1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/etherdevice.h> 34 #include <linux/crc32.h> 35 #include <linux/vmalloc.h> 36 #include <linux/qed/qed_iov_if.h> 37 #include "qed_cxt.h" 38 #include "qed_hsi.h" 39 #include "qed_hw.h" 40 #include "qed_init_ops.h" 41 #include "qed_int.h" 42 #include "qed_mcp.h" 43 #include "qed_reg_addr.h" 44 #include "qed_sp.h" 45 #include "qed_sriov.h" 46 #include "qed_vf.h" 47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 48 u8 opcode, 49 __le16 echo, 50 union event_ring_data *data, u8 fw_return_code); 51 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid); 52 53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf) 54 { 55 u8 legacy = 0; 56 57 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 58 ETH_HSI_VER_NO_PKT_LEN_TUNN) 59 legacy |= QED_QCID_LEGACY_VF_RX_PROD; 60 61 if (!(p_vf->acquire.vfdev_info.capabilities & 62 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 63 legacy |= QED_QCID_LEGACY_VF_CID; 64 65 return legacy; 66 } 67 68 /* IOV ramrods */ 69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf) 70 { 71 struct vf_start_ramrod_data *p_ramrod = NULL; 72 struct qed_spq_entry *p_ent = NULL; 73 struct qed_sp_init_data init_data; 74 int rc = -EINVAL; 75 u8 fp_minor; 76 77 /* Get SPQ entry */ 78 memset(&init_data, 0, sizeof(init_data)); 79 init_data.cid = qed_spq_get_cid(p_hwfn); 80 init_data.opaque_fid = p_vf->opaque_fid; 81 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 82 83 rc = qed_sp_init_request(p_hwfn, &p_ent, 84 COMMON_RAMROD_VF_START, 85 PROTOCOLID_COMMON, &init_data); 86 if (rc) 87 return rc; 88 89 p_ramrod = &p_ent->ramrod.vf_start; 90 91 p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID); 92 p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid); 93 94 switch (p_hwfn->hw_info.personality) { 95 case QED_PCI_ETH: 96 p_ramrod->personality = PERSONALITY_ETH; 97 break; 98 case QED_PCI_ETH_ROCE: 99 p_ramrod->personality = PERSONALITY_RDMA_AND_ETH; 100 break; 101 default: 102 DP_NOTICE(p_hwfn, "Unknown VF personality %d\n", 103 p_hwfn->hw_info.personality); 104 qed_sp_destroy_request(p_hwfn, p_ent); 105 return -EINVAL; 106 } 107 108 fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor; 109 if (fp_minor > ETH_HSI_VER_MINOR && 110 fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) { 111 DP_VERBOSE(p_hwfn, 112 QED_MSG_IOV, 113 "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n", 114 p_vf->abs_vf_id, 115 ETH_HSI_VER_MAJOR, 116 fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 117 fp_minor = ETH_HSI_VER_MINOR; 118 } 119 120 p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR; 121 p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor; 122 123 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 124 "VF[%d] - Starting using HSI %02x.%02x\n", 125 p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor); 126 127 return qed_spq_post(p_hwfn, p_ent, NULL); 128 } 129 130 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn, 131 u32 concrete_vfid, u16 opaque_vfid) 132 { 133 struct vf_stop_ramrod_data *p_ramrod = NULL; 134 struct qed_spq_entry *p_ent = NULL; 135 struct qed_sp_init_data init_data; 136 int rc = -EINVAL; 137 138 /* Get SPQ entry */ 139 memset(&init_data, 0, sizeof(init_data)); 140 init_data.cid = qed_spq_get_cid(p_hwfn); 141 init_data.opaque_fid = opaque_vfid; 142 init_data.comp_mode = QED_SPQ_MODE_EBLOCK; 143 144 rc = qed_sp_init_request(p_hwfn, &p_ent, 145 COMMON_RAMROD_VF_STOP, 146 PROTOCOLID_COMMON, &init_data); 147 if (rc) 148 return rc; 149 150 p_ramrod = &p_ent->ramrod.vf_stop; 151 152 p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID); 153 154 return qed_spq_post(p_hwfn, p_ent, NULL); 155 } 156 157 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn, 158 int rel_vf_id, 159 bool b_enabled_only, bool b_non_malicious) 160 { 161 if (!p_hwfn->pf_iov_info) { 162 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 163 return false; 164 } 165 166 if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) || 167 (rel_vf_id < 0)) 168 return false; 169 170 if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) && 171 b_enabled_only) 172 return false; 173 174 if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) && 175 b_non_malicious) 176 return false; 177 178 return true; 179 } 180 181 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn, 182 u16 relative_vf_id, 183 bool b_enabled_only) 184 { 185 struct qed_vf_info *vf = NULL; 186 187 if (!p_hwfn->pf_iov_info) { 188 DP_NOTICE(p_hwfn->cdev, "No iov info\n"); 189 return NULL; 190 } 191 192 if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id, 193 b_enabled_only, false)) 194 vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id]; 195 else 196 DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n", 197 relative_vf_id); 198 199 return vf; 200 } 201 202 static struct qed_queue_cid * 203 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue) 204 { 205 int i; 206 207 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 208 if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx) 209 return p_queue->cids[i].p_cid; 210 } 211 212 return NULL; 213 } 214 215 enum qed_iov_validate_q_mode { 216 QED_IOV_VALIDATE_Q_NA, 217 QED_IOV_VALIDATE_Q_ENABLE, 218 QED_IOV_VALIDATE_Q_DISABLE, 219 }; 220 221 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn, 222 struct qed_vf_info *p_vf, 223 u16 qid, 224 enum qed_iov_validate_q_mode mode, 225 bool b_is_tx) 226 { 227 int i; 228 229 if (mode == QED_IOV_VALIDATE_Q_NA) 230 return true; 231 232 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 233 struct qed_vf_queue_cid *p_qcid; 234 235 p_qcid = &p_vf->vf_queues[qid].cids[i]; 236 237 if (!p_qcid->p_cid) 238 continue; 239 240 if (p_qcid->b_is_tx != b_is_tx) 241 continue; 242 243 return mode == QED_IOV_VALIDATE_Q_ENABLE; 244 } 245 246 /* In case we haven't found any valid cid, then its disabled */ 247 return mode == QED_IOV_VALIDATE_Q_DISABLE; 248 } 249 250 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn, 251 struct qed_vf_info *p_vf, 252 u16 rx_qid, 253 enum qed_iov_validate_q_mode mode) 254 { 255 if (rx_qid >= p_vf->num_rxqs) { 256 DP_VERBOSE(p_hwfn, 257 QED_MSG_IOV, 258 "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n", 259 p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs); 260 return false; 261 } 262 263 return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false); 264 } 265 266 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn, 267 struct qed_vf_info *p_vf, 268 u16 tx_qid, 269 enum qed_iov_validate_q_mode mode) 270 { 271 if (tx_qid >= p_vf->num_txqs) { 272 DP_VERBOSE(p_hwfn, 273 QED_MSG_IOV, 274 "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n", 275 p_vf->abs_vf_id, tx_qid, p_vf->num_txqs); 276 return false; 277 } 278 279 return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true); 280 } 281 282 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn, 283 struct qed_vf_info *p_vf, u16 sb_idx) 284 { 285 int i; 286 287 for (i = 0; i < p_vf->num_sbs; i++) 288 if (p_vf->igu_sbs[i] == sb_idx) 289 return true; 290 291 DP_VERBOSE(p_hwfn, 292 QED_MSG_IOV, 293 "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n", 294 p_vf->abs_vf_id, sb_idx, p_vf->num_sbs); 295 296 return false; 297 } 298 299 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn, 300 struct qed_vf_info *p_vf) 301 { 302 u8 i; 303 304 for (i = 0; i < p_vf->num_rxqs; i++) 305 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 306 QED_IOV_VALIDATE_Q_ENABLE, 307 false)) 308 return true; 309 310 return false; 311 } 312 313 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn, 314 struct qed_vf_info *p_vf) 315 { 316 u8 i; 317 318 for (i = 0; i < p_vf->num_txqs; i++) 319 if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i, 320 QED_IOV_VALIDATE_Q_ENABLE, 321 true)) 322 return true; 323 324 return false; 325 } 326 327 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn, 328 int vfid, struct qed_ptt *p_ptt) 329 { 330 struct qed_bulletin_content *p_bulletin; 331 int crc_size = sizeof(p_bulletin->crc); 332 struct qed_dmae_params params; 333 struct qed_vf_info *p_vf; 334 335 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 336 if (!p_vf) 337 return -EINVAL; 338 339 if (!p_vf->vf_bulletin) 340 return -EINVAL; 341 342 p_bulletin = p_vf->bulletin.p_virt; 343 344 /* Increment bulletin board version and compute crc */ 345 p_bulletin->version++; 346 p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size, 347 p_vf->bulletin.size - crc_size); 348 349 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 350 "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n", 351 p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc); 352 353 /* propagate bulletin board via dmae to vm memory */ 354 memset(¶ms, 0, sizeof(params)); 355 params.flags = QED_DMAE_FLAG_VF_DST; 356 params.dst_vfid = p_vf->abs_vf_id; 357 return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys, 358 p_vf->vf_bulletin, p_vf->bulletin.size / 4, 359 ¶ms); 360 } 361 362 static int qed_iov_pci_cfg_info(struct qed_dev *cdev) 363 { 364 struct qed_hw_sriov_info *iov = cdev->p_iov_info; 365 int pos = iov->pos; 366 367 DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos); 368 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl); 369 370 pci_read_config_word(cdev->pdev, 371 pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs); 372 pci_read_config_word(cdev->pdev, 373 pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs); 374 375 pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs); 376 if (iov->num_vfs) { 377 DP_VERBOSE(cdev, 378 QED_MSG_IOV, 379 "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n"); 380 iov->num_vfs = 0; 381 } 382 383 pci_read_config_word(cdev->pdev, 384 pos + PCI_SRIOV_VF_OFFSET, &iov->offset); 385 386 pci_read_config_word(cdev->pdev, 387 pos + PCI_SRIOV_VF_STRIDE, &iov->stride); 388 389 pci_read_config_word(cdev->pdev, 390 pos + PCI_SRIOV_VF_DID, &iov->vf_device_id); 391 392 pci_read_config_dword(cdev->pdev, 393 pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz); 394 395 pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap); 396 397 pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link); 398 399 DP_VERBOSE(cdev, 400 QED_MSG_IOV, 401 "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n", 402 iov->nres, 403 iov->cap, 404 iov->ctrl, 405 iov->total_vfs, 406 iov->initial_vfs, 407 iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz); 408 409 /* Some sanity checks */ 410 if (iov->num_vfs > NUM_OF_VFS(cdev) || 411 iov->total_vfs > NUM_OF_VFS(cdev)) { 412 /* This can happen only due to a bug. In this case we set 413 * num_vfs to zero to avoid memory corruption in the code that 414 * assumes max number of vfs 415 */ 416 DP_NOTICE(cdev, 417 "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n", 418 iov->num_vfs); 419 420 iov->num_vfs = 0; 421 iov->total_vfs = 0; 422 } 423 424 return 0; 425 } 426 427 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn) 428 { 429 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 430 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 431 struct qed_bulletin_content *p_bulletin_virt; 432 dma_addr_t req_p, rply_p, bulletin_p; 433 union pfvf_tlvs *p_reply_virt_addr; 434 union vfpf_tlvs *p_req_virt_addr; 435 u8 idx = 0; 436 437 memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array)); 438 439 p_req_virt_addr = p_iov_info->mbx_msg_virt_addr; 440 req_p = p_iov_info->mbx_msg_phys_addr; 441 p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr; 442 rply_p = p_iov_info->mbx_reply_phys_addr; 443 p_bulletin_virt = p_iov_info->p_bulletins; 444 bulletin_p = p_iov_info->bulletins_phys; 445 if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) { 446 DP_ERR(p_hwfn, 447 "qed_iov_setup_vfdb called without allocating mem first\n"); 448 return; 449 } 450 451 for (idx = 0; idx < p_iov->total_vfs; idx++) { 452 struct qed_vf_info *vf = &p_iov_info->vfs_array[idx]; 453 u32 concrete; 454 455 vf->vf_mbx.req_virt = p_req_virt_addr + idx; 456 vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs); 457 vf->vf_mbx.reply_virt = p_reply_virt_addr + idx; 458 vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs); 459 460 vf->state = VF_STOPPED; 461 vf->b_init = false; 462 463 vf->bulletin.phys = idx * 464 sizeof(struct qed_bulletin_content) + 465 bulletin_p; 466 vf->bulletin.p_virt = p_bulletin_virt + idx; 467 vf->bulletin.size = sizeof(struct qed_bulletin_content); 468 469 vf->relative_vf_id = idx; 470 vf->abs_vf_id = idx + p_iov->first_vf_in_pf; 471 concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id); 472 vf->concrete_fid = concrete; 473 vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) | 474 (vf->abs_vf_id << 8); 475 vf->vport_id = idx + 1; 476 477 vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS; 478 vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS; 479 } 480 } 481 482 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn) 483 { 484 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 485 void **p_v_addr; 486 u16 num_vfs = 0; 487 488 num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; 489 490 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 491 "qed_iov_allocate_vfdb for %d VFs\n", num_vfs); 492 493 /* Allocate PF Mailbox buffer (per-VF) */ 494 p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs; 495 p_v_addr = &p_iov_info->mbx_msg_virt_addr; 496 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 497 p_iov_info->mbx_msg_size, 498 &p_iov_info->mbx_msg_phys_addr, 499 GFP_KERNEL); 500 if (!*p_v_addr) 501 return -ENOMEM; 502 503 /* Allocate PF Mailbox Reply buffer (per-VF) */ 504 p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs; 505 p_v_addr = &p_iov_info->mbx_reply_virt_addr; 506 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 507 p_iov_info->mbx_reply_size, 508 &p_iov_info->mbx_reply_phys_addr, 509 GFP_KERNEL); 510 if (!*p_v_addr) 511 return -ENOMEM; 512 513 p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) * 514 num_vfs; 515 p_v_addr = &p_iov_info->p_bulletins; 516 *p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 517 p_iov_info->bulletins_size, 518 &p_iov_info->bulletins_phys, 519 GFP_KERNEL); 520 if (!*p_v_addr) 521 return -ENOMEM; 522 523 DP_VERBOSE(p_hwfn, 524 QED_MSG_IOV, 525 "PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n", 526 p_iov_info->mbx_msg_virt_addr, 527 (u64) p_iov_info->mbx_msg_phys_addr, 528 p_iov_info->mbx_reply_virt_addr, 529 (u64) p_iov_info->mbx_reply_phys_addr, 530 p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys); 531 532 return 0; 533 } 534 535 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn) 536 { 537 struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info; 538 539 if (p_hwfn->pf_iov_info->mbx_msg_virt_addr) 540 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 541 p_iov_info->mbx_msg_size, 542 p_iov_info->mbx_msg_virt_addr, 543 p_iov_info->mbx_msg_phys_addr); 544 545 if (p_hwfn->pf_iov_info->mbx_reply_virt_addr) 546 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 547 p_iov_info->mbx_reply_size, 548 p_iov_info->mbx_reply_virt_addr, 549 p_iov_info->mbx_reply_phys_addr); 550 551 if (p_iov_info->p_bulletins) 552 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 553 p_iov_info->bulletins_size, 554 p_iov_info->p_bulletins, 555 p_iov_info->bulletins_phys); 556 } 557 558 int qed_iov_alloc(struct qed_hwfn *p_hwfn) 559 { 560 struct qed_pf_iov *p_sriov; 561 562 if (!IS_PF_SRIOV(p_hwfn)) { 563 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 564 "No SR-IOV - no need for IOV db\n"); 565 return 0; 566 } 567 568 p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL); 569 if (!p_sriov) 570 return -ENOMEM; 571 572 p_hwfn->pf_iov_info = p_sriov; 573 574 qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, 575 qed_sriov_eqe_event); 576 577 return qed_iov_allocate_vfdb(p_hwfn); 578 } 579 580 void qed_iov_setup(struct qed_hwfn *p_hwfn) 581 { 582 if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn)) 583 return; 584 585 qed_iov_setup_vfdb(p_hwfn); 586 } 587 588 void qed_iov_free(struct qed_hwfn *p_hwfn) 589 { 590 qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); 591 592 if (IS_PF_SRIOV_ALLOC(p_hwfn)) { 593 qed_iov_free_vfdb(p_hwfn); 594 kfree(p_hwfn->pf_iov_info); 595 } 596 } 597 598 void qed_iov_free_hw_info(struct qed_dev *cdev) 599 { 600 kfree(cdev->p_iov_info); 601 cdev->p_iov_info = NULL; 602 } 603 604 int qed_iov_hw_info(struct qed_hwfn *p_hwfn) 605 { 606 struct qed_dev *cdev = p_hwfn->cdev; 607 int pos; 608 int rc; 609 610 if (IS_VF(p_hwfn->cdev)) 611 return 0; 612 613 /* Learn the PCI configuration */ 614 pos = pci_find_ext_capability(p_hwfn->cdev->pdev, 615 PCI_EXT_CAP_ID_SRIOV); 616 if (!pos) { 617 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n"); 618 return 0; 619 } 620 621 /* Allocate a new struct for IOV information */ 622 cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL); 623 if (!cdev->p_iov_info) 624 return -ENOMEM; 625 626 cdev->p_iov_info->pos = pos; 627 628 rc = qed_iov_pci_cfg_info(cdev); 629 if (rc) 630 return rc; 631 632 /* We want PF IOV to be synonemous with the existance of p_iov_info; 633 * In case the capability is published but there are no VFs, simply 634 * de-allocate the struct. 635 */ 636 if (!cdev->p_iov_info->total_vfs) { 637 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 638 "IOV capabilities, but no VFs are published\n"); 639 kfree(cdev->p_iov_info); 640 cdev->p_iov_info = NULL; 641 return 0; 642 } 643 644 /* First VF index based on offset is tricky: 645 * - If ARI is supported [likely], offset - (16 - pf_id) would 646 * provide the number for eng0. 2nd engine Vfs would begin 647 * after the first engine's VFs. 648 * - If !ARI, VFs would start on next device. 649 * so offset - (256 - pf_id) would provide the number. 650 * Utilize the fact that (256 - pf_id) is achieved only by later 651 * to differentiate between the two. 652 */ 653 654 if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) { 655 u32 first = p_hwfn->cdev->p_iov_info->offset + 656 p_hwfn->abs_pf_id - 16; 657 658 cdev->p_iov_info->first_vf_in_pf = first; 659 660 if (QED_PATH_ID(p_hwfn)) 661 cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB; 662 } else { 663 u32 first = p_hwfn->cdev->p_iov_info->offset + 664 p_hwfn->abs_pf_id - 256; 665 666 cdev->p_iov_info->first_vf_in_pf = first; 667 } 668 669 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 670 "First VF in hwfn 0x%08x\n", 671 cdev->p_iov_info->first_vf_in_pf); 672 673 return 0; 674 } 675 676 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, 677 int vfid, bool b_fail_malicious) 678 { 679 /* Check PF supports sriov */ 680 if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) || 681 !IS_PF_SRIOV_ALLOC(p_hwfn)) 682 return false; 683 684 /* Check VF validity */ 685 if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious)) 686 return false; 687 688 return true; 689 } 690 691 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid) 692 { 693 return _qed_iov_pf_sanity_check(p_hwfn, vfid, true); 694 } 695 696 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev, 697 u16 rel_vf_id, u8 to_disable) 698 { 699 struct qed_vf_info *vf; 700 int i; 701 702 for_each_hwfn(cdev, i) { 703 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 704 705 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 706 if (!vf) 707 continue; 708 709 vf->to_disable = to_disable; 710 } 711 } 712 713 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable) 714 { 715 u16 i; 716 717 if (!IS_QED_SRIOV(cdev)) 718 return; 719 720 for (i = 0; i < cdev->p_iov_info->total_vfs; i++) 721 qed_iov_set_vf_to_disable(cdev, i, to_disable); 722 } 723 724 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn, 725 struct qed_ptt *p_ptt, u8 abs_vfid) 726 { 727 qed_wr(p_hwfn, p_ptt, 728 PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4, 729 1 << (abs_vfid & 0x1f)); 730 } 731 732 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn, 733 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 734 { 735 int i; 736 737 /* Set VF masks and configuration - pretend */ 738 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 739 740 qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0); 741 742 /* unpretend */ 743 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 744 745 /* iterate over all queues, clear sb consumer */ 746 for (i = 0; i < vf->num_sbs; i++) 747 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 748 vf->igu_sbs[i], 749 vf->opaque_fid, true); 750 } 751 752 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn, 753 struct qed_ptt *p_ptt, 754 struct qed_vf_info *vf, bool enable) 755 { 756 u32 igu_vf_conf; 757 758 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 759 760 igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION); 761 762 if (enable) 763 igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN; 764 else 765 igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN; 766 767 qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf); 768 769 /* unpretend */ 770 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 771 } 772 773 static int 774 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn, 775 struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs) 776 { 777 u8 current_max = 0; 778 int i; 779 780 /* For AH onward, configuration is per-PF. Find maximum of all 781 * the currently enabled child VFs, and set the number to be that. 782 */ 783 if (!QED_IS_BB(p_hwfn->cdev)) { 784 qed_for_each_vf(p_hwfn, i) { 785 struct qed_vf_info *p_vf; 786 787 p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true); 788 if (!p_vf) 789 continue; 790 791 current_max = max_t(u8, current_max, p_vf->num_sbs); 792 } 793 } 794 795 if (num_sbs > current_max) 796 return qed_mcp_config_vf_msix(p_hwfn, p_ptt, 797 abs_vf_id, num_sbs); 798 799 return 0; 800 } 801 802 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn, 803 struct qed_ptt *p_ptt, 804 struct qed_vf_info *vf) 805 { 806 u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN; 807 int rc; 808 809 /* It's possible VF was previously considered malicious - 810 * clear the indication even if we're only going to disable VF. 811 */ 812 vf->b_malicious = false; 813 814 if (vf->to_disable) 815 return 0; 816 817 DP_VERBOSE(p_hwfn, 818 QED_MSG_IOV, 819 "Enable internal access for vf %x [abs %x]\n", 820 vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf)); 821 822 qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf)); 823 824 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 825 826 rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt, 827 vf->abs_vf_id, vf->num_sbs); 828 if (rc) 829 return rc; 830 831 qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid); 832 833 SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id); 834 STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf); 835 836 qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id, 837 p_hwfn->hw_info.hw_mode); 838 839 /* unpretend */ 840 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 841 842 vf->state = VF_FREE; 843 844 return rc; 845 } 846 847 /** 848 * @brief qed_iov_config_perm_table - configure the permission 849 * zone table. 850 * In E4, queue zone permission table size is 320x9. There 851 * are 320 VF queues for single engine device (256 for dual 852 * engine device), and each entry has the following format: 853 * {Valid, VF[7:0]} 854 * @param p_hwfn 855 * @param p_ptt 856 * @param vf 857 * @param enable 858 */ 859 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn, 860 struct qed_ptt *p_ptt, 861 struct qed_vf_info *vf, u8 enable) 862 { 863 u32 reg_addr, val; 864 u16 qzone_id = 0; 865 int qid; 866 867 for (qid = 0; qid < vf->num_rxqs; qid++) { 868 qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid, 869 &qzone_id); 870 871 reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4; 872 val = enable ? (vf->abs_vf_id | BIT(8)) : 0; 873 qed_wr(p_hwfn, p_ptt, reg_addr, val); 874 } 875 } 876 877 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn, 878 struct qed_ptt *p_ptt, 879 struct qed_vf_info *vf) 880 { 881 /* Reset vf in IGU - interrupts are still disabled */ 882 qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf); 883 884 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1); 885 886 /* Permission Table */ 887 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true); 888 } 889 890 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn, 891 struct qed_ptt *p_ptt, 892 struct qed_vf_info *vf, u16 num_rx_queues) 893 { 894 struct qed_igu_block *p_block; 895 struct cau_sb_entry sb_entry; 896 int qid = 0; 897 u32 val = 0; 898 899 if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov) 900 num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov; 901 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues; 902 903 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id); 904 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1); 905 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0); 906 907 for (qid = 0; qid < num_rx_queues; qid++) { 908 p_block = qed_get_igu_free_sb(p_hwfn, false); 909 vf->igu_sbs[qid] = p_block->igu_sb_id; 910 p_block->status &= ~QED_IGU_STATUS_FREE; 911 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid); 912 913 qed_wr(p_hwfn, p_ptt, 914 IGU_REG_MAPPING_MEMORY + 915 sizeof(u32) * p_block->igu_sb_id, val); 916 917 /* Configure igu sb in CAU which were marked valid */ 918 qed_init_cau_sb_entry(p_hwfn, &sb_entry, 919 p_hwfn->rel_pf_id, vf->abs_vf_id, 1); 920 qed_dmae_host2grc(p_hwfn, p_ptt, 921 (u64)(uintptr_t)&sb_entry, 922 CAU_REG_SB_VAR_MEMORY + 923 p_block->igu_sb_id * sizeof(u64), 2, 0); 924 } 925 926 vf->num_sbs = (u8) num_rx_queues; 927 928 return vf->num_sbs; 929 } 930 931 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn, 932 struct qed_ptt *p_ptt, 933 struct qed_vf_info *vf) 934 { 935 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 936 int idx, igu_id; 937 u32 addr, val; 938 939 /* Invalidate igu CAM lines and mark them as free */ 940 for (idx = 0; idx < vf->num_sbs; idx++) { 941 igu_id = vf->igu_sbs[idx]; 942 addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id; 943 944 val = qed_rd(p_hwfn, p_ptt, addr); 945 SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0); 946 qed_wr(p_hwfn, p_ptt, addr, val); 947 948 p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE; 949 p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++; 950 } 951 952 vf->num_sbs = 0; 953 } 954 955 static void qed_iov_set_link(struct qed_hwfn *p_hwfn, 956 u16 vfid, 957 struct qed_mcp_link_params *params, 958 struct qed_mcp_link_state *link, 959 struct qed_mcp_link_capabilities *p_caps) 960 { 961 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 962 vfid, 963 false); 964 struct qed_bulletin_content *p_bulletin; 965 966 if (!p_vf) 967 return; 968 969 p_bulletin = p_vf->bulletin.p_virt; 970 p_bulletin->req_autoneg = params->speed.autoneg; 971 p_bulletin->req_adv_speed = params->speed.advertised_speeds; 972 p_bulletin->req_forced_speed = params->speed.forced_speed; 973 p_bulletin->req_autoneg_pause = params->pause.autoneg; 974 p_bulletin->req_forced_rx = params->pause.forced_rx; 975 p_bulletin->req_forced_tx = params->pause.forced_tx; 976 p_bulletin->req_loopback = params->loopback_mode; 977 978 p_bulletin->link_up = link->link_up; 979 p_bulletin->speed = link->speed; 980 p_bulletin->full_duplex = link->full_duplex; 981 p_bulletin->autoneg = link->an; 982 p_bulletin->autoneg_complete = link->an_complete; 983 p_bulletin->parallel_detection = link->parallel_detection; 984 p_bulletin->pfc_enabled = link->pfc_enabled; 985 p_bulletin->partner_adv_speed = link->partner_adv_speed; 986 p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en; 987 p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en; 988 p_bulletin->partner_adv_pause = link->partner_adv_pause; 989 p_bulletin->sfp_tx_fault = link->sfp_tx_fault; 990 991 p_bulletin->capability_speed = p_caps->speed_capabilities; 992 } 993 994 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn, 995 struct qed_ptt *p_ptt, 996 struct qed_iov_vf_init_params *p_params) 997 { 998 struct qed_mcp_link_capabilities link_caps; 999 struct qed_mcp_link_params link_params; 1000 struct qed_mcp_link_state link_state; 1001 u8 num_of_vf_avaiable_chains = 0; 1002 struct qed_vf_info *vf = NULL; 1003 u16 qid, num_irqs; 1004 int rc = 0; 1005 u32 cids; 1006 u8 i; 1007 1008 vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false); 1009 if (!vf) { 1010 DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n"); 1011 return -EINVAL; 1012 } 1013 1014 if (vf->b_init) { 1015 DP_NOTICE(p_hwfn, "VF[%d] is already active.\n", 1016 p_params->rel_vf_id); 1017 return -EINVAL; 1018 } 1019 1020 /* Perform sanity checking on the requested queue_id */ 1021 for (i = 0; i < p_params->num_queues; i++) { 1022 u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE); 1023 u16 max_vf_qzone = min_vf_qzone + 1024 FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1; 1025 1026 qid = p_params->req_rx_queue[i]; 1027 if (qid < min_vf_qzone || qid > max_vf_qzone) { 1028 DP_NOTICE(p_hwfn, 1029 "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n", 1030 qid, 1031 p_params->rel_vf_id, 1032 min_vf_qzone, max_vf_qzone); 1033 return -EINVAL; 1034 } 1035 1036 qid = p_params->req_tx_queue[i]; 1037 if (qid > max_vf_qzone) { 1038 DP_NOTICE(p_hwfn, 1039 "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n", 1040 qid, p_params->rel_vf_id, max_vf_qzone); 1041 return -EINVAL; 1042 } 1043 1044 /* If client *really* wants, Tx qid can be shared with PF */ 1045 if (qid < min_vf_qzone) 1046 DP_VERBOSE(p_hwfn, 1047 QED_MSG_IOV, 1048 "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n", 1049 p_params->rel_vf_id, qid, i); 1050 } 1051 1052 /* Limit number of queues according to number of CIDs */ 1053 qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids); 1054 DP_VERBOSE(p_hwfn, 1055 QED_MSG_IOV, 1056 "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n", 1057 vf->relative_vf_id, p_params->num_queues, (u16)cids); 1058 num_irqs = min_t(u16, p_params->num_queues, ((u16)cids)); 1059 1060 num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn, 1061 p_ptt, 1062 vf, num_irqs); 1063 if (!num_of_vf_avaiable_chains) { 1064 DP_ERR(p_hwfn, "no available igu sbs\n"); 1065 return -ENOMEM; 1066 } 1067 1068 /* Choose queue number and index ranges */ 1069 vf->num_rxqs = num_of_vf_avaiable_chains; 1070 vf->num_txqs = num_of_vf_avaiable_chains; 1071 1072 for (i = 0; i < vf->num_rxqs; i++) { 1073 struct qed_vf_queue *p_queue = &vf->vf_queues[i]; 1074 1075 p_queue->fw_rx_qid = p_params->req_rx_queue[i]; 1076 p_queue->fw_tx_qid = p_params->req_tx_queue[i]; 1077 1078 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1079 "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n", 1080 vf->relative_vf_id, i, vf->igu_sbs[i], 1081 p_queue->fw_rx_qid, p_queue->fw_tx_qid); 1082 } 1083 1084 /* Update the link configuration in bulletin */ 1085 memcpy(&link_params, qed_mcp_get_link_params(p_hwfn), 1086 sizeof(link_params)); 1087 memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state)); 1088 memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn), 1089 sizeof(link_caps)); 1090 qed_iov_set_link(p_hwfn, p_params->rel_vf_id, 1091 &link_params, &link_state, &link_caps); 1092 1093 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf); 1094 if (!rc) { 1095 vf->b_init = true; 1096 1097 if (IS_LEAD_HWFN(p_hwfn)) 1098 p_hwfn->cdev->p_iov_info->num_vfs++; 1099 } 1100 1101 return rc; 1102 } 1103 1104 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn, 1105 struct qed_ptt *p_ptt, u16 rel_vf_id) 1106 { 1107 struct qed_mcp_link_capabilities caps; 1108 struct qed_mcp_link_params params; 1109 struct qed_mcp_link_state link; 1110 struct qed_vf_info *vf = NULL; 1111 1112 vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 1113 if (!vf) { 1114 DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n"); 1115 return -EINVAL; 1116 } 1117 1118 if (vf->bulletin.p_virt) 1119 memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt)); 1120 1121 memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info)); 1122 1123 /* Get the link configuration back in bulletin so 1124 * that when VFs are re-enabled they get the actual 1125 * link configuration. 1126 */ 1127 memcpy(¶ms, qed_mcp_get_link_params(p_hwfn), sizeof(params)); 1128 memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link)); 1129 memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps)); 1130 qed_iov_set_link(p_hwfn, rel_vf_id, ¶ms, &link, &caps); 1131 1132 /* Forget the VF's acquisition message */ 1133 memset(&vf->acquire, 0, sizeof(vf->acquire)); 1134 1135 /* disablng interrupts and resetting permission table was done during 1136 * vf-close, however, we could get here without going through vf_close 1137 */ 1138 /* Disable Interrupts for VF */ 1139 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 1140 1141 /* Reset Permission table */ 1142 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 1143 1144 vf->num_rxqs = 0; 1145 vf->num_txqs = 0; 1146 qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf); 1147 1148 if (vf->b_init) { 1149 vf->b_init = false; 1150 1151 if (IS_LEAD_HWFN(p_hwfn)) 1152 p_hwfn->cdev->p_iov_info->num_vfs--; 1153 } 1154 1155 return 0; 1156 } 1157 1158 static bool qed_iov_tlv_supported(u16 tlvtype) 1159 { 1160 return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX; 1161 } 1162 1163 /* place a given tlv on the tlv buffer, continuing current tlv list */ 1164 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length) 1165 { 1166 struct channel_tlv *tl = (struct channel_tlv *)*offset; 1167 1168 tl->type = type; 1169 tl->length = length; 1170 1171 /* Offset should keep pointing to next TLV (the end of the last) */ 1172 *offset += length; 1173 1174 /* Return a pointer to the start of the added tlv */ 1175 return *offset - length; 1176 } 1177 1178 /* list the types and lengths of the tlvs on the buffer */ 1179 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list) 1180 { 1181 u16 i = 1, total_length = 0; 1182 struct channel_tlv *tlv; 1183 1184 do { 1185 tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length); 1186 1187 /* output tlv */ 1188 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1189 "TLV number %d: type %d, length %d\n", 1190 i, tlv->type, tlv->length); 1191 1192 if (tlv->type == CHANNEL_TLV_LIST_END) 1193 return; 1194 1195 /* Validate entry - protect against malicious VFs */ 1196 if (!tlv->length) { 1197 DP_NOTICE(p_hwfn, "TLV of length 0 found\n"); 1198 return; 1199 } 1200 1201 total_length += tlv->length; 1202 1203 if (total_length >= sizeof(struct tlv_buffer_size)) { 1204 DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n"); 1205 return; 1206 } 1207 1208 i++; 1209 } while (1); 1210 } 1211 1212 static void qed_iov_send_response(struct qed_hwfn *p_hwfn, 1213 struct qed_ptt *p_ptt, 1214 struct qed_vf_info *p_vf, 1215 u16 length, u8 status) 1216 { 1217 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 1218 struct qed_dmae_params params; 1219 u8 eng_vf_id; 1220 1221 mbx->reply_virt->default_resp.hdr.status = status; 1222 1223 qed_dp_tlv_list(p_hwfn, mbx->reply_virt); 1224 1225 eng_vf_id = p_vf->abs_vf_id; 1226 1227 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 1228 params.flags = QED_DMAE_FLAG_VF_DST; 1229 params.dst_vfid = eng_vf_id; 1230 1231 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64), 1232 mbx->req_virt->first_tlv.reply_address + 1233 sizeof(u64), 1234 (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4, 1235 ¶ms); 1236 1237 /* Once PF copies the rc to the VF, the latter can continue 1238 * and send an additional message. So we have to make sure the 1239 * channel would be re-set to ready prior to that. 1240 */ 1241 REG_WR(p_hwfn, 1242 GTT_BAR0_MAP_REG_USDM_RAM + 1243 USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1); 1244 1245 qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys, 1246 mbx->req_virt->first_tlv.reply_address, 1247 sizeof(u64) / 4, ¶ms); 1248 } 1249 1250 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn, 1251 enum qed_iov_vport_update_flag flag) 1252 { 1253 switch (flag) { 1254 case QED_IOV_VP_UPDATE_ACTIVATE: 1255 return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 1256 case QED_IOV_VP_UPDATE_VLAN_STRIP: 1257 return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 1258 case QED_IOV_VP_UPDATE_TX_SWITCH: 1259 return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 1260 case QED_IOV_VP_UPDATE_MCAST: 1261 return CHANNEL_TLV_VPORT_UPDATE_MCAST; 1262 case QED_IOV_VP_UPDATE_ACCEPT_PARAM: 1263 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 1264 case QED_IOV_VP_UPDATE_RSS: 1265 return CHANNEL_TLV_VPORT_UPDATE_RSS; 1266 case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN: 1267 return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 1268 case QED_IOV_VP_UPDATE_SGE_TPA: 1269 return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 1270 default: 1271 return 0; 1272 } 1273 } 1274 1275 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn, 1276 struct qed_vf_info *p_vf, 1277 struct qed_iov_vf_mbx *p_mbx, 1278 u8 status, 1279 u16 tlvs_mask, u16 tlvs_accepted) 1280 { 1281 struct pfvf_def_resp_tlv *resp; 1282 u16 size, total_len, i; 1283 1284 memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs)); 1285 p_mbx->offset = (u8 *)p_mbx->reply_virt; 1286 size = sizeof(struct pfvf_def_resp_tlv); 1287 total_len = size; 1288 1289 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size); 1290 1291 /* Prepare response for all extended tlvs if they are found by PF */ 1292 for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) { 1293 if (!(tlvs_mask & BIT(i))) 1294 continue; 1295 1296 resp = qed_add_tlv(p_hwfn, &p_mbx->offset, 1297 qed_iov_vport_to_tlv(p_hwfn, i), size); 1298 1299 if (tlvs_accepted & BIT(i)) 1300 resp->hdr.status = status; 1301 else 1302 resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED; 1303 1304 DP_VERBOSE(p_hwfn, 1305 QED_MSG_IOV, 1306 "VF[%d] - vport_update response: TLV %d, status %02x\n", 1307 p_vf->relative_vf_id, 1308 qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status); 1309 1310 total_len += size; 1311 } 1312 1313 qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END, 1314 sizeof(struct channel_list_end_tlv)); 1315 1316 return total_len; 1317 } 1318 1319 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn, 1320 struct qed_ptt *p_ptt, 1321 struct qed_vf_info *vf_info, 1322 u16 type, u16 length, u8 status) 1323 { 1324 struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx; 1325 1326 mbx->offset = (u8 *)mbx->reply_virt; 1327 1328 qed_add_tlv(p_hwfn, &mbx->offset, type, length); 1329 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 1330 sizeof(struct channel_list_end_tlv)); 1331 1332 qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status); 1333 } 1334 1335 static struct 1336 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn, 1337 u16 relative_vf_id, 1338 bool b_enabled_only) 1339 { 1340 struct qed_vf_info *vf = NULL; 1341 1342 vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only); 1343 if (!vf) 1344 return NULL; 1345 1346 return &vf->p_vf_info; 1347 } 1348 1349 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid) 1350 { 1351 struct qed_public_vf_info *vf_info; 1352 1353 vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false); 1354 1355 if (!vf_info) 1356 return; 1357 1358 /* Clear the VF mac */ 1359 eth_zero_addr(vf_info->mac); 1360 1361 vf_info->rx_accept_mode = 0; 1362 vf_info->tx_accept_mode = 0; 1363 } 1364 1365 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn, 1366 struct qed_vf_info *p_vf) 1367 { 1368 u32 i, j; 1369 1370 p_vf->vf_bulletin = 0; 1371 p_vf->vport_instance = 0; 1372 p_vf->configured_features = 0; 1373 1374 /* If VF previously requested less resources, go back to default */ 1375 p_vf->num_rxqs = p_vf->num_sbs; 1376 p_vf->num_txqs = p_vf->num_sbs; 1377 1378 p_vf->num_active_rxqs = 0; 1379 1380 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1381 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1382 1383 for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) { 1384 if (!p_queue->cids[j].p_cid) 1385 continue; 1386 1387 qed_eth_queue_cid_release(p_hwfn, 1388 p_queue->cids[j].p_cid); 1389 p_queue->cids[j].p_cid = NULL; 1390 } 1391 } 1392 1393 memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config)); 1394 memset(&p_vf->acquire, 0, sizeof(p_vf->acquire)); 1395 qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id); 1396 } 1397 1398 /* Returns either 0, or log(size) */ 1399 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn, 1400 struct qed_ptt *p_ptt) 1401 { 1402 u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE); 1403 1404 if (val) 1405 return val + 11; 1406 return 0; 1407 } 1408 1409 static void 1410 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn, 1411 struct qed_ptt *p_ptt, 1412 struct qed_vf_info *p_vf, 1413 struct vf_pf_resc_request *p_req, 1414 struct pf_vf_resc *p_resp) 1415 { 1416 u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons; 1417 u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) - 1418 qed_db_addr_vf(0, DQ_DEMS_LEGACY); 1419 u32 bar_size; 1420 1421 p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons); 1422 1423 /* If VF didn't bother asking for QIDs than don't bother limiting 1424 * number of CIDs. The VF doesn't care about the number, and this 1425 * has the likely result of causing an additional acquisition. 1426 */ 1427 if (!(p_vf->acquire.vfdev_info.capabilities & 1428 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) 1429 return; 1430 1431 /* If doorbell bar was mapped by VF, limit the VF CIDs to an amount 1432 * that would make sure doorbells for all CIDs fall within the bar. 1433 * If it doesn't, make sure regview window is sufficient. 1434 */ 1435 if (p_vf->acquire.vfdev_info.capabilities & 1436 VFPF_ACQUIRE_CAP_PHYSICAL_BAR) { 1437 bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1438 if (bar_size) 1439 bar_size = 1 << bar_size; 1440 1441 if (p_hwfn->cdev->num_hwfns > 1) 1442 bar_size /= 2; 1443 } else { 1444 bar_size = PXP_VF_BAR0_DQ_LENGTH; 1445 } 1446 1447 if (bar_size / db_size < 256) 1448 p_resp->num_cids = min_t(u8, p_resp->num_cids, 1449 (u8)(bar_size / db_size)); 1450 } 1451 1452 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn, 1453 struct qed_ptt *p_ptt, 1454 struct qed_vf_info *p_vf, 1455 struct vf_pf_resc_request *p_req, 1456 struct pf_vf_resc *p_resp) 1457 { 1458 u8 i; 1459 1460 /* Queue related information */ 1461 p_resp->num_rxqs = p_vf->num_rxqs; 1462 p_resp->num_txqs = p_vf->num_txqs; 1463 p_resp->num_sbs = p_vf->num_sbs; 1464 1465 for (i = 0; i < p_resp->num_sbs; i++) { 1466 p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i]; 1467 p_resp->hw_sbs[i].sb_qid = 0; 1468 } 1469 1470 /* These fields are filled for backward compatibility. 1471 * Unused by modern vfs. 1472 */ 1473 for (i = 0; i < p_resp->num_rxqs; i++) { 1474 qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid, 1475 (u16 *)&p_resp->hw_qid[i]); 1476 p_resp->cid[i] = i; 1477 } 1478 1479 /* Filter related information */ 1480 p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters, 1481 p_req->num_mac_filters); 1482 p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters, 1483 p_req->num_vlan_filters); 1484 1485 qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp); 1486 1487 /* This isn't really needed/enforced, but some legacy VFs might depend 1488 * on the correct filling of this field. 1489 */ 1490 p_resp->num_mc_filters = QED_MAX_MC_ADDRS; 1491 1492 /* Validate sufficient resources for VF */ 1493 if (p_resp->num_rxqs < p_req->num_rxqs || 1494 p_resp->num_txqs < p_req->num_txqs || 1495 p_resp->num_sbs < p_req->num_sbs || 1496 p_resp->num_mac_filters < p_req->num_mac_filters || 1497 p_resp->num_vlan_filters < p_req->num_vlan_filters || 1498 p_resp->num_mc_filters < p_req->num_mc_filters || 1499 p_resp->num_cids < p_req->num_cids) { 1500 DP_VERBOSE(p_hwfn, 1501 QED_MSG_IOV, 1502 "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n", 1503 p_vf->abs_vf_id, 1504 p_req->num_rxqs, 1505 p_resp->num_rxqs, 1506 p_req->num_rxqs, 1507 p_resp->num_txqs, 1508 p_req->num_sbs, 1509 p_resp->num_sbs, 1510 p_req->num_mac_filters, 1511 p_resp->num_mac_filters, 1512 p_req->num_vlan_filters, 1513 p_resp->num_vlan_filters, 1514 p_req->num_mc_filters, 1515 p_resp->num_mc_filters, 1516 p_req->num_cids, p_resp->num_cids); 1517 1518 /* Some legacy OSes are incapable of correctly handling this 1519 * failure. 1520 */ 1521 if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 1522 ETH_HSI_VER_NO_PKT_LEN_TUNN) && 1523 (p_vf->acquire.vfdev_info.os_type == 1524 VFPF_ACQUIRE_OS_WINDOWS)) 1525 return PFVF_STATUS_SUCCESS; 1526 1527 return PFVF_STATUS_NO_RESOURCE; 1528 } 1529 1530 return PFVF_STATUS_SUCCESS; 1531 } 1532 1533 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn, 1534 struct pfvf_stats_info *p_stats) 1535 { 1536 p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B + 1537 offsetof(struct mstorm_vf_zone, 1538 non_trigger.eth_queue_stat); 1539 p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat); 1540 p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B + 1541 offsetof(struct ustorm_vf_zone, 1542 non_trigger.eth_queue_stat); 1543 p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat); 1544 p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B + 1545 offsetof(struct pstorm_vf_zone, 1546 non_trigger.eth_queue_stat); 1547 p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat); 1548 p_stats->tstats.address = 0; 1549 p_stats->tstats.len = 0; 1550 } 1551 1552 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn, 1553 struct qed_ptt *p_ptt, 1554 struct qed_vf_info *vf) 1555 { 1556 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1557 struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp; 1558 struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info; 1559 struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire; 1560 u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED; 1561 struct pf_vf_resc *resc = &resp->resc; 1562 int rc; 1563 1564 memset(resp, 0, sizeof(*resp)); 1565 1566 /* Write the PF version so that VF would know which version 1567 * is supported - might be later overriden. This guarantees that 1568 * VF could recognize legacy PF based on lack of versions in reply. 1569 */ 1570 pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR; 1571 pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR; 1572 1573 if (vf->state != VF_FREE && vf->state != VF_STOPPED) { 1574 DP_VERBOSE(p_hwfn, 1575 QED_MSG_IOV, 1576 "VF[%d] sent ACQUIRE but is already in state %d - fail request\n", 1577 vf->abs_vf_id, vf->state); 1578 goto out; 1579 } 1580 1581 /* Validate FW compatibility */ 1582 if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) { 1583 if (req->vfdev_info.capabilities & 1584 VFPF_ACQUIRE_CAP_PRE_FP_HSI) { 1585 struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info; 1586 1587 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1588 "VF[%d] is pre-fastpath HSI\n", 1589 vf->abs_vf_id); 1590 p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR; 1591 p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN; 1592 } else { 1593 DP_INFO(p_hwfn, 1594 "VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n", 1595 vf->abs_vf_id, 1596 req->vfdev_info.eth_fp_hsi_major, 1597 req->vfdev_info.eth_fp_hsi_minor, 1598 ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR); 1599 1600 goto out; 1601 } 1602 } 1603 1604 /* On 100g PFs, prevent old VFs from loading */ 1605 if ((p_hwfn->cdev->num_hwfns > 1) && 1606 !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) { 1607 DP_INFO(p_hwfn, 1608 "VF[%d] is running an old driver that doesn't support 100g\n", 1609 vf->abs_vf_id); 1610 goto out; 1611 } 1612 1613 /* Store the acquire message */ 1614 memcpy(&vf->acquire, req, sizeof(vf->acquire)); 1615 1616 vf->opaque_fid = req->vfdev_info.opaque_fid; 1617 1618 vf->vf_bulletin = req->bulletin_addr; 1619 vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ? 1620 vf->bulletin.size : req->bulletin_size; 1621 1622 /* fill in pfdev info */ 1623 pfdev_info->chip_num = p_hwfn->cdev->chip_num; 1624 pfdev_info->db_size = 0; 1625 pfdev_info->indices_per_sb = PIS_PER_SB_E4; 1626 1627 pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED | 1628 PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE; 1629 if (p_hwfn->cdev->num_hwfns > 1) 1630 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G; 1631 1632 /* Share our ability to use multiple queue-ids only with VFs 1633 * that request it. 1634 */ 1635 if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS) 1636 pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS; 1637 1638 /* Share the sizes of the bars with VF */ 1639 resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt); 1640 1641 qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info); 1642 1643 memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN); 1644 1645 pfdev_info->fw_major = FW_MAJOR_VERSION; 1646 pfdev_info->fw_minor = FW_MINOR_VERSION; 1647 pfdev_info->fw_rev = FW_REVISION_VERSION; 1648 pfdev_info->fw_eng = FW_ENGINEERING_VERSION; 1649 1650 /* Incorrect when legacy, but doesn't matter as legacy isn't reading 1651 * this field. 1652 */ 1653 pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR, 1654 req->vfdev_info.eth_fp_hsi_minor); 1655 pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX; 1656 qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL); 1657 1658 pfdev_info->dev_type = p_hwfn->cdev->type; 1659 pfdev_info->chip_rev = p_hwfn->cdev->chip_rev; 1660 1661 /* Fill resources available to VF; Make sure there are enough to 1662 * satisfy the VF's request. 1663 */ 1664 vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf, 1665 &req->resc_request, resc); 1666 if (vfpf_status != PFVF_STATUS_SUCCESS) 1667 goto out; 1668 1669 /* Start the VF in FW */ 1670 rc = qed_sp_vf_start(p_hwfn, vf); 1671 if (rc) { 1672 DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id); 1673 vfpf_status = PFVF_STATUS_FAILURE; 1674 goto out; 1675 } 1676 1677 /* Fill agreed size of bulletin board in response */ 1678 resp->bulletin_size = vf->bulletin.size; 1679 qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt); 1680 1681 DP_VERBOSE(p_hwfn, 1682 QED_MSG_IOV, 1683 "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n" 1684 "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n", 1685 vf->abs_vf_id, 1686 resp->pfdev_info.chip_num, 1687 resp->pfdev_info.db_size, 1688 resp->pfdev_info.indices_per_sb, 1689 resp->pfdev_info.capabilities, 1690 resc->num_rxqs, 1691 resc->num_txqs, 1692 resc->num_sbs, 1693 resc->num_mac_filters, 1694 resc->num_vlan_filters); 1695 vf->state = VF_ACQUIRED; 1696 1697 /* Prepare Response */ 1698 out: 1699 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE, 1700 sizeof(struct pfvf_acquire_resp_tlv), vfpf_status); 1701 } 1702 1703 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, 1704 struct qed_vf_info *p_vf, bool val) 1705 { 1706 struct qed_sp_vport_update_params params; 1707 int rc; 1708 1709 if (val == p_vf->spoof_chk) { 1710 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1711 "Spoofchk value[%d] is already configured\n", val); 1712 return 0; 1713 } 1714 1715 memset(¶ms, 0, sizeof(struct qed_sp_vport_update_params)); 1716 params.opaque_fid = p_vf->opaque_fid; 1717 params.vport_id = p_vf->vport_id; 1718 params.update_anti_spoofing_en_flg = 1; 1719 params.anti_spoofing_en = val; 1720 1721 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 1722 if (!rc) { 1723 p_vf->spoof_chk = val; 1724 p_vf->req_spoofchk_val = p_vf->spoof_chk; 1725 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1726 "Spoofchk val[%d] configured\n", val); 1727 } else { 1728 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1729 "Spoofchk configuration[val:%d] failed for VF[%d]\n", 1730 val, p_vf->relative_vf_id); 1731 } 1732 1733 return rc; 1734 } 1735 1736 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn, 1737 struct qed_vf_info *p_vf) 1738 { 1739 struct qed_filter_ucast filter; 1740 int rc = 0; 1741 int i; 1742 1743 memset(&filter, 0, sizeof(filter)); 1744 filter.is_rx_filter = 1; 1745 filter.is_tx_filter = 1; 1746 filter.vport_to_add_to = p_vf->vport_id; 1747 filter.opcode = QED_FILTER_ADD; 1748 1749 /* Reconfigure vlans */ 1750 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 1751 if (!p_vf->shadow_config.vlans[i].used) 1752 continue; 1753 1754 filter.type = QED_FILTER_VLAN; 1755 filter.vlan = p_vf->shadow_config.vlans[i].vid; 1756 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1757 "Reconfiguring VLAN [0x%04x] for VF [%04x]\n", 1758 filter.vlan, p_vf->relative_vf_id); 1759 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1760 &filter, QED_SPQ_MODE_CB, NULL); 1761 if (rc) { 1762 DP_NOTICE(p_hwfn, 1763 "Failed to configure VLAN [%04x] to VF [%04x]\n", 1764 filter.vlan, p_vf->relative_vf_id); 1765 break; 1766 } 1767 } 1768 1769 return rc; 1770 } 1771 1772 static int 1773 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn, 1774 struct qed_vf_info *p_vf, u64 events) 1775 { 1776 int rc = 0; 1777 1778 if ((events & BIT(VLAN_ADDR_FORCED)) && 1779 !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED))) 1780 rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf); 1781 1782 return rc; 1783 } 1784 1785 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn, 1786 struct qed_vf_info *p_vf, u64 events) 1787 { 1788 int rc = 0; 1789 struct qed_filter_ucast filter; 1790 1791 if (!p_vf->vport_instance) 1792 return -EINVAL; 1793 1794 if ((events & BIT(MAC_ADDR_FORCED)) || 1795 p_vf->p_vf_info.is_trusted_configured) { 1796 /* Since there's no way [currently] of removing the MAC, 1797 * we can always assume this means we need to force it. 1798 */ 1799 memset(&filter, 0, sizeof(filter)); 1800 filter.type = QED_FILTER_MAC; 1801 filter.opcode = QED_FILTER_REPLACE; 1802 filter.is_rx_filter = 1; 1803 filter.is_tx_filter = 1; 1804 filter.vport_to_add_to = p_vf->vport_id; 1805 ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac); 1806 1807 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1808 &filter, QED_SPQ_MODE_CB, NULL); 1809 if (rc) { 1810 DP_NOTICE(p_hwfn, 1811 "PF failed to configure MAC for VF\n"); 1812 return rc; 1813 } 1814 if (p_vf->p_vf_info.is_trusted_configured) 1815 p_vf->configured_features |= 1816 BIT(VFPF_BULLETIN_MAC_ADDR); 1817 else 1818 p_vf->configured_features |= 1819 BIT(MAC_ADDR_FORCED); 1820 } 1821 1822 if (events & BIT(VLAN_ADDR_FORCED)) { 1823 struct qed_sp_vport_update_params vport_update; 1824 u8 removal; 1825 int i; 1826 1827 memset(&filter, 0, sizeof(filter)); 1828 filter.type = QED_FILTER_VLAN; 1829 filter.is_rx_filter = 1; 1830 filter.is_tx_filter = 1; 1831 filter.vport_to_add_to = p_vf->vport_id; 1832 filter.vlan = p_vf->bulletin.p_virt->pvid; 1833 filter.opcode = filter.vlan ? QED_FILTER_REPLACE : 1834 QED_FILTER_FLUSH; 1835 1836 /* Send the ramrod */ 1837 rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid, 1838 &filter, QED_SPQ_MODE_CB, NULL); 1839 if (rc) { 1840 DP_NOTICE(p_hwfn, 1841 "PF failed to configure VLAN for VF\n"); 1842 return rc; 1843 } 1844 1845 /* Update the default-vlan & silent vlan stripping */ 1846 memset(&vport_update, 0, sizeof(vport_update)); 1847 vport_update.opaque_fid = p_vf->opaque_fid; 1848 vport_update.vport_id = p_vf->vport_id; 1849 vport_update.update_default_vlan_enable_flg = 1; 1850 vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0; 1851 vport_update.update_default_vlan_flg = 1; 1852 vport_update.default_vlan = filter.vlan; 1853 1854 vport_update.update_inner_vlan_removal_flg = 1; 1855 removal = filter.vlan ? 1 1856 : p_vf->shadow_config.inner_vlan_removal; 1857 vport_update.inner_vlan_removal_flg = removal; 1858 vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0; 1859 rc = qed_sp_vport_update(p_hwfn, 1860 &vport_update, 1861 QED_SPQ_MODE_EBLOCK, NULL); 1862 if (rc) { 1863 DP_NOTICE(p_hwfn, 1864 "PF failed to configure VF vport for vlan\n"); 1865 return rc; 1866 } 1867 1868 /* Update all the Rx queues */ 1869 for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) { 1870 struct qed_vf_queue *p_queue = &p_vf->vf_queues[i]; 1871 struct qed_queue_cid *p_cid = NULL; 1872 1873 /* There can be at most 1 Rx queue on qzone. Find it */ 1874 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 1875 if (!p_cid) 1876 continue; 1877 1878 rc = qed_sp_eth_rx_queues_update(p_hwfn, 1879 (void **)&p_cid, 1880 1, 0, 1, 1881 QED_SPQ_MODE_EBLOCK, 1882 NULL); 1883 if (rc) { 1884 DP_NOTICE(p_hwfn, 1885 "Failed to send Rx update fo queue[0x%04x]\n", 1886 p_cid->rel.queue_id); 1887 return rc; 1888 } 1889 } 1890 1891 if (filter.vlan) 1892 p_vf->configured_features |= 1 << VLAN_ADDR_FORCED; 1893 else 1894 p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED); 1895 } 1896 1897 /* If forced features are terminated, we need to configure the shadow 1898 * configuration back again. 1899 */ 1900 if (events) 1901 qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events); 1902 1903 return rc; 1904 } 1905 1906 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn, 1907 struct qed_ptt *p_ptt, 1908 struct qed_vf_info *vf) 1909 { 1910 struct qed_sp_vport_start_params params = { 0 }; 1911 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 1912 struct vfpf_vport_start_tlv *start; 1913 u8 status = PFVF_STATUS_SUCCESS; 1914 struct qed_vf_info *vf_info; 1915 u64 *p_bitmap; 1916 int sb_id; 1917 int rc; 1918 1919 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true); 1920 if (!vf_info) { 1921 DP_NOTICE(p_hwfn->cdev, 1922 "Failed to get VF info, invalid vfid [%d]\n", 1923 vf->relative_vf_id); 1924 return; 1925 } 1926 1927 vf->state = VF_ENABLED; 1928 start = &mbx->req_virt->start_vport; 1929 1930 qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf); 1931 1932 /* Initialize Status block in CAU */ 1933 for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) { 1934 if (!start->sb_addr[sb_id]) { 1935 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 1936 "VF[%d] did not fill the address of SB %d\n", 1937 vf->relative_vf_id, sb_id); 1938 break; 1939 } 1940 1941 qed_int_cau_conf_sb(p_hwfn, p_ptt, 1942 start->sb_addr[sb_id], 1943 vf->igu_sbs[sb_id], vf->abs_vf_id, 1); 1944 } 1945 1946 vf->mtu = start->mtu; 1947 vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal; 1948 1949 /* Take into consideration configuration forced by hypervisor; 1950 * If none is configured, use the supplied VF values [for old 1951 * vfs that would still be fine, since they passed '0' as padding]. 1952 */ 1953 p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap; 1954 if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) { 1955 u8 vf_req = start->only_untagged; 1956 1957 vf_info->bulletin.p_virt->default_only_untagged = vf_req; 1958 *p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT; 1959 } 1960 1961 params.tpa_mode = start->tpa_mode; 1962 params.remove_inner_vlan = start->inner_vlan_removal; 1963 params.tx_switching = true; 1964 1965 params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged; 1966 params.drop_ttl0 = false; 1967 params.concrete_fid = vf->concrete_fid; 1968 params.opaque_fid = vf->opaque_fid; 1969 params.vport_id = vf->vport_id; 1970 params.max_buffers_per_cqe = start->max_buffers_per_cqe; 1971 params.mtu = vf->mtu; 1972 params.check_mac = true; 1973 1974 rc = qed_sp_eth_vport_start(p_hwfn, ¶ms); 1975 if (rc) { 1976 DP_ERR(p_hwfn, 1977 "qed_iov_vf_mbx_start_vport returned error %d\n", rc); 1978 status = PFVF_STATUS_FAILURE; 1979 } else { 1980 vf->vport_instance++; 1981 1982 /* Force configuration if needed on the newly opened vport */ 1983 qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap); 1984 1985 __qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val); 1986 } 1987 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START, 1988 sizeof(struct pfvf_def_resp_tlv), status); 1989 } 1990 1991 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn, 1992 struct qed_ptt *p_ptt, 1993 struct qed_vf_info *vf) 1994 { 1995 u8 status = PFVF_STATUS_SUCCESS; 1996 int rc; 1997 1998 vf->vport_instance--; 1999 vf->spoof_chk = false; 2000 2001 if ((qed_iov_validate_active_rxq(p_hwfn, vf)) || 2002 (qed_iov_validate_active_txq(p_hwfn, vf))) { 2003 vf->b_malicious = true; 2004 DP_NOTICE(p_hwfn, 2005 "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n", 2006 vf->abs_vf_id); 2007 status = PFVF_STATUS_MALICIOUS; 2008 goto out; 2009 } 2010 2011 rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id); 2012 if (rc) { 2013 DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n", 2014 rc); 2015 status = PFVF_STATUS_FAILURE; 2016 } 2017 2018 /* Forget the configuration on the vport */ 2019 vf->configured_features = 0; 2020 memset(&vf->shadow_config, 0, sizeof(vf->shadow_config)); 2021 2022 out: 2023 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN, 2024 sizeof(struct pfvf_def_resp_tlv), status); 2025 } 2026 2027 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn, 2028 struct qed_ptt *p_ptt, 2029 struct qed_vf_info *vf, 2030 u8 status, bool b_legacy) 2031 { 2032 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2033 struct pfvf_start_queue_resp_tlv *p_tlv; 2034 struct vfpf_start_rxq_tlv *req; 2035 u16 length; 2036 2037 mbx->offset = (u8 *)mbx->reply_virt; 2038 2039 /* Taking a bigger struct instead of adding a TLV to list was a 2040 * mistake, but one which we're now stuck with, as some older 2041 * clients assume the size of the previous response. 2042 */ 2043 if (!b_legacy) 2044 length = sizeof(*p_tlv); 2045 else 2046 length = sizeof(struct pfvf_def_resp_tlv); 2047 2048 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ, 2049 length); 2050 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2051 sizeof(struct channel_list_end_tlv)); 2052 2053 /* Update the TLV with the response */ 2054 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) { 2055 req = &mbx->req_virt->start_rxq; 2056 p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B + 2057 offsetof(struct mstorm_vf_zone, 2058 non_trigger.eth_rx_queue_producers) + 2059 sizeof(struct eth_rx_prod_data) * req->rx_qid; 2060 } 2061 2062 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 2063 } 2064 2065 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn, 2066 struct qed_vf_info *p_vf, bool b_is_tx) 2067 { 2068 struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx; 2069 struct vfpf_qid_tlv *p_qid_tlv; 2070 2071 /* Search for the qid if the VF published its going to provide it */ 2072 if (!(p_vf->acquire.vfdev_info.capabilities & 2073 VFPF_ACQUIRE_CAP_QUEUE_QIDS)) { 2074 if (b_is_tx) 2075 return QED_IOV_LEGACY_QID_TX; 2076 else 2077 return QED_IOV_LEGACY_QID_RX; 2078 } 2079 2080 p_qid_tlv = (struct vfpf_qid_tlv *) 2081 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2082 CHANNEL_TLV_QID); 2083 if (!p_qid_tlv) { 2084 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2085 "VF[%2x]: Failed to provide qid\n", 2086 p_vf->relative_vf_id); 2087 2088 return QED_IOV_QID_INVALID; 2089 } 2090 2091 if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) { 2092 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2093 "VF[%02x]: Provided qid out-of-bounds %02x\n", 2094 p_vf->relative_vf_id, p_qid_tlv->qid); 2095 return QED_IOV_QID_INVALID; 2096 } 2097 2098 return p_qid_tlv->qid; 2099 } 2100 2101 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn, 2102 struct qed_ptt *p_ptt, 2103 struct qed_vf_info *vf) 2104 { 2105 struct qed_queue_start_common_params params; 2106 struct qed_queue_cid_vf_params vf_params; 2107 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2108 u8 status = PFVF_STATUS_NO_RESOURCE; 2109 u8 qid_usage_idx, vf_legacy = 0; 2110 struct vfpf_start_rxq_tlv *req; 2111 struct qed_vf_queue *p_queue; 2112 struct qed_queue_cid *p_cid; 2113 struct qed_sb_info sb_dummy; 2114 int rc; 2115 2116 req = &mbx->req_virt->start_rxq; 2117 2118 if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid, 2119 QED_IOV_VALIDATE_Q_DISABLE) || 2120 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2121 goto out; 2122 2123 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2124 if (qid_usage_idx == QED_IOV_QID_INVALID) 2125 goto out; 2126 2127 p_queue = &vf->vf_queues[req->rx_qid]; 2128 if (p_queue->cids[qid_usage_idx].p_cid) 2129 goto out; 2130 2131 vf_legacy = qed_vf_calculate_legacy(vf); 2132 2133 /* Acquire a new queue-cid */ 2134 memset(¶ms, 0, sizeof(params)); 2135 params.queue_id = p_queue->fw_rx_qid; 2136 params.vport_id = vf->vport_id; 2137 params.stats_id = vf->abs_vf_id + 0x10; 2138 /* Since IGU index is passed via sb_info, construct a dummy one */ 2139 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2140 sb_dummy.igu_sb_id = req->hw_sb; 2141 params.p_sb = &sb_dummy; 2142 params.sb_idx = req->sb_index; 2143 2144 memset(&vf_params, 0, sizeof(vf_params)); 2145 vf_params.vfid = vf->relative_vf_id; 2146 vf_params.vf_qid = (u8)req->rx_qid; 2147 vf_params.vf_legacy = vf_legacy; 2148 vf_params.qid_usage_idx = qid_usage_idx; 2149 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2150 ¶ms, true, &vf_params); 2151 if (!p_cid) 2152 goto out; 2153 2154 /* Legacy VFs have their Producers in a different location, which they 2155 * calculate on their own and clean the producer prior to this. 2156 */ 2157 if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD)) 2158 REG_WR(p_hwfn, 2159 GTT_BAR0_MAP_REG_MSDM_RAM + 2160 MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid), 2161 0); 2162 2163 rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid, 2164 req->bd_max_bytes, 2165 req->rxq_addr, 2166 req->cqe_pbl_addr, req->cqe_pbl_size); 2167 if (rc) { 2168 status = PFVF_STATUS_FAILURE; 2169 qed_eth_queue_cid_release(p_hwfn, p_cid); 2170 } else { 2171 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2172 p_queue->cids[qid_usage_idx].b_is_tx = false; 2173 status = PFVF_STATUS_SUCCESS; 2174 vf->num_active_rxqs++; 2175 } 2176 2177 out: 2178 qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status, 2179 !!(vf_legacy & 2180 QED_QCID_LEGACY_VF_RX_PROD)); 2181 } 2182 2183 static void 2184 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp, 2185 struct qed_tunnel_info *p_tun, 2186 u16 tunn_feature_mask) 2187 { 2188 p_resp->tunn_feature_mask = tunn_feature_mask; 2189 p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled; 2190 p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled; 2191 p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled; 2192 p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled; 2193 p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled; 2194 p_resp->vxlan_clss = p_tun->vxlan.tun_cls; 2195 p_resp->l2gre_clss = p_tun->l2_gre.tun_cls; 2196 p_resp->ipgre_clss = p_tun->ip_gre.tun_cls; 2197 p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls; 2198 p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls; 2199 p_resp->geneve_udp_port = p_tun->geneve_port.port; 2200 p_resp->vxlan_udp_port = p_tun->vxlan_port.port; 2201 } 2202 2203 static void 2204 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2205 struct qed_tunn_update_type *p_tun, 2206 enum qed_tunn_mode mask, u8 tun_cls) 2207 { 2208 if (p_req->tun_mode_update_mask & BIT(mask)) { 2209 p_tun->b_update_mode = true; 2210 2211 if (p_req->tunn_mode & BIT(mask)) 2212 p_tun->b_mode_enabled = true; 2213 } 2214 2215 p_tun->tun_cls = tun_cls; 2216 } 2217 2218 static void 2219 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req, 2220 struct qed_tunn_update_type *p_tun, 2221 struct qed_tunn_update_udp_port *p_port, 2222 enum qed_tunn_mode mask, 2223 u8 tun_cls, u8 update_port, u16 port) 2224 { 2225 if (update_port) { 2226 p_port->b_update_port = true; 2227 p_port->port = port; 2228 } 2229 2230 __qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls); 2231 } 2232 2233 static bool 2234 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req) 2235 { 2236 bool b_update_requested = false; 2237 2238 if (p_req->tun_mode_update_mask || p_req->update_tun_cls || 2239 p_req->update_geneve_port || p_req->update_vxlan_port) 2240 b_update_requested = true; 2241 2242 return b_update_requested; 2243 } 2244 2245 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc) 2246 { 2247 if (tun->b_update_mode && !tun->b_mode_enabled) { 2248 tun->b_update_mode = false; 2249 *rc = -EINVAL; 2250 } 2251 } 2252 2253 static int 2254 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn, 2255 u16 *tun_features, bool *update, 2256 struct qed_tunnel_info *tun_src) 2257 { 2258 struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth; 2259 struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel; 2260 u16 bultn_vxlan_port, bultn_geneve_port; 2261 void *cookie = p_hwfn->cdev->ops_cookie; 2262 int i, rc = 0; 2263 2264 *tun_features = p_hwfn->cdev->tunn_feature_mask; 2265 bultn_vxlan_port = tun->vxlan_port.port; 2266 bultn_geneve_port = tun->geneve_port.port; 2267 qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc); 2268 qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc); 2269 qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc); 2270 qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc); 2271 qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc); 2272 2273 if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) && 2274 (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2275 tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2276 tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2277 tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN || 2278 tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) { 2279 tun_src->b_update_rx_cls = false; 2280 tun_src->b_update_tx_cls = false; 2281 rc = -EINVAL; 2282 } 2283 2284 if (tun_src->vxlan_port.b_update_port) { 2285 if (tun_src->vxlan_port.port == tun->vxlan_port.port) { 2286 tun_src->vxlan_port.b_update_port = false; 2287 } else { 2288 *update = true; 2289 bultn_vxlan_port = tun_src->vxlan_port.port; 2290 } 2291 } 2292 2293 if (tun_src->geneve_port.b_update_port) { 2294 if (tun_src->geneve_port.port == tun->geneve_port.port) { 2295 tun_src->geneve_port.b_update_port = false; 2296 } else { 2297 *update = true; 2298 bultn_geneve_port = tun_src->geneve_port.port; 2299 } 2300 } 2301 2302 qed_for_each_vf(p_hwfn, i) { 2303 qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port, 2304 bultn_geneve_port); 2305 } 2306 2307 qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 2308 ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port); 2309 2310 return rc; 2311 } 2312 2313 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn, 2314 struct qed_ptt *p_ptt, 2315 struct qed_vf_info *p_vf) 2316 { 2317 struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel; 2318 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2319 struct pfvf_update_tunn_param_tlv *p_resp; 2320 struct vfpf_update_tunn_param_tlv *p_req; 2321 u8 status = PFVF_STATUS_SUCCESS; 2322 bool b_update_required = false; 2323 struct qed_tunnel_info tunn; 2324 u16 tunn_feature_mask = 0; 2325 int i, rc = 0; 2326 2327 mbx->offset = (u8 *)mbx->reply_virt; 2328 2329 memset(&tunn, 0, sizeof(tunn)); 2330 p_req = &mbx->req_virt->tunn_param_update; 2331 2332 if (!qed_iov_pf_validate_tunn_param(p_req)) { 2333 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2334 "No tunnel update requested by VF\n"); 2335 status = PFVF_STATUS_FAILURE; 2336 goto send_resp; 2337 } 2338 2339 tunn.b_update_rx_cls = p_req->update_tun_cls; 2340 tunn.b_update_tx_cls = p_req->update_tun_cls; 2341 2342 qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port, 2343 QED_MODE_VXLAN_TUNN, p_req->vxlan_clss, 2344 p_req->update_vxlan_port, 2345 p_req->vxlan_port); 2346 qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port, 2347 QED_MODE_L2GENEVE_TUNN, 2348 p_req->l2geneve_clss, 2349 p_req->update_geneve_port, 2350 p_req->geneve_port); 2351 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve, 2352 QED_MODE_IPGENEVE_TUNN, 2353 p_req->ipgeneve_clss); 2354 __qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre, 2355 QED_MODE_L2GRE_TUNN, p_req->l2gre_clss); 2356 __qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre, 2357 QED_MODE_IPGRE_TUNN, p_req->ipgre_clss); 2358 2359 /* If PF modifies VF's req then it should 2360 * still return an error in case of partial configuration 2361 * or modified configuration as opposed to requested one. 2362 */ 2363 rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask, 2364 &b_update_required, &tunn); 2365 2366 if (rc) 2367 status = PFVF_STATUS_FAILURE; 2368 2369 /* If QED client is willing to update anything ? */ 2370 if (b_update_required) { 2371 u16 geneve_port; 2372 2373 rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn, 2374 QED_SPQ_MODE_EBLOCK, NULL); 2375 if (rc) 2376 status = PFVF_STATUS_FAILURE; 2377 2378 geneve_port = p_tun->geneve_port.port; 2379 qed_for_each_vf(p_hwfn, i) { 2380 qed_iov_bulletin_set_udp_ports(p_hwfn, i, 2381 p_tun->vxlan_port.port, 2382 geneve_port); 2383 } 2384 } 2385 2386 send_resp: 2387 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, 2388 CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp)); 2389 2390 qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask); 2391 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2392 sizeof(struct channel_list_end_tlv)); 2393 2394 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 2395 } 2396 2397 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn, 2398 struct qed_ptt *p_ptt, 2399 struct qed_vf_info *p_vf, 2400 u32 cid, u8 status) 2401 { 2402 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 2403 struct pfvf_start_queue_resp_tlv *p_tlv; 2404 bool b_legacy = false; 2405 u16 length; 2406 2407 mbx->offset = (u8 *)mbx->reply_virt; 2408 2409 /* Taking a bigger struct instead of adding a TLV to list was a 2410 * mistake, but one which we're now stuck with, as some older 2411 * clients assume the size of the previous response. 2412 */ 2413 if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor == 2414 ETH_HSI_VER_NO_PKT_LEN_TUNN) 2415 b_legacy = true; 2416 2417 if (!b_legacy) 2418 length = sizeof(*p_tlv); 2419 else 2420 length = sizeof(struct pfvf_def_resp_tlv); 2421 2422 p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ, 2423 length); 2424 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 2425 sizeof(struct channel_list_end_tlv)); 2426 2427 /* Update the TLV with the response */ 2428 if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) 2429 p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY); 2430 2431 qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status); 2432 } 2433 2434 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn, 2435 struct qed_ptt *p_ptt, 2436 struct qed_vf_info *vf) 2437 { 2438 struct qed_queue_start_common_params params; 2439 struct qed_queue_cid_vf_params vf_params; 2440 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2441 u8 status = PFVF_STATUS_NO_RESOURCE; 2442 struct vfpf_start_txq_tlv *req; 2443 struct qed_vf_queue *p_queue; 2444 struct qed_queue_cid *p_cid; 2445 struct qed_sb_info sb_dummy; 2446 u8 qid_usage_idx, vf_legacy; 2447 u32 cid = 0; 2448 int rc; 2449 u16 pq; 2450 2451 memset(¶ms, 0, sizeof(params)); 2452 req = &mbx->req_virt->start_txq; 2453 2454 if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid, 2455 QED_IOV_VALIDATE_Q_NA) || 2456 !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb)) 2457 goto out; 2458 2459 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2460 if (qid_usage_idx == QED_IOV_QID_INVALID) 2461 goto out; 2462 2463 p_queue = &vf->vf_queues[req->tx_qid]; 2464 if (p_queue->cids[qid_usage_idx].p_cid) 2465 goto out; 2466 2467 vf_legacy = qed_vf_calculate_legacy(vf); 2468 2469 /* Acquire a new queue-cid */ 2470 params.queue_id = p_queue->fw_tx_qid; 2471 params.vport_id = vf->vport_id; 2472 params.stats_id = vf->abs_vf_id + 0x10; 2473 2474 /* Since IGU index is passed via sb_info, construct a dummy one */ 2475 memset(&sb_dummy, 0, sizeof(sb_dummy)); 2476 sb_dummy.igu_sb_id = req->hw_sb; 2477 params.p_sb = &sb_dummy; 2478 params.sb_idx = req->sb_index; 2479 2480 memset(&vf_params, 0, sizeof(vf_params)); 2481 vf_params.vfid = vf->relative_vf_id; 2482 vf_params.vf_qid = (u8)req->tx_qid; 2483 vf_params.vf_legacy = vf_legacy; 2484 vf_params.qid_usage_idx = qid_usage_idx; 2485 2486 p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid, 2487 ¶ms, false, &vf_params); 2488 if (!p_cid) 2489 goto out; 2490 2491 pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id); 2492 rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid, 2493 req->pbl_addr, req->pbl_size, pq); 2494 if (rc) { 2495 status = PFVF_STATUS_FAILURE; 2496 qed_eth_queue_cid_release(p_hwfn, p_cid); 2497 } else { 2498 status = PFVF_STATUS_SUCCESS; 2499 p_queue->cids[qid_usage_idx].p_cid = p_cid; 2500 p_queue->cids[qid_usage_idx].b_is_tx = true; 2501 cid = p_cid->cid; 2502 } 2503 2504 out: 2505 qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status); 2506 } 2507 2508 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn, 2509 struct qed_vf_info *vf, 2510 u16 rxq_id, 2511 u8 qid_usage_idx, bool cqe_completion) 2512 { 2513 struct qed_vf_queue *p_queue; 2514 int rc = 0; 2515 2516 if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) { 2517 DP_VERBOSE(p_hwfn, 2518 QED_MSG_IOV, 2519 "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n", 2520 vf->relative_vf_id, rxq_id, qid_usage_idx); 2521 return -EINVAL; 2522 } 2523 2524 p_queue = &vf->vf_queues[rxq_id]; 2525 2526 /* We've validated the index and the existence of the active RXQ - 2527 * now we need to make sure that it's using the correct qid. 2528 */ 2529 if (!p_queue->cids[qid_usage_idx].p_cid || 2530 p_queue->cids[qid_usage_idx].b_is_tx) { 2531 struct qed_queue_cid *p_cid; 2532 2533 p_cid = qed_iov_get_vf_rx_queue_cid(p_queue); 2534 DP_VERBOSE(p_hwfn, 2535 QED_MSG_IOV, 2536 "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n", 2537 vf->relative_vf_id, 2538 rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx); 2539 return -EINVAL; 2540 } 2541 2542 /* Now that we know we have a valid Rx-queue - close it */ 2543 rc = qed_eth_rx_queue_stop(p_hwfn, 2544 p_queue->cids[qid_usage_idx].p_cid, 2545 false, cqe_completion); 2546 if (rc) 2547 return rc; 2548 2549 p_queue->cids[qid_usage_idx].p_cid = NULL; 2550 vf->num_active_rxqs--; 2551 2552 return 0; 2553 } 2554 2555 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn, 2556 struct qed_vf_info *vf, 2557 u16 txq_id, u8 qid_usage_idx) 2558 { 2559 struct qed_vf_queue *p_queue; 2560 int rc = 0; 2561 2562 if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA)) 2563 return -EINVAL; 2564 2565 p_queue = &vf->vf_queues[txq_id]; 2566 if (!p_queue->cids[qid_usage_idx].p_cid || 2567 !p_queue->cids[qid_usage_idx].b_is_tx) 2568 return -EINVAL; 2569 2570 rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid); 2571 if (rc) 2572 return rc; 2573 2574 p_queue->cids[qid_usage_idx].p_cid = NULL; 2575 return 0; 2576 } 2577 2578 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn, 2579 struct qed_ptt *p_ptt, 2580 struct qed_vf_info *vf) 2581 { 2582 u16 length = sizeof(struct pfvf_def_resp_tlv); 2583 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2584 u8 status = PFVF_STATUS_FAILURE; 2585 struct vfpf_stop_rxqs_tlv *req; 2586 u8 qid_usage_idx; 2587 int rc; 2588 2589 /* There has never been an official driver that used this interface 2590 * for stopping multiple queues, and it is now considered deprecated. 2591 * Validate this isn't used here. 2592 */ 2593 req = &mbx->req_virt->stop_rxqs; 2594 if (req->num_rxqs != 1) { 2595 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2596 "Odd; VF[%d] tried stopping multiple Rx queues\n", 2597 vf->relative_vf_id); 2598 status = PFVF_STATUS_NOT_SUPPORTED; 2599 goto out; 2600 } 2601 2602 /* Find which qid-index is associated with the queue */ 2603 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2604 if (qid_usage_idx == QED_IOV_QID_INVALID) 2605 goto out; 2606 2607 rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid, 2608 qid_usage_idx, req->cqe_completion); 2609 if (!rc) 2610 status = PFVF_STATUS_SUCCESS; 2611 out: 2612 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS, 2613 length, status); 2614 } 2615 2616 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn, 2617 struct qed_ptt *p_ptt, 2618 struct qed_vf_info *vf) 2619 { 2620 u16 length = sizeof(struct pfvf_def_resp_tlv); 2621 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2622 u8 status = PFVF_STATUS_FAILURE; 2623 struct vfpf_stop_txqs_tlv *req; 2624 u8 qid_usage_idx; 2625 int rc; 2626 2627 /* There has never been an official driver that used this interface 2628 * for stopping multiple queues, and it is now considered deprecated. 2629 * Validate this isn't used here. 2630 */ 2631 req = &mbx->req_virt->stop_txqs; 2632 if (req->num_txqs != 1) { 2633 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2634 "Odd; VF[%d] tried stopping multiple Tx queues\n", 2635 vf->relative_vf_id); 2636 status = PFVF_STATUS_NOT_SUPPORTED; 2637 goto out; 2638 } 2639 2640 /* Find which qid-index is associated with the queue */ 2641 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true); 2642 if (qid_usage_idx == QED_IOV_QID_INVALID) 2643 goto out; 2644 2645 rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx); 2646 if (!rc) 2647 status = PFVF_STATUS_SUCCESS; 2648 2649 out: 2650 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS, 2651 length, status); 2652 } 2653 2654 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn, 2655 struct qed_ptt *p_ptt, 2656 struct qed_vf_info *vf) 2657 { 2658 struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF]; 2659 u16 length = sizeof(struct pfvf_def_resp_tlv); 2660 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 2661 struct vfpf_update_rxq_tlv *req; 2662 u8 status = PFVF_STATUS_FAILURE; 2663 u8 complete_event_flg; 2664 u8 complete_cqe_flg; 2665 u8 qid_usage_idx; 2666 int rc; 2667 u8 i; 2668 2669 req = &mbx->req_virt->update_rxq; 2670 complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG); 2671 complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG); 2672 2673 qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false); 2674 if (qid_usage_idx == QED_IOV_QID_INVALID) 2675 goto out; 2676 2677 /* There shouldn't exist a VF that uses queue-qids yet uses this 2678 * API with multiple Rx queues. Validate this. 2679 */ 2680 if ((vf->acquire.vfdev_info.capabilities & 2681 VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) { 2682 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2683 "VF[%d] supports QIDs but sends multiple queues\n", 2684 vf->relative_vf_id); 2685 goto out; 2686 } 2687 2688 /* Validate inputs - for the legacy case this is still true since 2689 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX. 2690 */ 2691 for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) { 2692 if (!qed_iov_validate_rxq(p_hwfn, vf, i, 2693 QED_IOV_VALIDATE_Q_NA) || 2694 !vf->vf_queues[i].cids[qid_usage_idx].p_cid || 2695 vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) { 2696 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2697 "VF[%d]: Incorrect Rxqs [%04x, %02x]\n", 2698 vf->relative_vf_id, req->rx_qid, 2699 req->num_rxqs); 2700 goto out; 2701 } 2702 } 2703 2704 /* Prepare the handlers */ 2705 for (i = 0; i < req->num_rxqs; i++) { 2706 u16 qid = req->rx_qid + i; 2707 2708 handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid; 2709 } 2710 2711 rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers, 2712 req->num_rxqs, 2713 complete_cqe_flg, 2714 complete_event_flg, 2715 QED_SPQ_MODE_EBLOCK, NULL); 2716 if (rc) 2717 goto out; 2718 2719 status = PFVF_STATUS_SUCCESS; 2720 out: 2721 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ, 2722 length, status); 2723 } 2724 2725 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn, 2726 void *p_tlvs_list, u16 req_type) 2727 { 2728 struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list; 2729 int len = 0; 2730 2731 do { 2732 if (!p_tlv->length) { 2733 DP_NOTICE(p_hwfn, "Zero length TLV found\n"); 2734 return NULL; 2735 } 2736 2737 if (p_tlv->type == req_type) { 2738 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2739 "Extended tlv type %d, length %d found\n", 2740 p_tlv->type, p_tlv->length); 2741 return p_tlv; 2742 } 2743 2744 len += p_tlv->length; 2745 p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length); 2746 2747 if ((len + p_tlv->length) > TLV_BUFFER_SIZE) { 2748 DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n"); 2749 return NULL; 2750 } 2751 } while (p_tlv->type != CHANNEL_TLV_LIST_END); 2752 2753 return NULL; 2754 } 2755 2756 static void 2757 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn, 2758 struct qed_sp_vport_update_params *p_data, 2759 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2760 { 2761 struct vfpf_vport_update_activate_tlv *p_act_tlv; 2762 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE; 2763 2764 p_act_tlv = (struct vfpf_vport_update_activate_tlv *) 2765 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2766 if (!p_act_tlv) 2767 return; 2768 2769 p_data->update_vport_active_rx_flg = p_act_tlv->update_rx; 2770 p_data->vport_active_rx_flg = p_act_tlv->active_rx; 2771 p_data->update_vport_active_tx_flg = p_act_tlv->update_tx; 2772 p_data->vport_active_tx_flg = p_act_tlv->active_tx; 2773 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE; 2774 } 2775 2776 static void 2777 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn, 2778 struct qed_sp_vport_update_params *p_data, 2779 struct qed_vf_info *p_vf, 2780 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2781 { 2782 struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv; 2783 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP; 2784 2785 p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *) 2786 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2787 if (!p_vlan_tlv) 2788 return; 2789 2790 p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan; 2791 2792 /* Ignore the VF request if we're forcing a vlan */ 2793 if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) { 2794 p_data->update_inner_vlan_removal_flg = 1; 2795 p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan; 2796 } 2797 2798 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP; 2799 } 2800 2801 static void 2802 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn, 2803 struct qed_sp_vport_update_params *p_data, 2804 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2805 { 2806 struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv; 2807 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH; 2808 2809 p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *) 2810 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2811 tlv); 2812 if (!p_tx_switch_tlv) 2813 return; 2814 2815 p_data->update_tx_switching_flg = 1; 2816 p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching; 2817 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH; 2818 } 2819 2820 static void 2821 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn, 2822 struct qed_sp_vport_update_params *p_data, 2823 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2824 { 2825 struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv; 2826 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST; 2827 2828 p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *) 2829 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2830 if (!p_mcast_tlv) 2831 return; 2832 2833 p_data->update_approx_mcast_flg = 1; 2834 memcpy(p_data->bins, p_mcast_tlv->bins, 2835 sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS); 2836 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST; 2837 } 2838 2839 static void 2840 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn, 2841 struct qed_sp_vport_update_params *p_data, 2842 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2843 { 2844 struct qed_filter_accept_flags *p_flags = &p_data->accept_flags; 2845 struct vfpf_vport_update_accept_param_tlv *p_accept_tlv; 2846 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM; 2847 2848 p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *) 2849 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2850 if (!p_accept_tlv) 2851 return; 2852 2853 p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode; 2854 p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter; 2855 p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode; 2856 p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter; 2857 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM; 2858 } 2859 2860 static void 2861 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn, 2862 struct qed_sp_vport_update_params *p_data, 2863 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2864 { 2865 struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan; 2866 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN; 2867 2868 p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *) 2869 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, 2870 tlv); 2871 if (!p_accept_any_vlan) 2872 return; 2873 2874 p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan; 2875 p_data->update_accept_any_vlan_flg = 2876 p_accept_any_vlan->update_accept_any_vlan_flg; 2877 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN; 2878 } 2879 2880 static void 2881 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn, 2882 struct qed_vf_info *vf, 2883 struct qed_sp_vport_update_params *p_data, 2884 struct qed_rss_params *p_rss, 2885 struct qed_iov_vf_mbx *p_mbx, 2886 u16 *tlvs_mask, u16 *tlvs_accepted) 2887 { 2888 struct vfpf_vport_update_rss_tlv *p_rss_tlv; 2889 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS; 2890 bool b_reject = false; 2891 u16 table_size; 2892 u16 i, q_idx; 2893 2894 p_rss_tlv = (struct vfpf_vport_update_rss_tlv *) 2895 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2896 if (!p_rss_tlv) { 2897 p_data->rss_params = NULL; 2898 return; 2899 } 2900 2901 memset(p_rss, 0, sizeof(struct qed_rss_params)); 2902 2903 p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags & 2904 VFPF_UPDATE_RSS_CONFIG_FLAG); 2905 p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags & 2906 VFPF_UPDATE_RSS_CAPS_FLAG); 2907 p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags & 2908 VFPF_UPDATE_RSS_IND_TABLE_FLAG); 2909 p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags & 2910 VFPF_UPDATE_RSS_KEY_FLAG); 2911 2912 p_rss->rss_enable = p_rss_tlv->rss_enable; 2913 p_rss->rss_eng_id = vf->relative_vf_id + 1; 2914 p_rss->rss_caps = p_rss_tlv->rss_caps; 2915 p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log; 2916 memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key)); 2917 2918 table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table), 2919 (1 << p_rss_tlv->rss_table_size_log)); 2920 2921 for (i = 0; i < table_size; i++) { 2922 struct qed_queue_cid *p_cid; 2923 2924 q_idx = p_rss_tlv->rss_ind_table[i]; 2925 if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx, 2926 QED_IOV_VALIDATE_Q_ENABLE)) { 2927 DP_VERBOSE(p_hwfn, 2928 QED_MSG_IOV, 2929 "VF[%d]: Omitting RSS due to wrong queue %04x\n", 2930 vf->relative_vf_id, q_idx); 2931 b_reject = true; 2932 goto out; 2933 } 2934 2935 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]); 2936 p_rss->rss_ind_table[i] = p_cid; 2937 } 2938 2939 p_data->rss_params = p_rss; 2940 out: 2941 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS; 2942 if (!b_reject) 2943 *tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS; 2944 } 2945 2946 static void 2947 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn, 2948 struct qed_vf_info *vf, 2949 struct qed_sp_vport_update_params *p_data, 2950 struct qed_sge_tpa_params *p_sge_tpa, 2951 struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask) 2952 { 2953 struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv; 2954 u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA; 2955 2956 p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *) 2957 qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv); 2958 2959 if (!p_sge_tpa_tlv) { 2960 p_data->sge_tpa_params = NULL; 2961 return; 2962 } 2963 2964 memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params)); 2965 2966 p_sge_tpa->update_tpa_en_flg = 2967 !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG); 2968 p_sge_tpa->update_tpa_param_flg = 2969 !!(p_sge_tpa_tlv->update_sge_tpa_flags & 2970 VFPF_UPDATE_TPA_PARAM_FLAG); 2971 2972 p_sge_tpa->tpa_ipv4_en_flg = 2973 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG); 2974 p_sge_tpa->tpa_ipv6_en_flg = 2975 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG); 2976 p_sge_tpa->tpa_pkt_split_flg = 2977 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG); 2978 p_sge_tpa->tpa_hdr_data_split_flg = 2979 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG); 2980 p_sge_tpa->tpa_gro_consistent_flg = 2981 !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG); 2982 2983 p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num; 2984 p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size; 2985 p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start; 2986 p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont; 2987 p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe; 2988 2989 p_data->sge_tpa_params = p_sge_tpa; 2990 2991 *tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA; 2992 } 2993 2994 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn, 2995 u8 vfid, 2996 struct qed_sp_vport_update_params *params, 2997 u16 *tlvs) 2998 { 2999 u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 3000 struct qed_filter_accept_flags *flags = ¶ms->accept_flags; 3001 struct qed_public_vf_info *vf_info; 3002 3003 /* Untrusted VFs can't even be trusted to know that fact. 3004 * Simply indicate everything is configured fine, and trace 3005 * configuration 'behind their back'. 3006 */ 3007 if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM))) 3008 return 0; 3009 3010 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 3011 3012 if (flags->update_rx_mode_config) { 3013 vf_info->rx_accept_mode = flags->rx_accept_filter; 3014 if (!vf_info->is_trusted_configured) 3015 flags->rx_accept_filter &= ~mask; 3016 } 3017 3018 if (flags->update_tx_mode_config) { 3019 vf_info->tx_accept_mode = flags->tx_accept_filter; 3020 if (!vf_info->is_trusted_configured) 3021 flags->tx_accept_filter &= ~mask; 3022 } 3023 3024 return 0; 3025 } 3026 3027 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn, 3028 struct qed_ptt *p_ptt, 3029 struct qed_vf_info *vf) 3030 { 3031 struct qed_rss_params *p_rss_params = NULL; 3032 struct qed_sp_vport_update_params params; 3033 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3034 struct qed_sge_tpa_params sge_tpa_params; 3035 u16 tlvs_mask = 0, tlvs_accepted = 0; 3036 u8 status = PFVF_STATUS_SUCCESS; 3037 u16 length; 3038 int rc; 3039 3040 /* Valiate PF can send such a request */ 3041 if (!vf->vport_instance) { 3042 DP_VERBOSE(p_hwfn, 3043 QED_MSG_IOV, 3044 "No VPORT instance available for VF[%d], failing vport update\n", 3045 vf->abs_vf_id); 3046 status = PFVF_STATUS_FAILURE; 3047 goto out; 3048 } 3049 p_rss_params = vzalloc(sizeof(*p_rss_params)); 3050 if (p_rss_params == NULL) { 3051 status = PFVF_STATUS_FAILURE; 3052 goto out; 3053 } 3054 3055 memset(¶ms, 0, sizeof(params)); 3056 params.opaque_fid = vf->opaque_fid; 3057 params.vport_id = vf->vport_id; 3058 params.rss_params = NULL; 3059 3060 /* Search for extended tlvs list and update values 3061 * from VF in struct qed_sp_vport_update_params. 3062 */ 3063 qed_iov_vp_update_act_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3064 qed_iov_vp_update_vlan_param(p_hwfn, ¶ms, vf, mbx, &tlvs_mask); 3065 qed_iov_vp_update_tx_switch(p_hwfn, ¶ms, mbx, &tlvs_mask); 3066 qed_iov_vp_update_mcast_bin_param(p_hwfn, ¶ms, mbx, &tlvs_mask); 3067 qed_iov_vp_update_accept_flag(p_hwfn, ¶ms, mbx, &tlvs_mask); 3068 qed_iov_vp_update_accept_any_vlan(p_hwfn, ¶ms, mbx, &tlvs_mask); 3069 qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, ¶ms, 3070 &sge_tpa_params, mbx, &tlvs_mask); 3071 3072 tlvs_accepted = tlvs_mask; 3073 3074 /* Some of the extended TLVs need to be validated first; In that case, 3075 * they can update the mask without updating the accepted [so that 3076 * PF could communicate to VF it has rejected request]. 3077 */ 3078 qed_iov_vp_update_rss_param(p_hwfn, vf, ¶ms, p_rss_params, 3079 mbx, &tlvs_mask, &tlvs_accepted); 3080 3081 if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id, 3082 ¶ms, &tlvs_accepted)) { 3083 tlvs_accepted = 0; 3084 status = PFVF_STATUS_NOT_SUPPORTED; 3085 goto out; 3086 } 3087 3088 if (!tlvs_accepted) { 3089 if (tlvs_mask) 3090 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3091 "Upper-layer prevents VF vport configuration\n"); 3092 else 3093 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3094 "No feature tlvs found for vport update\n"); 3095 status = PFVF_STATUS_NOT_SUPPORTED; 3096 goto out; 3097 } 3098 3099 rc = qed_sp_vport_update(p_hwfn, ¶ms, QED_SPQ_MODE_EBLOCK, NULL); 3100 3101 if (rc) 3102 status = PFVF_STATUS_FAILURE; 3103 3104 out: 3105 vfree(p_rss_params); 3106 length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status, 3107 tlvs_mask, tlvs_accepted); 3108 qed_iov_send_response(p_hwfn, p_ptt, vf, length, status); 3109 } 3110 3111 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn, 3112 struct qed_vf_info *p_vf, 3113 struct qed_filter_ucast *p_params) 3114 { 3115 int i; 3116 3117 /* First remove entries and then add new ones */ 3118 if (p_params->opcode == QED_FILTER_REMOVE) { 3119 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3120 if (p_vf->shadow_config.vlans[i].used && 3121 p_vf->shadow_config.vlans[i].vid == 3122 p_params->vlan) { 3123 p_vf->shadow_config.vlans[i].used = false; 3124 break; 3125 } 3126 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3127 DP_VERBOSE(p_hwfn, 3128 QED_MSG_IOV, 3129 "VF [%d] - Tries to remove a non-existing vlan\n", 3130 p_vf->relative_vf_id); 3131 return -EINVAL; 3132 } 3133 } else if (p_params->opcode == QED_FILTER_REPLACE || 3134 p_params->opcode == QED_FILTER_FLUSH) { 3135 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) 3136 p_vf->shadow_config.vlans[i].used = false; 3137 } 3138 3139 /* In forced mode, we're willing to remove entries - but we don't add 3140 * new ones. 3141 */ 3142 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)) 3143 return 0; 3144 3145 if (p_params->opcode == QED_FILTER_ADD || 3146 p_params->opcode == QED_FILTER_REPLACE) { 3147 for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) { 3148 if (p_vf->shadow_config.vlans[i].used) 3149 continue; 3150 3151 p_vf->shadow_config.vlans[i].used = true; 3152 p_vf->shadow_config.vlans[i].vid = p_params->vlan; 3153 break; 3154 } 3155 3156 if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) { 3157 DP_VERBOSE(p_hwfn, 3158 QED_MSG_IOV, 3159 "VF [%d] - Tries to configure more than %d vlan filters\n", 3160 p_vf->relative_vf_id, 3161 QED_ETH_VF_NUM_VLAN_FILTERS + 1); 3162 return -EINVAL; 3163 } 3164 } 3165 3166 return 0; 3167 } 3168 3169 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn, 3170 struct qed_vf_info *p_vf, 3171 struct qed_filter_ucast *p_params) 3172 { 3173 int i; 3174 3175 /* If we're in forced-mode, we don't allow any change */ 3176 if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) 3177 return 0; 3178 3179 /* Don't keep track of shadow copy since we don't intend to restore. */ 3180 if (p_vf->p_vf_info.is_trusted_configured) 3181 return 0; 3182 3183 /* First remove entries and then add new ones */ 3184 if (p_params->opcode == QED_FILTER_REMOVE) { 3185 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3186 if (ether_addr_equal(p_vf->shadow_config.macs[i], 3187 p_params->mac)) { 3188 eth_zero_addr(p_vf->shadow_config.macs[i]); 3189 break; 3190 } 3191 } 3192 3193 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3194 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3195 "MAC isn't configured\n"); 3196 return -EINVAL; 3197 } 3198 } else if (p_params->opcode == QED_FILTER_REPLACE || 3199 p_params->opcode == QED_FILTER_FLUSH) { 3200 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) 3201 eth_zero_addr(p_vf->shadow_config.macs[i]); 3202 } 3203 3204 /* List the new MAC address */ 3205 if (p_params->opcode != QED_FILTER_ADD && 3206 p_params->opcode != QED_FILTER_REPLACE) 3207 return 0; 3208 3209 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 3210 if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) { 3211 ether_addr_copy(p_vf->shadow_config.macs[i], 3212 p_params->mac); 3213 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3214 "Added MAC at %d entry in shadow\n", i); 3215 break; 3216 } 3217 } 3218 3219 if (i == QED_ETH_VF_NUM_MAC_FILTERS) { 3220 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n"); 3221 return -EINVAL; 3222 } 3223 3224 return 0; 3225 } 3226 3227 static int 3228 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn, 3229 struct qed_vf_info *p_vf, 3230 struct qed_filter_ucast *p_params) 3231 { 3232 int rc = 0; 3233 3234 if (p_params->type == QED_FILTER_MAC) { 3235 rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params); 3236 if (rc) 3237 return rc; 3238 } 3239 3240 if (p_params->type == QED_FILTER_VLAN) 3241 rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params); 3242 3243 return rc; 3244 } 3245 3246 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn, 3247 int vfid, struct qed_filter_ucast *params) 3248 { 3249 struct qed_public_vf_info *vf; 3250 3251 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 3252 if (!vf) 3253 return -EINVAL; 3254 3255 /* No real decision to make; Store the configured MAC */ 3256 if (params->type == QED_FILTER_MAC || 3257 params->type == QED_FILTER_MAC_VLAN) { 3258 ether_addr_copy(vf->mac, params->mac); 3259 3260 if (vf->is_trusted_configured) { 3261 qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid); 3262 3263 /* Update and post bulleitin again */ 3264 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 3265 } 3266 } 3267 3268 return 0; 3269 } 3270 3271 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn, 3272 struct qed_ptt *p_ptt, 3273 struct qed_vf_info *vf) 3274 { 3275 struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt; 3276 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3277 struct vfpf_ucast_filter_tlv *req; 3278 u8 status = PFVF_STATUS_SUCCESS; 3279 struct qed_filter_ucast params; 3280 int rc; 3281 3282 /* Prepare the unicast filter params */ 3283 memset(¶ms, 0, sizeof(struct qed_filter_ucast)); 3284 req = &mbx->req_virt->ucast_filter; 3285 params.opcode = (enum qed_filter_opcode)req->opcode; 3286 params.type = (enum qed_filter_ucast_type)req->type; 3287 3288 params.is_rx_filter = 1; 3289 params.is_tx_filter = 1; 3290 params.vport_to_remove_from = vf->vport_id; 3291 params.vport_to_add_to = vf->vport_id; 3292 memcpy(params.mac, req->mac, ETH_ALEN); 3293 params.vlan = req->vlan; 3294 3295 DP_VERBOSE(p_hwfn, 3296 QED_MSG_IOV, 3297 "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n", 3298 vf->abs_vf_id, params.opcode, params.type, 3299 params.is_rx_filter ? "RX" : "", 3300 params.is_tx_filter ? "TX" : "", 3301 params.vport_to_add_to, 3302 params.mac[0], params.mac[1], 3303 params.mac[2], params.mac[3], 3304 params.mac[4], params.mac[5], params.vlan); 3305 3306 if (!vf->vport_instance) { 3307 DP_VERBOSE(p_hwfn, 3308 QED_MSG_IOV, 3309 "No VPORT instance available for VF[%d], failing ucast MAC configuration\n", 3310 vf->abs_vf_id); 3311 status = PFVF_STATUS_FAILURE; 3312 goto out; 3313 } 3314 3315 /* Update shadow copy of the VF configuration */ 3316 if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, ¶ms)) { 3317 status = PFVF_STATUS_FAILURE; 3318 goto out; 3319 } 3320 3321 /* Determine if the unicast filtering is acceptible by PF */ 3322 if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) && 3323 (params.type == QED_FILTER_VLAN || 3324 params.type == QED_FILTER_MAC_VLAN)) { 3325 /* Once VLAN is forced or PVID is set, do not allow 3326 * to add/replace any further VLANs. 3327 */ 3328 if (params.opcode == QED_FILTER_ADD || 3329 params.opcode == QED_FILTER_REPLACE) 3330 status = PFVF_STATUS_FORCED; 3331 goto out; 3332 } 3333 3334 if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) && 3335 (params.type == QED_FILTER_MAC || 3336 params.type == QED_FILTER_MAC_VLAN)) { 3337 if (!ether_addr_equal(p_bulletin->mac, params.mac) || 3338 (params.opcode != QED_FILTER_ADD && 3339 params.opcode != QED_FILTER_REPLACE)) 3340 status = PFVF_STATUS_FORCED; 3341 goto out; 3342 } 3343 3344 rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, ¶ms); 3345 if (rc) { 3346 status = PFVF_STATUS_FAILURE; 3347 goto out; 3348 } 3349 3350 rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, ¶ms, 3351 QED_SPQ_MODE_CB, NULL); 3352 if (rc) 3353 status = PFVF_STATUS_FAILURE; 3354 3355 out: 3356 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER, 3357 sizeof(struct pfvf_def_resp_tlv), status); 3358 } 3359 3360 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn, 3361 struct qed_ptt *p_ptt, 3362 struct qed_vf_info *vf) 3363 { 3364 int i; 3365 3366 /* Reset the SBs */ 3367 for (i = 0; i < vf->num_sbs; i++) 3368 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 3369 vf->igu_sbs[i], 3370 vf->opaque_fid, false); 3371 3372 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP, 3373 sizeof(struct pfvf_def_resp_tlv), 3374 PFVF_STATUS_SUCCESS); 3375 } 3376 3377 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn, 3378 struct qed_ptt *p_ptt, struct qed_vf_info *vf) 3379 { 3380 u16 length = sizeof(struct pfvf_def_resp_tlv); 3381 u8 status = PFVF_STATUS_SUCCESS; 3382 3383 /* Disable Interrupts for VF */ 3384 qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0); 3385 3386 /* Reset Permission table */ 3387 qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0); 3388 3389 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE, 3390 length, status); 3391 } 3392 3393 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn, 3394 struct qed_ptt *p_ptt, 3395 struct qed_vf_info *p_vf) 3396 { 3397 u16 length = sizeof(struct pfvf_def_resp_tlv); 3398 u8 status = PFVF_STATUS_SUCCESS; 3399 int rc = 0; 3400 3401 qed_iov_vf_cleanup(p_hwfn, p_vf); 3402 3403 if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) { 3404 /* Stopping the VF */ 3405 rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid, 3406 p_vf->opaque_fid); 3407 3408 if (rc) { 3409 DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n", 3410 rc); 3411 status = PFVF_STATUS_FAILURE; 3412 } 3413 3414 p_vf->state = VF_STOPPED; 3415 } 3416 3417 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE, 3418 length, status); 3419 } 3420 3421 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn, 3422 struct qed_ptt *p_ptt, 3423 struct qed_vf_info *p_vf) 3424 { 3425 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3426 struct pfvf_read_coal_resp_tlv *p_resp; 3427 struct vfpf_read_coal_req_tlv *req; 3428 u8 status = PFVF_STATUS_FAILURE; 3429 struct qed_vf_queue *p_queue; 3430 struct qed_queue_cid *p_cid; 3431 u16 coal = 0, qid, i; 3432 bool b_is_rx; 3433 int rc = 0; 3434 3435 mbx->offset = (u8 *)mbx->reply_virt; 3436 req = &mbx->req_virt->read_coal_req; 3437 3438 qid = req->qid; 3439 b_is_rx = req->is_rx ? true : false; 3440 3441 if (b_is_rx) { 3442 if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid, 3443 QED_IOV_VALIDATE_Q_ENABLE)) { 3444 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3445 "VF[%d]: Invalid Rx queue_id = %d\n", 3446 p_vf->abs_vf_id, qid); 3447 goto send_resp; 3448 } 3449 3450 p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]); 3451 rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3452 if (rc) 3453 goto send_resp; 3454 } else { 3455 if (!qed_iov_validate_txq(p_hwfn, p_vf, qid, 3456 QED_IOV_VALIDATE_Q_ENABLE)) { 3457 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3458 "VF[%d]: Invalid Tx queue_id = %d\n", 3459 p_vf->abs_vf_id, qid); 3460 goto send_resp; 3461 } 3462 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3463 p_queue = &p_vf->vf_queues[qid]; 3464 if ((!p_queue->cids[i].p_cid) || 3465 (!p_queue->cids[i].b_is_tx)) 3466 continue; 3467 3468 p_cid = p_queue->cids[i].p_cid; 3469 3470 rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal); 3471 if (rc) 3472 goto send_resp; 3473 break; 3474 } 3475 } 3476 3477 status = PFVF_STATUS_SUCCESS; 3478 3479 send_resp: 3480 p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ, 3481 sizeof(*p_resp)); 3482 p_resp->coal = coal; 3483 3484 qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END, 3485 sizeof(struct channel_list_end_tlv)); 3486 3487 qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status); 3488 } 3489 3490 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn, 3491 struct qed_ptt *p_ptt, 3492 struct qed_vf_info *vf) 3493 { 3494 struct qed_iov_vf_mbx *mbx = &vf->vf_mbx; 3495 struct vfpf_update_coalesce *req; 3496 u8 status = PFVF_STATUS_FAILURE; 3497 struct qed_queue_cid *p_cid; 3498 u16 rx_coal, tx_coal; 3499 int rc = 0, i; 3500 u16 qid; 3501 3502 req = &mbx->req_virt->update_coalesce; 3503 3504 rx_coal = req->rx_coal; 3505 tx_coal = req->tx_coal; 3506 qid = req->qid; 3507 3508 if (!qed_iov_validate_rxq(p_hwfn, vf, qid, 3509 QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) { 3510 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3511 "VF[%d]: Invalid Rx queue_id = %d\n", 3512 vf->abs_vf_id, qid); 3513 goto out; 3514 } 3515 3516 if (!qed_iov_validate_txq(p_hwfn, vf, qid, 3517 QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) { 3518 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3519 "VF[%d]: Invalid Tx queue_id = %d\n", 3520 vf->abs_vf_id, qid); 3521 goto out; 3522 } 3523 3524 DP_VERBOSE(p_hwfn, 3525 QED_MSG_IOV, 3526 "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n", 3527 vf->abs_vf_id, rx_coal, tx_coal, qid); 3528 3529 if (rx_coal) { 3530 p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]); 3531 3532 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); 3533 if (rc) { 3534 DP_VERBOSE(p_hwfn, 3535 QED_MSG_IOV, 3536 "VF[%d]: Unable to set rx queue = %d coalesce\n", 3537 vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid); 3538 goto out; 3539 } 3540 vf->rx_coal = rx_coal; 3541 } 3542 3543 if (tx_coal) { 3544 struct qed_vf_queue *p_queue = &vf->vf_queues[qid]; 3545 3546 for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) { 3547 if (!p_queue->cids[i].p_cid) 3548 continue; 3549 3550 if (!p_queue->cids[i].b_is_tx) 3551 continue; 3552 3553 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, 3554 p_queue->cids[i].p_cid); 3555 3556 if (rc) { 3557 DP_VERBOSE(p_hwfn, 3558 QED_MSG_IOV, 3559 "VF[%d]: Unable to set tx queue coalesce\n", 3560 vf->abs_vf_id); 3561 goto out; 3562 } 3563 } 3564 vf->tx_coal = tx_coal; 3565 } 3566 3567 status = PFVF_STATUS_SUCCESS; 3568 out: 3569 qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE, 3570 sizeof(struct pfvf_def_resp_tlv), status); 3571 } 3572 static int 3573 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn, 3574 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3575 { 3576 int cnt; 3577 u32 val; 3578 3579 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid); 3580 3581 for (cnt = 0; cnt < 50; cnt++) { 3582 val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT); 3583 if (!val) 3584 break; 3585 msleep(20); 3586 } 3587 qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid); 3588 3589 if (cnt == 50) { 3590 DP_ERR(p_hwfn, 3591 "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n", 3592 p_vf->abs_vf_id, val); 3593 return -EBUSY; 3594 } 3595 3596 return 0; 3597 } 3598 3599 static int 3600 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn, 3601 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3602 { 3603 u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4]; 3604 int i, cnt; 3605 3606 /* Read initial consumers & producers */ 3607 for (i = 0; i < MAX_NUM_VOQS_E4; i++) { 3608 u32 prod; 3609 3610 cons[i] = qed_rd(p_hwfn, p_ptt, 3611 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3612 i * 0x40); 3613 prod = qed_rd(p_hwfn, p_ptt, 3614 PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 + 3615 i * 0x40); 3616 distance[i] = prod - cons[i]; 3617 } 3618 3619 /* Wait for consumers to pass the producers */ 3620 i = 0; 3621 for (cnt = 0; cnt < 50; cnt++) { 3622 for (; i < MAX_NUM_VOQS_E4; i++) { 3623 u32 tmp; 3624 3625 tmp = qed_rd(p_hwfn, p_ptt, 3626 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 + 3627 i * 0x40); 3628 if (distance[i] > tmp - cons[i]) 3629 break; 3630 } 3631 3632 if (i == MAX_NUM_VOQS_E4) 3633 break; 3634 3635 msleep(20); 3636 } 3637 3638 if (cnt == 50) { 3639 DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n", 3640 p_vf->abs_vf_id, i); 3641 return -EBUSY; 3642 } 3643 3644 return 0; 3645 } 3646 3647 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn, 3648 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt) 3649 { 3650 int rc; 3651 3652 rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt); 3653 if (rc) 3654 return rc; 3655 3656 rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt); 3657 if (rc) 3658 return rc; 3659 3660 return 0; 3661 } 3662 3663 static int 3664 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn, 3665 struct qed_ptt *p_ptt, 3666 u16 rel_vf_id, u32 *ack_vfs) 3667 { 3668 struct qed_vf_info *p_vf; 3669 int rc = 0; 3670 3671 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false); 3672 if (!p_vf) 3673 return 0; 3674 3675 if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] & 3676 (1ULL << (rel_vf_id % 64))) { 3677 u16 vfid = p_vf->abs_vf_id; 3678 3679 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3680 "VF[%d] - Handling FLR\n", vfid); 3681 3682 qed_iov_vf_cleanup(p_hwfn, p_vf); 3683 3684 /* If VF isn't active, no need for anything but SW */ 3685 if (!p_vf->b_init) 3686 goto cleanup; 3687 3688 rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt); 3689 if (rc) 3690 goto cleanup; 3691 3692 rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true); 3693 if (rc) { 3694 DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid); 3695 return rc; 3696 } 3697 3698 /* Workaround to make VF-PF channel ready, as FW 3699 * doesn't do that as a part of FLR. 3700 */ 3701 REG_WR(p_hwfn, 3702 GTT_BAR0_MAP_REG_USDM_RAM + 3703 USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1); 3704 3705 /* VF_STOPPED has to be set only after final cleanup 3706 * but prior to re-enabling the VF. 3707 */ 3708 p_vf->state = VF_STOPPED; 3709 3710 rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf); 3711 if (rc) { 3712 DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n", 3713 vfid); 3714 return rc; 3715 } 3716 cleanup: 3717 /* Mark VF for ack and clean pending state */ 3718 if (p_vf->state == VF_RESET) 3719 p_vf->state = VF_STOPPED; 3720 ack_vfs[vfid / 32] |= BIT((vfid % 32)); 3721 p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &= 3722 ~(1ULL << (rel_vf_id % 64)); 3723 p_vf->vf_mbx.b_pending_msg = false; 3724 } 3725 3726 return rc; 3727 } 3728 3729 static int 3730 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3731 { 3732 u32 ack_vfs[VF_MAX_STATIC / 32]; 3733 int rc = 0; 3734 u16 i; 3735 3736 memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32)); 3737 3738 /* Since BRB <-> PRS interface can't be tested as part of the flr 3739 * polling due to HW limitations, simply sleep a bit. And since 3740 * there's no need to wait per-vf, do it before looping. 3741 */ 3742 msleep(100); 3743 3744 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) 3745 qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs); 3746 3747 rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs); 3748 return rc; 3749 } 3750 3751 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs) 3752 { 3753 bool found = false; 3754 u16 i; 3755 3756 DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n"); 3757 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 3758 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3759 "[%08x,...,%08x]: %08x\n", 3760 i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]); 3761 3762 if (!p_hwfn->cdev->p_iov_info) { 3763 DP_NOTICE(p_hwfn, "VF flr but no IOV\n"); 3764 return false; 3765 } 3766 3767 /* Mark VFs */ 3768 for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) { 3769 struct qed_vf_info *p_vf; 3770 u8 vfid; 3771 3772 p_vf = qed_iov_get_vf_info(p_hwfn, i, false); 3773 if (!p_vf) 3774 continue; 3775 3776 vfid = p_vf->abs_vf_id; 3777 if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) { 3778 u64 *p_flr = p_hwfn->pf_iov_info->pending_flr; 3779 u16 rel_vf_id = p_vf->relative_vf_id; 3780 3781 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3782 "VF[%d] [rel %d] got FLR-ed\n", 3783 vfid, rel_vf_id); 3784 3785 p_vf->state = VF_RESET; 3786 3787 /* No need to lock here, since pending_flr should 3788 * only change here and before ACKing MFw. Since 3789 * MFW will not trigger an additional attention for 3790 * VF flr until ACKs, we're safe. 3791 */ 3792 p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64); 3793 found = true; 3794 } 3795 } 3796 3797 return found; 3798 } 3799 3800 static void qed_iov_get_link(struct qed_hwfn *p_hwfn, 3801 u16 vfid, 3802 struct qed_mcp_link_params *p_params, 3803 struct qed_mcp_link_state *p_link, 3804 struct qed_mcp_link_capabilities *p_caps) 3805 { 3806 struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn, 3807 vfid, 3808 false); 3809 struct qed_bulletin_content *p_bulletin; 3810 3811 if (!p_vf) 3812 return; 3813 3814 p_bulletin = p_vf->bulletin.p_virt; 3815 3816 if (p_params) 3817 __qed_vf_get_link_params(p_hwfn, p_params, p_bulletin); 3818 if (p_link) 3819 __qed_vf_get_link_state(p_hwfn, p_link, p_bulletin); 3820 if (p_caps) 3821 __qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin); 3822 } 3823 3824 static int 3825 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn, 3826 struct qed_ptt *p_ptt, 3827 struct qed_vf_info *p_vf) 3828 { 3829 struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt; 3830 struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx; 3831 struct vfpf_bulletin_update_mac_tlv *p_req; 3832 u8 status = PFVF_STATUS_SUCCESS; 3833 int rc = 0; 3834 3835 if (!p_vf->p_vf_info.is_trusted_configured) { 3836 DP_VERBOSE(p_hwfn, 3837 QED_MSG_IOV, 3838 "Blocking bulletin update request from untrusted VF[%d]\n", 3839 p_vf->abs_vf_id); 3840 status = PFVF_STATUS_NOT_SUPPORTED; 3841 rc = -EINVAL; 3842 goto send_status; 3843 } 3844 3845 p_req = &mbx->req_virt->bulletin_update_mac; 3846 ether_addr_copy(p_bulletin->mac, p_req->mac); 3847 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3848 "Updated bulletin of VF[%d] with requested MAC[%pM]\n", 3849 p_vf->abs_vf_id, p_req->mac); 3850 3851 send_status: 3852 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3853 CHANNEL_TLV_BULLETIN_UPDATE_MAC, 3854 sizeof(struct pfvf_def_resp_tlv), status); 3855 return rc; 3856 } 3857 3858 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn, 3859 struct qed_ptt *p_ptt, int vfid) 3860 { 3861 struct qed_iov_vf_mbx *mbx; 3862 struct qed_vf_info *p_vf; 3863 3864 p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 3865 if (!p_vf) 3866 return; 3867 3868 mbx = &p_vf->vf_mbx; 3869 3870 /* qed_iov_process_mbx_request */ 3871 if (!mbx->b_pending_msg) { 3872 DP_NOTICE(p_hwfn, 3873 "VF[%02x]: Trying to process mailbox message when none is pending\n", 3874 p_vf->abs_vf_id); 3875 return; 3876 } 3877 mbx->b_pending_msg = false; 3878 3879 mbx->first_tlv = mbx->req_virt->first_tlv; 3880 3881 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3882 "VF[%02x]: Processing mailbox message [type %04x]\n", 3883 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3884 3885 /* check if tlv type is known */ 3886 if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) && 3887 !p_vf->b_malicious) { 3888 switch (mbx->first_tlv.tl.type) { 3889 case CHANNEL_TLV_ACQUIRE: 3890 qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf); 3891 break; 3892 case CHANNEL_TLV_VPORT_START: 3893 qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf); 3894 break; 3895 case CHANNEL_TLV_VPORT_TEARDOWN: 3896 qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf); 3897 break; 3898 case CHANNEL_TLV_START_RXQ: 3899 qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf); 3900 break; 3901 case CHANNEL_TLV_START_TXQ: 3902 qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf); 3903 break; 3904 case CHANNEL_TLV_STOP_RXQS: 3905 qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf); 3906 break; 3907 case CHANNEL_TLV_STOP_TXQS: 3908 qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf); 3909 break; 3910 case CHANNEL_TLV_UPDATE_RXQ: 3911 qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf); 3912 break; 3913 case CHANNEL_TLV_VPORT_UPDATE: 3914 qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf); 3915 break; 3916 case CHANNEL_TLV_UCAST_FILTER: 3917 qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf); 3918 break; 3919 case CHANNEL_TLV_CLOSE: 3920 qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf); 3921 break; 3922 case CHANNEL_TLV_INT_CLEANUP: 3923 qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf); 3924 break; 3925 case CHANNEL_TLV_RELEASE: 3926 qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf); 3927 break; 3928 case CHANNEL_TLV_UPDATE_TUNN_PARAM: 3929 qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf); 3930 break; 3931 case CHANNEL_TLV_COALESCE_UPDATE: 3932 qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf); 3933 break; 3934 case CHANNEL_TLV_COALESCE_READ: 3935 qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf); 3936 break; 3937 case CHANNEL_TLV_BULLETIN_UPDATE_MAC: 3938 qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf); 3939 break; 3940 } 3941 } else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) { 3942 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 3943 "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n", 3944 p_vf->abs_vf_id, mbx->first_tlv.tl.type); 3945 3946 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3947 mbx->first_tlv.tl.type, 3948 sizeof(struct pfvf_def_resp_tlv), 3949 PFVF_STATUS_MALICIOUS); 3950 } else { 3951 /* unknown TLV - this may belong to a VF driver from the future 3952 * - a version written after this PF driver was written, which 3953 * supports features unknown as of yet. Too bad since we don't 3954 * support them. Or this may be because someone wrote a crappy 3955 * VF driver and is sending garbage over the channel. 3956 */ 3957 DP_NOTICE(p_hwfn, 3958 "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n", 3959 p_vf->abs_vf_id, 3960 mbx->first_tlv.tl.type, 3961 mbx->first_tlv.tl.length, 3962 mbx->first_tlv.padding, mbx->first_tlv.reply_address); 3963 3964 /* Try replying in case reply address matches the acquisition's 3965 * posted address. 3966 */ 3967 if (p_vf->acquire.first_tlv.reply_address && 3968 (mbx->first_tlv.reply_address == 3969 p_vf->acquire.first_tlv.reply_address)) { 3970 qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, 3971 mbx->first_tlv.tl.type, 3972 sizeof(struct pfvf_def_resp_tlv), 3973 PFVF_STATUS_NOT_SUPPORTED); 3974 } else { 3975 DP_VERBOSE(p_hwfn, 3976 QED_MSG_IOV, 3977 "VF[%02x]: Can't respond to TLV - no valid reply address\n", 3978 p_vf->abs_vf_id); 3979 } 3980 } 3981 } 3982 3983 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events) 3984 { 3985 int i; 3986 3987 memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH); 3988 3989 qed_for_each_vf(p_hwfn, i) { 3990 struct qed_vf_info *p_vf; 3991 3992 p_vf = &p_hwfn->pf_iov_info->vfs_array[i]; 3993 if (p_vf->vf_mbx.b_pending_msg) 3994 events[i / 64] |= 1ULL << (i % 64); 3995 } 3996 } 3997 3998 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn, 3999 u16 abs_vfid) 4000 { 4001 u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf; 4002 4003 if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) { 4004 DP_VERBOSE(p_hwfn, 4005 QED_MSG_IOV, 4006 "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n", 4007 abs_vfid); 4008 return NULL; 4009 } 4010 4011 return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min]; 4012 } 4013 4014 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn, 4015 u16 abs_vfid, struct regpair *vf_msg) 4016 { 4017 struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn, 4018 abs_vfid); 4019 4020 if (!p_vf) 4021 return 0; 4022 4023 /* List the physical address of the request so that handler 4024 * could later on copy the message from it. 4025 */ 4026 p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo; 4027 4028 /* Mark the event and schedule the workqueue */ 4029 p_vf->vf_mbx.b_pending_msg = true; 4030 qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG); 4031 4032 return 0; 4033 } 4034 4035 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn, 4036 struct malicious_vf_eqe_data *p_data) 4037 { 4038 struct qed_vf_info *p_vf; 4039 4040 p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id); 4041 4042 if (!p_vf) 4043 return; 4044 4045 if (!p_vf->b_malicious) { 4046 DP_NOTICE(p_hwfn, 4047 "VF [%d] - Malicious behavior [%02x]\n", 4048 p_vf->abs_vf_id, p_data->err_id); 4049 4050 p_vf->b_malicious = true; 4051 } else { 4052 DP_INFO(p_hwfn, 4053 "VF [%d] - Malicious behavior [%02x]\n", 4054 p_vf->abs_vf_id, p_data->err_id); 4055 } 4056 } 4057 4058 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn, 4059 u8 opcode, 4060 __le16 echo, 4061 union event_ring_data *data, u8 fw_return_code) 4062 { 4063 switch (opcode) { 4064 case COMMON_EVENT_VF_PF_CHANNEL: 4065 return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo), 4066 &data->vf_pf_channel.msg_addr); 4067 case COMMON_EVENT_MALICIOUS_VF: 4068 qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf); 4069 return 0; 4070 default: 4071 DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n", 4072 opcode); 4073 return -EINVAL; 4074 } 4075 } 4076 4077 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4078 { 4079 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 4080 u16 i; 4081 4082 if (!p_iov) 4083 goto out; 4084 4085 for (i = rel_vf_id; i < p_iov->total_vfs; i++) 4086 if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false)) 4087 return i; 4088 4089 out: 4090 return MAX_NUM_VFS; 4091 } 4092 4093 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt, 4094 int vfid) 4095 { 4096 struct qed_dmae_params params; 4097 struct qed_vf_info *vf_info; 4098 4099 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4100 if (!vf_info) 4101 return -EINVAL; 4102 4103 memset(¶ms, 0, sizeof(struct qed_dmae_params)); 4104 params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST; 4105 params.src_vfid = vf_info->abs_vf_id; 4106 4107 if (qed_dmae_host2host(p_hwfn, ptt, 4108 vf_info->vf_mbx.pending_req, 4109 vf_info->vf_mbx.req_phys, 4110 sizeof(union vfpf_tlvs) / 4, ¶ms)) { 4111 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4112 "Failed to copy message from VF 0x%02x\n", vfid); 4113 4114 return -EIO; 4115 } 4116 4117 return 0; 4118 } 4119 4120 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn, 4121 u8 *mac, int vfid) 4122 { 4123 struct qed_vf_info *vf_info; 4124 u64 feature; 4125 4126 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4127 if (!vf_info) { 4128 DP_NOTICE(p_hwfn->cdev, 4129 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4130 return; 4131 } 4132 4133 if (vf_info->b_malicious) { 4134 DP_NOTICE(p_hwfn->cdev, 4135 "Can't set forced MAC to malicious VF [%d]\n", vfid); 4136 return; 4137 } 4138 4139 if (vf_info->p_vf_info.is_trusted_configured) { 4140 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4141 /* Trust mode will disable Forced MAC */ 4142 vf_info->bulletin.p_virt->valid_bitmap &= 4143 ~BIT(MAC_ADDR_FORCED); 4144 } else { 4145 feature = BIT(MAC_ADDR_FORCED); 4146 /* Forced MAC will disable MAC_ADDR */ 4147 vf_info->bulletin.p_virt->valid_bitmap &= 4148 ~BIT(VFPF_BULLETIN_MAC_ADDR); 4149 } 4150 4151 memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN); 4152 4153 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4154 4155 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4156 } 4157 4158 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid) 4159 { 4160 struct qed_vf_info *vf_info; 4161 u64 feature; 4162 4163 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4164 if (!vf_info) { 4165 DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n", 4166 vfid); 4167 return -EINVAL; 4168 } 4169 4170 if (vf_info->b_malicious) { 4171 DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n", 4172 vfid); 4173 return -EINVAL; 4174 } 4175 4176 if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) { 4177 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4178 "Can not set MAC, Forced MAC is configured\n"); 4179 return -EINVAL; 4180 } 4181 4182 feature = BIT(VFPF_BULLETIN_MAC_ADDR); 4183 ether_addr_copy(vf_info->bulletin.p_virt->mac, mac); 4184 4185 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4186 4187 if (vf_info->p_vf_info.is_trusted_configured) 4188 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4189 4190 return 0; 4191 } 4192 4193 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn, 4194 u16 pvid, int vfid) 4195 { 4196 struct qed_vf_info *vf_info; 4197 u64 feature; 4198 4199 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4200 if (!vf_info) { 4201 DP_NOTICE(p_hwfn->cdev, 4202 "Can not set forced MAC, invalid vfid [%d]\n", vfid); 4203 return; 4204 } 4205 4206 if (vf_info->b_malicious) { 4207 DP_NOTICE(p_hwfn->cdev, 4208 "Can't set forced vlan to malicious VF [%d]\n", vfid); 4209 return; 4210 } 4211 4212 feature = 1 << VLAN_ADDR_FORCED; 4213 vf_info->bulletin.p_virt->pvid = pvid; 4214 if (pvid) 4215 vf_info->bulletin.p_virt->valid_bitmap |= feature; 4216 else 4217 vf_info->bulletin.p_virt->valid_bitmap &= ~feature; 4218 4219 qed_iov_configure_vport_forced(p_hwfn, vf_info, feature); 4220 } 4221 4222 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn, 4223 int vfid, u16 vxlan_port, u16 geneve_port) 4224 { 4225 struct qed_vf_info *vf_info; 4226 4227 vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4228 if (!vf_info) { 4229 DP_NOTICE(p_hwfn->cdev, 4230 "Can not set udp ports, invalid vfid [%d]\n", vfid); 4231 return; 4232 } 4233 4234 if (vf_info->b_malicious) { 4235 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 4236 "Can not set udp ports to malicious VF [%d]\n", 4237 vfid); 4238 return; 4239 } 4240 4241 vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port; 4242 vf_info->bulletin.p_virt->geneve_udp_port = geneve_port; 4243 } 4244 4245 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid) 4246 { 4247 struct qed_vf_info *p_vf_info; 4248 4249 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4250 if (!p_vf_info) 4251 return false; 4252 4253 return !!p_vf_info->vport_instance; 4254 } 4255 4256 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid) 4257 { 4258 struct qed_vf_info *p_vf_info; 4259 4260 p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4261 if (!p_vf_info) 4262 return true; 4263 4264 return p_vf_info->state == VF_STOPPED; 4265 } 4266 4267 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid) 4268 { 4269 struct qed_vf_info *vf_info; 4270 4271 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4272 if (!vf_info) 4273 return false; 4274 4275 return vf_info->spoof_chk; 4276 } 4277 4278 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val) 4279 { 4280 struct qed_vf_info *vf; 4281 int rc = -EINVAL; 4282 4283 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4284 DP_NOTICE(p_hwfn, 4285 "SR-IOV sanity check failed, can't set spoofchk\n"); 4286 goto out; 4287 } 4288 4289 vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4290 if (!vf) 4291 goto out; 4292 4293 if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) { 4294 /* After VF VPORT start PF will configure spoof check */ 4295 vf->req_spoofchk_val = val; 4296 rc = 0; 4297 goto out; 4298 } 4299 4300 rc = __qed_iov_spoofchk_set(p_hwfn, vf, val); 4301 4302 out: 4303 return rc; 4304 } 4305 4306 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4307 { 4308 struct qed_vf_info *p_vf; 4309 4310 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4311 if (!p_vf || !p_vf->bulletin.p_virt) 4312 return NULL; 4313 4314 if (!(p_vf->bulletin.p_virt->valid_bitmap & 4315 BIT(VFPF_BULLETIN_MAC_ADDR))) 4316 return NULL; 4317 4318 return p_vf->bulletin.p_virt->mac; 4319 } 4320 4321 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn, 4322 u16 rel_vf_id) 4323 { 4324 struct qed_vf_info *p_vf; 4325 4326 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4327 if (!p_vf || !p_vf->bulletin.p_virt) 4328 return NULL; 4329 4330 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) 4331 return NULL; 4332 4333 return p_vf->bulletin.p_virt->mac; 4334 } 4335 4336 static u16 4337 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id) 4338 { 4339 struct qed_vf_info *p_vf; 4340 4341 p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true); 4342 if (!p_vf || !p_vf->bulletin.p_virt) 4343 return 0; 4344 4345 if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))) 4346 return 0; 4347 4348 return p_vf->bulletin.p_virt->pvid; 4349 } 4350 4351 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn, 4352 struct qed_ptt *p_ptt, int vfid, int val) 4353 { 4354 struct qed_mcp_link_state *p_link; 4355 struct qed_vf_info *vf; 4356 u8 abs_vp_id = 0; 4357 int rc; 4358 4359 vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true); 4360 if (!vf) 4361 return -EINVAL; 4362 4363 rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id); 4364 if (rc) 4365 return rc; 4366 4367 p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output; 4368 4369 return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val, 4370 p_link->speed); 4371 } 4372 4373 static int 4374 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate) 4375 { 4376 struct qed_vf_info *vf; 4377 u8 vport_id; 4378 int i; 4379 4380 for_each_hwfn(cdev, i) { 4381 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4382 4383 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4384 DP_NOTICE(p_hwfn, 4385 "SR-IOV sanity check failed, can't set min rate\n"); 4386 return -EINVAL; 4387 } 4388 } 4389 4390 vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true); 4391 vport_id = vf->vport_id; 4392 4393 return qed_configure_vport_wfq(cdev, vport_id, rate); 4394 } 4395 4396 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid) 4397 { 4398 struct qed_wfq_data *vf_vp_wfq; 4399 struct qed_vf_info *vf_info; 4400 4401 vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true); 4402 if (!vf_info) 4403 return 0; 4404 4405 vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id]; 4406 4407 if (vf_vp_wfq->configured) 4408 return vf_vp_wfq->min_speed; 4409 else 4410 return 0; 4411 } 4412 4413 /** 4414 * qed_schedule_iov - schedules IOV task for VF and PF 4415 * @hwfn: hardware function pointer 4416 * @flag: IOV flag for VF/PF 4417 */ 4418 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag) 4419 { 4420 smp_mb__before_atomic(); 4421 set_bit(flag, &hwfn->iov_task_flags); 4422 smp_mb__after_atomic(); 4423 DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag); 4424 queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0); 4425 } 4426 4427 void qed_vf_start_iov_wq(struct qed_dev *cdev) 4428 { 4429 int i; 4430 4431 for_each_hwfn(cdev, i) 4432 queue_delayed_work(cdev->hwfns[i].iov_wq, 4433 &cdev->hwfns[i].iov_task, 0); 4434 } 4435 4436 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled) 4437 { 4438 int i, j; 4439 4440 for_each_hwfn(cdev, i) 4441 if (cdev->hwfns[i].iov_wq) 4442 flush_workqueue(cdev->hwfns[i].iov_wq); 4443 4444 /* Mark VFs for disablement */ 4445 qed_iov_set_vfs_to_disable(cdev, true); 4446 4447 if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled) 4448 pci_disable_sriov(cdev->pdev); 4449 4450 for_each_hwfn(cdev, i) { 4451 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4452 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 4453 4454 /* Failure to acquire the ptt in 100g creates an odd error 4455 * where the first engine has already relased IOV. 4456 */ 4457 if (!ptt) { 4458 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4459 return -EBUSY; 4460 } 4461 4462 /* Clean WFQ db and configure equal weight for all vports */ 4463 qed_clean_wfq_db(hwfn, ptt); 4464 4465 qed_for_each_vf(hwfn, j) { 4466 int k; 4467 4468 if (!qed_iov_is_valid_vfid(hwfn, j, true, false)) 4469 continue; 4470 4471 /* Wait until VF is disabled before releasing */ 4472 for (k = 0; k < 100; k++) { 4473 if (!qed_iov_is_vf_stopped(hwfn, j)) 4474 msleep(20); 4475 else 4476 break; 4477 } 4478 4479 if (k < 100) 4480 qed_iov_release_hw_for_vf(&cdev->hwfns[i], 4481 ptt, j); 4482 else 4483 DP_ERR(hwfn, 4484 "Timeout waiting for VF's FLR to end\n"); 4485 } 4486 4487 qed_ptt_release(hwfn, ptt); 4488 } 4489 4490 qed_iov_set_vfs_to_disable(cdev, false); 4491 4492 return 0; 4493 } 4494 4495 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn, 4496 u16 vfid, 4497 struct qed_iov_vf_init_params *params) 4498 { 4499 u16 base, i; 4500 4501 /* Since we have an equal resource distribution per-VF, and we assume 4502 * PF has acquired the QED_PF_L2_QUE first queues, we start setting 4503 * sequentially from there. 4504 */ 4505 base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues; 4506 4507 params->rel_vf_id = vfid; 4508 for (i = 0; i < params->num_queues; i++) { 4509 params->req_rx_queue[i] = base + i; 4510 params->req_tx_queue[i] = base + i; 4511 } 4512 } 4513 4514 static int qed_sriov_enable(struct qed_dev *cdev, int num) 4515 { 4516 struct qed_iov_vf_init_params params; 4517 struct qed_hwfn *hwfn; 4518 struct qed_ptt *ptt; 4519 int i, j, rc; 4520 4521 if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) { 4522 DP_NOTICE(cdev, "Can start at most %d VFs\n", 4523 RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1); 4524 return -EINVAL; 4525 } 4526 4527 memset(¶ms, 0, sizeof(params)); 4528 4529 /* Initialize HW for VF access */ 4530 for_each_hwfn(cdev, j) { 4531 hwfn = &cdev->hwfns[j]; 4532 ptt = qed_ptt_acquire(hwfn); 4533 4534 /* Make sure not to use more than 16 queues per VF */ 4535 params.num_queues = min_t(int, 4536 FEAT_NUM(hwfn, QED_VF_L2_QUE) / num, 4537 16); 4538 4539 if (!ptt) { 4540 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4541 rc = -EBUSY; 4542 goto err; 4543 } 4544 4545 for (i = 0; i < num; i++) { 4546 if (!qed_iov_is_valid_vfid(hwfn, i, false, true)) 4547 continue; 4548 4549 qed_sriov_enable_qid_config(hwfn, i, ¶ms); 4550 rc = qed_iov_init_hw_for_vf(hwfn, ptt, ¶ms); 4551 if (rc) { 4552 DP_ERR(cdev, "Failed to enable VF[%d]\n", i); 4553 qed_ptt_release(hwfn, ptt); 4554 goto err; 4555 } 4556 } 4557 4558 qed_ptt_release(hwfn, ptt); 4559 } 4560 4561 /* Enable SRIOV PCIe functions */ 4562 rc = pci_enable_sriov(cdev->pdev, num); 4563 if (rc) { 4564 DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc); 4565 goto err; 4566 } 4567 4568 hwfn = QED_LEADING_HWFN(cdev); 4569 ptt = qed_ptt_acquire(hwfn); 4570 if (!ptt) { 4571 DP_ERR(hwfn, "Failed to acquire ptt\n"); 4572 rc = -EBUSY; 4573 goto err; 4574 } 4575 4576 rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB); 4577 if (rc) 4578 DP_INFO(cdev, "Failed to update eswitch mode\n"); 4579 qed_ptt_release(hwfn, ptt); 4580 4581 return num; 4582 4583 err: 4584 qed_sriov_disable(cdev, false); 4585 return rc; 4586 } 4587 4588 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param) 4589 { 4590 if (!IS_QED_SRIOV(cdev)) { 4591 DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n"); 4592 return -EOPNOTSUPP; 4593 } 4594 4595 if (num_vfs_param) 4596 return qed_sriov_enable(cdev, num_vfs_param); 4597 else 4598 return qed_sriov_disable(cdev, true); 4599 } 4600 4601 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid) 4602 { 4603 int i; 4604 4605 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4606 DP_VERBOSE(cdev, QED_MSG_IOV, 4607 "Cannot set a VF MAC; Sriov is not enabled\n"); 4608 return -EINVAL; 4609 } 4610 4611 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4612 DP_VERBOSE(cdev, QED_MSG_IOV, 4613 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4614 return -EINVAL; 4615 } 4616 4617 for_each_hwfn(cdev, i) { 4618 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4619 struct qed_public_vf_info *vf_info; 4620 4621 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4622 if (!vf_info) 4623 continue; 4624 4625 /* Set the MAC, and schedule the IOV task */ 4626 if (vf_info->is_trusted_configured) 4627 ether_addr_copy(vf_info->mac, mac); 4628 else 4629 ether_addr_copy(vf_info->forced_mac, mac); 4630 4631 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4632 } 4633 4634 return 0; 4635 } 4636 4637 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid) 4638 { 4639 int i; 4640 4641 if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) { 4642 DP_VERBOSE(cdev, QED_MSG_IOV, 4643 "Cannot set a VF MAC; Sriov is not enabled\n"); 4644 return -EINVAL; 4645 } 4646 4647 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) { 4648 DP_VERBOSE(cdev, QED_MSG_IOV, 4649 "Cannot set VF[%d] MAC (VF is not active)\n", vfid); 4650 return -EINVAL; 4651 } 4652 4653 for_each_hwfn(cdev, i) { 4654 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4655 struct qed_public_vf_info *vf_info; 4656 4657 vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true); 4658 if (!vf_info) 4659 continue; 4660 4661 /* Set the forced vlan, and schedule the IOV task */ 4662 vf_info->forced_vlan = vid; 4663 qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG); 4664 } 4665 4666 return 0; 4667 } 4668 4669 static int qed_get_vf_config(struct qed_dev *cdev, 4670 int vf_id, struct ifla_vf_info *ivi) 4671 { 4672 struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev); 4673 struct qed_public_vf_info *vf_info; 4674 struct qed_mcp_link_state link; 4675 u32 tx_rate; 4676 4677 /* Sanitize request */ 4678 if (IS_VF(cdev)) 4679 return -EINVAL; 4680 4681 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) { 4682 DP_VERBOSE(cdev, QED_MSG_IOV, 4683 "VF index [%d] isn't active\n", vf_id); 4684 return -EINVAL; 4685 } 4686 4687 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4688 4689 qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL); 4690 4691 /* Fill information about VF */ 4692 ivi->vf = vf_id; 4693 4694 if (is_valid_ether_addr(vf_info->forced_mac)) 4695 ether_addr_copy(ivi->mac, vf_info->forced_mac); 4696 else 4697 ether_addr_copy(ivi->mac, vf_info->mac); 4698 4699 ivi->vlan = vf_info->forced_vlan; 4700 ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id); 4701 ivi->linkstate = vf_info->link_state; 4702 tx_rate = vf_info->tx_rate; 4703 ivi->max_tx_rate = tx_rate ? tx_rate : link.speed; 4704 ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id); 4705 4706 return 0; 4707 } 4708 4709 void qed_inform_vf_link_state(struct qed_hwfn *hwfn) 4710 { 4711 struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev); 4712 struct qed_mcp_link_capabilities caps; 4713 struct qed_mcp_link_params params; 4714 struct qed_mcp_link_state link; 4715 int i; 4716 4717 if (!hwfn->pf_iov_info) 4718 return; 4719 4720 /* Update bulletin of all future possible VFs with link configuration */ 4721 for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) { 4722 struct qed_public_vf_info *vf_info; 4723 4724 vf_info = qed_iov_get_public_vf_info(hwfn, i, false); 4725 if (!vf_info) 4726 continue; 4727 4728 /* Only hwfn0 is actually interested in the link speed. 4729 * But since only it would receive an MFW indication of link, 4730 * need to take configuration from it - otherwise things like 4731 * rate limiting for hwfn1 VF would not work. 4732 */ 4733 memcpy(¶ms, qed_mcp_get_link_params(lead_hwfn), 4734 sizeof(params)); 4735 memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link)); 4736 memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn), 4737 sizeof(caps)); 4738 4739 /* Modify link according to the VF's configured link state */ 4740 switch (vf_info->link_state) { 4741 case IFLA_VF_LINK_STATE_DISABLE: 4742 link.link_up = false; 4743 break; 4744 case IFLA_VF_LINK_STATE_ENABLE: 4745 link.link_up = true; 4746 /* Set speed according to maximum supported by HW. 4747 * that is 40G for regular devices and 100G for CMT 4748 * mode devices. 4749 */ 4750 link.speed = (hwfn->cdev->num_hwfns > 1) ? 4751 100000 : 40000; 4752 default: 4753 /* In auto mode pass PF link image to VF */ 4754 break; 4755 } 4756 4757 if (link.link_up && vf_info->tx_rate) { 4758 struct qed_ptt *ptt; 4759 int rate; 4760 4761 rate = min_t(int, vf_info->tx_rate, link.speed); 4762 4763 ptt = qed_ptt_acquire(hwfn); 4764 if (!ptt) { 4765 DP_NOTICE(hwfn, "Failed to acquire PTT\n"); 4766 return; 4767 } 4768 4769 if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) { 4770 vf_info->tx_rate = rate; 4771 link.speed = rate; 4772 } 4773 4774 qed_ptt_release(hwfn, ptt); 4775 } 4776 4777 qed_iov_set_link(hwfn, i, ¶ms, &link, &caps); 4778 } 4779 4780 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 4781 } 4782 4783 static int qed_set_vf_link_state(struct qed_dev *cdev, 4784 int vf_id, int link_state) 4785 { 4786 int i; 4787 4788 /* Sanitize request */ 4789 if (IS_VF(cdev)) 4790 return -EINVAL; 4791 4792 if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) { 4793 DP_VERBOSE(cdev, QED_MSG_IOV, 4794 "VF index [%d] isn't active\n", vf_id); 4795 return -EINVAL; 4796 } 4797 4798 /* Handle configuration of link state */ 4799 for_each_hwfn(cdev, i) { 4800 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4801 struct qed_public_vf_info *vf; 4802 4803 vf = qed_iov_get_public_vf_info(hwfn, vf_id, true); 4804 if (!vf) 4805 continue; 4806 4807 if (vf->link_state == link_state) 4808 continue; 4809 4810 vf->link_state = link_state; 4811 qed_inform_vf_link_state(&cdev->hwfns[i]); 4812 } 4813 4814 return 0; 4815 } 4816 4817 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val) 4818 { 4819 int i, rc = -EINVAL; 4820 4821 for_each_hwfn(cdev, i) { 4822 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4823 4824 rc = qed_iov_spoofchk_set(p_hwfn, vfid, val); 4825 if (rc) 4826 break; 4827 } 4828 4829 return rc; 4830 } 4831 4832 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate) 4833 { 4834 int i; 4835 4836 for_each_hwfn(cdev, i) { 4837 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 4838 struct qed_public_vf_info *vf; 4839 4840 if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) { 4841 DP_NOTICE(p_hwfn, 4842 "SR-IOV sanity check failed, can't set tx rate\n"); 4843 return -EINVAL; 4844 } 4845 4846 vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true); 4847 4848 vf->tx_rate = rate; 4849 4850 qed_inform_vf_link_state(p_hwfn); 4851 } 4852 4853 return 0; 4854 } 4855 4856 static int qed_set_vf_rate(struct qed_dev *cdev, 4857 int vfid, u32 min_rate, u32 max_rate) 4858 { 4859 int rc_min = 0, rc_max = 0; 4860 4861 if (max_rate) 4862 rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate); 4863 4864 if (min_rate) 4865 rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate); 4866 4867 if (rc_max | rc_min) 4868 return -EINVAL; 4869 4870 return 0; 4871 } 4872 4873 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust) 4874 { 4875 int i; 4876 4877 for_each_hwfn(cdev, i) { 4878 struct qed_hwfn *hwfn = &cdev->hwfns[i]; 4879 struct qed_public_vf_info *vf; 4880 4881 if (!qed_iov_pf_sanity_check(hwfn, vfid)) { 4882 DP_NOTICE(hwfn, 4883 "SR-IOV sanity check failed, can't set trust\n"); 4884 return -EINVAL; 4885 } 4886 4887 vf = qed_iov_get_public_vf_info(hwfn, vfid, true); 4888 4889 if (vf->is_trusted_request == trust) 4890 return 0; 4891 vf->is_trusted_request = trust; 4892 4893 qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG); 4894 } 4895 4896 return 0; 4897 } 4898 4899 static void qed_handle_vf_msg(struct qed_hwfn *hwfn) 4900 { 4901 u64 events[QED_VF_ARRAY_LENGTH]; 4902 struct qed_ptt *ptt; 4903 int i; 4904 4905 ptt = qed_ptt_acquire(hwfn); 4906 if (!ptt) { 4907 DP_VERBOSE(hwfn, QED_MSG_IOV, 4908 "Can't acquire PTT; re-scheduling\n"); 4909 qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG); 4910 return; 4911 } 4912 4913 qed_iov_pf_get_pending_events(hwfn, events); 4914 4915 DP_VERBOSE(hwfn, QED_MSG_IOV, 4916 "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n", 4917 events[0], events[1], events[2]); 4918 4919 qed_for_each_vf(hwfn, i) { 4920 /* Skip VFs with no pending messages */ 4921 if (!(events[i / 64] & (1ULL << (i % 64)))) 4922 continue; 4923 4924 DP_VERBOSE(hwfn, QED_MSG_IOV, 4925 "Handling VF message from VF 0x%02x [Abs 0x%02x]\n", 4926 i, hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4927 4928 /* Copy VF's message to PF's request buffer for that VF */ 4929 if (qed_iov_copy_vf_msg(hwfn, ptt, i)) 4930 continue; 4931 4932 qed_iov_process_mbx_req(hwfn, ptt, i); 4933 } 4934 4935 qed_ptt_release(hwfn, ptt); 4936 } 4937 4938 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn, 4939 u8 *mac, 4940 struct qed_public_vf_info *info) 4941 { 4942 if (info->is_trusted_configured) { 4943 if (is_valid_ether_addr(info->mac) && 4944 (!mac || !ether_addr_equal(mac, info->mac))) 4945 return true; 4946 } else { 4947 if (is_valid_ether_addr(info->forced_mac) && 4948 (!mac || !ether_addr_equal(mac, info->forced_mac))) 4949 return true; 4950 } 4951 4952 return false; 4953 } 4954 4955 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn, 4956 struct qed_public_vf_info *info, 4957 int vfid) 4958 { 4959 if (info->is_trusted_configured) 4960 qed_iov_bulletin_set_mac(hwfn, info->mac, vfid); 4961 else 4962 qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid); 4963 } 4964 4965 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn) 4966 { 4967 int i; 4968 4969 qed_for_each_vf(hwfn, i) { 4970 struct qed_public_vf_info *info; 4971 bool update = false; 4972 u8 *mac; 4973 4974 info = qed_iov_get_public_vf_info(hwfn, i, true); 4975 if (!info) 4976 continue; 4977 4978 /* Update data on bulletin board */ 4979 if (info->is_trusted_configured) 4980 mac = qed_iov_bulletin_get_mac(hwfn, i); 4981 else 4982 mac = qed_iov_bulletin_get_forced_mac(hwfn, i); 4983 4984 if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) { 4985 DP_VERBOSE(hwfn, 4986 QED_MSG_IOV, 4987 "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n", 4988 i, 4989 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 4990 4991 /* Update bulletin board with MAC */ 4992 qed_set_bulletin_mac(hwfn, info, i); 4993 update = true; 4994 } 4995 4996 if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^ 4997 info->forced_vlan) { 4998 DP_VERBOSE(hwfn, 4999 QED_MSG_IOV, 5000 "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n", 5001 info->forced_vlan, 5002 i, 5003 hwfn->cdev->p_iov_info->first_vf_in_pf + i); 5004 qed_iov_bulletin_set_forced_vlan(hwfn, 5005 info->forced_vlan, i); 5006 update = true; 5007 } 5008 5009 if (update) 5010 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5011 } 5012 } 5013 5014 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn) 5015 { 5016 struct qed_ptt *ptt; 5017 int i; 5018 5019 ptt = qed_ptt_acquire(hwfn); 5020 if (!ptt) { 5021 DP_NOTICE(hwfn, "Failed allocating a ptt entry\n"); 5022 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5023 return; 5024 } 5025 5026 qed_for_each_vf(hwfn, i) 5027 qed_iov_post_vf_bulletin(hwfn, i, ptt); 5028 5029 qed_ptt_release(hwfn, ptt); 5030 } 5031 5032 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id) 5033 { 5034 struct qed_public_vf_info *vf_info; 5035 struct qed_vf_info *vf; 5036 u8 *force_mac; 5037 int i; 5038 5039 vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true); 5040 vf = qed_iov_get_vf_info(hwfn, vf_id, true); 5041 5042 if (!vf_info || !vf) 5043 return; 5044 5045 /* Force MAC converted to generic MAC in case of VF trust on */ 5046 if (vf_info->is_trusted_configured && 5047 (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) { 5048 force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id); 5049 5050 if (force_mac) { 5051 /* Clear existing shadow copy of MAC to have a clean 5052 * slate. 5053 */ 5054 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5055 if (ether_addr_equal(vf->shadow_config.macs[i], 5056 vf_info->mac)) { 5057 memset(vf->shadow_config.macs[i], 0, 5058 ETH_ALEN); 5059 DP_VERBOSE(hwfn, QED_MSG_IOV, 5060 "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n", 5061 vf_info->mac, vf_id); 5062 break; 5063 } 5064 } 5065 5066 ether_addr_copy(vf_info->mac, force_mac); 5067 memset(vf_info->forced_mac, 0, ETH_ALEN); 5068 vf->bulletin.p_virt->valid_bitmap &= 5069 ~BIT(MAC_ADDR_FORCED); 5070 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5071 } 5072 } 5073 5074 /* Update shadow copy with VF MAC when trust mode is turned off */ 5075 if (!vf_info->is_trusted_configured) { 5076 u8 empty_mac[ETH_ALEN]; 5077 5078 memset(empty_mac, 0, ETH_ALEN); 5079 for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) { 5080 if (ether_addr_equal(vf->shadow_config.macs[i], 5081 empty_mac)) { 5082 ether_addr_copy(vf->shadow_config.macs[i], 5083 vf_info->mac); 5084 DP_VERBOSE(hwfn, QED_MSG_IOV, 5085 "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n", 5086 vf_info->mac, vf_id); 5087 break; 5088 } 5089 } 5090 /* Clear bulletin when trust mode is turned off, 5091 * to have a clean slate for next (normal) operations. 5092 */ 5093 qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id); 5094 qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG); 5095 } 5096 } 5097 5098 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn) 5099 { 5100 struct qed_sp_vport_update_params params; 5101 struct qed_filter_accept_flags *flags; 5102 struct qed_public_vf_info *vf_info; 5103 struct qed_vf_info *vf; 5104 u8 mask; 5105 int i; 5106 5107 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED; 5108 flags = ¶ms.accept_flags; 5109 5110 qed_for_each_vf(hwfn, i) { 5111 /* Need to make sure current requested configuration didn't 5112 * flip so that we'll end up configuring something that's not 5113 * needed. 5114 */ 5115 vf_info = qed_iov_get_public_vf_info(hwfn, i, true); 5116 if (vf_info->is_trusted_configured == 5117 vf_info->is_trusted_request) 5118 continue; 5119 vf_info->is_trusted_configured = vf_info->is_trusted_request; 5120 5121 /* Handle forced MAC mode */ 5122 qed_update_mac_for_vf_trust_change(hwfn, i); 5123 5124 /* Validate that the VF has a configured vport */ 5125 vf = qed_iov_get_vf_info(hwfn, i, true); 5126 if (!vf->vport_instance) 5127 continue; 5128 5129 memset(¶ms, 0, sizeof(params)); 5130 params.opaque_fid = vf->opaque_fid; 5131 params.vport_id = vf->vport_id; 5132 5133 if (vf_info->rx_accept_mode & mask) { 5134 flags->update_rx_mode_config = 1; 5135 flags->rx_accept_filter = vf_info->rx_accept_mode; 5136 } 5137 5138 if (vf_info->tx_accept_mode & mask) { 5139 flags->update_tx_mode_config = 1; 5140 flags->tx_accept_filter = vf_info->tx_accept_mode; 5141 } 5142 5143 /* Remove if needed; Otherwise this would set the mask */ 5144 if (!vf_info->is_trusted_configured) { 5145 flags->rx_accept_filter &= ~mask; 5146 flags->tx_accept_filter &= ~mask; 5147 } 5148 5149 if (flags->update_rx_mode_config || 5150 flags->update_tx_mode_config) 5151 qed_sp_vport_update(hwfn, ¶ms, 5152 QED_SPQ_MODE_EBLOCK, NULL); 5153 } 5154 } 5155 5156 static void qed_iov_pf_task(struct work_struct *work) 5157 5158 { 5159 struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn, 5160 iov_task.work); 5161 int rc; 5162 5163 if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags)) 5164 return; 5165 5166 if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) { 5167 struct qed_ptt *ptt = qed_ptt_acquire(hwfn); 5168 5169 if (!ptt) { 5170 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5171 return; 5172 } 5173 5174 rc = qed_iov_vf_flr_cleanup(hwfn, ptt); 5175 if (rc) 5176 qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG); 5177 5178 qed_ptt_release(hwfn, ptt); 5179 } 5180 5181 if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags)) 5182 qed_handle_vf_msg(hwfn); 5183 5184 if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG, 5185 &hwfn->iov_task_flags)) 5186 qed_handle_pf_set_vf_unicast(hwfn); 5187 5188 if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG, 5189 &hwfn->iov_task_flags)) 5190 qed_handle_bulletin_post(hwfn); 5191 5192 if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags)) 5193 qed_iov_handle_trust_change(hwfn); 5194 } 5195 5196 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first) 5197 { 5198 int i; 5199 5200 for_each_hwfn(cdev, i) { 5201 if (!cdev->hwfns[i].iov_wq) 5202 continue; 5203 5204 if (schedule_first) { 5205 qed_schedule_iov(&cdev->hwfns[i], 5206 QED_IOV_WQ_STOP_WQ_FLAG); 5207 cancel_delayed_work_sync(&cdev->hwfns[i].iov_task); 5208 } 5209 5210 flush_workqueue(cdev->hwfns[i].iov_wq); 5211 destroy_workqueue(cdev->hwfns[i].iov_wq); 5212 } 5213 } 5214 5215 int qed_iov_wq_start(struct qed_dev *cdev) 5216 { 5217 char name[NAME_SIZE]; 5218 int i; 5219 5220 for_each_hwfn(cdev, i) { 5221 struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; 5222 5223 /* PFs needs a dedicated workqueue only if they support IOV. 5224 * VFs always require one. 5225 */ 5226 if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn)) 5227 continue; 5228 5229 snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x", 5230 cdev->pdev->bus->number, 5231 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id); 5232 5233 p_hwfn->iov_wq = create_singlethread_workqueue(name); 5234 if (!p_hwfn->iov_wq) { 5235 DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n"); 5236 return -ENOMEM; 5237 } 5238 5239 if (IS_PF(cdev)) 5240 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task); 5241 else 5242 INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task); 5243 } 5244 5245 return 0; 5246 } 5247 5248 const struct qed_iov_hv_ops qed_iov_ops_pass = { 5249 .configure = &qed_sriov_configure, 5250 .set_mac = &qed_sriov_pf_set_mac, 5251 .set_vlan = &qed_sriov_pf_set_vlan, 5252 .get_config = &qed_get_vf_config, 5253 .set_link_state = &qed_set_vf_link_state, 5254 .set_spoof = &qed_spoof_configure, 5255 .set_rate = &qed_set_vf_rate, 5256 .set_trust = &qed_set_vf_trust, 5257 }; 5258