xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_sriov.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/etherdevice.h>
34 #include <linux/crc32.h>
35 #include <linux/vmalloc.h>
36 #include <linux/qed/qed_iov_if.h>
37 #include "qed_cxt.h"
38 #include "qed_hsi.h"
39 #include "qed_hw.h"
40 #include "qed_init_ops.h"
41 #include "qed_int.h"
42 #include "qed_mcp.h"
43 #include "qed_reg_addr.h"
44 #include "qed_sp.h"
45 #include "qed_sriov.h"
46 #include "qed_vf.h"
47 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
48 			       u8 opcode,
49 			       __le16 echo,
50 			       union event_ring_data *data, u8 fw_return_code);
51 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
52 
53 static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
54 {
55 	u8 legacy = 0;
56 
57 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
58 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
59 		legacy |= QED_QCID_LEGACY_VF_RX_PROD;
60 
61 	if (!(p_vf->acquire.vfdev_info.capabilities &
62 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
63 		legacy |= QED_QCID_LEGACY_VF_CID;
64 
65 	return legacy;
66 }
67 
68 /* IOV ramrods */
69 static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
70 {
71 	struct vf_start_ramrod_data *p_ramrod = NULL;
72 	struct qed_spq_entry *p_ent = NULL;
73 	struct qed_sp_init_data init_data;
74 	int rc = -EINVAL;
75 	u8 fp_minor;
76 
77 	/* Get SPQ entry */
78 	memset(&init_data, 0, sizeof(init_data));
79 	init_data.cid = qed_spq_get_cid(p_hwfn);
80 	init_data.opaque_fid = p_vf->opaque_fid;
81 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
82 
83 	rc = qed_sp_init_request(p_hwfn, &p_ent,
84 				 COMMON_RAMROD_VF_START,
85 				 PROTOCOLID_COMMON, &init_data);
86 	if (rc)
87 		return rc;
88 
89 	p_ramrod = &p_ent->ramrod.vf_start;
90 
91 	p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
92 	p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
93 
94 	switch (p_hwfn->hw_info.personality) {
95 	case QED_PCI_ETH:
96 		p_ramrod->personality = PERSONALITY_ETH;
97 		break;
98 	case QED_PCI_ETH_ROCE:
99 		p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
100 		break;
101 	default:
102 		DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
103 			  p_hwfn->hw_info.personality);
104 		qed_sp_destroy_request(p_hwfn, p_ent);
105 		return -EINVAL;
106 	}
107 
108 	fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
109 	if (fp_minor > ETH_HSI_VER_MINOR &&
110 	    fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
111 		DP_VERBOSE(p_hwfn,
112 			   QED_MSG_IOV,
113 			   "VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
114 			   p_vf->abs_vf_id,
115 			   ETH_HSI_VER_MAJOR,
116 			   fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
117 		fp_minor = ETH_HSI_VER_MINOR;
118 	}
119 
120 	p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
121 	p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
122 
123 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
124 		   "VF[%d] - Starting using HSI %02x.%02x\n",
125 		   p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
126 
127 	return qed_spq_post(p_hwfn, p_ent, NULL);
128 }
129 
130 static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
131 			  u32 concrete_vfid, u16 opaque_vfid)
132 {
133 	struct vf_stop_ramrod_data *p_ramrod = NULL;
134 	struct qed_spq_entry *p_ent = NULL;
135 	struct qed_sp_init_data init_data;
136 	int rc = -EINVAL;
137 
138 	/* Get SPQ entry */
139 	memset(&init_data, 0, sizeof(init_data));
140 	init_data.cid = qed_spq_get_cid(p_hwfn);
141 	init_data.opaque_fid = opaque_vfid;
142 	init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
143 
144 	rc = qed_sp_init_request(p_hwfn, &p_ent,
145 				 COMMON_RAMROD_VF_STOP,
146 				 PROTOCOLID_COMMON, &init_data);
147 	if (rc)
148 		return rc;
149 
150 	p_ramrod = &p_ent->ramrod.vf_stop;
151 
152 	p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
153 
154 	return qed_spq_post(p_hwfn, p_ent, NULL);
155 }
156 
157 bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
158 			   int rel_vf_id,
159 			   bool b_enabled_only, bool b_non_malicious)
160 {
161 	if (!p_hwfn->pf_iov_info) {
162 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
163 		return false;
164 	}
165 
166 	if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
167 	    (rel_vf_id < 0))
168 		return false;
169 
170 	if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
171 	    b_enabled_only)
172 		return false;
173 
174 	if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
175 	    b_non_malicious)
176 		return false;
177 
178 	return true;
179 }
180 
181 static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
182 					       u16 relative_vf_id,
183 					       bool b_enabled_only)
184 {
185 	struct qed_vf_info *vf = NULL;
186 
187 	if (!p_hwfn->pf_iov_info) {
188 		DP_NOTICE(p_hwfn->cdev, "No iov info\n");
189 		return NULL;
190 	}
191 
192 	if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
193 				  b_enabled_only, false))
194 		vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
195 	else
196 		DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
197 		       relative_vf_id);
198 
199 	return vf;
200 }
201 
202 static struct qed_queue_cid *
203 qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
204 {
205 	int i;
206 
207 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
208 		if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
209 			return p_queue->cids[i].p_cid;
210 	}
211 
212 	return NULL;
213 }
214 
215 enum qed_iov_validate_q_mode {
216 	QED_IOV_VALIDATE_Q_NA,
217 	QED_IOV_VALIDATE_Q_ENABLE,
218 	QED_IOV_VALIDATE_Q_DISABLE,
219 };
220 
221 static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
222 					struct qed_vf_info *p_vf,
223 					u16 qid,
224 					enum qed_iov_validate_q_mode mode,
225 					bool b_is_tx)
226 {
227 	int i;
228 
229 	if (mode == QED_IOV_VALIDATE_Q_NA)
230 		return true;
231 
232 	for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
233 		struct qed_vf_queue_cid *p_qcid;
234 
235 		p_qcid = &p_vf->vf_queues[qid].cids[i];
236 
237 		if (!p_qcid->p_cid)
238 			continue;
239 
240 		if (p_qcid->b_is_tx != b_is_tx)
241 			continue;
242 
243 		return mode == QED_IOV_VALIDATE_Q_ENABLE;
244 	}
245 
246 	/* In case we haven't found any valid cid, then its disabled */
247 	return mode == QED_IOV_VALIDATE_Q_DISABLE;
248 }
249 
250 static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
251 				 struct qed_vf_info *p_vf,
252 				 u16 rx_qid,
253 				 enum qed_iov_validate_q_mode mode)
254 {
255 	if (rx_qid >= p_vf->num_rxqs) {
256 		DP_VERBOSE(p_hwfn,
257 			   QED_MSG_IOV,
258 			   "VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
259 			   p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
260 		return false;
261 	}
262 
263 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
264 }
265 
266 static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
267 				 struct qed_vf_info *p_vf,
268 				 u16 tx_qid,
269 				 enum qed_iov_validate_q_mode mode)
270 {
271 	if (tx_qid >= p_vf->num_txqs) {
272 		DP_VERBOSE(p_hwfn,
273 			   QED_MSG_IOV,
274 			   "VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
275 			   p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
276 		return false;
277 	}
278 
279 	return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
280 }
281 
282 static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
283 				struct qed_vf_info *p_vf, u16 sb_idx)
284 {
285 	int i;
286 
287 	for (i = 0; i < p_vf->num_sbs; i++)
288 		if (p_vf->igu_sbs[i] == sb_idx)
289 			return true;
290 
291 	DP_VERBOSE(p_hwfn,
292 		   QED_MSG_IOV,
293 		   "VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
294 		   p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
295 
296 	return false;
297 }
298 
299 static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
300 					struct qed_vf_info *p_vf)
301 {
302 	u8 i;
303 
304 	for (i = 0; i < p_vf->num_rxqs; i++)
305 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
306 						QED_IOV_VALIDATE_Q_ENABLE,
307 						false))
308 			return true;
309 
310 	return false;
311 }
312 
313 static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
314 					struct qed_vf_info *p_vf)
315 {
316 	u8 i;
317 
318 	for (i = 0; i < p_vf->num_txqs; i++)
319 		if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
320 						QED_IOV_VALIDATE_Q_ENABLE,
321 						true))
322 			return true;
323 
324 	return false;
325 }
326 
327 static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
328 				    int vfid, struct qed_ptt *p_ptt)
329 {
330 	struct qed_bulletin_content *p_bulletin;
331 	int crc_size = sizeof(p_bulletin->crc);
332 	struct qed_dmae_params params;
333 	struct qed_vf_info *p_vf;
334 
335 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
336 	if (!p_vf)
337 		return -EINVAL;
338 
339 	if (!p_vf->vf_bulletin)
340 		return -EINVAL;
341 
342 	p_bulletin = p_vf->bulletin.p_virt;
343 
344 	/* Increment bulletin board version and compute crc */
345 	p_bulletin->version++;
346 	p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
347 				p_vf->bulletin.size - crc_size);
348 
349 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
350 		   "Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
351 		   p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
352 
353 	/* propagate bulletin board via dmae to vm memory */
354 	memset(&params, 0, sizeof(params));
355 	params.flags = QED_DMAE_FLAG_VF_DST;
356 	params.dst_vfid = p_vf->abs_vf_id;
357 	return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
358 				  p_vf->vf_bulletin, p_vf->bulletin.size / 4,
359 				  &params);
360 }
361 
362 static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
363 {
364 	struct qed_hw_sriov_info *iov = cdev->p_iov_info;
365 	int pos = iov->pos;
366 
367 	DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
368 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
369 
370 	pci_read_config_word(cdev->pdev,
371 			     pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
372 	pci_read_config_word(cdev->pdev,
373 			     pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
374 
375 	pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
376 	if (iov->num_vfs) {
377 		DP_VERBOSE(cdev,
378 			   QED_MSG_IOV,
379 			   "Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
380 		iov->num_vfs = 0;
381 	}
382 
383 	pci_read_config_word(cdev->pdev,
384 			     pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
385 
386 	pci_read_config_word(cdev->pdev,
387 			     pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
388 
389 	pci_read_config_word(cdev->pdev,
390 			     pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
391 
392 	pci_read_config_dword(cdev->pdev,
393 			      pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
394 
395 	pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
396 
397 	pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
398 
399 	DP_VERBOSE(cdev,
400 		   QED_MSG_IOV,
401 		   "IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
402 		   iov->nres,
403 		   iov->cap,
404 		   iov->ctrl,
405 		   iov->total_vfs,
406 		   iov->initial_vfs,
407 		   iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
408 
409 	/* Some sanity checks */
410 	if (iov->num_vfs > NUM_OF_VFS(cdev) ||
411 	    iov->total_vfs > NUM_OF_VFS(cdev)) {
412 		/* This can happen only due to a bug. In this case we set
413 		 * num_vfs to zero to avoid memory corruption in the code that
414 		 * assumes max number of vfs
415 		 */
416 		DP_NOTICE(cdev,
417 			  "IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
418 			  iov->num_vfs);
419 
420 		iov->num_vfs = 0;
421 		iov->total_vfs = 0;
422 	}
423 
424 	return 0;
425 }
426 
427 static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
428 {
429 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
430 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
431 	struct qed_bulletin_content *p_bulletin_virt;
432 	dma_addr_t req_p, rply_p, bulletin_p;
433 	union pfvf_tlvs *p_reply_virt_addr;
434 	union vfpf_tlvs *p_req_virt_addr;
435 	u8 idx = 0;
436 
437 	memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
438 
439 	p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
440 	req_p = p_iov_info->mbx_msg_phys_addr;
441 	p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
442 	rply_p = p_iov_info->mbx_reply_phys_addr;
443 	p_bulletin_virt = p_iov_info->p_bulletins;
444 	bulletin_p = p_iov_info->bulletins_phys;
445 	if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
446 		DP_ERR(p_hwfn,
447 		       "qed_iov_setup_vfdb called without allocating mem first\n");
448 		return;
449 	}
450 
451 	for (idx = 0; idx < p_iov->total_vfs; idx++) {
452 		struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
453 		u32 concrete;
454 
455 		vf->vf_mbx.req_virt = p_req_virt_addr + idx;
456 		vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
457 		vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
458 		vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
459 
460 		vf->state = VF_STOPPED;
461 		vf->b_init = false;
462 
463 		vf->bulletin.phys = idx *
464 				    sizeof(struct qed_bulletin_content) +
465 				    bulletin_p;
466 		vf->bulletin.p_virt = p_bulletin_virt + idx;
467 		vf->bulletin.size = sizeof(struct qed_bulletin_content);
468 
469 		vf->relative_vf_id = idx;
470 		vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
471 		concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
472 		vf->concrete_fid = concrete;
473 		vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
474 				 (vf->abs_vf_id << 8);
475 		vf->vport_id = idx + 1;
476 
477 		vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
478 		vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
479 	}
480 }
481 
482 static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
483 {
484 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
485 	void **p_v_addr;
486 	u16 num_vfs = 0;
487 
488 	num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
489 
490 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
491 		   "qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
492 
493 	/* Allocate PF Mailbox buffer (per-VF) */
494 	p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
495 	p_v_addr = &p_iov_info->mbx_msg_virt_addr;
496 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
497 				       p_iov_info->mbx_msg_size,
498 				       &p_iov_info->mbx_msg_phys_addr,
499 				       GFP_KERNEL);
500 	if (!*p_v_addr)
501 		return -ENOMEM;
502 
503 	/* Allocate PF Mailbox Reply buffer (per-VF) */
504 	p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
505 	p_v_addr = &p_iov_info->mbx_reply_virt_addr;
506 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
507 				       p_iov_info->mbx_reply_size,
508 				       &p_iov_info->mbx_reply_phys_addr,
509 				       GFP_KERNEL);
510 	if (!*p_v_addr)
511 		return -ENOMEM;
512 
513 	p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
514 				     num_vfs;
515 	p_v_addr = &p_iov_info->p_bulletins;
516 	*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
517 				       p_iov_info->bulletins_size,
518 				       &p_iov_info->bulletins_phys,
519 				       GFP_KERNEL);
520 	if (!*p_v_addr)
521 		return -ENOMEM;
522 
523 	DP_VERBOSE(p_hwfn,
524 		   QED_MSG_IOV,
525 		   "PF's Requests mailbox [%p virt 0x%llx phys],  Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
526 		   p_iov_info->mbx_msg_virt_addr,
527 		   (u64) p_iov_info->mbx_msg_phys_addr,
528 		   p_iov_info->mbx_reply_virt_addr,
529 		   (u64) p_iov_info->mbx_reply_phys_addr,
530 		   p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
531 
532 	return 0;
533 }
534 
535 static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
536 {
537 	struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
538 
539 	if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
540 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
541 				  p_iov_info->mbx_msg_size,
542 				  p_iov_info->mbx_msg_virt_addr,
543 				  p_iov_info->mbx_msg_phys_addr);
544 
545 	if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
546 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
547 				  p_iov_info->mbx_reply_size,
548 				  p_iov_info->mbx_reply_virt_addr,
549 				  p_iov_info->mbx_reply_phys_addr);
550 
551 	if (p_iov_info->p_bulletins)
552 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
553 				  p_iov_info->bulletins_size,
554 				  p_iov_info->p_bulletins,
555 				  p_iov_info->bulletins_phys);
556 }
557 
558 int qed_iov_alloc(struct qed_hwfn *p_hwfn)
559 {
560 	struct qed_pf_iov *p_sriov;
561 
562 	if (!IS_PF_SRIOV(p_hwfn)) {
563 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
564 			   "No SR-IOV - no need for IOV db\n");
565 		return 0;
566 	}
567 
568 	p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
569 	if (!p_sriov)
570 		return -ENOMEM;
571 
572 	p_hwfn->pf_iov_info = p_sriov;
573 
574 	qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
575 				  qed_sriov_eqe_event);
576 
577 	return qed_iov_allocate_vfdb(p_hwfn);
578 }
579 
580 void qed_iov_setup(struct qed_hwfn *p_hwfn)
581 {
582 	if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
583 		return;
584 
585 	qed_iov_setup_vfdb(p_hwfn);
586 }
587 
588 void qed_iov_free(struct qed_hwfn *p_hwfn)
589 {
590 	qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
591 
592 	if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
593 		qed_iov_free_vfdb(p_hwfn);
594 		kfree(p_hwfn->pf_iov_info);
595 	}
596 }
597 
598 void qed_iov_free_hw_info(struct qed_dev *cdev)
599 {
600 	kfree(cdev->p_iov_info);
601 	cdev->p_iov_info = NULL;
602 }
603 
604 int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
605 {
606 	struct qed_dev *cdev = p_hwfn->cdev;
607 	int pos;
608 	int rc;
609 
610 	if (IS_VF(p_hwfn->cdev))
611 		return 0;
612 
613 	/* Learn the PCI configuration */
614 	pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
615 				      PCI_EXT_CAP_ID_SRIOV);
616 	if (!pos) {
617 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
618 		return 0;
619 	}
620 
621 	/* Allocate a new struct for IOV information */
622 	cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
623 	if (!cdev->p_iov_info)
624 		return -ENOMEM;
625 
626 	cdev->p_iov_info->pos = pos;
627 
628 	rc = qed_iov_pci_cfg_info(cdev);
629 	if (rc)
630 		return rc;
631 
632 	/* We want PF IOV to be synonemous with the existance of p_iov_info;
633 	 * In case the capability is published but there are no VFs, simply
634 	 * de-allocate the struct.
635 	 */
636 	if (!cdev->p_iov_info->total_vfs) {
637 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
638 			   "IOV capabilities, but no VFs are published\n");
639 		kfree(cdev->p_iov_info);
640 		cdev->p_iov_info = NULL;
641 		return 0;
642 	}
643 
644 	/* First VF index based on offset is tricky:
645 	 *  - If ARI is supported [likely], offset - (16 - pf_id) would
646 	 *    provide the number for eng0. 2nd engine Vfs would begin
647 	 *    after the first engine's VFs.
648 	 *  - If !ARI, VFs would start on next device.
649 	 *    so offset - (256 - pf_id) would provide the number.
650 	 * Utilize the fact that (256 - pf_id) is achieved only by later
651 	 * to differentiate between the two.
652 	 */
653 
654 	if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
655 		u32 first = p_hwfn->cdev->p_iov_info->offset +
656 			    p_hwfn->abs_pf_id - 16;
657 
658 		cdev->p_iov_info->first_vf_in_pf = first;
659 
660 		if (QED_PATH_ID(p_hwfn))
661 			cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
662 	} else {
663 		u32 first = p_hwfn->cdev->p_iov_info->offset +
664 			    p_hwfn->abs_pf_id - 256;
665 
666 		cdev->p_iov_info->first_vf_in_pf = first;
667 	}
668 
669 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
670 		   "First VF in hwfn 0x%08x\n",
671 		   cdev->p_iov_info->first_vf_in_pf);
672 
673 	return 0;
674 }
675 
676 static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
677 				     int vfid, bool b_fail_malicious)
678 {
679 	/* Check PF supports sriov */
680 	if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
681 	    !IS_PF_SRIOV_ALLOC(p_hwfn))
682 		return false;
683 
684 	/* Check VF validity */
685 	if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
686 		return false;
687 
688 	return true;
689 }
690 
691 static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
692 {
693 	return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
694 }
695 
696 static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
697 				      u16 rel_vf_id, u8 to_disable)
698 {
699 	struct qed_vf_info *vf;
700 	int i;
701 
702 	for_each_hwfn(cdev, i) {
703 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
704 
705 		vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
706 		if (!vf)
707 			continue;
708 
709 		vf->to_disable = to_disable;
710 	}
711 }
712 
713 static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
714 {
715 	u16 i;
716 
717 	if (!IS_QED_SRIOV(cdev))
718 		return;
719 
720 	for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
721 		qed_iov_set_vf_to_disable(cdev, i, to_disable);
722 }
723 
724 static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
725 				       struct qed_ptt *p_ptt, u8 abs_vfid)
726 {
727 	qed_wr(p_hwfn, p_ptt,
728 	       PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
729 	       1 << (abs_vfid & 0x1f));
730 }
731 
732 static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
733 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
734 {
735 	int i;
736 
737 	/* Set VF masks and configuration - pretend */
738 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
739 
740 	qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
741 
742 	/* unpretend */
743 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
744 
745 	/* iterate over all queues, clear sb consumer */
746 	for (i = 0; i < vf->num_sbs; i++)
747 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
748 						vf->igu_sbs[i],
749 						vf->opaque_fid, true);
750 }
751 
752 static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
753 				   struct qed_ptt *p_ptt,
754 				   struct qed_vf_info *vf, bool enable)
755 {
756 	u32 igu_vf_conf;
757 
758 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
759 
760 	igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
761 
762 	if (enable)
763 		igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
764 	else
765 		igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
766 
767 	qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
768 
769 	/* unpretend */
770 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
771 }
772 
773 static int
774 qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
775 			      struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
776 {
777 	u8 current_max = 0;
778 	int i;
779 
780 	/* For AH onward, configuration is per-PF. Find maximum of all
781 	 * the currently enabled child VFs, and set the number to be that.
782 	 */
783 	if (!QED_IS_BB(p_hwfn->cdev)) {
784 		qed_for_each_vf(p_hwfn, i) {
785 			struct qed_vf_info *p_vf;
786 
787 			p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
788 			if (!p_vf)
789 				continue;
790 
791 			current_max = max_t(u8, current_max, p_vf->num_sbs);
792 		}
793 	}
794 
795 	if (num_sbs > current_max)
796 		return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
797 					      abs_vf_id, num_sbs);
798 
799 	return 0;
800 }
801 
802 static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
803 				    struct qed_ptt *p_ptt,
804 				    struct qed_vf_info *vf)
805 {
806 	u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
807 	int rc;
808 
809 	/* It's possible VF was previously considered malicious -
810 	 * clear the indication even if we're only going to disable VF.
811 	 */
812 	vf->b_malicious = false;
813 
814 	if (vf->to_disable)
815 		return 0;
816 
817 	DP_VERBOSE(p_hwfn,
818 		   QED_MSG_IOV,
819 		   "Enable internal access for vf %x [abs %x]\n",
820 		   vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
821 
822 	qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
823 
824 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
825 
826 	rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
827 					   vf->abs_vf_id, vf->num_sbs);
828 	if (rc)
829 		return rc;
830 
831 	qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
832 
833 	SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
834 	STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
835 
836 	qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
837 		     p_hwfn->hw_info.hw_mode);
838 
839 	/* unpretend */
840 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
841 
842 	vf->state = VF_FREE;
843 
844 	return rc;
845 }
846 
847 /**
848  * @brief qed_iov_config_perm_table - configure the permission
849  *      zone table.
850  *      In E4, queue zone permission table size is 320x9. There
851  *      are 320 VF queues for single engine device (256 for dual
852  *      engine device), and each entry has the following format:
853  *      {Valid, VF[7:0]}
854  * @param p_hwfn
855  * @param p_ptt
856  * @param vf
857  * @param enable
858  */
859 static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
860 				      struct qed_ptt *p_ptt,
861 				      struct qed_vf_info *vf, u8 enable)
862 {
863 	u32 reg_addr, val;
864 	u16 qzone_id = 0;
865 	int qid;
866 
867 	for (qid = 0; qid < vf->num_rxqs; qid++) {
868 		qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
869 				&qzone_id);
870 
871 		reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
872 		val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
873 		qed_wr(p_hwfn, p_ptt, reg_addr, val);
874 	}
875 }
876 
877 static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
878 				      struct qed_ptt *p_ptt,
879 				      struct qed_vf_info *vf)
880 {
881 	/* Reset vf in IGU - interrupts are still disabled */
882 	qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
883 
884 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
885 
886 	/* Permission Table */
887 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
888 }
889 
890 static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
891 				   struct qed_ptt *p_ptt,
892 				   struct qed_vf_info *vf, u16 num_rx_queues)
893 {
894 	struct qed_igu_block *p_block;
895 	struct cau_sb_entry sb_entry;
896 	int qid = 0;
897 	u32 val = 0;
898 
899 	if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
900 		num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
901 	p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
902 
903 	SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
904 	SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
905 	SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
906 
907 	for (qid = 0; qid < num_rx_queues; qid++) {
908 		p_block = qed_get_igu_free_sb(p_hwfn, false);
909 		vf->igu_sbs[qid] = p_block->igu_sb_id;
910 		p_block->status &= ~QED_IGU_STATUS_FREE;
911 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
912 
913 		qed_wr(p_hwfn, p_ptt,
914 		       IGU_REG_MAPPING_MEMORY +
915 		       sizeof(u32) * p_block->igu_sb_id, val);
916 
917 		/* Configure igu sb in CAU which were marked valid */
918 		qed_init_cau_sb_entry(p_hwfn, &sb_entry,
919 				      p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
920 		qed_dmae_host2grc(p_hwfn, p_ptt,
921 				  (u64)(uintptr_t)&sb_entry,
922 				  CAU_REG_SB_VAR_MEMORY +
923 				  p_block->igu_sb_id * sizeof(u64), 2, 0);
924 	}
925 
926 	vf->num_sbs = (u8) num_rx_queues;
927 
928 	return vf->num_sbs;
929 }
930 
931 static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
932 				    struct qed_ptt *p_ptt,
933 				    struct qed_vf_info *vf)
934 {
935 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
936 	int idx, igu_id;
937 	u32 addr, val;
938 
939 	/* Invalidate igu CAM lines and mark them as free */
940 	for (idx = 0; idx < vf->num_sbs; idx++) {
941 		igu_id = vf->igu_sbs[idx];
942 		addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
943 
944 		val = qed_rd(p_hwfn, p_ptt, addr);
945 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
946 		qed_wr(p_hwfn, p_ptt, addr, val);
947 
948 		p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
949 		p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
950 	}
951 
952 	vf->num_sbs = 0;
953 }
954 
955 static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
956 			     u16 vfid,
957 			     struct qed_mcp_link_params *params,
958 			     struct qed_mcp_link_state *link,
959 			     struct qed_mcp_link_capabilities *p_caps)
960 {
961 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
962 						       vfid,
963 						       false);
964 	struct qed_bulletin_content *p_bulletin;
965 
966 	if (!p_vf)
967 		return;
968 
969 	p_bulletin = p_vf->bulletin.p_virt;
970 	p_bulletin->req_autoneg = params->speed.autoneg;
971 	p_bulletin->req_adv_speed = params->speed.advertised_speeds;
972 	p_bulletin->req_forced_speed = params->speed.forced_speed;
973 	p_bulletin->req_autoneg_pause = params->pause.autoneg;
974 	p_bulletin->req_forced_rx = params->pause.forced_rx;
975 	p_bulletin->req_forced_tx = params->pause.forced_tx;
976 	p_bulletin->req_loopback = params->loopback_mode;
977 
978 	p_bulletin->link_up = link->link_up;
979 	p_bulletin->speed = link->speed;
980 	p_bulletin->full_duplex = link->full_duplex;
981 	p_bulletin->autoneg = link->an;
982 	p_bulletin->autoneg_complete = link->an_complete;
983 	p_bulletin->parallel_detection = link->parallel_detection;
984 	p_bulletin->pfc_enabled = link->pfc_enabled;
985 	p_bulletin->partner_adv_speed = link->partner_adv_speed;
986 	p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
987 	p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
988 	p_bulletin->partner_adv_pause = link->partner_adv_pause;
989 	p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
990 
991 	p_bulletin->capability_speed = p_caps->speed_capabilities;
992 }
993 
994 static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
995 				  struct qed_ptt *p_ptt,
996 				  struct qed_iov_vf_init_params *p_params)
997 {
998 	struct qed_mcp_link_capabilities link_caps;
999 	struct qed_mcp_link_params link_params;
1000 	struct qed_mcp_link_state link_state;
1001 	u8 num_of_vf_avaiable_chains = 0;
1002 	struct qed_vf_info *vf = NULL;
1003 	u16 qid, num_irqs;
1004 	int rc = 0;
1005 	u32 cids;
1006 	u8 i;
1007 
1008 	vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
1009 	if (!vf) {
1010 		DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (vf->b_init) {
1015 		DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
1016 			  p_params->rel_vf_id);
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Perform sanity checking on the requested queue_id */
1021 	for (i = 0; i < p_params->num_queues; i++) {
1022 		u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
1023 		u16 max_vf_qzone = min_vf_qzone +
1024 		    FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
1025 
1026 		qid = p_params->req_rx_queue[i];
1027 		if (qid < min_vf_qzone || qid > max_vf_qzone) {
1028 			DP_NOTICE(p_hwfn,
1029 				  "Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
1030 				  qid,
1031 				  p_params->rel_vf_id,
1032 				  min_vf_qzone, max_vf_qzone);
1033 			return -EINVAL;
1034 		}
1035 
1036 		qid = p_params->req_tx_queue[i];
1037 		if (qid > max_vf_qzone) {
1038 			DP_NOTICE(p_hwfn,
1039 				  "Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
1040 				  qid, p_params->rel_vf_id, max_vf_qzone);
1041 			return -EINVAL;
1042 		}
1043 
1044 		/* If client *really* wants, Tx qid can be shared with PF */
1045 		if (qid < min_vf_qzone)
1046 			DP_VERBOSE(p_hwfn,
1047 				   QED_MSG_IOV,
1048 				   "VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
1049 				   p_params->rel_vf_id, qid, i);
1050 	}
1051 
1052 	/* Limit number of queues according to number of CIDs */
1053 	qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
1054 	DP_VERBOSE(p_hwfn,
1055 		   QED_MSG_IOV,
1056 		   "VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
1057 		   vf->relative_vf_id, p_params->num_queues, (u16)cids);
1058 	num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
1059 
1060 	num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
1061 							     p_ptt,
1062 							     vf, num_irqs);
1063 	if (!num_of_vf_avaiable_chains) {
1064 		DP_ERR(p_hwfn, "no available igu sbs\n");
1065 		return -ENOMEM;
1066 	}
1067 
1068 	/* Choose queue number and index ranges */
1069 	vf->num_rxqs = num_of_vf_avaiable_chains;
1070 	vf->num_txqs = num_of_vf_avaiable_chains;
1071 
1072 	for (i = 0; i < vf->num_rxqs; i++) {
1073 		struct qed_vf_queue *p_queue = &vf->vf_queues[i];
1074 
1075 		p_queue->fw_rx_qid = p_params->req_rx_queue[i];
1076 		p_queue->fw_tx_qid = p_params->req_tx_queue[i];
1077 
1078 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1079 			   "VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
1080 			   vf->relative_vf_id, i, vf->igu_sbs[i],
1081 			   p_queue->fw_rx_qid, p_queue->fw_tx_qid);
1082 	}
1083 
1084 	/* Update the link configuration in bulletin */
1085 	memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
1086 	       sizeof(link_params));
1087 	memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
1088 	memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
1089 	       sizeof(link_caps));
1090 	qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
1091 			 &link_params, &link_state, &link_caps);
1092 
1093 	rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
1094 	if (!rc) {
1095 		vf->b_init = true;
1096 
1097 		if (IS_LEAD_HWFN(p_hwfn))
1098 			p_hwfn->cdev->p_iov_info->num_vfs++;
1099 	}
1100 
1101 	return rc;
1102 }
1103 
1104 static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
1105 				     struct qed_ptt *p_ptt, u16 rel_vf_id)
1106 {
1107 	struct qed_mcp_link_capabilities caps;
1108 	struct qed_mcp_link_params params;
1109 	struct qed_mcp_link_state link;
1110 	struct qed_vf_info *vf = NULL;
1111 
1112 	vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
1113 	if (!vf) {
1114 		DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
1115 		return -EINVAL;
1116 	}
1117 
1118 	if (vf->bulletin.p_virt)
1119 		memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
1120 
1121 	memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
1122 
1123 	/* Get the link configuration back in bulletin so
1124 	 * that when VFs are re-enabled they get the actual
1125 	 * link configuration.
1126 	 */
1127 	memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
1128 	memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
1129 	memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
1130 	qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
1131 
1132 	/* Forget the VF's acquisition message */
1133 	memset(&vf->acquire, 0, sizeof(vf->acquire));
1134 
1135 	/* disablng interrupts and resetting permission table was done during
1136 	 * vf-close, however, we could get here without going through vf_close
1137 	 */
1138 	/* Disable Interrupts for VF */
1139 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
1140 
1141 	/* Reset Permission table */
1142 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
1143 
1144 	vf->num_rxqs = 0;
1145 	vf->num_txqs = 0;
1146 	qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
1147 
1148 	if (vf->b_init) {
1149 		vf->b_init = false;
1150 
1151 		if (IS_LEAD_HWFN(p_hwfn))
1152 			p_hwfn->cdev->p_iov_info->num_vfs--;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static bool qed_iov_tlv_supported(u16 tlvtype)
1159 {
1160 	return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
1161 }
1162 
1163 /* place a given tlv on the tlv buffer, continuing current tlv list */
1164 void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
1165 {
1166 	struct channel_tlv *tl = (struct channel_tlv *)*offset;
1167 
1168 	tl->type = type;
1169 	tl->length = length;
1170 
1171 	/* Offset should keep pointing to next TLV (the end of the last) */
1172 	*offset += length;
1173 
1174 	/* Return a pointer to the start of the added tlv */
1175 	return *offset - length;
1176 }
1177 
1178 /* list the types and lengths of the tlvs on the buffer */
1179 void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
1180 {
1181 	u16 i = 1, total_length = 0;
1182 	struct channel_tlv *tlv;
1183 
1184 	do {
1185 		tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
1186 
1187 		/* output tlv */
1188 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1189 			   "TLV number %d: type %d, length %d\n",
1190 			   i, tlv->type, tlv->length);
1191 
1192 		if (tlv->type == CHANNEL_TLV_LIST_END)
1193 			return;
1194 
1195 		/* Validate entry - protect against malicious VFs */
1196 		if (!tlv->length) {
1197 			DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
1198 			return;
1199 		}
1200 
1201 		total_length += tlv->length;
1202 
1203 		if (total_length >= sizeof(struct tlv_buffer_size)) {
1204 			DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
1205 			return;
1206 		}
1207 
1208 		i++;
1209 	} while (1);
1210 }
1211 
1212 static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
1213 				  struct qed_ptt *p_ptt,
1214 				  struct qed_vf_info *p_vf,
1215 				  u16 length, u8 status)
1216 {
1217 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
1218 	struct qed_dmae_params params;
1219 	u8 eng_vf_id;
1220 
1221 	mbx->reply_virt->default_resp.hdr.status = status;
1222 
1223 	qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
1224 
1225 	eng_vf_id = p_vf->abs_vf_id;
1226 
1227 	memset(&params, 0, sizeof(struct qed_dmae_params));
1228 	params.flags = QED_DMAE_FLAG_VF_DST;
1229 	params.dst_vfid = eng_vf_id;
1230 
1231 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
1232 			   mbx->req_virt->first_tlv.reply_address +
1233 			   sizeof(u64),
1234 			   (sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
1235 			   &params);
1236 
1237 	/* Once PF copies the rc to the VF, the latter can continue
1238 	 * and send an additional message. So we have to make sure the
1239 	 * channel would be re-set to ready prior to that.
1240 	 */
1241 	REG_WR(p_hwfn,
1242 	       GTT_BAR0_MAP_REG_USDM_RAM +
1243 	       USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
1244 
1245 	qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
1246 			   mbx->req_virt->first_tlv.reply_address,
1247 			   sizeof(u64) / 4, &params);
1248 }
1249 
1250 static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
1251 				enum qed_iov_vport_update_flag flag)
1252 {
1253 	switch (flag) {
1254 	case QED_IOV_VP_UPDATE_ACTIVATE:
1255 		return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
1256 	case QED_IOV_VP_UPDATE_VLAN_STRIP:
1257 		return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
1258 	case QED_IOV_VP_UPDATE_TX_SWITCH:
1259 		return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
1260 	case QED_IOV_VP_UPDATE_MCAST:
1261 		return CHANNEL_TLV_VPORT_UPDATE_MCAST;
1262 	case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
1263 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
1264 	case QED_IOV_VP_UPDATE_RSS:
1265 		return CHANNEL_TLV_VPORT_UPDATE_RSS;
1266 	case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
1267 		return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
1268 	case QED_IOV_VP_UPDATE_SGE_TPA:
1269 		return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
1270 	default:
1271 		return 0;
1272 	}
1273 }
1274 
1275 static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
1276 					    struct qed_vf_info *p_vf,
1277 					    struct qed_iov_vf_mbx *p_mbx,
1278 					    u8 status,
1279 					    u16 tlvs_mask, u16 tlvs_accepted)
1280 {
1281 	struct pfvf_def_resp_tlv *resp;
1282 	u16 size, total_len, i;
1283 
1284 	memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
1285 	p_mbx->offset = (u8 *)p_mbx->reply_virt;
1286 	size = sizeof(struct pfvf_def_resp_tlv);
1287 	total_len = size;
1288 
1289 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
1290 
1291 	/* Prepare response for all extended tlvs if they are found by PF */
1292 	for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
1293 		if (!(tlvs_mask & BIT(i)))
1294 			continue;
1295 
1296 		resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
1297 				   qed_iov_vport_to_tlv(p_hwfn, i), size);
1298 
1299 		if (tlvs_accepted & BIT(i))
1300 			resp->hdr.status = status;
1301 		else
1302 			resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
1303 
1304 		DP_VERBOSE(p_hwfn,
1305 			   QED_MSG_IOV,
1306 			   "VF[%d] - vport_update response: TLV %d, status %02x\n",
1307 			   p_vf->relative_vf_id,
1308 			   qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
1309 
1310 		total_len += size;
1311 	}
1312 
1313 	qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
1314 		    sizeof(struct channel_list_end_tlv));
1315 
1316 	return total_len;
1317 }
1318 
1319 static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
1320 				 struct qed_ptt *p_ptt,
1321 				 struct qed_vf_info *vf_info,
1322 				 u16 type, u16 length, u8 status)
1323 {
1324 	struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
1325 
1326 	mbx->offset = (u8 *)mbx->reply_virt;
1327 
1328 	qed_add_tlv(p_hwfn, &mbx->offset, type, length);
1329 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
1330 		    sizeof(struct channel_list_end_tlv));
1331 
1332 	qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
1333 }
1334 
1335 static struct
1336 qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
1337 					       u16 relative_vf_id,
1338 					       bool b_enabled_only)
1339 {
1340 	struct qed_vf_info *vf = NULL;
1341 
1342 	vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
1343 	if (!vf)
1344 		return NULL;
1345 
1346 	return &vf->p_vf_info;
1347 }
1348 
1349 static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
1350 {
1351 	struct qed_public_vf_info *vf_info;
1352 
1353 	vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
1354 
1355 	if (!vf_info)
1356 		return;
1357 
1358 	/* Clear the VF mac */
1359 	eth_zero_addr(vf_info->mac);
1360 
1361 	vf_info->rx_accept_mode = 0;
1362 	vf_info->tx_accept_mode = 0;
1363 }
1364 
1365 static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
1366 			       struct qed_vf_info *p_vf)
1367 {
1368 	u32 i, j;
1369 
1370 	p_vf->vf_bulletin = 0;
1371 	p_vf->vport_instance = 0;
1372 	p_vf->configured_features = 0;
1373 
1374 	/* If VF previously requested less resources, go back to default */
1375 	p_vf->num_rxqs = p_vf->num_sbs;
1376 	p_vf->num_txqs = p_vf->num_sbs;
1377 
1378 	p_vf->num_active_rxqs = 0;
1379 
1380 	for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1381 		struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1382 
1383 		for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
1384 			if (!p_queue->cids[j].p_cid)
1385 				continue;
1386 
1387 			qed_eth_queue_cid_release(p_hwfn,
1388 						  p_queue->cids[j].p_cid);
1389 			p_queue->cids[j].p_cid = NULL;
1390 		}
1391 	}
1392 
1393 	memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
1394 	memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
1395 	qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
1396 }
1397 
1398 /* Returns either 0, or log(size) */
1399 static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
1400 				  struct qed_ptt *p_ptt)
1401 {
1402 	u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
1403 
1404 	if (val)
1405 		return val + 11;
1406 	return 0;
1407 }
1408 
1409 static void
1410 qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
1411 				 struct qed_ptt *p_ptt,
1412 				 struct qed_vf_info *p_vf,
1413 				 struct vf_pf_resc_request *p_req,
1414 				 struct pf_vf_resc *p_resp)
1415 {
1416 	u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
1417 	u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
1418 		     qed_db_addr_vf(0, DQ_DEMS_LEGACY);
1419 	u32 bar_size;
1420 
1421 	p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
1422 
1423 	/* If VF didn't bother asking for QIDs than don't bother limiting
1424 	 * number of CIDs. The VF doesn't care about the number, and this
1425 	 * has the likely result of causing an additional acquisition.
1426 	 */
1427 	if (!(p_vf->acquire.vfdev_info.capabilities &
1428 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS))
1429 		return;
1430 
1431 	/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
1432 	 * that would make sure doorbells for all CIDs fall within the bar.
1433 	 * If it doesn't, make sure regview window is sufficient.
1434 	 */
1435 	if (p_vf->acquire.vfdev_info.capabilities &
1436 	    VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
1437 		bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1438 		if (bar_size)
1439 			bar_size = 1 << bar_size;
1440 
1441 		if (p_hwfn->cdev->num_hwfns > 1)
1442 			bar_size /= 2;
1443 	} else {
1444 		bar_size = PXP_VF_BAR0_DQ_LENGTH;
1445 	}
1446 
1447 	if (bar_size / db_size < 256)
1448 		p_resp->num_cids = min_t(u8, p_resp->num_cids,
1449 					 (u8)(bar_size / db_size));
1450 }
1451 
1452 static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
1453 				      struct qed_ptt *p_ptt,
1454 				      struct qed_vf_info *p_vf,
1455 				      struct vf_pf_resc_request *p_req,
1456 				      struct pf_vf_resc *p_resp)
1457 {
1458 	u8 i;
1459 
1460 	/* Queue related information */
1461 	p_resp->num_rxqs = p_vf->num_rxqs;
1462 	p_resp->num_txqs = p_vf->num_txqs;
1463 	p_resp->num_sbs = p_vf->num_sbs;
1464 
1465 	for (i = 0; i < p_resp->num_sbs; i++) {
1466 		p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
1467 		p_resp->hw_sbs[i].sb_qid = 0;
1468 	}
1469 
1470 	/* These fields are filled for backward compatibility.
1471 	 * Unused by modern vfs.
1472 	 */
1473 	for (i = 0; i < p_resp->num_rxqs; i++) {
1474 		qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
1475 				(u16 *)&p_resp->hw_qid[i]);
1476 		p_resp->cid[i] = i;
1477 	}
1478 
1479 	/* Filter related information */
1480 	p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
1481 					p_req->num_mac_filters);
1482 	p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
1483 					 p_req->num_vlan_filters);
1484 
1485 	qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
1486 
1487 	/* This isn't really needed/enforced, but some legacy VFs might depend
1488 	 * on the correct filling of this field.
1489 	 */
1490 	p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
1491 
1492 	/* Validate sufficient resources for VF */
1493 	if (p_resp->num_rxqs < p_req->num_rxqs ||
1494 	    p_resp->num_txqs < p_req->num_txqs ||
1495 	    p_resp->num_sbs < p_req->num_sbs ||
1496 	    p_resp->num_mac_filters < p_req->num_mac_filters ||
1497 	    p_resp->num_vlan_filters < p_req->num_vlan_filters ||
1498 	    p_resp->num_mc_filters < p_req->num_mc_filters ||
1499 	    p_resp->num_cids < p_req->num_cids) {
1500 		DP_VERBOSE(p_hwfn,
1501 			   QED_MSG_IOV,
1502 			   "VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
1503 			   p_vf->abs_vf_id,
1504 			   p_req->num_rxqs,
1505 			   p_resp->num_rxqs,
1506 			   p_req->num_rxqs,
1507 			   p_resp->num_txqs,
1508 			   p_req->num_sbs,
1509 			   p_resp->num_sbs,
1510 			   p_req->num_mac_filters,
1511 			   p_resp->num_mac_filters,
1512 			   p_req->num_vlan_filters,
1513 			   p_resp->num_vlan_filters,
1514 			   p_req->num_mc_filters,
1515 			   p_resp->num_mc_filters,
1516 			   p_req->num_cids, p_resp->num_cids);
1517 
1518 		/* Some legacy OSes are incapable of correctly handling this
1519 		 * failure.
1520 		 */
1521 		if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
1522 		     ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
1523 		    (p_vf->acquire.vfdev_info.os_type ==
1524 		     VFPF_ACQUIRE_OS_WINDOWS))
1525 			return PFVF_STATUS_SUCCESS;
1526 
1527 		return PFVF_STATUS_NO_RESOURCE;
1528 	}
1529 
1530 	return PFVF_STATUS_SUCCESS;
1531 }
1532 
1533 static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
1534 					 struct pfvf_stats_info *p_stats)
1535 {
1536 	p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
1537 				  offsetof(struct mstorm_vf_zone,
1538 					   non_trigger.eth_queue_stat);
1539 	p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
1540 	p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
1541 				  offsetof(struct ustorm_vf_zone,
1542 					   non_trigger.eth_queue_stat);
1543 	p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
1544 	p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
1545 				  offsetof(struct pstorm_vf_zone,
1546 					   non_trigger.eth_queue_stat);
1547 	p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
1548 	p_stats->tstats.address = 0;
1549 	p_stats->tstats.len = 0;
1550 }
1551 
1552 static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
1553 				   struct qed_ptt *p_ptt,
1554 				   struct qed_vf_info *vf)
1555 {
1556 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1557 	struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
1558 	struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
1559 	struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
1560 	u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
1561 	struct pf_vf_resc *resc = &resp->resc;
1562 	int rc;
1563 
1564 	memset(resp, 0, sizeof(*resp));
1565 
1566 	/* Write the PF version so that VF would know which version
1567 	 * is supported - might be later overriden. This guarantees that
1568 	 * VF could recognize legacy PF based on lack of versions in reply.
1569 	 */
1570 	pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
1571 	pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
1572 
1573 	if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
1574 		DP_VERBOSE(p_hwfn,
1575 			   QED_MSG_IOV,
1576 			   "VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
1577 			   vf->abs_vf_id, vf->state);
1578 		goto out;
1579 	}
1580 
1581 	/* Validate FW compatibility */
1582 	if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
1583 		if (req->vfdev_info.capabilities &
1584 		    VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
1585 			struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
1586 
1587 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1588 				   "VF[%d] is pre-fastpath HSI\n",
1589 				   vf->abs_vf_id);
1590 			p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
1591 			p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
1592 		} else {
1593 			DP_INFO(p_hwfn,
1594 				"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
1595 				vf->abs_vf_id,
1596 				req->vfdev_info.eth_fp_hsi_major,
1597 				req->vfdev_info.eth_fp_hsi_minor,
1598 				ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
1599 
1600 			goto out;
1601 		}
1602 	}
1603 
1604 	/* On 100g PFs, prevent old VFs from loading */
1605 	if ((p_hwfn->cdev->num_hwfns > 1) &&
1606 	    !(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
1607 		DP_INFO(p_hwfn,
1608 			"VF[%d] is running an old driver that doesn't support 100g\n",
1609 			vf->abs_vf_id);
1610 		goto out;
1611 	}
1612 
1613 	/* Store the acquire message */
1614 	memcpy(&vf->acquire, req, sizeof(vf->acquire));
1615 
1616 	vf->opaque_fid = req->vfdev_info.opaque_fid;
1617 
1618 	vf->vf_bulletin = req->bulletin_addr;
1619 	vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
1620 			    vf->bulletin.size : req->bulletin_size;
1621 
1622 	/* fill in pfdev info */
1623 	pfdev_info->chip_num = p_hwfn->cdev->chip_num;
1624 	pfdev_info->db_size = 0;
1625 	pfdev_info->indices_per_sb = PIS_PER_SB_E4;
1626 
1627 	pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
1628 				   PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
1629 	if (p_hwfn->cdev->num_hwfns > 1)
1630 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
1631 
1632 	/* Share our ability to use multiple queue-ids only with VFs
1633 	 * that request it.
1634 	 */
1635 	if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
1636 		pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
1637 
1638 	/* Share the sizes of the bars with VF */
1639 	resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
1640 
1641 	qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
1642 
1643 	memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
1644 
1645 	pfdev_info->fw_major = FW_MAJOR_VERSION;
1646 	pfdev_info->fw_minor = FW_MINOR_VERSION;
1647 	pfdev_info->fw_rev = FW_REVISION_VERSION;
1648 	pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
1649 
1650 	/* Incorrect when legacy, but doesn't matter as legacy isn't reading
1651 	 * this field.
1652 	 */
1653 	pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
1654 					 req->vfdev_info.eth_fp_hsi_minor);
1655 	pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
1656 	qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
1657 
1658 	pfdev_info->dev_type = p_hwfn->cdev->type;
1659 	pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
1660 
1661 	/* Fill resources available to VF; Make sure there are enough to
1662 	 * satisfy the VF's request.
1663 	 */
1664 	vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
1665 						  &req->resc_request, resc);
1666 	if (vfpf_status != PFVF_STATUS_SUCCESS)
1667 		goto out;
1668 
1669 	/* Start the VF in FW */
1670 	rc = qed_sp_vf_start(p_hwfn, vf);
1671 	if (rc) {
1672 		DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
1673 		vfpf_status = PFVF_STATUS_FAILURE;
1674 		goto out;
1675 	}
1676 
1677 	/* Fill agreed size of bulletin board in response */
1678 	resp->bulletin_size = vf->bulletin.size;
1679 	qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
1680 
1681 	DP_VERBOSE(p_hwfn,
1682 		   QED_MSG_IOV,
1683 		   "VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
1684 		   "resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
1685 		   vf->abs_vf_id,
1686 		   resp->pfdev_info.chip_num,
1687 		   resp->pfdev_info.db_size,
1688 		   resp->pfdev_info.indices_per_sb,
1689 		   resp->pfdev_info.capabilities,
1690 		   resc->num_rxqs,
1691 		   resc->num_txqs,
1692 		   resc->num_sbs,
1693 		   resc->num_mac_filters,
1694 		   resc->num_vlan_filters);
1695 	vf->state = VF_ACQUIRED;
1696 
1697 	/* Prepare Response */
1698 out:
1699 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
1700 			     sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
1701 }
1702 
1703 static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
1704 				  struct qed_vf_info *p_vf, bool val)
1705 {
1706 	struct qed_sp_vport_update_params params;
1707 	int rc;
1708 
1709 	if (val == p_vf->spoof_chk) {
1710 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1711 			   "Spoofchk value[%d] is already configured\n", val);
1712 		return 0;
1713 	}
1714 
1715 	memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
1716 	params.opaque_fid = p_vf->opaque_fid;
1717 	params.vport_id = p_vf->vport_id;
1718 	params.update_anti_spoofing_en_flg = 1;
1719 	params.anti_spoofing_en = val;
1720 
1721 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
1722 	if (!rc) {
1723 		p_vf->spoof_chk = val;
1724 		p_vf->req_spoofchk_val = p_vf->spoof_chk;
1725 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1726 			   "Spoofchk val[%d] configured\n", val);
1727 	} else {
1728 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1729 			   "Spoofchk configuration[val:%d] failed for VF[%d]\n",
1730 			   val, p_vf->relative_vf_id);
1731 	}
1732 
1733 	return rc;
1734 }
1735 
1736 static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
1737 					    struct qed_vf_info *p_vf)
1738 {
1739 	struct qed_filter_ucast filter;
1740 	int rc = 0;
1741 	int i;
1742 
1743 	memset(&filter, 0, sizeof(filter));
1744 	filter.is_rx_filter = 1;
1745 	filter.is_tx_filter = 1;
1746 	filter.vport_to_add_to = p_vf->vport_id;
1747 	filter.opcode = QED_FILTER_ADD;
1748 
1749 	/* Reconfigure vlans */
1750 	for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
1751 		if (!p_vf->shadow_config.vlans[i].used)
1752 			continue;
1753 
1754 		filter.type = QED_FILTER_VLAN;
1755 		filter.vlan = p_vf->shadow_config.vlans[i].vid;
1756 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1757 			   "Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
1758 			   filter.vlan, p_vf->relative_vf_id);
1759 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1760 					     &filter, QED_SPQ_MODE_CB, NULL);
1761 		if (rc) {
1762 			DP_NOTICE(p_hwfn,
1763 				  "Failed to configure VLAN [%04x] to VF [%04x]\n",
1764 				  filter.vlan, p_vf->relative_vf_id);
1765 			break;
1766 		}
1767 	}
1768 
1769 	return rc;
1770 }
1771 
1772 static int
1773 qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
1774 				   struct qed_vf_info *p_vf, u64 events)
1775 {
1776 	int rc = 0;
1777 
1778 	if ((events & BIT(VLAN_ADDR_FORCED)) &&
1779 	    !(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
1780 		rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
1781 
1782 	return rc;
1783 }
1784 
1785 static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
1786 					  struct qed_vf_info *p_vf, u64 events)
1787 {
1788 	int rc = 0;
1789 	struct qed_filter_ucast filter;
1790 
1791 	if (!p_vf->vport_instance)
1792 		return -EINVAL;
1793 
1794 	if ((events & BIT(MAC_ADDR_FORCED)) ||
1795 	    p_vf->p_vf_info.is_trusted_configured) {
1796 		/* Since there's no way [currently] of removing the MAC,
1797 		 * we can always assume this means we need to force it.
1798 		 */
1799 		memset(&filter, 0, sizeof(filter));
1800 		filter.type = QED_FILTER_MAC;
1801 		filter.opcode = QED_FILTER_REPLACE;
1802 		filter.is_rx_filter = 1;
1803 		filter.is_tx_filter = 1;
1804 		filter.vport_to_add_to = p_vf->vport_id;
1805 		ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
1806 
1807 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1808 					     &filter, QED_SPQ_MODE_CB, NULL);
1809 		if (rc) {
1810 			DP_NOTICE(p_hwfn,
1811 				  "PF failed to configure MAC for VF\n");
1812 			return rc;
1813 		}
1814 		if (p_vf->p_vf_info.is_trusted_configured)
1815 			p_vf->configured_features |=
1816 				BIT(VFPF_BULLETIN_MAC_ADDR);
1817 		else
1818 			p_vf->configured_features |=
1819 				BIT(MAC_ADDR_FORCED);
1820 	}
1821 
1822 	if (events & BIT(VLAN_ADDR_FORCED)) {
1823 		struct qed_sp_vport_update_params vport_update;
1824 		u8 removal;
1825 		int i;
1826 
1827 		memset(&filter, 0, sizeof(filter));
1828 		filter.type = QED_FILTER_VLAN;
1829 		filter.is_rx_filter = 1;
1830 		filter.is_tx_filter = 1;
1831 		filter.vport_to_add_to = p_vf->vport_id;
1832 		filter.vlan = p_vf->bulletin.p_virt->pvid;
1833 		filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
1834 					      QED_FILTER_FLUSH;
1835 
1836 		/* Send the ramrod */
1837 		rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
1838 					     &filter, QED_SPQ_MODE_CB, NULL);
1839 		if (rc) {
1840 			DP_NOTICE(p_hwfn,
1841 				  "PF failed to configure VLAN for VF\n");
1842 			return rc;
1843 		}
1844 
1845 		/* Update the default-vlan & silent vlan stripping */
1846 		memset(&vport_update, 0, sizeof(vport_update));
1847 		vport_update.opaque_fid = p_vf->opaque_fid;
1848 		vport_update.vport_id = p_vf->vport_id;
1849 		vport_update.update_default_vlan_enable_flg = 1;
1850 		vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
1851 		vport_update.update_default_vlan_flg = 1;
1852 		vport_update.default_vlan = filter.vlan;
1853 
1854 		vport_update.update_inner_vlan_removal_flg = 1;
1855 		removal = filter.vlan ? 1
1856 				      : p_vf->shadow_config.inner_vlan_removal;
1857 		vport_update.inner_vlan_removal_flg = removal;
1858 		vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
1859 		rc = qed_sp_vport_update(p_hwfn,
1860 					 &vport_update,
1861 					 QED_SPQ_MODE_EBLOCK, NULL);
1862 		if (rc) {
1863 			DP_NOTICE(p_hwfn,
1864 				  "PF failed to configure VF vport for vlan\n");
1865 			return rc;
1866 		}
1867 
1868 		/* Update all the Rx queues */
1869 		for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
1870 			struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
1871 			struct qed_queue_cid *p_cid = NULL;
1872 
1873 			/* There can be at most 1 Rx queue on qzone. Find it */
1874 			p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
1875 			if (!p_cid)
1876 				continue;
1877 
1878 			rc = qed_sp_eth_rx_queues_update(p_hwfn,
1879 							 (void **)&p_cid,
1880 							 1, 0, 1,
1881 							 QED_SPQ_MODE_EBLOCK,
1882 							 NULL);
1883 			if (rc) {
1884 				DP_NOTICE(p_hwfn,
1885 					  "Failed to send Rx update fo queue[0x%04x]\n",
1886 					  p_cid->rel.queue_id);
1887 				return rc;
1888 			}
1889 		}
1890 
1891 		if (filter.vlan)
1892 			p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
1893 		else
1894 			p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
1895 	}
1896 
1897 	/* If forced features are terminated, we need to configure the shadow
1898 	 * configuration back again.
1899 	 */
1900 	if (events)
1901 		qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
1902 
1903 	return rc;
1904 }
1905 
1906 static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
1907 				       struct qed_ptt *p_ptt,
1908 				       struct qed_vf_info *vf)
1909 {
1910 	struct qed_sp_vport_start_params params = { 0 };
1911 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
1912 	struct vfpf_vport_start_tlv *start;
1913 	u8 status = PFVF_STATUS_SUCCESS;
1914 	struct qed_vf_info *vf_info;
1915 	u64 *p_bitmap;
1916 	int sb_id;
1917 	int rc;
1918 
1919 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
1920 	if (!vf_info) {
1921 		DP_NOTICE(p_hwfn->cdev,
1922 			  "Failed to get VF info, invalid vfid [%d]\n",
1923 			  vf->relative_vf_id);
1924 		return;
1925 	}
1926 
1927 	vf->state = VF_ENABLED;
1928 	start = &mbx->req_virt->start_vport;
1929 
1930 	qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
1931 
1932 	/* Initialize Status block in CAU */
1933 	for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
1934 		if (!start->sb_addr[sb_id]) {
1935 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
1936 				   "VF[%d] did not fill the address of SB %d\n",
1937 				   vf->relative_vf_id, sb_id);
1938 			break;
1939 		}
1940 
1941 		qed_int_cau_conf_sb(p_hwfn, p_ptt,
1942 				    start->sb_addr[sb_id],
1943 				    vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
1944 	}
1945 
1946 	vf->mtu = start->mtu;
1947 	vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
1948 
1949 	/* Take into consideration configuration forced by hypervisor;
1950 	 * If none is configured, use the supplied VF values [for old
1951 	 * vfs that would still be fine, since they passed '0' as padding].
1952 	 */
1953 	p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
1954 	if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
1955 		u8 vf_req = start->only_untagged;
1956 
1957 		vf_info->bulletin.p_virt->default_only_untagged = vf_req;
1958 		*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
1959 	}
1960 
1961 	params.tpa_mode = start->tpa_mode;
1962 	params.remove_inner_vlan = start->inner_vlan_removal;
1963 	params.tx_switching = true;
1964 
1965 	params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
1966 	params.drop_ttl0 = false;
1967 	params.concrete_fid = vf->concrete_fid;
1968 	params.opaque_fid = vf->opaque_fid;
1969 	params.vport_id = vf->vport_id;
1970 	params.max_buffers_per_cqe = start->max_buffers_per_cqe;
1971 	params.mtu = vf->mtu;
1972 	params.check_mac = true;
1973 
1974 	rc = qed_sp_eth_vport_start(p_hwfn, &params);
1975 	if (rc) {
1976 		DP_ERR(p_hwfn,
1977 		       "qed_iov_vf_mbx_start_vport returned error %d\n", rc);
1978 		status = PFVF_STATUS_FAILURE;
1979 	} else {
1980 		vf->vport_instance++;
1981 
1982 		/* Force configuration if needed on the newly opened vport */
1983 		qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
1984 
1985 		__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
1986 	}
1987 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
1988 			     sizeof(struct pfvf_def_resp_tlv), status);
1989 }
1990 
1991 static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
1992 				      struct qed_ptt *p_ptt,
1993 				      struct qed_vf_info *vf)
1994 {
1995 	u8 status = PFVF_STATUS_SUCCESS;
1996 	int rc;
1997 
1998 	vf->vport_instance--;
1999 	vf->spoof_chk = false;
2000 
2001 	if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
2002 	    (qed_iov_validate_active_txq(p_hwfn, vf))) {
2003 		vf->b_malicious = true;
2004 		DP_NOTICE(p_hwfn,
2005 			  "VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
2006 			  vf->abs_vf_id);
2007 		status = PFVF_STATUS_MALICIOUS;
2008 		goto out;
2009 	}
2010 
2011 	rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
2012 	if (rc) {
2013 		DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
2014 		       rc);
2015 		status = PFVF_STATUS_FAILURE;
2016 	}
2017 
2018 	/* Forget the configuration on the vport */
2019 	vf->configured_features = 0;
2020 	memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
2021 
2022 out:
2023 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
2024 			     sizeof(struct pfvf_def_resp_tlv), status);
2025 }
2026 
2027 static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
2028 					  struct qed_ptt *p_ptt,
2029 					  struct qed_vf_info *vf,
2030 					  u8 status, bool b_legacy)
2031 {
2032 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2033 	struct pfvf_start_queue_resp_tlv *p_tlv;
2034 	struct vfpf_start_rxq_tlv *req;
2035 	u16 length;
2036 
2037 	mbx->offset = (u8 *)mbx->reply_virt;
2038 
2039 	/* Taking a bigger struct instead of adding a TLV to list was a
2040 	 * mistake, but one which we're now stuck with, as some older
2041 	 * clients assume the size of the previous response.
2042 	 */
2043 	if (!b_legacy)
2044 		length = sizeof(*p_tlv);
2045 	else
2046 		length = sizeof(struct pfvf_def_resp_tlv);
2047 
2048 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
2049 			    length);
2050 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2051 		    sizeof(struct channel_list_end_tlv));
2052 
2053 	/* Update the TLV with the response */
2054 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
2055 		req = &mbx->req_virt->start_rxq;
2056 		p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
2057 				offsetof(struct mstorm_vf_zone,
2058 					 non_trigger.eth_rx_queue_producers) +
2059 				sizeof(struct eth_rx_prod_data) * req->rx_qid;
2060 	}
2061 
2062 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
2063 }
2064 
2065 static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
2066 			     struct qed_vf_info *p_vf, bool b_is_tx)
2067 {
2068 	struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
2069 	struct vfpf_qid_tlv *p_qid_tlv;
2070 
2071 	/* Search for the qid if the VF published its going to provide it */
2072 	if (!(p_vf->acquire.vfdev_info.capabilities &
2073 	      VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
2074 		if (b_is_tx)
2075 			return QED_IOV_LEGACY_QID_TX;
2076 		else
2077 			return QED_IOV_LEGACY_QID_RX;
2078 	}
2079 
2080 	p_qid_tlv = (struct vfpf_qid_tlv *)
2081 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2082 					     CHANNEL_TLV_QID);
2083 	if (!p_qid_tlv) {
2084 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2085 			   "VF[%2x]: Failed to provide qid\n",
2086 			   p_vf->relative_vf_id);
2087 
2088 		return QED_IOV_QID_INVALID;
2089 	}
2090 
2091 	if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
2092 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2093 			   "VF[%02x]: Provided qid out-of-bounds %02x\n",
2094 			   p_vf->relative_vf_id, p_qid_tlv->qid);
2095 		return QED_IOV_QID_INVALID;
2096 	}
2097 
2098 	return p_qid_tlv->qid;
2099 }
2100 
2101 static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
2102 				     struct qed_ptt *p_ptt,
2103 				     struct qed_vf_info *vf)
2104 {
2105 	struct qed_queue_start_common_params params;
2106 	struct qed_queue_cid_vf_params vf_params;
2107 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2108 	u8 status = PFVF_STATUS_NO_RESOURCE;
2109 	u8 qid_usage_idx, vf_legacy = 0;
2110 	struct vfpf_start_rxq_tlv *req;
2111 	struct qed_vf_queue *p_queue;
2112 	struct qed_queue_cid *p_cid;
2113 	struct qed_sb_info sb_dummy;
2114 	int rc;
2115 
2116 	req = &mbx->req_virt->start_rxq;
2117 
2118 	if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
2119 				  QED_IOV_VALIDATE_Q_DISABLE) ||
2120 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2121 		goto out;
2122 
2123 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2124 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2125 		goto out;
2126 
2127 	p_queue = &vf->vf_queues[req->rx_qid];
2128 	if (p_queue->cids[qid_usage_idx].p_cid)
2129 		goto out;
2130 
2131 	vf_legacy = qed_vf_calculate_legacy(vf);
2132 
2133 	/* Acquire a new queue-cid */
2134 	memset(&params, 0, sizeof(params));
2135 	params.queue_id = p_queue->fw_rx_qid;
2136 	params.vport_id = vf->vport_id;
2137 	params.stats_id = vf->abs_vf_id + 0x10;
2138 	/* Since IGU index is passed via sb_info, construct a dummy one */
2139 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2140 	sb_dummy.igu_sb_id = req->hw_sb;
2141 	params.p_sb = &sb_dummy;
2142 	params.sb_idx = req->sb_index;
2143 
2144 	memset(&vf_params, 0, sizeof(vf_params));
2145 	vf_params.vfid = vf->relative_vf_id;
2146 	vf_params.vf_qid = (u8)req->rx_qid;
2147 	vf_params.vf_legacy = vf_legacy;
2148 	vf_params.qid_usage_idx = qid_usage_idx;
2149 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2150 				     &params, true, &vf_params);
2151 	if (!p_cid)
2152 		goto out;
2153 
2154 	/* Legacy VFs have their Producers in a different location, which they
2155 	 * calculate on their own and clean the producer prior to this.
2156 	 */
2157 	if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
2158 		REG_WR(p_hwfn,
2159 		       GTT_BAR0_MAP_REG_MSDM_RAM +
2160 		       MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
2161 		       0);
2162 
2163 	rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
2164 				      req->bd_max_bytes,
2165 				      req->rxq_addr,
2166 				      req->cqe_pbl_addr, req->cqe_pbl_size);
2167 	if (rc) {
2168 		status = PFVF_STATUS_FAILURE;
2169 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2170 	} else {
2171 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2172 		p_queue->cids[qid_usage_idx].b_is_tx = false;
2173 		status = PFVF_STATUS_SUCCESS;
2174 		vf->num_active_rxqs++;
2175 	}
2176 
2177 out:
2178 	qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
2179 				      !!(vf_legacy &
2180 					 QED_QCID_LEGACY_VF_RX_PROD));
2181 }
2182 
2183 static void
2184 qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
2185 			       struct qed_tunnel_info *p_tun,
2186 			       u16 tunn_feature_mask)
2187 {
2188 	p_resp->tunn_feature_mask = tunn_feature_mask;
2189 	p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
2190 	p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
2191 	p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
2192 	p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
2193 	p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
2194 	p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
2195 	p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
2196 	p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
2197 	p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
2198 	p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
2199 	p_resp->geneve_udp_port = p_tun->geneve_port.port;
2200 	p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
2201 }
2202 
2203 static void
2204 __qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2205 			      struct qed_tunn_update_type *p_tun,
2206 			      enum qed_tunn_mode mask, u8 tun_cls)
2207 {
2208 	if (p_req->tun_mode_update_mask & BIT(mask)) {
2209 		p_tun->b_update_mode = true;
2210 
2211 		if (p_req->tunn_mode & BIT(mask))
2212 			p_tun->b_mode_enabled = true;
2213 	}
2214 
2215 	p_tun->tun_cls = tun_cls;
2216 }
2217 
2218 static void
2219 qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
2220 			    struct qed_tunn_update_type *p_tun,
2221 			    struct qed_tunn_update_udp_port *p_port,
2222 			    enum qed_tunn_mode mask,
2223 			    u8 tun_cls, u8 update_port, u16 port)
2224 {
2225 	if (update_port) {
2226 		p_port->b_update_port = true;
2227 		p_port->port = port;
2228 	}
2229 
2230 	__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
2231 }
2232 
2233 static bool
2234 qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
2235 {
2236 	bool b_update_requested = false;
2237 
2238 	if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
2239 	    p_req->update_geneve_port || p_req->update_vxlan_port)
2240 		b_update_requested = true;
2241 
2242 	return b_update_requested;
2243 }
2244 
2245 static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
2246 {
2247 	if (tun->b_update_mode && !tun->b_mode_enabled) {
2248 		tun->b_update_mode = false;
2249 		*rc = -EINVAL;
2250 	}
2251 }
2252 
2253 static int
2254 qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
2255 				   u16 *tun_features, bool *update,
2256 				   struct qed_tunnel_info *tun_src)
2257 {
2258 	struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
2259 	struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
2260 	u16 bultn_vxlan_port, bultn_geneve_port;
2261 	void *cookie = p_hwfn->cdev->ops_cookie;
2262 	int i, rc = 0;
2263 
2264 	*tun_features = p_hwfn->cdev->tunn_feature_mask;
2265 	bultn_vxlan_port = tun->vxlan_port.port;
2266 	bultn_geneve_port = tun->geneve_port.port;
2267 	qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
2268 	qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
2269 	qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
2270 	qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
2271 	qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
2272 
2273 	if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
2274 	    (tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2275 	     tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2276 	     tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2277 	     tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
2278 	     tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
2279 		tun_src->b_update_rx_cls = false;
2280 		tun_src->b_update_tx_cls = false;
2281 		rc = -EINVAL;
2282 	}
2283 
2284 	if (tun_src->vxlan_port.b_update_port) {
2285 		if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
2286 			tun_src->vxlan_port.b_update_port = false;
2287 		} else {
2288 			*update = true;
2289 			bultn_vxlan_port = tun_src->vxlan_port.port;
2290 		}
2291 	}
2292 
2293 	if (tun_src->geneve_port.b_update_port) {
2294 		if (tun_src->geneve_port.port == tun->geneve_port.port) {
2295 			tun_src->geneve_port.b_update_port = false;
2296 		} else {
2297 			*update = true;
2298 			bultn_geneve_port = tun_src->geneve_port.port;
2299 		}
2300 	}
2301 
2302 	qed_for_each_vf(p_hwfn, i) {
2303 		qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
2304 					       bultn_geneve_port);
2305 	}
2306 
2307 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
2308 	ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
2309 
2310 	return rc;
2311 }
2312 
2313 static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
2314 					     struct qed_ptt *p_ptt,
2315 					     struct qed_vf_info *p_vf)
2316 {
2317 	struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
2318 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2319 	struct pfvf_update_tunn_param_tlv *p_resp;
2320 	struct vfpf_update_tunn_param_tlv *p_req;
2321 	u8 status = PFVF_STATUS_SUCCESS;
2322 	bool b_update_required = false;
2323 	struct qed_tunnel_info tunn;
2324 	u16 tunn_feature_mask = 0;
2325 	int i, rc = 0;
2326 
2327 	mbx->offset = (u8 *)mbx->reply_virt;
2328 
2329 	memset(&tunn, 0, sizeof(tunn));
2330 	p_req = &mbx->req_virt->tunn_param_update;
2331 
2332 	if (!qed_iov_pf_validate_tunn_param(p_req)) {
2333 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2334 			   "No tunnel update requested by VF\n");
2335 		status = PFVF_STATUS_FAILURE;
2336 		goto send_resp;
2337 	}
2338 
2339 	tunn.b_update_rx_cls = p_req->update_tun_cls;
2340 	tunn.b_update_tx_cls = p_req->update_tun_cls;
2341 
2342 	qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
2343 				    QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
2344 				    p_req->update_vxlan_port,
2345 				    p_req->vxlan_port);
2346 	qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
2347 				    QED_MODE_L2GENEVE_TUNN,
2348 				    p_req->l2geneve_clss,
2349 				    p_req->update_geneve_port,
2350 				    p_req->geneve_port);
2351 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
2352 				      QED_MODE_IPGENEVE_TUNN,
2353 				      p_req->ipgeneve_clss);
2354 	__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
2355 				      QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
2356 	__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
2357 				      QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
2358 
2359 	/* If PF modifies VF's req then it should
2360 	 * still return an error in case of partial configuration
2361 	 * or modified configuration as opposed to requested one.
2362 	 */
2363 	rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
2364 						&b_update_required, &tunn);
2365 
2366 	if (rc)
2367 		status = PFVF_STATUS_FAILURE;
2368 
2369 	/* If QED client is willing to update anything ? */
2370 	if (b_update_required) {
2371 		u16 geneve_port;
2372 
2373 		rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
2374 					       QED_SPQ_MODE_EBLOCK, NULL);
2375 		if (rc)
2376 			status = PFVF_STATUS_FAILURE;
2377 
2378 		geneve_port = p_tun->geneve_port.port;
2379 		qed_for_each_vf(p_hwfn, i) {
2380 			qed_iov_bulletin_set_udp_ports(p_hwfn, i,
2381 						       p_tun->vxlan_port.port,
2382 						       geneve_port);
2383 		}
2384 	}
2385 
2386 send_resp:
2387 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
2388 			     CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
2389 
2390 	qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
2391 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2392 		    sizeof(struct channel_list_end_tlv));
2393 
2394 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
2395 }
2396 
2397 static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
2398 					  struct qed_ptt *p_ptt,
2399 					  struct qed_vf_info *p_vf,
2400 					  u32 cid, u8 status)
2401 {
2402 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
2403 	struct pfvf_start_queue_resp_tlv *p_tlv;
2404 	bool b_legacy = false;
2405 	u16 length;
2406 
2407 	mbx->offset = (u8 *)mbx->reply_virt;
2408 
2409 	/* Taking a bigger struct instead of adding a TLV to list was a
2410 	 * mistake, but one which we're now stuck with, as some older
2411 	 * clients assume the size of the previous response.
2412 	 */
2413 	if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
2414 	    ETH_HSI_VER_NO_PKT_LEN_TUNN)
2415 		b_legacy = true;
2416 
2417 	if (!b_legacy)
2418 		length = sizeof(*p_tlv);
2419 	else
2420 		length = sizeof(struct pfvf_def_resp_tlv);
2421 
2422 	p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
2423 			    length);
2424 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
2425 		    sizeof(struct channel_list_end_tlv));
2426 
2427 	/* Update the TLV with the response */
2428 	if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
2429 		p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
2430 
2431 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
2432 }
2433 
2434 static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
2435 				     struct qed_ptt *p_ptt,
2436 				     struct qed_vf_info *vf)
2437 {
2438 	struct qed_queue_start_common_params params;
2439 	struct qed_queue_cid_vf_params vf_params;
2440 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2441 	u8 status = PFVF_STATUS_NO_RESOURCE;
2442 	struct vfpf_start_txq_tlv *req;
2443 	struct qed_vf_queue *p_queue;
2444 	struct qed_queue_cid *p_cid;
2445 	struct qed_sb_info sb_dummy;
2446 	u8 qid_usage_idx, vf_legacy;
2447 	u32 cid = 0;
2448 	int rc;
2449 	u16 pq;
2450 
2451 	memset(&params, 0, sizeof(params));
2452 	req = &mbx->req_virt->start_txq;
2453 
2454 	if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
2455 				  QED_IOV_VALIDATE_Q_NA) ||
2456 	    !qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
2457 		goto out;
2458 
2459 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2460 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2461 		goto out;
2462 
2463 	p_queue = &vf->vf_queues[req->tx_qid];
2464 	if (p_queue->cids[qid_usage_idx].p_cid)
2465 		goto out;
2466 
2467 	vf_legacy = qed_vf_calculate_legacy(vf);
2468 
2469 	/* Acquire a new queue-cid */
2470 	params.queue_id = p_queue->fw_tx_qid;
2471 	params.vport_id = vf->vport_id;
2472 	params.stats_id = vf->abs_vf_id + 0x10;
2473 
2474 	/* Since IGU index is passed via sb_info, construct a dummy one */
2475 	memset(&sb_dummy, 0, sizeof(sb_dummy));
2476 	sb_dummy.igu_sb_id = req->hw_sb;
2477 	params.p_sb = &sb_dummy;
2478 	params.sb_idx = req->sb_index;
2479 
2480 	memset(&vf_params, 0, sizeof(vf_params));
2481 	vf_params.vfid = vf->relative_vf_id;
2482 	vf_params.vf_qid = (u8)req->tx_qid;
2483 	vf_params.vf_legacy = vf_legacy;
2484 	vf_params.qid_usage_idx = qid_usage_idx;
2485 
2486 	p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
2487 				     &params, false, &vf_params);
2488 	if (!p_cid)
2489 		goto out;
2490 
2491 	pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
2492 	rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
2493 				      req->pbl_addr, req->pbl_size, pq);
2494 	if (rc) {
2495 		status = PFVF_STATUS_FAILURE;
2496 		qed_eth_queue_cid_release(p_hwfn, p_cid);
2497 	} else {
2498 		status = PFVF_STATUS_SUCCESS;
2499 		p_queue->cids[qid_usage_idx].p_cid = p_cid;
2500 		p_queue->cids[qid_usage_idx].b_is_tx = true;
2501 		cid = p_cid->cid;
2502 	}
2503 
2504 out:
2505 	qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
2506 }
2507 
2508 static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
2509 				struct qed_vf_info *vf,
2510 				u16 rxq_id,
2511 				u8 qid_usage_idx, bool cqe_completion)
2512 {
2513 	struct qed_vf_queue *p_queue;
2514 	int rc = 0;
2515 
2516 	if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
2517 		DP_VERBOSE(p_hwfn,
2518 			   QED_MSG_IOV,
2519 			   "VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
2520 			   vf->relative_vf_id, rxq_id, qid_usage_idx);
2521 		return -EINVAL;
2522 	}
2523 
2524 	p_queue = &vf->vf_queues[rxq_id];
2525 
2526 	/* We've validated the index and the existence of the active RXQ -
2527 	 * now we need to make sure that it's using the correct qid.
2528 	 */
2529 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2530 	    p_queue->cids[qid_usage_idx].b_is_tx) {
2531 		struct qed_queue_cid *p_cid;
2532 
2533 		p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
2534 		DP_VERBOSE(p_hwfn,
2535 			   QED_MSG_IOV,
2536 			   "VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
2537 			   vf->relative_vf_id,
2538 			   rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
2539 		return -EINVAL;
2540 	}
2541 
2542 	/* Now that we know we have a valid Rx-queue - close it */
2543 	rc = qed_eth_rx_queue_stop(p_hwfn,
2544 				   p_queue->cids[qid_usage_idx].p_cid,
2545 				   false, cqe_completion);
2546 	if (rc)
2547 		return rc;
2548 
2549 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2550 	vf->num_active_rxqs--;
2551 
2552 	return 0;
2553 }
2554 
2555 static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
2556 				struct qed_vf_info *vf,
2557 				u16 txq_id, u8 qid_usage_idx)
2558 {
2559 	struct qed_vf_queue *p_queue;
2560 	int rc = 0;
2561 
2562 	if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
2563 		return -EINVAL;
2564 
2565 	p_queue = &vf->vf_queues[txq_id];
2566 	if (!p_queue->cids[qid_usage_idx].p_cid ||
2567 	    !p_queue->cids[qid_usage_idx].b_is_tx)
2568 		return -EINVAL;
2569 
2570 	rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
2571 	if (rc)
2572 		return rc;
2573 
2574 	p_queue->cids[qid_usage_idx].p_cid = NULL;
2575 	return 0;
2576 }
2577 
2578 static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
2579 				     struct qed_ptt *p_ptt,
2580 				     struct qed_vf_info *vf)
2581 {
2582 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2583 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2584 	u8 status = PFVF_STATUS_FAILURE;
2585 	struct vfpf_stop_rxqs_tlv *req;
2586 	u8 qid_usage_idx;
2587 	int rc;
2588 
2589 	/* There has never been an official driver that used this interface
2590 	 * for stopping multiple queues, and it is now considered deprecated.
2591 	 * Validate this isn't used here.
2592 	 */
2593 	req = &mbx->req_virt->stop_rxqs;
2594 	if (req->num_rxqs != 1) {
2595 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2596 			   "Odd; VF[%d] tried stopping multiple Rx queues\n",
2597 			   vf->relative_vf_id);
2598 		status = PFVF_STATUS_NOT_SUPPORTED;
2599 		goto out;
2600 	}
2601 
2602 	/* Find which qid-index is associated with the queue */
2603 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2604 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2605 		goto out;
2606 
2607 	rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
2608 				  qid_usage_idx, req->cqe_completion);
2609 	if (!rc)
2610 		status = PFVF_STATUS_SUCCESS;
2611 out:
2612 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
2613 			     length, status);
2614 }
2615 
2616 static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
2617 				     struct qed_ptt *p_ptt,
2618 				     struct qed_vf_info *vf)
2619 {
2620 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2621 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2622 	u8 status = PFVF_STATUS_FAILURE;
2623 	struct vfpf_stop_txqs_tlv *req;
2624 	u8 qid_usage_idx;
2625 	int rc;
2626 
2627 	/* There has never been an official driver that used this interface
2628 	 * for stopping multiple queues, and it is now considered deprecated.
2629 	 * Validate this isn't used here.
2630 	 */
2631 	req = &mbx->req_virt->stop_txqs;
2632 	if (req->num_txqs != 1) {
2633 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2634 			   "Odd; VF[%d] tried stopping multiple Tx queues\n",
2635 			   vf->relative_vf_id);
2636 		status = PFVF_STATUS_NOT_SUPPORTED;
2637 		goto out;
2638 	}
2639 
2640 	/* Find which qid-index is associated with the queue */
2641 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
2642 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2643 		goto out;
2644 
2645 	rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
2646 	if (!rc)
2647 		status = PFVF_STATUS_SUCCESS;
2648 
2649 out:
2650 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
2651 			     length, status);
2652 }
2653 
2654 static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
2655 				       struct qed_ptt *p_ptt,
2656 				       struct qed_vf_info *vf)
2657 {
2658 	struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
2659 	u16 length = sizeof(struct pfvf_def_resp_tlv);
2660 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
2661 	struct vfpf_update_rxq_tlv *req;
2662 	u8 status = PFVF_STATUS_FAILURE;
2663 	u8 complete_event_flg;
2664 	u8 complete_cqe_flg;
2665 	u8 qid_usage_idx;
2666 	int rc;
2667 	u8 i;
2668 
2669 	req = &mbx->req_virt->update_rxq;
2670 	complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
2671 	complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
2672 
2673 	qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
2674 	if (qid_usage_idx == QED_IOV_QID_INVALID)
2675 		goto out;
2676 
2677 	/* There shouldn't exist a VF that uses queue-qids yet uses this
2678 	 * API with multiple Rx queues. Validate this.
2679 	 */
2680 	if ((vf->acquire.vfdev_info.capabilities &
2681 	     VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
2682 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2683 			   "VF[%d] supports QIDs but sends multiple queues\n",
2684 			   vf->relative_vf_id);
2685 		goto out;
2686 	}
2687 
2688 	/* Validate inputs - for the legacy case this is still true since
2689 	 * qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
2690 	 */
2691 	for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
2692 		if (!qed_iov_validate_rxq(p_hwfn, vf, i,
2693 					  QED_IOV_VALIDATE_Q_NA) ||
2694 		    !vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
2695 		    vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
2696 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2697 				   "VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
2698 				   vf->relative_vf_id, req->rx_qid,
2699 				   req->num_rxqs);
2700 			goto out;
2701 		}
2702 	}
2703 
2704 	/* Prepare the handlers */
2705 	for (i = 0; i < req->num_rxqs; i++) {
2706 		u16 qid = req->rx_qid + i;
2707 
2708 		handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
2709 	}
2710 
2711 	rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
2712 					 req->num_rxqs,
2713 					 complete_cqe_flg,
2714 					 complete_event_flg,
2715 					 QED_SPQ_MODE_EBLOCK, NULL);
2716 	if (rc)
2717 		goto out;
2718 
2719 	status = PFVF_STATUS_SUCCESS;
2720 out:
2721 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
2722 			     length, status);
2723 }
2724 
2725 void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
2726 			       void *p_tlvs_list, u16 req_type)
2727 {
2728 	struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
2729 	int len = 0;
2730 
2731 	do {
2732 		if (!p_tlv->length) {
2733 			DP_NOTICE(p_hwfn, "Zero length TLV found\n");
2734 			return NULL;
2735 		}
2736 
2737 		if (p_tlv->type == req_type) {
2738 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2739 				   "Extended tlv type %d, length %d found\n",
2740 				   p_tlv->type, p_tlv->length);
2741 			return p_tlv;
2742 		}
2743 
2744 		len += p_tlv->length;
2745 		p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
2746 
2747 		if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
2748 			DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
2749 			return NULL;
2750 		}
2751 	} while (p_tlv->type != CHANNEL_TLV_LIST_END);
2752 
2753 	return NULL;
2754 }
2755 
2756 static void
2757 qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
2758 			    struct qed_sp_vport_update_params *p_data,
2759 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2760 {
2761 	struct vfpf_vport_update_activate_tlv *p_act_tlv;
2762 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
2763 
2764 	p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
2765 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2766 	if (!p_act_tlv)
2767 		return;
2768 
2769 	p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
2770 	p_data->vport_active_rx_flg = p_act_tlv->active_rx;
2771 	p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
2772 	p_data->vport_active_tx_flg = p_act_tlv->active_tx;
2773 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
2774 }
2775 
2776 static void
2777 qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
2778 			     struct qed_sp_vport_update_params *p_data,
2779 			     struct qed_vf_info *p_vf,
2780 			     struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2781 {
2782 	struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
2783 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
2784 
2785 	p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
2786 		     qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2787 	if (!p_vlan_tlv)
2788 		return;
2789 
2790 	p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
2791 
2792 	/* Ignore the VF request if we're forcing a vlan */
2793 	if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
2794 		p_data->update_inner_vlan_removal_flg = 1;
2795 		p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
2796 	}
2797 
2798 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
2799 }
2800 
2801 static void
2802 qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
2803 			    struct qed_sp_vport_update_params *p_data,
2804 			    struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2805 {
2806 	struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
2807 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
2808 
2809 	p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
2810 			  qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2811 						   tlv);
2812 	if (!p_tx_switch_tlv)
2813 		return;
2814 
2815 	p_data->update_tx_switching_flg = 1;
2816 	p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
2817 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
2818 }
2819 
2820 static void
2821 qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
2822 				  struct qed_sp_vport_update_params *p_data,
2823 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2824 {
2825 	struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
2826 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
2827 
2828 	p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
2829 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2830 	if (!p_mcast_tlv)
2831 		return;
2832 
2833 	p_data->update_approx_mcast_flg = 1;
2834 	memcpy(p_data->bins, p_mcast_tlv->bins,
2835 	       sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
2836 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
2837 }
2838 
2839 static void
2840 qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
2841 			      struct qed_sp_vport_update_params *p_data,
2842 			      struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2843 {
2844 	struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
2845 	struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
2846 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
2847 
2848 	p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
2849 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2850 	if (!p_accept_tlv)
2851 		return;
2852 
2853 	p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
2854 	p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
2855 	p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
2856 	p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
2857 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
2858 }
2859 
2860 static void
2861 qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
2862 				  struct qed_sp_vport_update_params *p_data,
2863 				  struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2864 {
2865 	struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
2866 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
2867 
2868 	p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
2869 			    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
2870 						     tlv);
2871 	if (!p_accept_any_vlan)
2872 		return;
2873 
2874 	p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
2875 	p_data->update_accept_any_vlan_flg =
2876 		    p_accept_any_vlan->update_accept_any_vlan_flg;
2877 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
2878 }
2879 
2880 static void
2881 qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
2882 			    struct qed_vf_info *vf,
2883 			    struct qed_sp_vport_update_params *p_data,
2884 			    struct qed_rss_params *p_rss,
2885 			    struct qed_iov_vf_mbx *p_mbx,
2886 			    u16 *tlvs_mask, u16 *tlvs_accepted)
2887 {
2888 	struct vfpf_vport_update_rss_tlv *p_rss_tlv;
2889 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
2890 	bool b_reject = false;
2891 	u16 table_size;
2892 	u16 i, q_idx;
2893 
2894 	p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
2895 		    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2896 	if (!p_rss_tlv) {
2897 		p_data->rss_params = NULL;
2898 		return;
2899 	}
2900 
2901 	memset(p_rss, 0, sizeof(struct qed_rss_params));
2902 
2903 	p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
2904 				      VFPF_UPDATE_RSS_CONFIG_FLAG);
2905 	p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
2906 					    VFPF_UPDATE_RSS_CAPS_FLAG);
2907 	p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
2908 					 VFPF_UPDATE_RSS_IND_TABLE_FLAG);
2909 	p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
2910 				   VFPF_UPDATE_RSS_KEY_FLAG);
2911 
2912 	p_rss->rss_enable = p_rss_tlv->rss_enable;
2913 	p_rss->rss_eng_id = vf->relative_vf_id + 1;
2914 	p_rss->rss_caps = p_rss_tlv->rss_caps;
2915 	p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
2916 	memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
2917 
2918 	table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
2919 			   (1 << p_rss_tlv->rss_table_size_log));
2920 
2921 	for (i = 0; i < table_size; i++) {
2922 		struct qed_queue_cid *p_cid;
2923 
2924 		q_idx = p_rss_tlv->rss_ind_table[i];
2925 		if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
2926 					  QED_IOV_VALIDATE_Q_ENABLE)) {
2927 			DP_VERBOSE(p_hwfn,
2928 				   QED_MSG_IOV,
2929 				   "VF[%d]: Omitting RSS due to wrong queue %04x\n",
2930 				   vf->relative_vf_id, q_idx);
2931 			b_reject = true;
2932 			goto out;
2933 		}
2934 
2935 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
2936 		p_rss->rss_ind_table[i] = p_cid;
2937 	}
2938 
2939 	p_data->rss_params = p_rss;
2940 out:
2941 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
2942 	if (!b_reject)
2943 		*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
2944 }
2945 
2946 static void
2947 qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
2948 				struct qed_vf_info *vf,
2949 				struct qed_sp_vport_update_params *p_data,
2950 				struct qed_sge_tpa_params *p_sge_tpa,
2951 				struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
2952 {
2953 	struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
2954 	u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
2955 
2956 	p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
2957 	    qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
2958 
2959 	if (!p_sge_tpa_tlv) {
2960 		p_data->sge_tpa_params = NULL;
2961 		return;
2962 	}
2963 
2964 	memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
2965 
2966 	p_sge_tpa->update_tpa_en_flg =
2967 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
2968 	p_sge_tpa->update_tpa_param_flg =
2969 	    !!(p_sge_tpa_tlv->update_sge_tpa_flags &
2970 		VFPF_UPDATE_TPA_PARAM_FLAG);
2971 
2972 	p_sge_tpa->tpa_ipv4_en_flg =
2973 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
2974 	p_sge_tpa->tpa_ipv6_en_flg =
2975 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
2976 	p_sge_tpa->tpa_pkt_split_flg =
2977 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
2978 	p_sge_tpa->tpa_hdr_data_split_flg =
2979 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
2980 	p_sge_tpa->tpa_gro_consistent_flg =
2981 	    !!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
2982 
2983 	p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
2984 	p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
2985 	p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
2986 	p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
2987 	p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
2988 
2989 	p_data->sge_tpa_params = p_sge_tpa;
2990 
2991 	*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
2992 }
2993 
2994 static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
2995 				    u8 vfid,
2996 				    struct qed_sp_vport_update_params *params,
2997 				    u16 *tlvs)
2998 {
2999 	u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
3000 	struct qed_filter_accept_flags *flags = &params->accept_flags;
3001 	struct qed_public_vf_info *vf_info;
3002 
3003 	/* Untrusted VFs can't even be trusted to know that fact.
3004 	 * Simply indicate everything is configured fine, and trace
3005 	 * configuration 'behind their back'.
3006 	 */
3007 	if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
3008 		return 0;
3009 
3010 	vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
3011 
3012 	if (flags->update_rx_mode_config) {
3013 		vf_info->rx_accept_mode = flags->rx_accept_filter;
3014 		if (!vf_info->is_trusted_configured)
3015 			flags->rx_accept_filter &= ~mask;
3016 	}
3017 
3018 	if (flags->update_tx_mode_config) {
3019 		vf_info->tx_accept_mode = flags->tx_accept_filter;
3020 		if (!vf_info->is_trusted_configured)
3021 			flags->tx_accept_filter &= ~mask;
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
3028 					struct qed_ptt *p_ptt,
3029 					struct qed_vf_info *vf)
3030 {
3031 	struct qed_rss_params *p_rss_params = NULL;
3032 	struct qed_sp_vport_update_params params;
3033 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3034 	struct qed_sge_tpa_params sge_tpa_params;
3035 	u16 tlvs_mask = 0, tlvs_accepted = 0;
3036 	u8 status = PFVF_STATUS_SUCCESS;
3037 	u16 length;
3038 	int rc;
3039 
3040 	/* Valiate PF can send such a request */
3041 	if (!vf->vport_instance) {
3042 		DP_VERBOSE(p_hwfn,
3043 			   QED_MSG_IOV,
3044 			   "No VPORT instance available for VF[%d], failing vport update\n",
3045 			   vf->abs_vf_id);
3046 		status = PFVF_STATUS_FAILURE;
3047 		goto out;
3048 	}
3049 	p_rss_params = vzalloc(sizeof(*p_rss_params));
3050 	if (p_rss_params == NULL) {
3051 		status = PFVF_STATUS_FAILURE;
3052 		goto out;
3053 	}
3054 
3055 	memset(&params, 0, sizeof(params));
3056 	params.opaque_fid = vf->opaque_fid;
3057 	params.vport_id = vf->vport_id;
3058 	params.rss_params = NULL;
3059 
3060 	/* Search for extended tlvs list and update values
3061 	 * from VF in struct qed_sp_vport_update_params.
3062 	 */
3063 	qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
3064 	qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
3065 	qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
3066 	qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
3067 	qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
3068 	qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
3069 	qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
3070 					&sge_tpa_params, mbx, &tlvs_mask);
3071 
3072 	tlvs_accepted = tlvs_mask;
3073 
3074 	/* Some of the extended TLVs need to be validated first; In that case,
3075 	 * they can update the mask without updating the accepted [so that
3076 	 * PF could communicate to VF it has rejected request].
3077 	 */
3078 	qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
3079 				    mbx, &tlvs_mask, &tlvs_accepted);
3080 
3081 	if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
3082 				     &params, &tlvs_accepted)) {
3083 		tlvs_accepted = 0;
3084 		status = PFVF_STATUS_NOT_SUPPORTED;
3085 		goto out;
3086 	}
3087 
3088 	if (!tlvs_accepted) {
3089 		if (tlvs_mask)
3090 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3091 				   "Upper-layer prevents VF vport configuration\n");
3092 		else
3093 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3094 				   "No feature tlvs found for vport update\n");
3095 		status = PFVF_STATUS_NOT_SUPPORTED;
3096 		goto out;
3097 	}
3098 
3099 	rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
3100 
3101 	if (rc)
3102 		status = PFVF_STATUS_FAILURE;
3103 
3104 out:
3105 	vfree(p_rss_params);
3106 	length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
3107 						  tlvs_mask, tlvs_accepted);
3108 	qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
3109 }
3110 
3111 static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
3112 					 struct qed_vf_info *p_vf,
3113 					 struct qed_filter_ucast *p_params)
3114 {
3115 	int i;
3116 
3117 	/* First remove entries and then add new ones */
3118 	if (p_params->opcode == QED_FILTER_REMOVE) {
3119 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3120 			if (p_vf->shadow_config.vlans[i].used &&
3121 			    p_vf->shadow_config.vlans[i].vid ==
3122 			    p_params->vlan) {
3123 				p_vf->shadow_config.vlans[i].used = false;
3124 				break;
3125 			}
3126 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3127 			DP_VERBOSE(p_hwfn,
3128 				   QED_MSG_IOV,
3129 				   "VF [%d] - Tries to remove a non-existing vlan\n",
3130 				   p_vf->relative_vf_id);
3131 			return -EINVAL;
3132 		}
3133 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3134 		   p_params->opcode == QED_FILTER_FLUSH) {
3135 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
3136 			p_vf->shadow_config.vlans[i].used = false;
3137 	}
3138 
3139 	/* In forced mode, we're willing to remove entries - but we don't add
3140 	 * new ones.
3141 	 */
3142 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
3143 		return 0;
3144 
3145 	if (p_params->opcode == QED_FILTER_ADD ||
3146 	    p_params->opcode == QED_FILTER_REPLACE) {
3147 		for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
3148 			if (p_vf->shadow_config.vlans[i].used)
3149 				continue;
3150 
3151 			p_vf->shadow_config.vlans[i].used = true;
3152 			p_vf->shadow_config.vlans[i].vid = p_params->vlan;
3153 			break;
3154 		}
3155 
3156 		if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
3157 			DP_VERBOSE(p_hwfn,
3158 				   QED_MSG_IOV,
3159 				   "VF [%d] - Tries to configure more than %d vlan filters\n",
3160 				   p_vf->relative_vf_id,
3161 				   QED_ETH_VF_NUM_VLAN_FILTERS + 1);
3162 			return -EINVAL;
3163 		}
3164 	}
3165 
3166 	return 0;
3167 }
3168 
3169 static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
3170 					struct qed_vf_info *p_vf,
3171 					struct qed_filter_ucast *p_params)
3172 {
3173 	int i;
3174 
3175 	/* If we're in forced-mode, we don't allow any change */
3176 	if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
3177 		return 0;
3178 
3179 	/* Don't keep track of shadow copy since we don't intend to restore. */
3180 	if (p_vf->p_vf_info.is_trusted_configured)
3181 		return 0;
3182 
3183 	/* First remove entries and then add new ones */
3184 	if (p_params->opcode == QED_FILTER_REMOVE) {
3185 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3186 			if (ether_addr_equal(p_vf->shadow_config.macs[i],
3187 					     p_params->mac)) {
3188 				eth_zero_addr(p_vf->shadow_config.macs[i]);
3189 				break;
3190 			}
3191 		}
3192 
3193 		if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3194 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3195 				   "MAC isn't configured\n");
3196 			return -EINVAL;
3197 		}
3198 	} else if (p_params->opcode == QED_FILTER_REPLACE ||
3199 		   p_params->opcode == QED_FILTER_FLUSH) {
3200 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
3201 			eth_zero_addr(p_vf->shadow_config.macs[i]);
3202 	}
3203 
3204 	/* List the new MAC address */
3205 	if (p_params->opcode != QED_FILTER_ADD &&
3206 	    p_params->opcode != QED_FILTER_REPLACE)
3207 		return 0;
3208 
3209 	for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
3210 		if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
3211 			ether_addr_copy(p_vf->shadow_config.macs[i],
3212 					p_params->mac);
3213 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3214 				   "Added MAC at %d entry in shadow\n", i);
3215 			break;
3216 		}
3217 	}
3218 
3219 	if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
3220 		DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
3221 		return -EINVAL;
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 static int
3228 qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
3229 				 struct qed_vf_info *p_vf,
3230 				 struct qed_filter_ucast *p_params)
3231 {
3232 	int rc = 0;
3233 
3234 	if (p_params->type == QED_FILTER_MAC) {
3235 		rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
3236 		if (rc)
3237 			return rc;
3238 	}
3239 
3240 	if (p_params->type == QED_FILTER_VLAN)
3241 		rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
3242 
3243 	return rc;
3244 }
3245 
3246 static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
3247 			     int vfid, struct qed_filter_ucast *params)
3248 {
3249 	struct qed_public_vf_info *vf;
3250 
3251 	vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
3252 	if (!vf)
3253 		return -EINVAL;
3254 
3255 	/* No real decision to make; Store the configured MAC */
3256 	if (params->type == QED_FILTER_MAC ||
3257 	    params->type == QED_FILTER_MAC_VLAN) {
3258 		ether_addr_copy(vf->mac, params->mac);
3259 
3260 		if (vf->is_trusted_configured) {
3261 			qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
3262 
3263 			/* Update and post bulleitin again */
3264 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
3265 		}
3266 	}
3267 
3268 	return 0;
3269 }
3270 
3271 static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
3272 					struct qed_ptt *p_ptt,
3273 					struct qed_vf_info *vf)
3274 {
3275 	struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
3276 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3277 	struct vfpf_ucast_filter_tlv *req;
3278 	u8 status = PFVF_STATUS_SUCCESS;
3279 	struct qed_filter_ucast params;
3280 	int rc;
3281 
3282 	/* Prepare the unicast filter params */
3283 	memset(&params, 0, sizeof(struct qed_filter_ucast));
3284 	req = &mbx->req_virt->ucast_filter;
3285 	params.opcode = (enum qed_filter_opcode)req->opcode;
3286 	params.type = (enum qed_filter_ucast_type)req->type;
3287 
3288 	params.is_rx_filter = 1;
3289 	params.is_tx_filter = 1;
3290 	params.vport_to_remove_from = vf->vport_id;
3291 	params.vport_to_add_to = vf->vport_id;
3292 	memcpy(params.mac, req->mac, ETH_ALEN);
3293 	params.vlan = req->vlan;
3294 
3295 	DP_VERBOSE(p_hwfn,
3296 		   QED_MSG_IOV,
3297 		   "VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
3298 		   vf->abs_vf_id, params.opcode, params.type,
3299 		   params.is_rx_filter ? "RX" : "",
3300 		   params.is_tx_filter ? "TX" : "",
3301 		   params.vport_to_add_to,
3302 		   params.mac[0], params.mac[1],
3303 		   params.mac[2], params.mac[3],
3304 		   params.mac[4], params.mac[5], params.vlan);
3305 
3306 	if (!vf->vport_instance) {
3307 		DP_VERBOSE(p_hwfn,
3308 			   QED_MSG_IOV,
3309 			   "No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
3310 			   vf->abs_vf_id);
3311 		status = PFVF_STATUS_FAILURE;
3312 		goto out;
3313 	}
3314 
3315 	/* Update shadow copy of the VF configuration */
3316 	if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
3317 		status = PFVF_STATUS_FAILURE;
3318 		goto out;
3319 	}
3320 
3321 	/* Determine if the unicast filtering is acceptible by PF */
3322 	if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
3323 	    (params.type == QED_FILTER_VLAN ||
3324 	     params.type == QED_FILTER_MAC_VLAN)) {
3325 		/* Once VLAN is forced or PVID is set, do not allow
3326 		 * to add/replace any further VLANs.
3327 		 */
3328 		if (params.opcode == QED_FILTER_ADD ||
3329 		    params.opcode == QED_FILTER_REPLACE)
3330 			status = PFVF_STATUS_FORCED;
3331 		goto out;
3332 	}
3333 
3334 	if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
3335 	    (params.type == QED_FILTER_MAC ||
3336 	     params.type == QED_FILTER_MAC_VLAN)) {
3337 		if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
3338 		    (params.opcode != QED_FILTER_ADD &&
3339 		     params.opcode != QED_FILTER_REPLACE))
3340 			status = PFVF_STATUS_FORCED;
3341 		goto out;
3342 	}
3343 
3344 	rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
3345 	if (rc) {
3346 		status = PFVF_STATUS_FAILURE;
3347 		goto out;
3348 	}
3349 
3350 	rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
3351 				     QED_SPQ_MODE_CB, NULL);
3352 	if (rc)
3353 		status = PFVF_STATUS_FAILURE;
3354 
3355 out:
3356 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
3357 			     sizeof(struct pfvf_def_resp_tlv), status);
3358 }
3359 
3360 static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
3361 				       struct qed_ptt *p_ptt,
3362 				       struct qed_vf_info *vf)
3363 {
3364 	int i;
3365 
3366 	/* Reset the SBs */
3367 	for (i = 0; i < vf->num_sbs; i++)
3368 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
3369 						vf->igu_sbs[i],
3370 						vf->opaque_fid, false);
3371 
3372 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
3373 			     sizeof(struct pfvf_def_resp_tlv),
3374 			     PFVF_STATUS_SUCCESS);
3375 }
3376 
3377 static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
3378 				 struct qed_ptt *p_ptt, struct qed_vf_info *vf)
3379 {
3380 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3381 	u8 status = PFVF_STATUS_SUCCESS;
3382 
3383 	/* Disable Interrupts for VF */
3384 	qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
3385 
3386 	/* Reset Permission table */
3387 	qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
3388 
3389 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
3390 			     length, status);
3391 }
3392 
3393 static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
3394 				   struct qed_ptt *p_ptt,
3395 				   struct qed_vf_info *p_vf)
3396 {
3397 	u16 length = sizeof(struct pfvf_def_resp_tlv);
3398 	u8 status = PFVF_STATUS_SUCCESS;
3399 	int rc = 0;
3400 
3401 	qed_iov_vf_cleanup(p_hwfn, p_vf);
3402 
3403 	if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
3404 		/* Stopping the VF */
3405 		rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
3406 				    p_vf->opaque_fid);
3407 
3408 		if (rc) {
3409 			DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
3410 			       rc);
3411 			status = PFVF_STATUS_FAILURE;
3412 		}
3413 
3414 		p_vf->state = VF_STOPPED;
3415 	}
3416 
3417 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
3418 			     length, status);
3419 }
3420 
3421 static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
3422 				       struct qed_ptt *p_ptt,
3423 				       struct qed_vf_info *p_vf)
3424 {
3425 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3426 	struct pfvf_read_coal_resp_tlv *p_resp;
3427 	struct vfpf_read_coal_req_tlv *req;
3428 	u8 status = PFVF_STATUS_FAILURE;
3429 	struct qed_vf_queue *p_queue;
3430 	struct qed_queue_cid *p_cid;
3431 	u16 coal = 0, qid, i;
3432 	bool b_is_rx;
3433 	int rc = 0;
3434 
3435 	mbx->offset = (u8 *)mbx->reply_virt;
3436 	req = &mbx->req_virt->read_coal_req;
3437 
3438 	qid = req->qid;
3439 	b_is_rx = req->is_rx ? true : false;
3440 
3441 	if (b_is_rx) {
3442 		if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
3443 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3444 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3445 				   "VF[%d]: Invalid Rx queue_id = %d\n",
3446 				   p_vf->abs_vf_id, qid);
3447 			goto send_resp;
3448 		}
3449 
3450 		p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
3451 		rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3452 		if (rc)
3453 			goto send_resp;
3454 	} else {
3455 		if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
3456 					  QED_IOV_VALIDATE_Q_ENABLE)) {
3457 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3458 				   "VF[%d]: Invalid Tx queue_id = %d\n",
3459 				   p_vf->abs_vf_id, qid);
3460 			goto send_resp;
3461 		}
3462 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3463 			p_queue = &p_vf->vf_queues[qid];
3464 			if ((!p_queue->cids[i].p_cid) ||
3465 			    (!p_queue->cids[i].b_is_tx))
3466 				continue;
3467 
3468 			p_cid = p_queue->cids[i].p_cid;
3469 
3470 			rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
3471 			if (rc)
3472 				goto send_resp;
3473 			break;
3474 		}
3475 	}
3476 
3477 	status = PFVF_STATUS_SUCCESS;
3478 
3479 send_resp:
3480 	p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
3481 			     sizeof(*p_resp));
3482 	p_resp->coal = coal;
3483 
3484 	qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
3485 		    sizeof(struct channel_list_end_tlv));
3486 
3487 	qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
3488 }
3489 
3490 static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
3491 				       struct qed_ptt *p_ptt,
3492 				       struct qed_vf_info *vf)
3493 {
3494 	struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
3495 	struct vfpf_update_coalesce *req;
3496 	u8 status = PFVF_STATUS_FAILURE;
3497 	struct qed_queue_cid *p_cid;
3498 	u16 rx_coal, tx_coal;
3499 	int rc = 0, i;
3500 	u16 qid;
3501 
3502 	req = &mbx->req_virt->update_coalesce;
3503 
3504 	rx_coal = req->rx_coal;
3505 	tx_coal = req->tx_coal;
3506 	qid = req->qid;
3507 
3508 	if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
3509 				  QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
3510 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3511 			   "VF[%d]: Invalid Rx queue_id = %d\n",
3512 			   vf->abs_vf_id, qid);
3513 		goto out;
3514 	}
3515 
3516 	if (!qed_iov_validate_txq(p_hwfn, vf, qid,
3517 				  QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
3518 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3519 			   "VF[%d]: Invalid Tx queue_id = %d\n",
3520 			   vf->abs_vf_id, qid);
3521 		goto out;
3522 	}
3523 
3524 	DP_VERBOSE(p_hwfn,
3525 		   QED_MSG_IOV,
3526 		   "VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
3527 		   vf->abs_vf_id, rx_coal, tx_coal, qid);
3528 
3529 	if (rx_coal) {
3530 		p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
3531 
3532 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
3533 		if (rc) {
3534 			DP_VERBOSE(p_hwfn,
3535 				   QED_MSG_IOV,
3536 				   "VF[%d]: Unable to set rx queue = %d coalesce\n",
3537 				   vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
3538 			goto out;
3539 		}
3540 		vf->rx_coal = rx_coal;
3541 	}
3542 
3543 	if (tx_coal) {
3544 		struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
3545 
3546 		for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
3547 			if (!p_queue->cids[i].p_cid)
3548 				continue;
3549 
3550 			if (!p_queue->cids[i].b_is_tx)
3551 				continue;
3552 
3553 			rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
3554 						  p_queue->cids[i].p_cid);
3555 
3556 			if (rc) {
3557 				DP_VERBOSE(p_hwfn,
3558 					   QED_MSG_IOV,
3559 					   "VF[%d]: Unable to set tx queue coalesce\n",
3560 					   vf->abs_vf_id);
3561 				goto out;
3562 			}
3563 		}
3564 		vf->tx_coal = tx_coal;
3565 	}
3566 
3567 	status = PFVF_STATUS_SUCCESS;
3568 out:
3569 	qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
3570 			     sizeof(struct pfvf_def_resp_tlv), status);
3571 }
3572 static int
3573 qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
3574 			 struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3575 {
3576 	int cnt;
3577 	u32 val;
3578 
3579 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
3580 
3581 	for (cnt = 0; cnt < 50; cnt++) {
3582 		val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
3583 		if (!val)
3584 			break;
3585 		msleep(20);
3586 	}
3587 	qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
3588 
3589 	if (cnt == 50) {
3590 		DP_ERR(p_hwfn,
3591 		       "VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
3592 		       p_vf->abs_vf_id, val);
3593 		return -EBUSY;
3594 	}
3595 
3596 	return 0;
3597 }
3598 
3599 static int
3600 qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
3601 			struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3602 {
3603 	u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4];
3604 	int i, cnt;
3605 
3606 	/* Read initial consumers & producers */
3607 	for (i = 0; i < MAX_NUM_VOQS_E4; i++) {
3608 		u32 prod;
3609 
3610 		cons[i] = qed_rd(p_hwfn, p_ptt,
3611 				 PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3612 				 i * 0x40);
3613 		prod = qed_rd(p_hwfn, p_ptt,
3614 			      PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
3615 			      i * 0x40);
3616 		distance[i] = prod - cons[i];
3617 	}
3618 
3619 	/* Wait for consumers to pass the producers */
3620 	i = 0;
3621 	for (cnt = 0; cnt < 50; cnt++) {
3622 		for (; i < MAX_NUM_VOQS_E4; i++) {
3623 			u32 tmp;
3624 
3625 			tmp = qed_rd(p_hwfn, p_ptt,
3626 				     PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
3627 				     i * 0x40);
3628 			if (distance[i] > tmp - cons[i])
3629 				break;
3630 		}
3631 
3632 		if (i == MAX_NUM_VOQS_E4)
3633 			break;
3634 
3635 		msleep(20);
3636 	}
3637 
3638 	if (cnt == 50) {
3639 		DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
3640 		       p_vf->abs_vf_id, i);
3641 		return -EBUSY;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
3648 			       struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
3649 {
3650 	int rc;
3651 
3652 	rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
3653 	if (rc)
3654 		return rc;
3655 
3656 	rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
3657 	if (rc)
3658 		return rc;
3659 
3660 	return 0;
3661 }
3662 
3663 static int
3664 qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
3665 			       struct qed_ptt *p_ptt,
3666 			       u16 rel_vf_id, u32 *ack_vfs)
3667 {
3668 	struct qed_vf_info *p_vf;
3669 	int rc = 0;
3670 
3671 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
3672 	if (!p_vf)
3673 		return 0;
3674 
3675 	if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
3676 	    (1ULL << (rel_vf_id % 64))) {
3677 		u16 vfid = p_vf->abs_vf_id;
3678 
3679 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3680 			   "VF[%d] - Handling FLR\n", vfid);
3681 
3682 		qed_iov_vf_cleanup(p_hwfn, p_vf);
3683 
3684 		/* If VF isn't active, no need for anything but SW */
3685 		if (!p_vf->b_init)
3686 			goto cleanup;
3687 
3688 		rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
3689 		if (rc)
3690 			goto cleanup;
3691 
3692 		rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
3693 		if (rc) {
3694 			DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
3695 			return rc;
3696 		}
3697 
3698 		/* Workaround to make VF-PF channel ready, as FW
3699 		 * doesn't do that as a part of FLR.
3700 		 */
3701 		REG_WR(p_hwfn,
3702 		       GTT_BAR0_MAP_REG_USDM_RAM +
3703 		       USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
3704 
3705 		/* VF_STOPPED has to be set only after final cleanup
3706 		 * but prior to re-enabling the VF.
3707 		 */
3708 		p_vf->state = VF_STOPPED;
3709 
3710 		rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
3711 		if (rc) {
3712 			DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
3713 			       vfid);
3714 			return rc;
3715 		}
3716 cleanup:
3717 		/* Mark VF for ack and clean pending state */
3718 		if (p_vf->state == VF_RESET)
3719 			p_vf->state = VF_STOPPED;
3720 		ack_vfs[vfid / 32] |= BIT((vfid % 32));
3721 		p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
3722 		    ~(1ULL << (rel_vf_id % 64));
3723 		p_vf->vf_mbx.b_pending_msg = false;
3724 	}
3725 
3726 	return rc;
3727 }
3728 
3729 static int
3730 qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3731 {
3732 	u32 ack_vfs[VF_MAX_STATIC / 32];
3733 	int rc = 0;
3734 	u16 i;
3735 
3736 	memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
3737 
3738 	/* Since BRB <-> PRS interface can't be tested as part of the flr
3739 	 * polling due to HW limitations, simply sleep a bit. And since
3740 	 * there's no need to wait per-vf, do it before looping.
3741 	 */
3742 	msleep(100);
3743 
3744 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
3745 		qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
3746 
3747 	rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
3748 	return rc;
3749 }
3750 
3751 bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
3752 {
3753 	bool found = false;
3754 	u16 i;
3755 
3756 	DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
3757 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
3758 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3759 			   "[%08x,...,%08x]: %08x\n",
3760 			   i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
3761 
3762 	if (!p_hwfn->cdev->p_iov_info) {
3763 		DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
3764 		return false;
3765 	}
3766 
3767 	/* Mark VFs */
3768 	for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
3769 		struct qed_vf_info *p_vf;
3770 		u8 vfid;
3771 
3772 		p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
3773 		if (!p_vf)
3774 			continue;
3775 
3776 		vfid = p_vf->abs_vf_id;
3777 		if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
3778 			u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
3779 			u16 rel_vf_id = p_vf->relative_vf_id;
3780 
3781 			DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3782 				   "VF[%d] [rel %d] got FLR-ed\n",
3783 				   vfid, rel_vf_id);
3784 
3785 			p_vf->state = VF_RESET;
3786 
3787 			/* No need to lock here, since pending_flr should
3788 			 * only change here and before ACKing MFw. Since
3789 			 * MFW will not trigger an additional attention for
3790 			 * VF flr until ACKs, we're safe.
3791 			 */
3792 			p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
3793 			found = true;
3794 		}
3795 	}
3796 
3797 	return found;
3798 }
3799 
3800 static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
3801 			     u16 vfid,
3802 			     struct qed_mcp_link_params *p_params,
3803 			     struct qed_mcp_link_state *p_link,
3804 			     struct qed_mcp_link_capabilities *p_caps)
3805 {
3806 	struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
3807 						       vfid,
3808 						       false);
3809 	struct qed_bulletin_content *p_bulletin;
3810 
3811 	if (!p_vf)
3812 		return;
3813 
3814 	p_bulletin = p_vf->bulletin.p_virt;
3815 
3816 	if (p_params)
3817 		__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
3818 	if (p_link)
3819 		__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
3820 	if (p_caps)
3821 		__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
3822 }
3823 
3824 static int
3825 qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
3826 				  struct qed_ptt *p_ptt,
3827 				  struct qed_vf_info *p_vf)
3828 {
3829 	struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
3830 	struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
3831 	struct vfpf_bulletin_update_mac_tlv *p_req;
3832 	u8 status = PFVF_STATUS_SUCCESS;
3833 	int rc = 0;
3834 
3835 	if (!p_vf->p_vf_info.is_trusted_configured) {
3836 		DP_VERBOSE(p_hwfn,
3837 			   QED_MSG_IOV,
3838 			   "Blocking bulletin update request from untrusted VF[%d]\n",
3839 			   p_vf->abs_vf_id);
3840 		status = PFVF_STATUS_NOT_SUPPORTED;
3841 		rc = -EINVAL;
3842 		goto send_status;
3843 	}
3844 
3845 	p_req = &mbx->req_virt->bulletin_update_mac;
3846 	ether_addr_copy(p_bulletin->mac, p_req->mac);
3847 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3848 		   "Updated bulletin of VF[%d] with requested MAC[%pM]\n",
3849 		   p_vf->abs_vf_id, p_req->mac);
3850 
3851 send_status:
3852 	qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3853 			     CHANNEL_TLV_BULLETIN_UPDATE_MAC,
3854 			     sizeof(struct pfvf_def_resp_tlv), status);
3855 	return rc;
3856 }
3857 
3858 static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
3859 				    struct qed_ptt *p_ptt, int vfid)
3860 {
3861 	struct qed_iov_vf_mbx *mbx;
3862 	struct qed_vf_info *p_vf;
3863 
3864 	p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
3865 	if (!p_vf)
3866 		return;
3867 
3868 	mbx = &p_vf->vf_mbx;
3869 
3870 	/* qed_iov_process_mbx_request */
3871 	if (!mbx->b_pending_msg) {
3872 		DP_NOTICE(p_hwfn,
3873 			  "VF[%02x]: Trying to process mailbox message when none is pending\n",
3874 			  p_vf->abs_vf_id);
3875 		return;
3876 	}
3877 	mbx->b_pending_msg = false;
3878 
3879 	mbx->first_tlv = mbx->req_virt->first_tlv;
3880 
3881 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3882 		   "VF[%02x]: Processing mailbox message [type %04x]\n",
3883 		   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3884 
3885 	/* check if tlv type is known */
3886 	if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
3887 	    !p_vf->b_malicious) {
3888 		switch (mbx->first_tlv.tl.type) {
3889 		case CHANNEL_TLV_ACQUIRE:
3890 			qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
3891 			break;
3892 		case CHANNEL_TLV_VPORT_START:
3893 			qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
3894 			break;
3895 		case CHANNEL_TLV_VPORT_TEARDOWN:
3896 			qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
3897 			break;
3898 		case CHANNEL_TLV_START_RXQ:
3899 			qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
3900 			break;
3901 		case CHANNEL_TLV_START_TXQ:
3902 			qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
3903 			break;
3904 		case CHANNEL_TLV_STOP_RXQS:
3905 			qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
3906 			break;
3907 		case CHANNEL_TLV_STOP_TXQS:
3908 			qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
3909 			break;
3910 		case CHANNEL_TLV_UPDATE_RXQ:
3911 			qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
3912 			break;
3913 		case CHANNEL_TLV_VPORT_UPDATE:
3914 			qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
3915 			break;
3916 		case CHANNEL_TLV_UCAST_FILTER:
3917 			qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
3918 			break;
3919 		case CHANNEL_TLV_CLOSE:
3920 			qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
3921 			break;
3922 		case CHANNEL_TLV_INT_CLEANUP:
3923 			qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
3924 			break;
3925 		case CHANNEL_TLV_RELEASE:
3926 			qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
3927 			break;
3928 		case CHANNEL_TLV_UPDATE_TUNN_PARAM:
3929 			qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
3930 			break;
3931 		case CHANNEL_TLV_COALESCE_UPDATE:
3932 			qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
3933 			break;
3934 		case CHANNEL_TLV_COALESCE_READ:
3935 			qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
3936 			break;
3937 		case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
3938 			qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
3939 			break;
3940 		}
3941 	} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
3942 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
3943 			   "VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
3944 			   p_vf->abs_vf_id, mbx->first_tlv.tl.type);
3945 
3946 		qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3947 				     mbx->first_tlv.tl.type,
3948 				     sizeof(struct pfvf_def_resp_tlv),
3949 				     PFVF_STATUS_MALICIOUS);
3950 	} else {
3951 		/* unknown TLV - this may belong to a VF driver from the future
3952 		 * - a version written after this PF driver was written, which
3953 		 * supports features unknown as of yet. Too bad since we don't
3954 		 * support them. Or this may be because someone wrote a crappy
3955 		 * VF driver and is sending garbage over the channel.
3956 		 */
3957 		DP_NOTICE(p_hwfn,
3958 			  "VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
3959 			  p_vf->abs_vf_id,
3960 			  mbx->first_tlv.tl.type,
3961 			  mbx->first_tlv.tl.length,
3962 			  mbx->first_tlv.padding, mbx->first_tlv.reply_address);
3963 
3964 		/* Try replying in case reply address matches the acquisition's
3965 		 * posted address.
3966 		 */
3967 		if (p_vf->acquire.first_tlv.reply_address &&
3968 		    (mbx->first_tlv.reply_address ==
3969 		     p_vf->acquire.first_tlv.reply_address)) {
3970 			qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
3971 					     mbx->first_tlv.tl.type,
3972 					     sizeof(struct pfvf_def_resp_tlv),
3973 					     PFVF_STATUS_NOT_SUPPORTED);
3974 		} else {
3975 			DP_VERBOSE(p_hwfn,
3976 				   QED_MSG_IOV,
3977 				   "VF[%02x]: Can't respond to TLV - no valid reply address\n",
3978 				   p_vf->abs_vf_id);
3979 		}
3980 	}
3981 }
3982 
3983 static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
3984 {
3985 	int i;
3986 
3987 	memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
3988 
3989 	qed_for_each_vf(p_hwfn, i) {
3990 		struct qed_vf_info *p_vf;
3991 
3992 		p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
3993 		if (p_vf->vf_mbx.b_pending_msg)
3994 			events[i / 64] |= 1ULL << (i % 64);
3995 	}
3996 }
3997 
3998 static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
3999 						       u16 abs_vfid)
4000 {
4001 	u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
4002 
4003 	if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
4004 		DP_VERBOSE(p_hwfn,
4005 			   QED_MSG_IOV,
4006 			   "Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
4007 			   abs_vfid);
4008 		return NULL;
4009 	}
4010 
4011 	return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
4012 }
4013 
4014 static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
4015 			      u16 abs_vfid, struct regpair *vf_msg)
4016 {
4017 	struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
4018 			   abs_vfid);
4019 
4020 	if (!p_vf)
4021 		return 0;
4022 
4023 	/* List the physical address of the request so that handler
4024 	 * could later on copy the message from it.
4025 	 */
4026 	p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
4027 
4028 	/* Mark the event and schedule the workqueue */
4029 	p_vf->vf_mbx.b_pending_msg = true;
4030 	qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
4031 
4032 	return 0;
4033 }
4034 
4035 static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
4036 				     struct malicious_vf_eqe_data *p_data)
4037 {
4038 	struct qed_vf_info *p_vf;
4039 
4040 	p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
4041 
4042 	if (!p_vf)
4043 		return;
4044 
4045 	if (!p_vf->b_malicious) {
4046 		DP_NOTICE(p_hwfn,
4047 			  "VF [%d] - Malicious behavior [%02x]\n",
4048 			  p_vf->abs_vf_id, p_data->err_id);
4049 
4050 		p_vf->b_malicious = true;
4051 	} else {
4052 		DP_INFO(p_hwfn,
4053 			"VF [%d] - Malicious behavior [%02x]\n",
4054 			p_vf->abs_vf_id, p_data->err_id);
4055 	}
4056 }
4057 
4058 static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
4059 			       u8 opcode,
4060 			       __le16 echo,
4061 			       union event_ring_data *data, u8 fw_return_code)
4062 {
4063 	switch (opcode) {
4064 	case COMMON_EVENT_VF_PF_CHANNEL:
4065 		return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
4066 					  &data->vf_pf_channel.msg_addr);
4067 	case COMMON_EVENT_MALICIOUS_VF:
4068 		qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
4069 		return 0;
4070 	default:
4071 		DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
4072 			opcode);
4073 		return -EINVAL;
4074 	}
4075 }
4076 
4077 u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4078 {
4079 	struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
4080 	u16 i;
4081 
4082 	if (!p_iov)
4083 		goto out;
4084 
4085 	for (i = rel_vf_id; i < p_iov->total_vfs; i++)
4086 		if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
4087 			return i;
4088 
4089 out:
4090 	return MAX_NUM_VFS;
4091 }
4092 
4093 static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
4094 			       int vfid)
4095 {
4096 	struct qed_dmae_params params;
4097 	struct qed_vf_info *vf_info;
4098 
4099 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4100 	if (!vf_info)
4101 		return -EINVAL;
4102 
4103 	memset(&params, 0, sizeof(struct qed_dmae_params));
4104 	params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
4105 	params.src_vfid = vf_info->abs_vf_id;
4106 
4107 	if (qed_dmae_host2host(p_hwfn, ptt,
4108 			       vf_info->vf_mbx.pending_req,
4109 			       vf_info->vf_mbx.req_phys,
4110 			       sizeof(union vfpf_tlvs) / 4, &params)) {
4111 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4112 			   "Failed to copy message from VF 0x%02x\n", vfid);
4113 
4114 		return -EIO;
4115 	}
4116 
4117 	return 0;
4118 }
4119 
4120 static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
4121 					    u8 *mac, int vfid)
4122 {
4123 	struct qed_vf_info *vf_info;
4124 	u64 feature;
4125 
4126 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4127 	if (!vf_info) {
4128 		DP_NOTICE(p_hwfn->cdev,
4129 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4130 		return;
4131 	}
4132 
4133 	if (vf_info->b_malicious) {
4134 		DP_NOTICE(p_hwfn->cdev,
4135 			  "Can't set forced MAC to malicious VF [%d]\n", vfid);
4136 		return;
4137 	}
4138 
4139 	if (vf_info->p_vf_info.is_trusted_configured) {
4140 		feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4141 		/* Trust mode will disable Forced MAC */
4142 		vf_info->bulletin.p_virt->valid_bitmap &=
4143 			~BIT(MAC_ADDR_FORCED);
4144 	} else {
4145 		feature = BIT(MAC_ADDR_FORCED);
4146 		/* Forced MAC will disable MAC_ADDR */
4147 		vf_info->bulletin.p_virt->valid_bitmap &=
4148 			~BIT(VFPF_BULLETIN_MAC_ADDR);
4149 	}
4150 
4151 	memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
4152 
4153 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4154 
4155 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4156 }
4157 
4158 static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
4159 {
4160 	struct qed_vf_info *vf_info;
4161 	u64 feature;
4162 
4163 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4164 	if (!vf_info) {
4165 		DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
4166 			  vfid);
4167 		return -EINVAL;
4168 	}
4169 
4170 	if (vf_info->b_malicious) {
4171 		DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
4172 			  vfid);
4173 		return -EINVAL;
4174 	}
4175 
4176 	if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
4177 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4178 			   "Can not set MAC, Forced MAC is configured\n");
4179 		return -EINVAL;
4180 	}
4181 
4182 	feature = BIT(VFPF_BULLETIN_MAC_ADDR);
4183 	ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
4184 
4185 	vf_info->bulletin.p_virt->valid_bitmap |= feature;
4186 
4187 	if (vf_info->p_vf_info.is_trusted_configured)
4188 		qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4189 
4190 	return 0;
4191 }
4192 
4193 static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
4194 					     u16 pvid, int vfid)
4195 {
4196 	struct qed_vf_info *vf_info;
4197 	u64 feature;
4198 
4199 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4200 	if (!vf_info) {
4201 		DP_NOTICE(p_hwfn->cdev,
4202 			  "Can not set forced MAC, invalid vfid [%d]\n", vfid);
4203 		return;
4204 	}
4205 
4206 	if (vf_info->b_malicious) {
4207 		DP_NOTICE(p_hwfn->cdev,
4208 			  "Can't set forced vlan to malicious VF [%d]\n", vfid);
4209 		return;
4210 	}
4211 
4212 	feature = 1 << VLAN_ADDR_FORCED;
4213 	vf_info->bulletin.p_virt->pvid = pvid;
4214 	if (pvid)
4215 		vf_info->bulletin.p_virt->valid_bitmap |= feature;
4216 	else
4217 		vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
4218 
4219 	qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
4220 }
4221 
4222 void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
4223 				    int vfid, u16 vxlan_port, u16 geneve_port)
4224 {
4225 	struct qed_vf_info *vf_info;
4226 
4227 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4228 	if (!vf_info) {
4229 		DP_NOTICE(p_hwfn->cdev,
4230 			  "Can not set udp ports, invalid vfid [%d]\n", vfid);
4231 		return;
4232 	}
4233 
4234 	if (vf_info->b_malicious) {
4235 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
4236 			   "Can not set udp ports to malicious VF [%d]\n",
4237 			   vfid);
4238 		return;
4239 	}
4240 
4241 	vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
4242 	vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
4243 }
4244 
4245 static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
4246 {
4247 	struct qed_vf_info *p_vf_info;
4248 
4249 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4250 	if (!p_vf_info)
4251 		return false;
4252 
4253 	return !!p_vf_info->vport_instance;
4254 }
4255 
4256 static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
4257 {
4258 	struct qed_vf_info *p_vf_info;
4259 
4260 	p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4261 	if (!p_vf_info)
4262 		return true;
4263 
4264 	return p_vf_info->state == VF_STOPPED;
4265 }
4266 
4267 static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
4268 {
4269 	struct qed_vf_info *vf_info;
4270 
4271 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4272 	if (!vf_info)
4273 		return false;
4274 
4275 	return vf_info->spoof_chk;
4276 }
4277 
4278 static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
4279 {
4280 	struct qed_vf_info *vf;
4281 	int rc = -EINVAL;
4282 
4283 	if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4284 		DP_NOTICE(p_hwfn,
4285 			  "SR-IOV sanity check failed, can't set spoofchk\n");
4286 		goto out;
4287 	}
4288 
4289 	vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4290 	if (!vf)
4291 		goto out;
4292 
4293 	if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
4294 		/* After VF VPORT start PF will configure spoof check */
4295 		vf->req_spoofchk_val = val;
4296 		rc = 0;
4297 		goto out;
4298 	}
4299 
4300 	rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
4301 
4302 out:
4303 	return rc;
4304 }
4305 
4306 static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4307 {
4308 	struct qed_vf_info *p_vf;
4309 
4310 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4311 	if (!p_vf || !p_vf->bulletin.p_virt)
4312 		return NULL;
4313 
4314 	if (!(p_vf->bulletin.p_virt->valid_bitmap &
4315 	      BIT(VFPF_BULLETIN_MAC_ADDR)))
4316 		return NULL;
4317 
4318 	return p_vf->bulletin.p_virt->mac;
4319 }
4320 
4321 static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
4322 					   u16 rel_vf_id)
4323 {
4324 	struct qed_vf_info *p_vf;
4325 
4326 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4327 	if (!p_vf || !p_vf->bulletin.p_virt)
4328 		return NULL;
4329 
4330 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
4331 		return NULL;
4332 
4333 	return p_vf->bulletin.p_virt->mac;
4334 }
4335 
4336 static u16
4337 qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
4338 {
4339 	struct qed_vf_info *p_vf;
4340 
4341 	p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
4342 	if (!p_vf || !p_vf->bulletin.p_virt)
4343 		return 0;
4344 
4345 	if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
4346 		return 0;
4347 
4348 	return p_vf->bulletin.p_virt->pvid;
4349 }
4350 
4351 static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
4352 				     struct qed_ptt *p_ptt, int vfid, int val)
4353 {
4354 	struct qed_mcp_link_state *p_link;
4355 	struct qed_vf_info *vf;
4356 	u8 abs_vp_id = 0;
4357 	int rc;
4358 
4359 	vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
4360 	if (!vf)
4361 		return -EINVAL;
4362 
4363 	rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
4364 	if (rc)
4365 		return rc;
4366 
4367 	p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output;
4368 
4369 	return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val,
4370 				 p_link->speed);
4371 }
4372 
4373 static int
4374 qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
4375 {
4376 	struct qed_vf_info *vf;
4377 	u8 vport_id;
4378 	int i;
4379 
4380 	for_each_hwfn(cdev, i) {
4381 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4382 
4383 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4384 			DP_NOTICE(p_hwfn,
4385 				  "SR-IOV sanity check failed, can't set min rate\n");
4386 			return -EINVAL;
4387 		}
4388 	}
4389 
4390 	vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
4391 	vport_id = vf->vport_id;
4392 
4393 	return qed_configure_vport_wfq(cdev, vport_id, rate);
4394 }
4395 
4396 static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
4397 {
4398 	struct qed_wfq_data *vf_vp_wfq;
4399 	struct qed_vf_info *vf_info;
4400 
4401 	vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
4402 	if (!vf_info)
4403 		return 0;
4404 
4405 	vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
4406 
4407 	if (vf_vp_wfq->configured)
4408 		return vf_vp_wfq->min_speed;
4409 	else
4410 		return 0;
4411 }
4412 
4413 /**
4414  * qed_schedule_iov - schedules IOV task for VF and PF
4415  * @hwfn: hardware function pointer
4416  * @flag: IOV flag for VF/PF
4417  */
4418 void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
4419 {
4420 	smp_mb__before_atomic();
4421 	set_bit(flag, &hwfn->iov_task_flags);
4422 	smp_mb__after_atomic();
4423 	DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
4424 	queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
4425 }
4426 
4427 void qed_vf_start_iov_wq(struct qed_dev *cdev)
4428 {
4429 	int i;
4430 
4431 	for_each_hwfn(cdev, i)
4432 	    queue_delayed_work(cdev->hwfns[i].iov_wq,
4433 			       &cdev->hwfns[i].iov_task, 0);
4434 }
4435 
4436 int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
4437 {
4438 	int i, j;
4439 
4440 	for_each_hwfn(cdev, i)
4441 	    if (cdev->hwfns[i].iov_wq)
4442 		flush_workqueue(cdev->hwfns[i].iov_wq);
4443 
4444 	/* Mark VFs for disablement */
4445 	qed_iov_set_vfs_to_disable(cdev, true);
4446 
4447 	if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
4448 		pci_disable_sriov(cdev->pdev);
4449 
4450 	for_each_hwfn(cdev, i) {
4451 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4452 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
4453 
4454 		/* Failure to acquire the ptt in 100g creates an odd error
4455 		 * where the first engine has already relased IOV.
4456 		 */
4457 		if (!ptt) {
4458 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4459 			return -EBUSY;
4460 		}
4461 
4462 		/* Clean WFQ db and configure equal weight for all vports */
4463 		qed_clean_wfq_db(hwfn, ptt);
4464 
4465 		qed_for_each_vf(hwfn, j) {
4466 			int k;
4467 
4468 			if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
4469 				continue;
4470 
4471 			/* Wait until VF is disabled before releasing */
4472 			for (k = 0; k < 100; k++) {
4473 				if (!qed_iov_is_vf_stopped(hwfn, j))
4474 					msleep(20);
4475 				else
4476 					break;
4477 			}
4478 
4479 			if (k < 100)
4480 				qed_iov_release_hw_for_vf(&cdev->hwfns[i],
4481 							  ptt, j);
4482 			else
4483 				DP_ERR(hwfn,
4484 				       "Timeout waiting for VF's FLR to end\n");
4485 		}
4486 
4487 		qed_ptt_release(hwfn, ptt);
4488 	}
4489 
4490 	qed_iov_set_vfs_to_disable(cdev, false);
4491 
4492 	return 0;
4493 }
4494 
4495 static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
4496 					u16 vfid,
4497 					struct qed_iov_vf_init_params *params)
4498 {
4499 	u16 base, i;
4500 
4501 	/* Since we have an equal resource distribution per-VF, and we assume
4502 	 * PF has acquired the QED_PF_L2_QUE first queues, we start setting
4503 	 * sequentially from there.
4504 	 */
4505 	base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
4506 
4507 	params->rel_vf_id = vfid;
4508 	for (i = 0; i < params->num_queues; i++) {
4509 		params->req_rx_queue[i] = base + i;
4510 		params->req_tx_queue[i] = base + i;
4511 	}
4512 }
4513 
4514 static int qed_sriov_enable(struct qed_dev *cdev, int num)
4515 {
4516 	struct qed_iov_vf_init_params params;
4517 	struct qed_hwfn *hwfn;
4518 	struct qed_ptt *ptt;
4519 	int i, j, rc;
4520 
4521 	if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
4522 		DP_NOTICE(cdev, "Can start at most %d VFs\n",
4523 			  RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
4524 		return -EINVAL;
4525 	}
4526 
4527 	memset(&params, 0, sizeof(params));
4528 
4529 	/* Initialize HW for VF access */
4530 	for_each_hwfn(cdev, j) {
4531 		hwfn = &cdev->hwfns[j];
4532 		ptt = qed_ptt_acquire(hwfn);
4533 
4534 		/* Make sure not to use more than 16 queues per VF */
4535 		params.num_queues = min_t(int,
4536 					  FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
4537 					  16);
4538 
4539 		if (!ptt) {
4540 			DP_ERR(hwfn, "Failed to acquire ptt\n");
4541 			rc = -EBUSY;
4542 			goto err;
4543 		}
4544 
4545 		for (i = 0; i < num; i++) {
4546 			if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
4547 				continue;
4548 
4549 			qed_sriov_enable_qid_config(hwfn, i, &params);
4550 			rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
4551 			if (rc) {
4552 				DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
4553 				qed_ptt_release(hwfn, ptt);
4554 				goto err;
4555 			}
4556 		}
4557 
4558 		qed_ptt_release(hwfn, ptt);
4559 	}
4560 
4561 	/* Enable SRIOV PCIe functions */
4562 	rc = pci_enable_sriov(cdev->pdev, num);
4563 	if (rc) {
4564 		DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
4565 		goto err;
4566 	}
4567 
4568 	hwfn = QED_LEADING_HWFN(cdev);
4569 	ptt = qed_ptt_acquire(hwfn);
4570 	if (!ptt) {
4571 		DP_ERR(hwfn, "Failed to acquire ptt\n");
4572 		rc = -EBUSY;
4573 		goto err;
4574 	}
4575 
4576 	rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
4577 	if (rc)
4578 		DP_INFO(cdev, "Failed to update eswitch mode\n");
4579 	qed_ptt_release(hwfn, ptt);
4580 
4581 	return num;
4582 
4583 err:
4584 	qed_sriov_disable(cdev, false);
4585 	return rc;
4586 }
4587 
4588 static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
4589 {
4590 	if (!IS_QED_SRIOV(cdev)) {
4591 		DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
4592 		return -EOPNOTSUPP;
4593 	}
4594 
4595 	if (num_vfs_param)
4596 		return qed_sriov_enable(cdev, num_vfs_param);
4597 	else
4598 		return qed_sriov_disable(cdev, true);
4599 }
4600 
4601 static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
4602 {
4603 	int i;
4604 
4605 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4606 		DP_VERBOSE(cdev, QED_MSG_IOV,
4607 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4608 		return -EINVAL;
4609 	}
4610 
4611 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4612 		DP_VERBOSE(cdev, QED_MSG_IOV,
4613 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4614 		return -EINVAL;
4615 	}
4616 
4617 	for_each_hwfn(cdev, i) {
4618 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4619 		struct qed_public_vf_info *vf_info;
4620 
4621 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4622 		if (!vf_info)
4623 			continue;
4624 
4625 		/* Set the MAC, and schedule the IOV task */
4626 		if (vf_info->is_trusted_configured)
4627 			ether_addr_copy(vf_info->mac, mac);
4628 		else
4629 			ether_addr_copy(vf_info->forced_mac, mac);
4630 
4631 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4632 	}
4633 
4634 	return 0;
4635 }
4636 
4637 static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
4638 {
4639 	int i;
4640 
4641 	if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
4642 		DP_VERBOSE(cdev, QED_MSG_IOV,
4643 			   "Cannot set a VF MAC; Sriov is not enabled\n");
4644 		return -EINVAL;
4645 	}
4646 
4647 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
4648 		DP_VERBOSE(cdev, QED_MSG_IOV,
4649 			   "Cannot set VF[%d] MAC (VF is not active)\n", vfid);
4650 		return -EINVAL;
4651 	}
4652 
4653 	for_each_hwfn(cdev, i) {
4654 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4655 		struct qed_public_vf_info *vf_info;
4656 
4657 		vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
4658 		if (!vf_info)
4659 			continue;
4660 
4661 		/* Set the forced vlan, and schedule the IOV task */
4662 		vf_info->forced_vlan = vid;
4663 		qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
4664 	}
4665 
4666 	return 0;
4667 }
4668 
4669 static int qed_get_vf_config(struct qed_dev *cdev,
4670 			     int vf_id, struct ifla_vf_info *ivi)
4671 {
4672 	struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
4673 	struct qed_public_vf_info *vf_info;
4674 	struct qed_mcp_link_state link;
4675 	u32 tx_rate;
4676 
4677 	/* Sanitize request */
4678 	if (IS_VF(cdev))
4679 		return -EINVAL;
4680 
4681 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
4682 		DP_VERBOSE(cdev, QED_MSG_IOV,
4683 			   "VF index [%d] isn't active\n", vf_id);
4684 		return -EINVAL;
4685 	}
4686 
4687 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4688 
4689 	qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
4690 
4691 	/* Fill information about VF */
4692 	ivi->vf = vf_id;
4693 
4694 	if (is_valid_ether_addr(vf_info->forced_mac))
4695 		ether_addr_copy(ivi->mac, vf_info->forced_mac);
4696 	else
4697 		ether_addr_copy(ivi->mac, vf_info->mac);
4698 
4699 	ivi->vlan = vf_info->forced_vlan;
4700 	ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
4701 	ivi->linkstate = vf_info->link_state;
4702 	tx_rate = vf_info->tx_rate;
4703 	ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
4704 	ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
4705 
4706 	return 0;
4707 }
4708 
4709 void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
4710 {
4711 	struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
4712 	struct qed_mcp_link_capabilities caps;
4713 	struct qed_mcp_link_params params;
4714 	struct qed_mcp_link_state link;
4715 	int i;
4716 
4717 	if (!hwfn->pf_iov_info)
4718 		return;
4719 
4720 	/* Update bulletin of all future possible VFs with link configuration */
4721 	for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
4722 		struct qed_public_vf_info *vf_info;
4723 
4724 		vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
4725 		if (!vf_info)
4726 			continue;
4727 
4728 		/* Only hwfn0 is actually interested in the link speed.
4729 		 * But since only it would receive an MFW indication of link,
4730 		 * need to take configuration from it - otherwise things like
4731 		 * rate limiting for hwfn1 VF would not work.
4732 		 */
4733 		memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
4734 		       sizeof(params));
4735 		memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
4736 		memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
4737 		       sizeof(caps));
4738 
4739 		/* Modify link according to the VF's configured link state */
4740 		switch (vf_info->link_state) {
4741 		case IFLA_VF_LINK_STATE_DISABLE:
4742 			link.link_up = false;
4743 			break;
4744 		case IFLA_VF_LINK_STATE_ENABLE:
4745 			link.link_up = true;
4746 			/* Set speed according to maximum supported by HW.
4747 			 * that is 40G for regular devices and 100G for CMT
4748 			 * mode devices.
4749 			 */
4750 			link.speed = (hwfn->cdev->num_hwfns > 1) ?
4751 				     100000 : 40000;
4752 		default:
4753 			/* In auto mode pass PF link image to VF */
4754 			break;
4755 		}
4756 
4757 		if (link.link_up && vf_info->tx_rate) {
4758 			struct qed_ptt *ptt;
4759 			int rate;
4760 
4761 			rate = min_t(int, vf_info->tx_rate, link.speed);
4762 
4763 			ptt = qed_ptt_acquire(hwfn);
4764 			if (!ptt) {
4765 				DP_NOTICE(hwfn, "Failed to acquire PTT\n");
4766 				return;
4767 			}
4768 
4769 			if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
4770 				vf_info->tx_rate = rate;
4771 				link.speed = rate;
4772 			}
4773 
4774 			qed_ptt_release(hwfn, ptt);
4775 		}
4776 
4777 		qed_iov_set_link(hwfn, i, &params, &link, &caps);
4778 	}
4779 
4780 	qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
4781 }
4782 
4783 static int qed_set_vf_link_state(struct qed_dev *cdev,
4784 				 int vf_id, int link_state)
4785 {
4786 	int i;
4787 
4788 	/* Sanitize request */
4789 	if (IS_VF(cdev))
4790 		return -EINVAL;
4791 
4792 	if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
4793 		DP_VERBOSE(cdev, QED_MSG_IOV,
4794 			   "VF index [%d] isn't active\n", vf_id);
4795 		return -EINVAL;
4796 	}
4797 
4798 	/* Handle configuration of link state */
4799 	for_each_hwfn(cdev, i) {
4800 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4801 		struct qed_public_vf_info *vf;
4802 
4803 		vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
4804 		if (!vf)
4805 			continue;
4806 
4807 		if (vf->link_state == link_state)
4808 			continue;
4809 
4810 		vf->link_state = link_state;
4811 		qed_inform_vf_link_state(&cdev->hwfns[i]);
4812 	}
4813 
4814 	return 0;
4815 }
4816 
4817 static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
4818 {
4819 	int i, rc = -EINVAL;
4820 
4821 	for_each_hwfn(cdev, i) {
4822 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4823 
4824 		rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
4825 		if (rc)
4826 			break;
4827 	}
4828 
4829 	return rc;
4830 }
4831 
4832 static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
4833 {
4834 	int i;
4835 
4836 	for_each_hwfn(cdev, i) {
4837 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4838 		struct qed_public_vf_info *vf;
4839 
4840 		if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
4841 			DP_NOTICE(p_hwfn,
4842 				  "SR-IOV sanity check failed, can't set tx rate\n");
4843 			return -EINVAL;
4844 		}
4845 
4846 		vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
4847 
4848 		vf->tx_rate = rate;
4849 
4850 		qed_inform_vf_link_state(p_hwfn);
4851 	}
4852 
4853 	return 0;
4854 }
4855 
4856 static int qed_set_vf_rate(struct qed_dev *cdev,
4857 			   int vfid, u32 min_rate, u32 max_rate)
4858 {
4859 	int rc_min = 0, rc_max = 0;
4860 
4861 	if (max_rate)
4862 		rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
4863 
4864 	if (min_rate)
4865 		rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
4866 
4867 	if (rc_max | rc_min)
4868 		return -EINVAL;
4869 
4870 	return 0;
4871 }
4872 
4873 static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
4874 {
4875 	int i;
4876 
4877 	for_each_hwfn(cdev, i) {
4878 		struct qed_hwfn *hwfn = &cdev->hwfns[i];
4879 		struct qed_public_vf_info *vf;
4880 
4881 		if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
4882 			DP_NOTICE(hwfn,
4883 				  "SR-IOV sanity check failed, can't set trust\n");
4884 			return -EINVAL;
4885 		}
4886 
4887 		vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
4888 
4889 		if (vf->is_trusted_request == trust)
4890 			return 0;
4891 		vf->is_trusted_request = trust;
4892 
4893 		qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
4894 	}
4895 
4896 	return 0;
4897 }
4898 
4899 static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
4900 {
4901 	u64 events[QED_VF_ARRAY_LENGTH];
4902 	struct qed_ptt *ptt;
4903 	int i;
4904 
4905 	ptt = qed_ptt_acquire(hwfn);
4906 	if (!ptt) {
4907 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4908 			   "Can't acquire PTT; re-scheduling\n");
4909 		qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
4910 		return;
4911 	}
4912 
4913 	qed_iov_pf_get_pending_events(hwfn, events);
4914 
4915 	DP_VERBOSE(hwfn, QED_MSG_IOV,
4916 		   "Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
4917 		   events[0], events[1], events[2]);
4918 
4919 	qed_for_each_vf(hwfn, i) {
4920 		/* Skip VFs with no pending messages */
4921 		if (!(events[i / 64] & (1ULL << (i % 64))))
4922 			continue;
4923 
4924 		DP_VERBOSE(hwfn, QED_MSG_IOV,
4925 			   "Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
4926 			   i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4927 
4928 		/* Copy VF's message to PF's request buffer for that VF */
4929 		if (qed_iov_copy_vf_msg(hwfn, ptt, i))
4930 			continue;
4931 
4932 		qed_iov_process_mbx_req(hwfn, ptt, i);
4933 	}
4934 
4935 	qed_ptt_release(hwfn, ptt);
4936 }
4937 
4938 static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
4939 				       u8 *mac,
4940 				       struct qed_public_vf_info *info)
4941 {
4942 	if (info->is_trusted_configured) {
4943 		if (is_valid_ether_addr(info->mac) &&
4944 		    (!mac || !ether_addr_equal(mac, info->mac)))
4945 			return true;
4946 	} else {
4947 		if (is_valid_ether_addr(info->forced_mac) &&
4948 		    (!mac || !ether_addr_equal(mac, info->forced_mac)))
4949 			return true;
4950 	}
4951 
4952 	return false;
4953 }
4954 
4955 static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
4956 				 struct qed_public_vf_info *info,
4957 				 int vfid)
4958 {
4959 	if (info->is_trusted_configured)
4960 		qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
4961 	else
4962 		qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
4963 }
4964 
4965 static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
4966 {
4967 	int i;
4968 
4969 	qed_for_each_vf(hwfn, i) {
4970 		struct qed_public_vf_info *info;
4971 		bool update = false;
4972 		u8 *mac;
4973 
4974 		info = qed_iov_get_public_vf_info(hwfn, i, true);
4975 		if (!info)
4976 			continue;
4977 
4978 		/* Update data on bulletin board */
4979 		if (info->is_trusted_configured)
4980 			mac = qed_iov_bulletin_get_mac(hwfn, i);
4981 		else
4982 			mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
4983 
4984 		if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
4985 			DP_VERBOSE(hwfn,
4986 				   QED_MSG_IOV,
4987 				   "Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
4988 				   i,
4989 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
4990 
4991 			/* Update bulletin board with MAC */
4992 			qed_set_bulletin_mac(hwfn, info, i);
4993 			update = true;
4994 		}
4995 
4996 		if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
4997 		    info->forced_vlan) {
4998 			DP_VERBOSE(hwfn,
4999 				   QED_MSG_IOV,
5000 				   "Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
5001 				   info->forced_vlan,
5002 				   i,
5003 				   hwfn->cdev->p_iov_info->first_vf_in_pf + i);
5004 			qed_iov_bulletin_set_forced_vlan(hwfn,
5005 							 info->forced_vlan, i);
5006 			update = true;
5007 		}
5008 
5009 		if (update)
5010 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5011 	}
5012 }
5013 
5014 static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
5015 {
5016 	struct qed_ptt *ptt;
5017 	int i;
5018 
5019 	ptt = qed_ptt_acquire(hwfn);
5020 	if (!ptt) {
5021 		DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
5022 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5023 		return;
5024 	}
5025 
5026 	qed_for_each_vf(hwfn, i)
5027 	    qed_iov_post_vf_bulletin(hwfn, i, ptt);
5028 
5029 	qed_ptt_release(hwfn, ptt);
5030 }
5031 
5032 static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
5033 {
5034 	struct qed_public_vf_info *vf_info;
5035 	struct qed_vf_info *vf;
5036 	u8 *force_mac;
5037 	int i;
5038 
5039 	vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
5040 	vf = qed_iov_get_vf_info(hwfn, vf_id, true);
5041 
5042 	if (!vf_info || !vf)
5043 		return;
5044 
5045 	/* Force MAC converted to generic MAC in case of VF trust on */
5046 	if (vf_info->is_trusted_configured &&
5047 	    (vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
5048 		force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
5049 
5050 		if (force_mac) {
5051 			/* Clear existing shadow copy of MAC to have a clean
5052 			 * slate.
5053 			 */
5054 			for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5055 				if (ether_addr_equal(vf->shadow_config.macs[i],
5056 						     vf_info->mac)) {
5057 					memset(vf->shadow_config.macs[i], 0,
5058 					       ETH_ALEN);
5059 					DP_VERBOSE(hwfn, QED_MSG_IOV,
5060 						   "Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
5061 						    vf_info->mac, vf_id);
5062 					break;
5063 				}
5064 			}
5065 
5066 			ether_addr_copy(vf_info->mac, force_mac);
5067 			memset(vf_info->forced_mac, 0, ETH_ALEN);
5068 			vf->bulletin.p_virt->valid_bitmap &=
5069 					~BIT(MAC_ADDR_FORCED);
5070 			qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5071 		}
5072 	}
5073 
5074 	/* Update shadow copy with VF MAC when trust mode is turned off */
5075 	if (!vf_info->is_trusted_configured) {
5076 		u8 empty_mac[ETH_ALEN];
5077 
5078 		memset(empty_mac, 0, ETH_ALEN);
5079 		for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
5080 			if (ether_addr_equal(vf->shadow_config.macs[i],
5081 					     empty_mac)) {
5082 				ether_addr_copy(vf->shadow_config.macs[i],
5083 						vf_info->mac);
5084 				DP_VERBOSE(hwfn, QED_MSG_IOV,
5085 					   "Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
5086 					    vf_info->mac, vf_id);
5087 				break;
5088 			}
5089 		}
5090 		/* Clear bulletin when trust mode is turned off,
5091 		 * to have a clean slate for next (normal) operations.
5092 		 */
5093 		qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
5094 		qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
5095 	}
5096 }
5097 
5098 static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
5099 {
5100 	struct qed_sp_vport_update_params params;
5101 	struct qed_filter_accept_flags *flags;
5102 	struct qed_public_vf_info *vf_info;
5103 	struct qed_vf_info *vf;
5104 	u8 mask;
5105 	int i;
5106 
5107 	mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
5108 	flags = &params.accept_flags;
5109 
5110 	qed_for_each_vf(hwfn, i) {
5111 		/* Need to make sure current requested configuration didn't
5112 		 * flip so that we'll end up configuring something that's not
5113 		 * needed.
5114 		 */
5115 		vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
5116 		if (vf_info->is_trusted_configured ==
5117 		    vf_info->is_trusted_request)
5118 			continue;
5119 		vf_info->is_trusted_configured = vf_info->is_trusted_request;
5120 
5121 		/* Handle forced MAC mode */
5122 		qed_update_mac_for_vf_trust_change(hwfn, i);
5123 
5124 		/* Validate that the VF has a configured vport */
5125 		vf = qed_iov_get_vf_info(hwfn, i, true);
5126 		if (!vf->vport_instance)
5127 			continue;
5128 
5129 		memset(&params, 0, sizeof(params));
5130 		params.opaque_fid = vf->opaque_fid;
5131 		params.vport_id = vf->vport_id;
5132 
5133 		if (vf_info->rx_accept_mode & mask) {
5134 			flags->update_rx_mode_config = 1;
5135 			flags->rx_accept_filter = vf_info->rx_accept_mode;
5136 		}
5137 
5138 		if (vf_info->tx_accept_mode & mask) {
5139 			flags->update_tx_mode_config = 1;
5140 			flags->tx_accept_filter = vf_info->tx_accept_mode;
5141 		}
5142 
5143 		/* Remove if needed; Otherwise this would set the mask */
5144 		if (!vf_info->is_trusted_configured) {
5145 			flags->rx_accept_filter &= ~mask;
5146 			flags->tx_accept_filter &= ~mask;
5147 		}
5148 
5149 		if (flags->update_rx_mode_config ||
5150 		    flags->update_tx_mode_config)
5151 			qed_sp_vport_update(hwfn, &params,
5152 					    QED_SPQ_MODE_EBLOCK, NULL);
5153 	}
5154 }
5155 
5156 static void qed_iov_pf_task(struct work_struct *work)
5157 
5158 {
5159 	struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
5160 					     iov_task.work);
5161 	int rc;
5162 
5163 	if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
5164 		return;
5165 
5166 	if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
5167 		struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
5168 
5169 		if (!ptt) {
5170 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5171 			return;
5172 		}
5173 
5174 		rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
5175 		if (rc)
5176 			qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
5177 
5178 		qed_ptt_release(hwfn, ptt);
5179 	}
5180 
5181 	if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
5182 		qed_handle_vf_msg(hwfn);
5183 
5184 	if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
5185 			       &hwfn->iov_task_flags))
5186 		qed_handle_pf_set_vf_unicast(hwfn);
5187 
5188 	if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
5189 			       &hwfn->iov_task_flags))
5190 		qed_handle_bulletin_post(hwfn);
5191 
5192 	if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
5193 		qed_iov_handle_trust_change(hwfn);
5194 }
5195 
5196 void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
5197 {
5198 	int i;
5199 
5200 	for_each_hwfn(cdev, i) {
5201 		if (!cdev->hwfns[i].iov_wq)
5202 			continue;
5203 
5204 		if (schedule_first) {
5205 			qed_schedule_iov(&cdev->hwfns[i],
5206 					 QED_IOV_WQ_STOP_WQ_FLAG);
5207 			cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
5208 		}
5209 
5210 		flush_workqueue(cdev->hwfns[i].iov_wq);
5211 		destroy_workqueue(cdev->hwfns[i].iov_wq);
5212 	}
5213 }
5214 
5215 int qed_iov_wq_start(struct qed_dev *cdev)
5216 {
5217 	char name[NAME_SIZE];
5218 	int i;
5219 
5220 	for_each_hwfn(cdev, i) {
5221 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5222 
5223 		/* PFs needs a dedicated workqueue only if they support IOV.
5224 		 * VFs always require one.
5225 		 */
5226 		if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
5227 			continue;
5228 
5229 		snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
5230 			 cdev->pdev->bus->number,
5231 			 PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
5232 
5233 		p_hwfn->iov_wq = create_singlethread_workqueue(name);
5234 		if (!p_hwfn->iov_wq) {
5235 			DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
5236 			return -ENOMEM;
5237 		}
5238 
5239 		if (IS_PF(cdev))
5240 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
5241 		else
5242 			INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
5243 	}
5244 
5245 	return 0;
5246 }
5247 
5248 const struct qed_iov_hv_ops qed_iov_ops_pass = {
5249 	.configure = &qed_sriov_configure,
5250 	.set_mac = &qed_sriov_pf_set_mac,
5251 	.set_vlan = &qed_sriov_pf_set_vlan,
5252 	.get_config = &qed_get_vf_config,
5253 	.set_link_state = &qed_set_vf_link_state,
5254 	.set_spoof = &qed_spoof_configure,
5255 	.set_rate = &qed_set_vf_rate,
5256 	.set_trust = &qed_set_vf_trust,
5257 };
5258