1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
41 #include <linux/etherdevice.h>
42 #include "qed.h"
43 #include "qed_cxt.h"
44 #include "qed_dcbx.h"
45 #include "qed_hsi.h"
46 #include "qed_hw.h"
47 #include "qed_mcp.h"
48 #include "qed_reg_addr.h"
49 #include "qed_sriov.h"
50 
51 #define CHIP_MCP_RESP_ITER_US 10
52 
53 #define QED_DRV_MB_MAX_RETRIES	(500 * 1000)	/* Account for 5 sec */
54 #define QED_MCP_RESET_RETRIES	(50 * 1000)	/* Account for 500 msec */
55 
56 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val)	     \
57 	qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \
58 	       _val)
59 
60 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \
61 	qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset))
62 
63 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val)  \
64 	DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \
65 		     offsetof(struct public_drv_mb, _field), _val)
66 
67 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field)	   \
68 	DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \
69 		     offsetof(struct public_drv_mb, _field))
70 
71 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \
72 		  DRV_ID_PDA_COMP_VER_SHIFT)
73 
74 #define MCP_BYTES_PER_MBIT_SHIFT 17
75 
76 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn)
77 {
78 	if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base)
79 		return false;
80 	return true;
81 }
82 
83 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
84 {
85 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
86 					PUBLIC_PORT);
87 	u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr);
88 
89 	p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize,
90 						   MFW_PORT(p_hwfn));
91 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
92 		   "port_addr = 0x%x, port_id 0x%02x\n",
93 		   p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn));
94 }
95 
96 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
97 {
98 	u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length);
99 	u32 tmp, i;
100 
101 	if (!p_hwfn->mcp_info->public_base)
102 		return;
103 
104 	for (i = 0; i < length; i++) {
105 		tmp = qed_rd(p_hwfn, p_ptt,
106 			     p_hwfn->mcp_info->mfw_mb_addr +
107 			     (i << 2) + sizeof(u32));
108 
109 		/* The MB data is actually BE; Need to force it to cpu */
110 		((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] =
111 			be32_to_cpu((__force __be32)tmp);
112 	}
113 }
114 
115 struct qed_mcp_cmd_elem {
116 	struct list_head list;
117 	struct qed_mcp_mb_params *p_mb_params;
118 	u16 expected_seq_num;
119 	bool b_is_completed;
120 };
121 
122 /* Must be called while cmd_lock is acquired */
123 static struct qed_mcp_cmd_elem *
124 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn,
125 		     struct qed_mcp_mb_params *p_mb_params,
126 		     u16 expected_seq_num)
127 {
128 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
129 
130 	p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC);
131 	if (!p_cmd_elem)
132 		goto out;
133 
134 	p_cmd_elem->p_mb_params = p_mb_params;
135 	p_cmd_elem->expected_seq_num = expected_seq_num;
136 	list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list);
137 out:
138 	return p_cmd_elem;
139 }
140 
141 /* Must be called while cmd_lock is acquired */
142 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn,
143 				 struct qed_mcp_cmd_elem *p_cmd_elem)
144 {
145 	list_del(&p_cmd_elem->list);
146 	kfree(p_cmd_elem);
147 }
148 
149 /* Must be called while cmd_lock is acquired */
150 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn,
151 						     u16 seq_num)
152 {
153 	struct qed_mcp_cmd_elem *p_cmd_elem = NULL;
154 
155 	list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) {
156 		if (p_cmd_elem->expected_seq_num == seq_num)
157 			return p_cmd_elem;
158 	}
159 
160 	return NULL;
161 }
162 
163 int qed_mcp_free(struct qed_hwfn *p_hwfn)
164 {
165 	if (p_hwfn->mcp_info) {
166 		struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp;
167 
168 		kfree(p_hwfn->mcp_info->mfw_mb_cur);
169 		kfree(p_hwfn->mcp_info->mfw_mb_shadow);
170 
171 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
172 		list_for_each_entry_safe(p_cmd_elem,
173 					 p_tmp,
174 					 &p_hwfn->mcp_info->cmd_list, list) {
175 			qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
176 		}
177 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
178 	}
179 
180 	kfree(p_hwfn->mcp_info);
181 	p_hwfn->mcp_info = NULL;
182 
183 	return 0;
184 }
185 
186 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
187 {
188 	struct qed_mcp_info *p_info = p_hwfn->mcp_info;
189 	u32 drv_mb_offsize, mfw_mb_offsize;
190 	u32 mcp_pf_id = MCP_PF_ID(p_hwfn);
191 
192 	p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR);
193 	if (!p_info->public_base)
194 		return 0;
195 
196 	p_info->public_base |= GRCBASE_MCP;
197 
198 	/* Calculate the driver and MFW mailbox address */
199 	drv_mb_offsize = qed_rd(p_hwfn, p_ptt,
200 				SECTION_OFFSIZE_ADDR(p_info->public_base,
201 						     PUBLIC_DRV_MB));
202 	p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id);
203 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
204 		   "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n",
205 		   drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id);
206 
207 	/* Set the MFW MB address */
208 	mfw_mb_offsize = qed_rd(p_hwfn, p_ptt,
209 				SECTION_OFFSIZE_ADDR(p_info->public_base,
210 						     PUBLIC_MFW_MB));
211 	p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id);
212 	p_info->mfw_mb_length =	(u16)qed_rd(p_hwfn, p_ptt, p_info->mfw_mb_addr);
213 
214 	/* Get the current driver mailbox sequence before sending
215 	 * the first command
216 	 */
217 	p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) &
218 			     DRV_MSG_SEQ_NUMBER_MASK;
219 
220 	/* Get current FW pulse sequence */
221 	p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) &
222 				DRV_PULSE_SEQ_MASK;
223 
224 	p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
225 
226 	return 0;
227 }
228 
229 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
230 {
231 	struct qed_mcp_info *p_info;
232 	u32 size;
233 
234 	/* Allocate mcp_info structure */
235 	p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL);
236 	if (!p_hwfn->mcp_info)
237 		goto err;
238 	p_info = p_hwfn->mcp_info;
239 
240 	/* Initialize the MFW spinlock */
241 	spin_lock_init(&p_info->cmd_lock);
242 	spin_lock_init(&p_info->link_lock);
243 
244 	INIT_LIST_HEAD(&p_info->cmd_list);
245 
246 	if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) {
247 		DP_NOTICE(p_hwfn, "MCP is not initialized\n");
248 		/* Do not free mcp_info here, since public_base indicate that
249 		 * the MCP is not initialized
250 		 */
251 		return 0;
252 	}
253 
254 	size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32);
255 	p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL);
256 	p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL);
257 	if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow)
258 		goto err;
259 
260 	return 0;
261 
262 err:
263 	qed_mcp_free(p_hwfn);
264 	return -ENOMEM;
265 }
266 
267 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn,
268 				   struct qed_ptt *p_ptt)
269 {
270 	u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
271 
272 	/* Use MCP history register to check if MCP reset occurred between init
273 	 * time and now.
274 	 */
275 	if (p_hwfn->mcp_info->mcp_hist != generic_por_0) {
276 		DP_VERBOSE(p_hwfn,
277 			   QED_MSG_SP,
278 			   "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n",
279 			   p_hwfn->mcp_info->mcp_hist, generic_por_0);
280 
281 		qed_load_mcp_offsets(p_hwfn, p_ptt);
282 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
283 	}
284 }
285 
286 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
287 {
288 	u32 org_mcp_reset_seq, seq, delay = CHIP_MCP_RESP_ITER_US, cnt = 0;
289 	int rc = 0;
290 
291 	/* Ensure that only a single thread is accessing the mailbox */
292 	spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
293 
294 	org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0);
295 
296 	/* Set drv command along with the updated sequence */
297 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
298 	seq = ++p_hwfn->mcp_info->drv_mb_seq;
299 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq));
300 
301 	do {
302 		/* Wait for MFW response */
303 		udelay(delay);
304 		/* Give the FW up to 500 second (50*1000*10usec) */
305 	} while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt,
306 					      MISCS_REG_GENERIC_POR_0)) &&
307 		 (cnt++ < QED_MCP_RESET_RETRIES));
308 
309 	if (org_mcp_reset_seq !=
310 	    qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) {
311 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
312 			   "MCP was reset after %d usec\n", cnt * delay);
313 	} else {
314 		DP_ERR(p_hwfn, "Failed to reset MCP\n");
315 		rc = -EAGAIN;
316 	}
317 
318 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
319 
320 	return rc;
321 }
322 
323 /* Must be called while cmd_lock is acquired */
324 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn)
325 {
326 	struct qed_mcp_cmd_elem *p_cmd_elem;
327 
328 	/* There is at most one pending command at a certain time, and if it
329 	 * exists - it is placed at the HEAD of the list.
330 	 */
331 	if (!list_empty(&p_hwfn->mcp_info->cmd_list)) {
332 		p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list,
333 					      struct qed_mcp_cmd_elem, list);
334 		return !p_cmd_elem->b_is_completed;
335 	}
336 
337 	return false;
338 }
339 
340 /* Must be called while cmd_lock is acquired */
341 static int
342 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
343 {
344 	struct qed_mcp_mb_params *p_mb_params;
345 	struct qed_mcp_cmd_elem *p_cmd_elem;
346 	u32 mcp_resp;
347 	u16 seq_num;
348 
349 	mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header);
350 	seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK);
351 
352 	/* Return if no new non-handled response has been received */
353 	if (seq_num != p_hwfn->mcp_info->drv_mb_seq)
354 		return -EAGAIN;
355 
356 	p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num);
357 	if (!p_cmd_elem) {
358 		DP_ERR(p_hwfn,
359 		       "Failed to find a pending mailbox cmd that expects sequence number %d\n",
360 		       seq_num);
361 		return -EINVAL;
362 	}
363 
364 	p_mb_params = p_cmd_elem->p_mb_params;
365 
366 	/* Get the MFW response along with the sequence number */
367 	p_mb_params->mcp_resp = mcp_resp;
368 
369 	/* Get the MFW param */
370 	p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param);
371 
372 	/* Get the union data */
373 	if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) {
374 		u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
375 				      offsetof(struct public_drv_mb,
376 					       union_data);
377 		qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst,
378 				union_data_addr, p_mb_params->data_dst_size);
379 	}
380 
381 	p_cmd_elem->b_is_completed = true;
382 
383 	return 0;
384 }
385 
386 /* Must be called while cmd_lock is acquired */
387 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
388 				    struct qed_ptt *p_ptt,
389 				    struct qed_mcp_mb_params *p_mb_params,
390 				    u16 seq_num)
391 {
392 	union drv_union_data union_data;
393 	u32 union_data_addr;
394 
395 	/* Set the union data */
396 	union_data_addr = p_hwfn->mcp_info->drv_mb_addr +
397 			  offsetof(struct public_drv_mb, union_data);
398 	memset(&union_data, 0, sizeof(union_data));
399 	if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size)
400 		memcpy(&union_data, p_mb_params->p_data_src,
401 		       p_mb_params->data_src_size);
402 	qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data,
403 		      sizeof(union_data));
404 
405 	/* Set the drv param */
406 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param);
407 
408 	/* Set the drv command along with the sequence number */
409 	DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num));
410 
411 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
412 		   "MFW mailbox: command 0x%08x param 0x%08x\n",
413 		   (p_mb_params->cmd | seq_num), p_mb_params->param);
414 }
415 
416 static int
417 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
418 		       struct qed_ptt *p_ptt,
419 		       struct qed_mcp_mb_params *p_mb_params,
420 		       u32 max_retries, u32 delay)
421 {
422 	struct qed_mcp_cmd_elem *p_cmd_elem;
423 	u32 cnt = 0;
424 	u16 seq_num;
425 	int rc = 0;
426 
427 	/* Wait until the mailbox is non-occupied */
428 	do {
429 		/* Exit the loop if there is no pending command, or if the
430 		 * pending command is completed during this iteration.
431 		 * The spinlock stays locked until the command is sent.
432 		 */
433 
434 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
435 
436 		if (!qed_mcp_has_pending_cmd(p_hwfn))
437 			break;
438 
439 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
440 		if (!rc)
441 			break;
442 		else if (rc != -EAGAIN)
443 			goto err;
444 
445 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
446 		udelay(delay);
447 	} while (++cnt < max_retries);
448 
449 	if (cnt >= max_retries) {
450 		DP_NOTICE(p_hwfn,
451 			  "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n",
452 			  p_mb_params->cmd, p_mb_params->param);
453 		return -EAGAIN;
454 	}
455 
456 	/* Send the mailbox command */
457 	qed_mcp_reread_offsets(p_hwfn, p_ptt);
458 	seq_num = ++p_hwfn->mcp_info->drv_mb_seq;
459 	p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num);
460 	if (!p_cmd_elem) {
461 		rc = -ENOMEM;
462 		goto err;
463 	}
464 
465 	__qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num);
466 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
467 
468 	/* Wait for the MFW response */
469 	do {
470 		/* Exit the loop if the command is already completed, or if the
471 		 * command is completed during this iteration.
472 		 * The spinlock stays locked until the list element is removed.
473 		 */
474 
475 		udelay(delay);
476 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
477 
478 		if (p_cmd_elem->b_is_completed)
479 			break;
480 
481 		rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt);
482 		if (!rc)
483 			break;
484 		else if (rc != -EAGAIN)
485 			goto err;
486 
487 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
488 	} while (++cnt < max_retries);
489 
490 	if (cnt >= max_retries) {
491 		DP_NOTICE(p_hwfn,
492 			  "The MFW failed to respond to command 0x%08x [param 0x%08x].\n",
493 			  p_mb_params->cmd, p_mb_params->param);
494 
495 		spin_lock_bh(&p_hwfn->mcp_info->cmd_lock);
496 		qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
497 		spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
498 
499 		return -EAGAIN;
500 	}
501 
502 	qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem);
503 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
504 
505 	DP_VERBOSE(p_hwfn,
506 		   QED_MSG_SP,
507 		   "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n",
508 		   p_mb_params->mcp_resp,
509 		   p_mb_params->mcp_param,
510 		   (cnt * delay) / 1000, (cnt * delay) % 1000);
511 
512 	/* Clear the sequence number from the MFW response */
513 	p_mb_params->mcp_resp &= FW_MSG_CODE_MASK;
514 
515 	return 0;
516 
517 err:
518 	spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock);
519 	return rc;
520 }
521 
522 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn,
523 				 struct qed_ptt *p_ptt,
524 				 struct qed_mcp_mb_params *p_mb_params)
525 {
526 	size_t union_data_size = sizeof(union drv_union_data);
527 	u32 max_retries = QED_DRV_MB_MAX_RETRIES;
528 	u32 delay = CHIP_MCP_RESP_ITER_US;
529 
530 	/* MCP not initialized */
531 	if (!qed_mcp_is_init(p_hwfn)) {
532 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
533 		return -EBUSY;
534 	}
535 
536 	if (p_mb_params->data_src_size > union_data_size ||
537 	    p_mb_params->data_dst_size > union_data_size) {
538 		DP_ERR(p_hwfn,
539 		       "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n",
540 		       p_mb_params->data_src_size,
541 		       p_mb_params->data_dst_size, union_data_size);
542 		return -EINVAL;
543 	}
544 
545 	return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries,
546 				      delay);
547 }
548 
549 int qed_mcp_cmd(struct qed_hwfn *p_hwfn,
550 		struct qed_ptt *p_ptt,
551 		u32 cmd,
552 		u32 param,
553 		u32 *o_mcp_resp,
554 		u32 *o_mcp_param)
555 {
556 	struct qed_mcp_mb_params mb_params;
557 	int rc;
558 
559 	memset(&mb_params, 0, sizeof(mb_params));
560 	mb_params.cmd = cmd;
561 	mb_params.param = param;
562 
563 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
564 	if (rc)
565 		return rc;
566 
567 	*o_mcp_resp = mb_params.mcp_resp;
568 	*o_mcp_param = mb_params.mcp_param;
569 
570 	return 0;
571 }
572 
573 int qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn,
574 		       struct qed_ptt *p_ptt,
575 		       u32 cmd,
576 		       u32 param,
577 		       u32 *o_mcp_resp,
578 		       u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf)
579 {
580 	struct qed_mcp_mb_params mb_params;
581 	int rc;
582 
583 	memset(&mb_params, 0, sizeof(mb_params));
584 	mb_params.cmd = cmd;
585 	mb_params.param = param;
586 	mb_params.p_data_src = i_buf;
587 	mb_params.data_src_size = (u8)i_txn_size;
588 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
589 	if (rc)
590 		return rc;
591 
592 	*o_mcp_resp = mb_params.mcp_resp;
593 	*o_mcp_param = mb_params.mcp_param;
594 
595 	/* nvm_info needs to be updated */
596 	p_hwfn->nvm_info.valid = false;
597 
598 	return 0;
599 }
600 
601 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn,
602 		       struct qed_ptt *p_ptt,
603 		       u32 cmd,
604 		       u32 param,
605 		       u32 *o_mcp_resp,
606 		       u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf)
607 {
608 	struct qed_mcp_mb_params mb_params;
609 	u8 raw_data[MCP_DRV_NVM_BUF_LEN];
610 	int rc;
611 
612 	memset(&mb_params, 0, sizeof(mb_params));
613 	mb_params.cmd = cmd;
614 	mb_params.param = param;
615 	mb_params.p_data_dst = raw_data;
616 
617 	/* Use the maximal value since the actual one is part of the response */
618 	mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN;
619 
620 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
621 	if (rc)
622 		return rc;
623 
624 	*o_mcp_resp = mb_params.mcp_resp;
625 	*o_mcp_param = mb_params.mcp_param;
626 
627 	*o_txn_size = *o_mcp_param;
628 	memcpy(o_buf, raw_data, *o_txn_size);
629 
630 	return 0;
631 }
632 
633 static bool
634 qed_mcp_can_force_load(u8 drv_role,
635 		       u8 exist_drv_role,
636 		       enum qed_override_force_load override_force_load)
637 {
638 	bool can_force_load = false;
639 
640 	switch (override_force_load) {
641 	case QED_OVERRIDE_FORCE_LOAD_ALWAYS:
642 		can_force_load = true;
643 		break;
644 	case QED_OVERRIDE_FORCE_LOAD_NEVER:
645 		can_force_load = false;
646 		break;
647 	default:
648 		can_force_load = (drv_role == DRV_ROLE_OS &&
649 				  exist_drv_role == DRV_ROLE_PREBOOT) ||
650 				 (drv_role == DRV_ROLE_KDUMP &&
651 				  exist_drv_role == DRV_ROLE_OS);
652 		break;
653 	}
654 
655 	return can_force_load;
656 }
657 
658 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn,
659 				   struct qed_ptt *p_ptt)
660 {
661 	u32 resp = 0, param = 0;
662 	int rc;
663 
664 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0,
665 			 &resp, &param);
666 	if (rc)
667 		DP_NOTICE(p_hwfn,
668 			  "Failed to send cancel load request, rc = %d\n", rc);
669 
670 	return rc;
671 }
672 
673 #define CONFIG_QEDE_BITMAP_IDX		BIT(0)
674 #define CONFIG_QED_SRIOV_BITMAP_IDX	BIT(1)
675 #define CONFIG_QEDR_BITMAP_IDX		BIT(2)
676 #define CONFIG_QEDF_BITMAP_IDX		BIT(4)
677 #define CONFIG_QEDI_BITMAP_IDX		BIT(5)
678 #define CONFIG_QED_LL2_BITMAP_IDX	BIT(6)
679 
680 static u32 qed_get_config_bitmap(void)
681 {
682 	u32 config_bitmap = 0x0;
683 
684 	if (IS_ENABLED(CONFIG_QEDE))
685 		config_bitmap |= CONFIG_QEDE_BITMAP_IDX;
686 
687 	if (IS_ENABLED(CONFIG_QED_SRIOV))
688 		config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX;
689 
690 	if (IS_ENABLED(CONFIG_QED_RDMA))
691 		config_bitmap |= CONFIG_QEDR_BITMAP_IDX;
692 
693 	if (IS_ENABLED(CONFIG_QED_FCOE))
694 		config_bitmap |= CONFIG_QEDF_BITMAP_IDX;
695 
696 	if (IS_ENABLED(CONFIG_QED_ISCSI))
697 		config_bitmap |= CONFIG_QEDI_BITMAP_IDX;
698 
699 	if (IS_ENABLED(CONFIG_QED_LL2))
700 		config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX;
701 
702 	return config_bitmap;
703 }
704 
705 struct qed_load_req_in_params {
706 	u8 hsi_ver;
707 #define QED_LOAD_REQ_HSI_VER_DEFAULT	0
708 #define QED_LOAD_REQ_HSI_VER_1		1
709 	u32 drv_ver_0;
710 	u32 drv_ver_1;
711 	u32 fw_ver;
712 	u8 drv_role;
713 	u8 timeout_val;
714 	u8 force_cmd;
715 	bool avoid_eng_reset;
716 };
717 
718 struct qed_load_req_out_params {
719 	u32 load_code;
720 	u32 exist_drv_ver_0;
721 	u32 exist_drv_ver_1;
722 	u32 exist_fw_ver;
723 	u8 exist_drv_role;
724 	u8 mfw_hsi_ver;
725 	bool drv_exists;
726 };
727 
728 static int
729 __qed_mcp_load_req(struct qed_hwfn *p_hwfn,
730 		   struct qed_ptt *p_ptt,
731 		   struct qed_load_req_in_params *p_in_params,
732 		   struct qed_load_req_out_params *p_out_params)
733 {
734 	struct qed_mcp_mb_params mb_params;
735 	struct load_req_stc load_req;
736 	struct load_rsp_stc load_rsp;
737 	u32 hsi_ver;
738 	int rc;
739 
740 	memset(&load_req, 0, sizeof(load_req));
741 	load_req.drv_ver_0 = p_in_params->drv_ver_0;
742 	load_req.drv_ver_1 = p_in_params->drv_ver_1;
743 	load_req.fw_ver = p_in_params->fw_ver;
744 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role);
745 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO,
746 			  p_in_params->timeout_val);
747 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE,
748 			  p_in_params->force_cmd);
749 	QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0,
750 			  p_in_params->avoid_eng_reset);
751 
752 	hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ?
753 		  DRV_ID_MCP_HSI_VER_CURRENT :
754 		  (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT);
755 
756 	memset(&mb_params, 0, sizeof(mb_params));
757 	mb_params.cmd = DRV_MSG_CODE_LOAD_REQ;
758 	mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type;
759 	mb_params.p_data_src = &load_req;
760 	mb_params.data_src_size = sizeof(load_req);
761 	mb_params.p_data_dst = &load_rsp;
762 	mb_params.data_dst_size = sizeof(load_rsp);
763 
764 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
765 		   "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n",
766 		   mb_params.param,
767 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW),
768 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE),
769 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER),
770 		   QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER));
771 
772 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) {
773 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
774 			   "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n",
775 			   load_req.drv_ver_0,
776 			   load_req.drv_ver_1,
777 			   load_req.fw_ver,
778 			   load_req.misc0,
779 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE),
780 			   QED_MFW_GET_FIELD(load_req.misc0,
781 					     LOAD_REQ_LOCK_TO),
782 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE),
783 			   QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0));
784 	}
785 
786 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
787 	if (rc) {
788 		DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc);
789 		return rc;
790 	}
791 
792 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
793 		   "Load Response: resp 0x%08x\n", mb_params.mcp_resp);
794 	p_out_params->load_code = mb_params.mcp_resp;
795 
796 	if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
797 	    p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
798 		DP_VERBOSE(p_hwfn,
799 			   QED_MSG_SP,
800 			   "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n",
801 			   load_rsp.drv_ver_0,
802 			   load_rsp.drv_ver_1,
803 			   load_rsp.fw_ver,
804 			   load_rsp.misc0,
805 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE),
806 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI),
807 			   QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0));
808 
809 		p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0;
810 		p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1;
811 		p_out_params->exist_fw_ver = load_rsp.fw_ver;
812 		p_out_params->exist_drv_role =
813 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE);
814 		p_out_params->mfw_hsi_ver =
815 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI);
816 		p_out_params->drv_exists =
817 		    QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) &
818 		    LOAD_RSP_FLAGS0_DRV_EXISTS;
819 	}
820 
821 	return 0;
822 }
823 
824 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn,
825 				  enum qed_drv_role drv_role,
826 				  u8 *p_mfw_drv_role)
827 {
828 	switch (drv_role) {
829 	case QED_DRV_ROLE_OS:
830 		*p_mfw_drv_role = DRV_ROLE_OS;
831 		break;
832 	case QED_DRV_ROLE_KDUMP:
833 		*p_mfw_drv_role = DRV_ROLE_KDUMP;
834 		break;
835 	default:
836 		DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role);
837 		return -EINVAL;
838 	}
839 
840 	return 0;
841 }
842 
843 enum qed_load_req_force {
844 	QED_LOAD_REQ_FORCE_NONE,
845 	QED_LOAD_REQ_FORCE_PF,
846 	QED_LOAD_REQ_FORCE_ALL,
847 };
848 
849 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn,
850 
851 				  enum qed_load_req_force force_cmd,
852 				  u8 *p_mfw_force_cmd)
853 {
854 	switch (force_cmd) {
855 	case QED_LOAD_REQ_FORCE_NONE:
856 		*p_mfw_force_cmd = LOAD_REQ_FORCE_NONE;
857 		break;
858 	case QED_LOAD_REQ_FORCE_PF:
859 		*p_mfw_force_cmd = LOAD_REQ_FORCE_PF;
860 		break;
861 	case QED_LOAD_REQ_FORCE_ALL:
862 		*p_mfw_force_cmd = LOAD_REQ_FORCE_ALL;
863 		break;
864 	}
865 }
866 
867 int qed_mcp_load_req(struct qed_hwfn *p_hwfn,
868 		     struct qed_ptt *p_ptt,
869 		     struct qed_load_req_params *p_params)
870 {
871 	struct qed_load_req_out_params out_params;
872 	struct qed_load_req_in_params in_params;
873 	u8 mfw_drv_role, mfw_force_cmd;
874 	int rc;
875 
876 	memset(&in_params, 0, sizeof(in_params));
877 	in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT;
878 	in_params.drv_ver_0 = QED_VERSION;
879 	in_params.drv_ver_1 = qed_get_config_bitmap();
880 	in_params.fw_ver = STORM_FW_VERSION;
881 	rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role);
882 	if (rc)
883 		return rc;
884 
885 	in_params.drv_role = mfw_drv_role;
886 	in_params.timeout_val = p_params->timeout_val;
887 	qed_get_mfw_force_cmd(p_hwfn,
888 			      QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd);
889 
890 	in_params.force_cmd = mfw_force_cmd;
891 	in_params.avoid_eng_reset = p_params->avoid_eng_reset;
892 
893 	memset(&out_params, 0, sizeof(out_params));
894 	rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
895 	if (rc)
896 		return rc;
897 
898 	/* First handle cases where another load request should/might be sent:
899 	 * - MFW expects the old interface [HSI version = 1]
900 	 * - MFW responds that a force load request is required
901 	 */
902 	if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) {
903 		DP_INFO(p_hwfn,
904 			"MFW refused a load request due to HSI > 1. Resending with HSI = 1\n");
905 
906 		in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1;
907 		memset(&out_params, 0, sizeof(out_params));
908 		rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params);
909 		if (rc)
910 			return rc;
911 	} else if (out_params.load_code ==
912 		   FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) {
913 		if (qed_mcp_can_force_load(in_params.drv_role,
914 					   out_params.exist_drv_role,
915 					   p_params->override_force_load)) {
916 			DP_INFO(p_hwfn,
917 				"A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n",
918 				in_params.drv_role, in_params.fw_ver,
919 				in_params.drv_ver_0, in_params.drv_ver_1,
920 				out_params.exist_drv_role,
921 				out_params.exist_fw_ver,
922 				out_params.exist_drv_ver_0,
923 				out_params.exist_drv_ver_1);
924 
925 			qed_get_mfw_force_cmd(p_hwfn,
926 					      QED_LOAD_REQ_FORCE_ALL,
927 					      &mfw_force_cmd);
928 
929 			in_params.force_cmd = mfw_force_cmd;
930 			memset(&out_params, 0, sizeof(out_params));
931 			rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params,
932 						&out_params);
933 			if (rc)
934 				return rc;
935 		} else {
936 			DP_NOTICE(p_hwfn,
937 				  "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n",
938 				  in_params.drv_role, in_params.fw_ver,
939 				  in_params.drv_ver_0, in_params.drv_ver_1,
940 				  out_params.exist_drv_role,
941 				  out_params.exist_fw_ver,
942 				  out_params.exist_drv_ver_0,
943 				  out_params.exist_drv_ver_1);
944 			DP_NOTICE(p_hwfn,
945 				  "Avoid sending a force load request to prevent disruption of active PFs\n");
946 
947 			qed_mcp_cancel_load_req(p_hwfn, p_ptt);
948 			return -EBUSY;
949 		}
950 	}
951 
952 	/* Now handle the other types of responses.
953 	 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not
954 	 * expected here after the additional revised load requests were sent.
955 	 */
956 	switch (out_params.load_code) {
957 	case FW_MSG_CODE_DRV_LOAD_ENGINE:
958 	case FW_MSG_CODE_DRV_LOAD_PORT:
959 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
960 		if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 &&
961 		    out_params.drv_exists) {
962 			/* The role and fw/driver version match, but the PF is
963 			 * already loaded and has not been unloaded gracefully.
964 			 */
965 			DP_NOTICE(p_hwfn,
966 				  "PF is already loaded\n");
967 			return -EINVAL;
968 		}
969 		break;
970 	default:
971 		DP_NOTICE(p_hwfn,
972 			  "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n",
973 			  out_params.load_code);
974 		return -EBUSY;
975 	}
976 
977 	p_params->load_code = out_params.load_code;
978 
979 	return 0;
980 }
981 
982 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
983 {
984 	u32 wol_param, mcp_resp, mcp_param;
985 
986 	switch (p_hwfn->cdev->wol_config) {
987 	case QED_OV_WOL_DISABLED:
988 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED;
989 		break;
990 	case QED_OV_WOL_ENABLED:
991 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED;
992 		break;
993 	default:
994 		DP_NOTICE(p_hwfn,
995 			  "Unknown WoL configuration %02x\n",
996 			  p_hwfn->cdev->wol_config);
997 		/* Fallthrough */
998 	case QED_OV_WOL_DEFAULT:
999 		wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP;
1000 	}
1001 
1002 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_UNLOAD_REQ, wol_param,
1003 			   &mcp_resp, &mcp_param);
1004 }
1005 
1006 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1007 {
1008 	struct qed_mcp_mb_params mb_params;
1009 	struct mcp_mac wol_mac;
1010 
1011 	memset(&mb_params, 0, sizeof(mb_params));
1012 	mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE;
1013 
1014 	/* Set the primary MAC if WoL is enabled */
1015 	if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) {
1016 		u8 *p_mac = p_hwfn->cdev->wol_mac;
1017 
1018 		memset(&wol_mac, 0, sizeof(wol_mac));
1019 		wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1];
1020 		wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 |
1021 				    p_mac[4] << 8 | p_mac[5];
1022 
1023 		DP_VERBOSE(p_hwfn,
1024 			   (QED_MSG_SP | NETIF_MSG_IFDOWN),
1025 			   "Setting WoL MAC: %pM --> [%08x,%08x]\n",
1026 			   p_mac, wol_mac.mac_upper, wol_mac.mac_lower);
1027 
1028 		mb_params.p_data_src = &wol_mac;
1029 		mb_params.data_src_size = sizeof(wol_mac);
1030 	}
1031 
1032 	return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1033 }
1034 
1035 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn,
1036 				  struct qed_ptt *p_ptt)
1037 {
1038 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1039 					PUBLIC_PATH);
1040 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1041 	u32 path_addr = SECTION_ADDR(mfw_path_offsize,
1042 				     QED_PATH_ID(p_hwfn));
1043 	u32 disabled_vfs[VF_MAX_STATIC / 32];
1044 	int i;
1045 
1046 	DP_VERBOSE(p_hwfn,
1047 		   QED_MSG_SP,
1048 		   "Reading Disabled VF information from [offset %08x], path_addr %08x\n",
1049 		   mfw_path_offsize, path_addr);
1050 
1051 	for (i = 0; i < (VF_MAX_STATIC / 32); i++) {
1052 		disabled_vfs[i] = qed_rd(p_hwfn, p_ptt,
1053 					 path_addr +
1054 					 offsetof(struct public_path,
1055 						  mcp_vf_disabled) +
1056 					 sizeof(u32) * i);
1057 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1058 			   "FLR-ed VFs [%08x,...,%08x] - %08x\n",
1059 			   i * 32, (i + 1) * 32 - 1, disabled_vfs[i]);
1060 	}
1061 
1062 	if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs))
1063 		qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG);
1064 }
1065 
1066 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn,
1067 		       struct qed_ptt *p_ptt, u32 *vfs_to_ack)
1068 {
1069 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1070 					PUBLIC_FUNC);
1071 	u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr);
1072 	u32 func_addr = SECTION_ADDR(mfw_func_offsize,
1073 				     MCP_PF_ID(p_hwfn));
1074 	struct qed_mcp_mb_params mb_params;
1075 	int rc;
1076 	int i;
1077 
1078 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1079 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV),
1080 			   "Acking VFs [%08x,...,%08x] - %08x\n",
1081 			   i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]);
1082 
1083 	memset(&mb_params, 0, sizeof(mb_params));
1084 	mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE;
1085 	mb_params.p_data_src = vfs_to_ack;
1086 	mb_params.data_src_size = VF_MAX_STATIC / 8;
1087 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1088 	if (rc) {
1089 		DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n");
1090 		return -EBUSY;
1091 	}
1092 
1093 	/* Clear the ACK bits */
1094 	for (i = 0; i < (VF_MAX_STATIC / 32); i++)
1095 		qed_wr(p_hwfn, p_ptt,
1096 		       func_addr +
1097 		       offsetof(struct public_func, drv_ack_vf_disabled) +
1098 		       i * sizeof(u32), 0);
1099 
1100 	return rc;
1101 }
1102 
1103 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn,
1104 					      struct qed_ptt *p_ptt)
1105 {
1106 	u32 transceiver_state;
1107 
1108 	transceiver_state = qed_rd(p_hwfn, p_ptt,
1109 				   p_hwfn->mcp_info->port_addr +
1110 				   offsetof(struct public_port,
1111 					    transceiver_data));
1112 
1113 	DP_VERBOSE(p_hwfn,
1114 		   (NETIF_MSG_HW | QED_MSG_SP),
1115 		   "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n",
1116 		   transceiver_state,
1117 		   (u32)(p_hwfn->mcp_info->port_addr +
1118 			  offsetof(struct public_port, transceiver_data)));
1119 
1120 	transceiver_state = GET_FIELD(transceiver_state,
1121 				      ETH_TRANSCEIVER_STATE);
1122 
1123 	if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT)
1124 		DP_NOTICE(p_hwfn, "Transceiver is present.\n");
1125 	else
1126 		DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n");
1127 }
1128 
1129 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn,
1130 				    struct qed_ptt *p_ptt,
1131 				    struct qed_mcp_link_state *p_link)
1132 {
1133 	u32 eee_status, val;
1134 
1135 	p_link->eee_adv_caps = 0;
1136 	p_link->eee_lp_adv_caps = 0;
1137 	eee_status = qed_rd(p_hwfn,
1138 			    p_ptt,
1139 			    p_hwfn->mcp_info->port_addr +
1140 			    offsetof(struct public_port, eee_status));
1141 	p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT);
1142 	val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET;
1143 	if (val & EEE_1G_ADV)
1144 		p_link->eee_adv_caps |= QED_EEE_1G_ADV;
1145 	if (val & EEE_10G_ADV)
1146 		p_link->eee_adv_caps |= QED_EEE_10G_ADV;
1147 	val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET;
1148 	if (val & EEE_1G_ADV)
1149 		p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV;
1150 	if (val & EEE_10G_ADV)
1151 		p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV;
1152 }
1153 
1154 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn,
1155 				       struct qed_ptt *p_ptt, bool b_reset)
1156 {
1157 	struct qed_mcp_link_state *p_link;
1158 	u8 max_bw, min_bw;
1159 	u32 status = 0;
1160 
1161 	/* Prevent SW/attentions from doing this at the same time */
1162 	spin_lock_bh(&p_hwfn->mcp_info->link_lock);
1163 
1164 	p_link = &p_hwfn->mcp_info->link_output;
1165 	memset(p_link, 0, sizeof(*p_link));
1166 	if (!b_reset) {
1167 		status = qed_rd(p_hwfn, p_ptt,
1168 				p_hwfn->mcp_info->port_addr +
1169 				offsetof(struct public_port, link_status));
1170 		DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP),
1171 			   "Received link update [0x%08x] from mfw [Addr 0x%x]\n",
1172 			   status,
1173 			   (u32)(p_hwfn->mcp_info->port_addr +
1174 				 offsetof(struct public_port, link_status)));
1175 	} else {
1176 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1177 			   "Resetting link indications\n");
1178 		goto out;
1179 	}
1180 
1181 	if (p_hwfn->b_drv_link_init)
1182 		p_link->link_up = !!(status & LINK_STATUS_LINK_UP);
1183 	else
1184 		p_link->link_up = false;
1185 
1186 	p_link->full_duplex = true;
1187 	switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) {
1188 	case LINK_STATUS_SPEED_AND_DUPLEX_100G:
1189 		p_link->speed = 100000;
1190 		break;
1191 	case LINK_STATUS_SPEED_AND_DUPLEX_50G:
1192 		p_link->speed = 50000;
1193 		break;
1194 	case LINK_STATUS_SPEED_AND_DUPLEX_40G:
1195 		p_link->speed = 40000;
1196 		break;
1197 	case LINK_STATUS_SPEED_AND_DUPLEX_25G:
1198 		p_link->speed = 25000;
1199 		break;
1200 	case LINK_STATUS_SPEED_AND_DUPLEX_20G:
1201 		p_link->speed = 20000;
1202 		break;
1203 	case LINK_STATUS_SPEED_AND_DUPLEX_10G:
1204 		p_link->speed = 10000;
1205 		break;
1206 	case LINK_STATUS_SPEED_AND_DUPLEX_1000THD:
1207 		p_link->full_duplex = false;
1208 	/* Fall-through */
1209 	case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD:
1210 		p_link->speed = 1000;
1211 		break;
1212 	default:
1213 		p_link->speed = 0;
1214 	}
1215 
1216 	if (p_link->link_up && p_link->speed)
1217 		p_link->line_speed = p_link->speed;
1218 	else
1219 		p_link->line_speed = 0;
1220 
1221 	max_bw = p_hwfn->mcp_info->func_info.bandwidth_max;
1222 	min_bw = p_hwfn->mcp_info->func_info.bandwidth_min;
1223 
1224 	/* Max bandwidth configuration */
1225 	__qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw);
1226 
1227 	/* Min bandwidth configuration */
1228 	__qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw);
1229 	qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt,
1230 					    p_link->min_pf_rate);
1231 
1232 	p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED);
1233 	p_link->an_complete = !!(status &
1234 				 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE);
1235 	p_link->parallel_detection = !!(status &
1236 					LINK_STATUS_PARALLEL_DETECTION_USED);
1237 	p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED);
1238 
1239 	p_link->partner_adv_speed |=
1240 		(status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ?
1241 		QED_LINK_PARTNER_SPEED_1G_FD : 0;
1242 	p_link->partner_adv_speed |=
1243 		(status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ?
1244 		QED_LINK_PARTNER_SPEED_1G_HD : 0;
1245 	p_link->partner_adv_speed |=
1246 		(status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ?
1247 		QED_LINK_PARTNER_SPEED_10G : 0;
1248 	p_link->partner_adv_speed |=
1249 		(status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ?
1250 		QED_LINK_PARTNER_SPEED_20G : 0;
1251 	p_link->partner_adv_speed |=
1252 		(status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ?
1253 		QED_LINK_PARTNER_SPEED_25G : 0;
1254 	p_link->partner_adv_speed |=
1255 		(status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ?
1256 		QED_LINK_PARTNER_SPEED_40G : 0;
1257 	p_link->partner_adv_speed |=
1258 		(status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ?
1259 		QED_LINK_PARTNER_SPEED_50G : 0;
1260 	p_link->partner_adv_speed |=
1261 		(status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ?
1262 		QED_LINK_PARTNER_SPEED_100G : 0;
1263 
1264 	p_link->partner_tx_flow_ctrl_en =
1265 		!!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED);
1266 	p_link->partner_rx_flow_ctrl_en =
1267 		!!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED);
1268 
1269 	switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) {
1270 	case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE:
1271 		p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE;
1272 		break;
1273 	case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE:
1274 		p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE;
1275 		break;
1276 	case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE:
1277 		p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE;
1278 		break;
1279 	default:
1280 		p_link->partner_adv_pause = 0;
1281 	}
1282 
1283 	p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT);
1284 
1285 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE)
1286 		qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link);
1287 
1288 	qed_link_update(p_hwfn);
1289 out:
1290 	spin_unlock_bh(&p_hwfn->mcp_info->link_lock);
1291 }
1292 
1293 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up)
1294 {
1295 	struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input;
1296 	struct qed_mcp_mb_params mb_params;
1297 	struct eth_phy_cfg phy_cfg;
1298 	int rc = 0;
1299 	u32 cmd;
1300 
1301 	/* Set the shmem configuration according to params */
1302 	memset(&phy_cfg, 0, sizeof(phy_cfg));
1303 	cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET;
1304 	if (!params->speed.autoneg)
1305 		phy_cfg.speed = params->speed.forced_speed;
1306 	phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0;
1307 	phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0;
1308 	phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0;
1309 	phy_cfg.adv_speed = params->speed.advertised_speeds;
1310 	phy_cfg.loopback_mode = params->loopback_mode;
1311 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
1312 		if (params->eee.enable)
1313 			phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED;
1314 		if (params->eee.tx_lpi_enable)
1315 			phy_cfg.eee_cfg |= EEE_CFG_TX_LPI;
1316 		if (params->eee.adv_caps & QED_EEE_1G_ADV)
1317 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G;
1318 		if (params->eee.adv_caps & QED_EEE_10G_ADV)
1319 			phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G;
1320 		phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer <<
1321 				    EEE_TX_TIMER_USEC_OFFSET) &
1322 				   EEE_TX_TIMER_USEC_MASK;
1323 	}
1324 
1325 	p_hwfn->b_drv_link_init = b_up;
1326 
1327 	if (b_up) {
1328 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1329 			   "Configuring Link: Speed 0x%08x, Pause 0x%08x, adv_speed 0x%08x, loopback 0x%08x, features 0x%08x\n",
1330 			   phy_cfg.speed,
1331 			   phy_cfg.pause,
1332 			   phy_cfg.adv_speed,
1333 			   phy_cfg.loopback_mode,
1334 			   phy_cfg.feature_config_flags);
1335 	} else {
1336 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1337 			   "Resetting link\n");
1338 	}
1339 
1340 	memset(&mb_params, 0, sizeof(mb_params));
1341 	mb_params.cmd = cmd;
1342 	mb_params.p_data_src = &phy_cfg;
1343 	mb_params.data_src_size = sizeof(phy_cfg);
1344 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1345 
1346 	/* if mcp fails to respond we must abort */
1347 	if (rc) {
1348 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
1349 		return rc;
1350 	}
1351 
1352 	/* Mimic link-change attention, done for several reasons:
1353 	 *  - On reset, there's no guarantee MFW would trigger
1354 	 *    an attention.
1355 	 *  - On initialization, older MFWs might not indicate link change
1356 	 *    during LFA, so we'll never get an UP indication.
1357 	 */
1358 	qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up);
1359 
1360 	return 0;
1361 }
1362 
1363 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn,
1364 					struct qed_ptt *p_ptt,
1365 					enum MFW_DRV_MSG_TYPE type)
1366 {
1367 	enum qed_mcp_protocol_type stats_type;
1368 	union qed_mcp_protocol_stats stats;
1369 	struct qed_mcp_mb_params mb_params;
1370 	u32 hsi_param;
1371 
1372 	switch (type) {
1373 	case MFW_DRV_MSG_GET_LAN_STATS:
1374 		stats_type = QED_MCP_LAN_STATS;
1375 		hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN;
1376 		break;
1377 	case MFW_DRV_MSG_GET_FCOE_STATS:
1378 		stats_type = QED_MCP_FCOE_STATS;
1379 		hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE;
1380 		break;
1381 	case MFW_DRV_MSG_GET_ISCSI_STATS:
1382 		stats_type = QED_MCP_ISCSI_STATS;
1383 		hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI;
1384 		break;
1385 	case MFW_DRV_MSG_GET_RDMA_STATS:
1386 		stats_type = QED_MCP_RDMA_STATS;
1387 		hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA;
1388 		break;
1389 	default:
1390 		DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type);
1391 		return;
1392 	}
1393 
1394 	qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats);
1395 
1396 	memset(&mb_params, 0, sizeof(mb_params));
1397 	mb_params.cmd = DRV_MSG_CODE_GET_STATS;
1398 	mb_params.param = hsi_param;
1399 	mb_params.p_data_src = &stats;
1400 	mb_params.data_src_size = sizeof(stats);
1401 	qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
1402 }
1403 
1404 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn,
1405 				  struct public_func *p_shmem_info)
1406 {
1407 	struct qed_mcp_function_info *p_info;
1408 
1409 	p_info = &p_hwfn->mcp_info->func_info;
1410 
1411 	p_info->bandwidth_min = (p_shmem_info->config &
1412 				 FUNC_MF_CFG_MIN_BW_MASK) >>
1413 					FUNC_MF_CFG_MIN_BW_SHIFT;
1414 	if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) {
1415 		DP_INFO(p_hwfn,
1416 			"bandwidth minimum out of bounds [%02x]. Set to 1\n",
1417 			p_info->bandwidth_min);
1418 		p_info->bandwidth_min = 1;
1419 	}
1420 
1421 	p_info->bandwidth_max = (p_shmem_info->config &
1422 				 FUNC_MF_CFG_MAX_BW_MASK) >>
1423 					FUNC_MF_CFG_MAX_BW_SHIFT;
1424 	if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) {
1425 		DP_INFO(p_hwfn,
1426 			"bandwidth maximum out of bounds [%02x]. Set to 100\n",
1427 			p_info->bandwidth_max);
1428 		p_info->bandwidth_max = 100;
1429 	}
1430 }
1431 
1432 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn,
1433 				  struct qed_ptt *p_ptt,
1434 				  struct public_func *p_data, int pfid)
1435 {
1436 	u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
1437 					PUBLIC_FUNC);
1438 	u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr);
1439 	u32 func_addr = SECTION_ADDR(mfw_path_offsize, pfid);
1440 	u32 i, size;
1441 
1442 	memset(p_data, 0, sizeof(*p_data));
1443 
1444 	size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize));
1445 	for (i = 0; i < size / sizeof(u32); i++)
1446 		((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt,
1447 					    func_addr + (i << 2));
1448 	return size;
1449 }
1450 
1451 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1452 {
1453 	struct qed_mcp_function_info *p_info;
1454 	struct public_func shmem_info;
1455 	u32 resp = 0, param = 0;
1456 
1457 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1458 
1459 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1460 
1461 	p_info = &p_hwfn->mcp_info->func_info;
1462 
1463 	qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min);
1464 	qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max);
1465 
1466 	/* Acknowledge the MFW */
1467 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp,
1468 		    &param);
1469 }
1470 
1471 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1472 {
1473 	struct public_func shmem_info;
1474 	u32 resp = 0, param = 0;
1475 
1476 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1477 
1478 	p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag &
1479 						 FUNC_MF_CFG_OV_STAG_MASK;
1480 	p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan;
1481 	if ((p_hwfn->hw_info.hw_mode & BIT(MODE_MF_SD)) &&
1482 	    (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET)) {
1483 		qed_wr(p_hwfn, p_ptt,
1484 		       NIG_REG_LLH_FUNC_TAG_VALUE, p_hwfn->hw_info.ovlan);
1485 		qed_sp_pf_update_stag(p_hwfn);
1486 	}
1487 
1488 	/* Acknowledge the MFW */
1489 	qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0,
1490 		    &resp, &param);
1491 }
1492 
1493 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1494 {
1495 	struct public_func shmem_info;
1496 	u32 port_cfg, val;
1497 
1498 	if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits))
1499 		return;
1500 
1501 	memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info));
1502 	port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1503 			  offsetof(struct public_port, oem_cfg_port));
1504 	val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >>
1505 		OEM_CFG_CHANNEL_TYPE_OFFSET;
1506 	if (val != OEM_CFG_CHANNEL_TYPE_STAGGED)
1507 		DP_NOTICE(p_hwfn, "Incorrect UFP Channel type  %d\n", val);
1508 
1509 	val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET;
1510 	if (val == OEM_CFG_SCHED_TYPE_ETS) {
1511 		p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS;
1512 	} else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) {
1513 		p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW;
1514 	} else {
1515 		p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN;
1516 		DP_NOTICE(p_hwfn, "Unknown UFP scheduling mode %d\n", val);
1517 	}
1518 
1519 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1520 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >>
1521 		OEM_CFG_FUNC_TC_OFFSET;
1522 	p_hwfn->ufp_info.tc = (u8)val;
1523 	val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >>
1524 		OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET;
1525 	if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) {
1526 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC;
1527 	} else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) {
1528 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS;
1529 	} else {
1530 		p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN;
1531 		DP_NOTICE(p_hwfn, "Unknown Host priority control %d\n", val);
1532 	}
1533 
1534 	DP_NOTICE(p_hwfn,
1535 		  "UFP shmem config: mode = %d tc = %d pri_type = %d\n",
1536 		  p_hwfn->ufp_info.mode,
1537 		  p_hwfn->ufp_info.tc, p_hwfn->ufp_info.pri_type);
1538 }
1539 
1540 static int
1541 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1542 {
1543 	qed_mcp_read_ufp_config(p_hwfn, p_ptt);
1544 
1545 	if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) {
1546 		p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc;
1547 		p_hwfn->hw_info.offload_tc = p_hwfn->ufp_info.tc;
1548 
1549 		qed_qm_reconf(p_hwfn, p_ptt);
1550 	} else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) {
1551 		/* Merge UFP TC with the dcbx TC data */
1552 		qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1553 					  QED_DCBX_OPERATIONAL_MIB);
1554 	} else {
1555 		DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n");
1556 		return -EINVAL;
1557 	}
1558 
1559 	/* update storm FW with negotiation results */
1560 	qed_sp_pf_update_ufp(p_hwfn);
1561 
1562 	/* update stag pcp value */
1563 	qed_sp_pf_update_stag(p_hwfn);
1564 
1565 	return 0;
1566 }
1567 
1568 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn,
1569 			  struct qed_ptt *p_ptt)
1570 {
1571 	struct qed_mcp_info *info = p_hwfn->mcp_info;
1572 	int rc = 0;
1573 	bool found = false;
1574 	u16 i;
1575 
1576 	DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n");
1577 
1578 	/* Read Messages from MFW */
1579 	qed_mcp_read_mb(p_hwfn, p_ptt);
1580 
1581 	/* Compare current messages to old ones */
1582 	for (i = 0; i < info->mfw_mb_length; i++) {
1583 		if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i])
1584 			continue;
1585 
1586 		found = true;
1587 
1588 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
1589 			   "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n",
1590 			   i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]);
1591 
1592 		switch (i) {
1593 		case MFW_DRV_MSG_LINK_CHANGE:
1594 			qed_mcp_handle_link_change(p_hwfn, p_ptt, false);
1595 			break;
1596 		case MFW_DRV_MSG_VF_DISABLED:
1597 			qed_mcp_handle_vf_flr(p_hwfn, p_ptt);
1598 			break;
1599 		case MFW_DRV_MSG_LLDP_DATA_UPDATED:
1600 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1601 						  QED_DCBX_REMOTE_LLDP_MIB);
1602 			break;
1603 		case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED:
1604 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1605 						  QED_DCBX_REMOTE_MIB);
1606 			break;
1607 		case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED:
1608 			qed_dcbx_mib_update_event(p_hwfn, p_ptt,
1609 						  QED_DCBX_OPERATIONAL_MIB);
1610 			break;
1611 		case MFW_DRV_MSG_OEM_CFG_UPDATE:
1612 			qed_mcp_handle_ufp_event(p_hwfn, p_ptt);
1613 			break;
1614 		case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE:
1615 			qed_mcp_handle_transceiver_change(p_hwfn, p_ptt);
1616 			break;
1617 		case MFW_DRV_MSG_GET_LAN_STATS:
1618 		case MFW_DRV_MSG_GET_FCOE_STATS:
1619 		case MFW_DRV_MSG_GET_ISCSI_STATS:
1620 		case MFW_DRV_MSG_GET_RDMA_STATS:
1621 			qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i);
1622 			break;
1623 		case MFW_DRV_MSG_BW_UPDATE:
1624 			qed_mcp_update_bw(p_hwfn, p_ptt);
1625 			break;
1626 		case MFW_DRV_MSG_S_TAG_UPDATE:
1627 			qed_mcp_update_stag(p_hwfn, p_ptt);
1628 			break;
1629 		case MFW_DRV_MSG_GET_TLV_REQ:
1630 			qed_mfw_tlv_req(p_hwfn);
1631 			break;
1632 		default:
1633 			DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i);
1634 			rc = -EINVAL;
1635 		}
1636 	}
1637 
1638 	/* ACK everything */
1639 	for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) {
1640 		__be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]);
1641 
1642 		/* MFW expect answer in BE, so we force write in that format */
1643 		qed_wr(p_hwfn, p_ptt,
1644 		       info->mfw_mb_addr + sizeof(u32) +
1645 		       MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) *
1646 		       sizeof(u32) + i * sizeof(u32),
1647 		       (__force u32)val);
1648 	}
1649 
1650 	if (!found) {
1651 		DP_NOTICE(p_hwfn,
1652 			  "Received an MFW message indication but no new message!\n");
1653 		rc = -EINVAL;
1654 	}
1655 
1656 	/* Copy the new mfw messages into the shadow */
1657 	memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length);
1658 
1659 	return rc;
1660 }
1661 
1662 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn,
1663 			struct qed_ptt *p_ptt,
1664 			u32 *p_mfw_ver, u32 *p_running_bundle_id)
1665 {
1666 	u32 global_offsize;
1667 
1668 	if (IS_VF(p_hwfn->cdev)) {
1669 		if (p_hwfn->vf_iov_info) {
1670 			struct pfvf_acquire_resp_tlv *p_resp;
1671 
1672 			p_resp = &p_hwfn->vf_iov_info->acquire_resp;
1673 			*p_mfw_ver = p_resp->pfdev_info.mfw_ver;
1674 			return 0;
1675 		} else {
1676 			DP_VERBOSE(p_hwfn,
1677 				   QED_MSG_IOV,
1678 				   "VF requested MFW version prior to ACQUIRE\n");
1679 			return -EINVAL;
1680 		}
1681 	}
1682 
1683 	global_offsize = qed_rd(p_hwfn, p_ptt,
1684 				SECTION_OFFSIZE_ADDR(p_hwfn->
1685 						     mcp_info->public_base,
1686 						     PUBLIC_GLOBAL));
1687 	*p_mfw_ver =
1688 	    qed_rd(p_hwfn, p_ptt,
1689 		   SECTION_ADDR(global_offsize,
1690 				0) + offsetof(struct public_global, mfw_ver));
1691 
1692 	if (p_running_bundle_id != NULL) {
1693 		*p_running_bundle_id = qed_rd(p_hwfn, p_ptt,
1694 					      SECTION_ADDR(global_offsize, 0) +
1695 					      offsetof(struct public_global,
1696 						       running_bundle_id));
1697 	}
1698 
1699 	return 0;
1700 }
1701 
1702 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn,
1703 			struct qed_ptt *p_ptt, u32 *p_mbi_ver)
1704 {
1705 	u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr;
1706 
1707 	if (IS_VF(p_hwfn->cdev))
1708 		return -EINVAL;
1709 
1710 	/* Read the address of the nvm_cfg */
1711 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
1712 	if (!nvm_cfg_addr) {
1713 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
1714 		return -EINVAL;
1715 	}
1716 
1717 	/* Read the offset of nvm_cfg1 */
1718 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
1719 
1720 	mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
1721 		       offsetof(struct nvm_cfg1, glob) +
1722 		       offsetof(struct nvm_cfg1_glob, mbi_version);
1723 	*p_mbi_ver = qed_rd(p_hwfn, p_ptt,
1724 			    mbi_ver_addr) &
1725 		     (NVM_CFG1_GLOB_MBI_VERSION_0_MASK |
1726 		      NVM_CFG1_GLOB_MBI_VERSION_1_MASK |
1727 		      NVM_CFG1_GLOB_MBI_VERSION_2_MASK);
1728 
1729 	return 0;
1730 }
1731 
1732 int qed_mcp_get_media_type(struct qed_dev *cdev, u32 *p_media_type)
1733 {
1734 	struct qed_hwfn *p_hwfn = &cdev->hwfns[0];
1735 	struct qed_ptt  *p_ptt;
1736 
1737 	if (IS_VF(cdev))
1738 		return -EINVAL;
1739 
1740 	if (!qed_mcp_is_init(p_hwfn)) {
1741 		DP_NOTICE(p_hwfn, "MFW is not initialized!\n");
1742 		return -EBUSY;
1743 	}
1744 
1745 	*p_media_type = MEDIA_UNSPECIFIED;
1746 
1747 	p_ptt = qed_ptt_acquire(p_hwfn);
1748 	if (!p_ptt)
1749 		return -EBUSY;
1750 
1751 	*p_media_type = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
1752 			       offsetof(struct public_port, media_type));
1753 
1754 	qed_ptt_release(p_hwfn, p_ptt);
1755 
1756 	return 0;
1757 }
1758 
1759 /* Old MFW has a global configuration for all PFs regarding RDMA support */
1760 static void
1761 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn,
1762 			       enum qed_pci_personality *p_proto)
1763 {
1764 	/* There wasn't ever a legacy MFW that published iwarp.
1765 	 * So at this point, this is either plain l2 or RoCE.
1766 	 */
1767 	if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities))
1768 		*p_proto = QED_PCI_ETH_ROCE;
1769 	else
1770 		*p_proto = QED_PCI_ETH;
1771 
1772 	DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1773 		   "According to Legacy capabilities, L2 personality is %08x\n",
1774 		   (u32) *p_proto);
1775 }
1776 
1777 static int
1778 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn,
1779 			    struct qed_ptt *p_ptt,
1780 			    enum qed_pci_personality *p_proto)
1781 {
1782 	u32 resp = 0, param = 0;
1783 	int rc;
1784 
1785 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
1786 			 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, &param);
1787 	if (rc)
1788 		return rc;
1789 	if (resp != FW_MSG_CODE_OK) {
1790 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP,
1791 			   "MFW lacks support for command; Returns %08x\n",
1792 			   resp);
1793 		return -EINVAL;
1794 	}
1795 
1796 	switch (param) {
1797 	case FW_MB_PARAM_GET_PF_RDMA_NONE:
1798 		*p_proto = QED_PCI_ETH;
1799 		break;
1800 	case FW_MB_PARAM_GET_PF_RDMA_ROCE:
1801 		*p_proto = QED_PCI_ETH_ROCE;
1802 		break;
1803 	case FW_MB_PARAM_GET_PF_RDMA_IWARP:
1804 		*p_proto = QED_PCI_ETH_IWARP;
1805 		break;
1806 	case FW_MB_PARAM_GET_PF_RDMA_BOTH:
1807 		*p_proto = QED_PCI_ETH_RDMA;
1808 		break;
1809 	default:
1810 		DP_NOTICE(p_hwfn,
1811 			  "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n",
1812 			  param);
1813 		return -EINVAL;
1814 	}
1815 
1816 	DP_VERBOSE(p_hwfn,
1817 		   NETIF_MSG_IFUP,
1818 		   "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n",
1819 		   (u32) *p_proto, resp, param);
1820 	return 0;
1821 }
1822 
1823 static int
1824 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn,
1825 			struct public_func *p_info,
1826 			struct qed_ptt *p_ptt,
1827 			enum qed_pci_personality *p_proto)
1828 {
1829 	int rc = 0;
1830 
1831 	switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) {
1832 	case FUNC_MF_CFG_PROTOCOL_ETHERNET:
1833 		if (!IS_ENABLED(CONFIG_QED_RDMA))
1834 			*p_proto = QED_PCI_ETH;
1835 		else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto))
1836 			qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto);
1837 		break;
1838 	case FUNC_MF_CFG_PROTOCOL_ISCSI:
1839 		*p_proto = QED_PCI_ISCSI;
1840 		break;
1841 	case FUNC_MF_CFG_PROTOCOL_FCOE:
1842 		*p_proto = QED_PCI_FCOE;
1843 		break;
1844 	case FUNC_MF_CFG_PROTOCOL_ROCE:
1845 		DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n");
1846 	/* Fallthrough */
1847 	default:
1848 		rc = -EINVAL;
1849 	}
1850 
1851 	return rc;
1852 }
1853 
1854 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn,
1855 				 struct qed_ptt *p_ptt)
1856 {
1857 	struct qed_mcp_function_info *info;
1858 	struct public_func shmem_info;
1859 
1860 	qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn));
1861 	info = &p_hwfn->mcp_info->func_info;
1862 
1863 	info->pause_on_host = (shmem_info.config &
1864 			       FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0;
1865 
1866 	if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt,
1867 				    &info->protocol)) {
1868 		DP_ERR(p_hwfn, "Unknown personality %08x\n",
1869 		       (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK));
1870 		return -EINVAL;
1871 	}
1872 
1873 	qed_read_pf_bandwidth(p_hwfn, &shmem_info);
1874 
1875 	if (shmem_info.mac_upper || shmem_info.mac_lower) {
1876 		info->mac[0] = (u8)(shmem_info.mac_upper >> 8);
1877 		info->mac[1] = (u8)(shmem_info.mac_upper);
1878 		info->mac[2] = (u8)(shmem_info.mac_lower >> 24);
1879 		info->mac[3] = (u8)(shmem_info.mac_lower >> 16);
1880 		info->mac[4] = (u8)(shmem_info.mac_lower >> 8);
1881 		info->mac[5] = (u8)(shmem_info.mac_lower);
1882 
1883 		/* Store primary MAC for later possible WoL */
1884 		memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN);
1885 	} else {
1886 		DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n");
1887 	}
1888 
1889 	info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower |
1890 			 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32);
1891 	info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower |
1892 			 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32);
1893 
1894 	info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK);
1895 
1896 	info->mtu = (u16)shmem_info.mtu_size;
1897 
1898 	p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE;
1899 	p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT;
1900 	if (qed_mcp_is_init(p_hwfn)) {
1901 		u32 resp = 0, param = 0;
1902 		int rc;
1903 
1904 		rc = qed_mcp_cmd(p_hwfn, p_ptt,
1905 				 DRV_MSG_CODE_OS_WOL, 0, &resp, &param);
1906 		if (rc)
1907 			return rc;
1908 		if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED)
1909 			p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME;
1910 	}
1911 
1912 	DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP),
1913 		   "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %02x:%02x:%02x:%02x:%02x:%02x wwn port %llx node %llx ovlan %04x wol %02x\n",
1914 		info->pause_on_host, info->protocol,
1915 		info->bandwidth_min, info->bandwidth_max,
1916 		info->mac[0], info->mac[1], info->mac[2],
1917 		info->mac[3], info->mac[4], info->mac[5],
1918 		info->wwn_port, info->wwn_node,
1919 		info->ovlan, (u8)p_hwfn->hw_info.b_wol_support);
1920 
1921 	return 0;
1922 }
1923 
1924 struct qed_mcp_link_params
1925 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn)
1926 {
1927 	if (!p_hwfn || !p_hwfn->mcp_info)
1928 		return NULL;
1929 	return &p_hwfn->mcp_info->link_input;
1930 }
1931 
1932 struct qed_mcp_link_state
1933 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn)
1934 {
1935 	if (!p_hwfn || !p_hwfn->mcp_info)
1936 		return NULL;
1937 	return &p_hwfn->mcp_info->link_output;
1938 }
1939 
1940 struct qed_mcp_link_capabilities
1941 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn)
1942 {
1943 	if (!p_hwfn || !p_hwfn->mcp_info)
1944 		return NULL;
1945 	return &p_hwfn->mcp_info->link_capabilities;
1946 }
1947 
1948 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1949 {
1950 	u32 resp = 0, param = 0;
1951 	int rc;
1952 
1953 	rc = qed_mcp_cmd(p_hwfn, p_ptt,
1954 			 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, &param);
1955 
1956 	/* Wait for the drain to complete before returning */
1957 	msleep(1020);
1958 
1959 	return rc;
1960 }
1961 
1962 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn,
1963 			   struct qed_ptt *p_ptt, u32 *p_flash_size)
1964 {
1965 	u32 flash_size;
1966 
1967 	if (IS_VF(p_hwfn->cdev))
1968 		return -EINVAL;
1969 
1970 	flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4);
1971 	flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >>
1972 		      MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT;
1973 	flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT));
1974 
1975 	*p_flash_size = flash_size;
1976 
1977 	return 0;
1978 }
1979 
1980 static int
1981 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn,
1982 			  struct qed_ptt *p_ptt, u8 vf_id, u8 num)
1983 {
1984 	u32 resp = 0, param = 0, rc_param = 0;
1985 	int rc;
1986 
1987 	/* Only Leader can configure MSIX, and need to take CMT into account */
1988 	if (!IS_LEAD_HWFN(p_hwfn))
1989 		return 0;
1990 	num *= p_hwfn->cdev->num_hwfns;
1991 
1992 	param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) &
1993 		 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK;
1994 	param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) &
1995 		 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK;
1996 
1997 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param,
1998 			 &resp, &rc_param);
1999 
2000 	if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) {
2001 		DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id);
2002 		rc = -EINVAL;
2003 	} else {
2004 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2005 			   "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n",
2006 			   num, vf_id);
2007 	}
2008 
2009 	return rc;
2010 }
2011 
2012 static int
2013 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn,
2014 			  struct qed_ptt *p_ptt, u8 num)
2015 {
2016 	u32 resp = 0, param = num, rc_param = 0;
2017 	int rc;
2018 
2019 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX,
2020 			 param, &resp, &rc_param);
2021 
2022 	if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) {
2023 		DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n");
2024 		rc = -EINVAL;
2025 	} else {
2026 		DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2027 			   "Requested 0x%02x MSI-x interrupts for VFs\n", num);
2028 	}
2029 
2030 	return rc;
2031 }
2032 
2033 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn,
2034 			   struct qed_ptt *p_ptt, u8 vf_id, u8 num)
2035 {
2036 	if (QED_IS_BB(p_hwfn->cdev))
2037 		return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num);
2038 	else
2039 		return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num);
2040 }
2041 
2042 int
2043 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn,
2044 			 struct qed_ptt *p_ptt,
2045 			 struct qed_mcp_drv_version *p_ver)
2046 {
2047 	struct qed_mcp_mb_params mb_params;
2048 	struct drv_version_stc drv_version;
2049 	__be32 val;
2050 	u32 i;
2051 	int rc;
2052 
2053 	memset(&drv_version, 0, sizeof(drv_version));
2054 	drv_version.version = p_ver->version;
2055 	for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) {
2056 		val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)]));
2057 		*(__be32 *)&drv_version.name[i * sizeof(u32)] = val;
2058 	}
2059 
2060 	memset(&mb_params, 0, sizeof(mb_params));
2061 	mb_params.cmd = DRV_MSG_CODE_SET_VERSION;
2062 	mb_params.p_data_src = &drv_version;
2063 	mb_params.data_src_size = sizeof(drv_version);
2064 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2065 	if (rc)
2066 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2067 
2068 	return rc;
2069 }
2070 
2071 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2072 {
2073 	u32 resp = 0, param = 0;
2074 	int rc;
2075 
2076 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp,
2077 			 &param);
2078 	if (rc)
2079 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2080 
2081 	return rc;
2082 }
2083 
2084 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2085 {
2086 	u32 value, cpu_mode;
2087 
2088 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff);
2089 
2090 	value = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2091 	value &= ~MCP_REG_CPU_MODE_SOFT_HALT;
2092 	qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, value);
2093 	cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE);
2094 
2095 	return (cpu_mode & MCP_REG_CPU_MODE_SOFT_HALT) ? -EAGAIN : 0;
2096 }
2097 
2098 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn,
2099 				     struct qed_ptt *p_ptt,
2100 				     enum qed_ov_client client)
2101 {
2102 	u32 resp = 0, param = 0;
2103 	u32 drv_mb_param;
2104 	int rc;
2105 
2106 	switch (client) {
2107 	case QED_OV_CLIENT_DRV:
2108 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS;
2109 		break;
2110 	case QED_OV_CLIENT_USER:
2111 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER;
2112 		break;
2113 	case QED_OV_CLIENT_VENDOR_SPEC:
2114 		drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC;
2115 		break;
2116 	default:
2117 		DP_NOTICE(p_hwfn, "Invalid client type %d\n", client);
2118 		return -EINVAL;
2119 	}
2120 
2121 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG,
2122 			 drv_mb_param, &resp, &param);
2123 	if (rc)
2124 		DP_ERR(p_hwfn, "MCP response failure, aborting\n");
2125 
2126 	return rc;
2127 }
2128 
2129 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn,
2130 				   struct qed_ptt *p_ptt,
2131 				   enum qed_ov_driver_state drv_state)
2132 {
2133 	u32 resp = 0, param = 0;
2134 	u32 drv_mb_param;
2135 	int rc;
2136 
2137 	switch (drv_state) {
2138 	case QED_OV_DRIVER_STATE_NOT_LOADED:
2139 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED;
2140 		break;
2141 	case QED_OV_DRIVER_STATE_DISABLED:
2142 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED;
2143 		break;
2144 	case QED_OV_DRIVER_STATE_ACTIVE:
2145 		drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE;
2146 		break;
2147 	default:
2148 		DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state);
2149 		return -EINVAL;
2150 	}
2151 
2152 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE,
2153 			 drv_mb_param, &resp, &param);
2154 	if (rc)
2155 		DP_ERR(p_hwfn, "Failed to send driver state\n");
2156 
2157 	return rc;
2158 }
2159 
2160 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn,
2161 			  struct qed_ptt *p_ptt, u16 mtu)
2162 {
2163 	u32 resp = 0, param = 0;
2164 	u32 drv_mb_param;
2165 	int rc;
2166 
2167 	drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT;
2168 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU,
2169 			 drv_mb_param, &resp, &param);
2170 	if (rc)
2171 		DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc);
2172 
2173 	return rc;
2174 }
2175 
2176 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn,
2177 			  struct qed_ptt *p_ptt, u8 *mac)
2178 {
2179 	struct qed_mcp_mb_params mb_params;
2180 	u32 mfw_mac[2];
2181 	int rc;
2182 
2183 	memset(&mb_params, 0, sizeof(mb_params));
2184 	mb_params.cmd = DRV_MSG_CODE_SET_VMAC;
2185 	mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC <<
2186 			  DRV_MSG_CODE_VMAC_TYPE_SHIFT;
2187 	mb_params.param |= MCP_PF_ID(p_hwfn);
2188 
2189 	/* MCP is BE, and on LE platforms PCI would swap access to SHMEM
2190 	 * in 32-bit granularity.
2191 	 * So the MAC has to be set in native order [and not byte order],
2192 	 * otherwise it would be read incorrectly by MFW after swap.
2193 	 */
2194 	mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3];
2195 	mfw_mac[1] = mac[4] << 24 | mac[5] << 16;
2196 
2197 	mb_params.p_data_src = (u8 *)mfw_mac;
2198 	mb_params.data_src_size = 8;
2199 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2200 	if (rc)
2201 		DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc);
2202 
2203 	/* Store primary MAC for later possible WoL */
2204 	memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN);
2205 
2206 	return rc;
2207 }
2208 
2209 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn,
2210 			  struct qed_ptt *p_ptt, enum qed_ov_wol wol)
2211 {
2212 	u32 resp = 0, param = 0;
2213 	u32 drv_mb_param;
2214 	int rc;
2215 
2216 	if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) {
2217 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
2218 			   "Can't change WoL configuration when WoL isn't supported\n");
2219 		return -EINVAL;
2220 	}
2221 
2222 	switch (wol) {
2223 	case QED_OV_WOL_DEFAULT:
2224 		drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT;
2225 		break;
2226 	case QED_OV_WOL_DISABLED:
2227 		drv_mb_param = DRV_MB_PARAM_WOL_DISABLED;
2228 		break;
2229 	case QED_OV_WOL_ENABLED:
2230 		drv_mb_param = DRV_MB_PARAM_WOL_ENABLED;
2231 		break;
2232 	default:
2233 		DP_ERR(p_hwfn, "Invalid wol state %d\n", wol);
2234 		return -EINVAL;
2235 	}
2236 
2237 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL,
2238 			 drv_mb_param, &resp, &param);
2239 	if (rc)
2240 		DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc);
2241 
2242 	/* Store the WoL update for a future unload */
2243 	p_hwfn->cdev->wol_config = (u8)wol;
2244 
2245 	return rc;
2246 }
2247 
2248 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn,
2249 			      struct qed_ptt *p_ptt,
2250 			      enum qed_ov_eswitch eswitch)
2251 {
2252 	u32 resp = 0, param = 0;
2253 	u32 drv_mb_param;
2254 	int rc;
2255 
2256 	switch (eswitch) {
2257 	case QED_OV_ESWITCH_NONE:
2258 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE;
2259 		break;
2260 	case QED_OV_ESWITCH_VEB:
2261 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB;
2262 		break;
2263 	case QED_OV_ESWITCH_VEPA:
2264 		drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA;
2265 		break;
2266 	default:
2267 		DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch);
2268 		return -EINVAL;
2269 	}
2270 
2271 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE,
2272 			 drv_mb_param, &resp, &param);
2273 	if (rc)
2274 		DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc);
2275 
2276 	return rc;
2277 }
2278 
2279 int qed_mcp_set_led(struct qed_hwfn *p_hwfn,
2280 		    struct qed_ptt *p_ptt, enum qed_led_mode mode)
2281 {
2282 	u32 resp = 0, param = 0, drv_mb_param;
2283 	int rc;
2284 
2285 	switch (mode) {
2286 	case QED_LED_MODE_ON:
2287 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON;
2288 		break;
2289 	case QED_LED_MODE_OFF:
2290 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF;
2291 		break;
2292 	case QED_LED_MODE_RESTORE:
2293 		drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER;
2294 		break;
2295 	default:
2296 		DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode);
2297 		return -EINVAL;
2298 	}
2299 
2300 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE,
2301 			 drv_mb_param, &resp, &param);
2302 
2303 	return rc;
2304 }
2305 
2306 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn,
2307 			  struct qed_ptt *p_ptt, u32 mask_parities)
2308 {
2309 	u32 resp = 0, param = 0;
2310 	int rc;
2311 
2312 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES,
2313 			 mask_parities, &resp, &param);
2314 
2315 	if (rc) {
2316 		DP_ERR(p_hwfn,
2317 		       "MCP response failure for mask parities, aborting\n");
2318 	} else if (resp != FW_MSG_CODE_OK) {
2319 		DP_ERR(p_hwfn,
2320 		       "MCP did not acknowledge mask parity request. Old MFW?\n");
2321 		rc = -EINVAL;
2322 	}
2323 
2324 	return rc;
2325 }
2326 
2327 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len)
2328 {
2329 	u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0;
2330 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2331 	u32 resp = 0, resp_param = 0;
2332 	struct qed_ptt *p_ptt;
2333 	int rc = 0;
2334 
2335 	p_ptt = qed_ptt_acquire(p_hwfn);
2336 	if (!p_ptt)
2337 		return -EBUSY;
2338 
2339 	while (bytes_left > 0) {
2340 		bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN);
2341 
2342 		rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2343 					DRV_MSG_CODE_NVM_READ_NVRAM,
2344 					addr + offset +
2345 					(bytes_to_copy <<
2346 					 DRV_MB_PARAM_NVM_LEN_OFFSET),
2347 					&resp, &resp_param,
2348 					&read_len,
2349 					(u32 *)(p_buf + offset));
2350 
2351 		if (rc || (resp != FW_MSG_CODE_NVM_OK)) {
2352 			DP_NOTICE(cdev, "MCP command rc = %d\n", rc);
2353 			break;
2354 		}
2355 
2356 		/* This can be a lengthy process, and it's possible scheduler
2357 		 * isn't preemptable. Sleep a bit to prevent CPU hogging.
2358 		 */
2359 		if (bytes_left % 0x1000 <
2360 		    (bytes_left - read_len) % 0x1000)
2361 			usleep_range(1000, 2000);
2362 
2363 		offset += read_len;
2364 		bytes_left -= read_len;
2365 	}
2366 
2367 	cdev->mcp_nvm_resp = resp;
2368 	qed_ptt_release(p_hwfn, p_ptt);
2369 
2370 	return rc;
2371 }
2372 
2373 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf)
2374 {
2375 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2376 	struct qed_ptt *p_ptt;
2377 
2378 	p_ptt = qed_ptt_acquire(p_hwfn);
2379 	if (!p_ptt)
2380 		return -EBUSY;
2381 
2382 	memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp));
2383 	qed_ptt_release(p_hwfn, p_ptt);
2384 
2385 	return 0;
2386 }
2387 
2388 int qed_mcp_nvm_put_file_begin(struct qed_dev *cdev, u32 addr)
2389 {
2390 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2391 	struct qed_ptt *p_ptt;
2392 	u32 resp, param;
2393 	int rc;
2394 
2395 	p_ptt = qed_ptt_acquire(p_hwfn);
2396 	if (!p_ptt)
2397 		return -EBUSY;
2398 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_NVM_PUT_FILE_BEGIN, addr,
2399 			 &resp, &param);
2400 	cdev->mcp_nvm_resp = resp;
2401 	qed_ptt_release(p_hwfn, p_ptt);
2402 
2403 	return rc;
2404 }
2405 
2406 int qed_mcp_nvm_write(struct qed_dev *cdev,
2407 		      u32 cmd, u32 addr, u8 *p_buf, u32 len)
2408 {
2409 	u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param;
2410 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
2411 	struct qed_ptt *p_ptt;
2412 	int rc = -EINVAL;
2413 
2414 	p_ptt = qed_ptt_acquire(p_hwfn);
2415 	if (!p_ptt)
2416 		return -EBUSY;
2417 
2418 	switch (cmd) {
2419 	case QED_PUT_FILE_DATA:
2420 		nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA;
2421 		break;
2422 	case QED_NVM_WRITE_NVRAM:
2423 		nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM;
2424 		break;
2425 	default:
2426 		DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd);
2427 		rc = -EINVAL;
2428 		goto out;
2429 	}
2430 
2431 	while (buf_idx < len) {
2432 		buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN);
2433 		nvm_offset = ((buf_size << DRV_MB_PARAM_NVM_LEN_OFFSET) |
2434 			      addr) + buf_idx;
2435 		rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset,
2436 					&resp, &param, buf_size,
2437 					(u32 *)&p_buf[buf_idx]);
2438 		if (rc) {
2439 			DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc);
2440 			resp = FW_MSG_CODE_ERROR;
2441 			break;
2442 		}
2443 
2444 		if (resp != FW_MSG_CODE_OK &&
2445 		    resp != FW_MSG_CODE_NVM_OK &&
2446 		    resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) {
2447 			DP_NOTICE(cdev,
2448 				  "nvm write failed, resp = 0x%08x\n", resp);
2449 			rc = -EINVAL;
2450 			break;
2451 		}
2452 
2453 		/* This can be a lengthy process, and it's possible scheduler
2454 		 * isn't pre-emptable. Sleep a bit to prevent CPU hogging.
2455 		 */
2456 		if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000)
2457 			usleep_range(1000, 2000);
2458 
2459 		buf_idx += buf_size;
2460 	}
2461 
2462 	cdev->mcp_nvm_resp = resp;
2463 out:
2464 	qed_ptt_release(p_hwfn, p_ptt);
2465 
2466 	return rc;
2467 }
2468 
2469 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2470 {
2471 	u32 drv_mb_param = 0, rsp, param;
2472 	int rc = 0;
2473 
2474 	drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST <<
2475 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2476 
2477 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2478 			 drv_mb_param, &rsp, &param);
2479 
2480 	if (rc)
2481 		return rc;
2482 
2483 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2484 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2485 		rc = -EAGAIN;
2486 
2487 	return rc;
2488 }
2489 
2490 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2491 {
2492 	u32 drv_mb_param, rsp, param;
2493 	int rc = 0;
2494 
2495 	drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST <<
2496 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2497 
2498 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2499 			 drv_mb_param, &rsp, &param);
2500 
2501 	if (rc)
2502 		return rc;
2503 
2504 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2505 	    (param != DRV_MB_PARAM_BIST_RC_PASSED))
2506 		rc = -EAGAIN;
2507 
2508 	return rc;
2509 }
2510 
2511 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn,
2512 				    struct qed_ptt *p_ptt,
2513 				    u32 *num_images)
2514 {
2515 	u32 drv_mb_param = 0, rsp;
2516 	int rc = 0;
2517 
2518 	drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES <<
2519 			DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT);
2520 
2521 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST,
2522 			 drv_mb_param, &rsp, num_images);
2523 	if (rc)
2524 		return rc;
2525 
2526 	if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK))
2527 		rc = -EINVAL;
2528 
2529 	return rc;
2530 }
2531 
2532 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn,
2533 				   struct qed_ptt *p_ptt,
2534 				   struct bist_nvm_image_att *p_image_att,
2535 				   u32 image_index)
2536 {
2537 	u32 buf_size = 0, param, resp = 0, resp_param = 0;
2538 	int rc;
2539 
2540 	param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX <<
2541 		DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT;
2542 	param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT;
2543 
2544 	rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt,
2545 				DRV_MSG_CODE_BIST_TEST, param,
2546 				&resp, &resp_param,
2547 				&buf_size,
2548 				(u32 *)p_image_att);
2549 	if (rc)
2550 		return rc;
2551 
2552 	if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) ||
2553 	    (p_image_att->return_code != 1))
2554 		rc = -EINVAL;
2555 
2556 	return rc;
2557 }
2558 
2559 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn)
2560 {
2561 	struct qed_nvm_image_info nvm_info;
2562 	struct qed_ptt *p_ptt;
2563 	int rc;
2564 	u32 i;
2565 
2566 	if (p_hwfn->nvm_info.valid)
2567 		return 0;
2568 
2569 	p_ptt = qed_ptt_acquire(p_hwfn);
2570 	if (!p_ptt) {
2571 		DP_ERR(p_hwfn, "failed to acquire ptt\n");
2572 		return -EBUSY;
2573 	}
2574 
2575 	/* Acquire from MFW the amount of available images */
2576 	nvm_info.num_images = 0;
2577 	rc = qed_mcp_bist_nvm_get_num_images(p_hwfn,
2578 					     p_ptt, &nvm_info.num_images);
2579 	if (rc == -EOPNOTSUPP) {
2580 		DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n");
2581 		goto out;
2582 	} else if (rc || !nvm_info.num_images) {
2583 		DP_ERR(p_hwfn, "Failed getting number of images\n");
2584 		goto err0;
2585 	}
2586 
2587 	nvm_info.image_att = kmalloc_array(nvm_info.num_images,
2588 					   sizeof(struct bist_nvm_image_att),
2589 					   GFP_KERNEL);
2590 	if (!nvm_info.image_att) {
2591 		rc = -ENOMEM;
2592 		goto err0;
2593 	}
2594 
2595 	/* Iterate over images and get their attributes */
2596 	for (i = 0; i < nvm_info.num_images; i++) {
2597 		rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt,
2598 						    &nvm_info.image_att[i], i);
2599 		if (rc) {
2600 			DP_ERR(p_hwfn,
2601 			       "Failed getting image index %d attributes\n", i);
2602 			goto err1;
2603 		}
2604 
2605 		DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i,
2606 			   nvm_info.image_att[i].len);
2607 	}
2608 out:
2609 	/* Update hwfn's nvm_info */
2610 	if (nvm_info.num_images) {
2611 		p_hwfn->nvm_info.num_images = nvm_info.num_images;
2612 		kfree(p_hwfn->nvm_info.image_att);
2613 		p_hwfn->nvm_info.image_att = nvm_info.image_att;
2614 		p_hwfn->nvm_info.valid = true;
2615 	}
2616 
2617 	qed_ptt_release(p_hwfn, p_ptt);
2618 	return 0;
2619 
2620 err1:
2621 	kfree(nvm_info.image_att);
2622 err0:
2623 	qed_ptt_release(p_hwfn, p_ptt);
2624 	return rc;
2625 }
2626 
2627 int
2628 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn,
2629 			  enum qed_nvm_images image_id,
2630 			  struct qed_nvm_image_att *p_image_att)
2631 {
2632 	enum nvm_image_type type;
2633 	u32 i;
2634 
2635 	/* Translate image_id into MFW definitions */
2636 	switch (image_id) {
2637 	case QED_NVM_IMAGE_ISCSI_CFG:
2638 		type = NVM_TYPE_ISCSI_CFG;
2639 		break;
2640 	case QED_NVM_IMAGE_FCOE_CFG:
2641 		type = NVM_TYPE_FCOE_CFG;
2642 		break;
2643 	case QED_NVM_IMAGE_NVM_CFG1:
2644 		type = NVM_TYPE_NVM_CFG1;
2645 		break;
2646 	case QED_NVM_IMAGE_DEFAULT_CFG:
2647 		type = NVM_TYPE_DEFAULT_CFG;
2648 		break;
2649 	case QED_NVM_IMAGE_NVM_META:
2650 		type = NVM_TYPE_META;
2651 		break;
2652 	default:
2653 		DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n",
2654 			  image_id);
2655 		return -EINVAL;
2656 	}
2657 
2658 	qed_mcp_nvm_info_populate(p_hwfn);
2659 	for (i = 0; i < p_hwfn->nvm_info.num_images; i++)
2660 		if (type == p_hwfn->nvm_info.image_att[i].image_type)
2661 			break;
2662 	if (i == p_hwfn->nvm_info.num_images) {
2663 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2664 			   "Failed to find nvram image of type %08x\n",
2665 			   image_id);
2666 		return -ENOENT;
2667 	}
2668 
2669 	p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr;
2670 	p_image_att->length = p_hwfn->nvm_info.image_att[i].len;
2671 
2672 	return 0;
2673 }
2674 
2675 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn,
2676 			  enum qed_nvm_images image_id,
2677 			  u8 *p_buffer, u32 buffer_len)
2678 {
2679 	struct qed_nvm_image_att image_att;
2680 	int rc;
2681 
2682 	memset(p_buffer, 0, buffer_len);
2683 
2684 	rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att);
2685 	if (rc)
2686 		return rc;
2687 
2688 	/* Validate sizes - both the image's and the supplied buffer's */
2689 	if (image_att.length <= 4) {
2690 		DP_VERBOSE(p_hwfn, QED_MSG_STORAGE,
2691 			   "Image [%d] is too small - only %d bytes\n",
2692 			   image_id, image_att.length);
2693 		return -EINVAL;
2694 	}
2695 
2696 	if (image_att.length > buffer_len) {
2697 		DP_VERBOSE(p_hwfn,
2698 			   QED_MSG_STORAGE,
2699 			   "Image [%d] is too big - %08x bytes where only %08x are available\n",
2700 			   image_id, image_att.length, buffer_len);
2701 		return -ENOMEM;
2702 	}
2703 
2704 	return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr,
2705 				p_buffer, image_att.length);
2706 }
2707 
2708 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id)
2709 {
2710 	enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
2711 
2712 	switch (res_id) {
2713 	case QED_SB:
2714 		mfw_res_id = RESOURCE_NUM_SB_E;
2715 		break;
2716 	case QED_L2_QUEUE:
2717 		mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
2718 		break;
2719 	case QED_VPORT:
2720 		mfw_res_id = RESOURCE_NUM_VPORT_E;
2721 		break;
2722 	case QED_RSS_ENG:
2723 		mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
2724 		break;
2725 	case QED_PQ:
2726 		mfw_res_id = RESOURCE_NUM_PQ_E;
2727 		break;
2728 	case QED_RL:
2729 		mfw_res_id = RESOURCE_NUM_RL_E;
2730 		break;
2731 	case QED_MAC:
2732 	case QED_VLAN:
2733 		/* Each VFC resource can accommodate both a MAC and a VLAN */
2734 		mfw_res_id = RESOURCE_VFC_FILTER_E;
2735 		break;
2736 	case QED_ILT:
2737 		mfw_res_id = RESOURCE_ILT_E;
2738 		break;
2739 	case QED_LL2_QUEUE:
2740 		mfw_res_id = RESOURCE_LL2_QUEUE_E;
2741 		break;
2742 	case QED_RDMA_CNQ_RAM:
2743 	case QED_CMDQS_CQS:
2744 		/* CNQ/CMDQS are the same resource */
2745 		mfw_res_id = RESOURCE_CQS_E;
2746 		break;
2747 	case QED_RDMA_STATS_QUEUE:
2748 		mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
2749 		break;
2750 	case QED_BDQ:
2751 		mfw_res_id = RESOURCE_BDQ_E;
2752 		break;
2753 	default:
2754 		break;
2755 	}
2756 
2757 	return mfw_res_id;
2758 }
2759 
2760 #define QED_RESC_ALLOC_VERSION_MAJOR    2
2761 #define QED_RESC_ALLOC_VERSION_MINOR    0
2762 #define QED_RESC_ALLOC_VERSION				     \
2763 	((QED_RESC_ALLOC_VERSION_MAJOR <<		     \
2764 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \
2765 	 (QED_RESC_ALLOC_VERSION_MINOR <<		     \
2766 	  DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT))
2767 
2768 struct qed_resc_alloc_in_params {
2769 	u32 cmd;
2770 	enum qed_resources res_id;
2771 	u32 resc_max_val;
2772 };
2773 
2774 struct qed_resc_alloc_out_params {
2775 	u32 mcp_resp;
2776 	u32 mcp_param;
2777 	u32 resc_num;
2778 	u32 resc_start;
2779 	u32 vf_resc_num;
2780 	u32 vf_resc_start;
2781 	u32 flags;
2782 };
2783 
2784 static int
2785 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn,
2786 			    struct qed_ptt *p_ptt,
2787 			    struct qed_resc_alloc_in_params *p_in_params,
2788 			    struct qed_resc_alloc_out_params *p_out_params)
2789 {
2790 	struct qed_mcp_mb_params mb_params;
2791 	struct resource_info mfw_resc_info;
2792 	int rc;
2793 
2794 	memset(&mfw_resc_info, 0, sizeof(mfw_resc_info));
2795 
2796 	mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id);
2797 	if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) {
2798 		DP_ERR(p_hwfn,
2799 		       "Failed to match resource %d [%s] with the MFW resources\n",
2800 		       p_in_params->res_id,
2801 		       qed_hw_get_resc_name(p_in_params->res_id));
2802 		return -EINVAL;
2803 	}
2804 
2805 	switch (p_in_params->cmd) {
2806 	case DRV_MSG_SET_RESOURCE_VALUE_MSG:
2807 		mfw_resc_info.size = p_in_params->resc_max_val;
2808 		/* Fallthrough */
2809 	case DRV_MSG_GET_RESOURCE_ALLOC_MSG:
2810 		break;
2811 	default:
2812 		DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n",
2813 		       p_in_params->cmd);
2814 		return -EINVAL;
2815 	}
2816 
2817 	memset(&mb_params, 0, sizeof(mb_params));
2818 	mb_params.cmd = p_in_params->cmd;
2819 	mb_params.param = QED_RESC_ALLOC_VERSION;
2820 	mb_params.p_data_src = &mfw_resc_info;
2821 	mb_params.data_src_size = sizeof(mfw_resc_info);
2822 	mb_params.p_data_dst = mb_params.p_data_src;
2823 	mb_params.data_dst_size = mb_params.data_src_size;
2824 
2825 	DP_VERBOSE(p_hwfn,
2826 		   QED_MSG_SP,
2827 		   "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n",
2828 		   p_in_params->cmd,
2829 		   p_in_params->res_id,
2830 		   qed_hw_get_resc_name(p_in_params->res_id),
2831 		   QED_MFW_GET_FIELD(mb_params.param,
2832 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
2833 		   QED_MFW_GET_FIELD(mb_params.param,
2834 				     DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
2835 		   p_in_params->resc_max_val);
2836 
2837 	rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params);
2838 	if (rc)
2839 		return rc;
2840 
2841 	p_out_params->mcp_resp = mb_params.mcp_resp;
2842 	p_out_params->mcp_param = mb_params.mcp_param;
2843 	p_out_params->resc_num = mfw_resc_info.size;
2844 	p_out_params->resc_start = mfw_resc_info.offset;
2845 	p_out_params->vf_resc_num = mfw_resc_info.vf_size;
2846 	p_out_params->vf_resc_start = mfw_resc_info.vf_offset;
2847 	p_out_params->flags = mfw_resc_info.flags;
2848 
2849 	DP_VERBOSE(p_hwfn,
2850 		   QED_MSG_SP,
2851 		   "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n",
2852 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
2853 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR),
2854 		   QED_MFW_GET_FIELD(p_out_params->mcp_param,
2855 				     FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR),
2856 		   p_out_params->resc_num,
2857 		   p_out_params->resc_start,
2858 		   p_out_params->vf_resc_num,
2859 		   p_out_params->vf_resc_start, p_out_params->flags);
2860 
2861 	return 0;
2862 }
2863 
2864 int
2865 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn,
2866 			 struct qed_ptt *p_ptt,
2867 			 enum qed_resources res_id,
2868 			 u32 resc_max_val, u32 *p_mcp_resp)
2869 {
2870 	struct qed_resc_alloc_out_params out_params;
2871 	struct qed_resc_alloc_in_params in_params;
2872 	int rc;
2873 
2874 	memset(&in_params, 0, sizeof(in_params));
2875 	in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG;
2876 	in_params.res_id = res_id;
2877 	in_params.resc_max_val = resc_max_val;
2878 	memset(&out_params, 0, sizeof(out_params));
2879 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
2880 					 &out_params);
2881 	if (rc)
2882 		return rc;
2883 
2884 	*p_mcp_resp = out_params.mcp_resp;
2885 
2886 	return 0;
2887 }
2888 
2889 int
2890 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn,
2891 		      struct qed_ptt *p_ptt,
2892 		      enum qed_resources res_id,
2893 		      u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start)
2894 {
2895 	struct qed_resc_alloc_out_params out_params;
2896 	struct qed_resc_alloc_in_params in_params;
2897 	int rc;
2898 
2899 	memset(&in_params, 0, sizeof(in_params));
2900 	in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG;
2901 	in_params.res_id = res_id;
2902 	memset(&out_params, 0, sizeof(out_params));
2903 	rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params,
2904 					 &out_params);
2905 	if (rc)
2906 		return rc;
2907 
2908 	*p_mcp_resp = out_params.mcp_resp;
2909 
2910 	if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) {
2911 		*p_resc_num = out_params.resc_num;
2912 		*p_resc_start = out_params.resc_start;
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2919 {
2920 	u32 mcp_resp, mcp_param;
2921 
2922 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0,
2923 			   &mcp_resp, &mcp_param);
2924 }
2925 
2926 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn,
2927 				struct qed_ptt *p_ptt,
2928 				u32 param, u32 *p_mcp_resp, u32 *p_mcp_param)
2929 {
2930 	int rc;
2931 
2932 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param,
2933 			 p_mcp_resp, p_mcp_param);
2934 	if (rc)
2935 		return rc;
2936 
2937 	if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) {
2938 		DP_INFO(p_hwfn,
2939 			"The resource command is unsupported by the MFW\n");
2940 		return -EINVAL;
2941 	}
2942 
2943 	if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) {
2944 		u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE);
2945 
2946 		DP_NOTICE(p_hwfn,
2947 			  "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n",
2948 			  param, opcode);
2949 		return -EINVAL;
2950 	}
2951 
2952 	return rc;
2953 }
2954 
2955 int
2956 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
2957 		    struct qed_ptt *p_ptt,
2958 		    struct qed_resc_lock_params *p_params)
2959 {
2960 	u32 param = 0, mcp_resp, mcp_param;
2961 	u8 opcode;
2962 	int rc;
2963 
2964 	switch (p_params->timeout) {
2965 	case QED_MCP_RESC_LOCK_TO_DEFAULT:
2966 		opcode = RESOURCE_OPCODE_REQ;
2967 		p_params->timeout = 0;
2968 		break;
2969 	case QED_MCP_RESC_LOCK_TO_NONE:
2970 		opcode = RESOURCE_OPCODE_REQ_WO_AGING;
2971 		p_params->timeout = 0;
2972 		break;
2973 	default:
2974 		opcode = RESOURCE_OPCODE_REQ_W_AGING;
2975 		break;
2976 	}
2977 
2978 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
2979 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
2980 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout);
2981 
2982 	DP_VERBOSE(p_hwfn,
2983 		   QED_MSG_SP,
2984 		   "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n",
2985 		   param, p_params->timeout, opcode, p_params->resource);
2986 
2987 	/* Attempt to acquire the resource */
2988 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
2989 	if (rc)
2990 		return rc;
2991 
2992 	/* Analyze the response */
2993 	p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER);
2994 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
2995 
2996 	DP_VERBOSE(p_hwfn,
2997 		   QED_MSG_SP,
2998 		   "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n",
2999 		   mcp_param, opcode, p_params->owner);
3000 
3001 	switch (opcode) {
3002 	case RESOURCE_OPCODE_GNT:
3003 		p_params->b_granted = true;
3004 		break;
3005 	case RESOURCE_OPCODE_BUSY:
3006 		p_params->b_granted = false;
3007 		break;
3008 	default:
3009 		DP_NOTICE(p_hwfn,
3010 			  "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n",
3011 			  mcp_param, opcode);
3012 		return -EINVAL;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 int
3019 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn,
3020 		  struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params)
3021 {
3022 	u32 retry_cnt = 0;
3023 	int rc;
3024 
3025 	do {
3026 		/* No need for an interval before the first iteration */
3027 		if (retry_cnt) {
3028 			if (p_params->sleep_b4_retry) {
3029 				u16 retry_interval_in_ms =
3030 				    DIV_ROUND_UP(p_params->retry_interval,
3031 						 1000);
3032 
3033 				msleep(retry_interval_in_ms);
3034 			} else {
3035 				udelay(p_params->retry_interval);
3036 			}
3037 		}
3038 
3039 		rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params);
3040 		if (rc)
3041 			return rc;
3042 
3043 		if (p_params->b_granted)
3044 			break;
3045 	} while (retry_cnt++ < p_params->retry_num);
3046 
3047 	return 0;
3048 }
3049 
3050 int
3051 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn,
3052 		    struct qed_ptt *p_ptt,
3053 		    struct qed_resc_unlock_params *p_params)
3054 {
3055 	u32 param = 0, mcp_resp, mcp_param;
3056 	u8 opcode;
3057 	int rc;
3058 
3059 	opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE
3060 				   : RESOURCE_OPCODE_RELEASE;
3061 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource);
3062 	QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode);
3063 
3064 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3065 		   "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n",
3066 		   param, opcode, p_params->resource);
3067 
3068 	/* Attempt to release the resource */
3069 	rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param);
3070 	if (rc)
3071 		return rc;
3072 
3073 	/* Analyze the response */
3074 	opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE);
3075 
3076 	DP_VERBOSE(p_hwfn, QED_MSG_SP,
3077 		   "Resource unlock response: mcp_param 0x%08x [opcode %d]\n",
3078 		   mcp_param, opcode);
3079 
3080 	switch (opcode) {
3081 	case RESOURCE_OPCODE_RELEASED_PREVIOUS:
3082 		DP_INFO(p_hwfn,
3083 			"Resource unlock request for an already released resource [%d]\n",
3084 			p_params->resource);
3085 		/* Fallthrough */
3086 	case RESOURCE_OPCODE_RELEASED:
3087 		p_params->b_released = true;
3088 		break;
3089 	case RESOURCE_OPCODE_WRONG_OWNER:
3090 		p_params->b_released = false;
3091 		break;
3092 	default:
3093 		DP_NOTICE(p_hwfn,
3094 			  "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n",
3095 			  mcp_param, opcode);
3096 		return -EINVAL;
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock,
3103 				    struct qed_resc_unlock_params *p_unlock,
3104 				    enum qed_resc_lock
3105 				    resource, bool b_is_permanent)
3106 {
3107 	if (p_lock) {
3108 		memset(p_lock, 0, sizeof(*p_lock));
3109 
3110 		/* Permanent resources don't require aging, and there's no
3111 		 * point in trying to acquire them more than once since it's
3112 		 * unexpected another entity would release them.
3113 		 */
3114 		if (b_is_permanent) {
3115 			p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE;
3116 		} else {
3117 			p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT;
3118 			p_lock->retry_interval =
3119 			    QED_MCP_RESC_LOCK_RETRY_VAL_DFLT;
3120 			p_lock->sleep_b4_retry = true;
3121 		}
3122 
3123 		p_lock->resource = resource;
3124 	}
3125 
3126 	if (p_unlock) {
3127 		memset(p_unlock, 0, sizeof(*p_unlock));
3128 		p_unlock->resource = resource;
3129 	}
3130 }
3131 
3132 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3133 {
3134 	u32 mcp_resp;
3135 	int rc;
3136 
3137 	rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT,
3138 			 0, &mcp_resp, &p_hwfn->mcp_info->capabilities);
3139 	if (!rc)
3140 		DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE),
3141 			   "MFW supported features: %08x\n",
3142 			   p_hwfn->mcp_info->capabilities);
3143 
3144 	return rc;
3145 }
3146 
3147 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3148 {
3149 	u32 mcp_resp, mcp_param, features;
3150 
3151 	features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE;
3152 
3153 	return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT,
3154 			   features, &mcp_resp, &mcp_param);
3155 }
3156