn,
1909 				      p_queue->p_rx_cid,
1910 				      req->bd_max_bytes,
1911 				      req->rxq_addr,
1912 				      req->cqe_pbl_addr, req->cqe_pbl_size);
1913 	if (rc) {
1914 		status = PFVF_STATUS_FAILURE;
1915 		qed_eth_queue_cid_release(p_hwfn, p_queue->p_rx_cid);
1916 		p_queue->p_rx_cid = NULL;
1917 	} else {
1918 		status = PFVF_STATUS_SUCCESS;
1919 		vf->num_active_rxqs++;
1920 	}
1921 
1922 out:
1923 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, b_legacy_vf);
1924 }
1925 
1926 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
1927 					  struct qed_ptt *p_ptt,
1928 					  struct qed_vf_info *p_vf, u8 status)
1929 {
1930 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1931 	struct pfvf_start_queue_resp_tlv *p_tlv;
1932 	bool b_legacy = false;
1933 	u16 length;
1934 
1935 	mbx->offset = (u8 *)mbx->reply_virt;
1936 
1937 	/* Taking a bigger struct instead of adding a TLV to list was a
1938 	 * mistake, but one which we're now stuck with, as some older
1939 	 * clients assume the size of the previous response.
1940 	 */
1941 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1942 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
1943 		b_legacy = true;
1944 
1945 	if (!b_legacy)
1946 		length = sizeof(*p_tlv);
1947 	else
1948 		length = sizeof(struct pfvf_def_resp_tlv);
1949 
1950 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
1951 			    length);
1952 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1953 		    sizeof(struct channel_list_end_tlv));
1954 
1955 	/* Update the TLV with the response */
1956 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
1957 		u16 qid = mbx->req_virt->start_txq.tx_qid;
1958 
1959 		p_tlv->offset = qed_db_addr_vf(p_vf->vf_queues[qid].fw_cid,
1960 					       DQ_DEMS_LEGACY);
1961 	}
1962 
1963 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
1964 }
1965 
1966 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
1967 				     struct qed_ptt *p_ptt,
1968 				     struct qed_vf_info *vf)
1969 {
1970 	struct qed_queue_start_common_params params;
1971 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1972 	u8 status = PFVF_STATUS_NO_RESOURCE;
1973 	union qed_qm_pq_params pq_params;
1974 	struct vfpf_start_txq_tlv *req;
1975 	struct qed_vf_q_info *p_queue;
1976 	int rc;
1977 	u16 pq;
1978 
1979 	/* Prepare the parameters which would choose the right PQ */
1980 	memset(&pq_params, 0, sizeof(pq_params));
1981 	pq_params.eth.is_vf = 1;
1982 	pq_params.eth.vf_id = vf->relative_vf_id;
1983 
1984 	memset(&params, 0, sizeof(params));
1985 	req = &mbx->req_virt->start_txq;
1986 
1987 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid) ||
1988 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
1989 		goto out;
1990 
1991 	/* Acquire a new queue-cid */
1992 	p_queue = &vf->vf_queues[req->tx_qid];
1993 
1994 	params.queue_id = p_queue->fw_tx_qid;
1995 	params.vport_id = vf->vport_id;
1996 	params.stats_id = vf->abs_vf_id + 0x10;
1997 	params.sb = req->hw_sb;
1998 	params.sb_idx = req->sb_index;
1999 
2000 	p_queue->p_tx_cid = _qed_eth_queue_to_cid(p_hwfn,
2001 						  vf->opaque_fid,
2002 						  p_queue->fw_cid,
2003 						  req->tx_qid, &params);
2004 	if (!p_queue->p_tx_cid)
2005 		goto out;
2006 
2007 	pq = qed_get_qm_pq(p_hwfn, PROTOCOLID_ETH, &pq_params);
2008 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_queue->p_tx_cid,
2009 				      req->pbl_addr, req->pbl_size, pq);
2010 	if (rc) {
2011 		status = PFVF_STATUS_FAILURE;
2012 		qed_eth_queue_cid_release(p_hwfn, p_queue->p_tx_cid);
2013 		p_queue->p_tx_cid = NULL;
2014 	} else {
2015 		status = PFVF_STATUS_SUCCESS;
2016 	}
2017 
2018 out:
2019 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, status);
2020 }
2021 
2022 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2023 				struct qed_vf_info *vf,
2024 				u16 rxq_id, u8 num_rxqs, bool cqe_completion)
2025 {
2026 	struct qed_vf_q_info *p_queue;
2027 	int rc = 0;
2028 	int qid;
2029 
2030 	if (rxq_id + num_rxqs > ARRAY_SIZE(vf->vf_queues))
2031 		return -EINVAL;
2032 
2033 	for (qid = rxq_id; qid < rxq_id + num_rxqs; qid++) {
2034 		p_queue = &vf->vf_queues[qid];
2035 
2036 		if (!p_queue->p_rx_cid)
2037 			continue;
2038 
2039 		rc = qed_eth_rx_queue_stop(p_hwfn,
2040 					   p_queue->p_rx_cid,
2041 					   false, cqe_completion);
2042 		if (rc)
2043 			return rc;
2044 
2045 		vf->vf_queues[qid].p_rx_cid = NULL;
2046 		vf->num_active_rxqs--;
2047 	}
2048 
2049 	return rc;
2050 }
2051 
2052 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2053 				struct qed_vf_info *vf, u16 txq_id, u8 num_txqs)
2054 {
2055 	int rc = 0;
2056 	struct qed_vf_q_info *p_queue;
2057 	int qid;
2058 
2059 	if (txq_id + num_txqs > ARRAY_SIZE(vf->vf_queues))
2060 		return -EINVAL;
2061 
2062 	for (qid = txq_id; qid < txq_id + num_txqs; qid++) {
2063 		p_queue = &vf->vf_queues[qid];
2064 		if (!p_queue->p_tx_cid)
2065 			continue;
2066 
2067 		rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->p_tx_cid);
2068 		if (rc)
2069 			return rc;
2070 
2071 		p_queue->p_tx_cid = NULL;
2072 	}
2073 
2074 	return rc;
2075 }
2076 
2077 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2078 				     struct qed_ptt *p_ptt,
2079 				     struct qed_vf_info *vf)
2080 {
2081 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2082 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2083 	u8 status = PFVF_STATUS_SUCCESS;
2084 	struct vfpf_stop_rxqs_tlv *req;
2085 	int rc;
2086 
2087 	/* We give the option of starting from qid != 0, in this case we
2088 	 * need to make sure that qid + num_qs doesn't exceed the actual
2089 	 * amount of queues that exist.
2090 	 */
2091 	req = &mbx->req_virt->stop_rxqs;
2092 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2093 				  req->num_rxqs, req->cqe_completion);
2094 	if (rc)
2095 		status = PFVF_STATUS_FAILURE;
2096 
2097 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2098 			     length, status);
2099 }
2100 
2101 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2102 				     struct qed_ptt *p_ptt,
2103 				     struct qed_vf_info *vf)
2104 {
2105 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2106 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2107 	u8 status = PFVF_STATUS_SUCCESS;
2108 	struct vfpf_stop_txqs_tlv *req;
2109 	int rc;
2110 
2111 	/* We give the option of starting from qid != 0, in this case we
2112 	 * need to make sure that qid + num_qs doesn't exceed the actual
2113 	 * amount of queues that exist.
2114 	 */
2115 	req = &mbx->req_virt->stop_txqs;
2116 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, req->num_txqs);
2117 	if (rc)
2118 		status = PFVF_STATUS_FAILURE;
2119 
2120 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2121 			     length, status);
2122 }
2123 
2124 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2125 				       struct qed_ptt *p_ptt,
2126 				       struct qed_vf_info *vf)
2127 {
2128 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2129 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2130 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2131 	struct vfpf_update_rxq_tlv *req;
2132 	u8 status = PFVF_STATUS_FAILURE;
2133 	u8 complete_event_flg;
2134 	u8 complete_cqe_flg;
2135 	u16 qid;
2136 	int rc;
2137 	u8 i;
2138 
2139 	req = &mbx->req_virt->update_rxq;
2140 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2141 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2142 
2143 	/* Validate inputs */
2144 	if (req->num_rxqs + req->rx_qid > QED_MAX_VF_CHAINS_PER_PF ||
2145 	    !qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid)) {
2146 		DP_INFO(p_hwfn, "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2147 			vf->relative_vf_id, req->rx_qid, req->num_rxqs);
2148 		goto out;
2149 	}
2150 
2151 	for (i = 0; i < req->num_rxqs; i++) {
2152 		qid = req->rx_qid + i;
2153 		if (!vf->vf_queues[qid].p_rx_cid) {
2154 			DP_INFO(p_hwfn,
2155 				"VF[%d] rx_qid = %d isn`t active!\n",
2156 				vf->relative_vf_id, qid);
2157 			goto out;
2158 		}
2159 
2160 		handlers[i] = vf->vf_queues[qid].p_rx_cid;
2161 	}
2162 
2163 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2164 					 req->num_rxqs,
2165 					 complete_cqe_flg,
2166 					 complete_event_flg,
2167 					 QED_SPQ_MODE_EBLOCK, NULL);
2168 	if (rc)
2169 		goto out;
2170 
2171 	status = PFVF_STATUS_SUCCESS;
2172 out:
2173 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2174 			     length, status);
2175 }
2176 
2177 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2178 			       void *p_tlvs_list, u16 req_type)
2179 {
2180 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2181 	int len = 0;
2182 
2183 	do {
2184 		if (!p_tlv->length) {
2185 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2186 			return NULL;
2187 		}
2188 
2189 		if (p_tlv->type == req_type) {
2190 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2191 				   "Extended tlv type %d, length %d found\n",
2192 				   p_tlv->type, p_tlv->length);
2193 			return p_tlv;
2194 		}
2195 
2196 		len += p_tlv->length;
2197 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2198 
2199 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2200 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2201 			return NULL;
2202 		}
2203 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2204 
2205 	return NULL;
2206 }
2207 
2208 static void
2209 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2210 			    struct qed_sp_vport_update_params *p_data,
2211 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2212 {
2213 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2214 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2215 
2216 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2217 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2218 	if (!p_act_tlv)
2219 		return;
2220 
2221 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2222 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2223 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2224 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2225 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2226 }
2227 
2228 static void
2229 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2230 			     struct qed_sp_vport_update_params *p_data,
2231 			     struct qed_vf_info *p_vf,
2232 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2233 {
2234 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2235 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2236 
2237 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2238 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2239 	if (!p_vlan_tlv)
2240 		return;
2241 
2242 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2243 
2244 	/* Ignore the VF request if we're forcing a vlan */
2245 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2246 		p_data->update_inner_vlan_removal_flg = 1;
2247 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2248 	}
2249 
2250 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2251 }
2252 
2253 static void
2254 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2255 			    struct qed_sp_vport_update_params *p_data,
2256 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2257 {
2258 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2259 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2260 
2261 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2262 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2263 						   tlv);
2264 	if (!p_tx_switch_tlv)
2265 		return;
2266 
2267 	p_data->update_tx_switching_flg = 1;
2268 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2269 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2270 }
2271 
2272 static void
2273 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2274 				  struct qed_sp_vport_update_params *p_data,
2275 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2276 {
2277 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2278 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2279 
2280 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2281 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2282 	if (!p_mcast_tlv)
2283 		return;
2284 
2285 	p_data->update_approx_mcast_flg = 1;
2286 	memcpy(p_data->bins, p_mcast_tlv->bins,
2287 	       sizeof(unsigned long) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2288 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2289 }
2290 
2291 static void
2292 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2293 			      struct qed_sp_vport_update_params *p_data,
2294 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2295 {
2296 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2297 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2298 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2299 
2300 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2301 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2302 	if (!p_accept_tlv)
2303 		return;
2304 
2305 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2306 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2307 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2308 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2309 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2310 }
2311 
2312 static void
2313 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2314 				  struct qed_sp_vport_update_params *p_data,
2315 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2316 {
2317 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2318 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2319 
2320 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2321 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2322 						     tlv);
2323 	if (!p_accept_any_vlan)
2324 		return;
2325 
2326 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2327 	p_data->update_accept_any_vlan_flg =
2328 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2329 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2330 }
2331 
2332 static void
2333 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2334 			    struct qed_vf_info *vf,
2335 			    struct qed_sp_vport_update_params *p_data,
2336 			    struct qed_rss_params *p_rss,
2337 			    struct qed_iov_vf_mbx *p_mbx,
2338 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2339 {
2340 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2341 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2342 	bool b_reject = false;
2343 	u16 table_size;
2344 	u16 i, q_idx;
2345 
2346 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2347 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2348 	if (!p_rss_tlv) {
2349 		p_data->rss_params = NULL;
2350 		return;
2351 	}
2352 
2353 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2354 
2355 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2356 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2357 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2358 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2359 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2360 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2361 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2362 				   VFPF_UPDATE_RSS_KEY_FLAG);
2363 
2364 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2365 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2366 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2367 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2368 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2369 
2370 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2371 			   (1 << p_rss_tlv->rss_table_size_log));
2372 
2373 	for (i = 0; i < table_size; i++) {
2374 		q_idx = p_rss_tlv->rss_ind_table[i];
2375 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx)) {
2376 			DP_VERBOSE(p_hwfn,
2377 				   QED_MSG_IOV,
2378 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2379 				   vf->relative_vf_id, q_idx);
2380 			b_reject = true;
2381 			goto out;
2382 		}
2383 
2384 		if (!vf->vf_queues[q_idx].p_rx_cid) {
2385 			DP_VERBOSE(p_hwfn,
2386 				   QED_MSG_IOV,
2387 				   "VF[%d]: Omitting RSS due to inactive queue %08x\n",
2388 				   vf->relative_vf_id, q_idx);
2389 			b_reject = true;
2390 			goto out;
2391 		}
2392 
2393 		p_rss->rss_ind_table[i] = vf->vf_queues[q_idx].p_rx_cid;
2394 	}
2395 
2396 	p_data->rss_params = p_rss;
2397 out:
2398 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2399 	if (!b_reject)
2400 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2401 }
2402 
2403 static void
2404 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2405 				struct qed_vf_info *vf,
2406 				struct qed_sp_vport_update_params *p_data,
2407 				struct qed_sge_tpa_params *p_sge_tpa,
2408 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2409 {
2410 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2411 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2412 
2413 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2414 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2415 
2416 	if (!p_sge_tpa_tlv) {
2417 		p_data->sge_tpa_params = NULL;
2418 		return;
2419 	}
2420 
2421 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2422 
2423 	p_sge_tpa->update_tpa_en_flg =
2424 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2425 	p_sge_tpa->update_tpa_param_flg =
2426 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2427 		VFPF_UPDATE_TPA_PARAM_FLAG);
2428 
2429 	p_sge_tpa->tpa_ipv4_en_flg =
2430 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2431 	p_sge_tpa->tpa_ipv6_en_flg =
2432 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2433 	p_sge_tpa->tpa_pkt_split_flg =
2434 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2435 	p_sge_tpa->tpa_hdr_data_split_flg =
2436 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2437 	p_sge_tpa->tpa_gro_consistent_flg =
2438 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2439 
2440 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2441 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2442 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2443 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2444 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2445 
2446 	p_data->sge_tpa_params = p_sge_tpa;
2447 
2448 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2449 }
2450 
2451 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2452 				    u8 vfid,
2453 				    struct qed_sp_vport_update_params *params,
2454 				    u16 *tlvs)
2455 {
2456 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
2457 	struct qed_filter_accept_flags *flags = &params->accept_flags;
2458 	struct qed_public_vf_info *vf_info;
2459 
2460 	/* Untrusted VFs can't even be trusted to know that fact.
2461 	 * Simply indicate everything is configured fine, and trace
2462 	 * configuration 'behind their back'.
2463 	 */
2464 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
2465 		return 0;
2466 
2467 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
2468 
2469 	if (flags->update_rx_mode_config) {
2470 		vf_info->rx_accept_mode = flags->rx_accept_filter;
2471 		if (!vf_info->is_trusted_configured)
2472 			flags->rx_accept_filter &= ~mask;
2473 	}
2474 
2475 	if (flags->update_tx_mode_config) {
2476 		vf_info->tx_accept_mode = flags->tx_accept_filter;
2477 		if (!vf_info->is_trusted_configured)
2478 			flags->tx_accept_filter &= ~mask;
2479 	}
2480 
2481 	return 0;
2482 }
2483 
2484 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
2485 					struct qed_ptt *p_ptt,
2486 					struct qed_vf_info *vf)
2487 {
2488 	struct qed_rss_params *p_rss_params = NULL;
2489 	struct qed_sp_vport_update_params params;
2490 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2491 	struct qed_sge_tpa_params sge_tpa_params;
2492 	u16 tlvs_mask = 0, tlvs_accepted = 0;
2493 	u8 status = PFVF_STATUS_SUCCESS;
2494 	u16 length;
2495 	int rc;
2496 
2497 	/* Valiate PF can send such a request */
2498 	if (!vf->vport_instance) {
2499 		DP_VERBOSE(p_hwfn,
2500 			   QED_MSG_IOV,
2501 			   "No VPORT instance available for VF[%d], failing vport update\n",
2502 			   vf->abs_vf_id);
2503 		status = PFVF_STATUS_FAILURE;
2504 		goto out;
2505 	}
2506 	p_rss_params = vzalloc(sizeof(*p_rss_params));
2507 	if (p_rss_params == NULL) {
2508 		status = PFVF_STATUS_FAILURE;
2509 		goto out;
2510 	}
2511 
2512 	memset(&params, 0, sizeof(params));
2513 	params.opaque_fid = vf->opaque_fid;
2514 	params.vport_id = vf->vport_id;
2515 	params.rss_params = NULL;
2516 
2517 	/* Search for extended tlvs list and update values
2518 	 * from VF in struct qed_sp_vport_update_params.
2519 	 */
2520 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
2521 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
2522 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
2523 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
2524 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
2525 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
2526 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
2527 					&sge_tpa_params, mbx, &tlvs_mask);
2528 
2529 	tlvs_accepted = tlvs_mask;
2530 
2531 	/* Some of the extended TLVs need to be validated first; In that case,
2532 	 * they can update the mask without updating the accepted [so that
2533 	 * PF could communicate to VF it has rejected request].
2534 	 */
2535 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
2536 				    mbx, &tlvs_mask, &tlvs_accepted);
2537 
2538 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
2539 				     &params, &tlvs_accepted)) {
2540 		tlvs_accepted = 0;
2541 		status = PFVF_STATUS_NOT_SUPPORTED;
2542 		goto out;
2543 	}
2544 
2545 	if (!tlvs_accepted) {
2546 		if (tlvs_mask)
2547 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2548 				   "Upper-layer prevents VF vport configuration\n");
2549 		else
2550 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2551 				   "No feature tlvs found for vport update\n");
2552 		status = PFVF_STATUS_NOT_SUPPORTED;
2553 		goto out;
2554 	}
2555 
2556 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
2557 
2558 	if (rc)
2559 		status = PFVF_STATUS_FAILURE;
2560 
2561 out:
2562 	vfree(p_rss_params);
2563 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
2564 						  tlvs_mask, tlvs_accepted);
2565 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2566 }
2567 
2568 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
2569 					 struct qed_vf_info *p_vf,
2570 					 struct qed_filter_ucast *p_params)
2571 {
2572 	int i;
2573 
2574 	/* First remove entries and then add new ones */
2575 	if (p_params->opcode == QED_FILTER_REMOVE) {
2576 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2577 			if (p_vf->shadow_config.vlans[i].used &&
2578 			    p_vf->shadow_config.vlans[i].vid ==
2579 			    p_params->vlan) {
2580 				p_vf->shadow_config.vlans[i].used = false;
2581 				break;
2582 			}
2583 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2584 			DP_VERBOSE(p_hwfn,
2585 				   QED_MSG_IOV,
2586 				   "VF [%d] - Tries to remove a non-existing vlan\n",
2587 				   p_vf->relative_vf_id);
2588 			return -EINVAL;
2589 		}
2590 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
2591 		   p_params->opcode == QED_FILTER_FLUSH) {
2592 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
2593 			p_vf->shadow_config.vlans[i].used = false;
2594 	}
2595 
2596 	/* In forced mode, we're willing to remove entries - but we don't add
2597 	 * new ones.
2598 	 */
2599 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
2600 		return 0;
2601 
2602 	if (p_params->opcode == QED_FILTER_ADD ||
2603 	    p_params->opcode == QED_FILTER_REPLACE) {
2604 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
2605 			if (p_vf->shadow_config.vlans[i].used)
2606 				continue;
2607 
2608 			p_vf->shadow_config.vlans[i].used = true;
2609 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
2610 			break;
2611 		}
2612 
2613 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
2614 			DP_VERBOSE(p_hwfn,
2615 				   QED_MSG_IOV,
2616 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
2617 				   p_vf->relative_vf_id,
2618 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
2619 			return -EINVAL;
2620 		}
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
2627 					struct qed_vf_info *p_vf,
2628 					struct qed_filter_ucast *p_params)
2629 {
2630 	int i;
2631 
2632 	/* If we're in forced-mode, we don't allow any change */
2633 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
2634 		return 0;
2635 
2636 	/* First remove entries and then add new ones */
2637 	if (p_params->opcode == QED_FILTER_REMOVE) {
2638 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
2639 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
2640 					     p_params->mac)) {
2641 				eth_zero_addr(p_vf->shadow_config.macs[i]);
2642 				break;
2643 			}
2644 		}
2645 
2646 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
2647 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2648 				   "MAC isn't configured\n");
2649 			return -EINVAL;
2650 		}
2651 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
2652 		   p_params->opcode == QED_FILTER_FLUSH) {
2653 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
2654 			eth_zero_addr(p_vf->shadow_config.macs[i]);
2655 	}
2656 
2657 	/* List the new MAC address */
2658 	if (p_params->opcode != QED_FILTER_ADD &&
2659 	    p_params->opcode != QED_FILTER_REPLACE)
2660 		return 0;
2661 
2662 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
2663 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
2664 			ether_addr_copy(p_vf->shadow_config.macs[i],
2665 					p_params->mac);
2666 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2667 				   "Added MAC at %d entry in shadow\n", i);
2668 			break;
2669 		}
2670 	}
2671 
2672 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
2673 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
2674 		return -EINVAL;
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 static int
2681 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
2682 				 struct qed_vf_info *p_vf,
2683 				 struct qed_filter_ucast *p_params)
2684 {
2685 	int rc = 0;
2686 
2687 	if (p_params->type == QED_FILTER_MAC) {
2688 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
2689 		if (rc)
2690 			return rc;
2691 	}
2692 
2693 	if (p_params->type == QED_FILTER_VLAN)
2694 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
2695 
2696 	return rc;
2697 }
2698 
2699 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
2700 			     int vfid, struct qed_filter_ucast *params)
2701 {
2702 	struct qed_public_vf_info *vf;
2703 
2704 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
2705 	if (!vf)
2706 		return -EINVAL;
2707 
2708 	/* No real decision to make; Store the configured MAC */
2709 	if (params->type == QED_FILTER_MAC ||
2710 	    params->type == QED_FILTER_MAC_VLAN)
2711 		ether_addr_copy(vf->mac, params->mac);
2712 
2713 	return 0;
2714 }
2715 
2716 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
2717 					struct qed_ptt *p_ptt,
2718 					struct qed_vf_info *vf)
2719 {
2720 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
2721 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2722 	struct vfpf_ucast_filter_tlv *req;
2723 	u8 status = PFVF_STATUS_SUCCESS;
2724 	struct qed_filter_ucast params;
2725 	int rc;
2726 
2727 	/* Prepare the unicast filter params */
2728 	memset(&params, 0, sizeof(struct qed_filter_ucast));
2729 	req = &mbx->req_virt->ucast_filter;
2730 	params.opcode = (enum qed_filter_opcode)req->opcode;
2731 	params.type = (enum qed_filter_ucast_type)req->type;
2732 
2733 	params.is_rx_filter = 1;
2734 	params.is_tx_filter = 1;
2735 	params.vport_to_remove_from = vf->vport_id;
2736 	params.vport_to_add_to = vf->vport_id;
2737 	memcpy(params.mac, req->mac, ETH_ALEN);
2738 	params.vlan = req->vlan;
2739 
2740 	DP_VERBOSE(p_hwfn,
2741 		   QED_MSG_IOV,
2742 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
2743 		   vf->abs_vf_id, params.opcode, params.type,
2744 		   params.is_rx_filter ? "RX" : "",
2745 		   params.is_tx_filter ? "TX" : "",
2746 		   params.vport_to_add_to,
2747 		   params.mac[0], params.mac[1],
2748 		   params.mac[2], params.mac[3],
2749 		   params.mac[4], params.mac[5], params.vlan);
2750 
2751 	if (!vf->vport_instance) {
2752 		DP_VERBOSE(p_hwfn,
2753 			   QED_MSG_IOV,
2754 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
2755 			   vf->abs_vf_id);
2756 		status = PFVF_STATUS_FAILURE;
2757 		goto out;
2758 	}
2759 
2760 	/* Update shadow copy of the VF configuration */
2761 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
2762 		status = PFVF_STATUS_FAILURE;
2763 		goto out;
2764 	}
2765 
2766 	/* Determine if the unicast filtering is acceptible by PF */
2767 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
2768 	    (params.type == QED_FILTER_VLAN ||
2769 	     params.type == QED_FILTER_MAC_VLAN)) {
2770 		/* Once VLAN is forced or PVID is set, do not allow
2771 		 * to add/replace any further VLANs.
2772 		 */
2773 		if (params.opcode == QED_FILTER_ADD ||
2774 		    params.opcode == QED_FILTER_REPLACE)
2775 			status = PFVF_STATUS_FORCED;
2776 		goto out;
2777 	}
2778 
2779 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
2780 	    (params.type == QED_FILTER_MAC ||
2781 	     params.type == QED_FILTER_MAC_VLAN)) {
2782 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
2783 		    (params.opcode != QED_FILTER_ADD &&
2784 		     params.opcode != QED_FILTER_REPLACE))
2785 			status = PFVF_STATUS_FORCED;
2786 		goto out;
2787 	}
2788 
2789 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
2790 	if (rc) {
2791 		status = PFVF_STATUS_FAILURE;
2792 		goto out;
2793 	}
2794 
2795 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
2796 				     QED_SPQ_MODE_CB, NULL);
2797 	if (rc)
2798 		status = PFVF_STATUS_FAILURE;
2799 
2800 out:
2801 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
2802 			     sizeof(struct pfvf_def_resp_tlv), status);
2803 }
2804 
2805 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
2806 				       struct qed_ptt *p_ptt,
2807 				       struct qed_vf_info *vf)
2808 {
2809 	int i;
2810 
2811 	/* Reset the SBs */
2812 	for (i = 0; i < vf->num_sbs; i++)
2813 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2814 						vf->igu_sbs[i],
2815 						vf->opaque_fid, false);
2816 
2817 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
2818 			     sizeof(struct pfvf_def_resp_tlv),
2819 			     PFVF_STATUS_SUCCESS);
2820 }
2821 
2822 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
2823 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
2824 {
2825 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2826 	u8 status = PFVF_STATUS_SUCCESS;
2827 
2828 	/* Disable Interrupts for VF */
2829 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
2830 
2831 	/* Reset Permission table */
2832 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
2833 
2834 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
2835 			     length, status);
2836 }
2837 
2838 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
2839 				   struct qed_ptt *p_ptt,
2840 				   struct qed_vf_info *p_vf)
2841 {
2842 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2843 	u8 status = PFVF_STATUS_SUCCESS;
2844 	int rc = 0;
2845 
2846 	qed_iov_vf_cleanup(p_hwfn, p_vf);
2847 
2848 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
2849 		/* Stopping the VF */
2850 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
2851 				    p_vf->opaque_fid);
2852 
2853 		if (rc) {
2854 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
2855 			       rc);
2856 			status = PFVF_STATUS_FAILURE;
2857 		}
2858 
2859 		p_vf->state = VF_STOPPED;
2860 	}
2861 
2862 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
2863 			     length, status);
2864 }
2865 
2866 static int
2867 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
2868 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2869 {
2870 	int cnt;
2871 	u32 val;
2872 
2873 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
2874 
2875 	for (cnt = 0; cnt < 50; cnt++) {
2876 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
2877 		if (!val)
2878 			break;
2879 		msleep(20);
2880 	}
2881 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
2882 
2883 	if (cnt == 50) {
2884 		DP_ERR(p_hwfn,
2885 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
2886 		       p_vf->abs_vf_id, val);
2887 		return -EBUSY;
2888 	}
2889 
2890 	return 0;
2891 }
2892 
2893 static int
2894 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
2895 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2896 {
2897 	u32 cons[MAX_NUM_VOQS], distance[MAX_NUM_VOQS];
2898 	int i, cnt;
2899 
2900 	/* Read initial consumers & producers */
2901 	for (i = 0; i < MAX_NUM_VOQS; i++) {
2902 		u32 prod;
2903 
2904 		cons[i] = qed_rd(p_hwfn, p_ptt,
2905 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
2906 				 i * 0x40);
2907 		prod = qed_rd(p_hwfn, p_ptt,
2908 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
2909 			      i * 0x40);
2910 		distance[i] = prod - cons[i];
2911 	}
2912 
2913 	/* Wait for consumers to pass the producers */
2914 	i = 0;
2915 	for (cnt = 0; cnt < 50; cnt++) {
2916 		for (; i < MAX_NUM_VOQS; i++) {
2917 			u32 tmp;
2918 
2919 			tmp = qed_rd(p_hwfn, p_ptt,
2920 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
2921 				     i * 0x40);
2922 			if (distance[i] > tmp - cons[i])
2923 				break;
2924 		}
2925 
2926 		if (i == MAX_NUM_VOQS)
2927 			break;
2928 
2929 		msleep(20);
2930 	}
2931 
2932 	if (cnt == 50) {
2933 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
2934 		       p_vf->abs_vf_id, i);
2935 		return -EBUSY;
2936 	}
2937 
2938 	return 0;
2939 }
2940 
2941 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
2942 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
2943 {
2944 	int rc;
2945 
2946 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
2947 	if (rc)
2948 		return rc;
2949 
2950 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
2951 	if (rc)
2952 		return rc;
2953 
2954 	return 0;
2955 }
2956 
2957 static int
2958 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
2959 			       struct qed_ptt *p_ptt,
2960 			       u16 rel_vf_id, u32 *ack_vfs)
2961 {
2962 	struct qed_vf_info *p_vf;
2963 	int rc = 0;
2964 
2965 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
2966 	if (!p_vf)
2967 		return 0;
2968 
2969 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
2970 	    (1ULL << (rel_vf_id % 64))) {
2971 		u16 vfid = p_vf->abs_vf_id;
2972 
2973 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2974 			   "VF[%d] - Handling FLR\n", vfid);
2975 
2976 		qed_iov_vf_cleanup(p_hwfn, p_vf);
2977 
2978 		/* If VF isn't active, no need for anything but SW */
2979 		if (!p_vf->b_init)
2980 			goto cleanup;
2981 
2982 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
2983 		if (rc)
2984 			goto cleanup;
2985 
2986 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
2987 		if (rc) {
2988 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
2989 			return rc;
2990 		}
2991 
2992 		/* Workaround to make VF-PF channel ready, as FW
2993 		 * doesn't do that as a part of FLR.
2994 		 */
2995 		REG_WR(p_hwfn,
2996 		       GTT_BAR0_MAP_REG_USDM_RAM +
2997 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
2998 
2999 		/* VF_STOPPED has to be set only after final cleanup
3000 		 * but prior to re-enabling the VF.
3001 		 */
3002 		p_vf->state = VF_STOPPED;
3003 
3004 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3005 		if (rc) {
3006 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3007 			       vfid);
3008 			return rc;
3009 		}
3010 cleanup:
3011 		/* Mark VF for ack and clean pending state */
3012 		if (p_vf->state == VF_RESET)
3013 			p_vf->state = VF_STOPPED;
3014 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3015 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3016 		    ~(1ULL << (rel_vf_id % 64));
3017 		p_vf->vf_mbx.b_pending_msg = false;
3018 	}
3019 
3020 	return rc;
3021 }
3022 
3023 static int
3024 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3025 {
3026 	u32 ack_vfs[VF_MAX_STATIC / 32];
3027 	int rc = 0;
3028 	u16 i;
3029 
3030 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3031 
3032 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3033 	 * polling due to HW limitations, simply sleep a bit. And since
3034 	 * there's no need to wait per-vf, do it before looping.
3035 	 */
3036 	msleep(100);
3037 
3038 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3039 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3040 
3041 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3042 	return rc;
3043 }
3044 
3045 int qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3046 {
3047 	u16 i, found = 0;
3048 
3049 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3050 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3051 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3052 			   "[%08x,...,%08x]: %08x\n",
3053 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3054 
3055 	if (!p_hwfn->cdev->p_iov_info) {
3056 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3057 		return 0;
3058 	}
3059 
3060 	/* Mark VFs */
3061 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3062 		struct qed_vf_info *p_vf;
3063 		u8 vfid;
3064 
3065 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3066 		if (!p_vf)
3067 			continue;
3068 
3069 		vfid = p_vf->abs_vf_id;
3070 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3071 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3072 			u16 rel_vf_id = p_vf->relative_vf_id;
3073 
3074 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3075 				   "VF[%d] [rel %d] got FLR-ed\n",
3076 				   vfid, rel_vf_id);
3077 
3078 			p_vf->state = VF_RESET;
3079 
3080 			/* No need to lock here, since pending_flr should
3081 			 * only change here and before ACKing MFw. Since
3082 			 * MFW will not trigger an additional attention for
3083 			 * VF flr until ACKs, we're safe.
3084 			 */
3085 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3086 			found = 1;
3087 		}
3088 	}
3089 
3090 	return found;
3091 }
3092 
3093 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3094 			     u16 vfid,
3095 			     struct qed_mcp_link_params *p_params,
3096 			     struct qed_mcp_link_state *p_link,
3097 			     struct qed_mcp_link_capabilities *p_caps)
3098 {
3099 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3100 						       vfid,
3101 						       false);
3102 	struct qed_bulletin_content *p_bulletin;
3103 
3104 	if (!p_vf)
3105 		return;
3106 
3107 	p_bulletin = p_vf->bulletin.p_virt;
3108 
3109 	if (p_params)
3110 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3111 	if (p_link)
3112 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3113 	if (p_caps)
3114 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3115 }
3116 
3117 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3118 				    struct qed_ptt *p_ptt, int vfid)
3119 {
3120 	struct qed_iov_vf_mbx *mbx;
3121 	struct qed_vf_info *p_vf;
3122 
3123 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3124 	if (!p_vf)
3125 		return;
3126 
3127 	mbx = &p_vf->vf_mbx;
3128 
3129 	/* qed_iov_process_mbx_request */
3130 	if (!mbx->b_pending_msg) {
3131 		DP_NOTICE(p_hwfn,
3132 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3133 			  p_vf->abs_vf_id);
3134 		return;
3135 	}
3136 	mbx->b_pending_msg = false;
3137 
3138 	mbx->first_tlv = mbx->req_virt->first_tlv;
3139 
3140 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3141 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3142 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3143 
3144 	/* check if tlv type is known */
3145 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3146 	    !p_vf->b_malicious) {
3147 		switch (mbx->first_tlv.tl.type) {
3148 		case CHANNEL_TLV_ACQUIRE:
3149 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3150 			break;
3151 		case CHANNEL_TLV_VPORT_START:
3152 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3153 			break;
3154 		case CHANNEL_TLV_VPORT_TEARDOWN:
3155 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3156 			break;
3157 		case CHANNEL_TLV_START_RXQ:
3158 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3159 			break;
3160 		case CHANNEL_TLV_START_TXQ:
3161 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3162 			break;
3163 		case CHANNEL_TLV_STOP_RXQS:
3164 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3165 			break;
3166 		case CHANNEL_TLV_STOP_TXQS:
3167 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3168 			break;
3169 		case CHANNEL_TLV_UPDATE_RXQ:
3170 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3171 			break;
3172 		case CHANNEL_TLV_VPORT_UPDATE:
3173 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3174 			break;
3175 		case CHANNEL_TLV_UCAST_FILTER:
3176 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3177 			break;
3178 		case CHANNEL_TLV_CLOSE:
3179 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3180 			break;
3181 		case CHANNEL_TLV_INT_CLEANUP:
3182 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3183 			break;
3184 		case CHANNEL_TLV_RELEASE:
3185 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3186 			break;
3187 		}
3188 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3189 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3190 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3191 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3192 
3193 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3194 				     mbx->first_tlv.tl.type,
3195 				     sizeof(struct pfvf_def_resp_tlv),
3196 				     PFVF_STATUS_MALICIOUS);
3197 	} else {
3198 		/* unknown TLV - this may belong to a VF driver from the future
3199 		 * - a version written after this PF driver was written, which
3200 		 * supports features unknown as of yet. Too bad since we don't
3201 		 * support them. Or this may be because someone wrote a crappy
3202 		 * VF driver and is sending garbage over the channel.
3203 		 */
3204 		DP_NOTICE(p_hwfn,
3205 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3206 			  p_vf->abs_vf_id,
3207 			  mbx->first_tlv.tl.type,
3208 			  mbx->first_tlv.tl.length,
3209 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3210 
3211 		/* Try replying in case reply address matches the acquisition's
3212 		 * posted address.
3213 		 */
3214 		if (p_vf->acquire.first_tlv.reply_address &&
3215 		    (mbx->first_tlv.reply_address ==
3216 		     p_vf->acquire.first_tlv.reply_address)) {
3217 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3218 					     mbx->first_tlv.tl.type,
3219 					     sizeof(struct pfvf_def_resp_tlv),
3220 					     PFVF_STATUS_NOT_SUPPORTED);
3221 		} else {
3222 			DP_VERBOSE(p_hwfn,
3223 				   QED_MSG_IOV,
3224 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3225 				   p_vf->abs_vf_id);
3226 		}
3227 	}
3228 }
3229 
3230 void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3231 {
3232 	int i;
3233 
3234 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3235 
3236 	qed_for_each_vf(p_hwfn, i) {
3237 		struct qed_vf_info *p_vf;
3238 
3239 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3240 		if (p_vf->vf_mbx.b_pending_msg)
3241 			events[i / 64] |= 1ULL << (i % 64);
3242 	}
3243 }
3244 
3245 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
3246 						       u16 abs_vfid)
3247 {
3248 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
3249 
3250 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
3251 		DP_VERBOSE(p_hwfn,
3252 			   QED_MSG_IOV,
3253 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
3254 			   abs_vfid);
3255 		return NULL;
3256 	}
3257 
3258 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
3259 }
3260 
3261 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
3262 			      u16 abs_vfid, struct regpair *vf_msg)
3263 {
3264 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
3265 			   abs_vfid);
3266 
3267 	if (!p_vf)
3268 		return 0;
3269 
3270 	/* List the physical address of the request so that handler
3271 	 * could later on copy the message from it.
3272 	 */
3273 	p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
3274 
3275 	/* Mark the event and schedule the workqueue */
3276 	p_vf->vf_mbx.b_pending_msg = true;
3277 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
3278 
3279 	return 0;
3280 }
3281 
3282 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
3283 				     struct malicious_vf_eqe_data *p_data)
3284 {
3285 	struct qed_vf_info *p_vf;
3286 
3287 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
3288 
3289 	if (!p_vf)
3290 		return;
3291 
3292 	DP_INFO(p_hwfn,
3293 		"VF [%d] - Malicious behavior [%02x]\n",
3294 		p_vf->abs_vf_id, p_data->err_id);
3295 
3296 	p_vf->b_malicious = true;
3297 }
3298 
3299 int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
3300 			u8 opcode, __le16 echo, union event_ring_data *data)
3301 {
3302 	switch (opcode) {
3303 	case COMMON_EVENT_VF_PF_CHANNEL:
3304 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
3305 					  &data->vf_pf_channel.msg_addr);
3306 	case COMMON_EVENT_MALICIOUS_VF:
3307 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
3308 		return 0;
3309 	default:
3310 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
3311 			opcode);
3312 		return -EINVAL;
3313 	}
3314 }
3315 
3316 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
3317 {
3318 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
3319 	u16 i;
3320 
3321 	if (!p_iov)
3322 		goto out;
3323 
3324 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
3325 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
3326 			return i;
3327 
3328 out:
3329 	return MAX_NUM_VFS;
3330 }
3331 
3332 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
3333 			       int vfid)
3334 {
3335 	struct qed_dmae_params params;
3336 	struct qed_vf_info *vf_info;
3337 
3338 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3339 	if (!vf_info)
3340 		return -EINVAL;
3341 
3342 	memset(&params, 0, sizeof(struct qed_dmae_params));
3343 	params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
3344 	params.src_vfid = vf_info->abs_vf_id;
3345 
3346 	if (qed_dmae_host2host(p_hwfn, ptt,
3347 			       vf_info->vf_mbx.pending_req,
3348 			       vf_info->vf_mbx.req_phys,
3349 			       sizeof(union vfpf_tlvs) / 4, &params)) {
3350 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3351 			   "Failed to copy message from VF 0x%02x\n", vfid);
3352 
3353 		return -EIO;
3354 	}
3355 
3356 	return 0;
3357 }
3358 
3359 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
3360 					    u8 *mac, int vfid)
3361 {
3362 	struct qed_vf_info *vf_info;
3363 	u64 feature;
3364 
3365 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3366 	if (!vf_info) {
3367 		DP_NOTICE(p_hwfn->cdev,
3368 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3369 		return;
3370 	}
3371 
3372 	if (vf_info->b_malicious) {
3373 		DP_NOTICE(p_hwfn->cdev,
3374 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
3375 		return;
3376 	}
3377 
3378 	feature = 1 << MAC_ADDR_FORCED;
3379 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
3380 
3381 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
3382 	/* Forced MAC will disable MAC_ADDR */
3383 	vf_info->bulletin.p_virt->valid_bitmap &= ~BIT(VFPF_BULLETIN_MAC_ADDR);
3384 
3385 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3386 }
3387 
3388 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
3389 					     u16 pvid, int vfid)
3390 {
3391 	struct qed_vf_info *vf_info;
3392 	u64 feature;
3393 
3394 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3395 	if (!vf_info) {
3396 		DP_NOTICE(p_hwfn->cdev,
3397 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
3398 		return;
3399 	}
3400 
3401 	if (vf_info->b_malicious) {
3402 		DP_NOTICE(p_hwfn->cdev,
3403 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
3404 		return;
3405 	}
3406 
3407 	feature = 1 << VLAN_ADDR_FORCED;
3408 	vf_info->bulletin.p_virt->pvid = pvid;
3409 	if (pvid)
3410 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
3411 	else
3412 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
3413 
3414 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
3415 }
3416 
3417 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
3418 {
3419 	struct qed_vf_info *p_vf_info;
3420 
3421 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3422 	if (!p_vf_info)
3423 		return false;
3424 
3425 	return !!p_vf_info->vport_instance;
3426 }
3427 
3428 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
3429 {
3430 	struct qed_vf_info *p_vf_info;
3431 
3432 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3433 	if (!p_vf_info)
3434 		return true;
3435 
3436 	return p_vf_info->state == VF_STOPPED;
3437 }
3438 
3439 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
3440 {
3441 	struct qed_vf_info *vf_info;
3442 
3443 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3444 	if (!vf_info)
3445 		return false;
3446 
3447 	return vf_info->spoof_chk;
3448 }
3449 
3450 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
3451 {
3452 	struct qed_vf_info *vf;
3453 	int rc = -EINVAL;
3454 
3455 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3456 		DP_NOTICE(p_hwfn,
3457 			  "SR-IOV sanity check failed, can't set spoofchk\n");
3458 		goto out;
3459 	}
3460 
3461 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3462 	if (!vf)
3463 		goto out;
3464 
3465 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
3466 		/* After VF VPORT start PF will configure spoof check */
3467 		vf->req_spoofchk_val = val;
3468 		rc = 0;
3469 		goto out;
3470 	}
3471 
3472 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
3473 
3474 out:
3475 	return rc;
3476 }
3477 
3478 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
3479 					   u16 rel_vf_id)
3480 {
3481 	struct qed_vf_info *p_vf;
3482 
3483 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
3484 	if (!p_vf || !p_vf->bulletin.p_virt)
3485 		return NULL;
3486 
3487 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
3488 		return NULL;
3489 
3490 	return p_vf->bulletin.p_virt->mac;
3491 }
3492 
3493 static u16
3494 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
3495 {
3496 	struct qed_vf_info *p_vf;
3497 
3498 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
3499 	if (!p_vf || !p_vf->bulletin.p_virt)
3500 		return 0;
3501 
3502 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
3503 		return 0;
3504 
3505 	return p_vf->bulletin.p_virt->pvid;
3506 }
3507 
3508 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
3509 				     struct qed_ptt *p_ptt, int vfid, int val)
3510 {
3511 	struct qed_vf_info *vf;
3512 	u8 abs_vp_id = 0;
3513 	int rc;
3514 
3515 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
3516 	if (!vf)
3517 		return -EINVAL;
3518 
3519 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
3520 	if (rc)
3521 		return rc;
3522 
3523 	return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val);
3524 }
3525 
3526 static int
3527 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
3528 {
3529 	struct qed_vf_info *vf;
3530 	u8 vport_id;
3531 	int i;
3532 
3533 	for_each_hwfn(cdev, i) {
3534 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3535 
3536 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3537 			DP_NOTICE(p_hwfn,
3538 				  "SR-IOV sanity check failed, can't set min rate\n");
3539 			return -EINVAL;
3540 		}
3541 	}
3542 
3543 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
3544 	vport_id = vf->vport_id;
3545 
3546 	return qed_configure_vport_wfq(cdev, vport_id, rate);
3547 }
3548 
3549 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
3550 {
3551 	struct qed_wfq_data *vf_vp_wfq;
3552 	struct qed_vf_info *vf_info;
3553 
3554 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3555 	if (!vf_info)
3556 		return 0;
3557 
3558 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
3559 
3560 	if (vf_vp_wfq->configured)
3561 		return vf_vp_wfq->min_speed;
3562 	else
3563 		return 0;
3564 }
3565 
3566 /**
3567  * qed_schedule_iov - schedules IOV task for VF and PF
3568  * @hwfn: hardware function pointer
3569  * @flag: IOV flag for VF/PF
3570  */
3571 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
3572 {
3573 	smp_mb__before_atomic();
3574 	set_bit(flag, &hwfn->iov_task_flags);
3575 	smp_mb__after_atomic();
3576 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3577 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
3578 }
3579 
3580 void qed_vf_start_iov_wq(struct qed_dev *cdev)
3581 {
3582 	int i;
3583 
3584 	for_each_hwfn(cdev, i)
3585 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
3586 			       &cdev->hwfns[i].iov_task, 0);
3587 }
3588 
3589 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
3590 {
3591 	int i, j;
3592 
3593 	for_each_hwfn(cdev, i)
3594 	    if (cdev->hwfns[i].iov_wq)
3595 		flush_workqueue(cdev->hwfns[i].iov_wq);
3596 
3597 	/* Mark VFs for disablement */
3598 	qed_iov_set_vfs_to_disable(cdev, true);
3599 
3600 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
3601 		pci_disable_sriov(cdev->pdev);
3602 
3603 	for_each_hwfn(cdev, i) {
3604 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
3605 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3606 
3607 		/* Failure to acquire the ptt in 100g creates an odd error
3608 		 * where the first engine has already relased IOV.
3609 		 */
3610 		if (!ptt) {
3611 			DP_ERR(hwfn, "Failed to acquire ptt\n");
3612 			return -EBUSY;
3613 		}
3614 
3615 		/* Clean WFQ db and configure equal weight for all vports */
3616 		qed_clean_wfq_db(hwfn, ptt);
3617 
3618 		qed_for_each_vf(hwfn, j) {
3619 			int k;
3620 
3621 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
3622 				continue;
3623 
3624 			/* Wait until VF is disabled before releasing */
3625 			for (k = 0; k < 100; k++) {
3626 				if (!qed_iov_is_vf_stopped(hwfn, j))
3627 					msleep(20);
3628 				else
3629 					break;
3630 			}
3631 
3632 			if (k < 100)
3633 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
3634 							  ptt, j);
3635 			else
3636 				DP_ERR(hwfn,
3637 				       "Timeout waiting for VF's FLR to end\n");
3638 		}
3639 
3640 		qed_ptt_release(hwfn, ptt);
3641 	}
3642 
3643 	qed_iov_set_vfs_to_disable(cdev, false);
3644 
3645 	return 0;
3646 }
3647 
3648 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
3649 					u16 vfid,
3650 					struct qed_iov_vf_init_params *params)
3651 {
3652 	u16 base, i;
3653 
3654 	/* Since we have an equal resource distribution per-VF, and we assume
3655 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
3656 	 * sequentially from there.
3657 	 */
3658 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
3659 
3660 	params->rel_vf_id = vfid;
3661 	for (i = 0; i < params->num_queues; i++) {
3662 		params->req_rx_queue[i] = base + i;
3663 		params->req_tx_queue[i] = base + i;
3664 	}
3665 }
3666 
3667 static int qed_sriov_enable(struct qed_dev *cdev, int num)
3668 {
3669 	struct qed_iov_vf_init_params params;
3670 	int i, j, rc;
3671 
3672 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
3673 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
3674 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
3675 		return -EINVAL;
3676 	}
3677 
3678 	memset(&params, 0, sizeof(params));
3679 
3680 	/* Initialize HW for VF access */
3681 	for_each_hwfn(cdev, j) {
3682 		struct qed_hwfn *hwfn = &cdev->hwfns[j];
3683 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
3684 
3685 		/* Make sure not to use more than 16 queues per VF */
3686 		params.num_queues = min_t(int,
3687 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
3688 					  16);
3689 
3690 		if (!ptt) {
3691 			DP_ERR(hwfn, "Failed to acquire ptt\n");
3692 			rc = -EBUSY;
3693 			goto err;
3694 		}
3695 
3696 		for (i = 0; i < num; i++) {
3697 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
3698 				continue;
3699 
3700 			qed_sriov_enable_qid_config(hwfn, i, &params);
3701 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
3702 			if (rc) {
3703 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
3704 				qed_ptt_release(hwfn, ptt);
3705 				goto err;
3706 			}
3707 		}
3708 
3709 		qed_ptt_release(hwfn, ptt);
3710 	}
3711 
3712 	/* Enable SRIOV PCIe functions */
3713 	rc = pci_enable_sriov(cdev->pdev, num);
3714 	if (rc) {
3715 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
3716 		goto err;
3717 	}
3718 
3719 	return num;
3720 
3721 err:
3722 	qed_sriov_disable(cdev, false);
3723 	return rc;
3724 }
3725 
3726 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
3727 {
3728 	if (!IS_QED_SRIOV(cdev)) {
3729 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
3730 		return -EOPNOTSUPP;
3731 	}
3732 
3733 	if (num_vfs_param)
3734 		return qed_sriov_enable(cdev, num_vfs_param);
3735 	else
3736 		return qed_sriov_disable(cdev, true);
3737 }
3738 
3739 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
3740 {
3741 	int i;
3742 
3743 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3744 		DP_VERBOSE(cdev, QED_MSG_IOV,
3745 			   "Cannot set a VF MAC; Sriov is not enabled\n");
3746 		return -EINVAL;
3747 	}
3748 
3749 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
3750 		DP_VERBOSE(cdev, QED_MSG_IOV,
3751 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3752 		return -EINVAL;
3753 	}
3754 
3755 	for_each_hwfn(cdev, i) {
3756 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
3757 		struct qed_public_vf_info *vf_info;
3758 
3759 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3760 		if (!vf_info)
3761 			continue;
3762 
3763 		/* Set the forced MAC, and schedule the IOV task */
3764 		ether_addr_copy(vf_info->forced_mac, mac);
3765 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3766 	}
3767 
3768 	return 0;
3769 }
3770 
3771 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
3772 {
3773 	int i;
3774 
3775 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
3776 		DP_VERBOSE(cdev, QED_MSG_IOV,
3777 			   "Cannot set a VF MAC; Sriov is not enabled\n");
3778 		return -EINVAL;
3779 	}
3780 
3781 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
3782 		DP_VERBOSE(cdev, QED_MSG_IOV,
3783 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
3784 		return -EINVAL;
3785 	}
3786 
3787 	for_each_hwfn(cdev, i) {
3788 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
3789 		struct qed_public_vf_info *vf_info;
3790 
3791 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3792 		if (!vf_info)
3793 			continue;
3794 
3795 		/* Set the forced vlan, and schedule the IOV task */
3796 		vf_info->forced_vlan = vid;
3797 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 static int qed_get_vf_config(struct qed_dev *cdev,
3804 			     int vf_id, struct ifla_vf_info *ivi)
3805 {
3806 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
3807 	struct qed_public_vf_info *vf_info;
3808 	struct qed_mcp_link_state link;
3809 	u32 tx_rate;
3810 
3811 	/* Sanitize request */
3812 	if (IS_VF(cdev))
3813 		return -EINVAL;
3814 
3815 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
3816 		DP_VERBOSE(cdev, QED_MSG_IOV,
3817 			   "VF index [%d] isn't active\n", vf_id);
3818 		return -EINVAL;
3819 	}
3820 
3821 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
3822 
3823 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
3824 
3825 	/* Fill information about VF */
3826 	ivi->vf = vf_id;
3827 
3828 	if (is_valid_ether_addr(vf_info->forced_mac))
3829 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
3830 	else
3831 		ether_addr_copy(ivi->mac, vf_info->mac);
3832 
3833 	ivi->vlan = vf_info->forced_vlan;
3834 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
3835 	ivi->linkstate = vf_info->link_state;
3836 	tx_rate = vf_info->tx_rate;
3837 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
3838 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
3839 
3840 	return 0;
3841 }
3842 
3843 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
3844 {
3845 	struct qed_mcp_link_capabilities caps;
3846 	struct qed_mcp_link_params params;
3847 	struct qed_mcp_link_state link;
3848 	int i;
3849 
3850 	if (!hwfn->pf_iov_info)
3851 		return;
3852 
3853 	/* Update bulletin of all future possible VFs with link configuration */
3854 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
3855 		struct qed_public_vf_info *vf_info;
3856 
3857 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
3858 		if (!vf_info)
3859 			continue;
3860 
3861 		memcpy(&params, qed_mcp_get_link_params(hwfn), sizeof(params));
3862 		memcpy(&link, qed_mcp_get_link_state(hwfn), sizeof(link));
3863 		memcpy(&caps, qed_mcp_get_link_capabilities(hwfn),
3864 		       sizeof(caps));
3865 
3866 		/* Modify link according to the VF's configured link state */
3867 		switch (vf_info->link_state) {
3868 		case IFLA_VF_LINK_STATE_DISABLE:
3869 			link.link_up = false;
3870 			break;
3871 		case IFLA_VF_LINK_STATE_ENABLE:
3872 			link.link_up = true;
3873 			/* Set speed according to maximum supported by HW.
3874 			 * that is 40G for regular devices and 100G for CMT
3875 			 * mode devices.
3876 			 */
3877 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
3878 				     100000 : 40000;
3879 		default:
3880 			/* In auto mode pass PF link image to VF */
3881 			break;
3882 		}
3883 
3884 		if (link.link_up && vf_info->tx_rate) {
3885 			struct qed_ptt *ptt;
3886 			int rate;
3887 
3888 			rate = min_t(int, vf_info->tx_rate, link.speed);
3889 
3890 			ptt = qed_ptt_acquire(hwfn);
3891 			if (!ptt) {
3892 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
3893 				return;
3894 			}
3895 
3896 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
3897 				vf_info->tx_rate = rate;
3898 				link.speed = rate;
3899 			}
3900 
3901 			qed_ptt_release(hwfn, ptt);
3902 		}
3903 
3904 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
3905 	}
3906 
3907 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3908 }
3909 
3910 static int qed_set_vf_link_state(struct qed_dev *cdev,
3911 				 int vf_id, int link_state)
3912 {
3913 	int i;
3914 
3915 	/* Sanitize request */
3916 	if (IS_VF(cdev))
3917 		return -EINVAL;
3918 
3919 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
3920 		DP_VERBOSE(cdev, QED_MSG_IOV,
3921 			   "VF index [%d] isn't active\n", vf_id);
3922 		return -EINVAL;
3923 	}
3924 
3925 	/* Handle configuration of link state */
3926 	for_each_hwfn(cdev, i) {
3927 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
3928 		struct qed_public_vf_info *vf;
3929 
3930 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
3931 		if (!vf)
3932 			continue;
3933 
3934 		if (vf->link_state == link_state)
3935 			continue;
3936 
3937 		vf->link_state = link_state;
3938 		qed_inform_vf_link_state(&cdev->hwfns[i]);
3939 	}
3940 
3941 	return 0;
3942 }
3943 
3944 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
3945 {
3946 	int i, rc = -EINVAL;
3947 
3948 	for_each_hwfn(cdev, i) {
3949 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3950 
3951 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
3952 		if (rc)
3953 			break;
3954 	}
3955 
3956 	return rc;
3957 }
3958 
3959 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
3960 {
3961 	int i;
3962 
3963 	for_each_hwfn(cdev, i) {
3964 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
3965 		struct qed_public_vf_info *vf;
3966 
3967 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
3968 			DP_NOTICE(p_hwfn,
3969 				  "SR-IOV sanity check failed, can't set tx rate\n");
3970 			return -EINVAL;
3971 		}
3972 
3973 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
3974 
3975 		vf->tx_rate = rate;
3976 
3977 		qed_inform_vf_link_state(p_hwfn);
3978 	}
3979 
3980 	return 0;
3981 }
3982 
3983 static int qed_set_vf_rate(struct qed_dev *cdev,
3984 			   int vfid, u32 min_rate, u32 max_rate)
3985 {
3986 	int rc_min = 0, rc_max = 0;
3987 
3988 	if (max_rate)
3989 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
3990 
3991 	if (min_rate)
3992 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
3993 
3994 	if (rc_max | rc_min)
3995 		return -EINVAL;
3996 
3997 	return 0;
3998 }
3999 
4000 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4001 {
4002 	int i;
4003 
4004 	for_each_hwfn(cdev, i) {
4005 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4006 		struct qed_public_vf_info *vf;
4007 
4008 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4009 			DP_NOTICE(hwfn,
4010 				  "SR-IOV sanity check failed, can't set trust\n");
4011 			return -EINVAL;
4012 		}
4013 
4014 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4015 
4016 		if (vf->is_trusted_request == trust)
4017 			return 0;
4018 		vf->is_trusted_request = trust;
4019 
4020 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4021 	}
4022 
4023 	return 0;
4024 }
4025 
4026 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4027 {
4028 	u64 events[QED_VF_ARRAY_LENGTH];
4029 	struct qed_ptt *ptt;
4030 	int i;
4031 
4032 	ptt = qed_ptt_acquire(hwfn);
4033 	if (!ptt) {
4034 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4035 			   "Can't acquire PTT; re-scheduling\n");
4036 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4037 		return;
4038 	}
4039 
4040 	qed_iov_pf_get_pending_events(hwfn, events);
4041 
4042 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4043 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4044 		   events[0], events[1], events[2]);
4045 
4046 	qed_for_each_vf(hwfn, i) {
4047 		/* Skip VFs with no pending messages */
4048 		if (!(events[i / 64] & (1ULL << (i % 64))))
4049 			continue;
4050 
4051 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4052 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4053 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4054 
4055 		/* Copy VF's message to PF's request buffer for that VF */
4056 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4057 			continue;
4058 
4059 		qed_iov_process_mbx_req(hwfn, ptt, i);
4060 	}
4061 
4062 	qed_ptt_release(hwfn, ptt);
4063 }
4064 
4065 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4066 {
4067 	int i;
4068 
4069 	qed_for_each_vf(hwfn, i) {
4070 		struct qed_public_vf_info *info;
4071 		bool update = false;
4072 		u8 *mac;
4073 
4074 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4075 		if (!info)
4076 			continue;
4077 
4078 		/* Update data on bulletin board */
4079 		mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4080 		if (is_valid_ether_addr(info->forced_mac) &&
4081 		    (!mac || !ether_addr_equal(mac, info->forced_mac))) {
4082 			DP_VERBOSE(hwfn,
4083 				   QED_MSG_IOV,
4084 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4085 				   i,
4086 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4087 
4088 			/* Update bulletin board with forced MAC */
4089 			qed_iov_bulletin_set_forced_mac(hwfn,
4090 							info->forced_mac, i);
4091 			update = true;
4092 		}
4093 
4094 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
4095 		    info->forced_vlan) {
4096 			DP_VERBOSE(hwfn,
4097 				   QED_MSG_IOV,
4098 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
4099 				   info->forced_vlan,
4100 				   i,
4101 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4102 			qed_iov_bulletin_set_forced_vlan(hwfn,
4103 							 info->forced_vlan, i);
4104 			update = true;
4105 		}
4106 
4107 		if (update)
4108 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4109 	}
4110 }
4111 
4112 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
4113 {
4114 	struct qed_ptt *ptt;
4115 	int i;
4116 
4117 	ptt = qed_ptt_acquire(hwfn);
4118 	if (!ptt) {
4119 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
4120 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4121 		return;
4122 	}
4123 
4124 	qed_for_each_vf(hwfn, i)
4125 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
4126 
4127 	qed_ptt_release(hwfn, ptt);
4128 }
4129 
4130 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
4131 {
4132 	struct qed_sp_vport_update_params params;
4133 	struct qed_filter_accept_flags *flags;
4134 	struct qed_public_vf_info *vf_info;
4135 	struct qed_vf_info *vf;
4136 	u8 mask;
4137 	int i;
4138 
4139 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
4140 	flags = &params.accept_flags;
4141 
4142 	qed_for_each_vf(hwfn, i) {
4143 		/* Need to make sure current requested configuration didn't
4144 		 * flip so that we'll end up configuring something that's not
4145 		 * needed.
4146 		 */
4147 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
4148 		if (vf_info->is_trusted_configured ==
4149 		    vf_info->is_trusted_request)
4150 			continue;
4151 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
4152 
4153 		/* Validate that the VF has a configured vport */
4154 		vf = qed_iov_get_vf_info(hwfn, i, true);
4155 		if (!vf->vport_instance)
4156 			continue;
4157 
4158 		memset(&params, 0, sizeof(params));
4159 		params.opaque_fid = vf->opaque_fid;
4160 		params.vport_id = vf->vport_id;
4161 
4162 		if (vf_info->rx_accept_mode & mask) {
4163 			flags->update_rx_mode_config = 1;
4164 			flags->rx_accept_filter = vf_info->rx_accept_mode;
4165 		}
4166 
4167 		if (vf_info->tx_accept_mode & mask) {
4168 			flags->update_tx_mode_config = 1;
4169 			flags->tx_accept_filter = vf_info->tx_accept_mode;
4170 		}
4171 
4172 		/* Remove if needed; Otherwise this would set the mask */
4173 		if (!vf_info->is_trusted_configured) {
4174 			flags->rx_accept_filter &= ~mask;
4175 			flags->tx_accept_filter &= ~mask;
4176 		}
4177 
4178 		if (flags->update_rx_mode_config ||
4179 		    flags->update_tx_mode_config)
4180 			qed_sp_vport_update(hwfn, &params,
4181 					    QED_SPQ_MODE_EBLOCK, NULL);
4182 	}
4183 }
4184 
4185 static void qed_iov_pf_task(struct work_struct *work)
4186 
4187 {
4188 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
4189 					     iov_task.work);
4190 	int rc;
4191 
4192 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
4193 		return;
4194 
4195 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
4196 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4197 
4198 		if (!ptt) {
4199 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4200 			return;
4201 		}
4202 
4203 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
4204 		if (rc)
4205 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
4206 
4207 		qed_ptt_release(hwfn, ptt);
4208 	}
4209 
4210 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
4211 		qed_handle_vf_msg(hwfn);
4212 
4213 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
4214 			       &hwfn->iov_task_flags))
4215 		qed_handle_pf_set_vf_unicast(hwfn);
4216 
4217 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
4218 			       &hwfn->iov_task_flags))
4219 		qed_handle_bulletin_post(hwfn);
4220 
4221 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
4222 		qed_iov_handle_trust_change(hwfn);
4223 }
4224 
4225 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
4226 {
4227 	int i;
4228 
4229 	for_each_hwfn(cdev, i) {
4230 		if (!cdev->hwfns[i].iov_wq)
4231 			continue;
4232 
4233 		if (schedule_first) {
4234 			qed_schedule_iov(&cdev->hwfns[i],
4235 					 QED_IOV_WQ_STOP_WQ_FLAG);
4236 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
4237 		}
4238 
4239 		flush_workqueue(cdev->hwfns[i].iov_wq);
4240 		destroy_workqueue(cdev->hwfns[i].iov_wq);
4241 	}
4242 }
4243 
4244 int qed_iov_wq_start(struct qed_dev *cdev)
4245 {
4246 	char name[NAME_SIZE];
4247 	int i;
4248 
4249 	for_each_hwfn(cdev, i) {
4250 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4251 
4252 		/* PFs needs a dedicated workqueue only if they support IOV.
4253 		 * VFs always require one.
4254 		 */
4255 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
4256 			continue;
4257 
4258 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
4259 			 cdev->pdev->bus->number,
4260 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
4261 
4262 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
4263 		if (!p_hwfn->iov_wq) {
4264 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
4265 			return -ENOMEM;
4266 		}
4267 
4268 		if (IS_PF(cdev))
4269 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
4270 		else
4271 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
4272 	}
4273 
4274 	return 0;
4275 }
4276 
4277 const struct qed_iov_hv_ops qed_iov_ops_pass = {
4278 	.configure = &qed_sriov_configure,
4279 	.set_mac = &qed_sriov_pf_set_mac,
4280 	.set_vlan = &qed_sriov_pf_set_vlan,
4281 	.get_config = &qed_get_vf_config,
4282 	.set_link_state = &qed_set_vf_link_state,
4283 	.set_spoof = &qed_spoof_configure,
4284 	.set_rate = &qed_set_vf_rate,
4285 	.set_trust = &qed_set_vf_trust,
4286 };
4287