1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <asm/byteorder.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/string.h> 15 #include <linux/etherdevice.h> 16 #include "qed.h" 17 #include "qed_cxt.h" 18 #include "qed_dcbx.h" 19 #include "qed_hsi.h" 20 #include "qed_hw.h" 21 #include "qed_mcp.h" 22 #include "qed_reg_addr.h" 23 #include "qed_sriov.h" 24 25 #define GRCBASE_MCP 0xe00000 26 27 #define QED_MCP_RESP_ITER_US 10 28 29 #define QED_DRV_MB_MAX_RETRIES (500 * 1000) /* Account for 5 sec */ 30 #define QED_MCP_RESET_RETRIES (50 * 1000) /* Account for 500 msec */ 31 32 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val) \ 33 qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \ 34 _val) 35 36 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \ 37 qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset)) 38 39 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val) \ 40 DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \ 41 offsetof(struct public_drv_mb, _field), _val) 42 43 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field) \ 44 DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \ 45 offsetof(struct public_drv_mb, _field)) 46 47 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \ 48 DRV_ID_PDA_COMP_VER_SHIFT) 49 50 #define MCP_BYTES_PER_MBIT_SHIFT 17 51 52 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn) 53 { 54 if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base) 55 return false; 56 return true; 57 } 58 59 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 60 { 61 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 62 PUBLIC_PORT); 63 u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr); 64 65 p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize, 66 MFW_PORT(p_hwfn)); 67 DP_VERBOSE(p_hwfn, QED_MSG_SP, 68 "port_addr = 0x%x, port_id 0x%02x\n", 69 p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn)); 70 } 71 72 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 73 { 74 u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length); 75 u32 tmp, i; 76 77 if (!p_hwfn->mcp_info->public_base) 78 return; 79 80 for (i = 0; i < length; i++) { 81 tmp = qed_rd(p_hwfn, p_ptt, 82 p_hwfn->mcp_info->mfw_mb_addr + 83 (i << 2) + sizeof(u32)); 84 85 /* The MB data is actually BE; Need to force it to cpu */ 86 ((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] = 87 be32_to_cpu((__force __be32)tmp); 88 } 89 } 90 91 struct qed_mcp_cmd_elem { 92 struct list_head list; 93 struct qed_mcp_mb_params *p_mb_params; 94 u16 expected_seq_num; 95 bool b_is_completed; 96 }; 97 98 /* Must be called while cmd_lock is acquired */ 99 static struct qed_mcp_cmd_elem * 100 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn, 101 struct qed_mcp_mb_params *p_mb_params, 102 u16 expected_seq_num) 103 { 104 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 105 106 p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC); 107 if (!p_cmd_elem) 108 goto out; 109 110 p_cmd_elem->p_mb_params = p_mb_params; 111 p_cmd_elem->expected_seq_num = expected_seq_num; 112 list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list); 113 out: 114 return p_cmd_elem; 115 } 116 117 /* Must be called while cmd_lock is acquired */ 118 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn, 119 struct qed_mcp_cmd_elem *p_cmd_elem) 120 { 121 list_del(&p_cmd_elem->list); 122 kfree(p_cmd_elem); 123 } 124 125 /* Must be called while cmd_lock is acquired */ 126 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn, 127 u16 seq_num) 128 { 129 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 130 131 list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) { 132 if (p_cmd_elem->expected_seq_num == seq_num) 133 return p_cmd_elem; 134 } 135 136 return NULL; 137 } 138 139 int qed_mcp_free(struct qed_hwfn *p_hwfn) 140 { 141 if (p_hwfn->mcp_info) { 142 struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp; 143 144 kfree(p_hwfn->mcp_info->mfw_mb_cur); 145 kfree(p_hwfn->mcp_info->mfw_mb_shadow); 146 147 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 148 list_for_each_entry_safe(p_cmd_elem, 149 p_tmp, 150 &p_hwfn->mcp_info->cmd_list, list) { 151 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 152 } 153 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 154 } 155 156 kfree(p_hwfn->mcp_info); 157 p_hwfn->mcp_info = NULL; 158 159 return 0; 160 } 161 162 /* Maximum of 1 sec to wait for the SHMEM ready indication */ 163 #define QED_MCP_SHMEM_RDY_MAX_RETRIES 20 164 #define QED_MCP_SHMEM_RDY_ITER_MS 50 165 166 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 167 { 168 struct qed_mcp_info *p_info = p_hwfn->mcp_info; 169 u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES; 170 u8 msec = QED_MCP_SHMEM_RDY_ITER_MS; 171 u32 drv_mb_offsize, mfw_mb_offsize; 172 u32 mcp_pf_id = MCP_PF_ID(p_hwfn); 173 174 p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR); 175 if (!p_info->public_base) { 176 DP_NOTICE(p_hwfn, 177 "The address of the MCP scratch-pad is not configured\n"); 178 return -EINVAL; 179 } 180 181 p_info->public_base |= GRCBASE_MCP; 182 183 /* Get the MFW MB address and number of supported messages */ 184 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, 185 SECTION_OFFSIZE_ADDR(p_info->public_base, 186 PUBLIC_MFW_MB)); 187 p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id); 188 p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt, 189 p_info->mfw_mb_addr + 190 offsetof(struct public_mfw_mb, 191 sup_msgs)); 192 193 /* The driver can notify that there was an MCP reset, and might read the 194 * SHMEM values before the MFW has completed initializing them. 195 * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a 196 * data ready indication. 197 */ 198 while (!p_info->mfw_mb_length && --cnt) { 199 msleep(msec); 200 p_info->mfw_mb_length = 201 (u16)qed_rd(p_hwfn, p_ptt, 202 p_info->mfw_mb_addr + 203 offsetof(struct public_mfw_mb, sup_msgs)); 204 } 205 206 if (!cnt) { 207 DP_NOTICE(p_hwfn, 208 "Failed to get the SHMEM ready notification after %d msec\n", 209 QED_MCP_SHMEM_RDY_MAX_RETRIES * msec); 210 return -EBUSY; 211 } 212 213 /* Calculate the driver and MFW mailbox address */ 214 drv_mb_offsize = qed_rd(p_hwfn, p_ptt, 215 SECTION_OFFSIZE_ADDR(p_info->public_base, 216 PUBLIC_DRV_MB)); 217 p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id); 218 DP_VERBOSE(p_hwfn, QED_MSG_SP, 219 "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n", 220 drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id); 221 222 /* Get the current driver mailbox sequence before sending 223 * the first command 224 */ 225 p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) & 226 DRV_MSG_SEQ_NUMBER_MASK; 227 228 /* Get current FW pulse sequence */ 229 p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) & 230 DRV_PULSE_SEQ_MASK; 231 232 p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 233 234 return 0; 235 } 236 237 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 238 { 239 struct qed_mcp_info *p_info; 240 u32 size; 241 242 /* Allocate mcp_info structure */ 243 p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL); 244 if (!p_hwfn->mcp_info) 245 goto err; 246 p_info = p_hwfn->mcp_info; 247 248 /* Initialize the MFW spinlock */ 249 spin_lock_init(&p_info->cmd_lock); 250 spin_lock_init(&p_info->link_lock); 251 252 INIT_LIST_HEAD(&p_info->cmd_list); 253 254 if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) { 255 DP_NOTICE(p_hwfn, "MCP is not initialized\n"); 256 /* Do not free mcp_info here, since public_base indicate that 257 * the MCP is not initialized 258 */ 259 return 0; 260 } 261 262 size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32); 263 p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL); 264 p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL); 265 if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow) 266 goto err; 267 268 return 0; 269 270 err: 271 qed_mcp_free(p_hwfn); 272 return -ENOMEM; 273 } 274 275 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn, 276 struct qed_ptt *p_ptt) 277 { 278 u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 279 280 /* Use MCP history register to check if MCP reset occurred between init 281 * time and now. 282 */ 283 if (p_hwfn->mcp_info->mcp_hist != generic_por_0) { 284 DP_VERBOSE(p_hwfn, 285 QED_MSG_SP, 286 "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n", 287 p_hwfn->mcp_info->mcp_hist, generic_por_0); 288 289 qed_load_mcp_offsets(p_hwfn, p_ptt); 290 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 291 } 292 } 293 294 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 295 { 296 u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0; 297 int rc = 0; 298 299 if (p_hwfn->mcp_info->b_block_cmd) { 300 DP_NOTICE(p_hwfn, 301 "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n"); 302 return -EBUSY; 303 } 304 305 /* Ensure that only a single thread is accessing the mailbox */ 306 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 307 308 org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 309 310 /* Set drv command along with the updated sequence */ 311 qed_mcp_reread_offsets(p_hwfn, p_ptt); 312 seq = ++p_hwfn->mcp_info->drv_mb_seq; 313 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq)); 314 315 do { 316 /* Wait for MFW response */ 317 udelay(delay); 318 /* Give the FW up to 500 second (50*1000*10usec) */ 319 } while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt, 320 MISCS_REG_GENERIC_POR_0)) && 321 (cnt++ < QED_MCP_RESET_RETRIES)); 322 323 if (org_mcp_reset_seq != 324 qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) { 325 DP_VERBOSE(p_hwfn, QED_MSG_SP, 326 "MCP was reset after %d usec\n", cnt * delay); 327 } else { 328 DP_ERR(p_hwfn, "Failed to reset MCP\n"); 329 rc = -EAGAIN; 330 } 331 332 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 333 334 return rc; 335 } 336 337 /* Must be called while cmd_lock is acquired */ 338 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn) 339 { 340 struct qed_mcp_cmd_elem *p_cmd_elem; 341 342 /* There is at most one pending command at a certain time, and if it 343 * exists - it is placed at the HEAD of the list. 344 */ 345 if (!list_empty(&p_hwfn->mcp_info->cmd_list)) { 346 p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list, 347 struct qed_mcp_cmd_elem, list); 348 return !p_cmd_elem->b_is_completed; 349 } 350 351 return false; 352 } 353 354 /* Must be called while cmd_lock is acquired */ 355 static int 356 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 357 { 358 struct qed_mcp_mb_params *p_mb_params; 359 struct qed_mcp_cmd_elem *p_cmd_elem; 360 u32 mcp_resp; 361 u16 seq_num; 362 363 mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header); 364 seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK); 365 366 /* Return if no new non-handled response has been received */ 367 if (seq_num != p_hwfn->mcp_info->drv_mb_seq) 368 return -EAGAIN; 369 370 p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num); 371 if (!p_cmd_elem) { 372 DP_ERR(p_hwfn, 373 "Failed to find a pending mailbox cmd that expects sequence number %d\n", 374 seq_num); 375 return -EINVAL; 376 } 377 378 p_mb_params = p_cmd_elem->p_mb_params; 379 380 /* Get the MFW response along with the sequence number */ 381 p_mb_params->mcp_resp = mcp_resp; 382 383 /* Get the MFW param */ 384 p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param); 385 386 /* Get the union data */ 387 if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) { 388 u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 389 offsetof(struct public_drv_mb, 390 union_data); 391 qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst, 392 union_data_addr, p_mb_params->data_dst_size); 393 } 394 395 p_cmd_elem->b_is_completed = true; 396 397 return 0; 398 } 399 400 /* Must be called while cmd_lock is acquired */ 401 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 402 struct qed_ptt *p_ptt, 403 struct qed_mcp_mb_params *p_mb_params, 404 u16 seq_num) 405 { 406 union drv_union_data union_data; 407 u32 union_data_addr; 408 409 /* Set the union data */ 410 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 411 offsetof(struct public_drv_mb, union_data); 412 memset(&union_data, 0, sizeof(union_data)); 413 if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size) 414 memcpy(&union_data, p_mb_params->p_data_src, 415 p_mb_params->data_src_size); 416 qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data, 417 sizeof(union_data)); 418 419 /* Set the drv param */ 420 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param); 421 422 /* Set the drv command along with the sequence number */ 423 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num)); 424 425 DP_VERBOSE(p_hwfn, QED_MSG_SP, 426 "MFW mailbox: command 0x%08x param 0x%08x\n", 427 (p_mb_params->cmd | seq_num), p_mb_params->param); 428 } 429 430 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd) 431 { 432 p_hwfn->mcp_info->b_block_cmd = block_cmd; 433 434 DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n", 435 block_cmd ? "Block" : "Unblock"); 436 } 437 438 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn, 439 struct qed_ptt *p_ptt) 440 { 441 u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2; 442 u32 delay = QED_MCP_RESP_ITER_US; 443 444 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 445 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 446 cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 447 udelay(delay); 448 cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 449 udelay(delay); 450 cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 451 452 DP_NOTICE(p_hwfn, 453 "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n", 454 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2); 455 } 456 457 static int 458 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 459 struct qed_ptt *p_ptt, 460 struct qed_mcp_mb_params *p_mb_params, 461 u32 max_retries, u32 usecs) 462 { 463 u32 cnt = 0, msecs = DIV_ROUND_UP(usecs, 1000); 464 struct qed_mcp_cmd_elem *p_cmd_elem; 465 u16 seq_num; 466 int rc = 0; 467 468 /* Wait until the mailbox is non-occupied */ 469 do { 470 /* Exit the loop if there is no pending command, or if the 471 * pending command is completed during this iteration. 472 * The spinlock stays locked until the command is sent. 473 */ 474 475 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 476 477 if (!qed_mcp_has_pending_cmd(p_hwfn)) 478 break; 479 480 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 481 if (!rc) 482 break; 483 else if (rc != -EAGAIN) 484 goto err; 485 486 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 487 488 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 489 msleep(msecs); 490 else 491 udelay(usecs); 492 } while (++cnt < max_retries); 493 494 if (cnt >= max_retries) { 495 DP_NOTICE(p_hwfn, 496 "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n", 497 p_mb_params->cmd, p_mb_params->param); 498 return -EAGAIN; 499 } 500 501 /* Send the mailbox command */ 502 qed_mcp_reread_offsets(p_hwfn, p_ptt); 503 seq_num = ++p_hwfn->mcp_info->drv_mb_seq; 504 p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num); 505 if (!p_cmd_elem) { 506 rc = -ENOMEM; 507 goto err; 508 } 509 510 __qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num); 511 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 512 513 /* Wait for the MFW response */ 514 do { 515 /* Exit the loop if the command is already completed, or if the 516 * command is completed during this iteration. 517 * The spinlock stays locked until the list element is removed. 518 */ 519 520 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 521 msleep(msecs); 522 else 523 udelay(usecs); 524 525 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 526 527 if (p_cmd_elem->b_is_completed) 528 break; 529 530 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 531 if (!rc) 532 break; 533 else if (rc != -EAGAIN) 534 goto err; 535 536 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 537 } while (++cnt < max_retries); 538 539 if (cnt >= max_retries) { 540 DP_NOTICE(p_hwfn, 541 "The MFW failed to respond to command 0x%08x [param 0x%08x].\n", 542 p_mb_params->cmd, p_mb_params->param); 543 qed_mcp_print_cpu_info(p_hwfn, p_ptt); 544 545 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 546 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 547 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 548 549 if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK)) 550 qed_mcp_cmd_set_blocking(p_hwfn, true); 551 552 qed_hw_err_notify(p_hwfn, p_ptt, 553 QED_HW_ERR_MFW_RESP_FAIL, NULL); 554 return -EAGAIN; 555 } 556 557 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 558 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 559 560 DP_VERBOSE(p_hwfn, 561 QED_MSG_SP, 562 "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n", 563 p_mb_params->mcp_resp, 564 p_mb_params->mcp_param, 565 (cnt * usecs) / 1000, (cnt * usecs) % 1000); 566 567 /* Clear the sequence number from the MFW response */ 568 p_mb_params->mcp_resp &= FW_MSG_CODE_MASK; 569 570 return 0; 571 572 err: 573 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 574 return rc; 575 } 576 577 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 578 struct qed_ptt *p_ptt, 579 struct qed_mcp_mb_params *p_mb_params) 580 { 581 size_t union_data_size = sizeof(union drv_union_data); 582 u32 max_retries = QED_DRV_MB_MAX_RETRIES; 583 u32 usecs = QED_MCP_RESP_ITER_US; 584 585 /* MCP not initialized */ 586 if (!qed_mcp_is_init(p_hwfn)) { 587 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 588 return -EBUSY; 589 } 590 591 if (p_hwfn->mcp_info->b_block_cmd) { 592 DP_NOTICE(p_hwfn, 593 "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n", 594 p_mb_params->cmd, p_mb_params->param); 595 return -EBUSY; 596 } 597 598 if (p_mb_params->data_src_size > union_data_size || 599 p_mb_params->data_dst_size > union_data_size) { 600 DP_ERR(p_hwfn, 601 "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n", 602 p_mb_params->data_src_size, 603 p_mb_params->data_dst_size, union_data_size); 604 return -EINVAL; 605 } 606 607 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) { 608 max_retries = DIV_ROUND_UP(max_retries, 1000); 609 usecs *= 1000; 610 } 611 612 return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries, 613 usecs); 614 } 615 616 int qed_mcp_cmd(struct qed_hwfn *p_hwfn, 617 struct qed_ptt *p_ptt, 618 u32 cmd, 619 u32 param, 620 u32 *o_mcp_resp, 621 u32 *o_mcp_param) 622 { 623 struct qed_mcp_mb_params mb_params; 624 int rc; 625 626 memset(&mb_params, 0, sizeof(mb_params)); 627 mb_params.cmd = cmd; 628 mb_params.param = param; 629 630 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 631 if (rc) 632 return rc; 633 634 *o_mcp_resp = mb_params.mcp_resp; 635 *o_mcp_param = mb_params.mcp_param; 636 637 return 0; 638 } 639 640 static int 641 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn, 642 struct qed_ptt *p_ptt, 643 u32 cmd, 644 u32 param, 645 u32 *o_mcp_resp, 646 u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf) 647 { 648 struct qed_mcp_mb_params mb_params; 649 int rc; 650 651 memset(&mb_params, 0, sizeof(mb_params)); 652 mb_params.cmd = cmd; 653 mb_params.param = param; 654 mb_params.p_data_src = i_buf; 655 mb_params.data_src_size = (u8)i_txn_size; 656 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 657 if (rc) 658 return rc; 659 660 *o_mcp_resp = mb_params.mcp_resp; 661 *o_mcp_param = mb_params.mcp_param; 662 663 /* nvm_info needs to be updated */ 664 p_hwfn->nvm_info.valid = false; 665 666 return 0; 667 } 668 669 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn, 670 struct qed_ptt *p_ptt, 671 u32 cmd, 672 u32 param, 673 u32 *o_mcp_resp, 674 u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf) 675 { 676 struct qed_mcp_mb_params mb_params; 677 u8 raw_data[MCP_DRV_NVM_BUF_LEN]; 678 int rc; 679 680 memset(&mb_params, 0, sizeof(mb_params)); 681 mb_params.cmd = cmd; 682 mb_params.param = param; 683 mb_params.p_data_dst = raw_data; 684 685 /* Use the maximal value since the actual one is part of the response */ 686 mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN; 687 688 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 689 if (rc) 690 return rc; 691 692 *o_mcp_resp = mb_params.mcp_resp; 693 *o_mcp_param = mb_params.mcp_param; 694 695 *o_txn_size = *o_mcp_param; 696 memcpy(o_buf, raw_data, *o_txn_size); 697 698 return 0; 699 } 700 701 static bool 702 qed_mcp_can_force_load(u8 drv_role, 703 u8 exist_drv_role, 704 enum qed_override_force_load override_force_load) 705 { 706 bool can_force_load = false; 707 708 switch (override_force_load) { 709 case QED_OVERRIDE_FORCE_LOAD_ALWAYS: 710 can_force_load = true; 711 break; 712 case QED_OVERRIDE_FORCE_LOAD_NEVER: 713 can_force_load = false; 714 break; 715 default: 716 can_force_load = (drv_role == DRV_ROLE_OS && 717 exist_drv_role == DRV_ROLE_PREBOOT) || 718 (drv_role == DRV_ROLE_KDUMP && 719 exist_drv_role == DRV_ROLE_OS); 720 break; 721 } 722 723 return can_force_load; 724 } 725 726 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn, 727 struct qed_ptt *p_ptt) 728 { 729 u32 resp = 0, param = 0; 730 int rc; 731 732 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0, 733 &resp, ¶m); 734 if (rc) 735 DP_NOTICE(p_hwfn, 736 "Failed to send cancel load request, rc = %d\n", rc); 737 738 return rc; 739 } 740 741 #define CONFIG_QEDE_BITMAP_IDX BIT(0) 742 #define CONFIG_QED_SRIOV_BITMAP_IDX BIT(1) 743 #define CONFIG_QEDR_BITMAP_IDX BIT(2) 744 #define CONFIG_QEDF_BITMAP_IDX BIT(4) 745 #define CONFIG_QEDI_BITMAP_IDX BIT(5) 746 #define CONFIG_QED_LL2_BITMAP_IDX BIT(6) 747 748 static u32 qed_get_config_bitmap(void) 749 { 750 u32 config_bitmap = 0x0; 751 752 if (IS_ENABLED(CONFIG_QEDE)) 753 config_bitmap |= CONFIG_QEDE_BITMAP_IDX; 754 755 if (IS_ENABLED(CONFIG_QED_SRIOV)) 756 config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX; 757 758 if (IS_ENABLED(CONFIG_QED_RDMA)) 759 config_bitmap |= CONFIG_QEDR_BITMAP_IDX; 760 761 if (IS_ENABLED(CONFIG_QED_FCOE)) 762 config_bitmap |= CONFIG_QEDF_BITMAP_IDX; 763 764 if (IS_ENABLED(CONFIG_QED_ISCSI)) 765 config_bitmap |= CONFIG_QEDI_BITMAP_IDX; 766 767 if (IS_ENABLED(CONFIG_QED_LL2)) 768 config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX; 769 770 return config_bitmap; 771 } 772 773 struct qed_load_req_in_params { 774 u8 hsi_ver; 775 #define QED_LOAD_REQ_HSI_VER_DEFAULT 0 776 #define QED_LOAD_REQ_HSI_VER_1 1 777 u32 drv_ver_0; 778 u32 drv_ver_1; 779 u32 fw_ver; 780 u8 drv_role; 781 u8 timeout_val; 782 u8 force_cmd; 783 bool avoid_eng_reset; 784 }; 785 786 struct qed_load_req_out_params { 787 u32 load_code; 788 u32 exist_drv_ver_0; 789 u32 exist_drv_ver_1; 790 u32 exist_fw_ver; 791 u8 exist_drv_role; 792 u8 mfw_hsi_ver; 793 bool drv_exists; 794 }; 795 796 static int 797 __qed_mcp_load_req(struct qed_hwfn *p_hwfn, 798 struct qed_ptt *p_ptt, 799 struct qed_load_req_in_params *p_in_params, 800 struct qed_load_req_out_params *p_out_params) 801 { 802 struct qed_mcp_mb_params mb_params; 803 struct load_req_stc load_req; 804 struct load_rsp_stc load_rsp; 805 u32 hsi_ver; 806 int rc; 807 808 memset(&load_req, 0, sizeof(load_req)); 809 load_req.drv_ver_0 = p_in_params->drv_ver_0; 810 load_req.drv_ver_1 = p_in_params->drv_ver_1; 811 load_req.fw_ver = p_in_params->fw_ver; 812 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role); 813 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO, 814 p_in_params->timeout_val); 815 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE, 816 p_in_params->force_cmd); 817 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0, 818 p_in_params->avoid_eng_reset); 819 820 hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ? 821 DRV_ID_MCP_HSI_VER_CURRENT : 822 (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT); 823 824 memset(&mb_params, 0, sizeof(mb_params)); 825 mb_params.cmd = DRV_MSG_CODE_LOAD_REQ; 826 mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type; 827 mb_params.p_data_src = &load_req; 828 mb_params.data_src_size = sizeof(load_req); 829 mb_params.p_data_dst = &load_rsp; 830 mb_params.data_dst_size = sizeof(load_rsp); 831 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 832 833 DP_VERBOSE(p_hwfn, QED_MSG_SP, 834 "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n", 835 mb_params.param, 836 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW), 837 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE), 838 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER), 839 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER)); 840 841 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) { 842 DP_VERBOSE(p_hwfn, QED_MSG_SP, 843 "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n", 844 load_req.drv_ver_0, 845 load_req.drv_ver_1, 846 load_req.fw_ver, 847 load_req.misc0, 848 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE), 849 QED_MFW_GET_FIELD(load_req.misc0, 850 LOAD_REQ_LOCK_TO), 851 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE), 852 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0)); 853 } 854 855 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 856 if (rc) { 857 DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc); 858 return rc; 859 } 860 861 DP_VERBOSE(p_hwfn, QED_MSG_SP, 862 "Load Response: resp 0x%08x\n", mb_params.mcp_resp); 863 p_out_params->load_code = mb_params.mcp_resp; 864 865 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 866 p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 867 DP_VERBOSE(p_hwfn, 868 QED_MSG_SP, 869 "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n", 870 load_rsp.drv_ver_0, 871 load_rsp.drv_ver_1, 872 load_rsp.fw_ver, 873 load_rsp.misc0, 874 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE), 875 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI), 876 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0)); 877 878 p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0; 879 p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1; 880 p_out_params->exist_fw_ver = load_rsp.fw_ver; 881 p_out_params->exist_drv_role = 882 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE); 883 p_out_params->mfw_hsi_ver = 884 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI); 885 p_out_params->drv_exists = 886 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) & 887 LOAD_RSP_FLAGS0_DRV_EXISTS; 888 } 889 890 return 0; 891 } 892 893 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn, 894 enum qed_drv_role drv_role, 895 u8 *p_mfw_drv_role) 896 { 897 switch (drv_role) { 898 case QED_DRV_ROLE_OS: 899 *p_mfw_drv_role = DRV_ROLE_OS; 900 break; 901 case QED_DRV_ROLE_KDUMP: 902 *p_mfw_drv_role = DRV_ROLE_KDUMP; 903 break; 904 default: 905 DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role); 906 return -EINVAL; 907 } 908 909 return 0; 910 } 911 912 enum qed_load_req_force { 913 QED_LOAD_REQ_FORCE_NONE, 914 QED_LOAD_REQ_FORCE_PF, 915 QED_LOAD_REQ_FORCE_ALL, 916 }; 917 918 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn, 919 920 enum qed_load_req_force force_cmd, 921 u8 *p_mfw_force_cmd) 922 { 923 switch (force_cmd) { 924 case QED_LOAD_REQ_FORCE_NONE: 925 *p_mfw_force_cmd = LOAD_REQ_FORCE_NONE; 926 break; 927 case QED_LOAD_REQ_FORCE_PF: 928 *p_mfw_force_cmd = LOAD_REQ_FORCE_PF; 929 break; 930 case QED_LOAD_REQ_FORCE_ALL: 931 *p_mfw_force_cmd = LOAD_REQ_FORCE_ALL; 932 break; 933 } 934 } 935 936 int qed_mcp_load_req(struct qed_hwfn *p_hwfn, 937 struct qed_ptt *p_ptt, 938 struct qed_load_req_params *p_params) 939 { 940 struct qed_load_req_out_params out_params; 941 struct qed_load_req_in_params in_params; 942 u8 mfw_drv_role, mfw_force_cmd; 943 int rc; 944 945 memset(&in_params, 0, sizeof(in_params)); 946 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT; 947 in_params.drv_ver_0 = QED_VERSION; 948 in_params.drv_ver_1 = qed_get_config_bitmap(); 949 in_params.fw_ver = STORM_FW_VERSION; 950 rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role); 951 if (rc) 952 return rc; 953 954 in_params.drv_role = mfw_drv_role; 955 in_params.timeout_val = p_params->timeout_val; 956 qed_get_mfw_force_cmd(p_hwfn, 957 QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd); 958 959 in_params.force_cmd = mfw_force_cmd; 960 in_params.avoid_eng_reset = p_params->avoid_eng_reset; 961 962 memset(&out_params, 0, sizeof(out_params)); 963 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 964 if (rc) 965 return rc; 966 967 /* First handle cases where another load request should/might be sent: 968 * - MFW expects the old interface [HSI version = 1] 969 * - MFW responds that a force load request is required 970 */ 971 if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 972 DP_INFO(p_hwfn, 973 "MFW refused a load request due to HSI > 1. Resending with HSI = 1\n"); 974 975 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1; 976 memset(&out_params, 0, sizeof(out_params)); 977 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 978 if (rc) 979 return rc; 980 } else if (out_params.load_code == 981 FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) { 982 if (qed_mcp_can_force_load(in_params.drv_role, 983 out_params.exist_drv_role, 984 p_params->override_force_load)) { 985 DP_INFO(p_hwfn, 986 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n", 987 in_params.drv_role, in_params.fw_ver, 988 in_params.drv_ver_0, in_params.drv_ver_1, 989 out_params.exist_drv_role, 990 out_params.exist_fw_ver, 991 out_params.exist_drv_ver_0, 992 out_params.exist_drv_ver_1); 993 994 qed_get_mfw_force_cmd(p_hwfn, 995 QED_LOAD_REQ_FORCE_ALL, 996 &mfw_force_cmd); 997 998 in_params.force_cmd = mfw_force_cmd; 999 memset(&out_params, 0, sizeof(out_params)); 1000 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, 1001 &out_params); 1002 if (rc) 1003 return rc; 1004 } else { 1005 DP_NOTICE(p_hwfn, 1006 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n", 1007 in_params.drv_role, in_params.fw_ver, 1008 in_params.drv_ver_0, in_params.drv_ver_1, 1009 out_params.exist_drv_role, 1010 out_params.exist_fw_ver, 1011 out_params.exist_drv_ver_0, 1012 out_params.exist_drv_ver_1); 1013 DP_NOTICE(p_hwfn, 1014 "Avoid sending a force load request to prevent disruption of active PFs\n"); 1015 1016 qed_mcp_cancel_load_req(p_hwfn, p_ptt); 1017 return -EBUSY; 1018 } 1019 } 1020 1021 /* Now handle the other types of responses. 1022 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not 1023 * expected here after the additional revised load requests were sent. 1024 */ 1025 switch (out_params.load_code) { 1026 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1027 case FW_MSG_CODE_DRV_LOAD_PORT: 1028 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1029 if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 1030 out_params.drv_exists) { 1031 /* The role and fw/driver version match, but the PF is 1032 * already loaded and has not been unloaded gracefully. 1033 */ 1034 DP_NOTICE(p_hwfn, 1035 "PF is already loaded\n"); 1036 return -EINVAL; 1037 } 1038 break; 1039 default: 1040 DP_NOTICE(p_hwfn, 1041 "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n", 1042 out_params.load_code); 1043 return -EBUSY; 1044 } 1045 1046 p_params->load_code = out_params.load_code; 1047 1048 return 0; 1049 } 1050 1051 int qed_mcp_load_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1052 { 1053 u32 resp = 0, param = 0; 1054 int rc; 1055 1056 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_LOAD_DONE, 0, &resp, 1057 ¶m); 1058 if (rc) { 1059 DP_NOTICE(p_hwfn, 1060 "Failed to send a LOAD_DONE command, rc = %d\n", rc); 1061 return rc; 1062 } 1063 1064 /* Check if there is a DID mismatch between nvm-cfg/efuse */ 1065 if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) 1066 DP_NOTICE(p_hwfn, 1067 "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); 1068 1069 return 0; 1070 } 1071 1072 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1073 { 1074 struct qed_mcp_mb_params mb_params; 1075 u32 wol_param; 1076 1077 switch (p_hwfn->cdev->wol_config) { 1078 case QED_OV_WOL_DISABLED: 1079 wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED; 1080 break; 1081 case QED_OV_WOL_ENABLED: 1082 wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED; 1083 break; 1084 default: 1085 DP_NOTICE(p_hwfn, 1086 "Unknown WoL configuration %02x\n", 1087 p_hwfn->cdev->wol_config); 1088 fallthrough; 1089 case QED_OV_WOL_DEFAULT: 1090 wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP; 1091 } 1092 1093 memset(&mb_params, 0, sizeof(mb_params)); 1094 mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ; 1095 mb_params.param = wol_param; 1096 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 1097 1098 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1099 } 1100 1101 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1102 { 1103 struct qed_mcp_mb_params mb_params; 1104 struct mcp_mac wol_mac; 1105 1106 memset(&mb_params, 0, sizeof(mb_params)); 1107 mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE; 1108 1109 /* Set the primary MAC if WoL is enabled */ 1110 if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) { 1111 u8 *p_mac = p_hwfn->cdev->wol_mac; 1112 1113 memset(&wol_mac, 0, sizeof(wol_mac)); 1114 wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1]; 1115 wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 | 1116 p_mac[4] << 8 | p_mac[5]; 1117 1118 DP_VERBOSE(p_hwfn, 1119 (QED_MSG_SP | NETIF_MSG_IFDOWN), 1120 "Setting WoL MAC: %pM --> [%08x,%08x]\n", 1121 p_mac, wol_mac.mac_upper, wol_mac.mac_lower); 1122 1123 mb_params.p_data_src = &wol_mac; 1124 mb_params.data_src_size = sizeof(wol_mac); 1125 } 1126 1127 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1128 } 1129 1130 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn, 1131 struct qed_ptt *p_ptt) 1132 { 1133 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1134 PUBLIC_PATH); 1135 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1136 u32 path_addr = SECTION_ADDR(mfw_path_offsize, 1137 QED_PATH_ID(p_hwfn)); 1138 u32 disabled_vfs[VF_MAX_STATIC / 32]; 1139 int i; 1140 1141 DP_VERBOSE(p_hwfn, 1142 QED_MSG_SP, 1143 "Reading Disabled VF information from [offset %08x], path_addr %08x\n", 1144 mfw_path_offsize, path_addr); 1145 1146 for (i = 0; i < (VF_MAX_STATIC / 32); i++) { 1147 disabled_vfs[i] = qed_rd(p_hwfn, p_ptt, 1148 path_addr + 1149 offsetof(struct public_path, 1150 mcp_vf_disabled) + 1151 sizeof(u32) * i); 1152 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1153 "FLR-ed VFs [%08x,...,%08x] - %08x\n", 1154 i * 32, (i + 1) * 32 - 1, disabled_vfs[i]); 1155 } 1156 1157 if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs)) 1158 qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG); 1159 } 1160 1161 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn, 1162 struct qed_ptt *p_ptt, u32 *vfs_to_ack) 1163 { 1164 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1165 PUBLIC_FUNC); 1166 u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr); 1167 u32 func_addr = SECTION_ADDR(mfw_func_offsize, 1168 MCP_PF_ID(p_hwfn)); 1169 struct qed_mcp_mb_params mb_params; 1170 int rc; 1171 int i; 1172 1173 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1174 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1175 "Acking VFs [%08x,...,%08x] - %08x\n", 1176 i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]); 1177 1178 memset(&mb_params, 0, sizeof(mb_params)); 1179 mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE; 1180 mb_params.p_data_src = vfs_to_ack; 1181 mb_params.data_src_size = VF_MAX_STATIC / 8; 1182 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1183 if (rc) { 1184 DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n"); 1185 return -EBUSY; 1186 } 1187 1188 /* Clear the ACK bits */ 1189 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1190 qed_wr(p_hwfn, p_ptt, 1191 func_addr + 1192 offsetof(struct public_func, drv_ack_vf_disabled) + 1193 i * sizeof(u32), 0); 1194 1195 return rc; 1196 } 1197 1198 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn, 1199 struct qed_ptt *p_ptt) 1200 { 1201 u32 transceiver_state; 1202 1203 transceiver_state = qed_rd(p_hwfn, p_ptt, 1204 p_hwfn->mcp_info->port_addr + 1205 offsetof(struct public_port, 1206 transceiver_data)); 1207 1208 DP_VERBOSE(p_hwfn, 1209 (NETIF_MSG_HW | QED_MSG_SP), 1210 "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n", 1211 transceiver_state, 1212 (u32)(p_hwfn->mcp_info->port_addr + 1213 offsetof(struct public_port, transceiver_data))); 1214 1215 transceiver_state = GET_FIELD(transceiver_state, 1216 ETH_TRANSCEIVER_STATE); 1217 1218 if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT) 1219 DP_NOTICE(p_hwfn, "Transceiver is present.\n"); 1220 else 1221 DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n"); 1222 } 1223 1224 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn, 1225 struct qed_ptt *p_ptt, 1226 struct qed_mcp_link_state *p_link) 1227 { 1228 u32 eee_status, val; 1229 1230 p_link->eee_adv_caps = 0; 1231 p_link->eee_lp_adv_caps = 0; 1232 eee_status = qed_rd(p_hwfn, 1233 p_ptt, 1234 p_hwfn->mcp_info->port_addr + 1235 offsetof(struct public_port, eee_status)); 1236 p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT); 1237 val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET; 1238 if (val & EEE_1G_ADV) 1239 p_link->eee_adv_caps |= QED_EEE_1G_ADV; 1240 if (val & EEE_10G_ADV) 1241 p_link->eee_adv_caps |= QED_EEE_10G_ADV; 1242 val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET; 1243 if (val & EEE_1G_ADV) 1244 p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV; 1245 if (val & EEE_10G_ADV) 1246 p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV; 1247 } 1248 1249 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn, 1250 struct qed_ptt *p_ptt, 1251 struct public_func *p_data, int pfid) 1252 { 1253 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1254 PUBLIC_FUNC); 1255 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1256 u32 func_addr; 1257 u32 i, size; 1258 1259 func_addr = SECTION_ADDR(mfw_path_offsize, pfid); 1260 memset(p_data, 0, sizeof(*p_data)); 1261 1262 size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize)); 1263 for (i = 0; i < size / sizeof(u32); i++) 1264 ((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt, 1265 func_addr + (i << 2)); 1266 return size; 1267 } 1268 1269 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn, 1270 struct public_func *p_shmem_info) 1271 { 1272 struct qed_mcp_function_info *p_info; 1273 1274 p_info = &p_hwfn->mcp_info->func_info; 1275 1276 p_info->bandwidth_min = QED_MFW_GET_FIELD(p_shmem_info->config, 1277 FUNC_MF_CFG_MIN_BW); 1278 if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) { 1279 DP_INFO(p_hwfn, 1280 "bandwidth minimum out of bounds [%02x]. Set to 1\n", 1281 p_info->bandwidth_min); 1282 p_info->bandwidth_min = 1; 1283 } 1284 1285 p_info->bandwidth_max = QED_MFW_GET_FIELD(p_shmem_info->config, 1286 FUNC_MF_CFG_MAX_BW); 1287 if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) { 1288 DP_INFO(p_hwfn, 1289 "bandwidth maximum out of bounds [%02x]. Set to 100\n", 1290 p_info->bandwidth_max); 1291 p_info->bandwidth_max = 100; 1292 } 1293 } 1294 1295 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn, 1296 struct qed_ptt *p_ptt, bool b_reset) 1297 { 1298 struct qed_mcp_link_state *p_link; 1299 u8 max_bw, min_bw; 1300 u32 status = 0; 1301 1302 /* Prevent SW/attentions from doing this at the same time */ 1303 spin_lock_bh(&p_hwfn->mcp_info->link_lock); 1304 1305 p_link = &p_hwfn->mcp_info->link_output; 1306 memset(p_link, 0, sizeof(*p_link)); 1307 if (!b_reset) { 1308 status = qed_rd(p_hwfn, p_ptt, 1309 p_hwfn->mcp_info->port_addr + 1310 offsetof(struct public_port, link_status)); 1311 DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP), 1312 "Received link update [0x%08x] from mfw [Addr 0x%x]\n", 1313 status, 1314 (u32)(p_hwfn->mcp_info->port_addr + 1315 offsetof(struct public_port, link_status))); 1316 } else { 1317 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1318 "Resetting link indications\n"); 1319 goto out; 1320 } 1321 1322 if (p_hwfn->b_drv_link_init) { 1323 /* Link indication with modern MFW arrives as per-PF 1324 * indication. 1325 */ 1326 if (p_hwfn->mcp_info->capabilities & 1327 FW_MB_PARAM_FEATURE_SUPPORT_VLINK) { 1328 struct public_func shmem_info; 1329 1330 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, 1331 MCP_PF_ID(p_hwfn)); 1332 p_link->link_up = !!(shmem_info.status & 1333 FUNC_STATUS_VIRTUAL_LINK_UP); 1334 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1335 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1336 "Virtual link_up = %d\n", p_link->link_up); 1337 } else { 1338 p_link->link_up = !!(status & LINK_STATUS_LINK_UP); 1339 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1340 "Physical link_up = %d\n", p_link->link_up); 1341 } 1342 } else { 1343 p_link->link_up = false; 1344 } 1345 1346 p_link->full_duplex = true; 1347 switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) { 1348 case LINK_STATUS_SPEED_AND_DUPLEX_100G: 1349 p_link->speed = 100000; 1350 break; 1351 case LINK_STATUS_SPEED_AND_DUPLEX_50G: 1352 p_link->speed = 50000; 1353 break; 1354 case LINK_STATUS_SPEED_AND_DUPLEX_40G: 1355 p_link->speed = 40000; 1356 break; 1357 case LINK_STATUS_SPEED_AND_DUPLEX_25G: 1358 p_link->speed = 25000; 1359 break; 1360 case LINK_STATUS_SPEED_AND_DUPLEX_20G: 1361 p_link->speed = 20000; 1362 break; 1363 case LINK_STATUS_SPEED_AND_DUPLEX_10G: 1364 p_link->speed = 10000; 1365 break; 1366 case LINK_STATUS_SPEED_AND_DUPLEX_1000THD: 1367 p_link->full_duplex = false; 1368 fallthrough; 1369 case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD: 1370 p_link->speed = 1000; 1371 break; 1372 default: 1373 p_link->speed = 0; 1374 p_link->link_up = 0; 1375 } 1376 1377 if (p_link->link_up && p_link->speed) 1378 p_link->line_speed = p_link->speed; 1379 else 1380 p_link->line_speed = 0; 1381 1382 max_bw = p_hwfn->mcp_info->func_info.bandwidth_max; 1383 min_bw = p_hwfn->mcp_info->func_info.bandwidth_min; 1384 1385 /* Max bandwidth configuration */ 1386 __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw); 1387 1388 /* Min bandwidth configuration */ 1389 __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw); 1390 qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt, 1391 p_link->min_pf_rate); 1392 1393 p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED); 1394 p_link->an_complete = !!(status & 1395 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE); 1396 p_link->parallel_detection = !!(status & 1397 LINK_STATUS_PARALLEL_DETECTION_USED); 1398 p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED); 1399 1400 p_link->partner_adv_speed |= 1401 (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ? 1402 QED_LINK_PARTNER_SPEED_1G_FD : 0; 1403 p_link->partner_adv_speed |= 1404 (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ? 1405 QED_LINK_PARTNER_SPEED_1G_HD : 0; 1406 p_link->partner_adv_speed |= 1407 (status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ? 1408 QED_LINK_PARTNER_SPEED_10G : 0; 1409 p_link->partner_adv_speed |= 1410 (status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ? 1411 QED_LINK_PARTNER_SPEED_20G : 0; 1412 p_link->partner_adv_speed |= 1413 (status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ? 1414 QED_LINK_PARTNER_SPEED_25G : 0; 1415 p_link->partner_adv_speed |= 1416 (status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ? 1417 QED_LINK_PARTNER_SPEED_40G : 0; 1418 p_link->partner_adv_speed |= 1419 (status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ? 1420 QED_LINK_PARTNER_SPEED_50G : 0; 1421 p_link->partner_adv_speed |= 1422 (status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ? 1423 QED_LINK_PARTNER_SPEED_100G : 0; 1424 1425 p_link->partner_tx_flow_ctrl_en = 1426 !!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED); 1427 p_link->partner_rx_flow_ctrl_en = 1428 !!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED); 1429 1430 switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) { 1431 case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE: 1432 p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE; 1433 break; 1434 case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE: 1435 p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE; 1436 break; 1437 case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE: 1438 p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE; 1439 break; 1440 default: 1441 p_link->partner_adv_pause = 0; 1442 } 1443 1444 p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT); 1445 1446 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) 1447 qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link); 1448 1449 if (p_hwfn->mcp_info->capabilities & 1450 FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) { 1451 switch (status & LINK_STATUS_FEC_MODE_MASK) { 1452 case LINK_STATUS_FEC_MODE_NONE: 1453 p_link->fec_active = QED_FEC_MODE_NONE; 1454 break; 1455 case LINK_STATUS_FEC_MODE_FIRECODE_CL74: 1456 p_link->fec_active = QED_FEC_MODE_FIRECODE; 1457 break; 1458 case LINK_STATUS_FEC_MODE_RS_CL91: 1459 p_link->fec_active = QED_FEC_MODE_RS; 1460 break; 1461 default: 1462 p_link->fec_active = QED_FEC_MODE_AUTO; 1463 } 1464 } else { 1465 p_link->fec_active = QED_FEC_MODE_UNSUPPORTED; 1466 } 1467 1468 qed_link_update(p_hwfn, p_ptt); 1469 out: 1470 spin_unlock_bh(&p_hwfn->mcp_info->link_lock); 1471 } 1472 1473 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up) 1474 { 1475 struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input; 1476 struct qed_mcp_mb_params mb_params; 1477 struct eth_phy_cfg phy_cfg; 1478 u32 cmd, fec_bit = 0; 1479 u32 val, ext_speed; 1480 int rc = 0; 1481 1482 /* Set the shmem configuration according to params */ 1483 memset(&phy_cfg, 0, sizeof(phy_cfg)); 1484 cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET; 1485 if (!params->speed.autoneg) 1486 phy_cfg.speed = params->speed.forced_speed; 1487 phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0; 1488 phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0; 1489 phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0; 1490 phy_cfg.adv_speed = params->speed.advertised_speeds; 1491 phy_cfg.loopback_mode = params->loopback_mode; 1492 1493 /* There are MFWs that share this capability regardless of whether 1494 * this is feasible or not. And given that at the very least adv_caps 1495 * would be set internally by qed, we want to make sure LFA would 1496 * still work. 1497 */ 1498 if ((p_hwfn->mcp_info->capabilities & 1499 FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) { 1500 phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED; 1501 if (params->eee.tx_lpi_enable) 1502 phy_cfg.eee_cfg |= EEE_CFG_TX_LPI; 1503 if (params->eee.adv_caps & QED_EEE_1G_ADV) 1504 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G; 1505 if (params->eee.adv_caps & QED_EEE_10G_ADV) 1506 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G; 1507 phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer << 1508 EEE_TX_TIMER_USEC_OFFSET) & 1509 EEE_TX_TIMER_USEC_MASK; 1510 } 1511 1512 if (p_hwfn->mcp_info->capabilities & 1513 FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) { 1514 if (params->fec & QED_FEC_MODE_NONE) 1515 fec_bit |= FEC_FORCE_MODE_NONE; 1516 else if (params->fec & QED_FEC_MODE_FIRECODE) 1517 fec_bit |= FEC_FORCE_MODE_FIRECODE; 1518 else if (params->fec & QED_FEC_MODE_RS) 1519 fec_bit |= FEC_FORCE_MODE_RS; 1520 else if (params->fec & QED_FEC_MODE_AUTO) 1521 fec_bit |= FEC_FORCE_MODE_AUTO; 1522 1523 SET_MFW_FIELD(phy_cfg.fec_mode, FEC_FORCE_MODE, fec_bit); 1524 } 1525 1526 if (p_hwfn->mcp_info->capabilities & 1527 FW_MB_PARAM_FEATURE_SUPPORT_EXT_SPEED_FEC_CONTROL) { 1528 ext_speed = 0; 1529 if (params->ext_speed.autoneg) 1530 ext_speed |= ETH_EXT_SPEED_AN; 1531 1532 val = params->ext_speed.forced_speed; 1533 if (val & QED_EXT_SPEED_1G) 1534 ext_speed |= ETH_EXT_SPEED_1G; 1535 if (val & QED_EXT_SPEED_10G) 1536 ext_speed |= ETH_EXT_SPEED_10G; 1537 if (val & QED_EXT_SPEED_20G) 1538 ext_speed |= ETH_EXT_SPEED_20G; 1539 if (val & QED_EXT_SPEED_25G) 1540 ext_speed |= ETH_EXT_SPEED_25G; 1541 if (val & QED_EXT_SPEED_40G) 1542 ext_speed |= ETH_EXT_SPEED_40G; 1543 if (val & QED_EXT_SPEED_50G_R) 1544 ext_speed |= ETH_EXT_SPEED_50G_BASE_R; 1545 if (val & QED_EXT_SPEED_50G_R2) 1546 ext_speed |= ETH_EXT_SPEED_50G_BASE_R2; 1547 if (val & QED_EXT_SPEED_100G_R2) 1548 ext_speed |= ETH_EXT_SPEED_100G_BASE_R2; 1549 if (val & QED_EXT_SPEED_100G_R4) 1550 ext_speed |= ETH_EXT_SPEED_100G_BASE_R4; 1551 if (val & QED_EXT_SPEED_100G_P4) 1552 ext_speed |= ETH_EXT_SPEED_100G_BASE_P4; 1553 1554 SET_MFW_FIELD(phy_cfg.extended_speed, ETH_EXT_SPEED, 1555 ext_speed); 1556 1557 ext_speed = 0; 1558 1559 val = params->ext_speed.advertised_speeds; 1560 if (val & QED_EXT_SPEED_MASK_1G) 1561 ext_speed |= ETH_EXT_ADV_SPEED_1G; 1562 if (val & QED_EXT_SPEED_MASK_10G) 1563 ext_speed |= ETH_EXT_ADV_SPEED_10G; 1564 if (val & QED_EXT_SPEED_MASK_20G) 1565 ext_speed |= ETH_EXT_ADV_SPEED_20G; 1566 if (val & QED_EXT_SPEED_MASK_25G) 1567 ext_speed |= ETH_EXT_ADV_SPEED_25G; 1568 if (val & QED_EXT_SPEED_MASK_40G) 1569 ext_speed |= ETH_EXT_ADV_SPEED_40G; 1570 if (val & QED_EXT_SPEED_MASK_50G_R) 1571 ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R; 1572 if (val & QED_EXT_SPEED_MASK_50G_R2) 1573 ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R2; 1574 if (val & QED_EXT_SPEED_MASK_100G_R2) 1575 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R2; 1576 if (val & QED_EXT_SPEED_MASK_100G_R4) 1577 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R4; 1578 if (val & QED_EXT_SPEED_MASK_100G_P4) 1579 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_P4; 1580 1581 phy_cfg.extended_speed |= ext_speed; 1582 1583 SET_MFW_FIELD(phy_cfg.fec_mode, FEC_EXTENDED_MODE, 1584 params->ext_fec_mode); 1585 } 1586 1587 p_hwfn->b_drv_link_init = b_up; 1588 1589 if (b_up) { 1590 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1591 "Configuring Link: Speed 0x%08x, Pause 0x%08x, Adv. Speed 0x%08x, Loopback 0x%08x, FEC 0x%08x, Ext. Speed 0x%08x\n", 1592 phy_cfg.speed, phy_cfg.pause, phy_cfg.adv_speed, 1593 phy_cfg.loopback_mode, phy_cfg.fec_mode, 1594 phy_cfg.extended_speed); 1595 } else { 1596 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Resetting link\n"); 1597 } 1598 1599 memset(&mb_params, 0, sizeof(mb_params)); 1600 mb_params.cmd = cmd; 1601 mb_params.p_data_src = &phy_cfg; 1602 mb_params.data_src_size = sizeof(phy_cfg); 1603 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1604 1605 /* if mcp fails to respond we must abort */ 1606 if (rc) { 1607 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 1608 return rc; 1609 } 1610 1611 /* Mimic link-change attention, done for several reasons: 1612 * - On reset, there's no guarantee MFW would trigger 1613 * an attention. 1614 * - On initialization, older MFWs might not indicate link change 1615 * during LFA, so we'll never get an UP indication. 1616 */ 1617 qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up); 1618 1619 return 0; 1620 } 1621 1622 u32 qed_get_process_kill_counter(struct qed_hwfn *p_hwfn, 1623 struct qed_ptt *p_ptt) 1624 { 1625 u32 path_offsize_addr, path_offsize, path_addr, proc_kill_cnt; 1626 1627 if (IS_VF(p_hwfn->cdev)) 1628 return -EINVAL; 1629 1630 path_offsize_addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1631 PUBLIC_PATH); 1632 path_offsize = qed_rd(p_hwfn, p_ptt, path_offsize_addr); 1633 path_addr = SECTION_ADDR(path_offsize, QED_PATH_ID(p_hwfn)); 1634 1635 proc_kill_cnt = qed_rd(p_hwfn, p_ptt, 1636 path_addr + 1637 offsetof(struct public_path, process_kill)) & 1638 PROCESS_KILL_COUNTER_MASK; 1639 1640 return proc_kill_cnt; 1641 } 1642 1643 static void qed_mcp_handle_process_kill(struct qed_hwfn *p_hwfn, 1644 struct qed_ptt *p_ptt) 1645 { 1646 struct qed_dev *cdev = p_hwfn->cdev; 1647 u32 proc_kill_cnt; 1648 1649 /* Prevent possible attentions/interrupts during the recovery handling 1650 * and till its load phase, during which they will be re-enabled. 1651 */ 1652 qed_int_igu_disable_int(p_hwfn, p_ptt); 1653 1654 DP_NOTICE(p_hwfn, "Received a process kill indication\n"); 1655 1656 /* The following operations should be done once, and thus in CMT mode 1657 * are carried out by only the first HW function. 1658 */ 1659 if (p_hwfn != QED_LEADING_HWFN(cdev)) 1660 return; 1661 1662 if (cdev->recov_in_prog) { 1663 DP_NOTICE(p_hwfn, 1664 "Ignoring the indication since a recovery process is already in progress\n"); 1665 return; 1666 } 1667 1668 cdev->recov_in_prog = true; 1669 1670 proc_kill_cnt = qed_get_process_kill_counter(p_hwfn, p_ptt); 1671 DP_NOTICE(p_hwfn, "Process kill counter: %d\n", proc_kill_cnt); 1672 1673 qed_schedule_recovery_handler(p_hwfn); 1674 } 1675 1676 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn, 1677 struct qed_ptt *p_ptt, 1678 enum MFW_DRV_MSG_TYPE type) 1679 { 1680 enum qed_mcp_protocol_type stats_type; 1681 union qed_mcp_protocol_stats stats; 1682 struct qed_mcp_mb_params mb_params; 1683 u32 hsi_param; 1684 1685 switch (type) { 1686 case MFW_DRV_MSG_GET_LAN_STATS: 1687 stats_type = QED_MCP_LAN_STATS; 1688 hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN; 1689 break; 1690 case MFW_DRV_MSG_GET_FCOE_STATS: 1691 stats_type = QED_MCP_FCOE_STATS; 1692 hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE; 1693 break; 1694 case MFW_DRV_MSG_GET_ISCSI_STATS: 1695 stats_type = QED_MCP_ISCSI_STATS; 1696 hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI; 1697 break; 1698 case MFW_DRV_MSG_GET_RDMA_STATS: 1699 stats_type = QED_MCP_RDMA_STATS; 1700 hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA; 1701 break; 1702 default: 1703 DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type); 1704 return; 1705 } 1706 1707 qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats); 1708 1709 memset(&mb_params, 0, sizeof(mb_params)); 1710 mb_params.cmd = DRV_MSG_CODE_GET_STATS; 1711 mb_params.param = hsi_param; 1712 mb_params.p_data_src = &stats; 1713 mb_params.data_src_size = sizeof(stats); 1714 qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1715 } 1716 1717 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1718 { 1719 struct qed_mcp_function_info *p_info; 1720 struct public_func shmem_info; 1721 u32 resp = 0, param = 0; 1722 1723 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1724 1725 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1726 1727 p_info = &p_hwfn->mcp_info->func_info; 1728 1729 qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min); 1730 qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max); 1731 1732 /* Acknowledge the MFW */ 1733 qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp, 1734 ¶m); 1735 } 1736 1737 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1738 { 1739 struct public_func shmem_info; 1740 u32 resp = 0, param = 0; 1741 1742 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1743 1744 p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag & 1745 FUNC_MF_CFG_OV_STAG_MASK; 1746 p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan; 1747 if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) { 1748 if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) { 1749 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 1750 p_hwfn->hw_info.ovlan); 1751 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1); 1752 1753 /* Configure DB to add external vlan to EDPM packets */ 1754 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1); 1755 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 1756 p_hwfn->hw_info.ovlan); 1757 } else { 1758 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0); 1759 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0); 1760 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0); 1761 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0); 1762 } 1763 1764 qed_sp_pf_update_stag(p_hwfn); 1765 } 1766 1767 DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan = %d hw_mode = 0x%x\n", 1768 p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode); 1769 1770 /* Acknowledge the MFW */ 1771 qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0, 1772 &resp, ¶m); 1773 } 1774 1775 static void qed_mcp_handle_fan_failure(struct qed_hwfn *p_hwfn, 1776 struct qed_ptt *p_ptt) 1777 { 1778 /* A single notification should be sent to upper driver in CMT mode */ 1779 if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev)) 1780 return; 1781 1782 qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_FAN_FAIL, 1783 "Fan failure was detected on the network interface card and it's going to be shut down.\n"); 1784 } 1785 1786 struct qed_mdump_cmd_params { 1787 u32 cmd; 1788 void *p_data_src; 1789 u8 data_src_size; 1790 void *p_data_dst; 1791 u8 data_dst_size; 1792 u32 mcp_resp; 1793 }; 1794 1795 static int 1796 qed_mcp_mdump_cmd(struct qed_hwfn *p_hwfn, 1797 struct qed_ptt *p_ptt, 1798 struct qed_mdump_cmd_params *p_mdump_cmd_params) 1799 { 1800 struct qed_mcp_mb_params mb_params; 1801 int rc; 1802 1803 memset(&mb_params, 0, sizeof(mb_params)); 1804 mb_params.cmd = DRV_MSG_CODE_MDUMP_CMD; 1805 mb_params.param = p_mdump_cmd_params->cmd; 1806 mb_params.p_data_src = p_mdump_cmd_params->p_data_src; 1807 mb_params.data_src_size = p_mdump_cmd_params->data_src_size; 1808 mb_params.p_data_dst = p_mdump_cmd_params->p_data_dst; 1809 mb_params.data_dst_size = p_mdump_cmd_params->data_dst_size; 1810 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1811 if (rc) 1812 return rc; 1813 1814 p_mdump_cmd_params->mcp_resp = mb_params.mcp_resp; 1815 1816 if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_MDUMP_INVALID_CMD) { 1817 DP_INFO(p_hwfn, 1818 "The mdump sub command is unsupported by the MFW [mdump_cmd 0x%x]\n", 1819 p_mdump_cmd_params->cmd); 1820 rc = -EOPNOTSUPP; 1821 } else if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 1822 DP_INFO(p_hwfn, 1823 "The mdump command is not supported by the MFW\n"); 1824 rc = -EOPNOTSUPP; 1825 } 1826 1827 return rc; 1828 } 1829 1830 static int qed_mcp_mdump_ack(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1831 { 1832 struct qed_mdump_cmd_params mdump_cmd_params; 1833 1834 memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params)); 1835 mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_ACK; 1836 1837 return qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params); 1838 } 1839 1840 int 1841 qed_mcp_mdump_get_retain(struct qed_hwfn *p_hwfn, 1842 struct qed_ptt *p_ptt, 1843 struct mdump_retain_data_stc *p_mdump_retain) 1844 { 1845 struct qed_mdump_cmd_params mdump_cmd_params; 1846 int rc; 1847 1848 memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params)); 1849 mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_GET_RETAIN; 1850 mdump_cmd_params.p_data_dst = p_mdump_retain; 1851 mdump_cmd_params.data_dst_size = sizeof(*p_mdump_retain); 1852 1853 rc = qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params); 1854 if (rc) 1855 return rc; 1856 1857 if (mdump_cmd_params.mcp_resp != FW_MSG_CODE_OK) { 1858 DP_INFO(p_hwfn, 1859 "Failed to get the mdump retained data [mcp_resp 0x%x]\n", 1860 mdump_cmd_params.mcp_resp); 1861 return -EINVAL; 1862 } 1863 1864 return 0; 1865 } 1866 1867 static void qed_mcp_handle_critical_error(struct qed_hwfn *p_hwfn, 1868 struct qed_ptt *p_ptt) 1869 { 1870 struct mdump_retain_data_stc mdump_retain; 1871 int rc; 1872 1873 /* In CMT mode - no need for more than a single acknowledgment to the 1874 * MFW, and no more than a single notification to the upper driver. 1875 */ 1876 if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev)) 1877 return; 1878 1879 rc = qed_mcp_mdump_get_retain(p_hwfn, p_ptt, &mdump_retain); 1880 if (rc == 0 && mdump_retain.valid) 1881 DP_NOTICE(p_hwfn, 1882 "The MFW notified that a critical error occurred in the device [epoch 0x%08x, pf 0x%x, status 0x%08x]\n", 1883 mdump_retain.epoch, 1884 mdump_retain.pf, mdump_retain.status); 1885 else 1886 DP_NOTICE(p_hwfn, 1887 "The MFW notified that a critical error occurred in the device\n"); 1888 1889 DP_NOTICE(p_hwfn, 1890 "Acknowledging the notification to not allow the MFW crash dump [driver debug data collection is preferable]\n"); 1891 qed_mcp_mdump_ack(p_hwfn, p_ptt); 1892 1893 qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_HW_ATTN, NULL); 1894 } 1895 1896 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1897 { 1898 struct public_func shmem_info; 1899 u32 port_cfg, val; 1900 1901 if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits)) 1902 return; 1903 1904 memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info)); 1905 port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 1906 offsetof(struct public_port, oem_cfg_port)); 1907 val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >> 1908 OEM_CFG_CHANNEL_TYPE_OFFSET; 1909 if (val != OEM_CFG_CHANNEL_TYPE_STAGGED) 1910 DP_NOTICE(p_hwfn, 1911 "Incorrect UFP Channel type %d port_id 0x%02x\n", 1912 val, MFW_PORT(p_hwfn)); 1913 1914 val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET; 1915 if (val == OEM_CFG_SCHED_TYPE_ETS) { 1916 p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS; 1917 } else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) { 1918 p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW; 1919 } else { 1920 p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN; 1921 DP_NOTICE(p_hwfn, 1922 "Unknown UFP scheduling mode %d port_id 0x%02x\n", 1923 val, MFW_PORT(p_hwfn)); 1924 } 1925 1926 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1927 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >> 1928 OEM_CFG_FUNC_TC_OFFSET; 1929 p_hwfn->ufp_info.tc = (u8)val; 1930 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >> 1931 OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET; 1932 if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) { 1933 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC; 1934 } else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) { 1935 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS; 1936 } else { 1937 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN; 1938 DP_NOTICE(p_hwfn, 1939 "Unknown Host priority control %d port_id 0x%02x\n", 1940 val, MFW_PORT(p_hwfn)); 1941 } 1942 1943 DP_NOTICE(p_hwfn, 1944 "UFP shmem config: mode = %d tc = %d pri_type = %d port_id 0x%02x\n", 1945 p_hwfn->ufp_info.mode, p_hwfn->ufp_info.tc, 1946 p_hwfn->ufp_info.pri_type, MFW_PORT(p_hwfn)); 1947 } 1948 1949 static int 1950 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1951 { 1952 qed_mcp_read_ufp_config(p_hwfn, p_ptt); 1953 1954 if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) { 1955 p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc; 1956 qed_hw_info_set_offload_tc(&p_hwfn->hw_info, 1957 p_hwfn->ufp_info.tc); 1958 1959 qed_qm_reconf(p_hwfn, p_ptt); 1960 } else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) { 1961 /* Merge UFP TC with the dcbx TC data */ 1962 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 1963 QED_DCBX_OPERATIONAL_MIB); 1964 } else { 1965 DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n"); 1966 return -EINVAL; 1967 } 1968 1969 /* update storm FW with negotiation results */ 1970 qed_sp_pf_update_ufp(p_hwfn); 1971 1972 /* update stag pcp value */ 1973 qed_sp_pf_update_stag(p_hwfn); 1974 1975 return 0; 1976 } 1977 1978 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn, 1979 struct qed_ptt *p_ptt) 1980 { 1981 struct qed_mcp_info *info = p_hwfn->mcp_info; 1982 int rc = 0; 1983 bool found = false; 1984 u16 i; 1985 1986 DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n"); 1987 1988 /* Read Messages from MFW */ 1989 qed_mcp_read_mb(p_hwfn, p_ptt); 1990 1991 /* Compare current messages to old ones */ 1992 for (i = 0; i < info->mfw_mb_length; i++) { 1993 if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i]) 1994 continue; 1995 1996 found = true; 1997 1998 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1999 "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n", 2000 i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]); 2001 2002 switch (i) { 2003 case MFW_DRV_MSG_LINK_CHANGE: 2004 qed_mcp_handle_link_change(p_hwfn, p_ptt, false); 2005 break; 2006 case MFW_DRV_MSG_VF_DISABLED: 2007 qed_mcp_handle_vf_flr(p_hwfn, p_ptt); 2008 break; 2009 case MFW_DRV_MSG_LLDP_DATA_UPDATED: 2010 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2011 QED_DCBX_REMOTE_LLDP_MIB); 2012 break; 2013 case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED: 2014 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2015 QED_DCBX_REMOTE_MIB); 2016 break; 2017 case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED: 2018 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2019 QED_DCBX_OPERATIONAL_MIB); 2020 break; 2021 case MFW_DRV_MSG_OEM_CFG_UPDATE: 2022 qed_mcp_handle_ufp_event(p_hwfn, p_ptt); 2023 break; 2024 case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE: 2025 qed_mcp_handle_transceiver_change(p_hwfn, p_ptt); 2026 break; 2027 case MFW_DRV_MSG_ERROR_RECOVERY: 2028 qed_mcp_handle_process_kill(p_hwfn, p_ptt); 2029 break; 2030 case MFW_DRV_MSG_GET_LAN_STATS: 2031 case MFW_DRV_MSG_GET_FCOE_STATS: 2032 case MFW_DRV_MSG_GET_ISCSI_STATS: 2033 case MFW_DRV_MSG_GET_RDMA_STATS: 2034 qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i); 2035 break; 2036 case MFW_DRV_MSG_BW_UPDATE: 2037 qed_mcp_update_bw(p_hwfn, p_ptt); 2038 break; 2039 case MFW_DRV_MSG_S_TAG_UPDATE: 2040 qed_mcp_update_stag(p_hwfn, p_ptt); 2041 break; 2042 case MFW_DRV_MSG_FAILURE_DETECTED: 2043 qed_mcp_handle_fan_failure(p_hwfn, p_ptt); 2044 break; 2045 case MFW_DRV_MSG_CRITICAL_ERROR_OCCURRED: 2046 qed_mcp_handle_critical_error(p_hwfn, p_ptt); 2047 break; 2048 case MFW_DRV_MSG_GET_TLV_REQ: 2049 qed_mfw_tlv_req(p_hwfn); 2050 break; 2051 default: 2052 DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i); 2053 rc = -EINVAL; 2054 } 2055 } 2056 2057 /* ACK everything */ 2058 for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) { 2059 __be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]); 2060 2061 /* MFW expect answer in BE, so we force write in that format */ 2062 qed_wr(p_hwfn, p_ptt, 2063 info->mfw_mb_addr + sizeof(u32) + 2064 MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) * 2065 sizeof(u32) + i * sizeof(u32), 2066 (__force u32)val); 2067 } 2068 2069 if (!found) { 2070 DP_NOTICE(p_hwfn, 2071 "Received an MFW message indication but no new message!\n"); 2072 rc = -EINVAL; 2073 } 2074 2075 /* Copy the new mfw messages into the shadow */ 2076 memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length); 2077 2078 return rc; 2079 } 2080 2081 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn, 2082 struct qed_ptt *p_ptt, 2083 u32 *p_mfw_ver, u32 *p_running_bundle_id) 2084 { 2085 u32 global_offsize; 2086 2087 if (IS_VF(p_hwfn->cdev)) { 2088 if (p_hwfn->vf_iov_info) { 2089 struct pfvf_acquire_resp_tlv *p_resp; 2090 2091 p_resp = &p_hwfn->vf_iov_info->acquire_resp; 2092 *p_mfw_ver = p_resp->pfdev_info.mfw_ver; 2093 return 0; 2094 } else { 2095 DP_VERBOSE(p_hwfn, 2096 QED_MSG_IOV, 2097 "VF requested MFW version prior to ACQUIRE\n"); 2098 return -EINVAL; 2099 } 2100 } 2101 2102 global_offsize = qed_rd(p_hwfn, p_ptt, 2103 SECTION_OFFSIZE_ADDR(p_hwfn-> 2104 mcp_info->public_base, 2105 PUBLIC_GLOBAL)); 2106 *p_mfw_ver = 2107 qed_rd(p_hwfn, p_ptt, 2108 SECTION_ADDR(global_offsize, 2109 0) + offsetof(struct public_global, mfw_ver)); 2110 2111 if (p_running_bundle_id != NULL) { 2112 *p_running_bundle_id = qed_rd(p_hwfn, p_ptt, 2113 SECTION_ADDR(global_offsize, 0) + 2114 offsetof(struct public_global, 2115 running_bundle_id)); 2116 } 2117 2118 return 0; 2119 } 2120 2121 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn, 2122 struct qed_ptt *p_ptt, u32 *p_mbi_ver) 2123 { 2124 u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr; 2125 2126 if (IS_VF(p_hwfn->cdev)) 2127 return -EINVAL; 2128 2129 /* Read the address of the nvm_cfg */ 2130 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2131 if (!nvm_cfg_addr) { 2132 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 2133 return -EINVAL; 2134 } 2135 2136 /* Read the offset of nvm_cfg1 */ 2137 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2138 2139 mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2140 offsetof(struct nvm_cfg1, glob) + 2141 offsetof(struct nvm_cfg1_glob, mbi_version); 2142 *p_mbi_ver = qed_rd(p_hwfn, p_ptt, 2143 mbi_ver_addr) & 2144 (NVM_CFG1_GLOB_MBI_VERSION_0_MASK | 2145 NVM_CFG1_GLOB_MBI_VERSION_1_MASK | 2146 NVM_CFG1_GLOB_MBI_VERSION_2_MASK); 2147 2148 return 0; 2149 } 2150 2151 int qed_mcp_get_media_type(struct qed_hwfn *p_hwfn, 2152 struct qed_ptt *p_ptt, u32 *p_media_type) 2153 { 2154 *p_media_type = MEDIA_UNSPECIFIED; 2155 2156 if (IS_VF(p_hwfn->cdev)) 2157 return -EINVAL; 2158 2159 if (!qed_mcp_is_init(p_hwfn)) { 2160 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2161 return -EBUSY; 2162 } 2163 2164 if (!p_ptt) { 2165 *p_media_type = MEDIA_UNSPECIFIED; 2166 return -EINVAL; 2167 } 2168 2169 *p_media_type = qed_rd(p_hwfn, p_ptt, 2170 p_hwfn->mcp_info->port_addr + 2171 offsetof(struct public_port, 2172 media_type)); 2173 2174 return 0; 2175 } 2176 2177 int qed_mcp_get_transceiver_data(struct qed_hwfn *p_hwfn, 2178 struct qed_ptt *p_ptt, 2179 u32 *p_transceiver_state, 2180 u32 *p_transceiver_type) 2181 { 2182 u32 transceiver_info; 2183 2184 *p_transceiver_type = ETH_TRANSCEIVER_TYPE_NONE; 2185 *p_transceiver_state = ETH_TRANSCEIVER_STATE_UPDATING; 2186 2187 if (IS_VF(p_hwfn->cdev)) 2188 return -EINVAL; 2189 2190 if (!qed_mcp_is_init(p_hwfn)) { 2191 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2192 return -EBUSY; 2193 } 2194 2195 transceiver_info = qed_rd(p_hwfn, p_ptt, 2196 p_hwfn->mcp_info->port_addr + 2197 offsetof(struct public_port, 2198 transceiver_data)); 2199 2200 *p_transceiver_state = (transceiver_info & 2201 ETH_TRANSCEIVER_STATE_MASK) >> 2202 ETH_TRANSCEIVER_STATE_OFFSET; 2203 2204 if (*p_transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT) 2205 *p_transceiver_type = (transceiver_info & 2206 ETH_TRANSCEIVER_TYPE_MASK) >> 2207 ETH_TRANSCEIVER_TYPE_OFFSET; 2208 else 2209 *p_transceiver_type = ETH_TRANSCEIVER_TYPE_UNKNOWN; 2210 2211 return 0; 2212 } 2213 static bool qed_is_transceiver_ready(u32 transceiver_state, 2214 u32 transceiver_type) 2215 { 2216 if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) && 2217 ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) == 0x0) && 2218 (transceiver_type != ETH_TRANSCEIVER_TYPE_NONE)) 2219 return true; 2220 2221 return false; 2222 } 2223 2224 int qed_mcp_trans_speed_mask(struct qed_hwfn *p_hwfn, 2225 struct qed_ptt *p_ptt, u32 *p_speed_mask) 2226 { 2227 u32 transceiver_type, transceiver_state; 2228 int ret; 2229 2230 ret = qed_mcp_get_transceiver_data(p_hwfn, p_ptt, &transceiver_state, 2231 &transceiver_type); 2232 if (ret) 2233 return ret; 2234 2235 if (qed_is_transceiver_ready(transceiver_state, transceiver_type) == 2236 false) 2237 return -EINVAL; 2238 2239 switch (transceiver_type) { 2240 case ETH_TRANSCEIVER_TYPE_1G_LX: 2241 case ETH_TRANSCEIVER_TYPE_1G_SX: 2242 case ETH_TRANSCEIVER_TYPE_1G_PCC: 2243 case ETH_TRANSCEIVER_TYPE_1G_ACC: 2244 case ETH_TRANSCEIVER_TYPE_1000BASET: 2245 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2246 break; 2247 case ETH_TRANSCEIVER_TYPE_10G_SR: 2248 case ETH_TRANSCEIVER_TYPE_10G_LR: 2249 case ETH_TRANSCEIVER_TYPE_10G_LRM: 2250 case ETH_TRANSCEIVER_TYPE_10G_ER: 2251 case ETH_TRANSCEIVER_TYPE_10G_PCC: 2252 case ETH_TRANSCEIVER_TYPE_10G_ACC: 2253 case ETH_TRANSCEIVER_TYPE_4x10G: 2254 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2255 break; 2256 case ETH_TRANSCEIVER_TYPE_40G_LR4: 2257 case ETH_TRANSCEIVER_TYPE_40G_SR4: 2258 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR: 2259 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR: 2260 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2261 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2262 break; 2263 case ETH_TRANSCEIVER_TYPE_100G_AOC: 2264 case ETH_TRANSCEIVER_TYPE_100G_SR4: 2265 case ETH_TRANSCEIVER_TYPE_100G_LR4: 2266 case ETH_TRANSCEIVER_TYPE_100G_ER4: 2267 case ETH_TRANSCEIVER_TYPE_100G_ACC: 2268 *p_speed_mask = 2269 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2270 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G; 2271 break; 2272 case ETH_TRANSCEIVER_TYPE_25G_SR: 2273 case ETH_TRANSCEIVER_TYPE_25G_LR: 2274 case ETH_TRANSCEIVER_TYPE_25G_AOC: 2275 case ETH_TRANSCEIVER_TYPE_25G_ACC_S: 2276 case ETH_TRANSCEIVER_TYPE_25G_ACC_M: 2277 case ETH_TRANSCEIVER_TYPE_25G_ACC_L: 2278 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G; 2279 break; 2280 case ETH_TRANSCEIVER_TYPE_25G_CA_N: 2281 case ETH_TRANSCEIVER_TYPE_25G_CA_S: 2282 case ETH_TRANSCEIVER_TYPE_25G_CA_L: 2283 case ETH_TRANSCEIVER_TYPE_4x25G_CR: 2284 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2285 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2286 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2287 break; 2288 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_SR: 2289 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_LR: 2290 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2291 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2292 break; 2293 case ETH_TRANSCEIVER_TYPE_40G_CR4: 2294 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_CR: 2295 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2296 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2297 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2298 break; 2299 case ETH_TRANSCEIVER_TYPE_100G_CR4: 2300 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR: 2301 *p_speed_mask = 2302 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2303 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G | 2304 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2305 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2306 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G | 2307 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2308 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2309 break; 2310 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR: 2311 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR: 2312 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_AOC: 2313 *p_speed_mask = 2314 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2315 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2316 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2317 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2318 break; 2319 case ETH_TRANSCEIVER_TYPE_XLPPI: 2320 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G; 2321 break; 2322 case ETH_TRANSCEIVER_TYPE_10G_BASET: 2323 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_SR: 2324 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_LR: 2325 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2326 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2327 break; 2328 default: 2329 DP_INFO(p_hwfn, "Unknown transceiver type 0x%x\n", 2330 transceiver_type); 2331 *p_speed_mask = 0xff; 2332 break; 2333 } 2334 2335 return 0; 2336 } 2337 2338 int qed_mcp_get_board_config(struct qed_hwfn *p_hwfn, 2339 struct qed_ptt *p_ptt, u32 *p_board_config) 2340 { 2341 u32 nvm_cfg_addr, nvm_cfg1_offset, port_cfg_addr; 2342 2343 if (IS_VF(p_hwfn->cdev)) 2344 return -EINVAL; 2345 2346 if (!qed_mcp_is_init(p_hwfn)) { 2347 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2348 return -EBUSY; 2349 } 2350 if (!p_ptt) { 2351 *p_board_config = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED; 2352 return -EINVAL; 2353 } 2354 2355 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2356 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2357 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2358 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 2359 *p_board_config = qed_rd(p_hwfn, p_ptt, 2360 port_cfg_addr + 2361 offsetof(struct nvm_cfg1_port, 2362 board_cfg)); 2363 2364 return 0; 2365 } 2366 2367 /* Old MFW has a global configuration for all PFs regarding RDMA support */ 2368 static void 2369 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn, 2370 enum qed_pci_personality *p_proto) 2371 { 2372 /* There wasn't ever a legacy MFW that published iwarp. 2373 * So at this point, this is either plain l2 or RoCE. 2374 */ 2375 if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities)) 2376 *p_proto = QED_PCI_ETH_ROCE; 2377 else 2378 *p_proto = QED_PCI_ETH; 2379 2380 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 2381 "According to Legacy capabilities, L2 personality is %08x\n", 2382 (u32) *p_proto); 2383 } 2384 2385 static int 2386 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn, 2387 struct qed_ptt *p_ptt, 2388 enum qed_pci_personality *p_proto) 2389 { 2390 u32 resp = 0, param = 0; 2391 int rc; 2392 2393 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2394 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, ¶m); 2395 if (rc) 2396 return rc; 2397 if (resp != FW_MSG_CODE_OK) { 2398 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 2399 "MFW lacks support for command; Returns %08x\n", 2400 resp); 2401 return -EINVAL; 2402 } 2403 2404 switch (param) { 2405 case FW_MB_PARAM_GET_PF_RDMA_NONE: 2406 *p_proto = QED_PCI_ETH; 2407 break; 2408 case FW_MB_PARAM_GET_PF_RDMA_ROCE: 2409 *p_proto = QED_PCI_ETH_ROCE; 2410 break; 2411 case FW_MB_PARAM_GET_PF_RDMA_IWARP: 2412 *p_proto = QED_PCI_ETH_IWARP; 2413 break; 2414 case FW_MB_PARAM_GET_PF_RDMA_BOTH: 2415 *p_proto = QED_PCI_ETH_RDMA; 2416 break; 2417 default: 2418 DP_NOTICE(p_hwfn, 2419 "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n", 2420 param); 2421 return -EINVAL; 2422 } 2423 2424 DP_VERBOSE(p_hwfn, 2425 NETIF_MSG_IFUP, 2426 "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n", 2427 (u32) *p_proto, resp, param); 2428 return 0; 2429 } 2430 2431 static int 2432 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn, 2433 struct public_func *p_info, 2434 struct qed_ptt *p_ptt, 2435 enum qed_pci_personality *p_proto) 2436 { 2437 int rc = 0; 2438 2439 switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) { 2440 case FUNC_MF_CFG_PROTOCOL_ETHERNET: 2441 if (!IS_ENABLED(CONFIG_QED_RDMA)) 2442 *p_proto = QED_PCI_ETH; 2443 else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto)) 2444 qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto); 2445 break; 2446 case FUNC_MF_CFG_PROTOCOL_ISCSI: 2447 *p_proto = QED_PCI_ISCSI; 2448 break; 2449 case FUNC_MF_CFG_PROTOCOL_NVMETCP: 2450 *p_proto = QED_PCI_NVMETCP; 2451 break; 2452 case FUNC_MF_CFG_PROTOCOL_FCOE: 2453 *p_proto = QED_PCI_FCOE; 2454 break; 2455 case FUNC_MF_CFG_PROTOCOL_ROCE: 2456 DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n"); 2457 fallthrough; 2458 default: 2459 rc = -EINVAL; 2460 } 2461 2462 return rc; 2463 } 2464 2465 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn, 2466 struct qed_ptt *p_ptt) 2467 { 2468 struct qed_mcp_function_info *info; 2469 struct public_func shmem_info; 2470 2471 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 2472 info = &p_hwfn->mcp_info->func_info; 2473 2474 info->pause_on_host = (shmem_info.config & 2475 FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0; 2476 2477 if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt, 2478 &info->protocol)) { 2479 DP_ERR(p_hwfn, "Unknown personality %08x\n", 2480 (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK)); 2481 return -EINVAL; 2482 } 2483 2484 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 2485 2486 if (shmem_info.mac_upper || shmem_info.mac_lower) { 2487 info->mac[0] = (u8)(shmem_info.mac_upper >> 8); 2488 info->mac[1] = (u8)(shmem_info.mac_upper); 2489 info->mac[2] = (u8)(shmem_info.mac_lower >> 24); 2490 info->mac[3] = (u8)(shmem_info.mac_lower >> 16); 2491 info->mac[4] = (u8)(shmem_info.mac_lower >> 8); 2492 info->mac[5] = (u8)(shmem_info.mac_lower); 2493 2494 /* Store primary MAC for later possible WoL */ 2495 memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN); 2496 } else { 2497 DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n"); 2498 } 2499 2500 info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower | 2501 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32); 2502 info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower | 2503 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32); 2504 2505 info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK); 2506 2507 info->mtu = (u16)shmem_info.mtu_size; 2508 2509 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE; 2510 p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT; 2511 if (qed_mcp_is_init(p_hwfn)) { 2512 u32 resp = 0, param = 0; 2513 int rc; 2514 2515 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2516 DRV_MSG_CODE_OS_WOL, 0, &resp, ¶m); 2517 if (rc) 2518 return rc; 2519 if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED) 2520 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME; 2521 } 2522 2523 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP), 2524 "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %pM wwn port %llx node %llx ovlan %04x wol %02x\n", 2525 info->pause_on_host, info->protocol, 2526 info->bandwidth_min, info->bandwidth_max, 2527 info->mac, 2528 info->wwn_port, info->wwn_node, 2529 info->ovlan, (u8)p_hwfn->hw_info.b_wol_support); 2530 2531 return 0; 2532 } 2533 2534 struct qed_mcp_link_params 2535 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn) 2536 { 2537 if (!p_hwfn || !p_hwfn->mcp_info) 2538 return NULL; 2539 return &p_hwfn->mcp_info->link_input; 2540 } 2541 2542 struct qed_mcp_link_state 2543 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn) 2544 { 2545 if (!p_hwfn || !p_hwfn->mcp_info) 2546 return NULL; 2547 return &p_hwfn->mcp_info->link_output; 2548 } 2549 2550 struct qed_mcp_link_capabilities 2551 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn) 2552 { 2553 if (!p_hwfn || !p_hwfn->mcp_info) 2554 return NULL; 2555 return &p_hwfn->mcp_info->link_capabilities; 2556 } 2557 2558 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2559 { 2560 u32 resp = 0, param = 0; 2561 int rc; 2562 2563 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2564 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, ¶m); 2565 2566 /* Wait for the drain to complete before returning */ 2567 msleep(1020); 2568 2569 return rc; 2570 } 2571 2572 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn, 2573 struct qed_ptt *p_ptt, u32 *p_flash_size) 2574 { 2575 u32 flash_size; 2576 2577 if (IS_VF(p_hwfn->cdev)) 2578 return -EINVAL; 2579 2580 flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4); 2581 flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >> 2582 MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT; 2583 flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT)); 2584 2585 *p_flash_size = flash_size; 2586 2587 return 0; 2588 } 2589 2590 int qed_start_recovery_process(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2591 { 2592 struct qed_dev *cdev = p_hwfn->cdev; 2593 2594 if (cdev->recov_in_prog) { 2595 DP_NOTICE(p_hwfn, 2596 "Avoid triggering a recovery since such a process is already in progress\n"); 2597 return -EAGAIN; 2598 } 2599 2600 DP_NOTICE(p_hwfn, "Triggering a recovery process\n"); 2601 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_GENERAL_ATTN_35, 0x1); 2602 2603 return 0; 2604 } 2605 2606 #define QED_RECOVERY_PROLOG_SLEEP_MS 100 2607 2608 int qed_recovery_prolog(struct qed_dev *cdev) 2609 { 2610 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2611 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; 2612 int rc; 2613 2614 /* Allow ongoing PCIe transactions to complete */ 2615 msleep(QED_RECOVERY_PROLOG_SLEEP_MS); 2616 2617 /* Clear the PF's internal FID_enable in the PXP */ 2618 rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false); 2619 if (rc) 2620 DP_NOTICE(p_hwfn, 2621 "qed_pglueb_set_pfid_enable() failed. rc = %d.\n", 2622 rc); 2623 2624 return rc; 2625 } 2626 2627 static int 2628 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn, 2629 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2630 { 2631 u32 resp = 0, param = 0, rc_param = 0; 2632 int rc; 2633 2634 /* Only Leader can configure MSIX, and need to take CMT into account */ 2635 if (!IS_LEAD_HWFN(p_hwfn)) 2636 return 0; 2637 num *= p_hwfn->cdev->num_hwfns; 2638 2639 param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) & 2640 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK; 2641 param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) & 2642 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK; 2643 2644 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param, 2645 &resp, &rc_param); 2646 2647 if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) { 2648 DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id); 2649 rc = -EINVAL; 2650 } else { 2651 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2652 "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n", 2653 num, vf_id); 2654 } 2655 2656 return rc; 2657 } 2658 2659 static int 2660 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn, 2661 struct qed_ptt *p_ptt, u8 num) 2662 { 2663 u32 resp = 0, param = num, rc_param = 0; 2664 int rc; 2665 2666 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX, 2667 param, &resp, &rc_param); 2668 2669 if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) { 2670 DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n"); 2671 rc = -EINVAL; 2672 } else { 2673 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2674 "Requested 0x%02x MSI-x interrupts for VFs\n", num); 2675 } 2676 2677 return rc; 2678 } 2679 2680 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn, 2681 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2682 { 2683 if (QED_IS_BB(p_hwfn->cdev)) 2684 return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num); 2685 else 2686 return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num); 2687 } 2688 2689 int 2690 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn, 2691 struct qed_ptt *p_ptt, 2692 struct qed_mcp_drv_version *p_ver) 2693 { 2694 struct qed_mcp_mb_params mb_params; 2695 struct drv_version_stc drv_version; 2696 __be32 val; 2697 u32 i; 2698 int rc; 2699 2700 memset(&drv_version, 0, sizeof(drv_version)); 2701 drv_version.version = p_ver->version; 2702 for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) { 2703 val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)])); 2704 *(__be32 *)&drv_version.name[i * sizeof(u32)] = val; 2705 } 2706 2707 memset(&mb_params, 0, sizeof(mb_params)); 2708 mb_params.cmd = DRV_MSG_CODE_SET_VERSION; 2709 mb_params.p_data_src = &drv_version; 2710 mb_params.data_src_size = sizeof(drv_version); 2711 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2712 if (rc) 2713 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2714 2715 return rc; 2716 } 2717 2718 /* A maximal 100 msec waiting time for the MCP to halt */ 2719 #define QED_MCP_HALT_SLEEP_MS 10 2720 #define QED_MCP_HALT_MAX_RETRIES 10 2721 2722 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2723 { 2724 u32 resp = 0, param = 0, cpu_state, cnt = 0; 2725 int rc; 2726 2727 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp, 2728 ¶m); 2729 if (rc) { 2730 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2731 return rc; 2732 } 2733 2734 do { 2735 msleep(QED_MCP_HALT_SLEEP_MS); 2736 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2737 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) 2738 break; 2739 } while (++cnt < QED_MCP_HALT_MAX_RETRIES); 2740 2741 if (cnt == QED_MCP_HALT_MAX_RETRIES) { 2742 DP_NOTICE(p_hwfn, 2743 "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2744 qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state); 2745 return -EBUSY; 2746 } 2747 2748 qed_mcp_cmd_set_blocking(p_hwfn, true); 2749 2750 return 0; 2751 } 2752 2753 #define QED_MCP_RESUME_SLEEP_MS 10 2754 2755 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2756 { 2757 u32 cpu_mode, cpu_state; 2758 2759 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff); 2760 2761 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 2762 cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT; 2763 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode); 2764 msleep(QED_MCP_RESUME_SLEEP_MS); 2765 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2766 2767 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) { 2768 DP_NOTICE(p_hwfn, 2769 "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2770 cpu_mode, cpu_state); 2771 return -EBUSY; 2772 } 2773 2774 qed_mcp_cmd_set_blocking(p_hwfn, false); 2775 2776 return 0; 2777 } 2778 2779 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn, 2780 struct qed_ptt *p_ptt, 2781 enum qed_ov_client client) 2782 { 2783 u32 resp = 0, param = 0; 2784 u32 drv_mb_param; 2785 int rc; 2786 2787 switch (client) { 2788 case QED_OV_CLIENT_DRV: 2789 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS; 2790 break; 2791 case QED_OV_CLIENT_USER: 2792 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER; 2793 break; 2794 case QED_OV_CLIENT_VENDOR_SPEC: 2795 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC; 2796 break; 2797 default: 2798 DP_NOTICE(p_hwfn, "Invalid client type %d\n", client); 2799 return -EINVAL; 2800 } 2801 2802 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG, 2803 drv_mb_param, &resp, ¶m); 2804 if (rc) 2805 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2806 2807 return rc; 2808 } 2809 2810 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn, 2811 struct qed_ptt *p_ptt, 2812 enum qed_ov_driver_state drv_state) 2813 { 2814 u32 resp = 0, param = 0; 2815 u32 drv_mb_param; 2816 int rc; 2817 2818 switch (drv_state) { 2819 case QED_OV_DRIVER_STATE_NOT_LOADED: 2820 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED; 2821 break; 2822 case QED_OV_DRIVER_STATE_DISABLED: 2823 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED; 2824 break; 2825 case QED_OV_DRIVER_STATE_ACTIVE: 2826 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE; 2827 break; 2828 default: 2829 DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state); 2830 return -EINVAL; 2831 } 2832 2833 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE, 2834 drv_mb_param, &resp, ¶m); 2835 if (rc) 2836 DP_ERR(p_hwfn, "Failed to send driver state\n"); 2837 2838 return rc; 2839 } 2840 2841 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn, 2842 struct qed_ptt *p_ptt, u16 mtu) 2843 { 2844 u32 resp = 0, param = 0; 2845 u32 drv_mb_param; 2846 int rc; 2847 2848 drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT; 2849 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU, 2850 drv_mb_param, &resp, ¶m); 2851 if (rc) 2852 DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc); 2853 2854 return rc; 2855 } 2856 2857 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn, 2858 struct qed_ptt *p_ptt, u8 *mac) 2859 { 2860 struct qed_mcp_mb_params mb_params; 2861 u32 mfw_mac[2]; 2862 int rc; 2863 2864 memset(&mb_params, 0, sizeof(mb_params)); 2865 mb_params.cmd = DRV_MSG_CODE_SET_VMAC; 2866 mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC << 2867 DRV_MSG_CODE_VMAC_TYPE_SHIFT; 2868 mb_params.param |= MCP_PF_ID(p_hwfn); 2869 2870 /* MCP is BE, and on LE platforms PCI would swap access to SHMEM 2871 * in 32-bit granularity. 2872 * So the MAC has to be set in native order [and not byte order], 2873 * otherwise it would be read incorrectly by MFW after swap. 2874 */ 2875 mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3]; 2876 mfw_mac[1] = mac[4] << 24 | mac[5] << 16; 2877 2878 mb_params.p_data_src = (u8 *)mfw_mac; 2879 mb_params.data_src_size = 8; 2880 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2881 if (rc) 2882 DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc); 2883 2884 /* Store primary MAC for later possible WoL */ 2885 memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN); 2886 2887 return rc; 2888 } 2889 2890 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn, 2891 struct qed_ptt *p_ptt, enum qed_ov_wol wol) 2892 { 2893 u32 resp = 0, param = 0; 2894 u32 drv_mb_param; 2895 int rc; 2896 2897 if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) { 2898 DP_VERBOSE(p_hwfn, QED_MSG_SP, 2899 "Can't change WoL configuration when WoL isn't supported\n"); 2900 return -EINVAL; 2901 } 2902 2903 switch (wol) { 2904 case QED_OV_WOL_DEFAULT: 2905 drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT; 2906 break; 2907 case QED_OV_WOL_DISABLED: 2908 drv_mb_param = DRV_MB_PARAM_WOL_DISABLED; 2909 break; 2910 case QED_OV_WOL_ENABLED: 2911 drv_mb_param = DRV_MB_PARAM_WOL_ENABLED; 2912 break; 2913 default: 2914 DP_ERR(p_hwfn, "Invalid wol state %d\n", wol); 2915 return -EINVAL; 2916 } 2917 2918 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL, 2919 drv_mb_param, &resp, ¶m); 2920 if (rc) 2921 DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc); 2922 2923 /* Store the WoL update for a future unload */ 2924 p_hwfn->cdev->wol_config = (u8)wol; 2925 2926 return rc; 2927 } 2928 2929 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn, 2930 struct qed_ptt *p_ptt, 2931 enum qed_ov_eswitch eswitch) 2932 { 2933 u32 resp = 0, param = 0; 2934 u32 drv_mb_param; 2935 int rc; 2936 2937 switch (eswitch) { 2938 case QED_OV_ESWITCH_NONE: 2939 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE; 2940 break; 2941 case QED_OV_ESWITCH_VEB: 2942 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB; 2943 break; 2944 case QED_OV_ESWITCH_VEPA: 2945 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA; 2946 break; 2947 default: 2948 DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch); 2949 return -EINVAL; 2950 } 2951 2952 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE, 2953 drv_mb_param, &resp, ¶m); 2954 if (rc) 2955 DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc); 2956 2957 return rc; 2958 } 2959 2960 int qed_mcp_set_led(struct qed_hwfn *p_hwfn, 2961 struct qed_ptt *p_ptt, enum qed_led_mode mode) 2962 { 2963 u32 resp = 0, param = 0, drv_mb_param; 2964 int rc; 2965 2966 switch (mode) { 2967 case QED_LED_MODE_ON: 2968 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON; 2969 break; 2970 case QED_LED_MODE_OFF: 2971 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF; 2972 break; 2973 case QED_LED_MODE_RESTORE: 2974 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER; 2975 break; 2976 default: 2977 DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode); 2978 return -EINVAL; 2979 } 2980 2981 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE, 2982 drv_mb_param, &resp, ¶m); 2983 2984 return rc; 2985 } 2986 2987 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn, 2988 struct qed_ptt *p_ptt, u32 mask_parities) 2989 { 2990 u32 resp = 0, param = 0; 2991 int rc; 2992 2993 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES, 2994 mask_parities, &resp, ¶m); 2995 2996 if (rc) { 2997 DP_ERR(p_hwfn, 2998 "MCP response failure for mask parities, aborting\n"); 2999 } else if (resp != FW_MSG_CODE_OK) { 3000 DP_ERR(p_hwfn, 3001 "MCP did not acknowledge mask parity request. Old MFW?\n"); 3002 rc = -EINVAL; 3003 } 3004 3005 return rc; 3006 } 3007 3008 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len) 3009 { 3010 u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0; 3011 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3012 u32 resp = 0, resp_param = 0; 3013 struct qed_ptt *p_ptt; 3014 int rc = 0; 3015 3016 p_ptt = qed_ptt_acquire(p_hwfn); 3017 if (!p_ptt) 3018 return -EBUSY; 3019 3020 while (bytes_left > 0) { 3021 bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN); 3022 3023 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3024 DRV_MSG_CODE_NVM_READ_NVRAM, 3025 addr + offset + 3026 (bytes_to_copy << 3027 DRV_MB_PARAM_NVM_LEN_OFFSET), 3028 &resp, &resp_param, 3029 &read_len, 3030 (u32 *)(p_buf + offset)); 3031 3032 if (rc || (resp != FW_MSG_CODE_NVM_OK)) { 3033 DP_NOTICE(cdev, "MCP command rc = %d\n", rc); 3034 break; 3035 } 3036 3037 /* This can be a lengthy process, and it's possible scheduler 3038 * isn't preemptable. Sleep a bit to prevent CPU hogging. 3039 */ 3040 if (bytes_left % 0x1000 < 3041 (bytes_left - read_len) % 0x1000) 3042 usleep_range(1000, 2000); 3043 3044 offset += read_len; 3045 bytes_left -= read_len; 3046 } 3047 3048 cdev->mcp_nvm_resp = resp; 3049 qed_ptt_release(p_hwfn, p_ptt); 3050 3051 return rc; 3052 } 3053 3054 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf) 3055 { 3056 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3057 struct qed_ptt *p_ptt; 3058 3059 p_ptt = qed_ptt_acquire(p_hwfn); 3060 if (!p_ptt) 3061 return -EBUSY; 3062 3063 memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp)); 3064 qed_ptt_release(p_hwfn, p_ptt); 3065 3066 return 0; 3067 } 3068 3069 int qed_mcp_nvm_write(struct qed_dev *cdev, 3070 u32 cmd, u32 addr, u8 *p_buf, u32 len) 3071 { 3072 u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param; 3073 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3074 struct qed_ptt *p_ptt; 3075 int rc = -EINVAL; 3076 3077 p_ptt = qed_ptt_acquire(p_hwfn); 3078 if (!p_ptt) 3079 return -EBUSY; 3080 3081 switch (cmd) { 3082 case QED_PUT_FILE_BEGIN: 3083 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_BEGIN; 3084 break; 3085 case QED_PUT_FILE_DATA: 3086 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA; 3087 break; 3088 case QED_NVM_WRITE_NVRAM: 3089 nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM; 3090 break; 3091 default: 3092 DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd); 3093 rc = -EINVAL; 3094 goto out; 3095 } 3096 3097 buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN); 3098 while (buf_idx < len) { 3099 if (cmd == QED_PUT_FILE_BEGIN) 3100 nvm_offset = addr; 3101 else 3102 nvm_offset = ((buf_size << 3103 DRV_MB_PARAM_NVM_LEN_OFFSET) | addr) + 3104 buf_idx; 3105 rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset, 3106 &resp, ¶m, buf_size, 3107 (u32 *)&p_buf[buf_idx]); 3108 if (rc) { 3109 DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc); 3110 resp = FW_MSG_CODE_ERROR; 3111 break; 3112 } 3113 3114 if (resp != FW_MSG_CODE_OK && 3115 resp != FW_MSG_CODE_NVM_OK && 3116 resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) { 3117 DP_NOTICE(cdev, 3118 "nvm write failed, resp = 0x%08x\n", resp); 3119 rc = -EINVAL; 3120 break; 3121 } 3122 3123 /* This can be a lengthy process, and it's possible scheduler 3124 * isn't pre-emptable. Sleep a bit to prevent CPU hogging. 3125 */ 3126 if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000) 3127 usleep_range(1000, 2000); 3128 3129 /* For MBI upgrade, MFW response includes the next buffer offset 3130 * to be delivered to MFW. 3131 */ 3132 if (param && cmd == QED_PUT_FILE_DATA) { 3133 buf_idx = QED_MFW_GET_FIELD(param, 3134 FW_MB_PARAM_NVM_PUT_FILE_REQ_OFFSET); 3135 buf_size = QED_MFW_GET_FIELD(param, 3136 FW_MB_PARAM_NVM_PUT_FILE_REQ_SIZE); 3137 } else { 3138 buf_idx += buf_size; 3139 buf_size = min_t(u32, (len - buf_idx), 3140 MCP_DRV_NVM_BUF_LEN); 3141 } 3142 } 3143 3144 cdev->mcp_nvm_resp = resp; 3145 out: 3146 qed_ptt_release(p_hwfn, p_ptt); 3147 3148 return rc; 3149 } 3150 3151 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3152 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf) 3153 { 3154 u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0; 3155 u32 resp, param; 3156 int rc; 3157 3158 nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) & 3159 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK; 3160 nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) & 3161 DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK; 3162 3163 addr = offset; 3164 offset = 0; 3165 bytes_left = len; 3166 while (bytes_left > 0) { 3167 bytes_to_copy = min_t(u32, bytes_left, 3168 MAX_I2C_TRANSACTION_SIZE); 3169 nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK | 3170 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK); 3171 nvm_offset |= ((addr + offset) << 3172 DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) & 3173 DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK; 3174 nvm_offset |= (bytes_to_copy << 3175 DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) & 3176 DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK; 3177 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3178 DRV_MSG_CODE_TRANSCEIVER_READ, 3179 nvm_offset, &resp, ¶m, &buf_size, 3180 (u32 *)(p_buf + offset)); 3181 if (rc) { 3182 DP_NOTICE(p_hwfn, 3183 "Failed to send a transceiver read command to the MFW. rc = %d.\n", 3184 rc); 3185 return rc; 3186 } 3187 3188 if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT) 3189 return -ENODEV; 3190 else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK) 3191 return -EINVAL; 3192 3193 offset += buf_size; 3194 bytes_left -= buf_size; 3195 } 3196 3197 return 0; 3198 } 3199 3200 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3201 { 3202 u32 drv_mb_param = 0, rsp, param; 3203 int rc = 0; 3204 3205 drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST << 3206 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3207 3208 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3209 drv_mb_param, &rsp, ¶m); 3210 3211 if (rc) 3212 return rc; 3213 3214 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3215 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 3216 rc = -EAGAIN; 3217 3218 return rc; 3219 } 3220 3221 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3222 { 3223 u32 drv_mb_param, rsp, param; 3224 int rc = 0; 3225 3226 drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST << 3227 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3228 3229 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3230 drv_mb_param, &rsp, ¶m); 3231 3232 if (rc) 3233 return rc; 3234 3235 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3236 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 3237 rc = -EAGAIN; 3238 3239 return rc; 3240 } 3241 3242 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn, 3243 struct qed_ptt *p_ptt, 3244 u32 *num_images) 3245 { 3246 u32 drv_mb_param = 0, rsp; 3247 int rc = 0; 3248 3249 drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES << 3250 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3251 3252 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3253 drv_mb_param, &rsp, num_images); 3254 if (rc) 3255 return rc; 3256 3257 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK)) 3258 rc = -EINVAL; 3259 3260 return rc; 3261 } 3262 3263 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn, 3264 struct qed_ptt *p_ptt, 3265 struct bist_nvm_image_att *p_image_att, 3266 u32 image_index) 3267 { 3268 u32 buf_size = 0, param, resp = 0, resp_param = 0; 3269 int rc; 3270 3271 param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX << 3272 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT; 3273 param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT; 3274 3275 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3276 DRV_MSG_CODE_BIST_TEST, param, 3277 &resp, &resp_param, 3278 &buf_size, 3279 (u32 *)p_image_att); 3280 if (rc) 3281 return rc; 3282 3283 if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3284 (p_image_att->return_code != 1)) 3285 rc = -EINVAL; 3286 3287 return rc; 3288 } 3289 3290 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn) 3291 { 3292 struct qed_nvm_image_info nvm_info; 3293 struct qed_ptt *p_ptt; 3294 int rc; 3295 u32 i; 3296 3297 if (p_hwfn->nvm_info.valid) 3298 return 0; 3299 3300 p_ptt = qed_ptt_acquire(p_hwfn); 3301 if (!p_ptt) { 3302 DP_ERR(p_hwfn, "failed to acquire ptt\n"); 3303 return -EBUSY; 3304 } 3305 3306 /* Acquire from MFW the amount of available images */ 3307 nvm_info.num_images = 0; 3308 rc = qed_mcp_bist_nvm_get_num_images(p_hwfn, 3309 p_ptt, &nvm_info.num_images); 3310 if (rc == -EOPNOTSUPP) { 3311 DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n"); 3312 goto out; 3313 } else if (rc || !nvm_info.num_images) { 3314 DP_ERR(p_hwfn, "Failed getting number of images\n"); 3315 goto err0; 3316 } 3317 3318 nvm_info.image_att = kmalloc_array(nvm_info.num_images, 3319 sizeof(struct bist_nvm_image_att), 3320 GFP_KERNEL); 3321 if (!nvm_info.image_att) { 3322 rc = -ENOMEM; 3323 goto err0; 3324 } 3325 3326 /* Iterate over images and get their attributes */ 3327 for (i = 0; i < nvm_info.num_images; i++) { 3328 rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt, 3329 &nvm_info.image_att[i], i); 3330 if (rc) { 3331 DP_ERR(p_hwfn, 3332 "Failed getting image index %d attributes\n", i); 3333 goto err1; 3334 } 3335 3336 DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i, 3337 nvm_info.image_att[i].len); 3338 } 3339 out: 3340 /* Update hwfn's nvm_info */ 3341 if (nvm_info.num_images) { 3342 p_hwfn->nvm_info.num_images = nvm_info.num_images; 3343 kfree(p_hwfn->nvm_info.image_att); 3344 p_hwfn->nvm_info.image_att = nvm_info.image_att; 3345 p_hwfn->nvm_info.valid = true; 3346 } 3347 3348 qed_ptt_release(p_hwfn, p_ptt); 3349 return 0; 3350 3351 err1: 3352 kfree(nvm_info.image_att); 3353 err0: 3354 qed_ptt_release(p_hwfn, p_ptt); 3355 return rc; 3356 } 3357 3358 void qed_mcp_nvm_info_free(struct qed_hwfn *p_hwfn) 3359 { 3360 kfree(p_hwfn->nvm_info.image_att); 3361 p_hwfn->nvm_info.image_att = NULL; 3362 p_hwfn->nvm_info.valid = false; 3363 } 3364 3365 int 3366 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn, 3367 enum qed_nvm_images image_id, 3368 struct qed_nvm_image_att *p_image_att) 3369 { 3370 enum nvm_image_type type; 3371 u32 i; 3372 3373 /* Translate image_id into MFW definitions */ 3374 switch (image_id) { 3375 case QED_NVM_IMAGE_ISCSI_CFG: 3376 type = NVM_TYPE_ISCSI_CFG; 3377 break; 3378 case QED_NVM_IMAGE_FCOE_CFG: 3379 type = NVM_TYPE_FCOE_CFG; 3380 break; 3381 case QED_NVM_IMAGE_MDUMP: 3382 type = NVM_TYPE_MDUMP; 3383 break; 3384 case QED_NVM_IMAGE_NVM_CFG1: 3385 type = NVM_TYPE_NVM_CFG1; 3386 break; 3387 case QED_NVM_IMAGE_DEFAULT_CFG: 3388 type = NVM_TYPE_DEFAULT_CFG; 3389 break; 3390 case QED_NVM_IMAGE_NVM_META: 3391 type = NVM_TYPE_META; 3392 break; 3393 default: 3394 DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n", 3395 image_id); 3396 return -EINVAL; 3397 } 3398 3399 qed_mcp_nvm_info_populate(p_hwfn); 3400 for (i = 0; i < p_hwfn->nvm_info.num_images; i++) 3401 if (type == p_hwfn->nvm_info.image_att[i].image_type) 3402 break; 3403 if (i == p_hwfn->nvm_info.num_images) { 3404 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 3405 "Failed to find nvram image of type %08x\n", 3406 image_id); 3407 return -ENOENT; 3408 } 3409 3410 p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr; 3411 p_image_att->length = p_hwfn->nvm_info.image_att[i].len; 3412 3413 return 0; 3414 } 3415 3416 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn, 3417 enum qed_nvm_images image_id, 3418 u8 *p_buffer, u32 buffer_len) 3419 { 3420 struct qed_nvm_image_att image_att; 3421 int rc; 3422 3423 memset(p_buffer, 0, buffer_len); 3424 3425 rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att); 3426 if (rc) 3427 return rc; 3428 3429 /* Validate sizes - both the image's and the supplied buffer's */ 3430 if (image_att.length <= 4) { 3431 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 3432 "Image [%d] is too small - only %d bytes\n", 3433 image_id, image_att.length); 3434 return -EINVAL; 3435 } 3436 3437 if (image_att.length > buffer_len) { 3438 DP_VERBOSE(p_hwfn, 3439 QED_MSG_STORAGE, 3440 "Image [%d] is too big - %08x bytes where only %08x are available\n", 3441 image_id, image_att.length, buffer_len); 3442 return -ENOMEM; 3443 } 3444 3445 return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr, 3446 p_buffer, image_att.length); 3447 } 3448 3449 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id) 3450 { 3451 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID; 3452 3453 switch (res_id) { 3454 case QED_SB: 3455 mfw_res_id = RESOURCE_NUM_SB_E; 3456 break; 3457 case QED_L2_QUEUE: 3458 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E; 3459 break; 3460 case QED_VPORT: 3461 mfw_res_id = RESOURCE_NUM_VPORT_E; 3462 break; 3463 case QED_RSS_ENG: 3464 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E; 3465 break; 3466 case QED_PQ: 3467 mfw_res_id = RESOURCE_NUM_PQ_E; 3468 break; 3469 case QED_RL: 3470 mfw_res_id = RESOURCE_NUM_RL_E; 3471 break; 3472 case QED_MAC: 3473 case QED_VLAN: 3474 /* Each VFC resource can accommodate both a MAC and a VLAN */ 3475 mfw_res_id = RESOURCE_VFC_FILTER_E; 3476 break; 3477 case QED_ILT: 3478 mfw_res_id = RESOURCE_ILT_E; 3479 break; 3480 case QED_LL2_RAM_QUEUE: 3481 mfw_res_id = RESOURCE_LL2_QUEUE_E; 3482 break; 3483 case QED_LL2_CTX_QUEUE: 3484 mfw_res_id = RESOURCE_LL2_CQS_E; 3485 break; 3486 case QED_RDMA_CNQ_RAM: 3487 case QED_CMDQS_CQS: 3488 /* CNQ/CMDQS are the same resource */ 3489 mfw_res_id = RESOURCE_CQS_E; 3490 break; 3491 case QED_RDMA_STATS_QUEUE: 3492 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E; 3493 break; 3494 case QED_BDQ: 3495 mfw_res_id = RESOURCE_BDQ_E; 3496 break; 3497 default: 3498 break; 3499 } 3500 3501 return mfw_res_id; 3502 } 3503 3504 #define QED_RESC_ALLOC_VERSION_MAJOR 2 3505 #define QED_RESC_ALLOC_VERSION_MINOR 0 3506 #define QED_RESC_ALLOC_VERSION \ 3507 ((QED_RESC_ALLOC_VERSION_MAJOR << \ 3508 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \ 3509 (QED_RESC_ALLOC_VERSION_MINOR << \ 3510 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT)) 3511 3512 struct qed_resc_alloc_in_params { 3513 u32 cmd; 3514 enum qed_resources res_id; 3515 u32 resc_max_val; 3516 }; 3517 3518 struct qed_resc_alloc_out_params { 3519 u32 mcp_resp; 3520 u32 mcp_param; 3521 u32 resc_num; 3522 u32 resc_start; 3523 u32 vf_resc_num; 3524 u32 vf_resc_start; 3525 u32 flags; 3526 }; 3527 3528 static int 3529 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn, 3530 struct qed_ptt *p_ptt, 3531 struct qed_resc_alloc_in_params *p_in_params, 3532 struct qed_resc_alloc_out_params *p_out_params) 3533 { 3534 struct qed_mcp_mb_params mb_params; 3535 struct resource_info mfw_resc_info; 3536 int rc; 3537 3538 memset(&mfw_resc_info, 0, sizeof(mfw_resc_info)); 3539 3540 mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id); 3541 if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) { 3542 DP_ERR(p_hwfn, 3543 "Failed to match resource %d [%s] with the MFW resources\n", 3544 p_in_params->res_id, 3545 qed_hw_get_resc_name(p_in_params->res_id)); 3546 return -EINVAL; 3547 } 3548 3549 switch (p_in_params->cmd) { 3550 case DRV_MSG_SET_RESOURCE_VALUE_MSG: 3551 mfw_resc_info.size = p_in_params->resc_max_val; 3552 fallthrough; 3553 case DRV_MSG_GET_RESOURCE_ALLOC_MSG: 3554 break; 3555 default: 3556 DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n", 3557 p_in_params->cmd); 3558 return -EINVAL; 3559 } 3560 3561 memset(&mb_params, 0, sizeof(mb_params)); 3562 mb_params.cmd = p_in_params->cmd; 3563 mb_params.param = QED_RESC_ALLOC_VERSION; 3564 mb_params.p_data_src = &mfw_resc_info; 3565 mb_params.data_src_size = sizeof(mfw_resc_info); 3566 mb_params.p_data_dst = mb_params.p_data_src; 3567 mb_params.data_dst_size = mb_params.data_src_size; 3568 3569 DP_VERBOSE(p_hwfn, 3570 QED_MSG_SP, 3571 "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n", 3572 p_in_params->cmd, 3573 p_in_params->res_id, 3574 qed_hw_get_resc_name(p_in_params->res_id), 3575 QED_MFW_GET_FIELD(mb_params.param, 3576 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3577 QED_MFW_GET_FIELD(mb_params.param, 3578 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3579 p_in_params->resc_max_val); 3580 3581 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3582 if (rc) 3583 return rc; 3584 3585 p_out_params->mcp_resp = mb_params.mcp_resp; 3586 p_out_params->mcp_param = mb_params.mcp_param; 3587 p_out_params->resc_num = mfw_resc_info.size; 3588 p_out_params->resc_start = mfw_resc_info.offset; 3589 p_out_params->vf_resc_num = mfw_resc_info.vf_size; 3590 p_out_params->vf_resc_start = mfw_resc_info.vf_offset; 3591 p_out_params->flags = mfw_resc_info.flags; 3592 3593 DP_VERBOSE(p_hwfn, 3594 QED_MSG_SP, 3595 "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n", 3596 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3597 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3598 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3599 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3600 p_out_params->resc_num, 3601 p_out_params->resc_start, 3602 p_out_params->vf_resc_num, 3603 p_out_params->vf_resc_start, p_out_params->flags); 3604 3605 return 0; 3606 } 3607 3608 int 3609 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn, 3610 struct qed_ptt *p_ptt, 3611 enum qed_resources res_id, 3612 u32 resc_max_val, u32 *p_mcp_resp) 3613 { 3614 struct qed_resc_alloc_out_params out_params; 3615 struct qed_resc_alloc_in_params in_params; 3616 int rc; 3617 3618 memset(&in_params, 0, sizeof(in_params)); 3619 in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG; 3620 in_params.res_id = res_id; 3621 in_params.resc_max_val = resc_max_val; 3622 memset(&out_params, 0, sizeof(out_params)); 3623 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3624 &out_params); 3625 if (rc) 3626 return rc; 3627 3628 *p_mcp_resp = out_params.mcp_resp; 3629 3630 return 0; 3631 } 3632 3633 int 3634 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn, 3635 struct qed_ptt *p_ptt, 3636 enum qed_resources res_id, 3637 u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start) 3638 { 3639 struct qed_resc_alloc_out_params out_params; 3640 struct qed_resc_alloc_in_params in_params; 3641 int rc; 3642 3643 memset(&in_params, 0, sizeof(in_params)); 3644 in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG; 3645 in_params.res_id = res_id; 3646 memset(&out_params, 0, sizeof(out_params)); 3647 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3648 &out_params); 3649 if (rc) 3650 return rc; 3651 3652 *p_mcp_resp = out_params.mcp_resp; 3653 3654 if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) { 3655 *p_resc_num = out_params.resc_num; 3656 *p_resc_start = out_params.resc_start; 3657 } 3658 3659 return 0; 3660 } 3661 3662 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3663 { 3664 u32 mcp_resp, mcp_param; 3665 3666 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0, 3667 &mcp_resp, &mcp_param); 3668 } 3669 3670 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn, 3671 struct qed_ptt *p_ptt, 3672 u32 param, u32 *p_mcp_resp, u32 *p_mcp_param) 3673 { 3674 int rc; 3675 3676 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param, 3677 p_mcp_resp, p_mcp_param); 3678 if (rc) 3679 return rc; 3680 3681 if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3682 DP_INFO(p_hwfn, 3683 "The resource command is unsupported by the MFW\n"); 3684 return -EINVAL; 3685 } 3686 3687 if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) { 3688 u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE); 3689 3690 DP_NOTICE(p_hwfn, 3691 "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n", 3692 param, opcode); 3693 return -EINVAL; 3694 } 3695 3696 return rc; 3697 } 3698 3699 static int 3700 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3701 struct qed_ptt *p_ptt, 3702 struct qed_resc_lock_params *p_params) 3703 { 3704 u32 param = 0, mcp_resp, mcp_param; 3705 u8 opcode; 3706 int rc; 3707 3708 switch (p_params->timeout) { 3709 case QED_MCP_RESC_LOCK_TO_DEFAULT: 3710 opcode = RESOURCE_OPCODE_REQ; 3711 p_params->timeout = 0; 3712 break; 3713 case QED_MCP_RESC_LOCK_TO_NONE: 3714 opcode = RESOURCE_OPCODE_REQ_WO_AGING; 3715 p_params->timeout = 0; 3716 break; 3717 default: 3718 opcode = RESOURCE_OPCODE_REQ_W_AGING; 3719 break; 3720 } 3721 3722 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3723 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3724 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout); 3725 3726 DP_VERBOSE(p_hwfn, 3727 QED_MSG_SP, 3728 "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n", 3729 param, p_params->timeout, opcode, p_params->resource); 3730 3731 /* Attempt to acquire the resource */ 3732 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3733 if (rc) 3734 return rc; 3735 3736 /* Analyze the response */ 3737 p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER); 3738 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3739 3740 DP_VERBOSE(p_hwfn, 3741 QED_MSG_SP, 3742 "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n", 3743 mcp_param, opcode, p_params->owner); 3744 3745 switch (opcode) { 3746 case RESOURCE_OPCODE_GNT: 3747 p_params->b_granted = true; 3748 break; 3749 case RESOURCE_OPCODE_BUSY: 3750 p_params->b_granted = false; 3751 break; 3752 default: 3753 DP_NOTICE(p_hwfn, 3754 "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n", 3755 mcp_param, opcode); 3756 return -EINVAL; 3757 } 3758 3759 return 0; 3760 } 3761 3762 int 3763 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3764 struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params) 3765 { 3766 u32 retry_cnt = 0; 3767 int rc; 3768 3769 do { 3770 /* No need for an interval before the first iteration */ 3771 if (retry_cnt) { 3772 if (p_params->sleep_b4_retry) { 3773 u16 retry_interval_in_ms = 3774 DIV_ROUND_UP(p_params->retry_interval, 3775 1000); 3776 3777 msleep(retry_interval_in_ms); 3778 } else { 3779 udelay(p_params->retry_interval); 3780 } 3781 } 3782 3783 rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params); 3784 if (rc) 3785 return rc; 3786 3787 if (p_params->b_granted) 3788 break; 3789 } while (retry_cnt++ < p_params->retry_num); 3790 3791 return 0; 3792 } 3793 3794 int 3795 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn, 3796 struct qed_ptt *p_ptt, 3797 struct qed_resc_unlock_params *p_params) 3798 { 3799 u32 param = 0, mcp_resp, mcp_param; 3800 u8 opcode; 3801 int rc; 3802 3803 opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE 3804 : RESOURCE_OPCODE_RELEASE; 3805 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3806 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3807 3808 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3809 "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n", 3810 param, opcode, p_params->resource); 3811 3812 /* Attempt to release the resource */ 3813 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3814 if (rc) 3815 return rc; 3816 3817 /* Analyze the response */ 3818 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3819 3820 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3821 "Resource unlock response: mcp_param 0x%08x [opcode %d]\n", 3822 mcp_param, opcode); 3823 3824 switch (opcode) { 3825 case RESOURCE_OPCODE_RELEASED_PREVIOUS: 3826 DP_INFO(p_hwfn, 3827 "Resource unlock request for an already released resource [%d]\n", 3828 p_params->resource); 3829 fallthrough; 3830 case RESOURCE_OPCODE_RELEASED: 3831 p_params->b_released = true; 3832 break; 3833 case RESOURCE_OPCODE_WRONG_OWNER: 3834 p_params->b_released = false; 3835 break; 3836 default: 3837 DP_NOTICE(p_hwfn, 3838 "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n", 3839 mcp_param, opcode); 3840 return -EINVAL; 3841 } 3842 3843 return 0; 3844 } 3845 3846 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock, 3847 struct qed_resc_unlock_params *p_unlock, 3848 enum qed_resc_lock 3849 resource, bool b_is_permanent) 3850 { 3851 if (p_lock) { 3852 memset(p_lock, 0, sizeof(*p_lock)); 3853 3854 /* Permanent resources don't require aging, and there's no 3855 * point in trying to acquire them more than once since it's 3856 * unexpected another entity would release them. 3857 */ 3858 if (b_is_permanent) { 3859 p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE; 3860 } else { 3861 p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT; 3862 p_lock->retry_interval = 3863 QED_MCP_RESC_LOCK_RETRY_VAL_DFLT; 3864 p_lock->sleep_b4_retry = true; 3865 } 3866 3867 p_lock->resource = resource; 3868 } 3869 3870 if (p_unlock) { 3871 memset(p_unlock, 0, sizeof(*p_unlock)); 3872 p_unlock->resource = resource; 3873 } 3874 } 3875 3876 bool qed_mcp_is_smart_an_supported(struct qed_hwfn *p_hwfn) 3877 { 3878 return !!(p_hwfn->mcp_info->capabilities & 3879 FW_MB_PARAM_FEATURE_SUPPORT_SMARTLINQ); 3880 } 3881 3882 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3883 { 3884 u32 mcp_resp; 3885 int rc; 3886 3887 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT, 3888 0, &mcp_resp, &p_hwfn->mcp_info->capabilities); 3889 if (!rc) 3890 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE), 3891 "MFW supported features: %08x\n", 3892 p_hwfn->mcp_info->capabilities); 3893 3894 return rc; 3895 } 3896 3897 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3898 { 3899 u32 mcp_resp, mcp_param, features; 3900 3901 features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE | 3902 DRV_MB_PARAM_FEATURE_SUPPORT_FUNC_VLINK | 3903 DRV_MB_PARAM_FEATURE_SUPPORT_PORT_FEC_CONTROL; 3904 3905 if (QED_IS_E5(p_hwfn->cdev)) 3906 features |= 3907 DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EXT_SPEED_FEC_CONTROL; 3908 3909 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT, 3910 features, &mcp_resp, &mcp_param); 3911 } 3912 3913 int qed_mcp_get_engine_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3914 { 3915 struct qed_mcp_mb_params mb_params = {0}; 3916 struct qed_dev *cdev = p_hwfn->cdev; 3917 u8 fir_valid, l2_valid; 3918 int rc; 3919 3920 mb_params.cmd = DRV_MSG_CODE_GET_ENGINE_CONFIG; 3921 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3922 if (rc) 3923 return rc; 3924 3925 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3926 DP_INFO(p_hwfn, 3927 "The get_engine_config command is unsupported by the MFW\n"); 3928 return -EOPNOTSUPP; 3929 } 3930 3931 fir_valid = QED_MFW_GET_FIELD(mb_params.mcp_param, 3932 FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALID); 3933 if (fir_valid) 3934 cdev->fir_affin = 3935 QED_MFW_GET_FIELD(mb_params.mcp_param, 3936 FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALUE); 3937 3938 l2_valid = QED_MFW_GET_FIELD(mb_params.mcp_param, 3939 FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALID); 3940 if (l2_valid) 3941 cdev->l2_affin_hint = 3942 QED_MFW_GET_FIELD(mb_params.mcp_param, 3943 FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALUE); 3944 3945 DP_INFO(p_hwfn, 3946 "Engine affinity config: FIR={valid %hhd, value %hhd}, L2_hint={valid %hhd, value %hhd}\n", 3947 fir_valid, cdev->fir_affin, l2_valid, cdev->l2_affin_hint); 3948 3949 return 0; 3950 } 3951 3952 int qed_mcp_get_ppfid_bitmap(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3953 { 3954 struct qed_mcp_mb_params mb_params = {0}; 3955 struct qed_dev *cdev = p_hwfn->cdev; 3956 int rc; 3957 3958 mb_params.cmd = DRV_MSG_CODE_GET_PPFID_BITMAP; 3959 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3960 if (rc) 3961 return rc; 3962 3963 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3964 DP_INFO(p_hwfn, 3965 "The get_ppfid_bitmap command is unsupported by the MFW\n"); 3966 return -EOPNOTSUPP; 3967 } 3968 3969 cdev->ppfid_bitmap = QED_MFW_GET_FIELD(mb_params.mcp_param, 3970 FW_MB_PARAM_PPFID_BITMAP); 3971 3972 DP_VERBOSE(p_hwfn, QED_MSG_SP, "PPFID bitmap 0x%hhx\n", 3973 cdev->ppfid_bitmap); 3974 3975 return 0; 3976 } 3977 3978 int qed_mcp_nvm_get_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3979 u16 option_id, u8 entity_id, u16 flags, u8 *p_buf, 3980 u32 *p_len) 3981 { 3982 u32 mb_param = 0, resp, param; 3983 int rc; 3984 3985 QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id); 3986 if (flags & QED_NVM_CFG_OPTION_INIT) 3987 QED_MFW_SET_FIELD(mb_param, 3988 DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1); 3989 if (flags & QED_NVM_CFG_OPTION_FREE) 3990 QED_MFW_SET_FIELD(mb_param, 3991 DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1); 3992 if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) { 3993 QED_MFW_SET_FIELD(mb_param, 3994 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1); 3995 QED_MFW_SET_FIELD(mb_param, 3996 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID, 3997 entity_id); 3998 } 3999 4000 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 4001 DRV_MSG_CODE_GET_NVM_CFG_OPTION, 4002 mb_param, &resp, ¶m, p_len, (u32 *)p_buf); 4003 4004 return rc; 4005 } 4006 4007 int qed_mcp_nvm_set_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 4008 u16 option_id, u8 entity_id, u16 flags, u8 *p_buf, 4009 u32 len) 4010 { 4011 u32 mb_param = 0, resp, param; 4012 4013 QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id); 4014 if (flags & QED_NVM_CFG_OPTION_ALL) 4015 QED_MFW_SET_FIELD(mb_param, 4016 DRV_MB_PARAM_NVM_CFG_OPTION_ALL, 1); 4017 if (flags & QED_NVM_CFG_OPTION_INIT) 4018 QED_MFW_SET_FIELD(mb_param, 4019 DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1); 4020 if (flags & QED_NVM_CFG_OPTION_COMMIT) 4021 QED_MFW_SET_FIELD(mb_param, 4022 DRV_MB_PARAM_NVM_CFG_OPTION_COMMIT, 1); 4023 if (flags & QED_NVM_CFG_OPTION_FREE) 4024 QED_MFW_SET_FIELD(mb_param, 4025 DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1); 4026 if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) { 4027 QED_MFW_SET_FIELD(mb_param, 4028 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1); 4029 QED_MFW_SET_FIELD(mb_param, 4030 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID, 4031 entity_id); 4032 } 4033 4034 return qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, 4035 DRV_MSG_CODE_SET_NVM_CFG_OPTION, 4036 mb_param, &resp, ¶m, len, (u32 *)p_buf); 4037 } 4038 4039 #define QED_MCP_DBG_DATA_MAX_SIZE MCP_DRV_NVM_BUF_LEN 4040 #define QED_MCP_DBG_DATA_MAX_HEADER_SIZE sizeof(u32) 4041 #define QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE \ 4042 (QED_MCP_DBG_DATA_MAX_SIZE - QED_MCP_DBG_DATA_MAX_HEADER_SIZE) 4043 4044 static int 4045 __qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn, 4046 struct qed_ptt *p_ptt, u8 *p_buf, u8 size) 4047 { 4048 struct qed_mcp_mb_params mb_params; 4049 int rc; 4050 4051 if (size > QED_MCP_DBG_DATA_MAX_SIZE) { 4052 DP_ERR(p_hwfn, 4053 "Debug data size is %d while it should not exceed %d\n", 4054 size, QED_MCP_DBG_DATA_MAX_SIZE); 4055 return -EINVAL; 4056 } 4057 4058 memset(&mb_params, 0, sizeof(mb_params)); 4059 mb_params.cmd = DRV_MSG_CODE_DEBUG_DATA_SEND; 4060 SET_MFW_FIELD(mb_params.param, DRV_MSG_CODE_DEBUG_DATA_SEND_SIZE, size); 4061 mb_params.p_data_src = p_buf; 4062 mb_params.data_src_size = size; 4063 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 4064 if (rc) 4065 return rc; 4066 4067 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 4068 DP_INFO(p_hwfn, 4069 "The DEBUG_DATA_SEND command is unsupported by the MFW\n"); 4070 return -EOPNOTSUPP; 4071 } else if (mb_params.mcp_resp == (u32)FW_MSG_CODE_DEBUG_NOT_ENABLED) { 4072 DP_INFO(p_hwfn, "The DEBUG_DATA_SEND command is not enabled\n"); 4073 return -EBUSY; 4074 } else if (mb_params.mcp_resp != (u32)FW_MSG_CODE_DEBUG_DATA_SEND_OK) { 4075 DP_NOTICE(p_hwfn, 4076 "Failed to send debug data to the MFW [resp 0x%08x]\n", 4077 mb_params.mcp_resp); 4078 return -EINVAL; 4079 } 4080 4081 return 0; 4082 } 4083 4084 enum qed_mcp_dbg_data_type { 4085 QED_MCP_DBG_DATA_TYPE_RAW, 4086 }; 4087 4088 /* Header format: [31:28] PFID, [27:20] flags, [19:12] type, [11:0] S/N */ 4089 #define QED_MCP_DBG_DATA_HDR_SN_OFFSET 0 4090 #define QED_MCP_DBG_DATA_HDR_SN_MASK 0x00000fff 4091 #define QED_MCP_DBG_DATA_HDR_TYPE_OFFSET 12 4092 #define QED_MCP_DBG_DATA_HDR_TYPE_MASK 0x000ff000 4093 #define QED_MCP_DBG_DATA_HDR_FLAGS_OFFSET 20 4094 #define QED_MCP_DBG_DATA_HDR_FLAGS_MASK 0x0ff00000 4095 #define QED_MCP_DBG_DATA_HDR_PF_OFFSET 28 4096 #define QED_MCP_DBG_DATA_HDR_PF_MASK 0xf0000000 4097 4098 #define QED_MCP_DBG_DATA_HDR_FLAGS_FIRST 0x1 4099 #define QED_MCP_DBG_DATA_HDR_FLAGS_LAST 0x2 4100 4101 static int 4102 qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn, 4103 struct qed_ptt *p_ptt, 4104 enum qed_mcp_dbg_data_type type, u8 *p_buf, u32 size) 4105 { 4106 u8 raw_data[QED_MCP_DBG_DATA_MAX_SIZE], *p_tmp_buf = p_buf; 4107 u32 tmp_size = size, *p_header, *p_payload; 4108 u8 flags = 0; 4109 u16 seq; 4110 int rc; 4111 4112 p_header = (u32 *)raw_data; 4113 p_payload = (u32 *)(raw_data + QED_MCP_DBG_DATA_MAX_HEADER_SIZE); 4114 4115 seq = (u16)atomic_inc_return(&p_hwfn->mcp_info->dbg_data_seq); 4116 4117 /* First chunk is marked as 'first' */ 4118 flags |= QED_MCP_DBG_DATA_HDR_FLAGS_FIRST; 4119 4120 *p_header = 0; 4121 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_SN, seq); 4122 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_TYPE, type); 4123 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags); 4124 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_PF, p_hwfn->abs_pf_id); 4125 4126 while (tmp_size > QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE) { 4127 memcpy(p_payload, p_tmp_buf, QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE); 4128 rc = __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data, 4129 QED_MCP_DBG_DATA_MAX_SIZE); 4130 if (rc) 4131 return rc; 4132 4133 /* Clear the 'first' marking after sending the first chunk */ 4134 if (p_tmp_buf == p_buf) { 4135 flags &= ~QED_MCP_DBG_DATA_HDR_FLAGS_FIRST; 4136 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, 4137 flags); 4138 } 4139 4140 p_tmp_buf += QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE; 4141 tmp_size -= QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE; 4142 } 4143 4144 /* Last chunk is marked as 'last' */ 4145 flags |= QED_MCP_DBG_DATA_HDR_FLAGS_LAST; 4146 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags); 4147 memcpy(p_payload, p_tmp_buf, tmp_size); 4148 4149 /* Casting the left size to u8 is ok since at this point it is <= 32 */ 4150 return __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data, 4151 (u8)(QED_MCP_DBG_DATA_MAX_HEADER_SIZE + 4152 tmp_size)); 4153 } 4154 4155 int 4156 qed_mcp_send_raw_debug_data(struct qed_hwfn *p_hwfn, 4157 struct qed_ptt *p_ptt, u8 *p_buf, u32 size) 4158 { 4159 return qed_mcp_send_debug_data(p_hwfn, p_ptt, 4160 QED_MCP_DBG_DATA_TYPE_RAW, p_buf, size); 4161 } 4162