1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
41 #include <linux/etherdevice.h>
42 #include "qed.h"
43 #include "qed_cxt.h"
44 #include "qed_dcbx.h"
45 #include "qed_hsi.h"
46 #include "qed_hw.h"
47 #include "qed_mcp.h"
48 #include "qed_reg_addr.h"
49 #include "qed_sriov.h"
50 
51 #define QED_MCP_RESP_ITER_US	10
52 
53 #define QED_DRV_MB_MAX_RETRIES	(500 * 1000)	/* Account for 5 sec */
54 #define QED_MCP_RESET_RETRIES	(50 * 1000)	/* Account for 500 msec */
55 
56 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val)	     \
57 	qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \
58 	       _val)
59 
60 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \
61 	qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset))
62 
63 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val)  \
64 	DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \
65 		     offsetof(struct public_drv_mb, _field), _val)
66 
67 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field)	   \
68 	DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \
69 		     offsetof(struct public_drv_mb, _field))
70 
71 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \
72 		  DRV_ID_PDA_COMP_VER_SHIFT)
73 
74 #define MCP_BYTES_PER_MBIT_SHIFT 17
75 
76 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn)
77 {
78 	if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base)
79 		return false;
80 	return true;
81 }
82 
83 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
84 {
85 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
86 					PUBLIC_PORT);
87 	u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr);
88 
89 	p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize,
90 						   MFW_PORT(p_hwfn));
91 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
92 		   "port_addr = 0x%x, port_id 0x%02x\n",
93 		   p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn));
94 }
95 
96 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
97 {
98 	u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length);
99 	u32 tmp, i;
100 
101 	if (!p_hwfn->mcp_info->public_base)
102 		return;
103 
104 	for (i = 0; i < length; i++) {
105 		tmp = qed_rd(p_hwfn, p_ptt,
106 			     p_hwfn->mcp_info->mfw_mb_addr +
107 			     (i << 2) + sizeof(u32));
108 
109 		/* The MB data is actually BE; Need to force it to cpu */
110 		((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] =
111 			be32_to_cpu((__force __be32)tmp);
112 	}
113 }
114 
115 struct qed_mcp_cmd_elem {
116 	struct list_head list;
117 	struct qed_mcp_mb_params *p_mb_params;
118 	u16 expected_seq_num;
119 	bool b_is_completed;
120 };
121 
122 /* Must be called while cmd_lock is acquired */
123 static struct qed_mcp_cmd_elem *
124 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn,
125 		     struct qed_mcp_mb_params *p_mb_params,
126 		     u16 expected_seq_num)
127 {
128 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
129 
130 	p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC);
131 	if (!p_cmd_elem)
132 		goto out;
133 
134 	p_cmd_elem->p_mb_params = p_mb_params;
135 	p_cmd_elem->expected_seq_num = expected_seq_num;
136 	list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list);
137 out:
138 	return p_cmd_elem;
139 }
140 
141 /* Must be called while cmd_lock is acquired */
142 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn,
143 				 struct qed_mcp_cmd_elem *p_cmd_elem)
144 {
145 	list_del(&p_cmd_elem->list);
146 	kfree(p_cmd_elem);
147 }
148 
149 /* Must be called while cmd_lock is acquired */
150 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn,
151 						     u16 seq_num)
152 {
153 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
154 
155 	list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) {
156 		if (p_cmd_elem->expected_seq_num == seq_num)
157 			return p_cmd_elem;
158 	}
159 
160 	return NULL;
161 }
162 
163 int qed_mcp_free(struct qed_hwfn *p_hwfn)
164 {
165 	if (p_hwfn->mcp_info) {
166 		struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp;
167 
168 		kfree(p_hwfn->mcp_info->mfw_mb_cur);
169 		kfree(p_hwfn->mcp_info->mfw_mb_shadow);
170 
171 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
172 		list_for_each_entry_safe(p_cmd_elem,
173 					 p_tmp,
174 					 &p_hwfn->mcp_info->cmd_list, list) {
175 			qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
176 		}
177 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
178 	}
179 
180 	kfree(p_hwfn->mcp_info);
181 	p_hwfn->mcp_info = NULL;
182 
183 	return 0;
184 }
185 
186 /* Maximum of 1 sec to wait for the SHMEM ready indication */
187 #define QED_MCP_SHMEM_RDY_MAX_RETRIES	20
188 #define QED_MCP_SHMEM_RDY_ITER_MS	50
189 
190 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
191 {
192 	struct qed_mcp_info *p_info = p_hwfn->mcp_info;
193 	u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES;
194 	u8 msec = QED_MCP_SHMEM_RDY_ITER_MS;
195 	u32 drv_mb_offsize, mfw_mb_offsize;
196 	u32 mcp_pf_id = MCP_PF_ID(p_hwfn);
197 
198 	p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR);
199 	if (!p_info->public_base) {
200 		DP_NOTICE(p_hwfn,
201 			  "The address of the MCP scratch-pad is not configured\n");
202 		return -EINVAL;
203 	}
204 
205 	p_info->public_base |= GRCBASE_MCP;
206 
207 	/* Get the MFW MB address and number of supported messages */
208 	mfw_mb_offsize = qed_rd(p_hwfn, p_ptt,
209 				SECTION_OFFSIZE_ADDR(p_info->public_base,
210 						     PUBLIC_MFW_MB));
211 	p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id);
212 	p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt,
213 					    p_info->mfw_mb_addr +
214 					    offsetof(struct public_mfw_mb,
215 						     sup_msgs));
216 
217 	/* The driver can notify that there was an MCP reset, and might read the
218 	 * SHMEM values before the MFW has completed initializing them.
219 	 * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a
220 	 * data ready indication.
221 	 */
222 	while (!p_info->mfw_mb_length && --cnt) {
223 		msleep(msec);
224 		p_info->mfw_mb_length =
225 			(u16)qed_rd(p_hwfn, p_ptt,
226 				    p_info->mfw_mb_addr +
227 				    offsetof(struct public_mfw_mb, sup_msgs));
228 	}
229 
230 	if (!cnt) {
231 		DP_NOTICE(p_hwfn,
232 			  "Failed to get the SHMEM ready notification after %d msec\n",
233 			  QED_MCP_SHMEM_RDY_MAX_RETRIES * msec);
234 		return -EBUSY;
235 	}
236 
237 	/* Calculate the driver and MFW mailbox address */
238 	drv_mb_offsize = qed_rd(p_hwfn, p_ptt,
239 				SECTION_OFFSIZE_ADDR(p_info->public_base,
240 						     PUBLIC_DRV_MB));
241 	p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id);
242 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
243 		   "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n",
244 		   drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id);
245 
246 	/* Get the current driver mailbox sequence before sending
247 	 * the first command
248 	 */
249 	p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) &
250 			     DRV_MSG_SEQ_NUMBER_MASK;
251 
252 	/* Get current FW pulse sequence */
253 	p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) &
254 				DRV_PULSE_SEQ_MASK;
255 
256 	p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
257 
258 	return 0;
259 }
260 
261 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
262 {
263 	struct qed_mcp_info *p_info;
264 	u32 size;
265 
266 	/* Allocate mcp_info structure */
267 	p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL);
268 	if (!p_hwfn->mcp_info)
269 		goto err;
270 	p_info = p_hwfn->mcp_info;
271 
272 	/* Initialize the MFW spinlock */
273 	spin_lock_init(&p_info->cmd_lock);
274 	spin_lock_init(&p_info->link_lock);
275 
276 	INIT_LIST_HEAD(&p_info->cmd_list);
277 
278 	if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) {
279 		DP_NOTICE(p_hwfn, "MCP is not initialized\n");
280 		/* Do not free mcp_info here, since public_base indicate that
281 		 * the MCP is not initialized
282 		 */
283 		return 0;
284 	}
285 
286 	size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32);
287 	p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL);
288 	p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL);
289 	if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow)
290 		goto err;
291 
292 	return 0;
293 
294 err:
295 	qed_mcp_free(p_hwfn);
296 	return -ENOMEM;
297 }
298 
299 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn,
300 				   struct qed_ptt *p_ptt)
301 {
302 	u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
303 
304 	/* Use MCP history register to check if MCP reset occurred between init
305 	 * time and now.
306 	 */
307 	if (p_hwfn->mcp_info->mcp_hist != generic_por_0) {
308 		DP_VERBOSE(p_hwfn,
309 			   QED_MSG_SP,
310 			   "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n",
311 			   p_hwfn->mcp_info->mcp_hist, generic_por_0);
312 
313 		qed_load_mcp_offsets(p_hwfn, p_ptt);
314 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
315 	}
316 }
317 
318 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
319 {
320 	u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0;
321 	int rc = 0;
322 
323 	if (p_hwfn->mcp_info->b_block_cmd) {
324 		DP_NOTICE(p_hwfn,
325 			  "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n");
326 		return -EBUSY;
327 	}
328 
329 	/* Ensure that only a single thread is accessing the mailbox */
330 	spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
331 
332 	org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
333 
334 	/* Set drv command along with the updated sequence */
335 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
336 	seq = ++p_hwfn->mcp_info->drv_mb_seq;
337 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq));
338 
339 	do {
340 		/* Wait for MFW response */
341 		udelay(delay);
342 		/* Give the FW up to 500 second (50*1000*10usec) */
343 	} while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt,
344 					      MISCS_REG_GENERIC_POR_0)) &&
345 		 (cnt++ < QED_MCP_RESET_RETRIES));
346 
347 	if (org_mcp_reset_seq !=
348 	    qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) {
349 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
350 			   "MCP was reset after %d usec\n", cnt * delay);
351 	} else {
352 		DP_ERR(p_hwfn, "Failed to reset MCP\n");
353 		rc = -EAGAIN;
354 	}
355 
356 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
357 
358 	return rc;
359 }
360 
361 /* Must be called while cmd_lock is acquired */
362 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn)
363 {
364 	struct qed_mcp_cmd_elem *p_cmd_elem;
365 
366 	/* There is at most one pending command at a certain time, and if it
367 	 * exists - it is placed at the HEAD of the list.
368 	 */
369 	if (!list_empty(&p_hwfn->mcp_info->cmd_list)) {
370 		p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list,
371 					      struct qed_mcp_cmd_elem, list);
372 		return !p_cmd_elem->b_is_completed;
373 	}
374 
375 	return false;
376 }
377 
378 /* Must be called while cmd_lock is acquired */
379 static int
380 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
381 {
382 	struct qed_mcp_mb_params *p_mb_params;
383 	struct qed_mcp_cmd_elem *p_cmd_elem;
384 	u32 mcp_resp;
385 	u16 seq_num;
386 
387 	mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header);
388 	seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK);
389 
390 	/* Return if no new non-handled response has been received */
391 	if (seq_num != p_hwfn->mcp_info->drv_mb_seq)
392 		return -EAGAIN;
393 
394 	p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num);
395 	if (!p_cmd_elem) {
396 		DP_ERR(p_hwfn,
397 		       "Failed to find a pending mailbox cmd that expects sequence number %d\n",
398 		       seq_num);
399 		return -EINVAL;
400 	}
401 
402 	p_mb_params = p_cmd_elem->p_mb_params;
403 
404 	/* Get the MFW response along with the sequence number */
405 	p_mb_params->mcp_resp = mcp_resp;
406 
407 	/* Get the MFW param */
408 	p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param);
409 
410 	/* Get the union data */
411 	if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) {
412 		u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
413 				      offsetof(struct public_drv_mb,
414 					       union_data);
415 		qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst,
416 				union_data_addr, p_mb_params->data_dst_size);
417 	}
418 
419 	p_cmd_elem->b_is_completed = true;
420 
421 	return 0;
422 }
423 
424 /* Must be called while cmd_lock is acquired */
425 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
426 				    struct qed_ptt *p_ptt,
427 				    struct qed_mcp_mb_params *p_mb_params,
428 				    u16 seq_num)
429 {
430 	union drv_union_data union_data;
431 	u32 union_data_addr;
432 
433 	/* Set the union data */
434 	union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
435 			  offsetof(struct public_drv_mb, union_data);
436 	memset(&union_data, 0, sizeof(union_data));
437 	if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size)
438 		memcpy(&union_data, p_mb_params->p_data_src,
439 		       p_mb_params->data_src_size);
440 	qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data,
441 		      sizeof(union_data));
442 
443 	/* Set the drv param */
444 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param);
445 
446 	/* Set the drv command along with the sequence number */
447 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num));
448 
449 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
450 		   "MFW mailbox: command 0x%08x param 0x%08x\n",
451 		   (p_mb_params->cmd | seq_num), p_mb_params->param);
452 }
453 
454 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd)
455 {
456 	p_hwfn->mcp_info->b_block_cmd = block_cmd;
457 
458 	DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n",
459 		block_cmd ? "Block" : "Unblock");
460 }
461 
462 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn,
463 				   struct qed_ptt *p_ptt)
464 {
465 	u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2;
466 	u32 delay = QED_MCP_RESP_ITER_US;
467 
468 	cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
469 	cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
470 	cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
471 	udelay(delay);
472 	cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
473 	udelay(delay);
474 	cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER);
475 
476 	DP_NOTICE(p_hwfn,
477 		  "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n",
478 		  cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2);
479 }
480 
481 static int
482 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
483 		       struct qed_ptt *p_ptt,
484 		       struct qed_mcp_mb_params *p_mb_params,
485 		       u32 max_retries, u32 usecs)
486 {
487 	u32 cnt = 0, msecs = DIV_ROUND_UP(usecs, 1000);
488 	struct qed_mcp_cmd_elem *p_cmd_elem;
489 	u16 seq_num;
490 	int rc = 0;
491 
492 	/* Wait until the mailbox is non-occupied */
493 	do {
494 		/* Exit the loop if there is no pending command, or if the
495 		 * pending command is completed during this iteration.
496 		 * The spinlock stays locked until the command is sent.
497 		 */
498 
499 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
500 
501 		if (!qed_mcp_has_pending_cmd(p_hwfn))
502 			break;
503 
504 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
505 		if (!rc)
506 			break;
507 		else if (rc != -EAGAIN)
508 			goto err;
509 
510 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
511 
512 		if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
513 			msleep(msecs);
514 		else
515 			udelay(usecs);
516 	} while (++cnt < max_retries);
517 
518 	if (cnt >= max_retries) {
519 		DP_NOTICE(p_hwfn,
520 			  "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n",
521 			  p_mb_params->cmd, p_mb_params->param);
522 		return -EAGAIN;
523 	}
524 
525 	/* Send the mailbox command */
526 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
527 	seq_num = ++p_hwfn->mcp_info->drv_mb_seq;
528 	p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num);
529 	if (!p_cmd_elem) {
530 		rc = -ENOMEM;
531 		goto err;
532 	}
533 
534 	__qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num);
535 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
536 
537 	/* Wait for the MFW response */
538 	do {
539 		/* Exit the loop if the command is already completed, or if the
540 		 * command is completed during this iteration.
541 		 * The spinlock stays locked until the list element is removed.
542 		 */
543 
544 		if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP))
545 			msleep(msecs);
546 		else
547 			udelay(usecs);
548 
549 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
550 
551 		if (p_cmd_elem->b_is_completed)
552 			break;
553 
554 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
555 		if (!rc)
556 			break;
557 		else if (rc != -EAGAIN)
558 			goto err;
559 
560 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
561 	} while (++cnt < max_retries);
562 
563 	if (cnt >= max_retries) {
564 		DP_NOTICE(p_hwfn,
565 			  "The MFW failed to respond to command 0x%08x [param 0x%08x].\n",
566 			  p_mb_params->cmd, p_mb_params->param);
567 		qed_mcp_print_cpu_info(p_hwfn, p_ptt);
568 
569 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
570 		qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
571 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
572 
573 		if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK))
574 			qed_mcp_cmd_set_blocking(p_hwfn, true);
575 
576 		return -EAGAIN;
577 	}
578 
579 	qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
580 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
581 
582 	DP_VERBOSE(p_hwfn,
583 		   QED_MSG_SP,
584 		   "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n",
585 		   p_mb_params->mcp_resp,
586 		   p_mb_params->mcp_param,
587 		   (cnt * usecs) / 1000, (cnt * usecs) % 1000);
588 
589 	/* Clear the sequence number from the MFW response */
590 	p_mb_params->mcp_resp &= FW_MSG_CODE_MASK;
591 
592 	return 0;
593 
594 err:
595 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
596 	return rc;
597 }
598 
599 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
600 				 struct qed_ptt *p_ptt,
601 				 struct qed_mcp_mb_params *p_mb_params)
602 {
603 	size_t union_data_size = sizeof(union drv_union_data);
604 	u32 max_retries = QED_DRV_MB_MAX_RETRIES;
605 	u32 usecs = QED_MCP_RESP_ITER_US;
606 
607 	/* MCP not initialized */
608 	if (!qed_mcp_is_init(p_hwfn)) {
609 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
610 		return -EBUSY;
611 	}
612 
613 	if (p_hwfn->mcp_info->b_block_cmd) {
614 		DP_NOTICE(p_hwfn,
615 			  "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n",
616 			  p_mb_params->cmd, p_mb_params->param);
617 		return -EBUSY;
618 	}
619 
620 	if (p_mb_params->data_src_size > union_data_size ||
621 	    p_mb_params->data_dst_size > union_data_size) {
622 		DP_ERR(p_hwfn,
623 		       "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n",
624 		       p_mb_params->data_src_size,
625 		       p_mb_params->data_dst_size, union_data_size);
626 		return -EINVAL;
627 	}
628 
629 	if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) {
630 		max_retries = DIV_ROUND_UP(max_retries, 1000);
631 		usecs *= 1000;
632 	}
633 
634 	return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries,
635 				      usecs);
636 }
637 
638 int qed_mcp_cmd(struct qed_hwfn *p_hwfn,
639 		struct qed_ptt *p_ptt,
640 		u32 cmd,
641 		u32 param,
642 		u32 *o_mcp_resp,
643 		u32 *o_mcp_param)
644 {
645 	struct qed_mcp_mb_params mb_params;
646 	int rc;
647 
648 	memset(&mb_params, 0, sizeof(mb_params));
649 	mb_params.cmd = cmd;
650 	mb_params.param = param;
651 
652 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
653 	if (rc)
654 		return rc;
655 
656 	*o_mcp_resp = mb_params.mcp_resp;
657 	*o_mcp_param = mb_params.mcp_param;
658 
659 	return 0;
660 }
661 
662 static int
663 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn,
664 		   struct qed_ptt *p_ptt,
665 		   u32 cmd,
666 		   u32 param,
667 		   u32 *o_mcp_resp,
668 		   u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf)
669 {
670 	struct qed_mcp_mb_params mb_params;
671 	int rc;
672 
673 	memset(&mb_params, 0, sizeof(mb_params));
674 	mb_params.cmd = cmd;
675 	mb_params.param = param;
676 	mb_params.p_data_src = i_buf;
677 	mb_params.data_src_size = (u8)i_txn_size;
678 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
679 	if (rc)
680 		return rc;
681 
682 	*o_mcp_resp = mb_params.mcp_resp;
683 	*o_mcp_param = mb_params.mcp_param;
684 
685 	/* nvm_info needs to be updated */
686 	p_hwfn->nvm_info.valid = false;
687 
688 	return 0;
689 }
690 
691 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn,
692 		       struct qed_ptt *p_ptt,
693 		       u32 cmd,
694 		       u32 param,
695 		       u32 *o_mcp_resp,
696 		       u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf)
697 {
698 	struct qed_mcp_mb_params mb_params;
699 	u8 raw_data[MCP_DRV_NVM_BUF_LEN];
700 	int rc;
701 
702 	memset(&mb_params, 0, sizeof(mb_params));
703 	mb_params.cmd = cmd;
704 	mb_params.param = param;
705 	mb_params.p_data_dst = raw_data;
706 
707 	/* Use the maximal value since the actual one is part of the response */
708 	mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN;
709 
710 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
711 	if (rc)
712 		return rc;
713 
714 	*o_mcp_resp = mb_params.mcp_resp;
715 	*o_mcp_param = mb_params.mcp_param;
716 
717 	*o_txn_size = *o_mcp_param;
718 	memcpy(o_buf, raw_data, *o_txn_size);
719 
720 	return 0;
721 }
722 
723 static bool
724 qed_mcp_can_force_load(u8 drv_role,
725 		       u8 exist_drv_role,
726 		       enum qed_override_force_load override_force_load)
727 {
728 	bool can_force_load = false;
729 
730 	switch (override_force_load) {
731 	case QED_OVERRIDE_FORCE_LOAD_ALWAYS:
732 		can_force_load = true;
733 		break;
734 	case QED_OVERRIDE_FORCE_LOAD_NEVER:
735 		can_force_load = false;
736 		break;
737 	default:
738 		can_force_load = (drv_role == DRV_ROLE_OS &&
739 				  exist_drv_role == DRV_ROLE_PREBOOT) ||
740 				 (drv_role == DRV_ROLE_KDUMP &&
741 				  exist_drv_role == DRV_ROLE_OS);
742 		break;
743 	}
744 
745 	return can_force_load;
746 }
747 
748 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn,
749 				   struct qed_ptt *p_ptt)
750 {
751 	u32 resp = 0, param = 0;
752 	int rc;
753 
754 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0,
755 			 &resp, &param);
756 	if (rc)
757 		DP_NOTICE(p_hwfn,
758 			  "Failed to send cancel load request, rc = %d\n", rc);
759 
760 	return rc;
761 }
762 
763 #define CONFIG_QEDE_BITMAP_IDX		BIT(0)
764 #define CONFIG_QED_SRIOV_BITMAP_IDX	BIT(1)
765 #define CONFIG_QEDR_BITMAP_IDX		BIT(2)
766 #define CONFIG_QEDF_BITMAP_IDX		BIT(4)
767 #define CONFIG_QEDI_BITMAP_IDX		BIT(5)
768 #define CONFIG_QED_LL2_BITMAP_IDX	BIT(6)
769 
770 static u32 qed_get_config_bitmap(void)
771 {
772 	u32 config_bitmap = 0x0;
773 
774 	if (IS_ENABLED(CONFIG_QEDE))
775 		config_bitmap |= CONFIG_QEDE_BITMAP_IDX;
776 
777 	if (IS_ENABLED(CONFIG_QED_SRIOV))
778 		config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX;
779 
780 	if (IS_ENABLED(CONFIG_QED_RDMA))
781 		config_bitmap |= CONFIG_QEDR_BITMAP_IDX;
782 
783 	if (IS_ENABLED(CONFIG_QED_FCOE))
784 		config_bitmap |= CONFIG_QEDF_BITMAP_IDX;
785 
786 	if (IS_ENABLED(CONFIG_QED_ISCSI))
787 		config_bitmap |= CONFIG_QEDI_BITMAP_IDX;
788 
789 	if (IS_ENABLED(CONFIG_QED_LL2))
790 		config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX;
791 
792 	return config_bitmap;
793 }
794 
795 struct qed_load_req_in_params {
796 	u8 hsi_ver;
797 #define QED_LOAD_REQ_HSI_VER_DEFAULT	0
798 #define QED_LOAD_REQ_HSI_VER_1		1
799 	u32 drv_ver_0;
800 	u32 drv_ver_1;
801 	u32 fw_ver;
802 	u8 drv_role;
803 	u8 timeout_val;
804 	u8 force_cmd;
805 	bool avoid_eng_reset;
806 };
807 
808 struct qed_load_req_out_params {
809 	u32 load_code;
810 	u32 exist_drv_ver_0;
811 	u32 exist_drv_ver_1;
812 	u32 exist_fw_ver;
813 	u8 exist_drv_role;
814 	u8 mfw_hsi_ver;
815 	bool drv_exists;
816 };
817 
818 static int
819 __qed_mcp_load_req(struct qed_hwfn *p_hwfn,
820 		   struct qed_ptt *p_ptt,
821 		   struct qed_load_req_in_params *p_in_params,
822 		   struct qed_load_req_out_params *p_out_params)
823 {
824 	struct qed_mcp_mb_params mb_params;
825 	struct load_req_stc load_req;
826 	struct load_rsp_stc load_rsp;
827 	u32 hsi_ver;
828 	int rc;
829 
830 	memset(&load_req, 0, sizeof(load_req));
831 	load_req.drv_ver_0 = p_in_params->drv_ver_0;
832 	load_req.drv_ver_1 = p_in_params->drv_ver_1;
833 	load_req.fw_ver = p_in_params->fw_ver;
834 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role);
835 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO,
836 			  p_in_params->timeout_val);
837 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE,
838 			  p_in_params->force_cmd);
839 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0,
840 			  p_in_params->avoid_eng_reset);
841 
842 	hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ?
843 		  DRV_ID_MCP_HSI_VER_CURRENT :
844 		  (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT);
845 
846 	memset(&mb_params, 0, sizeof(mb_params));
847 	mb_params.cmd = DRV_MSG_CODE_LOAD_REQ;
848 	mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type;
849 	mb_params.p_data_src = &load_req;
850 	mb_params.data_src_size = sizeof(load_req);
851 	mb_params.p_data_dst = &load_rsp;
852 	mb_params.data_dst_size = sizeof(load_rsp);
853 	mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
854 
855 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
856 		   "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n",
857 		   mb_params.param,
858 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW),
859 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE),
860 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER),
861 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER));
862 
863 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) {
864 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
865 			   "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n",
866 			   load_req.drv_ver_0,
867 			   load_req.drv_ver_1,
868 			   load_req.fw_ver,
869 			   load_req.misc0,
870 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE),
871 			   QED_MFW_GET_FIELD(load_req.misc0,
872 					     LOAD_REQ_LOCK_TO),
873 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE),
874 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0));
875 	}
876 
877 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
878 	if (rc) {
879 		DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc);
880 		return rc;
881 	}
882 
883 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
884 		   "Load Response: resp 0x%08x\n", mb_params.mcp_resp);
885 	p_out_params->load_code = mb_params.mcp_resp;
886 
887 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
888 	    p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
889 		DP_VERBOSE(p_hwfn,
890 			   QED_MSG_SP,
891 			   "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n",
892 			   load_rsp.drv_ver_0,
893 			   load_rsp.drv_ver_1,
894 			   load_rsp.fw_ver,
895 			   load_rsp.misc0,
896 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE),
897 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI),
898 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0));
899 
900 		p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0;
901 		p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1;
902 		p_out_params->exist_fw_ver = load_rsp.fw_ver;
903 		p_out_params->exist_drv_role =
904 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE);
905 		p_out_params->mfw_hsi_ver =
906 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI);
907 		p_out_params->drv_exists =
908 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) &
909 		    LOAD_RSP_FLAGS0_DRV_EXISTS;
910 	}
911 
912 	return 0;
913 }
914 
915 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn,
916 				  enum qed_drv_role drv_role,
917 				  u8 *p_mfw_drv_role)
918 {
919 	switch (drv_role) {
920 	case QED_DRV_ROLE_OS:
921 		*p_mfw_drv_role = DRV_ROLE_OS;
922 		break;
923 	case QED_DRV_ROLE_KDUMP:
924 		*p_mfw_drv_role = DRV_ROLE_KDUMP;
925 		break;
926 	default:
927 		DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role);
928 		return -EINVAL;
929 	}
930 
931 	return 0;
932 }
933 
934 enum qed_load_req_force {
935 	QED_LOAD_REQ_FORCE_NONE,
936 	QED_LOAD_REQ_FORCE_PF,
937 	QED_LOAD_REQ_FORCE_ALL,
938 };
939 
940 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn,
941 
942 				  enum qed_load_req_force force_cmd,
943 				  u8 *p_mfw_force_cmd)
944 {
945 	switch (force_cmd) {
946 	case QED_LOAD_REQ_FORCE_NONE:
947 		*p_mfw_force_cmd = LOAD_REQ_FORCE_NONE;
948 		break;
949 	case QED_LOAD_REQ_FORCE_PF:
950 		*p_mfw_force_cmd = LOAD_REQ_FORCE_PF;
951 		break;
952 	case QED_LOAD_REQ_FORCE_ALL:
953 		*p_mfw_force_cmd = LOAD_REQ_FORCE_ALL;
954 		break;
955 	}
956 }
957 
958 int qed_mcp_load_req(struct qed_hwfn *p_hwfn,
959 		     struct qed_ptt *p_ptt,
960 		     struct qed_load_req_params *p_params)
961 {
962 	struct qed_load_req_out_params out_params;
963 	struct qed_load_req_in_params in_params;
964 	u8 mfw_drv_role, mfw_force_cmd;
965 	int rc;
966 
967 	memset(&in_params, 0, sizeof(in_params));
968 	in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT;
969 	in_params.drv_ver_0 = QED_VERSION;
970 	in_params.drv_ver_1 = qed_get_config_bitmap();
971 	in_params.fw_ver = STORM_FW_VERSION;
972 	rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role);
973 	if (rc)
974 		return rc;
975 
976 	in_params.drv_role = mfw_drv_role;
977 	in_params.timeout_val = p_params->timeout_val;
978 	qed_get_mfw_force_cmd(p_hwfn,
979 			      QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd);
980 
981 	in_params.force_cmd = mfw_force_cmd;
982 	in_params.avoid_eng_reset = p_params->avoid_eng_reset;
983 
984 	memset(&out_params, 0, sizeof(out_params));
985 	rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
986 	if (rc)
987 		return rc;
988 
989 	/* First handle cases where another load request should/might be sent:
990 	 * - MFW expects the old interface [HSI version = 1]
991 	 * - MFW responds that a force load request is required
992 	 */
993 	if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
994 		DP_INFO(p_hwfn,
995 			"MFW refused a load request due to HSI > 1. Resending with HSI = 1\n");
996 
997 		in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1;
998 		memset(&out_params, 0, sizeof(out_params));
999 		rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
1000 		if (rc)
1001 			return rc;
1002 	} else if (out_params.load_code ==
1003 		   FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) {
1004 		if (qed_mcp_can_force_load(in_params.drv_role,
1005 					   out_params.exist_drv_role,
1006 					   p_params->override_force_load)) {
1007 			DP_INFO(p_hwfn,
1008 				"A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n",
1009 				in_params.drv_role, in_params.fw_ver,
1010 				in_params.drv_ver_0, in_params.drv_ver_1,
1011 				out_params.exist_drv_role,
1012 				out_params.exist_fw_ver,
1013 				out_params.exist_drv_ver_0,
1014 				out_params.exist_drv_ver_1);
1015 
1016 			qed_get_mfw_force_cmd(p_hwfn,
1017 					      QED_LOAD_REQ_FORCE_ALL,
1018 					      &mfw_force_cmd);
1019 
1020 			in_params.force_cmd = mfw_force_cmd;
1021 			memset(&out_params, 0, sizeof(out_params));
1022 			rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params,
1023 						&out_params);
1024 			if (rc)
1025 				return rc;
1026 		} else {
1027 			DP_NOTICE(p_hwfn,
1028 				  "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n",
1029 				  in_params.drv_role, in_params.fw_ver,
1030 				  in_params.drv_ver_0, in_params.drv_ver_1,
1031 				  out_params.exist_drv_role,
1032 				  out_params.exist_fw_ver,
1033 				  out_params.exist_drv_ver_0,
1034 				  out_params.exist_drv_ver_1);
1035 			DP_NOTICE(p_hwfn,
1036 				  "Avoid sending a force load request to prevent disruption of active PFs\n");
1037 
1038 			qed_mcp_cancel_load_req(p_hwfn, p_ptt);
1039 			return -EBUSY;
1040 		}
1041 	}
1042 
1043 	/* Now handle the other types of responses.
1044 	 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not
1045 	 * expected here after the additional revised load requests were sent.
1046 	 */
1047 	switch (out_params.load_code) {
1048 	case FW_MSG_CODE_DRV_LOAD_ENGINE:
1049 	case FW_MSG_CODE_DRV_LOAD_PORT:
1050 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
1051 		if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
1052 		    out_params.drv_exists) {
1053 			/* The role and fw/driver version match, but the PF is
1054 			 * already loaded and has not been unloaded gracefully.
1055 			 */
1056 			DP_NOTICE(p_hwfn,
1057 				  "PF is already loaded\n");
1058 			return -EINVAL;
1059 		}
1060 		break;
1061 	default:
1062 		DP_NOTICE(p_hwfn,
1063 			  "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n",
1064 			  out_params.load_code);
1065 		return -EBUSY;
1066 	}
1067 
1068 	p_params->load_code = out_params.load_code;
1069 
1070 	return 0;
1071 }
1072 
1073 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1074 {
1075 	struct qed_mcp_mb_params mb_params;
1076 	u32 wol_param;
1077 
1078 	switch (p_hwfn->cdev->wol_config) {
1079 	case QED_OV_WOL_DISABLED:
1080 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
1081 		break;
1082 	case QED_OV_WOL_ENABLED:
1083 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
1084 		break;
1085 	default:
1086 		DP_NOTICE(p_hwfn,
1087 			  "Unknown WoL configuration %02x\n",
1088 			  p_hwfn->cdev->wol_config);
1089 		/* Fallthrough */
1090 	case QED_OV_WOL_DEFAULT:
1091 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
1092 	}
1093 
1094 	memset(&mb_params, 0, sizeof(mb_params));
1095 	mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ;
1096 	mb_params.param = wol_param;
1097 	mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK;
1098 
1099 	return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1100 }
1101 
1102 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1103 {
1104 	struct qed_mcp_mb_params mb_params;
1105 	struct mcp_mac wol_mac;
1106 
1107 	memset(&mb_params, 0, sizeof(mb_params));
1108 	mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE;
1109 
1110 	/* Set the primary MAC if WoL is enabled */
1111 	if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) {
1112 		u8 *p_mac = p_hwfn->cdev->wol_mac;
1113 
1114 		memset(&wol_mac, 0, sizeof(wol_mac));
1115 		wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1];
1116 		wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 |
1117 				    p_mac[4] << 8 | p_mac[5];
1118 
1119 		DP_VERBOSE(p_hwfn,
1120 			   (QED_MSG_SP | NETIF_MSG_IFDOWN),
1121 			   "Setting WoL MAC: %pM --> [%08x,%08x]\n",
1122 			   p_mac, wol_mac.mac_upper, wol_mac.mac_lower);
1123 
1124 		mb_params.p_data_src = &wol_mac;
1125 		mb_params.data_src_size = sizeof(wol_mac);
1126 	}
1127 
1128 	return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1129 }
1130 
1131 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn,
1132 				  struct qed_ptt *p_ptt)
1133 {
1134 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1135 					PUBLIC_PATH);
1136 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1137 	u32 path_addr = SECTION_ADDR(mfw_path_offsize,
1138 				     QED_PATH_ID(p_hwfn));
1139 	u32 disabled_vfs[VF_MAX_STATIC / 32];
1140 	int i;
1141 
1142 	DP_VERBOSE(p_hwfn,
1143 		   QED_MSG_SP,
1144 		   "Reading Disabled VF information from [offset %08x], path_addr %08x\n",
1145 		   mfw_path_offsize, path_addr);
1146 
1147 	for (i = 0; i < (VF_MAX_STATIC / 32); i++) {
1148 		disabled_vfs[i] = qed_rd(p_hwfn, p_ptt,
1149 					 path_addr +
1150 					 offsetof(struct public_path,
1151 						  mcp_vf_disabled) +
1152 					 sizeof(u32) * i);
1153 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1154 			   "FLR-ed VFs [%08x,...,%08x] - %08x\n",
1155 			   i * 32, (i + 1) * 32 - 1, disabled_vfs[i]);
1156 	}
1157 
1158 	if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs))
1159 		qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG);
1160 }
1161 
1162 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn,
1163 		       struct qed_ptt *p_ptt, u32 *vfs_to_ack)
1164 {
1165 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1166 					PUBLIC_FUNC);
1167 	u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr);
1168 	u32 func_addr = SECTION_ADDR(mfw_func_offsize,
1169 				     MCP_PF_ID(p_hwfn));
1170 	struct qed_mcp_mb_params mb_params;
1171 	int rc;
1172 	int i;
1173 
1174 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1175 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1176 			   "Acking VFs [%08x,...,%08x] - %08x\n",
1177 			   i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]);
1178 
1179 	memset(&mb_params, 0, sizeof(mb_params));
1180 	mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE;
1181 	mb_params.p_data_src = vfs_to_ack;
1182 	mb_params.data_src_size = VF_MAX_STATIC / 8;
1183 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1184 	if (rc) {
1185 		DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n");
1186 		return -EBUSY;
1187 	}
1188 
1189 	/* Clear the ACK bits */
1190 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1191 		qed_wr(p_hwfn, p_ptt,
1192 		       func_addr +
1193 		       offsetof(struct public_func, drv_ack_vf_disabled) +
1194 		       i * sizeof(u32), 0);
1195 
1196 	return rc;
1197 }
1198 
1199 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn,
1200 					      struct qed_ptt *p_ptt)
1201 {
1202 	u32 transceiver_state;
1203 
1204 	transceiver_state = qed_rd(p_hwfn, p_ptt,
1205 				   p_hwfn->mcp_info->port_addr +
1206 				   offsetof(struct public_port,
1207 					    transceiver_data));
1208 
1209 	DP_VERBOSE(p_hwfn,
1210 		   (NETIF_MSG_HW | QED_MSG_SP),
1211 		   "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n",
1212 		   transceiver_state,
1213 		   (u32)(p_hwfn->mcp_info->port_addr +
1214 			  offsetof(struct public_port, transceiver_data)));
1215 
1216 	transceiver_state = GET_FIELD(transceiver_state,
1217 				      ETH_TRANSCEIVER_STATE);
1218 
1219 	if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1220 		DP_NOTICE(p_hwfn, "Transceiver is present.\n");
1221 	else
1222 		DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n");
1223 }
1224 
1225 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn,
1226 				    struct qed_ptt *p_ptt,
1227 				    struct qed_mcp_link_state *p_link)
1228 {
1229 	u32 eee_status, val;
1230 
1231 	p_link->eee_adv_caps = 0;
1232 	p_link->eee_lp_adv_caps = 0;
1233 	eee_status = qed_rd(p_hwfn,
1234 			    p_ptt,
1235 			    p_hwfn->mcp_info->port_addr +
1236 			    offsetof(struct public_port, eee_status));
1237 	p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT);
1238 	val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET;
1239 	if (val & EEE_1G_ADV)
1240 		p_link->eee_adv_caps |= QED_EEE_1G_ADV;
1241 	if (val & EEE_10G_ADV)
1242 		p_link->eee_adv_caps |= QED_EEE_10G_ADV;
1243 	val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET;
1244 	if (val & EEE_1G_ADV)
1245 		p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV;
1246 	if (val & EEE_10G_ADV)
1247 		p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV;
1248 }
1249 
1250 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn,
1251 				  struct qed_ptt *p_ptt,
1252 				  struct public_func *p_data, int pfid)
1253 {
1254 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1255 					PUBLIC_FUNC);
1256 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1257 	u32 func_addr;
1258 	u32 i, size;
1259 
1260 	func_addr = SECTION_ADDR(mfw_path_offsize, pfid);
1261 	memset(p_data, 0, sizeof(*p_data));
1262 
1263 	size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize));
1264 	for (i = 0; i < size / sizeof(u32); i++)
1265 		((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt,
1266 					    func_addr + (i << 2));
1267 	return size;
1268 }
1269 
1270 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn,
1271 				  struct public_func *p_shmem_info)
1272 {
1273 	struct qed_mcp_function_info *p_info;
1274 
1275 	p_info = &p_hwfn->mcp_info->func_info;
1276 
1277 	p_info->bandwidth_min = QED_MFW_GET_FIELD(p_shmem_info->config,
1278 						  FUNC_MF_CFG_MIN_BW);
1279 	if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) {
1280 		DP_INFO(p_hwfn,
1281 			"bandwidth minimum out of bounds [%02x]. Set to 1\n",
1282 			p_info->bandwidth_min);
1283 		p_info->bandwidth_min = 1;
1284 	}
1285 
1286 	p_info->bandwidth_max = QED_MFW_GET_FIELD(p_shmem_info->config,
1287 						  FUNC_MF_CFG_MAX_BW);
1288 	if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) {
1289 		DP_INFO(p_hwfn,
1290 			"bandwidth maximum out of bounds [%02x]. Set to 100\n",
1291 			p_info->bandwidth_max);
1292 		p_info->bandwidth_max = 100;
1293 	}
1294 }
1295 
1296 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn,
1297 				       struct qed_ptt *p_ptt, bool b_reset)
1298 {
1299 	struct qed_mcp_link_state *p_link;
1300 	u8 max_bw, min_bw;
1301 	u32 status = 0;
1302 
1303 	/* Prevent SW/attentions from doing this at the same time */
1304 	spin_lock_bh(&p_hwfn->mcp_info->link_lock);
1305 
1306 	p_link = &p_hwfn->mcp_info->link_output;
1307 	memset(p_link, 0, sizeof(*p_link));
1308 	if (!b_reset) {
1309 		status = qed_rd(p_hwfn, p_ptt,
1310 				p_hwfn->mcp_info->port_addr +
1311 				offsetof(struct public_port, link_status));
1312 		DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP),
1313 			   "Received link update [0x%08x] from mfw [Addr 0x%x]\n",
1314 			   status,
1315 			   (u32)(p_hwfn->mcp_info->port_addr +
1316 				 offsetof(struct public_port, link_status)));
1317 	} else {
1318 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1319 			   "Resetting link indications\n");
1320 		goto out;
1321 	}
1322 
1323 	if (p_hwfn->b_drv_link_init) {
1324 		/* Link indication with modern MFW arrives as per-PF
1325 		 * indication.
1326 		 */
1327 		if (p_hwfn->mcp_info->capabilities &
1328 		    FW_MB_PARAM_FEATURE_SUPPORT_VLINK) {
1329 			struct public_func shmem_info;
1330 
1331 			qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info,
1332 					       MCP_PF_ID(p_hwfn));
1333 			p_link->link_up = !!(shmem_info.status &
1334 					     FUNC_STATUS_VIRTUAL_LINK_UP);
1335 			qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1336 			DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1337 				   "Virtual link_up = %d\n", p_link->link_up);
1338 		} else {
1339 			p_link->link_up = !!(status & LINK_STATUS_LINK_UP);
1340 			DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1341 				   "Physical link_up = %d\n", p_link->link_up);
1342 		}
1343 	} else {
1344 		p_link->link_up = false;
1345 	}
1346 
1347 	p_link->full_duplex = true;
1348 	switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) {
1349 	case LINK_STATUS_SPEED_AND_DUPLEX_100G:
1350 		p_link->speed = 100000;
1351 		break;
1352 	case LINK_STATUS_SPEED_AND_DUPLEX_50G:
1353 		p_link->speed = 50000;
1354 		break;
1355 	case LINK_STATUS_SPEED_AND_DUPLEX_40G:
1356 		p_link->speed = 40000;
1357 		break;
1358 	case LINK_STATUS_SPEED_AND_DUPLEX_25G:
1359 		p_link->speed = 25000;
1360 		break;
1361 	case LINK_STATUS_SPEED_AND_DUPLEX_20G:
1362 		p_link->speed = 20000;
1363 		break;
1364 	case LINK_STATUS_SPEED_AND_DUPLEX_10G:
1365 		p_link->speed = 10000;
1366 		break;
1367 	case LINK_STATUS_SPEED_AND_DUPLEX_1000THD:
1368 		p_link->full_duplex = false;
1369 	/* Fall-through */
1370 	case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD:
1371 		p_link->speed = 1000;
1372 		break;
1373 	default:
1374 		p_link->speed = 0;
1375 		p_link->link_up = 0;
1376 	}
1377 
1378 	if (p_link->link_up && p_link->speed)
1379 		p_link->line_speed = p_link->speed;
1380 	else
1381 		p_link->line_speed = 0;
1382 
1383 	max_bw = p_hwfn->mcp_info->func_info.bandwidth_max;
1384 	min_bw = p_hwfn->mcp_info->func_info.bandwidth_min;
1385 
1386 	/* Max bandwidth configuration */
1387 	__qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw);
1388 
1389 	/* Min bandwidth configuration */
1390 	__qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw);
1391 	qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt,
1392 					    p_link->min_pf_rate);
1393 
1394 	p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED);
1395 	p_link->an_complete = !!(status &
1396 				 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE);
1397 	p_link->parallel_detection = !!(status &
1398 					LINK_STATUS_PARALLEL_DETECTION_USED);
1399 	p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED);
1400 
1401 	p_link->partner_adv_speed |=
1402 		(status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ?
1403 		QED_LINK_PARTNER_SPEED_1G_FD : 0;
1404 	p_link->partner_adv_speed |=
1405 		(status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ?
1406 		QED_LINK_PARTNER_SPEED_1G_HD : 0;
1407 	p_link->partner_adv_speed |=
1408 		(status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ?
1409 		QED_LINK_PARTNER_SPEED_10G : 0;
1410 	p_link->partner_adv_speed |=
1411 		(status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ?
1412 		QED_LINK_PARTNER_SPEED_20G : 0;
1413 	p_link->partner_adv_speed |=
1414 		(status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ?
1415 		QED_LINK_PARTNER_SPEED_25G : 0;
1416 	p_link->partner_adv_speed |=
1417 		(status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ?
1418 		QED_LINK_PARTNER_SPEED_40G : 0;
1419 	p_link->partner_adv_speed |=
1420 		(status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ?
1421 		QED_LINK_PARTNER_SPEED_50G : 0;
1422 	p_link->partner_adv_speed |=
1423 		(status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ?
1424 		QED_LINK_PARTNER_SPEED_100G : 0;
1425 
1426 	p_link->partner_tx_flow_ctrl_en =
1427 		!!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED);
1428 	p_link->partner_rx_flow_ctrl_en =
1429 		!!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
1430 
1431 	switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) {
1432 	case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE:
1433 		p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE;
1434 		break;
1435 	case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE:
1436 		p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE;
1437 		break;
1438 	case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE:
1439 		p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE;
1440 		break;
1441 	default:
1442 		p_link->partner_adv_pause = 0;
1443 	}
1444 
1445 	p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT);
1446 
1447 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE)
1448 		qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link);
1449 
1450 	qed_link_update(p_hwfn, p_ptt);
1451 out:
1452 	spin_unlock_bh(&p_hwfn->mcp_info->link_lock);
1453 }
1454 
1455 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up)
1456 {
1457 	struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input;
1458 	struct qed_mcp_mb_params mb_params;
1459 	struct eth_phy_cfg phy_cfg;
1460 	int rc = 0;
1461 	u32 cmd;
1462 
1463 	/* Set the shmem configuration according to params */
1464 	memset(&phy_cfg, 0, sizeof(phy_cfg));
1465 	cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET;
1466 	if (!params->speed.autoneg)
1467 		phy_cfg.speed = params->speed.forced_speed;
1468 	phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0;
1469 	phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0;
1470 	phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0;
1471 	phy_cfg.adv_speed = params->speed.advertised_speeds;
1472 	phy_cfg.loopback_mode = params->loopback_mode;
1473 
1474 	/* There are MFWs that share this capability regardless of whether
1475 	 * this is feasible or not. And given that at the very least adv_caps
1476 	 * would be set internally by qed, we want to make sure LFA would
1477 	 * still work.
1478 	 */
1479 	if ((p_hwfn->mcp_info->capabilities &
1480 	     FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) {
1481 		phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED;
1482 		if (params->eee.tx_lpi_enable)
1483 			phy_cfg.eee_cfg |= EEE_CFG_TX_LPI;
1484 		if (params->eee.adv_caps & QED_EEE_1G_ADV)
1485 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G;
1486 		if (params->eee.adv_caps & QED_EEE_10G_ADV)
1487 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G;
1488 		phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer <<
1489 				    EEE_TX_TIMER_USEC_OFFSET) &
1490 				   EEE_TX_TIMER_USEC_MASK;
1491 	}
1492 
1493 	p_hwfn->b_drv_link_init = b_up;
1494 
1495 	if (b_up) {
1496 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1497 			   "Configuring Link: Speed 0x%08x, Pause 0x%08x, adv_speed 0x%08x, loopback 0x%08x, features 0x%08x\n",
1498 			   phy_cfg.speed,
1499 			   phy_cfg.pause,
1500 			   phy_cfg.adv_speed,
1501 			   phy_cfg.loopback_mode,
1502 			   phy_cfg.feature_config_flags);
1503 	} else {
1504 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1505 			   "Resetting link\n");
1506 	}
1507 
1508 	memset(&mb_params, 0, sizeof(mb_params));
1509 	mb_params.cmd = cmd;
1510 	mb_params.p_data_src = &phy_cfg;
1511 	mb_params.data_src_size = sizeof(phy_cfg);
1512 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1513 
1514 	/* if mcp fails to respond we must abort */
1515 	if (rc) {
1516 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
1517 		return rc;
1518 	}
1519 
1520 	/* Mimic link-change attention, done for several reasons:
1521 	 *  - On reset, there's no guarantee MFW would trigger
1522 	 *    an attention.
1523 	 *  - On initialization, older MFWs might not indicate link change
1524 	 *    during LFA, so we'll never get an UP indication.
1525 	 */
1526 	qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up);
1527 
1528 	return 0;
1529 }
1530 
1531 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn,
1532 					struct qed_ptt *p_ptt,
1533 					enum MFW_DRV_MSG_TYPE type)
1534 {
1535 	enum qed_mcp_protocol_type stats_type;
1536 	union qed_mcp_protocol_stats stats;
1537 	struct qed_mcp_mb_params mb_params;
1538 	u32 hsi_param;
1539 
1540 	switch (type) {
1541 	case MFW_DRV_MSG_GET_LAN_STATS:
1542 		stats_type = QED_MCP_LAN_STATS;
1543 		hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN;
1544 		break;
1545 	case MFW_DRV_MSG_GET_FCOE_STATS:
1546 		stats_type = QED_MCP_FCOE_STATS;
1547 		hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE;
1548 		break;
1549 	case MFW_DRV_MSG_GET_ISCSI_STATS:
1550 		stats_type = QED_MCP_ISCSI_STATS;
1551 		hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI;
1552 		break;
1553 	case MFW_DRV_MSG_GET_RDMA_STATS:
1554 		stats_type = QED_MCP_RDMA_STATS;
1555 		hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA;
1556 		break;
1557 	default:
1558 		DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type);
1559 		return;
1560 	}
1561 
1562 	qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats);
1563 
1564 	memset(&mb_params, 0, sizeof(mb_params));
1565 	mb_params.cmd = DRV_MSG_CODE_GET_STATS;
1566 	mb_params.param = hsi_param;
1567 	mb_params.p_data_src = &stats;
1568 	mb_params.data_src_size = sizeof(stats);
1569 	qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1570 }
1571 
1572 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1573 {
1574 	struct qed_mcp_function_info *p_info;
1575 	struct public_func shmem_info;
1576 	u32 resp = 0, param = 0;
1577 
1578 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1579 
1580 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1581 
1582 	p_info = &p_hwfn->mcp_info->func_info;
1583 
1584 	qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min);
1585 	qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max);
1586 
1587 	/* Acknowledge the MFW */
1588 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp,
1589 		    &param);
1590 }
1591 
1592 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1593 {
1594 	struct public_func shmem_info;
1595 	u32 resp = 0, param = 0;
1596 
1597 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1598 
1599 	p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag &
1600 						 FUNC_MF_CFG_OV_STAG_MASK;
1601 	p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan;
1602 	if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) {
1603 		if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) {
1604 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE,
1605 			       p_hwfn->hw_info.ovlan);
1606 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1);
1607 
1608 			/* Configure DB to add external vlan to EDPM packets */
1609 			qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1);
1610 			qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2,
1611 			       p_hwfn->hw_info.ovlan);
1612 		} else {
1613 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0);
1614 			qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0);
1615 			qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0);
1616 			qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0);
1617 		}
1618 
1619 		qed_sp_pf_update_stag(p_hwfn);
1620 	}
1621 
1622 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan  = %d hw_mode = 0x%x\n",
1623 		   p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode);
1624 
1625 	/* Acknowledge the MFW */
1626 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0,
1627 		    &resp, &param);
1628 }
1629 
1630 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1631 {
1632 	struct public_func shmem_info;
1633 	u32 port_cfg, val;
1634 
1635 	if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits))
1636 		return;
1637 
1638 	memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info));
1639 	port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1640 			  offsetof(struct public_port, oem_cfg_port));
1641 	val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >>
1642 		OEM_CFG_CHANNEL_TYPE_OFFSET;
1643 	if (val != OEM_CFG_CHANNEL_TYPE_STAGGED)
1644 		DP_NOTICE(p_hwfn, "Incorrect UFP Channel type  %d\n", val);
1645 
1646 	val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET;
1647 	if (val == OEM_CFG_SCHED_TYPE_ETS) {
1648 		p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS;
1649 	} else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) {
1650 		p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW;
1651 	} else {
1652 		p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN;
1653 		DP_NOTICE(p_hwfn, "Unknown UFP scheduling mode %d\n", val);
1654 	}
1655 
1656 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1657 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >>
1658 		OEM_CFG_FUNC_TC_OFFSET;
1659 	p_hwfn->ufp_info.tc = (u8)val;
1660 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >>
1661 		OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET;
1662 	if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) {
1663 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC;
1664 	} else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) {
1665 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS;
1666 	} else {
1667 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN;
1668 		DP_NOTICE(p_hwfn, "Unknown Host priority control %d\n", val);
1669 	}
1670 
1671 	DP_NOTICE(p_hwfn,
1672 		  "UFP shmem config: mode = %d tc = %d pri_type = %d\n",
1673 		  p_hwfn->ufp_info.mode,
1674 		  p_hwfn->ufp_info.tc, p_hwfn->ufp_info.pri_type);
1675 }
1676 
1677 static int
1678 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1679 {
1680 	qed_mcp_read_ufp_config(p_hwfn, p_ptt);
1681 
1682 	if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) {
1683 		p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc;
1684 		qed_hw_info_set_offload_tc(&p_hwfn->hw_info,
1685 					   p_hwfn->ufp_info.tc);
1686 
1687 		qed_qm_reconf(p_hwfn, p_ptt);
1688 	} else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) {
1689 		/* Merge UFP TC with the dcbx TC data */
1690 		qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1691 					  QED_DCBX_OPERATIONAL_MIB);
1692 	} else {
1693 		DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n");
1694 		return -EINVAL;
1695 	}
1696 
1697 	/* update storm FW with negotiation results */
1698 	qed_sp_pf_update_ufp(p_hwfn);
1699 
1700 	/* update stag pcp value */
1701 	qed_sp_pf_update_stag(p_hwfn);
1702 
1703 	return 0;
1704 }
1705 
1706 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn,
1707 			  struct qed_ptt *p_ptt)
1708 {
1709 	struct qed_mcp_info *info = p_hwfn->mcp_info;
1710 	int rc = 0;
1711 	bool found = false;
1712 	u16 i;
1713 
1714 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n");
1715 
1716 	/* Read Messages from MFW */
1717 	qed_mcp_read_mb(p_hwfn, p_ptt);
1718 
1719 	/* Compare current messages to old ones */
1720 	for (i = 0; i < info->mfw_mb_length; i++) {
1721 		if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i])
1722 			continue;
1723 
1724 		found = true;
1725 
1726 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1727 			   "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n",
1728 			   i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]);
1729 
1730 		switch (i) {
1731 		case MFW_DRV_MSG_LINK_CHANGE:
1732 			qed_mcp_handle_link_change(p_hwfn, p_ptt, false);
1733 			break;
1734 		case MFW_DRV_MSG_VF_DISABLED:
1735 			qed_mcp_handle_vf_flr(p_hwfn, p_ptt);
1736 			break;
1737 		case MFW_DRV_MSG_LLDP_DATA_UPDATED:
1738 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1739 						  QED_DCBX_REMOTE_LLDP_MIB);
1740 			break;
1741 		case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED:
1742 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1743 						  QED_DCBX_REMOTE_MIB);
1744 			break;
1745 		case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED:
1746 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1747 						  QED_DCBX_OPERATIONAL_MIB);
1748 			break;
1749 		case MFW_DRV_MSG_OEM_CFG_UPDATE:
1750 			qed_mcp_handle_ufp_event(p_hwfn, p_ptt);
1751 			break;
1752 		case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE:
1753 			qed_mcp_handle_transceiver_change(p_hwfn, p_ptt);
1754 			break;
1755 		case MFW_DRV_MSG_GET_LAN_STATS:
1756 		case MFW_DRV_MSG_GET_FCOE_STATS:
1757 		case MFW_DRV_MSG_GET_ISCSI_STATS:
1758 		case MFW_DRV_MSG_GET_RDMA_STATS:
1759 			qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i);
1760 			break;
1761 		case MFW_DRV_MSG_BW_UPDATE:
1762 			qed_mcp_update_bw(p_hwfn, p_ptt);
1763 			break;
1764 		case MFW_DRV_MSG_S_TAG_UPDATE:
1765 			qed_mcp_update_stag(p_hwfn, p_ptt);
1766 			break;
1767 		case MFW_DRV_MSG_GET_TLV_REQ:
1768 			qed_mfw_tlv_req(p_hwfn);
1769 			break;
1770 		default:
1771 			DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i);
1772 			rc = -EINVAL;
1773 		}
1774 	}
1775 
1776 	/* ACK everything */
1777 	for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) {
1778 		__be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]);
1779 
1780 		/* MFW expect answer in BE, so we force write in that format */
1781 		qed_wr(p_hwfn, p_ptt,
1782 		       info->mfw_mb_addr + sizeof(u32) +
1783 		       MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) *
1784 		       sizeof(u32) + i * sizeof(u32),
1785 		       (__force u32)val);
1786 	}
1787 
1788 	if (!found) {
1789 		DP_NOTICE(p_hwfn,
1790 			  "Received an MFW message indication but no new message!\n");
1791 		rc = -EINVAL;
1792 	}
1793 
1794 	/* Copy the new mfw messages into the shadow */
1795 	memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length);
1796 
1797 	return rc;
1798 }
1799 
1800 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn,
1801 			struct qed_ptt *p_ptt,
1802 			u32 *p_mfw_ver, u32 *p_running_bundle_id)
1803 {
1804 	u32 global_offsize;
1805 
1806 	if (IS_VF(p_hwfn->cdev)) {
1807 		if (p_hwfn->vf_iov_info) {
1808 			struct pfvf_acquire_resp_tlv *p_resp;
1809 
1810 			p_resp = &p_hwfn->vf_iov_info->acquire_resp;
1811 			*p_mfw_ver = p_resp->pfdev_info.mfw_ver;
1812 			return 0;
1813 		} else {
1814 			DP_VERBOSE(p_hwfn,
1815 				   QED_MSG_IOV,
1816 				   "VF requested MFW version prior to ACQUIRE\n");
1817 			return -EINVAL;
1818 		}
1819 	}
1820 
1821 	global_offsize = qed_rd(p_hwfn, p_ptt,
1822 				SECTION_OFFSIZE_ADDR(p_hwfn->
1823 						     mcp_info->public_base,
1824 						     PUBLIC_GLOBAL));
1825 	*p_mfw_ver =
1826 	    qed_rd(p_hwfn, p_ptt,
1827 		   SECTION_ADDR(global_offsize,
1828 				0) + offsetof(struct public_global, mfw_ver));
1829 
1830 	if (p_running_bundle_id != NULL) {
1831 		*p_running_bundle_id = qed_rd(p_hwfn, p_ptt,
1832 					      SECTION_ADDR(global_offsize, 0) +
1833 					      offsetof(struct public_global,
1834 						       running_bundle_id));
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn,
1841 			struct qed_ptt *p_ptt, u32 *p_mbi_ver)
1842 {
1843 	u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr;
1844 
1845 	if (IS_VF(p_hwfn->cdev))
1846 		return -EINVAL;
1847 
1848 	/* Read the address of the nvm_cfg */
1849 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1850 	if (!nvm_cfg_addr) {
1851 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1852 		return -EINVAL;
1853 	}
1854 
1855 	/* Read the offset of nvm_cfg1 */
1856 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1857 
1858 	mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1859 		       offsetof(struct nvm_cfg1, glob) +
1860 		       offsetof(struct nvm_cfg1_glob, mbi_version);
1861 	*p_mbi_ver = qed_rd(p_hwfn, p_ptt,
1862 			    mbi_ver_addr) &
1863 		     (NVM_CFG1_GLOB_MBI_VERSION_0_MASK |
1864 		      NVM_CFG1_GLOB_MBI_VERSION_1_MASK |
1865 		      NVM_CFG1_GLOB_MBI_VERSION_2_MASK);
1866 
1867 	return 0;
1868 }
1869 
1870 int qed_mcp_get_media_type(struct qed_hwfn *p_hwfn,
1871 			   struct qed_ptt *p_ptt, u32 *p_media_type)
1872 {
1873 	*p_media_type = MEDIA_UNSPECIFIED;
1874 
1875 	if (IS_VF(p_hwfn->cdev))
1876 		return -EINVAL;
1877 
1878 	if (!qed_mcp_is_init(p_hwfn)) {
1879 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1880 		return -EBUSY;
1881 	}
1882 
1883 	if (!p_ptt) {
1884 		*p_media_type = MEDIA_UNSPECIFIED;
1885 		return -EINVAL;
1886 	}
1887 
1888 	*p_media_type = qed_rd(p_hwfn, p_ptt,
1889 			       p_hwfn->mcp_info->port_addr +
1890 			       offsetof(struct public_port,
1891 					media_type));
1892 
1893 	return 0;
1894 }
1895 
1896 int qed_mcp_get_transceiver_data(struct qed_hwfn *p_hwfn,
1897 				 struct qed_ptt *p_ptt,
1898 				 u32 *p_transceiver_state,
1899 				 u32 *p_transceiver_type)
1900 {
1901 	u32 transceiver_info;
1902 
1903 	*p_transceiver_type = ETH_TRANSCEIVER_TYPE_NONE;
1904 	*p_transceiver_state = ETH_TRANSCEIVER_STATE_UPDATING;
1905 
1906 	if (IS_VF(p_hwfn->cdev))
1907 		return -EINVAL;
1908 
1909 	if (!qed_mcp_is_init(p_hwfn)) {
1910 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1911 		return -EBUSY;
1912 	}
1913 
1914 	transceiver_info = qed_rd(p_hwfn, p_ptt,
1915 				  p_hwfn->mcp_info->port_addr +
1916 				  offsetof(struct public_port,
1917 					   transceiver_data));
1918 
1919 	*p_transceiver_state = (transceiver_info &
1920 				ETH_TRANSCEIVER_STATE_MASK) >>
1921 				ETH_TRANSCEIVER_STATE_OFFSET;
1922 
1923 	if (*p_transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1924 		*p_transceiver_type = (transceiver_info &
1925 				       ETH_TRANSCEIVER_TYPE_MASK) >>
1926 				       ETH_TRANSCEIVER_TYPE_OFFSET;
1927 	else
1928 		*p_transceiver_type = ETH_TRANSCEIVER_TYPE_UNKNOWN;
1929 
1930 	return 0;
1931 }
1932 static bool qed_is_transceiver_ready(u32 transceiver_state,
1933 				     u32 transceiver_type)
1934 {
1935 	if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) &&
1936 	    ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) == 0x0) &&
1937 	    (transceiver_type != ETH_TRANSCEIVER_TYPE_NONE))
1938 		return true;
1939 
1940 	return false;
1941 }
1942 
1943 int qed_mcp_trans_speed_mask(struct qed_hwfn *p_hwfn,
1944 			     struct qed_ptt *p_ptt, u32 *p_speed_mask)
1945 {
1946 	u32 transceiver_type, transceiver_state;
1947 	int ret;
1948 
1949 	ret = qed_mcp_get_transceiver_data(p_hwfn, p_ptt, &transceiver_state,
1950 					   &transceiver_type);
1951 	if (ret)
1952 		return ret;
1953 
1954 	if (qed_is_transceiver_ready(transceiver_state, transceiver_type) ==
1955 				     false)
1956 		return -EINVAL;
1957 
1958 	switch (transceiver_type) {
1959 	case ETH_TRANSCEIVER_TYPE_1G_LX:
1960 	case ETH_TRANSCEIVER_TYPE_1G_SX:
1961 	case ETH_TRANSCEIVER_TYPE_1G_PCC:
1962 	case ETH_TRANSCEIVER_TYPE_1G_ACC:
1963 	case ETH_TRANSCEIVER_TYPE_1000BASET:
1964 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
1965 		break;
1966 	case ETH_TRANSCEIVER_TYPE_10G_SR:
1967 	case ETH_TRANSCEIVER_TYPE_10G_LR:
1968 	case ETH_TRANSCEIVER_TYPE_10G_LRM:
1969 	case ETH_TRANSCEIVER_TYPE_10G_ER:
1970 	case ETH_TRANSCEIVER_TYPE_10G_PCC:
1971 	case ETH_TRANSCEIVER_TYPE_10G_ACC:
1972 	case ETH_TRANSCEIVER_TYPE_4x10G:
1973 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
1974 		break;
1975 	case ETH_TRANSCEIVER_TYPE_40G_LR4:
1976 	case ETH_TRANSCEIVER_TYPE_40G_SR4:
1977 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR:
1978 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR:
1979 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
1980 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
1981 		break;
1982 	case ETH_TRANSCEIVER_TYPE_100G_AOC:
1983 	case ETH_TRANSCEIVER_TYPE_100G_SR4:
1984 	case ETH_TRANSCEIVER_TYPE_100G_LR4:
1985 	case ETH_TRANSCEIVER_TYPE_100G_ER4:
1986 	case ETH_TRANSCEIVER_TYPE_100G_ACC:
1987 		*p_speed_mask =
1988 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
1989 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G;
1990 		break;
1991 	case ETH_TRANSCEIVER_TYPE_25G_SR:
1992 	case ETH_TRANSCEIVER_TYPE_25G_LR:
1993 	case ETH_TRANSCEIVER_TYPE_25G_AOC:
1994 	case ETH_TRANSCEIVER_TYPE_25G_ACC_S:
1995 	case ETH_TRANSCEIVER_TYPE_25G_ACC_M:
1996 	case ETH_TRANSCEIVER_TYPE_25G_ACC_L:
1997 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G;
1998 		break;
1999 	case ETH_TRANSCEIVER_TYPE_25G_CA_N:
2000 	case ETH_TRANSCEIVER_TYPE_25G_CA_S:
2001 	case ETH_TRANSCEIVER_TYPE_25G_CA_L:
2002 	case ETH_TRANSCEIVER_TYPE_4x25G_CR:
2003 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2004 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2005 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2006 		break;
2007 	case ETH_TRANSCEIVER_TYPE_40G_CR4:
2008 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_CR:
2009 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2010 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2011 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2012 		break;
2013 	case ETH_TRANSCEIVER_TYPE_100G_CR4:
2014 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR:
2015 		*p_speed_mask =
2016 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2017 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G |
2018 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2019 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2020 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G |
2021 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2022 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2023 		break;
2024 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR:
2025 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR:
2026 	case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_AOC:
2027 		*p_speed_mask =
2028 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G |
2029 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G |
2030 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G |
2031 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G;
2032 		break;
2033 	case ETH_TRANSCEIVER_TYPE_XLPPI:
2034 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G;
2035 		break;
2036 	case ETH_TRANSCEIVER_TYPE_10G_BASET:
2037 		*p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G |
2038 		    NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G;
2039 		break;
2040 	default:
2041 		DP_INFO(p_hwfn, "Unknown transceiver type 0x%x\n",
2042 			transceiver_type);
2043 		*p_speed_mask = 0xff;
2044 		break;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 int qed_mcp_get_board_config(struct qed_hwfn *p_hwfn,
2051 			     struct qed_ptt *p_ptt, u32 *p_board_config)
2052 {
2053 	u32 nvm_cfg_addr, nvm_cfg1_offset, port_cfg_addr;
2054 
2055 	if (IS_VF(p_hwfn->cdev))
2056 		return -EINVAL;
2057 
2058 	if (!qed_mcp_is_init(p_hwfn)) {
2059 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
2060 		return -EBUSY;
2061 	}
2062 	if (!p_ptt) {
2063 		*p_board_config = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED;
2064 		return -EINVAL;
2065 	}
2066 
2067 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
2068 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
2069 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
2070 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
2071 	*p_board_config = qed_rd(p_hwfn, p_ptt,
2072 				 port_cfg_addr +
2073 				 offsetof(struct nvm_cfg1_port,
2074 					  board_cfg));
2075 
2076 	return 0;
2077 }
2078 
2079 /* Old MFW has a global configuration for all PFs regarding RDMA support */
2080 static void
2081 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn,
2082 			       enum qed_pci_personality *p_proto)
2083 {
2084 	/* There wasn't ever a legacy MFW that published iwarp.
2085 	 * So at this point, this is either plain l2 or RoCE.
2086 	 */
2087 	if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities))
2088 		*p_proto = QED_PCI_ETH_ROCE;
2089 	else
2090 		*p_proto = QED_PCI_ETH;
2091 
2092 	DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
2093 		   "According to Legacy capabilities, L2 personality is %08x\n",
2094 		   (u32) *p_proto);
2095 }
2096 
2097 static int
2098 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn,
2099 			    struct qed_ptt *p_ptt,
2100 			    enum qed_pci_personality *p_proto)
2101 {
2102 	u32 resp = 0, param = 0;
2103 	int rc;
2104 
2105 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
2106 			 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, &param);
2107 	if (rc)
2108 		return rc;
2109 	if (resp != FW_MSG_CODE_OK) {
2110 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
2111 			   "MFW lacks support for command; Returns %08x\n",
2112 			   resp);
2113 		return -EINVAL;
2114 	}
2115 
2116 	switch (param) {
2117 	case FW_MB_PARAM_GET_PF_RDMA_NONE:
2118 		*p_proto = QED_PCI_ETH;
2119 		break;
2120 	case FW_MB_PARAM_GET_PF_RDMA_ROCE:
2121 		*p_proto = QED_PCI_ETH_ROCE;
2122 		break;
2123 	case FW_MB_PARAM_GET_PF_RDMA_IWARP:
2124 		*p_proto = QED_PCI_ETH_IWARP;
2125 		break;
2126 	case FW_MB_PARAM_GET_PF_RDMA_BOTH:
2127 		*p_proto = QED_PCI_ETH_RDMA;
2128 		break;
2129 	default:
2130 		DP_NOTICE(p_hwfn,
2131 			  "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n",
2132 			  param);
2133 		return -EINVAL;
2134 	}
2135 
2136 	DP_VERBOSE(p_hwfn,
2137 		   NETIF_MSG_IFUP,
2138 		   "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n",
2139 		   (u32) *p_proto, resp, param);
2140 	return 0;
2141 }
2142 
2143 static int
2144 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn,
2145 			struct public_func *p_info,
2146 			struct qed_ptt *p_ptt,
2147 			enum qed_pci_personality *p_proto)
2148 {
2149 	int rc = 0;
2150 
2151 	switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) {
2152 	case FUNC_MF_CFG_PROTOCOL_ETHERNET:
2153 		if (!IS_ENABLED(CONFIG_QED_RDMA))
2154 			*p_proto = QED_PCI_ETH;
2155 		else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto))
2156 			qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto);
2157 		break;
2158 	case FUNC_MF_CFG_PROTOCOL_ISCSI:
2159 		*p_proto = QED_PCI_ISCSI;
2160 		break;
2161 	case FUNC_MF_CFG_PROTOCOL_FCOE:
2162 		*p_proto = QED_PCI_FCOE;
2163 		break;
2164 	case FUNC_MF_CFG_PROTOCOL_ROCE:
2165 		DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n");
2166 	/* Fallthrough */
2167 	default:
2168 		rc = -EINVAL;
2169 	}
2170 
2171 	return rc;
2172 }
2173 
2174 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn,
2175 				 struct qed_ptt *p_ptt)
2176 {
2177 	struct qed_mcp_function_info *info;
2178 	struct public_func shmem_info;
2179 
2180 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
2181 	info = &p_hwfn->mcp_info->func_info;
2182 
2183 	info->pause_on_host = (shmem_info.config &
2184 			       FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0;
2185 
2186 	if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt,
2187 				    &info->protocol)) {
2188 		DP_ERR(p_hwfn, "Unknown personality %08x\n",
2189 		       (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK));
2190 		return -EINVAL;
2191 	}
2192 
2193 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
2194 
2195 	if (shmem_info.mac_upper || shmem_info.mac_lower) {
2196 		info->mac[0] = (u8)(shmem_info.mac_upper >> 8);
2197 		info->mac[1] = (u8)(shmem_info.mac_upper);
2198 		info->mac[2] = (u8)(shmem_info.mac_lower >> 24);
2199 		info->mac[3] = (u8)(shmem_info.mac_lower >> 16);
2200 		info->mac[4] = (u8)(shmem_info.mac_lower >> 8);
2201 		info->mac[5] = (u8)(shmem_info.mac_lower);
2202 
2203 		/* Store primary MAC for later possible WoL */
2204 		memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN);
2205 	} else {
2206 		DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n");
2207 	}
2208 
2209 	info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower |
2210 			 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32);
2211 	info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower |
2212 			 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32);
2213 
2214 	info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK);
2215 
2216 	info->mtu = (u16)shmem_info.mtu_size;
2217 
2218 	p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE;
2219 	p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT;
2220 	if (qed_mcp_is_init(p_hwfn)) {
2221 		u32 resp = 0, param = 0;
2222 		int rc;
2223 
2224 		rc = qed_mcp_cmd(p_hwfn, p_ptt,
2225 				 DRV_MSG_CODE_OS_WOL, 0, &resp, &param);
2226 		if (rc)
2227 			return rc;
2228 		if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED)
2229 			p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME;
2230 	}
2231 
2232 	DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP),
2233 		   "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %02x:%02x:%02x:%02x:%02x:%02x wwn port %llx node %llx ovlan %04x wol %02x\n",
2234 		info->pause_on_host, info->protocol,
2235 		info->bandwidth_min, info->bandwidth_max,
2236 		info->mac[0], info->mac[1], info->mac[2],
2237 		info->mac[3], info->mac[4], info->mac[5],
2238 		info->wwn_port, info->wwn_node,
2239 		info->ovlan, (u8)p_hwfn->hw_info.b_wol_support);
2240 
2241 	return 0;
2242 }
2243 
2244 struct qed_mcp_link_params
2245 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn)
2246 {
2247 	if (!p_hwfn || !p_hwfn->mcp_info)
2248 		return NULL;
2249 	return &p_hwfn->mcp_info->link_input;
2250 }
2251 
2252 struct qed_mcp_link_state
2253 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn)
2254 {
2255 	if (!p_hwfn || !p_hwfn->mcp_info)
2256 		return NULL;
2257 	return &p_hwfn->mcp_info->link_output;
2258 }
2259 
2260 struct qed_mcp_link_capabilities
2261 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn)
2262 {
2263 	if (!p_hwfn || !p_hwfn->mcp_info)
2264 		return NULL;
2265 	return &p_hwfn->mcp_info->link_capabilities;
2266 }
2267 
2268 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2269 {
2270 	u32 resp = 0, param = 0;
2271 	int rc;
2272 
2273 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
2274 			 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, &param);
2275 
2276 	/* Wait for the drain to complete before returning */
2277 	msleep(1020);
2278 
2279 	return rc;
2280 }
2281 
2282 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn,
2283 			   struct qed_ptt *p_ptt, u32 *p_flash_size)
2284 {
2285 	u32 flash_size;
2286 
2287 	if (IS_VF(p_hwfn->cdev))
2288 		return -EINVAL;
2289 
2290 	flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4);
2291 	flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >>
2292 		      MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT;
2293 	flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT));
2294 
2295 	*p_flash_size = flash_size;
2296 
2297 	return 0;
2298 }
2299 
2300 static int
2301 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn,
2302 			  struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2303 {
2304 	u32 resp = 0, param = 0, rc_param = 0;
2305 	int rc;
2306 
2307 	/* Only Leader can configure MSIX, and need to take CMT into account */
2308 	if (!IS_LEAD_HWFN(p_hwfn))
2309 		return 0;
2310 	num *= p_hwfn->cdev->num_hwfns;
2311 
2312 	param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) &
2313 		 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK;
2314 	param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) &
2315 		 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK;
2316 
2317 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param,
2318 			 &resp, &rc_param);
2319 
2320 	if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) {
2321 		DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id);
2322 		rc = -EINVAL;
2323 	} else {
2324 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2325 			   "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n",
2326 			   num, vf_id);
2327 	}
2328 
2329 	return rc;
2330 }
2331 
2332 static int
2333 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn,
2334 			  struct qed_ptt *p_ptt, u8 num)
2335 {
2336 	u32 resp = 0, param = num, rc_param = 0;
2337 	int rc;
2338 
2339 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX,
2340 			 param, &resp, &rc_param);
2341 
2342 	if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) {
2343 		DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n");
2344 		rc = -EINVAL;
2345 	} else {
2346 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2347 			   "Requested 0x%02x MSI-x interrupts for VFs\n", num);
2348 	}
2349 
2350 	return rc;
2351 }
2352 
2353 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn,
2354 			   struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2355 {
2356 	if (QED_IS_BB(p_hwfn->cdev))
2357 		return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num);
2358 	else
2359 		return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num);
2360 }
2361 
2362 int
2363 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn,
2364 			 struct qed_ptt *p_ptt,
2365 			 struct qed_mcp_drv_version *p_ver)
2366 {
2367 	struct qed_mcp_mb_params mb_params;
2368 	struct drv_version_stc drv_version;
2369 	__be32 val;
2370 	u32 i;
2371 	int rc;
2372 
2373 	memset(&drv_version, 0, sizeof(drv_version));
2374 	drv_version.version = p_ver->version;
2375 	for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) {
2376 		val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)]));
2377 		*(__be32 *)&drv_version.name[i * sizeof(u32)] = val;
2378 	}
2379 
2380 	memset(&mb_params, 0, sizeof(mb_params));
2381 	mb_params.cmd = DRV_MSG_CODE_SET_VERSION;
2382 	mb_params.p_data_src = &drv_version;
2383 	mb_params.data_src_size = sizeof(drv_version);
2384 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2385 	if (rc)
2386 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2387 
2388 	return rc;
2389 }
2390 
2391 /* A maximal 100 msec waiting time for the MCP to halt */
2392 #define QED_MCP_HALT_SLEEP_MS		10
2393 #define QED_MCP_HALT_MAX_RETRIES	10
2394 
2395 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2396 {
2397 	u32 resp = 0, param = 0, cpu_state, cnt = 0;
2398 	int rc;
2399 
2400 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp,
2401 			 &param);
2402 	if (rc) {
2403 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2404 		return rc;
2405 	}
2406 
2407 	do {
2408 		msleep(QED_MCP_HALT_SLEEP_MS);
2409 		cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2410 		if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED)
2411 			break;
2412 	} while (++cnt < QED_MCP_HALT_MAX_RETRIES);
2413 
2414 	if (cnt == QED_MCP_HALT_MAX_RETRIES) {
2415 		DP_NOTICE(p_hwfn,
2416 			  "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2417 			  qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state);
2418 		return -EBUSY;
2419 	}
2420 
2421 	qed_mcp_cmd_set_blocking(p_hwfn, true);
2422 
2423 	return 0;
2424 }
2425 
2426 #define QED_MCP_RESUME_SLEEP_MS	10
2427 
2428 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2429 {
2430 	u32 cpu_mode, cpu_state;
2431 
2432 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff);
2433 
2434 	cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2435 	cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT;
2436 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode);
2437 	msleep(QED_MCP_RESUME_SLEEP_MS);
2438 	cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE);
2439 
2440 	if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) {
2441 		DP_NOTICE(p_hwfn,
2442 			  "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n",
2443 			  cpu_mode, cpu_state);
2444 		return -EBUSY;
2445 	}
2446 
2447 	qed_mcp_cmd_set_blocking(p_hwfn, false);
2448 
2449 	return 0;
2450 }
2451 
2452 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn,
2453 				     struct qed_ptt *p_ptt,
2454 				     enum qed_ov_client client)
2455 {
2456 	u32 resp = 0, param = 0;
2457 	u32 drv_mb_param;
2458 	int rc;
2459 
2460 	switch (client) {
2461 	case QED_OV_CLIENT_DRV:
2462 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS;
2463 		break;
2464 	case QED_OV_CLIENT_USER:
2465 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER;
2466 		break;
2467 	case QED_OV_CLIENT_VENDOR_SPEC:
2468 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC;
2469 		break;
2470 	default:
2471 		DP_NOTICE(p_hwfn, "Invalid client type %d\n", client);
2472 		return -EINVAL;
2473 	}
2474 
2475 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG,
2476 			 drv_mb_param, &resp, &param);
2477 	if (rc)
2478 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2479 
2480 	return rc;
2481 }
2482 
2483 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn,
2484 				   struct qed_ptt *p_ptt,
2485 				   enum qed_ov_driver_state drv_state)
2486 {
2487 	u32 resp = 0, param = 0;
2488 	u32 drv_mb_param;
2489 	int rc;
2490 
2491 	switch (drv_state) {
2492 	case QED_OV_DRIVER_STATE_NOT_LOADED:
2493 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED;
2494 		break;
2495 	case QED_OV_DRIVER_STATE_DISABLED:
2496 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED;
2497 		break;
2498 	case QED_OV_DRIVER_STATE_ACTIVE:
2499 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE;
2500 		break;
2501 	default:
2502 		DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state);
2503 		return -EINVAL;
2504 	}
2505 
2506 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE,
2507 			 drv_mb_param, &resp, &param);
2508 	if (rc)
2509 		DP_ERR(p_hwfn, "Failed to send driver state\n");
2510 
2511 	return rc;
2512 }
2513 
2514 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn,
2515 			  struct qed_ptt *p_ptt, u16 mtu)
2516 {
2517 	u32 resp = 0, param = 0;
2518 	u32 drv_mb_param;
2519 	int rc;
2520 
2521 	drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT;
2522 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU,
2523 			 drv_mb_param, &resp, &param);
2524 	if (rc)
2525 		DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc);
2526 
2527 	return rc;
2528 }
2529 
2530 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn,
2531 			  struct qed_ptt *p_ptt, u8 *mac)
2532 {
2533 	struct qed_mcp_mb_params mb_params;
2534 	u32 mfw_mac[2];
2535 	int rc;
2536 
2537 	memset(&mb_params, 0, sizeof(mb_params));
2538 	mb_params.cmd = DRV_MSG_CODE_SET_VMAC;
2539 	mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC <<
2540 			  DRV_MSG_CODE_VMAC_TYPE_SHIFT;
2541 	mb_params.param |= MCP_PF_ID(p_hwfn);
2542 
2543 	/* MCP is BE, and on LE platforms PCI would swap access to SHMEM
2544 	 * in 32-bit granularity.
2545 	 * So the MAC has to be set in native order [and not byte order],
2546 	 * otherwise it would be read incorrectly by MFW after swap.
2547 	 */
2548 	mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3];
2549 	mfw_mac[1] = mac[4] << 24 | mac[5] << 16;
2550 
2551 	mb_params.p_data_src = (u8 *)mfw_mac;
2552 	mb_params.data_src_size = 8;
2553 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2554 	if (rc)
2555 		DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc);
2556 
2557 	/* Store primary MAC for later possible WoL */
2558 	memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN);
2559 
2560 	return rc;
2561 }
2562 
2563 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn,
2564 			  struct qed_ptt *p_ptt, enum qed_ov_wol wol)
2565 {
2566 	u32 resp = 0, param = 0;
2567 	u32 drv_mb_param;
2568 	int rc;
2569 
2570 	if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) {
2571 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
2572 			   "Can't change WoL configuration when WoL isn't supported\n");
2573 		return -EINVAL;
2574 	}
2575 
2576 	switch (wol) {
2577 	case QED_OV_WOL_DEFAULT:
2578 		drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT;
2579 		break;
2580 	case QED_OV_WOL_DISABLED:
2581 		drv_mb_param = DRV_MB_PARAM_WOL_DISABLED;
2582 		break;
2583 	case QED_OV_WOL_ENABLED:
2584 		drv_mb_param = DRV_MB_PARAM_WOL_ENABLED;
2585 		break;
2586 	default:
2587 		DP_ERR(p_hwfn, "Invalid wol state %d\n", wol);
2588 		return -EINVAL;
2589 	}
2590 
2591 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL,
2592 			 drv_mb_param, &resp, &param);
2593 	if (rc)
2594 		DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc);
2595 
2596 	/* Store the WoL update for a future unload */
2597 	p_hwfn->cdev->wol_config = (u8)wol;
2598 
2599 	return rc;
2600 }
2601 
2602 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn,
2603 			      struct qed_ptt *p_ptt,
2604 			      enum qed_ov_eswitch eswitch)
2605 {
2606 	u32 resp = 0, param = 0;
2607 	u32 drv_mb_param;
2608 	int rc;
2609 
2610 	switch (eswitch) {
2611 	case QED_OV_ESWITCH_NONE:
2612 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE;
2613 		break;
2614 	case QED_OV_ESWITCH_VEB:
2615 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB;
2616 		break;
2617 	case QED_OV_ESWITCH_VEPA:
2618 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA;
2619 		break;
2620 	default:
2621 		DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch);
2622 		return -EINVAL;
2623 	}
2624 
2625 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE,
2626 			 drv_mb_param, &resp, &param);
2627 	if (rc)
2628 		DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc);
2629 
2630 	return rc;
2631 }
2632 
2633 int qed_mcp_set_led(struct qed_hwfn *p_hwfn,
2634 		    struct qed_ptt *p_ptt, enum qed_led_mode mode)
2635 {
2636 	u32 resp = 0, param = 0, drv_mb_param;
2637 	int rc;
2638 
2639 	switch (mode) {
2640 	case QED_LED_MODE_ON:
2641 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON;
2642 		break;
2643 	case QED_LED_MODE_OFF:
2644 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF;
2645 		break;
2646 	case QED_LED_MODE_RESTORE:
2647 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER;
2648 		break;
2649 	default:
2650 		DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode);
2651 		return -EINVAL;
2652 	}
2653 
2654 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE,
2655 			 drv_mb_param, &resp, &param);
2656 
2657 	return rc;
2658 }
2659 
2660 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn,
2661 			  struct qed_ptt *p_ptt, u32 mask_parities)
2662 {
2663 	u32 resp = 0, param = 0;
2664 	int rc;
2665 
2666 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES,
2667 			 mask_parities, &resp, &param);
2668 
2669 	if (rc) {
2670 		DP_ERR(p_hwfn,
2671 		       "MCP response failure for mask parities, aborting\n");
2672 	} else if (resp != FW_MSG_CODE_OK) {
2673 		DP_ERR(p_hwfn,
2674 		       "MCP did not acknowledge mask parity request. Old MFW?\n");
2675 		rc = -EINVAL;
2676 	}
2677 
2678 	return rc;
2679 }
2680 
2681 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len)
2682 {
2683 	u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0;
2684 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2685 	u32 resp = 0, resp_param = 0;
2686 	struct qed_ptt *p_ptt;
2687 	int rc = 0;
2688 
2689 	p_ptt = qed_ptt_acquire(p_hwfn);
2690 	if (!p_ptt)
2691 		return -EBUSY;
2692 
2693 	while (bytes_left > 0) {
2694 		bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN);
2695 
2696 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2697 					DRV_MSG_CODE_NVM_READ_NVRAM,
2698 					addr + offset +
2699 					(bytes_to_copy <<
2700 					 DRV_MB_PARAM_NVM_LEN_OFFSET),
2701 					&resp, &resp_param,
2702 					&read_len,
2703 					(u32 *)(p_buf + offset));
2704 
2705 		if (rc || (resp != FW_MSG_CODE_NVM_OK)) {
2706 			DP_NOTICE(cdev, "MCP command rc = %d\n", rc);
2707 			break;
2708 		}
2709 
2710 		/* This can be a lengthy process, and it's possible scheduler
2711 		 * isn't preemptable. Sleep a bit to prevent CPU hogging.
2712 		 */
2713 		if (bytes_left % 0x1000 <
2714 		    (bytes_left - read_len) % 0x1000)
2715 			usleep_range(1000, 2000);
2716 
2717 		offset += read_len;
2718 		bytes_left -= read_len;
2719 	}
2720 
2721 	cdev->mcp_nvm_resp = resp;
2722 	qed_ptt_release(p_hwfn, p_ptt);
2723 
2724 	return rc;
2725 }
2726 
2727 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf)
2728 {
2729 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2730 	struct qed_ptt *p_ptt;
2731 
2732 	p_ptt = qed_ptt_acquire(p_hwfn);
2733 	if (!p_ptt)
2734 		return -EBUSY;
2735 
2736 	memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp));
2737 	qed_ptt_release(p_hwfn, p_ptt);
2738 
2739 	return 0;
2740 }
2741 
2742 int qed_mcp_nvm_put_file_begin(struct qed_dev *cdev, u32 addr)
2743 {
2744 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2745 	struct qed_ptt *p_ptt;
2746 	u32 resp, param;
2747 	int rc;
2748 
2749 	p_ptt = qed_ptt_acquire(p_hwfn);
2750 	if (!p_ptt)
2751 		return -EBUSY;
2752 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_NVM_PUT_FILE_BEGIN, addr,
2753 			 &resp, &param);
2754 	cdev->mcp_nvm_resp = resp;
2755 	qed_ptt_release(p_hwfn, p_ptt);
2756 
2757 	return rc;
2758 }
2759 
2760 int qed_mcp_nvm_write(struct qed_dev *cdev,
2761 		      u32 cmd, u32 addr, u8 *p_buf, u32 len)
2762 {
2763 	u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param;
2764 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2765 	struct qed_ptt *p_ptt;
2766 	int rc = -EINVAL;
2767 
2768 	p_ptt = qed_ptt_acquire(p_hwfn);
2769 	if (!p_ptt)
2770 		return -EBUSY;
2771 
2772 	switch (cmd) {
2773 	case QED_PUT_FILE_DATA:
2774 		nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA;
2775 		break;
2776 	case QED_NVM_WRITE_NVRAM:
2777 		nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM;
2778 		break;
2779 	default:
2780 		DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd);
2781 		rc = -EINVAL;
2782 		goto out;
2783 	}
2784 
2785 	while (buf_idx < len) {
2786 		buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN);
2787 		nvm_offset = ((buf_size << DRV_MB_PARAM_NVM_LEN_OFFSET) |
2788 			      addr) + buf_idx;
2789 		rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset,
2790 					&resp, &param, buf_size,
2791 					(u32 *)&p_buf[buf_idx]);
2792 		if (rc) {
2793 			DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc);
2794 			resp = FW_MSG_CODE_ERROR;
2795 			break;
2796 		}
2797 
2798 		if (resp != FW_MSG_CODE_OK &&
2799 		    resp != FW_MSG_CODE_NVM_OK &&
2800 		    resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) {
2801 			DP_NOTICE(cdev,
2802 				  "nvm write failed, resp = 0x%08x\n", resp);
2803 			rc = -EINVAL;
2804 			break;
2805 		}
2806 
2807 		/* This can be a lengthy process, and it's possible scheduler
2808 		 * isn't pre-emptable. Sleep a bit to prevent CPU hogging.
2809 		 */
2810 		if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000)
2811 			usleep_range(1000, 2000);
2812 
2813 		buf_idx += buf_size;
2814 	}
2815 
2816 	cdev->mcp_nvm_resp = resp;
2817 out:
2818 	qed_ptt_release(p_hwfn, p_ptt);
2819 
2820 	return rc;
2821 }
2822 
2823 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2824 			 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf)
2825 {
2826 	u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0;
2827 	u32 resp, param;
2828 	int rc;
2829 
2830 	nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) &
2831 		       DRV_MB_PARAM_TRANSCEIVER_PORT_MASK;
2832 	nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) &
2833 		       DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK;
2834 
2835 	addr = offset;
2836 	offset = 0;
2837 	bytes_left = len;
2838 	while (bytes_left > 0) {
2839 		bytes_to_copy = min_t(u32, bytes_left,
2840 				      MAX_I2C_TRANSACTION_SIZE);
2841 		nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK |
2842 			       DRV_MB_PARAM_TRANSCEIVER_PORT_MASK);
2843 		nvm_offset |= ((addr + offset) <<
2844 			       DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) &
2845 			       DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK;
2846 		nvm_offset |= (bytes_to_copy <<
2847 			       DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) &
2848 			       DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK;
2849 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2850 					DRV_MSG_CODE_TRANSCEIVER_READ,
2851 					nvm_offset, &resp, &param, &buf_size,
2852 					(u32 *)(p_buf + offset));
2853 		if (rc) {
2854 			DP_NOTICE(p_hwfn,
2855 				  "Failed to send a transceiver read command to the MFW. rc = %d.\n",
2856 				  rc);
2857 			return rc;
2858 		}
2859 
2860 		if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT)
2861 			return -ENODEV;
2862 		else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK)
2863 			return -EINVAL;
2864 
2865 		offset += buf_size;
2866 		bytes_left -= buf_size;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2873 {
2874 	u32 drv_mb_param = 0, rsp, param;
2875 	int rc = 0;
2876 
2877 	drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST <<
2878 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2879 
2880 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2881 			 drv_mb_param, &rsp, &param);
2882 
2883 	if (rc)
2884 		return rc;
2885 
2886 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2887 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2888 		rc = -EAGAIN;
2889 
2890 	return rc;
2891 }
2892 
2893 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2894 {
2895 	u32 drv_mb_param, rsp, param;
2896 	int rc = 0;
2897 
2898 	drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST <<
2899 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2900 
2901 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2902 			 drv_mb_param, &rsp, &param);
2903 
2904 	if (rc)
2905 		return rc;
2906 
2907 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2908 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2909 		rc = -EAGAIN;
2910 
2911 	return rc;
2912 }
2913 
2914 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn,
2915 				    struct qed_ptt *p_ptt,
2916 				    u32 *num_images)
2917 {
2918 	u32 drv_mb_param = 0, rsp;
2919 	int rc = 0;
2920 
2921 	drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES <<
2922 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2923 
2924 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2925 			 drv_mb_param, &rsp, num_images);
2926 	if (rc)
2927 		return rc;
2928 
2929 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK))
2930 		rc = -EINVAL;
2931 
2932 	return rc;
2933 }
2934 
2935 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn,
2936 				   struct qed_ptt *p_ptt,
2937 				   struct bist_nvm_image_att *p_image_att,
2938 				   u32 image_index)
2939 {
2940 	u32 buf_size = 0, param, resp = 0, resp_param = 0;
2941 	int rc;
2942 
2943 	param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX <<
2944 		DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT;
2945 	param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT;
2946 
2947 	rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2948 				DRV_MSG_CODE_BIST_TEST, param,
2949 				&resp, &resp_param,
2950 				&buf_size,
2951 				(u32 *)p_image_att);
2952 	if (rc)
2953 		return rc;
2954 
2955 	if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2956 	    (p_image_att->return_code != 1))
2957 		rc = -EINVAL;
2958 
2959 	return rc;
2960 }
2961 
2962 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn)
2963 {
2964 	struct qed_nvm_image_info nvm_info;
2965 	struct qed_ptt *p_ptt;
2966 	int rc;
2967 	u32 i;
2968 
2969 	if (p_hwfn->nvm_info.valid)
2970 		return 0;
2971 
2972 	p_ptt = qed_ptt_acquire(p_hwfn);
2973 	if (!p_ptt) {
2974 		DP_ERR(p_hwfn, "failed to acquire ptt\n");
2975 		return -EBUSY;
2976 	}
2977 
2978 	/* Acquire from MFW the amount of available images */
2979 	nvm_info.num_images = 0;
2980 	rc = qed_mcp_bist_nvm_get_num_images(p_hwfn,
2981 					     p_ptt, &nvm_info.num_images);
2982 	if (rc == -EOPNOTSUPP) {
2983 		DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n");
2984 		goto out;
2985 	} else if (rc || !nvm_info.num_images) {
2986 		DP_ERR(p_hwfn, "Failed getting number of images\n");
2987 		goto err0;
2988 	}
2989 
2990 	nvm_info.image_att = kmalloc_array(nvm_info.num_images,
2991 					   sizeof(struct bist_nvm_image_att),
2992 					   GFP_KERNEL);
2993 	if (!nvm_info.image_att) {
2994 		rc = -ENOMEM;
2995 		goto err0;
2996 	}
2997 
2998 	/* Iterate over images and get their attributes */
2999 	for (i = 0; i < nvm_info.num_images; i++) {
3000 		rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt,
3001 						    &nvm_info.image_att[i], i);
3002 		if (rc) {
3003 			DP_ERR(p_hwfn,
3004 			       "Failed getting image index %d attributes\n", i);
3005 			goto err1;
3006 		}
3007 
3008 		DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i,
3009 			   nvm_info.image_att[i].len);
3010 	}
3011 out:
3012 	/* Update hwfn's nvm_info */
3013 	if (nvm_info.num_images) {
3014 		p_hwfn->nvm_info.num_images = nvm_info.num_images;
3015 		kfree(p_hwfn->nvm_info.image_att);
3016 		p_hwfn->nvm_info.image_att = nvm_info.image_att;
3017 		p_hwfn->nvm_info.valid = true;
3018 	}
3019 
3020 	qed_ptt_release(p_hwfn, p_ptt);
3021 	return 0;
3022 
3023 err1:
3024 	kfree(nvm_info.image_att);
3025 err0:
3026 	qed_ptt_release(p_hwfn, p_ptt);
3027 	return rc;
3028 }
3029 
3030 int
3031 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn,
3032 			  enum qed_nvm_images image_id,
3033 			  struct qed_nvm_image_att *p_image_att)
3034 {
3035 	enum nvm_image_type type;
3036 	u32 i;
3037 
3038 	/* Translate image_id into MFW definitions */
3039 	switch (image_id) {
3040 	case QED_NVM_IMAGE_ISCSI_CFG:
3041 		type = NVM_TYPE_ISCSI_CFG;
3042 		break;
3043 	case QED_NVM_IMAGE_FCOE_CFG:
3044 		type = NVM_TYPE_FCOE_CFG;
3045 		break;
3046 	case QED_NVM_IMAGE_NVM_CFG1:
3047 		type = NVM_TYPE_NVM_CFG1;
3048 		break;
3049 	case QED_NVM_IMAGE_DEFAULT_CFG:
3050 		type = NVM_TYPE_DEFAULT_CFG;
3051 		break;
3052 	case QED_NVM_IMAGE_NVM_META:
3053 		type = NVM_TYPE_META;
3054 		break;
3055 	default:
3056 		DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n",
3057 			  image_id);
3058 		return -EINVAL;
3059 	}
3060 
3061 	qed_mcp_nvm_info_populate(p_hwfn);
3062 	for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
3063 		if (type == p_hwfn->nvm_info.image_att[i].image_type)
3064 			break;
3065 	if (i == p_hwfn->nvm_info.num_images) {
3066 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
3067 			   "Failed to find nvram image of type %08x\n",
3068 			   image_id);
3069 		return -ENOENT;
3070 	}
3071 
3072 	p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
3073 	p_image_att->length = p_hwfn->nvm_info.image_att[i].len;
3074 
3075 	return 0;
3076 }
3077 
3078 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn,
3079 			  enum qed_nvm_images image_id,
3080 			  u8 *p_buffer, u32 buffer_len)
3081 {
3082 	struct qed_nvm_image_att image_att;
3083 	int rc;
3084 
3085 	memset(p_buffer, 0, buffer_len);
3086 
3087 	rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att);
3088 	if (rc)
3089 		return rc;
3090 
3091 	/* Validate sizes - both the image's and the supplied buffer's */
3092 	if (image_att.length <= 4) {
3093 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
3094 			   "Image [%d] is too small - only %d bytes\n",
3095 			   image_id, image_att.length);
3096 		return -EINVAL;
3097 	}
3098 
3099 	if (image_att.length > buffer_len) {
3100 		DP_VERBOSE(p_hwfn,
3101 			   QED_MSG_STORAGE,
3102 			   "Image [%d] is too big - %08x bytes where only %08x are available\n",
3103 			   image_id, image_att.length, buffer_len);
3104 		return -ENOMEM;
3105 	}
3106 
3107 	return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr,
3108 				p_buffer, image_att.length);
3109 }
3110 
3111 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id)
3112 {
3113 	enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
3114 
3115 	switch (res_id) {
3116 	case QED_SB:
3117 		mfw_res_id = RESOURCE_NUM_SB_E;
3118 		break;
3119 	case QED_L2_QUEUE:
3120 		mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
3121 		break;
3122 	case QED_VPORT:
3123 		mfw_res_id = RESOURCE_NUM_VPORT_E;
3124 		break;
3125 	case QED_RSS_ENG:
3126 		mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
3127 		break;
3128 	case QED_PQ:
3129 		mfw_res_id = RESOURCE_NUM_PQ_E;
3130 		break;
3131 	case QED_RL:
3132 		mfw_res_id = RESOURCE_NUM_RL_E;
3133 		break;
3134 	case QED_MAC:
3135 	case QED_VLAN:
3136 		/* Each VFC resource can accommodate both a MAC and a VLAN */
3137 		mfw_res_id = RESOURCE_VFC_FILTER_E;
3138 		break;
3139 	case QED_ILT:
3140 		mfw_res_id = RESOURCE_ILT_E;
3141 		break;
3142 	case QED_LL2_QUEUE:
3143 		mfw_res_id = RESOURCE_LL2_QUEUE_E;
3144 		break;
3145 	case QED_RDMA_CNQ_RAM:
3146 	case QED_CMDQS_CQS:
3147 		/* CNQ/CMDQS are the same resource */
3148 		mfw_res_id = RESOURCE_CQS_E;
3149 		break;
3150 	case QED_RDMA_STATS_QUEUE:
3151 		mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
3152 		break;
3153 	case QED_BDQ:
3154 		mfw_res_id = RESOURCE_BDQ_E;
3155 		break;
3156 	default:
3157 		break;
3158 	}
3159 
3160 	return mfw_res_id;
3161 }
3162 
3163 #define QED_RESC_ALLOC_VERSION_MAJOR    2
3164 #define QED_RESC_ALLOC_VERSION_MINOR    0
3165 #define QED_RESC_ALLOC_VERSION				     \
3166 	((QED_RESC_ALLOC_VERSION_MAJOR <<		     \
3167 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \
3168 	 (QED_RESC_ALLOC_VERSION_MINOR <<		     \
3169 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT))
3170 
3171 struct qed_resc_alloc_in_params {
3172 	u32 cmd;
3173 	enum qed_resources res_id;
3174 	u32 resc_max_val;
3175 };
3176 
3177 struct qed_resc_alloc_out_params {
3178 	u32 mcp_resp;
3179 	u32 mcp_param;
3180 	u32 resc_num;
3181 	u32 resc_start;
3182 	u32 vf_resc_num;
3183 	u32 vf_resc_start;
3184 	u32 flags;
3185 };
3186 
3187 static int
3188 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn,
3189 			    struct qed_ptt *p_ptt,
3190 			    struct qed_resc_alloc_in_params *p_in_params,
3191 			    struct qed_resc_alloc_out_params *p_out_params)
3192 {
3193 	struct qed_mcp_mb_params mb_params;
3194 	struct resource_info mfw_resc_info;
3195 	int rc;
3196 
3197 	memset(&mfw_resc_info, 0, sizeof(mfw_resc_info));
3198 
3199 	mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id);
3200 	if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) {
3201 		DP_ERR(p_hwfn,
3202 		       "Failed to match resource %d [%s] with the MFW resources\n",
3203 		       p_in_params->res_id,
3204 		       qed_hw_get_resc_name(p_in_params->res_id));
3205 		return -EINVAL;
3206 	}
3207 
3208 	switch (p_in_params->cmd) {
3209 	case DRV_MSG_SET_RESOURCE_VALUE_MSG:
3210 		mfw_resc_info.size = p_in_params->resc_max_val;
3211 		/* Fallthrough */
3212 	case DRV_MSG_GET_RESOURCE_ALLOC_MSG:
3213 		break;
3214 	default:
3215 		DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n",
3216 		       p_in_params->cmd);
3217 		return -EINVAL;
3218 	}
3219 
3220 	memset(&mb_params, 0, sizeof(mb_params));
3221 	mb_params.cmd = p_in_params->cmd;
3222 	mb_params.param = QED_RESC_ALLOC_VERSION;
3223 	mb_params.p_data_src = &mfw_resc_info;
3224 	mb_params.data_src_size = sizeof(mfw_resc_info);
3225 	mb_params.p_data_dst = mb_params.p_data_src;
3226 	mb_params.data_dst_size = mb_params.data_src_size;
3227 
3228 	DP_VERBOSE(p_hwfn,
3229 		   QED_MSG_SP,
3230 		   "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n",
3231 		   p_in_params->cmd,
3232 		   p_in_params->res_id,
3233 		   qed_hw_get_resc_name(p_in_params->res_id),
3234 		   QED_MFW_GET_FIELD(mb_params.param,
3235 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3236 		   QED_MFW_GET_FIELD(mb_params.param,
3237 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3238 		   p_in_params->resc_max_val);
3239 
3240 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
3241 	if (rc)
3242 		return rc;
3243 
3244 	p_out_params->mcp_resp = mb_params.mcp_resp;
3245 	p_out_params->mcp_param = mb_params.mcp_param;
3246 	p_out_params->resc_num = mfw_resc_info.size;
3247 	p_out_params->resc_start = mfw_resc_info.offset;
3248 	p_out_params->vf_resc_num = mfw_resc_info.vf_size;
3249 	p_out_params->vf_resc_start = mfw_resc_info.vf_offset;
3250 	p_out_params->flags = mfw_resc_info.flags;
3251 
3252 	DP_VERBOSE(p_hwfn,
3253 		   QED_MSG_SP,
3254 		   "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n",
3255 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
3256 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
3257 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
3258 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
3259 		   p_out_params->resc_num,
3260 		   p_out_params->resc_start,
3261 		   p_out_params->vf_resc_num,
3262 		   p_out_params->vf_resc_start, p_out_params->flags);
3263 
3264 	return 0;
3265 }
3266 
3267 int
3268 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn,
3269 			 struct qed_ptt *p_ptt,
3270 			 enum qed_resources res_id,
3271 			 u32 resc_max_val, u32 *p_mcp_resp)
3272 {
3273 	struct qed_resc_alloc_out_params out_params;
3274 	struct qed_resc_alloc_in_params in_params;
3275 	int rc;
3276 
3277 	memset(&in_params, 0, sizeof(in_params));
3278 	in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG;
3279 	in_params.res_id = res_id;
3280 	in_params.resc_max_val = resc_max_val;
3281 	memset(&out_params, 0, sizeof(out_params));
3282 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3283 					 &out_params);
3284 	if (rc)
3285 		return rc;
3286 
3287 	*p_mcp_resp = out_params.mcp_resp;
3288 
3289 	return 0;
3290 }
3291 
3292 int
3293 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn,
3294 		      struct qed_ptt *p_ptt,
3295 		      enum qed_resources res_id,
3296 		      u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start)
3297 {
3298 	struct qed_resc_alloc_out_params out_params;
3299 	struct qed_resc_alloc_in_params in_params;
3300 	int rc;
3301 
3302 	memset(&in_params, 0, sizeof(in_params));
3303 	in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG;
3304 	in_params.res_id = res_id;
3305 	memset(&out_params, 0, sizeof(out_params));
3306 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
3307 					 &out_params);
3308 	if (rc)
3309 		return rc;
3310 
3311 	*p_mcp_resp = out_params.mcp_resp;
3312 
3313 	if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3314 		*p_resc_num = out_params.resc_num;
3315 		*p_resc_start = out_params.resc_start;
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3322 {
3323 	u32 mcp_resp, mcp_param;
3324 
3325 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0,
3326 			   &mcp_resp, &mcp_param);
3327 }
3328 
3329 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn,
3330 				struct qed_ptt *p_ptt,
3331 				u32 param, u32 *p_mcp_resp, u32 *p_mcp_param)
3332 {
3333 	int rc;
3334 
3335 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param,
3336 			 p_mcp_resp, p_mcp_param);
3337 	if (rc)
3338 		return rc;
3339 
3340 	if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
3341 		DP_INFO(p_hwfn,
3342 			"The resource command is unsupported by the MFW\n");
3343 		return -EINVAL;
3344 	}
3345 
3346 	if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) {
3347 		u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE);
3348 
3349 		DP_NOTICE(p_hwfn,
3350 			  "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n",
3351 			  param, opcode);
3352 		return -EINVAL;
3353 	}
3354 
3355 	return rc;
3356 }
3357 
3358 static int
3359 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3360 		    struct qed_ptt *p_ptt,
3361 		    struct qed_resc_lock_params *p_params)
3362 {
3363 	u32 param = 0, mcp_resp, mcp_param;
3364 	u8 opcode;
3365 	int rc;
3366 
3367 	switch (p_params->timeout) {
3368 	case QED_MCP_RESC_LOCK_TO_DEFAULT:
3369 		opcode = RESOURCE_OPCODE_REQ;
3370 		p_params->timeout = 0;
3371 		break;
3372 	case QED_MCP_RESC_LOCK_TO_NONE:
3373 		opcode = RESOURCE_OPCODE_REQ_WO_AGING;
3374 		p_params->timeout = 0;
3375 		break;
3376 	default:
3377 		opcode = RESOURCE_OPCODE_REQ_W_AGING;
3378 		break;
3379 	}
3380 
3381 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3382 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3383 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout);
3384 
3385 	DP_VERBOSE(p_hwfn,
3386 		   QED_MSG_SP,
3387 		   "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n",
3388 		   param, p_params->timeout, opcode, p_params->resource);
3389 
3390 	/* Attempt to acquire the resource */
3391 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3392 	if (rc)
3393 		return rc;
3394 
3395 	/* Analyze the response */
3396 	p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER);
3397 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3398 
3399 	DP_VERBOSE(p_hwfn,
3400 		   QED_MSG_SP,
3401 		   "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n",
3402 		   mcp_param, opcode, p_params->owner);
3403 
3404 	switch (opcode) {
3405 	case RESOURCE_OPCODE_GNT:
3406 		p_params->b_granted = true;
3407 		break;
3408 	case RESOURCE_OPCODE_BUSY:
3409 		p_params->b_granted = false;
3410 		break;
3411 	default:
3412 		DP_NOTICE(p_hwfn,
3413 			  "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n",
3414 			  mcp_param, opcode);
3415 		return -EINVAL;
3416 	}
3417 
3418 	return 0;
3419 }
3420 
3421 int
3422 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3423 		  struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params)
3424 {
3425 	u32 retry_cnt = 0;
3426 	int rc;
3427 
3428 	do {
3429 		/* No need for an interval before the first iteration */
3430 		if (retry_cnt) {
3431 			if (p_params->sleep_b4_retry) {
3432 				u16 retry_interval_in_ms =
3433 				    DIV_ROUND_UP(p_params->retry_interval,
3434 						 1000);
3435 
3436 				msleep(retry_interval_in_ms);
3437 			} else {
3438 				udelay(p_params->retry_interval);
3439 			}
3440 		}
3441 
3442 		rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params);
3443 		if (rc)
3444 			return rc;
3445 
3446 		if (p_params->b_granted)
3447 			break;
3448 	} while (retry_cnt++ < p_params->retry_num);
3449 
3450 	return 0;
3451 }
3452 
3453 int
3454 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn,
3455 		    struct qed_ptt *p_ptt,
3456 		    struct qed_resc_unlock_params *p_params)
3457 {
3458 	u32 param = 0, mcp_resp, mcp_param;
3459 	u8 opcode;
3460 	int rc;
3461 
3462 	opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE
3463 				   : RESOURCE_OPCODE_RELEASE;
3464 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3465 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3466 
3467 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3468 		   "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n",
3469 		   param, opcode, p_params->resource);
3470 
3471 	/* Attempt to release the resource */
3472 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3473 	if (rc)
3474 		return rc;
3475 
3476 	/* Analyze the response */
3477 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3478 
3479 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3480 		   "Resource unlock response: mcp_param 0x%08x [opcode %d]\n",
3481 		   mcp_param, opcode);
3482 
3483 	switch (opcode) {
3484 	case RESOURCE_OPCODE_RELEASED_PREVIOUS:
3485 		DP_INFO(p_hwfn,
3486 			"Resource unlock request for an already released resource [%d]\n",
3487 			p_params->resource);
3488 		/* Fallthrough */
3489 	case RESOURCE_OPCODE_RELEASED:
3490 		p_params->b_released = true;
3491 		break;
3492 	case RESOURCE_OPCODE_WRONG_OWNER:
3493 		p_params->b_released = false;
3494 		break;
3495 	default:
3496 		DP_NOTICE(p_hwfn,
3497 			  "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n",
3498 			  mcp_param, opcode);
3499 		return -EINVAL;
3500 	}
3501 
3502 	return 0;
3503 }
3504 
3505 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock,
3506 				    struct qed_resc_unlock_params *p_unlock,
3507 				    enum qed_resc_lock
3508 				    resource, bool b_is_permanent)
3509 {
3510 	if (p_lock) {
3511 		memset(p_lock, 0, sizeof(*p_lock));
3512 
3513 		/* Permanent resources don't require aging, and there's no
3514 		 * point in trying to acquire them more than once since it's
3515 		 * unexpected another entity would release them.
3516 		 */
3517 		if (b_is_permanent) {
3518 			p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE;
3519 		} else {
3520 			p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT;
3521 			p_lock->retry_interval =
3522 			    QED_MCP_RESC_LOCK_RETRY_VAL_DFLT;
3523 			p_lock->sleep_b4_retry = true;
3524 		}
3525 
3526 		p_lock->resource = resource;
3527 	}
3528 
3529 	if (p_unlock) {
3530 		memset(p_unlock, 0, sizeof(*p_unlock));
3531 		p_unlock->resource = resource;
3532 	}
3533 }
3534 
3535 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3536 {
3537 	u32 mcp_resp;
3538 	int rc;
3539 
3540 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT,
3541 			 0, &mcp_resp, &p_hwfn->mcp_info->capabilities);
3542 	if (!rc)
3543 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE),
3544 			   "MFW supported features: %08x\n",
3545 			   p_hwfn->mcp_info->capabilities);
3546 
3547 	return rc;
3548 }
3549 
3550 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3551 {
3552 	u32 mcp_resp, mcp_param, features;
3553 
3554 	features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE |
3555 		   DRV_MB_PARAM_FEATURE_SUPPORT_FUNC_VLINK;
3556 
3557 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT,
3558 			   features, &mcp_resp, &mcp_param);
3559 }
3560