1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
41 #include <linux/etherdevice.h>
42 #include "qed.h"
43 #include "qed_cxt.h"
44 #include "qed_dcbx.h"
45 #include "qed_hsi.h"
46 #include "qed_hw.h"
47 #include "qed_mcp.h"
48 #include "qed_reg_addr.h"
49 #include "qed_sriov.h"
50 
51 #define CHIP_MCP_RESP_ITER_US 10
52 
53 #define QED_DRV_MB_MAX_RETRIES	(500 * 1000)	/* Account for 5 sec */
54 #define QED_MCP_RESET_RETRIES	(50 * 1000)	/* Account for 500 msec */
55 
56 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val)	     \
57 	qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \
58 	       _val)
59 
60 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \
61 	qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset))
62 
63 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val)  \
64 	DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \
65 		     offsetof(struct public_drv_mb, _field), _val)
66 
67 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field)	   \
68 	DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \
69 		     offsetof(struct public_drv_mb, _field))
70 
71 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \
72 		  DRV_ID_PDA_COMP_VER_SHIFT)
73 
74 #define MCP_BYTES_PER_MBIT_SHIFT 17
75 
76 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn)
77 {
78 	if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base)
79 		return false;
80 	return true;
81 }
82 
83 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
84 {
85 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
86 					PUBLIC_PORT);
87 	u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr);
88 
89 	p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize,
90 						   MFW_PORT(p_hwfn));
91 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
92 		   "port_addr = 0x%x, port_id 0x%02x\n",
93 		   p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn));
94 }
95 
96 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
97 {
98 	u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length);
99 	u32 tmp, i;
100 
101 	if (!p_hwfn->mcp_info->public_base)
102 		return;
103 
104 	for (i = 0; i < length; i++) {
105 		tmp = qed_rd(p_hwfn, p_ptt,
106 			     p_hwfn->mcp_info->mfw_mb_addr +
107 			     (i << 2) + sizeof(u32));
108 
109 		/* The MB data is actually BE; Need to force it to cpu */
110 		((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] =
111 			be32_to_cpu((__force __be32)tmp);
112 	}
113 }
114 
115 struct qed_mcp_cmd_elem {
116 	struct list_head list;
117 	struct qed_mcp_mb_params *p_mb_params;
118 	u16 expected_seq_num;
119 	bool b_is_completed;
120 };
121 
122 /* Must be called while cmd_lock is acquired */
123 static struct qed_mcp_cmd_elem *
124 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn,
125 		     struct qed_mcp_mb_params *p_mb_params,
126 		     u16 expected_seq_num)
127 {
128 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
129 
130 	p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC);
131 	if (!p_cmd_elem)
132 		goto out;
133 
134 	p_cmd_elem->p_mb_params = p_mb_params;
135 	p_cmd_elem->expected_seq_num = expected_seq_num;
136 	list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list);
137 out:
138 	return p_cmd_elem;
139 }
140 
141 /* Must be called while cmd_lock is acquired */
142 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn,
143 				 struct qed_mcp_cmd_elem *p_cmd_elem)
144 {
145 	list_del(&p_cmd_elem->list);
146 	kfree(p_cmd_elem);
147 }
148 
149 /* Must be called while cmd_lock is acquired */
150 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn,
151 						     u16 seq_num)
152 {
153 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
154 
155 	list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) {
156 		if (p_cmd_elem->expected_seq_num == seq_num)
157 			return p_cmd_elem;
158 	}
159 
160 	return NULL;
161 }
162 
163 int qed_mcp_free(struct qed_hwfn *p_hwfn)
164 {
165 	if (p_hwfn->mcp_info) {
166 		struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp;
167 
168 		kfree(p_hwfn->mcp_info->mfw_mb_cur);
169 		kfree(p_hwfn->mcp_info->mfw_mb_shadow);
170 
171 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
172 		list_for_each_entry_safe(p_cmd_elem,
173 					 p_tmp,
174 					 &p_hwfn->mcp_info->cmd_list, list) {
175 			qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
176 		}
177 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
178 	}
179 
180 	kfree(p_hwfn->mcp_info);
181 	p_hwfn->mcp_info = NULL;
182 
183 	return 0;
184 }
185 
186 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
187 {
188 	struct qed_mcp_info *p_info = p_hwfn->mcp_info;
189 	u32 drv_mb_offsize, mfw_mb_offsize;
190 	u32 mcp_pf_id = MCP_PF_ID(p_hwfn);
191 
192 	p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR);
193 	if (!p_info->public_base)
194 		return 0;
195 
196 	p_info->public_base |= GRCBASE_MCP;
197 
198 	/* Calculate the driver and MFW mailbox address */
199 	drv_mb_offsize = qed_rd(p_hwfn, p_ptt,
200 				SECTION_OFFSIZE_ADDR(p_info->public_base,
201 						     PUBLIC_DRV_MB));
202 	p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id);
203 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
204 		   "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n",
205 		   drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id);
206 
207 	/* Set the MFW MB address */
208 	mfw_mb_offsize = qed_rd(p_hwfn, p_ptt,
209 				SECTION_OFFSIZE_ADDR(p_info->public_base,
210 						     PUBLIC_MFW_MB));
211 	p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id);
212 	p_info->mfw_mb_length =	(u16)qed_rd(p_hwfn, p_ptt, p_info->mfw_mb_addr);
213 
214 	/* Get the current driver mailbox sequence before sending
215 	 * the first command
216 	 */
217 	p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) &
218 			     DRV_MSG_SEQ_NUMBER_MASK;
219 
220 	/* Get current FW pulse sequence */
221 	p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) &
222 				DRV_PULSE_SEQ_MASK;
223 
224 	p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
225 
226 	return 0;
227 }
228 
229 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
230 {
231 	struct qed_mcp_info *p_info;
232 	u32 size;
233 
234 	/* Allocate mcp_info structure */
235 	p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL);
236 	if (!p_hwfn->mcp_info)
237 		goto err;
238 	p_info = p_hwfn->mcp_info;
239 
240 	/* Initialize the MFW spinlock */
241 	spin_lock_init(&p_info->cmd_lock);
242 	spin_lock_init(&p_info->link_lock);
243 
244 	INIT_LIST_HEAD(&p_info->cmd_list);
245 
246 	if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) {
247 		DP_NOTICE(p_hwfn, "MCP is not initialized\n");
248 		/* Do not free mcp_info here, since public_base indicate that
249 		 * the MCP is not initialized
250 		 */
251 		return 0;
252 	}
253 
254 	size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32);
255 	p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL);
256 	p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL);
257 	if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow)
258 		goto err;
259 
260 	return 0;
261 
262 err:
263 	qed_mcp_free(p_hwfn);
264 	return -ENOMEM;
265 }
266 
267 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn,
268 				   struct qed_ptt *p_ptt)
269 {
270 	u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
271 
272 	/* Use MCP history register to check if MCP reset occurred between init
273 	 * time and now.
274 	 */
275 	if (p_hwfn->mcp_info->mcp_hist != generic_por_0) {
276 		DP_VERBOSE(p_hwfn,
277 			   QED_MSG_SP,
278 			   "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n",
279 			   p_hwfn->mcp_info->mcp_hist, generic_por_0);
280 
281 		qed_load_mcp_offsets(p_hwfn, p_ptt);
282 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
283 	}
284 }
285 
286 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
287 {
288 	u32 org_mcp_reset_seq, seq, delay = CHIP_MCP_RESP_ITER_US, cnt = 0;
289 	int rc = 0;
290 
291 	/* Ensure that only a single thread is accessing the mailbox */
292 	spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
293 
294 	org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
295 
296 	/* Set drv command along with the updated sequence */
297 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
298 	seq = ++p_hwfn->mcp_info->drv_mb_seq;
299 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq));
300 
301 	do {
302 		/* Wait for MFW response */
303 		udelay(delay);
304 		/* Give the FW up to 500 second (50*1000*10usec) */
305 	} while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt,
306 					      MISCS_REG_GENERIC_POR_0)) &&
307 		 (cnt++ < QED_MCP_RESET_RETRIES));
308 
309 	if (org_mcp_reset_seq !=
310 	    qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) {
311 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
312 			   "MCP was reset after %d usec\n", cnt * delay);
313 	} else {
314 		DP_ERR(p_hwfn, "Failed to reset MCP\n");
315 		rc = -EAGAIN;
316 	}
317 
318 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
319 
320 	return rc;
321 }
322 
323 /* Must be called while cmd_lock is acquired */
324 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn)
325 {
326 	struct qed_mcp_cmd_elem *p_cmd_elem;
327 
328 	/* There is at most one pending command at a certain time, and if it
329 	 * exists - it is placed at the HEAD of the list.
330 	 */
331 	if (!list_empty(&p_hwfn->mcp_info->cmd_list)) {
332 		p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list,
333 					      struct qed_mcp_cmd_elem, list);
334 		return !p_cmd_elem->b_is_completed;
335 	}
336 
337 	return false;
338 }
339 
340 /* Must be called while cmd_lock is acquired */
341 static int
342 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
343 {
344 	struct qed_mcp_mb_params *p_mb_params;
345 	struct qed_mcp_cmd_elem *p_cmd_elem;
346 	u32 mcp_resp;
347 	u16 seq_num;
348 
349 	mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header);
350 	seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK);
351 
352 	/* Return if no new non-handled response has been received */
353 	if (seq_num != p_hwfn->mcp_info->drv_mb_seq)
354 		return -EAGAIN;
355 
356 	p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num);
357 	if (!p_cmd_elem) {
358 		DP_ERR(p_hwfn,
359 		       "Failed to find a pending mailbox cmd that expects sequence number %d\n",
360 		       seq_num);
361 		return -EINVAL;
362 	}
363 
364 	p_mb_params = p_cmd_elem->p_mb_params;
365 
366 	/* Get the MFW response along with the sequence number */
367 	p_mb_params->mcp_resp = mcp_resp;
368 
369 	/* Get the MFW param */
370 	p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param);
371 
372 	/* Get the union data */
373 	if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) {
374 		u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
375 				      offsetof(struct public_drv_mb,
376 					       union_data);
377 		qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst,
378 				union_data_addr, p_mb_params->data_dst_size);
379 	}
380 
381 	p_cmd_elem->b_is_completed = true;
382 
383 	return 0;
384 }
385 
386 /* Must be called while cmd_lock is acquired */
387 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
388 				    struct qed_ptt *p_ptt,
389 				    struct qed_mcp_mb_params *p_mb_params,
390 				    u16 seq_num)
391 {
392 	union drv_union_data union_data;
393 	u32 union_data_addr;
394 
395 	/* Set the union data */
396 	union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
397 			  offsetof(struct public_drv_mb, union_data);
398 	memset(&union_data, 0, sizeof(union_data));
399 	if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size)
400 		memcpy(&union_data, p_mb_params->p_data_src,
401 		       p_mb_params->data_src_size);
402 	qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data,
403 		      sizeof(union_data));
404 
405 	/* Set the drv param */
406 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param);
407 
408 	/* Set the drv command along with the sequence number */
409 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num));
410 
411 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
412 		   "MFW mailbox: command 0x%08x param 0x%08x\n",
413 		   (p_mb_params->cmd | seq_num), p_mb_params->param);
414 }
415 
416 static int
417 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
418 		       struct qed_ptt *p_ptt,
419 		       struct qed_mcp_mb_params *p_mb_params,
420 		       u32 max_retries, u32 delay)
421 {
422 	struct qed_mcp_cmd_elem *p_cmd_elem;
423 	u32 cnt = 0;
424 	u16 seq_num;
425 	int rc = 0;
426 
427 	/* Wait until the mailbox is non-occupied */
428 	do {
429 		/* Exit the loop if there is no pending command, or if the
430 		 * pending command is completed during this iteration.
431 		 * The spinlock stays locked until the command is sent.
432 		 */
433 
434 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
435 
436 		if (!qed_mcp_has_pending_cmd(p_hwfn))
437 			break;
438 
439 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
440 		if (!rc)
441 			break;
442 		else if (rc != -EAGAIN)
443 			goto err;
444 
445 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
446 		udelay(delay);
447 	} while (++cnt < max_retries);
448 
449 	if (cnt >= max_retries) {
450 		DP_NOTICE(p_hwfn,
451 			  "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n",
452 			  p_mb_params->cmd, p_mb_params->param);
453 		return -EAGAIN;
454 	}
455 
456 	/* Send the mailbox command */
457 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
458 	seq_num = ++p_hwfn->mcp_info->drv_mb_seq;
459 	p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num);
460 	if (!p_cmd_elem) {
461 		rc = -ENOMEM;
462 		goto err;
463 	}
464 
465 	__qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num);
466 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
467 
468 	/* Wait for the MFW response */
469 	do {
470 		/* Exit the loop if the command is already completed, or if the
471 		 * command is completed during this iteration.
472 		 * The spinlock stays locked until the list element is removed.
473 		 */
474 
475 		udelay(delay);
476 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
477 
478 		if (p_cmd_elem->b_is_completed)
479 			break;
480 
481 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
482 		if (!rc)
483 			break;
484 		else if (rc != -EAGAIN)
485 			goto err;
486 
487 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
488 	} while (++cnt < max_retries);
489 
490 	if (cnt >= max_retries) {
491 		DP_NOTICE(p_hwfn,
492 			  "The MFW failed to respond to command 0x%08x [param 0x%08x].\n",
493 			  p_mb_params->cmd, p_mb_params->param);
494 
495 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
496 		qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
497 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
498 
499 		return -EAGAIN;
500 	}
501 
502 	qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
503 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
504 
505 	DP_VERBOSE(p_hwfn,
506 		   QED_MSG_SP,
507 		   "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n",
508 		   p_mb_params->mcp_resp,
509 		   p_mb_params->mcp_param,
510 		   (cnt * delay) / 1000, (cnt * delay) % 1000);
511 
512 	/* Clear the sequence number from the MFW response */
513 	p_mb_params->mcp_resp &= FW_MSG_CODE_MASK;
514 
515 	return 0;
516 
517 err:
518 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
519 	return rc;
520 }
521 
522 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
523 				 struct qed_ptt *p_ptt,
524 				 struct qed_mcp_mb_params *p_mb_params)
525 {
526 	size_t union_data_size = sizeof(union drv_union_data);
527 	u32 max_retries = QED_DRV_MB_MAX_RETRIES;
528 	u32 delay = CHIP_MCP_RESP_ITER_US;
529 
530 	/* MCP not initialized */
531 	if (!qed_mcp_is_init(p_hwfn)) {
532 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
533 		return -EBUSY;
534 	}
535 
536 	if (p_mb_params->data_src_size > union_data_size ||
537 	    p_mb_params->data_dst_size > union_data_size) {
538 		DP_ERR(p_hwfn,
539 		       "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n",
540 		       p_mb_params->data_src_size,
541 		       p_mb_params->data_dst_size, union_data_size);
542 		return -EINVAL;
543 	}
544 
545 	return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries,
546 				      delay);
547 }
548 
549 int qed_mcp_cmd(struct qed_hwfn *p_hwfn,
550 		struct qed_ptt *p_ptt,
551 		u32 cmd,
552 		u32 param,
553 		u32 *o_mcp_resp,
554 		u32 *o_mcp_param)
555 {
556 	struct qed_mcp_mb_params mb_params;
557 	int rc;
558 
559 	memset(&mb_params, 0, sizeof(mb_params));
560 	mb_params.cmd = cmd;
561 	mb_params.param = param;
562 
563 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
564 	if (rc)
565 		return rc;
566 
567 	*o_mcp_resp = mb_params.mcp_resp;
568 	*o_mcp_param = mb_params.mcp_param;
569 
570 	return 0;
571 }
572 
573 static int
574 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn,
575 		   struct qed_ptt *p_ptt,
576 		   u32 cmd,
577 		   u32 param,
578 		   u32 *o_mcp_resp,
579 		   u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf)
580 {
581 	struct qed_mcp_mb_params mb_params;
582 	int rc;
583 
584 	memset(&mb_params, 0, sizeof(mb_params));
585 	mb_params.cmd = cmd;
586 	mb_params.param = param;
587 	mb_params.p_data_src = i_buf;
588 	mb_params.data_src_size = (u8)i_txn_size;
589 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
590 	if (rc)
591 		return rc;
592 
593 	*o_mcp_resp = mb_params.mcp_resp;
594 	*o_mcp_param = mb_params.mcp_param;
595 
596 	/* nvm_info needs to be updated */
597 	p_hwfn->nvm_info.valid = false;
598 
599 	return 0;
600 }
601 
602 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn,
603 		       struct qed_ptt *p_ptt,
604 		       u32 cmd,
605 		       u32 param,
606 		       u32 *o_mcp_resp,
607 		       u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf)
608 {
609 	struct qed_mcp_mb_params mb_params;
610 	u8 raw_data[MCP_DRV_NVM_BUF_LEN];
611 	int rc;
612 
613 	memset(&mb_params, 0, sizeof(mb_params));
614 	mb_params.cmd = cmd;
615 	mb_params.param = param;
616 	mb_params.p_data_dst = raw_data;
617 
618 	/* Use the maximal value since the actual one is part of the response */
619 	mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN;
620 
621 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
622 	if (rc)
623 		return rc;
624 
625 	*o_mcp_resp = mb_params.mcp_resp;
626 	*o_mcp_param = mb_params.mcp_param;
627 
628 	*o_txn_size = *o_mcp_param;
629 	memcpy(o_buf, raw_data, *o_txn_size);
630 
631 	return 0;
632 }
633 
634 static bool
635 qed_mcp_can_force_load(u8 drv_role,
636 		       u8 exist_drv_role,
637 		       enum qed_override_force_load override_force_load)
638 {
639 	bool can_force_load = false;
640 
641 	switch (override_force_load) {
642 	case QED_OVERRIDE_FORCE_LOAD_ALWAYS:
643 		can_force_load = true;
644 		break;
645 	case QED_OVERRIDE_FORCE_LOAD_NEVER:
646 		can_force_load = false;
647 		break;
648 	default:
649 		can_force_load = (drv_role == DRV_ROLE_OS &&
650 				  exist_drv_role == DRV_ROLE_PREBOOT) ||
651 				 (drv_role == DRV_ROLE_KDUMP &&
652 				  exist_drv_role == DRV_ROLE_OS);
653 		break;
654 	}
655 
656 	return can_force_load;
657 }
658 
659 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn,
660 				   struct qed_ptt *p_ptt)
661 {
662 	u32 resp = 0, param = 0;
663 	int rc;
664 
665 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0,
666 			 &resp, &param);
667 	if (rc)
668 		DP_NOTICE(p_hwfn,
669 			  "Failed to send cancel load request, rc = %d\n", rc);
670 
671 	return rc;
672 }
673 
674 #define CONFIG_QEDE_BITMAP_IDX		BIT(0)
675 #define CONFIG_QED_SRIOV_BITMAP_IDX	BIT(1)
676 #define CONFIG_QEDR_BITMAP_IDX		BIT(2)
677 #define CONFIG_QEDF_BITMAP_IDX		BIT(4)
678 #define CONFIG_QEDI_BITMAP_IDX		BIT(5)
679 #define CONFIG_QED_LL2_BITMAP_IDX	BIT(6)
680 
681 static u32 qed_get_config_bitmap(void)
682 {
683 	u32 config_bitmap = 0x0;
684 
685 	if (IS_ENABLED(CONFIG_QEDE))
686 		config_bitmap |= CONFIG_QEDE_BITMAP_IDX;
687 
688 	if (IS_ENABLED(CONFIG_QED_SRIOV))
689 		config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX;
690 
691 	if (IS_ENABLED(CONFIG_QED_RDMA))
692 		config_bitmap |= CONFIG_QEDR_BITMAP_IDX;
693 
694 	if (IS_ENABLED(CONFIG_QED_FCOE))
695 		config_bitmap |= CONFIG_QEDF_BITMAP_IDX;
696 
697 	if (IS_ENABLED(CONFIG_QED_ISCSI))
698 		config_bitmap |= CONFIG_QEDI_BITMAP_IDX;
699 
700 	if (IS_ENABLED(CONFIG_QED_LL2))
701 		config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX;
702 
703 	return config_bitmap;
704 }
705 
706 struct qed_load_req_in_params {
707 	u8 hsi_ver;
708 #define QED_LOAD_REQ_HSI_VER_DEFAULT	0
709 #define QED_LOAD_REQ_HSI_VER_1		1
710 	u32 drv_ver_0;
711 	u32 drv_ver_1;
712 	u32 fw_ver;
713 	u8 drv_role;
714 	u8 timeout_val;
715 	u8 force_cmd;
716 	bool avoid_eng_reset;
717 };
718 
719 struct qed_load_req_out_params {
720 	u32 load_code;
721 	u32 exist_drv_ver_0;
722 	u32 exist_drv_ver_1;
723 	u32 exist_fw_ver;
724 	u8 exist_drv_role;
725 	u8 mfw_hsi_ver;
726 	bool drv_exists;
727 };
728 
729 static int
730 __qed_mcp_load_req(struct qed_hwfn *p_hwfn,
731 		   struct qed_ptt *p_ptt,
732 		   struct qed_load_req_in_params *p_in_params,
733 		   struct qed_load_req_out_params *p_out_params)
734 {
735 	struct qed_mcp_mb_params mb_params;
736 	struct load_req_stc load_req;
737 	struct load_rsp_stc load_rsp;
738 	u32 hsi_ver;
739 	int rc;
740 
741 	memset(&load_req, 0, sizeof(load_req));
742 	load_req.drv_ver_0 = p_in_params->drv_ver_0;
743 	load_req.drv_ver_1 = p_in_params->drv_ver_1;
744 	load_req.fw_ver = p_in_params->fw_ver;
745 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role);
746 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO,
747 			  p_in_params->timeout_val);
748 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE,
749 			  p_in_params->force_cmd);
750 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0,
751 			  p_in_params->avoid_eng_reset);
752 
753 	hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ?
754 		  DRV_ID_MCP_HSI_VER_CURRENT :
755 		  (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT);
756 
757 	memset(&mb_params, 0, sizeof(mb_params));
758 	mb_params.cmd = DRV_MSG_CODE_LOAD_REQ;
759 	mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type;
760 	mb_params.p_data_src = &load_req;
761 	mb_params.data_src_size = sizeof(load_req);
762 	mb_params.p_data_dst = &load_rsp;
763 	mb_params.data_dst_size = sizeof(load_rsp);
764 
765 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
766 		   "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n",
767 		   mb_params.param,
768 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW),
769 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE),
770 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER),
771 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER));
772 
773 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) {
774 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
775 			   "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n",
776 			   load_req.drv_ver_0,
777 			   load_req.drv_ver_1,
778 			   load_req.fw_ver,
779 			   load_req.misc0,
780 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE),
781 			   QED_MFW_GET_FIELD(load_req.misc0,
782 					     LOAD_REQ_LOCK_TO),
783 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE),
784 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0));
785 	}
786 
787 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
788 	if (rc) {
789 		DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc);
790 		return rc;
791 	}
792 
793 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
794 		   "Load Response: resp 0x%08x\n", mb_params.mcp_resp);
795 	p_out_params->load_code = mb_params.mcp_resp;
796 
797 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
798 	    p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
799 		DP_VERBOSE(p_hwfn,
800 			   QED_MSG_SP,
801 			   "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n",
802 			   load_rsp.drv_ver_0,
803 			   load_rsp.drv_ver_1,
804 			   load_rsp.fw_ver,
805 			   load_rsp.misc0,
806 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE),
807 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI),
808 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0));
809 
810 		p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0;
811 		p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1;
812 		p_out_params->exist_fw_ver = load_rsp.fw_ver;
813 		p_out_params->exist_drv_role =
814 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE);
815 		p_out_params->mfw_hsi_ver =
816 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI);
817 		p_out_params->drv_exists =
818 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) &
819 		    LOAD_RSP_FLAGS0_DRV_EXISTS;
820 	}
821 
822 	return 0;
823 }
824 
825 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn,
826 				  enum qed_drv_role drv_role,
827 				  u8 *p_mfw_drv_role)
828 {
829 	switch (drv_role) {
830 	case QED_DRV_ROLE_OS:
831 		*p_mfw_drv_role = DRV_ROLE_OS;
832 		break;
833 	case QED_DRV_ROLE_KDUMP:
834 		*p_mfw_drv_role = DRV_ROLE_KDUMP;
835 		break;
836 	default:
837 		DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role);
838 		return -EINVAL;
839 	}
840 
841 	return 0;
842 }
843 
844 enum qed_load_req_force {
845 	QED_LOAD_REQ_FORCE_NONE,
846 	QED_LOAD_REQ_FORCE_PF,
847 	QED_LOAD_REQ_FORCE_ALL,
848 };
849 
850 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn,
851 
852 				  enum qed_load_req_force force_cmd,
853 				  u8 *p_mfw_force_cmd)
854 {
855 	switch (force_cmd) {
856 	case QED_LOAD_REQ_FORCE_NONE:
857 		*p_mfw_force_cmd = LOAD_REQ_FORCE_NONE;
858 		break;
859 	case QED_LOAD_REQ_FORCE_PF:
860 		*p_mfw_force_cmd = LOAD_REQ_FORCE_PF;
861 		break;
862 	case QED_LOAD_REQ_FORCE_ALL:
863 		*p_mfw_force_cmd = LOAD_REQ_FORCE_ALL;
864 		break;
865 	}
866 }
867 
868 int qed_mcp_load_req(struct qed_hwfn *p_hwfn,
869 		     struct qed_ptt *p_ptt,
870 		     struct qed_load_req_params *p_params)
871 {
872 	struct qed_load_req_out_params out_params;
873 	struct qed_load_req_in_params in_params;
874 	u8 mfw_drv_role, mfw_force_cmd;
875 	int rc;
876 
877 	memset(&in_params, 0, sizeof(in_params));
878 	in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT;
879 	in_params.drv_ver_0 = QED_VERSION;
880 	in_params.drv_ver_1 = qed_get_config_bitmap();
881 	in_params.fw_ver = STORM_FW_VERSION;
882 	rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role);
883 	if (rc)
884 		return rc;
885 
886 	in_params.drv_role = mfw_drv_role;
887 	in_params.timeout_val = p_params->timeout_val;
888 	qed_get_mfw_force_cmd(p_hwfn,
889 			      QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd);
890 
891 	in_params.force_cmd = mfw_force_cmd;
892 	in_params.avoid_eng_reset = p_params->avoid_eng_reset;
893 
894 	memset(&out_params, 0, sizeof(out_params));
895 	rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
896 	if (rc)
897 		return rc;
898 
899 	/* First handle cases where another load request should/might be sent:
900 	 * - MFW expects the old interface [HSI version = 1]
901 	 * - MFW responds that a force load request is required
902 	 */
903 	if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
904 		DP_INFO(p_hwfn,
905 			"MFW refused a load request due to HSI > 1. Resending with HSI = 1\n");
906 
907 		in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1;
908 		memset(&out_params, 0, sizeof(out_params));
909 		rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
910 		if (rc)
911 			return rc;
912 	} else if (out_params.load_code ==
913 		   FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) {
914 		if (qed_mcp_can_force_load(in_params.drv_role,
915 					   out_params.exist_drv_role,
916 					   p_params->override_force_load)) {
917 			DP_INFO(p_hwfn,
918 				"A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n",
919 				in_params.drv_role, in_params.fw_ver,
920 				in_params.drv_ver_0, in_params.drv_ver_1,
921 				out_params.exist_drv_role,
922 				out_params.exist_fw_ver,
923 				out_params.exist_drv_ver_0,
924 				out_params.exist_drv_ver_1);
925 
926 			qed_get_mfw_force_cmd(p_hwfn,
927 					      QED_LOAD_REQ_FORCE_ALL,
928 					      &mfw_force_cmd);
929 
930 			in_params.force_cmd = mfw_force_cmd;
931 			memset(&out_params, 0, sizeof(out_params));
932 			rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params,
933 						&out_params);
934 			if (rc)
935 				return rc;
936 		} else {
937 			DP_NOTICE(p_hwfn,
938 				  "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n",
939 				  in_params.drv_role, in_params.fw_ver,
940 				  in_params.drv_ver_0, in_params.drv_ver_1,
941 				  out_params.exist_drv_role,
942 				  out_params.exist_fw_ver,
943 				  out_params.exist_drv_ver_0,
944 				  out_params.exist_drv_ver_1);
945 			DP_NOTICE(p_hwfn,
946 				  "Avoid sending a force load request to prevent disruption of active PFs\n");
947 
948 			qed_mcp_cancel_load_req(p_hwfn, p_ptt);
949 			return -EBUSY;
950 		}
951 	}
952 
953 	/* Now handle the other types of responses.
954 	 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not
955 	 * expected here after the additional revised load requests were sent.
956 	 */
957 	switch (out_params.load_code) {
958 	case FW_MSG_CODE_DRV_LOAD_ENGINE:
959 	case FW_MSG_CODE_DRV_LOAD_PORT:
960 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
961 		if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
962 		    out_params.drv_exists) {
963 			/* The role and fw/driver version match, but the PF is
964 			 * already loaded and has not been unloaded gracefully.
965 			 */
966 			DP_NOTICE(p_hwfn,
967 				  "PF is already loaded\n");
968 			return -EINVAL;
969 		}
970 		break;
971 	default:
972 		DP_NOTICE(p_hwfn,
973 			  "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n",
974 			  out_params.load_code);
975 		return -EBUSY;
976 	}
977 
978 	p_params->load_code = out_params.load_code;
979 
980 	return 0;
981 }
982 
983 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
984 {
985 	u32 wol_param, mcp_resp, mcp_param;
986 
987 	switch (p_hwfn->cdev->wol_config) {
988 	case QED_OV_WOL_DISABLED:
989 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
990 		break;
991 	case QED_OV_WOL_ENABLED:
992 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
993 		break;
994 	default:
995 		DP_NOTICE(p_hwfn,
996 			  "Unknown WoL configuration %02x\n",
997 			  p_hwfn->cdev->wol_config);
998 		/* Fallthrough */
999 	case QED_OV_WOL_DEFAULT:
1000 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
1001 	}
1002 
1003 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_UNLOAD_REQ, wol_param,
1004 			   &mcp_resp, &mcp_param);
1005 }
1006 
1007 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1008 {
1009 	struct qed_mcp_mb_params mb_params;
1010 	struct mcp_mac wol_mac;
1011 
1012 	memset(&mb_params, 0, sizeof(mb_params));
1013 	mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE;
1014 
1015 	/* Set the primary MAC if WoL is enabled */
1016 	if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) {
1017 		u8 *p_mac = p_hwfn->cdev->wol_mac;
1018 
1019 		memset(&wol_mac, 0, sizeof(wol_mac));
1020 		wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1];
1021 		wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 |
1022 				    p_mac[4] << 8 | p_mac[5];
1023 
1024 		DP_VERBOSE(p_hwfn,
1025 			   (QED_MSG_SP | NETIF_MSG_IFDOWN),
1026 			   "Setting WoL MAC: %pM --> [%08x,%08x]\n",
1027 			   p_mac, wol_mac.mac_upper, wol_mac.mac_lower);
1028 
1029 		mb_params.p_data_src = &wol_mac;
1030 		mb_params.data_src_size = sizeof(wol_mac);
1031 	}
1032 
1033 	return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1034 }
1035 
1036 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn,
1037 				  struct qed_ptt *p_ptt)
1038 {
1039 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1040 					PUBLIC_PATH);
1041 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1042 	u32 path_addr = SECTION_ADDR(mfw_path_offsize,
1043 				     QED_PATH_ID(p_hwfn));
1044 	u32 disabled_vfs[VF_MAX_STATIC / 32];
1045 	int i;
1046 
1047 	DP_VERBOSE(p_hwfn,
1048 		   QED_MSG_SP,
1049 		   "Reading Disabled VF information from [offset %08x], path_addr %08x\n",
1050 		   mfw_path_offsize, path_addr);
1051 
1052 	for (i = 0; i < (VF_MAX_STATIC / 32); i++) {
1053 		disabled_vfs[i] = qed_rd(p_hwfn, p_ptt,
1054 					 path_addr +
1055 					 offsetof(struct public_path,
1056 						  mcp_vf_disabled) +
1057 					 sizeof(u32) * i);
1058 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1059 			   "FLR-ed VFs [%08x,...,%08x] - %08x\n",
1060 			   i * 32, (i + 1) * 32 - 1, disabled_vfs[i]);
1061 	}
1062 
1063 	if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs))
1064 		qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG);
1065 }
1066 
1067 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn,
1068 		       struct qed_ptt *p_ptt, u32 *vfs_to_ack)
1069 {
1070 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1071 					PUBLIC_FUNC);
1072 	u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr);
1073 	u32 func_addr = SECTION_ADDR(mfw_func_offsize,
1074 				     MCP_PF_ID(p_hwfn));
1075 	struct qed_mcp_mb_params mb_params;
1076 	int rc;
1077 	int i;
1078 
1079 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1080 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1081 			   "Acking VFs [%08x,...,%08x] - %08x\n",
1082 			   i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]);
1083 
1084 	memset(&mb_params, 0, sizeof(mb_params));
1085 	mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE;
1086 	mb_params.p_data_src = vfs_to_ack;
1087 	mb_params.data_src_size = VF_MAX_STATIC / 8;
1088 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1089 	if (rc) {
1090 		DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n");
1091 		return -EBUSY;
1092 	}
1093 
1094 	/* Clear the ACK bits */
1095 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1096 		qed_wr(p_hwfn, p_ptt,
1097 		       func_addr +
1098 		       offsetof(struct public_func, drv_ack_vf_disabled) +
1099 		       i * sizeof(u32), 0);
1100 
1101 	return rc;
1102 }
1103 
1104 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn,
1105 					      struct qed_ptt *p_ptt)
1106 {
1107 	u32 transceiver_state;
1108 
1109 	transceiver_state = qed_rd(p_hwfn, p_ptt,
1110 				   p_hwfn->mcp_info->port_addr +
1111 				   offsetof(struct public_port,
1112 					    transceiver_data));
1113 
1114 	DP_VERBOSE(p_hwfn,
1115 		   (NETIF_MSG_HW | QED_MSG_SP),
1116 		   "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n",
1117 		   transceiver_state,
1118 		   (u32)(p_hwfn->mcp_info->port_addr +
1119 			  offsetof(struct public_port, transceiver_data)));
1120 
1121 	transceiver_state = GET_FIELD(transceiver_state,
1122 				      ETH_TRANSCEIVER_STATE);
1123 
1124 	if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1125 		DP_NOTICE(p_hwfn, "Transceiver is present.\n");
1126 	else
1127 		DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n");
1128 }
1129 
1130 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn,
1131 				    struct qed_ptt *p_ptt,
1132 				    struct qed_mcp_link_state *p_link)
1133 {
1134 	u32 eee_status, val;
1135 
1136 	p_link->eee_adv_caps = 0;
1137 	p_link->eee_lp_adv_caps = 0;
1138 	eee_status = qed_rd(p_hwfn,
1139 			    p_ptt,
1140 			    p_hwfn->mcp_info->port_addr +
1141 			    offsetof(struct public_port, eee_status));
1142 	p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT);
1143 	val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET;
1144 	if (val & EEE_1G_ADV)
1145 		p_link->eee_adv_caps |= QED_EEE_1G_ADV;
1146 	if (val & EEE_10G_ADV)
1147 		p_link->eee_adv_caps |= QED_EEE_10G_ADV;
1148 	val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET;
1149 	if (val & EEE_1G_ADV)
1150 		p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV;
1151 	if (val & EEE_10G_ADV)
1152 		p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV;
1153 }
1154 
1155 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn,
1156 				       struct qed_ptt *p_ptt, bool b_reset)
1157 {
1158 	struct qed_mcp_link_state *p_link;
1159 	u8 max_bw, min_bw;
1160 	u32 status = 0;
1161 
1162 	/* Prevent SW/attentions from doing this at the same time */
1163 	spin_lock_bh(&p_hwfn->mcp_info->link_lock);
1164 
1165 	p_link = &p_hwfn->mcp_info->link_output;
1166 	memset(p_link, 0, sizeof(*p_link));
1167 	if (!b_reset) {
1168 		status = qed_rd(p_hwfn, p_ptt,
1169 				p_hwfn->mcp_info->port_addr +
1170 				offsetof(struct public_port, link_status));
1171 		DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP),
1172 			   "Received link update [0x%08x] from mfw [Addr 0x%x]\n",
1173 			   status,
1174 			   (u32)(p_hwfn->mcp_info->port_addr +
1175 				 offsetof(struct public_port, link_status)));
1176 	} else {
1177 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1178 			   "Resetting link indications\n");
1179 		goto out;
1180 	}
1181 
1182 	if (p_hwfn->b_drv_link_init)
1183 		p_link->link_up = !!(status & LINK_STATUS_LINK_UP);
1184 	else
1185 		p_link->link_up = false;
1186 
1187 	p_link->full_duplex = true;
1188 	switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) {
1189 	case LINK_STATUS_SPEED_AND_DUPLEX_100G:
1190 		p_link->speed = 100000;
1191 		break;
1192 	case LINK_STATUS_SPEED_AND_DUPLEX_50G:
1193 		p_link->speed = 50000;
1194 		break;
1195 	case LINK_STATUS_SPEED_AND_DUPLEX_40G:
1196 		p_link->speed = 40000;
1197 		break;
1198 	case LINK_STATUS_SPEED_AND_DUPLEX_25G:
1199 		p_link->speed = 25000;
1200 		break;
1201 	case LINK_STATUS_SPEED_AND_DUPLEX_20G:
1202 		p_link->speed = 20000;
1203 		break;
1204 	case LINK_STATUS_SPEED_AND_DUPLEX_10G:
1205 		p_link->speed = 10000;
1206 		break;
1207 	case LINK_STATUS_SPEED_AND_DUPLEX_1000THD:
1208 		p_link->full_duplex = false;
1209 	/* Fall-through */
1210 	case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD:
1211 		p_link->speed = 1000;
1212 		break;
1213 	default:
1214 		p_link->speed = 0;
1215 		p_link->link_up = 0;
1216 	}
1217 
1218 	if (p_link->link_up && p_link->speed)
1219 		p_link->line_speed = p_link->speed;
1220 	else
1221 		p_link->line_speed = 0;
1222 
1223 	max_bw = p_hwfn->mcp_info->func_info.bandwidth_max;
1224 	min_bw = p_hwfn->mcp_info->func_info.bandwidth_min;
1225 
1226 	/* Max bandwidth configuration */
1227 	__qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw);
1228 
1229 	/* Min bandwidth configuration */
1230 	__qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw);
1231 	qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt,
1232 					    p_link->min_pf_rate);
1233 
1234 	p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED);
1235 	p_link->an_complete = !!(status &
1236 				 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE);
1237 	p_link->parallel_detection = !!(status &
1238 					LINK_STATUS_PARALLEL_DETECTION_USED);
1239 	p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED);
1240 
1241 	p_link->partner_adv_speed |=
1242 		(status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ?
1243 		QED_LINK_PARTNER_SPEED_1G_FD : 0;
1244 	p_link->partner_adv_speed |=
1245 		(status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ?
1246 		QED_LINK_PARTNER_SPEED_1G_HD : 0;
1247 	p_link->partner_adv_speed |=
1248 		(status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ?
1249 		QED_LINK_PARTNER_SPEED_10G : 0;
1250 	p_link->partner_adv_speed |=
1251 		(status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ?
1252 		QED_LINK_PARTNER_SPEED_20G : 0;
1253 	p_link->partner_adv_speed |=
1254 		(status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ?
1255 		QED_LINK_PARTNER_SPEED_25G : 0;
1256 	p_link->partner_adv_speed |=
1257 		(status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ?
1258 		QED_LINK_PARTNER_SPEED_40G : 0;
1259 	p_link->partner_adv_speed |=
1260 		(status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ?
1261 		QED_LINK_PARTNER_SPEED_50G : 0;
1262 	p_link->partner_adv_speed |=
1263 		(status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ?
1264 		QED_LINK_PARTNER_SPEED_100G : 0;
1265 
1266 	p_link->partner_tx_flow_ctrl_en =
1267 		!!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED);
1268 	p_link->partner_rx_flow_ctrl_en =
1269 		!!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
1270 
1271 	switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) {
1272 	case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE:
1273 		p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE;
1274 		break;
1275 	case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE:
1276 		p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE;
1277 		break;
1278 	case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE:
1279 		p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE;
1280 		break;
1281 	default:
1282 		p_link->partner_adv_pause = 0;
1283 	}
1284 
1285 	p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT);
1286 
1287 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE)
1288 		qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link);
1289 
1290 	qed_link_update(p_hwfn);
1291 out:
1292 	spin_unlock_bh(&p_hwfn->mcp_info->link_lock);
1293 }
1294 
1295 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up)
1296 {
1297 	struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input;
1298 	struct qed_mcp_mb_params mb_params;
1299 	struct eth_phy_cfg phy_cfg;
1300 	int rc = 0;
1301 	u32 cmd;
1302 
1303 	/* Set the shmem configuration according to params */
1304 	memset(&phy_cfg, 0, sizeof(phy_cfg));
1305 	cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET;
1306 	if (!params->speed.autoneg)
1307 		phy_cfg.speed = params->speed.forced_speed;
1308 	phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0;
1309 	phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0;
1310 	phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0;
1311 	phy_cfg.adv_speed = params->speed.advertised_speeds;
1312 	phy_cfg.loopback_mode = params->loopback_mode;
1313 
1314 	/* There are MFWs that share this capability regardless of whether
1315 	 * this is feasible or not. And given that at the very least adv_caps
1316 	 * would be set internally by qed, we want to make sure LFA would
1317 	 * still work.
1318 	 */
1319 	if ((p_hwfn->mcp_info->capabilities &
1320 	     FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) {
1321 		phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED;
1322 		if (params->eee.tx_lpi_enable)
1323 			phy_cfg.eee_cfg |= EEE_CFG_TX_LPI;
1324 		if (params->eee.adv_caps & QED_EEE_1G_ADV)
1325 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G;
1326 		if (params->eee.adv_caps & QED_EEE_10G_ADV)
1327 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G;
1328 		phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer <<
1329 				    EEE_TX_TIMER_USEC_OFFSET) &
1330 				   EEE_TX_TIMER_USEC_MASK;
1331 	}
1332 
1333 	p_hwfn->b_drv_link_init = b_up;
1334 
1335 	if (b_up) {
1336 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1337 			   "Configuring Link: Speed 0x%08x, Pause 0x%08x, adv_speed 0x%08x, loopback 0x%08x, features 0x%08x\n",
1338 			   phy_cfg.speed,
1339 			   phy_cfg.pause,
1340 			   phy_cfg.adv_speed,
1341 			   phy_cfg.loopback_mode,
1342 			   phy_cfg.feature_config_flags);
1343 	} else {
1344 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1345 			   "Resetting link\n");
1346 	}
1347 
1348 	memset(&mb_params, 0, sizeof(mb_params));
1349 	mb_params.cmd = cmd;
1350 	mb_params.p_data_src = &phy_cfg;
1351 	mb_params.data_src_size = sizeof(phy_cfg);
1352 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1353 
1354 	/* if mcp fails to respond we must abort */
1355 	if (rc) {
1356 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
1357 		return rc;
1358 	}
1359 
1360 	/* Mimic link-change attention, done for several reasons:
1361 	 *  - On reset, there's no guarantee MFW would trigger
1362 	 *    an attention.
1363 	 *  - On initialization, older MFWs might not indicate link change
1364 	 *    during LFA, so we'll never get an UP indication.
1365 	 */
1366 	qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up);
1367 
1368 	return 0;
1369 }
1370 
1371 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn,
1372 					struct qed_ptt *p_ptt,
1373 					enum MFW_DRV_MSG_TYPE type)
1374 {
1375 	enum qed_mcp_protocol_type stats_type;
1376 	union qed_mcp_protocol_stats stats;
1377 	struct qed_mcp_mb_params mb_params;
1378 	u32 hsi_param;
1379 
1380 	switch (type) {
1381 	case MFW_DRV_MSG_GET_LAN_STATS:
1382 		stats_type = QED_MCP_LAN_STATS;
1383 		hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN;
1384 		break;
1385 	case MFW_DRV_MSG_GET_FCOE_STATS:
1386 		stats_type = QED_MCP_FCOE_STATS;
1387 		hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE;
1388 		break;
1389 	case MFW_DRV_MSG_GET_ISCSI_STATS:
1390 		stats_type = QED_MCP_ISCSI_STATS;
1391 		hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI;
1392 		break;
1393 	case MFW_DRV_MSG_GET_RDMA_STATS:
1394 		stats_type = QED_MCP_RDMA_STATS;
1395 		hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA;
1396 		break;
1397 	default:
1398 		DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type);
1399 		return;
1400 	}
1401 
1402 	qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats);
1403 
1404 	memset(&mb_params, 0, sizeof(mb_params));
1405 	mb_params.cmd = DRV_MSG_CODE_GET_STATS;
1406 	mb_params.param = hsi_param;
1407 	mb_params.p_data_src = &stats;
1408 	mb_params.data_src_size = sizeof(stats);
1409 	qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1410 }
1411 
1412 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn,
1413 				  struct public_func *p_shmem_info)
1414 {
1415 	struct qed_mcp_function_info *p_info;
1416 
1417 	p_info = &p_hwfn->mcp_info->func_info;
1418 
1419 	p_info->bandwidth_min = (p_shmem_info->config &
1420 				 FUNC_MF_CFG_MIN_BW_MASK) >>
1421 					FUNC_MF_CFG_MIN_BW_SHIFT;
1422 	if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) {
1423 		DP_INFO(p_hwfn,
1424 			"bandwidth minimum out of bounds [%02x]. Set to 1\n",
1425 			p_info->bandwidth_min);
1426 		p_info->bandwidth_min = 1;
1427 	}
1428 
1429 	p_info->bandwidth_max = (p_shmem_info->config &
1430 				 FUNC_MF_CFG_MAX_BW_MASK) >>
1431 					FUNC_MF_CFG_MAX_BW_SHIFT;
1432 	if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) {
1433 		DP_INFO(p_hwfn,
1434 			"bandwidth maximum out of bounds [%02x]. Set to 100\n",
1435 			p_info->bandwidth_max);
1436 		p_info->bandwidth_max = 100;
1437 	}
1438 }
1439 
1440 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn,
1441 				  struct qed_ptt *p_ptt,
1442 				  struct public_func *p_data, int pfid)
1443 {
1444 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1445 					PUBLIC_FUNC);
1446 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1447 	u32 func_addr = SECTION_ADDR(mfw_path_offsize, pfid);
1448 	u32 i, size;
1449 
1450 	memset(p_data, 0, sizeof(*p_data));
1451 
1452 	size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize));
1453 	for (i = 0; i < size / sizeof(u32); i++)
1454 		((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt,
1455 					    func_addr + (i << 2));
1456 	return size;
1457 }
1458 
1459 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1460 {
1461 	struct qed_mcp_function_info *p_info;
1462 	struct public_func shmem_info;
1463 	u32 resp = 0, param = 0;
1464 
1465 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1466 
1467 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1468 
1469 	p_info = &p_hwfn->mcp_info->func_info;
1470 
1471 	qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min);
1472 	qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max);
1473 
1474 	/* Acknowledge the MFW */
1475 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp,
1476 		    &param);
1477 }
1478 
1479 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1480 {
1481 	struct public_func shmem_info;
1482 	u32 resp = 0, param = 0;
1483 
1484 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1485 
1486 	p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag &
1487 						 FUNC_MF_CFG_OV_STAG_MASK;
1488 	p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan;
1489 	if ((p_hwfn->hw_info.hw_mode & BIT(MODE_MF_SD)) &&
1490 	    (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET)) {
1491 		qed_wr(p_hwfn, p_ptt,
1492 		       NIG_REG_LLH_FUNC_TAG_VALUE, p_hwfn->hw_info.ovlan);
1493 		qed_sp_pf_update_stag(p_hwfn);
1494 	}
1495 
1496 	/* Acknowledge the MFW */
1497 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0,
1498 		    &resp, &param);
1499 }
1500 
1501 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1502 {
1503 	struct public_func shmem_info;
1504 	u32 port_cfg, val;
1505 
1506 	if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits))
1507 		return;
1508 
1509 	memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info));
1510 	port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1511 			  offsetof(struct public_port, oem_cfg_port));
1512 	val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >>
1513 		OEM_CFG_CHANNEL_TYPE_OFFSET;
1514 	if (val != OEM_CFG_CHANNEL_TYPE_STAGGED)
1515 		DP_NOTICE(p_hwfn, "Incorrect UFP Channel type  %d\n", val);
1516 
1517 	val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET;
1518 	if (val == OEM_CFG_SCHED_TYPE_ETS) {
1519 		p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS;
1520 	} else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) {
1521 		p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW;
1522 	} else {
1523 		p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN;
1524 		DP_NOTICE(p_hwfn, "Unknown UFP scheduling mode %d\n", val);
1525 	}
1526 
1527 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1528 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >>
1529 		OEM_CFG_FUNC_TC_OFFSET;
1530 	p_hwfn->ufp_info.tc = (u8)val;
1531 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >>
1532 		OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET;
1533 	if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) {
1534 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC;
1535 	} else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) {
1536 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS;
1537 	} else {
1538 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN;
1539 		DP_NOTICE(p_hwfn, "Unknown Host priority control %d\n", val);
1540 	}
1541 
1542 	DP_NOTICE(p_hwfn,
1543 		  "UFP shmem config: mode = %d tc = %d pri_type = %d\n",
1544 		  p_hwfn->ufp_info.mode,
1545 		  p_hwfn->ufp_info.tc, p_hwfn->ufp_info.pri_type);
1546 }
1547 
1548 static int
1549 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1550 {
1551 	qed_mcp_read_ufp_config(p_hwfn, p_ptt);
1552 
1553 	if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) {
1554 		p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc;
1555 		qed_hw_info_set_offload_tc(&p_hwfn->hw_info,
1556 					   p_hwfn->ufp_info.tc);
1557 
1558 		qed_qm_reconf(p_hwfn, p_ptt);
1559 	} else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) {
1560 		/* Merge UFP TC with the dcbx TC data */
1561 		qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1562 					  QED_DCBX_OPERATIONAL_MIB);
1563 	} else {
1564 		DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n");
1565 		return -EINVAL;
1566 	}
1567 
1568 	/* update storm FW with negotiation results */
1569 	qed_sp_pf_update_ufp(p_hwfn);
1570 
1571 	/* update stag pcp value */
1572 	qed_sp_pf_update_stag(p_hwfn);
1573 
1574 	return 0;
1575 }
1576 
1577 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn,
1578 			  struct qed_ptt *p_ptt)
1579 {
1580 	struct qed_mcp_info *info = p_hwfn->mcp_info;
1581 	int rc = 0;
1582 	bool found = false;
1583 	u16 i;
1584 
1585 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n");
1586 
1587 	/* Read Messages from MFW */
1588 	qed_mcp_read_mb(p_hwfn, p_ptt);
1589 
1590 	/* Compare current messages to old ones */
1591 	for (i = 0; i < info->mfw_mb_length; i++) {
1592 		if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i])
1593 			continue;
1594 
1595 		found = true;
1596 
1597 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1598 			   "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n",
1599 			   i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]);
1600 
1601 		switch (i) {
1602 		case MFW_DRV_MSG_LINK_CHANGE:
1603 			qed_mcp_handle_link_change(p_hwfn, p_ptt, false);
1604 			break;
1605 		case MFW_DRV_MSG_VF_DISABLED:
1606 			qed_mcp_handle_vf_flr(p_hwfn, p_ptt);
1607 			break;
1608 		case MFW_DRV_MSG_LLDP_DATA_UPDATED:
1609 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1610 						  QED_DCBX_REMOTE_LLDP_MIB);
1611 			break;
1612 		case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED:
1613 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1614 						  QED_DCBX_REMOTE_MIB);
1615 			break;
1616 		case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED:
1617 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1618 						  QED_DCBX_OPERATIONAL_MIB);
1619 			break;
1620 		case MFW_DRV_MSG_OEM_CFG_UPDATE:
1621 			qed_mcp_handle_ufp_event(p_hwfn, p_ptt);
1622 			break;
1623 		case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE:
1624 			qed_mcp_handle_transceiver_change(p_hwfn, p_ptt);
1625 			break;
1626 		case MFW_DRV_MSG_GET_LAN_STATS:
1627 		case MFW_DRV_MSG_GET_FCOE_STATS:
1628 		case MFW_DRV_MSG_GET_ISCSI_STATS:
1629 		case MFW_DRV_MSG_GET_RDMA_STATS:
1630 			qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i);
1631 			break;
1632 		case MFW_DRV_MSG_BW_UPDATE:
1633 			qed_mcp_update_bw(p_hwfn, p_ptt);
1634 			break;
1635 		case MFW_DRV_MSG_S_TAG_UPDATE:
1636 			qed_mcp_update_stag(p_hwfn, p_ptt);
1637 			break;
1638 		case MFW_DRV_MSG_GET_TLV_REQ:
1639 			qed_mfw_tlv_req(p_hwfn);
1640 			break;
1641 		default:
1642 			DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i);
1643 			rc = -EINVAL;
1644 		}
1645 	}
1646 
1647 	/* ACK everything */
1648 	for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) {
1649 		__be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]);
1650 
1651 		/* MFW expect answer in BE, so we force write in that format */
1652 		qed_wr(p_hwfn, p_ptt,
1653 		       info->mfw_mb_addr + sizeof(u32) +
1654 		       MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) *
1655 		       sizeof(u32) + i * sizeof(u32),
1656 		       (__force u32)val);
1657 	}
1658 
1659 	if (!found) {
1660 		DP_NOTICE(p_hwfn,
1661 			  "Received an MFW message indication but no new message!\n");
1662 		rc = -EINVAL;
1663 	}
1664 
1665 	/* Copy the new mfw messages into the shadow */
1666 	memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length);
1667 
1668 	return rc;
1669 }
1670 
1671 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn,
1672 			struct qed_ptt *p_ptt,
1673 			u32 *p_mfw_ver, u32 *p_running_bundle_id)
1674 {
1675 	u32 global_offsize;
1676 
1677 	if (IS_VF(p_hwfn->cdev)) {
1678 		if (p_hwfn->vf_iov_info) {
1679 			struct pfvf_acquire_resp_tlv *p_resp;
1680 
1681 			p_resp = &p_hwfn->vf_iov_info->acquire_resp;
1682 			*p_mfw_ver = p_resp->pfdev_info.mfw_ver;
1683 			return 0;
1684 		} else {
1685 			DP_VERBOSE(p_hwfn,
1686 				   QED_MSG_IOV,
1687 				   "VF requested MFW version prior to ACQUIRE\n");
1688 			return -EINVAL;
1689 		}
1690 	}
1691 
1692 	global_offsize = qed_rd(p_hwfn, p_ptt,
1693 				SECTION_OFFSIZE_ADDR(p_hwfn->
1694 						     mcp_info->public_base,
1695 						     PUBLIC_GLOBAL));
1696 	*p_mfw_ver =
1697 	    qed_rd(p_hwfn, p_ptt,
1698 		   SECTION_ADDR(global_offsize,
1699 				0) + offsetof(struct public_global, mfw_ver));
1700 
1701 	if (p_running_bundle_id != NULL) {
1702 		*p_running_bundle_id = qed_rd(p_hwfn, p_ptt,
1703 					      SECTION_ADDR(global_offsize, 0) +
1704 					      offsetof(struct public_global,
1705 						       running_bundle_id));
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn,
1712 			struct qed_ptt *p_ptt, u32 *p_mbi_ver)
1713 {
1714 	u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr;
1715 
1716 	if (IS_VF(p_hwfn->cdev))
1717 		return -EINVAL;
1718 
1719 	/* Read the address of the nvm_cfg */
1720 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1721 	if (!nvm_cfg_addr) {
1722 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1723 		return -EINVAL;
1724 	}
1725 
1726 	/* Read the offset of nvm_cfg1 */
1727 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1728 
1729 	mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1730 		       offsetof(struct nvm_cfg1, glob) +
1731 		       offsetof(struct nvm_cfg1_glob, mbi_version);
1732 	*p_mbi_ver = qed_rd(p_hwfn, p_ptt,
1733 			    mbi_ver_addr) &
1734 		     (NVM_CFG1_GLOB_MBI_VERSION_0_MASK |
1735 		      NVM_CFG1_GLOB_MBI_VERSION_1_MASK |
1736 		      NVM_CFG1_GLOB_MBI_VERSION_2_MASK);
1737 
1738 	return 0;
1739 }
1740 
1741 int qed_mcp_get_media_type(struct qed_dev *cdev, u32 *p_media_type)
1742 {
1743 	struct qed_hwfn *p_hwfn = &cdev->hwfns[0];
1744 	struct qed_ptt  *p_ptt;
1745 
1746 	if (IS_VF(cdev))
1747 		return -EINVAL;
1748 
1749 	if (!qed_mcp_is_init(p_hwfn)) {
1750 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1751 		return -EBUSY;
1752 	}
1753 
1754 	*p_media_type = MEDIA_UNSPECIFIED;
1755 
1756 	p_ptt = qed_ptt_acquire(p_hwfn);
1757 	if (!p_ptt)
1758 		return -EBUSY;
1759 
1760 	*p_media_type = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1761 			       offsetof(struct public_port, media_type));
1762 
1763 	qed_ptt_release(p_hwfn, p_ptt);
1764 
1765 	return 0;
1766 }
1767 
1768 /* Old MFW has a global configuration for all PFs regarding RDMA support */
1769 static void
1770 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn,
1771 			       enum qed_pci_personality *p_proto)
1772 {
1773 	/* There wasn't ever a legacy MFW that published iwarp.
1774 	 * So at this point, this is either plain l2 or RoCE.
1775 	 */
1776 	if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities))
1777 		*p_proto = QED_PCI_ETH_ROCE;
1778 	else
1779 		*p_proto = QED_PCI_ETH;
1780 
1781 	DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1782 		   "According to Legacy capabilities, L2 personality is %08x\n",
1783 		   (u32) *p_proto);
1784 }
1785 
1786 static int
1787 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn,
1788 			    struct qed_ptt *p_ptt,
1789 			    enum qed_pci_personality *p_proto)
1790 {
1791 	u32 resp = 0, param = 0;
1792 	int rc;
1793 
1794 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
1795 			 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, &param);
1796 	if (rc)
1797 		return rc;
1798 	if (resp != FW_MSG_CODE_OK) {
1799 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1800 			   "MFW lacks support for command; Returns %08x\n",
1801 			   resp);
1802 		return -EINVAL;
1803 	}
1804 
1805 	switch (param) {
1806 	case FW_MB_PARAM_GET_PF_RDMA_NONE:
1807 		*p_proto = QED_PCI_ETH;
1808 		break;
1809 	case FW_MB_PARAM_GET_PF_RDMA_ROCE:
1810 		*p_proto = QED_PCI_ETH_ROCE;
1811 		break;
1812 	case FW_MB_PARAM_GET_PF_RDMA_IWARP:
1813 		*p_proto = QED_PCI_ETH_IWARP;
1814 		break;
1815 	case FW_MB_PARAM_GET_PF_RDMA_BOTH:
1816 		*p_proto = QED_PCI_ETH_RDMA;
1817 		break;
1818 	default:
1819 		DP_NOTICE(p_hwfn,
1820 			  "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n",
1821 			  param);
1822 		return -EINVAL;
1823 	}
1824 
1825 	DP_VERBOSE(p_hwfn,
1826 		   NETIF_MSG_IFUP,
1827 		   "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n",
1828 		   (u32) *p_proto, resp, param);
1829 	return 0;
1830 }
1831 
1832 static int
1833 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn,
1834 			struct public_func *p_info,
1835 			struct qed_ptt *p_ptt,
1836 			enum qed_pci_personality *p_proto)
1837 {
1838 	int rc = 0;
1839 
1840 	switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) {
1841 	case FUNC_MF_CFG_PROTOCOL_ETHERNET:
1842 		if (!IS_ENABLED(CONFIG_QED_RDMA))
1843 			*p_proto = QED_PCI_ETH;
1844 		else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto))
1845 			qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto);
1846 		break;
1847 	case FUNC_MF_CFG_PROTOCOL_ISCSI:
1848 		*p_proto = QED_PCI_ISCSI;
1849 		break;
1850 	case FUNC_MF_CFG_PROTOCOL_FCOE:
1851 		*p_proto = QED_PCI_FCOE;
1852 		break;
1853 	case FUNC_MF_CFG_PROTOCOL_ROCE:
1854 		DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n");
1855 	/* Fallthrough */
1856 	default:
1857 		rc = -EINVAL;
1858 	}
1859 
1860 	return rc;
1861 }
1862 
1863 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn,
1864 				 struct qed_ptt *p_ptt)
1865 {
1866 	struct qed_mcp_function_info *info;
1867 	struct public_func shmem_info;
1868 
1869 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1870 	info = &p_hwfn->mcp_info->func_info;
1871 
1872 	info->pause_on_host = (shmem_info.config &
1873 			       FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0;
1874 
1875 	if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt,
1876 				    &info->protocol)) {
1877 		DP_ERR(p_hwfn, "Unknown personality %08x\n",
1878 		       (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK));
1879 		return -EINVAL;
1880 	}
1881 
1882 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1883 
1884 	if (shmem_info.mac_upper || shmem_info.mac_lower) {
1885 		info->mac[0] = (u8)(shmem_info.mac_upper >> 8);
1886 		info->mac[1] = (u8)(shmem_info.mac_upper);
1887 		info->mac[2] = (u8)(shmem_info.mac_lower >> 24);
1888 		info->mac[3] = (u8)(shmem_info.mac_lower >> 16);
1889 		info->mac[4] = (u8)(shmem_info.mac_lower >> 8);
1890 		info->mac[5] = (u8)(shmem_info.mac_lower);
1891 
1892 		/* Store primary MAC for later possible WoL */
1893 		memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN);
1894 	} else {
1895 		DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n");
1896 	}
1897 
1898 	info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower |
1899 			 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32);
1900 	info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower |
1901 			 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32);
1902 
1903 	info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK);
1904 
1905 	info->mtu = (u16)shmem_info.mtu_size;
1906 
1907 	p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE;
1908 	p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT;
1909 	if (qed_mcp_is_init(p_hwfn)) {
1910 		u32 resp = 0, param = 0;
1911 		int rc;
1912 
1913 		rc = qed_mcp_cmd(p_hwfn, p_ptt,
1914 				 DRV_MSG_CODE_OS_WOL, 0, &resp, &param);
1915 		if (rc)
1916 			return rc;
1917 		if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED)
1918 			p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME;
1919 	}
1920 
1921 	DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP),
1922 		   "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %02x:%02x:%02x:%02x:%02x:%02x wwn port %llx node %llx ovlan %04x wol %02x\n",
1923 		info->pause_on_host, info->protocol,
1924 		info->bandwidth_min, info->bandwidth_max,
1925 		info->mac[0], info->mac[1], info->mac[2],
1926 		info->mac[3], info->mac[4], info->mac[5],
1927 		info->wwn_port, info->wwn_node,
1928 		info->ovlan, (u8)p_hwfn->hw_info.b_wol_support);
1929 
1930 	return 0;
1931 }
1932 
1933 struct qed_mcp_link_params
1934 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn)
1935 {
1936 	if (!p_hwfn || !p_hwfn->mcp_info)
1937 		return NULL;
1938 	return &p_hwfn->mcp_info->link_input;
1939 }
1940 
1941 struct qed_mcp_link_state
1942 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn)
1943 {
1944 	if (!p_hwfn || !p_hwfn->mcp_info)
1945 		return NULL;
1946 	return &p_hwfn->mcp_info->link_output;
1947 }
1948 
1949 struct qed_mcp_link_capabilities
1950 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn)
1951 {
1952 	if (!p_hwfn || !p_hwfn->mcp_info)
1953 		return NULL;
1954 	return &p_hwfn->mcp_info->link_capabilities;
1955 }
1956 
1957 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1958 {
1959 	u32 resp = 0, param = 0;
1960 	int rc;
1961 
1962 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
1963 			 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, &param);
1964 
1965 	/* Wait for the drain to complete before returning */
1966 	msleep(1020);
1967 
1968 	return rc;
1969 }
1970 
1971 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn,
1972 			   struct qed_ptt *p_ptt, u32 *p_flash_size)
1973 {
1974 	u32 flash_size;
1975 
1976 	if (IS_VF(p_hwfn->cdev))
1977 		return -EINVAL;
1978 
1979 	flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4);
1980 	flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >>
1981 		      MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT;
1982 	flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT));
1983 
1984 	*p_flash_size = flash_size;
1985 
1986 	return 0;
1987 }
1988 
1989 static int
1990 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn,
1991 			  struct qed_ptt *p_ptt, u8 vf_id, u8 num)
1992 {
1993 	u32 resp = 0, param = 0, rc_param = 0;
1994 	int rc;
1995 
1996 	/* Only Leader can configure MSIX, and need to take CMT into account */
1997 	if (!IS_LEAD_HWFN(p_hwfn))
1998 		return 0;
1999 	num *= p_hwfn->cdev->num_hwfns;
2000 
2001 	param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) &
2002 		 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK;
2003 	param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) &
2004 		 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK;
2005 
2006 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param,
2007 			 &resp, &rc_param);
2008 
2009 	if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) {
2010 		DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id);
2011 		rc = -EINVAL;
2012 	} else {
2013 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2014 			   "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n",
2015 			   num, vf_id);
2016 	}
2017 
2018 	return rc;
2019 }
2020 
2021 static int
2022 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn,
2023 			  struct qed_ptt *p_ptt, u8 num)
2024 {
2025 	u32 resp = 0, param = num, rc_param = 0;
2026 	int rc;
2027 
2028 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX,
2029 			 param, &resp, &rc_param);
2030 
2031 	if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) {
2032 		DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n");
2033 		rc = -EINVAL;
2034 	} else {
2035 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2036 			   "Requested 0x%02x MSI-x interrupts for VFs\n", num);
2037 	}
2038 
2039 	return rc;
2040 }
2041 
2042 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn,
2043 			   struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2044 {
2045 	if (QED_IS_BB(p_hwfn->cdev))
2046 		return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num);
2047 	else
2048 		return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num);
2049 }
2050 
2051 int
2052 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn,
2053 			 struct qed_ptt *p_ptt,
2054 			 struct qed_mcp_drv_version *p_ver)
2055 {
2056 	struct qed_mcp_mb_params mb_params;
2057 	struct drv_version_stc drv_version;
2058 	__be32 val;
2059 	u32 i;
2060 	int rc;
2061 
2062 	memset(&drv_version, 0, sizeof(drv_version));
2063 	drv_version.version = p_ver->version;
2064 	for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) {
2065 		val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)]));
2066 		*(__be32 *)&drv_version.name[i * sizeof(u32)] = val;
2067 	}
2068 
2069 	memset(&mb_params, 0, sizeof(mb_params));
2070 	mb_params.cmd = DRV_MSG_CODE_SET_VERSION;
2071 	mb_params.p_data_src = &drv_version;
2072 	mb_params.data_src_size = sizeof(drv_version);
2073 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2074 	if (rc)
2075 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2076 
2077 	return rc;
2078 }
2079 
2080 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2081 {
2082 	u32 resp = 0, param = 0;
2083 	int rc;
2084 
2085 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp,
2086 			 &param);
2087 	if (rc)
2088 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2089 
2090 	return rc;
2091 }
2092 
2093 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2094 {
2095 	u32 value, cpu_mode;
2096 
2097 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff);
2098 
2099 	value = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2100 	value &= ~MCP_REG_CPU_MODE_SOFT_HALT;
2101 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, value);
2102 	cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2103 
2104 	return (cpu_mode & MCP_REG_CPU_MODE_SOFT_HALT) ? -EAGAIN : 0;
2105 }
2106 
2107 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn,
2108 				     struct qed_ptt *p_ptt,
2109 				     enum qed_ov_client client)
2110 {
2111 	u32 resp = 0, param = 0;
2112 	u32 drv_mb_param;
2113 	int rc;
2114 
2115 	switch (client) {
2116 	case QED_OV_CLIENT_DRV:
2117 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS;
2118 		break;
2119 	case QED_OV_CLIENT_USER:
2120 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER;
2121 		break;
2122 	case QED_OV_CLIENT_VENDOR_SPEC:
2123 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC;
2124 		break;
2125 	default:
2126 		DP_NOTICE(p_hwfn, "Invalid client type %d\n", client);
2127 		return -EINVAL;
2128 	}
2129 
2130 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG,
2131 			 drv_mb_param, &resp, &param);
2132 	if (rc)
2133 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2134 
2135 	return rc;
2136 }
2137 
2138 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn,
2139 				   struct qed_ptt *p_ptt,
2140 				   enum qed_ov_driver_state drv_state)
2141 {
2142 	u32 resp = 0, param = 0;
2143 	u32 drv_mb_param;
2144 	int rc;
2145 
2146 	switch (drv_state) {
2147 	case QED_OV_DRIVER_STATE_NOT_LOADED:
2148 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED;
2149 		break;
2150 	case QED_OV_DRIVER_STATE_DISABLED:
2151 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED;
2152 		break;
2153 	case QED_OV_DRIVER_STATE_ACTIVE:
2154 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE;
2155 		break;
2156 	default:
2157 		DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state);
2158 		return -EINVAL;
2159 	}
2160 
2161 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE,
2162 			 drv_mb_param, &resp, &param);
2163 	if (rc)
2164 		DP_ERR(p_hwfn, "Failed to send driver state\n");
2165 
2166 	return rc;
2167 }
2168 
2169 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn,
2170 			  struct qed_ptt *p_ptt, u16 mtu)
2171 {
2172 	u32 resp = 0, param = 0;
2173 	u32 drv_mb_param;
2174 	int rc;
2175 
2176 	drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT;
2177 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU,
2178 			 drv_mb_param, &resp, &param);
2179 	if (rc)
2180 		DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc);
2181 
2182 	return rc;
2183 }
2184 
2185 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn,
2186 			  struct qed_ptt *p_ptt, u8 *mac)
2187 {
2188 	struct qed_mcp_mb_params mb_params;
2189 	u32 mfw_mac[2];
2190 	int rc;
2191 
2192 	memset(&mb_params, 0, sizeof(mb_params));
2193 	mb_params.cmd = DRV_MSG_CODE_SET_VMAC;
2194 	mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC <<
2195 			  DRV_MSG_CODE_VMAC_TYPE_SHIFT;
2196 	mb_params.param |= MCP_PF_ID(p_hwfn);
2197 
2198 	/* MCP is BE, and on LE platforms PCI would swap access to SHMEM
2199 	 * in 32-bit granularity.
2200 	 * So the MAC has to be set in native order [and not byte order],
2201 	 * otherwise it would be read incorrectly by MFW after swap.
2202 	 */
2203 	mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3];
2204 	mfw_mac[1] = mac[4] << 24 | mac[5] << 16;
2205 
2206 	mb_params.p_data_src = (u8 *)mfw_mac;
2207 	mb_params.data_src_size = 8;
2208 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2209 	if (rc)
2210 		DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc);
2211 
2212 	/* Store primary MAC for later possible WoL */
2213 	memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN);
2214 
2215 	return rc;
2216 }
2217 
2218 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn,
2219 			  struct qed_ptt *p_ptt, enum qed_ov_wol wol)
2220 {
2221 	u32 resp = 0, param = 0;
2222 	u32 drv_mb_param;
2223 	int rc;
2224 
2225 	if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) {
2226 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
2227 			   "Can't change WoL configuration when WoL isn't supported\n");
2228 		return -EINVAL;
2229 	}
2230 
2231 	switch (wol) {
2232 	case QED_OV_WOL_DEFAULT:
2233 		drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT;
2234 		break;
2235 	case QED_OV_WOL_DISABLED:
2236 		drv_mb_param = DRV_MB_PARAM_WOL_DISABLED;
2237 		break;
2238 	case QED_OV_WOL_ENABLED:
2239 		drv_mb_param = DRV_MB_PARAM_WOL_ENABLED;
2240 		break;
2241 	default:
2242 		DP_ERR(p_hwfn, "Invalid wol state %d\n", wol);
2243 		return -EINVAL;
2244 	}
2245 
2246 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL,
2247 			 drv_mb_param, &resp, &param);
2248 	if (rc)
2249 		DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc);
2250 
2251 	/* Store the WoL update for a future unload */
2252 	p_hwfn->cdev->wol_config = (u8)wol;
2253 
2254 	return rc;
2255 }
2256 
2257 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn,
2258 			      struct qed_ptt *p_ptt,
2259 			      enum qed_ov_eswitch eswitch)
2260 {
2261 	u32 resp = 0, param = 0;
2262 	u32 drv_mb_param;
2263 	int rc;
2264 
2265 	switch (eswitch) {
2266 	case QED_OV_ESWITCH_NONE:
2267 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE;
2268 		break;
2269 	case QED_OV_ESWITCH_VEB:
2270 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB;
2271 		break;
2272 	case QED_OV_ESWITCH_VEPA:
2273 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA;
2274 		break;
2275 	default:
2276 		DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch);
2277 		return -EINVAL;
2278 	}
2279 
2280 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE,
2281 			 drv_mb_param, &resp, &param);
2282 	if (rc)
2283 		DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc);
2284 
2285 	return rc;
2286 }
2287 
2288 int qed_mcp_set_led(struct qed_hwfn *p_hwfn,
2289 		    struct qed_ptt *p_ptt, enum qed_led_mode mode)
2290 {
2291 	u32 resp = 0, param = 0, drv_mb_param;
2292 	int rc;
2293 
2294 	switch (mode) {
2295 	case QED_LED_MODE_ON:
2296 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON;
2297 		break;
2298 	case QED_LED_MODE_OFF:
2299 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF;
2300 		break;
2301 	case QED_LED_MODE_RESTORE:
2302 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER;
2303 		break;
2304 	default:
2305 		DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode);
2306 		return -EINVAL;
2307 	}
2308 
2309 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE,
2310 			 drv_mb_param, &resp, &param);
2311 
2312 	return rc;
2313 }
2314 
2315 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn,
2316 			  struct qed_ptt *p_ptt, u32 mask_parities)
2317 {
2318 	u32 resp = 0, param = 0;
2319 	int rc;
2320 
2321 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES,
2322 			 mask_parities, &resp, &param);
2323 
2324 	if (rc) {
2325 		DP_ERR(p_hwfn,
2326 		       "MCP response failure for mask parities, aborting\n");
2327 	} else if (resp != FW_MSG_CODE_OK) {
2328 		DP_ERR(p_hwfn,
2329 		       "MCP did not acknowledge mask parity request. Old MFW?\n");
2330 		rc = -EINVAL;
2331 	}
2332 
2333 	return rc;
2334 }
2335 
2336 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len)
2337 {
2338 	u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0;
2339 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2340 	u32 resp = 0, resp_param = 0;
2341 	struct qed_ptt *p_ptt;
2342 	int rc = 0;
2343 
2344 	p_ptt = qed_ptt_acquire(p_hwfn);
2345 	if (!p_ptt)
2346 		return -EBUSY;
2347 
2348 	while (bytes_left > 0) {
2349 		bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN);
2350 
2351 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2352 					DRV_MSG_CODE_NVM_READ_NVRAM,
2353 					addr + offset +
2354 					(bytes_to_copy <<
2355 					 DRV_MB_PARAM_NVM_LEN_OFFSET),
2356 					&resp, &resp_param,
2357 					&read_len,
2358 					(u32 *)(p_buf + offset));
2359 
2360 		if (rc || (resp != FW_MSG_CODE_NVM_OK)) {
2361 			DP_NOTICE(cdev, "MCP command rc = %d\n", rc);
2362 			break;
2363 		}
2364 
2365 		/* This can be a lengthy process, and it's possible scheduler
2366 		 * isn't preemptable. Sleep a bit to prevent CPU hogging.
2367 		 */
2368 		if (bytes_left % 0x1000 <
2369 		    (bytes_left - read_len) % 0x1000)
2370 			usleep_range(1000, 2000);
2371 
2372 		offset += read_len;
2373 		bytes_left -= read_len;
2374 	}
2375 
2376 	cdev->mcp_nvm_resp = resp;
2377 	qed_ptt_release(p_hwfn, p_ptt);
2378 
2379 	return rc;
2380 }
2381 
2382 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf)
2383 {
2384 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2385 	struct qed_ptt *p_ptt;
2386 
2387 	p_ptt = qed_ptt_acquire(p_hwfn);
2388 	if (!p_ptt)
2389 		return -EBUSY;
2390 
2391 	memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp));
2392 	qed_ptt_release(p_hwfn, p_ptt);
2393 
2394 	return 0;
2395 }
2396 
2397 int qed_mcp_nvm_put_file_begin(struct qed_dev *cdev, u32 addr)
2398 {
2399 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2400 	struct qed_ptt *p_ptt;
2401 	u32 resp, param;
2402 	int rc;
2403 
2404 	p_ptt = qed_ptt_acquire(p_hwfn);
2405 	if (!p_ptt)
2406 		return -EBUSY;
2407 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_NVM_PUT_FILE_BEGIN, addr,
2408 			 &resp, &param);
2409 	cdev->mcp_nvm_resp = resp;
2410 	qed_ptt_release(p_hwfn, p_ptt);
2411 
2412 	return rc;
2413 }
2414 
2415 int qed_mcp_nvm_write(struct qed_dev *cdev,
2416 		      u32 cmd, u32 addr, u8 *p_buf, u32 len)
2417 {
2418 	u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param;
2419 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2420 	struct qed_ptt *p_ptt;
2421 	int rc = -EINVAL;
2422 
2423 	p_ptt = qed_ptt_acquire(p_hwfn);
2424 	if (!p_ptt)
2425 		return -EBUSY;
2426 
2427 	switch (cmd) {
2428 	case QED_PUT_FILE_DATA:
2429 		nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA;
2430 		break;
2431 	case QED_NVM_WRITE_NVRAM:
2432 		nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM;
2433 		break;
2434 	default:
2435 		DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd);
2436 		rc = -EINVAL;
2437 		goto out;
2438 	}
2439 
2440 	while (buf_idx < len) {
2441 		buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN);
2442 		nvm_offset = ((buf_size << DRV_MB_PARAM_NVM_LEN_OFFSET) |
2443 			      addr) + buf_idx;
2444 		rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset,
2445 					&resp, &param, buf_size,
2446 					(u32 *)&p_buf[buf_idx]);
2447 		if (rc) {
2448 			DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc);
2449 			resp = FW_MSG_CODE_ERROR;
2450 			break;
2451 		}
2452 
2453 		if (resp != FW_MSG_CODE_OK &&
2454 		    resp != FW_MSG_CODE_NVM_OK &&
2455 		    resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) {
2456 			DP_NOTICE(cdev,
2457 				  "nvm write failed, resp = 0x%08x\n", resp);
2458 			rc = -EINVAL;
2459 			break;
2460 		}
2461 
2462 		/* This can be a lengthy process, and it's possible scheduler
2463 		 * isn't pre-emptable. Sleep a bit to prevent CPU hogging.
2464 		 */
2465 		if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000)
2466 			usleep_range(1000, 2000);
2467 
2468 		buf_idx += buf_size;
2469 	}
2470 
2471 	cdev->mcp_nvm_resp = resp;
2472 out:
2473 	qed_ptt_release(p_hwfn, p_ptt);
2474 
2475 	return rc;
2476 }
2477 
2478 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2479 			 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf)
2480 {
2481 	u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0;
2482 	u32 resp, param;
2483 	int rc;
2484 
2485 	nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) &
2486 		       DRV_MB_PARAM_TRANSCEIVER_PORT_MASK;
2487 	nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) &
2488 		       DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK;
2489 
2490 	addr = offset;
2491 	offset = 0;
2492 	bytes_left = len;
2493 	while (bytes_left > 0) {
2494 		bytes_to_copy = min_t(u32, bytes_left,
2495 				      MAX_I2C_TRANSACTION_SIZE);
2496 		nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK |
2497 			       DRV_MB_PARAM_TRANSCEIVER_PORT_MASK);
2498 		nvm_offset |= ((addr + offset) <<
2499 			       DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) &
2500 			       DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK;
2501 		nvm_offset |= (bytes_to_copy <<
2502 			       DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) &
2503 			       DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK;
2504 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2505 					DRV_MSG_CODE_TRANSCEIVER_READ,
2506 					nvm_offset, &resp, &param, &buf_size,
2507 					(u32 *)(p_buf + offset));
2508 		if (rc) {
2509 			DP_NOTICE(p_hwfn,
2510 				  "Failed to send a transceiver read command to the MFW. rc = %d.\n",
2511 				  rc);
2512 			return rc;
2513 		}
2514 
2515 		if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT)
2516 			return -ENODEV;
2517 		else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK)
2518 			return -EINVAL;
2519 
2520 		offset += buf_size;
2521 		bytes_left -= buf_size;
2522 	}
2523 
2524 	return 0;
2525 }
2526 
2527 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2528 {
2529 	u32 drv_mb_param = 0, rsp, param;
2530 	int rc = 0;
2531 
2532 	drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST <<
2533 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2534 
2535 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2536 			 drv_mb_param, &rsp, &param);
2537 
2538 	if (rc)
2539 		return rc;
2540 
2541 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2542 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2543 		rc = -EAGAIN;
2544 
2545 	return rc;
2546 }
2547 
2548 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2549 {
2550 	u32 drv_mb_param, rsp, param;
2551 	int rc = 0;
2552 
2553 	drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST <<
2554 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2555 
2556 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2557 			 drv_mb_param, &rsp, &param);
2558 
2559 	if (rc)
2560 		return rc;
2561 
2562 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2563 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2564 		rc = -EAGAIN;
2565 
2566 	return rc;
2567 }
2568 
2569 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn,
2570 				    struct qed_ptt *p_ptt,
2571 				    u32 *num_images)
2572 {
2573 	u32 drv_mb_param = 0, rsp;
2574 	int rc = 0;
2575 
2576 	drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES <<
2577 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2578 
2579 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2580 			 drv_mb_param, &rsp, num_images);
2581 	if (rc)
2582 		return rc;
2583 
2584 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK))
2585 		rc = -EINVAL;
2586 
2587 	return rc;
2588 }
2589 
2590 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn,
2591 				   struct qed_ptt *p_ptt,
2592 				   struct bist_nvm_image_att *p_image_att,
2593 				   u32 image_index)
2594 {
2595 	u32 buf_size = 0, param, resp = 0, resp_param = 0;
2596 	int rc;
2597 
2598 	param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX <<
2599 		DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT;
2600 	param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT;
2601 
2602 	rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2603 				DRV_MSG_CODE_BIST_TEST, param,
2604 				&resp, &resp_param,
2605 				&buf_size,
2606 				(u32 *)p_image_att);
2607 	if (rc)
2608 		return rc;
2609 
2610 	if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2611 	    (p_image_att->return_code != 1))
2612 		rc = -EINVAL;
2613 
2614 	return rc;
2615 }
2616 
2617 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn)
2618 {
2619 	struct qed_nvm_image_info nvm_info;
2620 	struct qed_ptt *p_ptt;
2621 	int rc;
2622 	u32 i;
2623 
2624 	if (p_hwfn->nvm_info.valid)
2625 		return 0;
2626 
2627 	p_ptt = qed_ptt_acquire(p_hwfn);
2628 	if (!p_ptt) {
2629 		DP_ERR(p_hwfn, "failed to acquire ptt\n");
2630 		return -EBUSY;
2631 	}
2632 
2633 	/* Acquire from MFW the amount of available images */
2634 	nvm_info.num_images = 0;
2635 	rc = qed_mcp_bist_nvm_get_num_images(p_hwfn,
2636 					     p_ptt, &nvm_info.num_images);
2637 	if (rc == -EOPNOTSUPP) {
2638 		DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n");
2639 		goto out;
2640 	} else if (rc || !nvm_info.num_images) {
2641 		DP_ERR(p_hwfn, "Failed getting number of images\n");
2642 		goto err0;
2643 	}
2644 
2645 	nvm_info.image_att = kmalloc_array(nvm_info.num_images,
2646 					   sizeof(struct bist_nvm_image_att),
2647 					   GFP_KERNEL);
2648 	if (!nvm_info.image_att) {
2649 		rc = -ENOMEM;
2650 		goto err0;
2651 	}
2652 
2653 	/* Iterate over images and get their attributes */
2654 	for (i = 0; i < nvm_info.num_images; i++) {
2655 		rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt,
2656 						    &nvm_info.image_att[i], i);
2657 		if (rc) {
2658 			DP_ERR(p_hwfn,
2659 			       "Failed getting image index %d attributes\n", i);
2660 			goto err1;
2661 		}
2662 
2663 		DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i,
2664 			   nvm_info.image_att[i].len);
2665 	}
2666 out:
2667 	/* Update hwfn's nvm_info */
2668 	if (nvm_info.num_images) {
2669 		p_hwfn->nvm_info.num_images = nvm_info.num_images;
2670 		kfree(p_hwfn->nvm_info.image_att);
2671 		p_hwfn->nvm_info.image_att = nvm_info.image_att;
2672 		p_hwfn->nvm_info.valid = true;
2673 	}
2674 
2675 	qed_ptt_release(p_hwfn, p_ptt);
2676 	return 0;
2677 
2678 err1:
2679 	kfree(nvm_info.image_att);
2680 err0:
2681 	qed_ptt_release(p_hwfn, p_ptt);
2682 	return rc;
2683 }
2684 
2685 int
2686 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn,
2687 			  enum qed_nvm_images image_id,
2688 			  struct qed_nvm_image_att *p_image_att)
2689 {
2690 	enum nvm_image_type type;
2691 	u32 i;
2692 
2693 	/* Translate image_id into MFW definitions */
2694 	switch (image_id) {
2695 	case QED_NVM_IMAGE_ISCSI_CFG:
2696 		type = NVM_TYPE_ISCSI_CFG;
2697 		break;
2698 	case QED_NVM_IMAGE_FCOE_CFG:
2699 		type = NVM_TYPE_FCOE_CFG;
2700 		break;
2701 	case QED_NVM_IMAGE_NVM_CFG1:
2702 		type = NVM_TYPE_NVM_CFG1;
2703 		break;
2704 	case QED_NVM_IMAGE_DEFAULT_CFG:
2705 		type = NVM_TYPE_DEFAULT_CFG;
2706 		break;
2707 	case QED_NVM_IMAGE_NVM_META:
2708 		type = NVM_TYPE_META;
2709 		break;
2710 	default:
2711 		DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n",
2712 			  image_id);
2713 		return -EINVAL;
2714 	}
2715 
2716 	qed_mcp_nvm_info_populate(p_hwfn);
2717 	for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
2718 		if (type == p_hwfn->nvm_info.image_att[i].image_type)
2719 			break;
2720 	if (i == p_hwfn->nvm_info.num_images) {
2721 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2722 			   "Failed to find nvram image of type %08x\n",
2723 			   image_id);
2724 		return -ENOENT;
2725 	}
2726 
2727 	p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
2728 	p_image_att->length = p_hwfn->nvm_info.image_att[i].len;
2729 
2730 	return 0;
2731 }
2732 
2733 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn,
2734 			  enum qed_nvm_images image_id,
2735 			  u8 *p_buffer, u32 buffer_len)
2736 {
2737 	struct qed_nvm_image_att image_att;
2738 	int rc;
2739 
2740 	memset(p_buffer, 0, buffer_len);
2741 
2742 	rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att);
2743 	if (rc)
2744 		return rc;
2745 
2746 	/* Validate sizes - both the image's and the supplied buffer's */
2747 	if (image_att.length <= 4) {
2748 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2749 			   "Image [%d] is too small - only %d bytes\n",
2750 			   image_id, image_att.length);
2751 		return -EINVAL;
2752 	}
2753 
2754 	if (image_att.length > buffer_len) {
2755 		DP_VERBOSE(p_hwfn,
2756 			   QED_MSG_STORAGE,
2757 			   "Image [%d] is too big - %08x bytes where only %08x are available\n",
2758 			   image_id, image_att.length, buffer_len);
2759 		return -ENOMEM;
2760 	}
2761 
2762 	return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr,
2763 				p_buffer, image_att.length);
2764 }
2765 
2766 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id)
2767 {
2768 	enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2769 
2770 	switch (res_id) {
2771 	case QED_SB:
2772 		mfw_res_id = RESOURCE_NUM_SB_E;
2773 		break;
2774 	case QED_L2_QUEUE:
2775 		mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2776 		break;
2777 	case QED_VPORT:
2778 		mfw_res_id = RESOURCE_NUM_VPORT_E;
2779 		break;
2780 	case QED_RSS_ENG:
2781 		mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2782 		break;
2783 	case QED_PQ:
2784 		mfw_res_id = RESOURCE_NUM_PQ_E;
2785 		break;
2786 	case QED_RL:
2787 		mfw_res_id = RESOURCE_NUM_RL_E;
2788 		break;
2789 	case QED_MAC:
2790 	case QED_VLAN:
2791 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2792 		mfw_res_id = RESOURCE_VFC_FILTER_E;
2793 		break;
2794 	case QED_ILT:
2795 		mfw_res_id = RESOURCE_ILT_E;
2796 		break;
2797 	case QED_LL2_QUEUE:
2798 		mfw_res_id = RESOURCE_LL2_QUEUE_E;
2799 		break;
2800 	case QED_RDMA_CNQ_RAM:
2801 	case QED_CMDQS_CQS:
2802 		/* CNQ/CMDQS are the same resource */
2803 		mfw_res_id = RESOURCE_CQS_E;
2804 		break;
2805 	case QED_RDMA_STATS_QUEUE:
2806 		mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2807 		break;
2808 	case QED_BDQ:
2809 		mfw_res_id = RESOURCE_BDQ_E;
2810 		break;
2811 	default:
2812 		break;
2813 	}
2814 
2815 	return mfw_res_id;
2816 }
2817 
2818 #define QED_RESC_ALLOC_VERSION_MAJOR    2
2819 #define QED_RESC_ALLOC_VERSION_MINOR    0
2820 #define QED_RESC_ALLOC_VERSION				     \
2821 	((QED_RESC_ALLOC_VERSION_MAJOR <<		     \
2822 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \
2823 	 (QED_RESC_ALLOC_VERSION_MINOR <<		     \
2824 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT))
2825 
2826 struct qed_resc_alloc_in_params {
2827 	u32 cmd;
2828 	enum qed_resources res_id;
2829 	u32 resc_max_val;
2830 };
2831 
2832 struct qed_resc_alloc_out_params {
2833 	u32 mcp_resp;
2834 	u32 mcp_param;
2835 	u32 resc_num;
2836 	u32 resc_start;
2837 	u32 vf_resc_num;
2838 	u32 vf_resc_start;
2839 	u32 flags;
2840 };
2841 
2842 static int
2843 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn,
2844 			    struct qed_ptt *p_ptt,
2845 			    struct qed_resc_alloc_in_params *p_in_params,
2846 			    struct qed_resc_alloc_out_params *p_out_params)
2847 {
2848 	struct qed_mcp_mb_params mb_params;
2849 	struct resource_info mfw_resc_info;
2850 	int rc;
2851 
2852 	memset(&mfw_resc_info, 0, sizeof(mfw_resc_info));
2853 
2854 	mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id);
2855 	if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) {
2856 		DP_ERR(p_hwfn,
2857 		       "Failed to match resource %d [%s] with the MFW resources\n",
2858 		       p_in_params->res_id,
2859 		       qed_hw_get_resc_name(p_in_params->res_id));
2860 		return -EINVAL;
2861 	}
2862 
2863 	switch (p_in_params->cmd) {
2864 	case DRV_MSG_SET_RESOURCE_VALUE_MSG:
2865 		mfw_resc_info.size = p_in_params->resc_max_val;
2866 		/* Fallthrough */
2867 	case DRV_MSG_GET_RESOURCE_ALLOC_MSG:
2868 		break;
2869 	default:
2870 		DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n",
2871 		       p_in_params->cmd);
2872 		return -EINVAL;
2873 	}
2874 
2875 	memset(&mb_params, 0, sizeof(mb_params));
2876 	mb_params.cmd = p_in_params->cmd;
2877 	mb_params.param = QED_RESC_ALLOC_VERSION;
2878 	mb_params.p_data_src = &mfw_resc_info;
2879 	mb_params.data_src_size = sizeof(mfw_resc_info);
2880 	mb_params.p_data_dst = mb_params.p_data_src;
2881 	mb_params.data_dst_size = mb_params.data_src_size;
2882 
2883 	DP_VERBOSE(p_hwfn,
2884 		   QED_MSG_SP,
2885 		   "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n",
2886 		   p_in_params->cmd,
2887 		   p_in_params->res_id,
2888 		   qed_hw_get_resc_name(p_in_params->res_id),
2889 		   QED_MFW_GET_FIELD(mb_params.param,
2890 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
2891 		   QED_MFW_GET_FIELD(mb_params.param,
2892 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
2893 		   p_in_params->resc_max_val);
2894 
2895 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2896 	if (rc)
2897 		return rc;
2898 
2899 	p_out_params->mcp_resp = mb_params.mcp_resp;
2900 	p_out_params->mcp_param = mb_params.mcp_param;
2901 	p_out_params->resc_num = mfw_resc_info.size;
2902 	p_out_params->resc_start = mfw_resc_info.offset;
2903 	p_out_params->vf_resc_num = mfw_resc_info.vf_size;
2904 	p_out_params->vf_resc_start = mfw_resc_info.vf_offset;
2905 	p_out_params->flags = mfw_resc_info.flags;
2906 
2907 	DP_VERBOSE(p_hwfn,
2908 		   QED_MSG_SP,
2909 		   "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n",
2910 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
2911 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
2912 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
2913 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
2914 		   p_out_params->resc_num,
2915 		   p_out_params->resc_start,
2916 		   p_out_params->vf_resc_num,
2917 		   p_out_params->vf_resc_start, p_out_params->flags);
2918 
2919 	return 0;
2920 }
2921 
2922 int
2923 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn,
2924 			 struct qed_ptt *p_ptt,
2925 			 enum qed_resources res_id,
2926 			 u32 resc_max_val, u32 *p_mcp_resp)
2927 {
2928 	struct qed_resc_alloc_out_params out_params;
2929 	struct qed_resc_alloc_in_params in_params;
2930 	int rc;
2931 
2932 	memset(&in_params, 0, sizeof(in_params));
2933 	in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG;
2934 	in_params.res_id = res_id;
2935 	in_params.resc_max_val = resc_max_val;
2936 	memset(&out_params, 0, sizeof(out_params));
2937 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
2938 					 &out_params);
2939 	if (rc)
2940 		return rc;
2941 
2942 	*p_mcp_resp = out_params.mcp_resp;
2943 
2944 	return 0;
2945 }
2946 
2947 int
2948 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn,
2949 		      struct qed_ptt *p_ptt,
2950 		      enum qed_resources res_id,
2951 		      u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start)
2952 {
2953 	struct qed_resc_alloc_out_params out_params;
2954 	struct qed_resc_alloc_in_params in_params;
2955 	int rc;
2956 
2957 	memset(&in_params, 0, sizeof(in_params));
2958 	in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG;
2959 	in_params.res_id = res_id;
2960 	memset(&out_params, 0, sizeof(out_params));
2961 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
2962 					 &out_params);
2963 	if (rc)
2964 		return rc;
2965 
2966 	*p_mcp_resp = out_params.mcp_resp;
2967 
2968 	if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2969 		*p_resc_num = out_params.resc_num;
2970 		*p_resc_start = out_params.resc_start;
2971 	}
2972 
2973 	return 0;
2974 }
2975 
2976 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2977 {
2978 	u32 mcp_resp, mcp_param;
2979 
2980 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0,
2981 			   &mcp_resp, &mcp_param);
2982 }
2983 
2984 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn,
2985 				struct qed_ptt *p_ptt,
2986 				u32 param, u32 *p_mcp_resp, u32 *p_mcp_param)
2987 {
2988 	int rc;
2989 
2990 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param,
2991 			 p_mcp_resp, p_mcp_param);
2992 	if (rc)
2993 		return rc;
2994 
2995 	if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
2996 		DP_INFO(p_hwfn,
2997 			"The resource command is unsupported by the MFW\n");
2998 		return -EINVAL;
2999 	}
3000 
3001 	if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) {
3002 		u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE);
3003 
3004 		DP_NOTICE(p_hwfn,
3005 			  "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n",
3006 			  param, opcode);
3007 		return -EINVAL;
3008 	}
3009 
3010 	return rc;
3011 }
3012 
3013 static int
3014 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3015 		    struct qed_ptt *p_ptt,
3016 		    struct qed_resc_lock_params *p_params)
3017 {
3018 	u32 param = 0, mcp_resp, mcp_param;
3019 	u8 opcode;
3020 	int rc;
3021 
3022 	switch (p_params->timeout) {
3023 	case QED_MCP_RESC_LOCK_TO_DEFAULT:
3024 		opcode = RESOURCE_OPCODE_REQ;
3025 		p_params->timeout = 0;
3026 		break;
3027 	case QED_MCP_RESC_LOCK_TO_NONE:
3028 		opcode = RESOURCE_OPCODE_REQ_WO_AGING;
3029 		p_params->timeout = 0;
3030 		break;
3031 	default:
3032 		opcode = RESOURCE_OPCODE_REQ_W_AGING;
3033 		break;
3034 	}
3035 
3036 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3037 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3038 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout);
3039 
3040 	DP_VERBOSE(p_hwfn,
3041 		   QED_MSG_SP,
3042 		   "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n",
3043 		   param, p_params->timeout, opcode, p_params->resource);
3044 
3045 	/* Attempt to acquire the resource */
3046 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3047 	if (rc)
3048 		return rc;
3049 
3050 	/* Analyze the response */
3051 	p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER);
3052 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3053 
3054 	DP_VERBOSE(p_hwfn,
3055 		   QED_MSG_SP,
3056 		   "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n",
3057 		   mcp_param, opcode, p_params->owner);
3058 
3059 	switch (opcode) {
3060 	case RESOURCE_OPCODE_GNT:
3061 		p_params->b_granted = true;
3062 		break;
3063 	case RESOURCE_OPCODE_BUSY:
3064 		p_params->b_granted = false;
3065 		break;
3066 	default:
3067 		DP_NOTICE(p_hwfn,
3068 			  "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n",
3069 			  mcp_param, opcode);
3070 		return -EINVAL;
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 int
3077 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3078 		  struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params)
3079 {
3080 	u32 retry_cnt = 0;
3081 	int rc;
3082 
3083 	do {
3084 		/* No need for an interval before the first iteration */
3085 		if (retry_cnt) {
3086 			if (p_params->sleep_b4_retry) {
3087 				u16 retry_interval_in_ms =
3088 				    DIV_ROUND_UP(p_params->retry_interval,
3089 						 1000);
3090 
3091 				msleep(retry_interval_in_ms);
3092 			} else {
3093 				udelay(p_params->retry_interval);
3094 			}
3095 		}
3096 
3097 		rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params);
3098 		if (rc)
3099 			return rc;
3100 
3101 		if (p_params->b_granted)
3102 			break;
3103 	} while (retry_cnt++ < p_params->retry_num);
3104 
3105 	return 0;
3106 }
3107 
3108 int
3109 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn,
3110 		    struct qed_ptt *p_ptt,
3111 		    struct qed_resc_unlock_params *p_params)
3112 {
3113 	u32 param = 0, mcp_resp, mcp_param;
3114 	u8 opcode;
3115 	int rc;
3116 
3117 	opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE
3118 				   : RESOURCE_OPCODE_RELEASE;
3119 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3120 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3121 
3122 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3123 		   "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n",
3124 		   param, opcode, p_params->resource);
3125 
3126 	/* Attempt to release the resource */
3127 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3128 	if (rc)
3129 		return rc;
3130 
3131 	/* Analyze the response */
3132 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3133 
3134 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3135 		   "Resource unlock response: mcp_param 0x%08x [opcode %d]\n",
3136 		   mcp_param, opcode);
3137 
3138 	switch (opcode) {
3139 	case RESOURCE_OPCODE_RELEASED_PREVIOUS:
3140 		DP_INFO(p_hwfn,
3141 			"Resource unlock request for an already released resource [%d]\n",
3142 			p_params->resource);
3143 		/* Fallthrough */
3144 	case RESOURCE_OPCODE_RELEASED:
3145 		p_params->b_released = true;
3146 		break;
3147 	case RESOURCE_OPCODE_WRONG_OWNER:
3148 		p_params->b_released = false;
3149 		break;
3150 	default:
3151 		DP_NOTICE(p_hwfn,
3152 			  "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n",
3153 			  mcp_param, opcode);
3154 		return -EINVAL;
3155 	}
3156 
3157 	return 0;
3158 }
3159 
3160 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock,
3161 				    struct qed_resc_unlock_params *p_unlock,
3162 				    enum qed_resc_lock
3163 				    resource, bool b_is_permanent)
3164 {
3165 	if (p_lock) {
3166 		memset(p_lock, 0, sizeof(*p_lock));
3167 
3168 		/* Permanent resources don't require aging, and there's no
3169 		 * point in trying to acquire them more than once since it's
3170 		 * unexpected another entity would release them.
3171 		 */
3172 		if (b_is_permanent) {
3173 			p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE;
3174 		} else {
3175 			p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT;
3176 			p_lock->retry_interval =
3177 			    QED_MCP_RESC_LOCK_RETRY_VAL_DFLT;
3178 			p_lock->sleep_b4_retry = true;
3179 		}
3180 
3181 		p_lock->resource = resource;
3182 	}
3183 
3184 	if (p_unlock) {
3185 		memset(p_unlock, 0, sizeof(*p_unlock));
3186 		p_unlock->resource = resource;
3187 	}
3188 }
3189 
3190 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3191 {
3192 	u32 mcp_resp;
3193 	int rc;
3194 
3195 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT,
3196 			 0, &mcp_resp, &p_hwfn->mcp_info->capabilities);
3197 	if (!rc)
3198 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE),
3199 			   "MFW supported features: %08x\n",
3200 			   p_hwfn->mcp_info->capabilities);
3201 
3202 	return rc;
3203 }
3204 
3205 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3206 {
3207 	u32 mcp_resp, mcp_param, features;
3208 
3209 	features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE;
3210 
3211 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT,
3212 			   features, &mcp_resp, &mcp_param);
3213 }
3214