1 /* QLogic qed NIC Driver 2 * Copyright (c) 2015-2017 QLogic Corporation 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and /or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <asm/byteorder.h> 35 #include <linux/delay.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/spinlock.h> 40 #include <linux/string.h> 41 #include <linux/etherdevice.h> 42 #include "qed.h" 43 #include "qed_cxt.h" 44 #include "qed_dcbx.h" 45 #include "qed_hsi.h" 46 #include "qed_hw.h" 47 #include "qed_mcp.h" 48 #include "qed_reg_addr.h" 49 #include "qed_sriov.h" 50 51 #define QED_MCP_RESP_ITER_US 10 52 53 #define QED_DRV_MB_MAX_RETRIES (500 * 1000) /* Account for 5 sec */ 54 #define QED_MCP_RESET_RETRIES (50 * 1000) /* Account for 500 msec */ 55 56 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val) \ 57 qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset), \ 58 _val) 59 60 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \ 61 qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + _offset)) 62 63 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val) \ 64 DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \ 65 offsetof(struct public_drv_mb, _field), _val) 66 67 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field) \ 68 DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \ 69 offsetof(struct public_drv_mb, _field)) 70 71 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \ 72 DRV_ID_PDA_COMP_VER_SHIFT) 73 74 #define MCP_BYTES_PER_MBIT_SHIFT 17 75 76 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn) 77 { 78 if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base) 79 return false; 80 return true; 81 } 82 83 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 84 { 85 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 86 PUBLIC_PORT); 87 u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr); 88 89 p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize, 90 MFW_PORT(p_hwfn)); 91 DP_VERBOSE(p_hwfn, QED_MSG_SP, 92 "port_addr = 0x%x, port_id 0x%02x\n", 93 p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn)); 94 } 95 96 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 97 { 98 u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length); 99 u32 tmp, i; 100 101 if (!p_hwfn->mcp_info->public_base) 102 return; 103 104 for (i = 0; i < length; i++) { 105 tmp = qed_rd(p_hwfn, p_ptt, 106 p_hwfn->mcp_info->mfw_mb_addr + 107 (i << 2) + sizeof(u32)); 108 109 /* The MB data is actually BE; Need to force it to cpu */ 110 ((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] = 111 be32_to_cpu((__force __be32)tmp); 112 } 113 } 114 115 struct qed_mcp_cmd_elem { 116 struct list_head list; 117 struct qed_mcp_mb_params *p_mb_params; 118 u16 expected_seq_num; 119 bool b_is_completed; 120 }; 121 122 /* Must be called while cmd_lock is acquired */ 123 static struct qed_mcp_cmd_elem * 124 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn, 125 struct qed_mcp_mb_params *p_mb_params, 126 u16 expected_seq_num) 127 { 128 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 129 130 p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC); 131 if (!p_cmd_elem) 132 goto out; 133 134 p_cmd_elem->p_mb_params = p_mb_params; 135 p_cmd_elem->expected_seq_num = expected_seq_num; 136 list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list); 137 out: 138 return p_cmd_elem; 139 } 140 141 /* Must be called while cmd_lock is acquired */ 142 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn, 143 struct qed_mcp_cmd_elem *p_cmd_elem) 144 { 145 list_del(&p_cmd_elem->list); 146 kfree(p_cmd_elem); 147 } 148 149 /* Must be called while cmd_lock is acquired */ 150 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn, 151 u16 seq_num) 152 { 153 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 154 155 list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) { 156 if (p_cmd_elem->expected_seq_num == seq_num) 157 return p_cmd_elem; 158 } 159 160 return NULL; 161 } 162 163 int qed_mcp_free(struct qed_hwfn *p_hwfn) 164 { 165 if (p_hwfn->mcp_info) { 166 struct qed_mcp_cmd_elem *p_cmd_elem, *p_tmp; 167 168 kfree(p_hwfn->mcp_info->mfw_mb_cur); 169 kfree(p_hwfn->mcp_info->mfw_mb_shadow); 170 171 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 172 list_for_each_entry_safe(p_cmd_elem, 173 p_tmp, 174 &p_hwfn->mcp_info->cmd_list, list) { 175 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 176 } 177 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 178 } 179 180 kfree(p_hwfn->mcp_info); 181 p_hwfn->mcp_info = NULL; 182 183 return 0; 184 } 185 186 /* Maximum of 1 sec to wait for the SHMEM ready indication */ 187 #define QED_MCP_SHMEM_RDY_MAX_RETRIES 20 188 #define QED_MCP_SHMEM_RDY_ITER_MS 50 189 190 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 191 { 192 struct qed_mcp_info *p_info = p_hwfn->mcp_info; 193 u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES; 194 u8 msec = QED_MCP_SHMEM_RDY_ITER_MS; 195 u32 drv_mb_offsize, mfw_mb_offsize; 196 u32 mcp_pf_id = MCP_PF_ID(p_hwfn); 197 198 p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR); 199 if (!p_info->public_base) { 200 DP_NOTICE(p_hwfn, 201 "The address of the MCP scratch-pad is not configured\n"); 202 return -EINVAL; 203 } 204 205 p_info->public_base |= GRCBASE_MCP; 206 207 /* Get the MFW MB address and number of supported messages */ 208 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, 209 SECTION_OFFSIZE_ADDR(p_info->public_base, 210 PUBLIC_MFW_MB)); 211 p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id); 212 p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt, 213 p_info->mfw_mb_addr + 214 offsetof(struct public_mfw_mb, 215 sup_msgs)); 216 217 /* The driver can notify that there was an MCP reset, and might read the 218 * SHMEM values before the MFW has completed initializing them. 219 * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a 220 * data ready indication. 221 */ 222 while (!p_info->mfw_mb_length && --cnt) { 223 msleep(msec); 224 p_info->mfw_mb_length = 225 (u16)qed_rd(p_hwfn, p_ptt, 226 p_info->mfw_mb_addr + 227 offsetof(struct public_mfw_mb, sup_msgs)); 228 } 229 230 if (!cnt) { 231 DP_NOTICE(p_hwfn, 232 "Failed to get the SHMEM ready notification after %d msec\n", 233 QED_MCP_SHMEM_RDY_MAX_RETRIES * msec); 234 return -EBUSY; 235 } 236 237 /* Calculate the driver and MFW mailbox address */ 238 drv_mb_offsize = qed_rd(p_hwfn, p_ptt, 239 SECTION_OFFSIZE_ADDR(p_info->public_base, 240 PUBLIC_DRV_MB)); 241 p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id); 242 DP_VERBOSE(p_hwfn, QED_MSG_SP, 243 "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n", 244 drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id); 245 246 /* Get the current driver mailbox sequence before sending 247 * the first command 248 */ 249 p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) & 250 DRV_MSG_SEQ_NUMBER_MASK; 251 252 /* Get current FW pulse sequence */ 253 p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) & 254 DRV_PULSE_SEQ_MASK; 255 256 p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 257 258 return 0; 259 } 260 261 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 262 { 263 struct qed_mcp_info *p_info; 264 u32 size; 265 266 /* Allocate mcp_info structure */ 267 p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL); 268 if (!p_hwfn->mcp_info) 269 goto err; 270 p_info = p_hwfn->mcp_info; 271 272 /* Initialize the MFW spinlock */ 273 spin_lock_init(&p_info->cmd_lock); 274 spin_lock_init(&p_info->link_lock); 275 276 INIT_LIST_HEAD(&p_info->cmd_list); 277 278 if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) { 279 DP_NOTICE(p_hwfn, "MCP is not initialized\n"); 280 /* Do not free mcp_info here, since public_base indicate that 281 * the MCP is not initialized 282 */ 283 return 0; 284 } 285 286 size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32); 287 p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL); 288 p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL); 289 if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow) 290 goto err; 291 292 return 0; 293 294 err: 295 qed_mcp_free(p_hwfn); 296 return -ENOMEM; 297 } 298 299 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn, 300 struct qed_ptt *p_ptt) 301 { 302 u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 303 304 /* Use MCP history register to check if MCP reset occurred between init 305 * time and now. 306 */ 307 if (p_hwfn->mcp_info->mcp_hist != generic_por_0) { 308 DP_VERBOSE(p_hwfn, 309 QED_MSG_SP, 310 "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n", 311 p_hwfn->mcp_info->mcp_hist, generic_por_0); 312 313 qed_load_mcp_offsets(p_hwfn, p_ptt); 314 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 315 } 316 } 317 318 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 319 { 320 u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0; 321 int rc = 0; 322 323 if (p_hwfn->mcp_info->b_block_cmd) { 324 DP_NOTICE(p_hwfn, 325 "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n"); 326 return -EBUSY; 327 } 328 329 /* Ensure that only a single thread is accessing the mailbox */ 330 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 331 332 org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 333 334 /* Set drv command along with the updated sequence */ 335 qed_mcp_reread_offsets(p_hwfn, p_ptt); 336 seq = ++p_hwfn->mcp_info->drv_mb_seq; 337 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq)); 338 339 do { 340 /* Wait for MFW response */ 341 udelay(delay); 342 /* Give the FW up to 500 second (50*1000*10usec) */ 343 } while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt, 344 MISCS_REG_GENERIC_POR_0)) && 345 (cnt++ < QED_MCP_RESET_RETRIES)); 346 347 if (org_mcp_reset_seq != 348 qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) { 349 DP_VERBOSE(p_hwfn, QED_MSG_SP, 350 "MCP was reset after %d usec\n", cnt * delay); 351 } else { 352 DP_ERR(p_hwfn, "Failed to reset MCP\n"); 353 rc = -EAGAIN; 354 } 355 356 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 357 358 return rc; 359 } 360 361 /* Must be called while cmd_lock is acquired */ 362 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn) 363 { 364 struct qed_mcp_cmd_elem *p_cmd_elem; 365 366 /* There is at most one pending command at a certain time, and if it 367 * exists - it is placed at the HEAD of the list. 368 */ 369 if (!list_empty(&p_hwfn->mcp_info->cmd_list)) { 370 p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list, 371 struct qed_mcp_cmd_elem, list); 372 return !p_cmd_elem->b_is_completed; 373 } 374 375 return false; 376 } 377 378 /* Must be called while cmd_lock is acquired */ 379 static int 380 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 381 { 382 struct qed_mcp_mb_params *p_mb_params; 383 struct qed_mcp_cmd_elem *p_cmd_elem; 384 u32 mcp_resp; 385 u16 seq_num; 386 387 mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header); 388 seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK); 389 390 /* Return if no new non-handled response has been received */ 391 if (seq_num != p_hwfn->mcp_info->drv_mb_seq) 392 return -EAGAIN; 393 394 p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num); 395 if (!p_cmd_elem) { 396 DP_ERR(p_hwfn, 397 "Failed to find a pending mailbox cmd that expects sequence number %d\n", 398 seq_num); 399 return -EINVAL; 400 } 401 402 p_mb_params = p_cmd_elem->p_mb_params; 403 404 /* Get the MFW response along with the sequence number */ 405 p_mb_params->mcp_resp = mcp_resp; 406 407 /* Get the MFW param */ 408 p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param); 409 410 /* Get the union data */ 411 if (p_mb_params->p_data_dst != NULL && p_mb_params->data_dst_size) { 412 u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 413 offsetof(struct public_drv_mb, 414 union_data); 415 qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst, 416 union_data_addr, p_mb_params->data_dst_size); 417 } 418 419 p_cmd_elem->b_is_completed = true; 420 421 return 0; 422 } 423 424 /* Must be called while cmd_lock is acquired */ 425 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 426 struct qed_ptt *p_ptt, 427 struct qed_mcp_mb_params *p_mb_params, 428 u16 seq_num) 429 { 430 union drv_union_data union_data; 431 u32 union_data_addr; 432 433 /* Set the union data */ 434 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 435 offsetof(struct public_drv_mb, union_data); 436 memset(&union_data, 0, sizeof(union_data)); 437 if (p_mb_params->p_data_src != NULL && p_mb_params->data_src_size) 438 memcpy(&union_data, p_mb_params->p_data_src, 439 p_mb_params->data_src_size); 440 qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data, 441 sizeof(union_data)); 442 443 /* Set the drv param */ 444 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param); 445 446 /* Set the drv command along with the sequence number */ 447 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num)); 448 449 DP_VERBOSE(p_hwfn, QED_MSG_SP, 450 "MFW mailbox: command 0x%08x param 0x%08x\n", 451 (p_mb_params->cmd | seq_num), p_mb_params->param); 452 } 453 454 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd) 455 { 456 p_hwfn->mcp_info->b_block_cmd = block_cmd; 457 458 DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n", 459 block_cmd ? "Block" : "Unblock"); 460 } 461 462 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn, 463 struct qed_ptt *p_ptt) 464 { 465 u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2; 466 u32 delay = QED_MCP_RESP_ITER_US; 467 468 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 469 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 470 cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 471 udelay(delay); 472 cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 473 udelay(delay); 474 cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 475 476 DP_NOTICE(p_hwfn, 477 "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n", 478 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2); 479 } 480 481 static int 482 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 483 struct qed_ptt *p_ptt, 484 struct qed_mcp_mb_params *p_mb_params, 485 u32 max_retries, u32 usecs) 486 { 487 u32 cnt = 0, msecs = DIV_ROUND_UP(usecs, 1000); 488 struct qed_mcp_cmd_elem *p_cmd_elem; 489 u16 seq_num; 490 int rc = 0; 491 492 /* Wait until the mailbox is non-occupied */ 493 do { 494 /* Exit the loop if there is no pending command, or if the 495 * pending command is completed during this iteration. 496 * The spinlock stays locked until the command is sent. 497 */ 498 499 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 500 501 if (!qed_mcp_has_pending_cmd(p_hwfn)) 502 break; 503 504 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 505 if (!rc) 506 break; 507 else if (rc != -EAGAIN) 508 goto err; 509 510 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 511 512 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 513 msleep(msecs); 514 else 515 udelay(usecs); 516 } while (++cnt < max_retries); 517 518 if (cnt >= max_retries) { 519 DP_NOTICE(p_hwfn, 520 "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n", 521 p_mb_params->cmd, p_mb_params->param); 522 return -EAGAIN; 523 } 524 525 /* Send the mailbox command */ 526 qed_mcp_reread_offsets(p_hwfn, p_ptt); 527 seq_num = ++p_hwfn->mcp_info->drv_mb_seq; 528 p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num); 529 if (!p_cmd_elem) { 530 rc = -ENOMEM; 531 goto err; 532 } 533 534 __qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num); 535 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 536 537 /* Wait for the MFW response */ 538 do { 539 /* Exit the loop if the command is already completed, or if the 540 * command is completed during this iteration. 541 * The spinlock stays locked until the list element is removed. 542 */ 543 544 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 545 msleep(msecs); 546 else 547 udelay(usecs); 548 549 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 550 551 if (p_cmd_elem->b_is_completed) 552 break; 553 554 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 555 if (!rc) 556 break; 557 else if (rc != -EAGAIN) 558 goto err; 559 560 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 561 } while (++cnt < max_retries); 562 563 if (cnt >= max_retries) { 564 DP_NOTICE(p_hwfn, 565 "The MFW failed to respond to command 0x%08x [param 0x%08x].\n", 566 p_mb_params->cmd, p_mb_params->param); 567 qed_mcp_print_cpu_info(p_hwfn, p_ptt); 568 569 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 570 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 571 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 572 573 if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK)) 574 qed_mcp_cmd_set_blocking(p_hwfn, true); 575 576 return -EAGAIN; 577 } 578 579 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 580 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 581 582 DP_VERBOSE(p_hwfn, 583 QED_MSG_SP, 584 "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n", 585 p_mb_params->mcp_resp, 586 p_mb_params->mcp_param, 587 (cnt * usecs) / 1000, (cnt * usecs) % 1000); 588 589 /* Clear the sequence number from the MFW response */ 590 p_mb_params->mcp_resp &= FW_MSG_CODE_MASK; 591 592 return 0; 593 594 err: 595 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 596 return rc; 597 } 598 599 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 600 struct qed_ptt *p_ptt, 601 struct qed_mcp_mb_params *p_mb_params) 602 { 603 size_t union_data_size = sizeof(union drv_union_data); 604 u32 max_retries = QED_DRV_MB_MAX_RETRIES; 605 u32 usecs = QED_MCP_RESP_ITER_US; 606 607 /* MCP not initialized */ 608 if (!qed_mcp_is_init(p_hwfn)) { 609 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 610 return -EBUSY; 611 } 612 613 if (p_hwfn->mcp_info->b_block_cmd) { 614 DP_NOTICE(p_hwfn, 615 "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n", 616 p_mb_params->cmd, p_mb_params->param); 617 return -EBUSY; 618 } 619 620 if (p_mb_params->data_src_size > union_data_size || 621 p_mb_params->data_dst_size > union_data_size) { 622 DP_ERR(p_hwfn, 623 "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n", 624 p_mb_params->data_src_size, 625 p_mb_params->data_dst_size, union_data_size); 626 return -EINVAL; 627 } 628 629 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) { 630 max_retries = DIV_ROUND_UP(max_retries, 1000); 631 usecs *= 1000; 632 } 633 634 return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries, 635 usecs); 636 } 637 638 int qed_mcp_cmd(struct qed_hwfn *p_hwfn, 639 struct qed_ptt *p_ptt, 640 u32 cmd, 641 u32 param, 642 u32 *o_mcp_resp, 643 u32 *o_mcp_param) 644 { 645 struct qed_mcp_mb_params mb_params; 646 int rc; 647 648 memset(&mb_params, 0, sizeof(mb_params)); 649 mb_params.cmd = cmd; 650 mb_params.param = param; 651 652 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 653 if (rc) 654 return rc; 655 656 *o_mcp_resp = mb_params.mcp_resp; 657 *o_mcp_param = mb_params.mcp_param; 658 659 return 0; 660 } 661 662 static int 663 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn, 664 struct qed_ptt *p_ptt, 665 u32 cmd, 666 u32 param, 667 u32 *o_mcp_resp, 668 u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf) 669 { 670 struct qed_mcp_mb_params mb_params; 671 int rc; 672 673 memset(&mb_params, 0, sizeof(mb_params)); 674 mb_params.cmd = cmd; 675 mb_params.param = param; 676 mb_params.p_data_src = i_buf; 677 mb_params.data_src_size = (u8)i_txn_size; 678 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 679 if (rc) 680 return rc; 681 682 *o_mcp_resp = mb_params.mcp_resp; 683 *o_mcp_param = mb_params.mcp_param; 684 685 /* nvm_info needs to be updated */ 686 p_hwfn->nvm_info.valid = false; 687 688 return 0; 689 } 690 691 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn, 692 struct qed_ptt *p_ptt, 693 u32 cmd, 694 u32 param, 695 u32 *o_mcp_resp, 696 u32 *o_mcp_param, u32 *o_txn_size, u32 *o_buf) 697 { 698 struct qed_mcp_mb_params mb_params; 699 u8 raw_data[MCP_DRV_NVM_BUF_LEN]; 700 int rc; 701 702 memset(&mb_params, 0, sizeof(mb_params)); 703 mb_params.cmd = cmd; 704 mb_params.param = param; 705 mb_params.p_data_dst = raw_data; 706 707 /* Use the maximal value since the actual one is part of the response */ 708 mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN; 709 710 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 711 if (rc) 712 return rc; 713 714 *o_mcp_resp = mb_params.mcp_resp; 715 *o_mcp_param = mb_params.mcp_param; 716 717 *o_txn_size = *o_mcp_param; 718 memcpy(o_buf, raw_data, *o_txn_size); 719 720 return 0; 721 } 722 723 static bool 724 qed_mcp_can_force_load(u8 drv_role, 725 u8 exist_drv_role, 726 enum qed_override_force_load override_force_load) 727 { 728 bool can_force_load = false; 729 730 switch (override_force_load) { 731 case QED_OVERRIDE_FORCE_LOAD_ALWAYS: 732 can_force_load = true; 733 break; 734 case QED_OVERRIDE_FORCE_LOAD_NEVER: 735 can_force_load = false; 736 break; 737 default: 738 can_force_load = (drv_role == DRV_ROLE_OS && 739 exist_drv_role == DRV_ROLE_PREBOOT) || 740 (drv_role == DRV_ROLE_KDUMP && 741 exist_drv_role == DRV_ROLE_OS); 742 break; 743 } 744 745 return can_force_load; 746 } 747 748 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn, 749 struct qed_ptt *p_ptt) 750 { 751 u32 resp = 0, param = 0; 752 int rc; 753 754 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0, 755 &resp, ¶m); 756 if (rc) 757 DP_NOTICE(p_hwfn, 758 "Failed to send cancel load request, rc = %d\n", rc); 759 760 return rc; 761 } 762 763 #define CONFIG_QEDE_BITMAP_IDX BIT(0) 764 #define CONFIG_QED_SRIOV_BITMAP_IDX BIT(1) 765 #define CONFIG_QEDR_BITMAP_IDX BIT(2) 766 #define CONFIG_QEDF_BITMAP_IDX BIT(4) 767 #define CONFIG_QEDI_BITMAP_IDX BIT(5) 768 #define CONFIG_QED_LL2_BITMAP_IDX BIT(6) 769 770 static u32 qed_get_config_bitmap(void) 771 { 772 u32 config_bitmap = 0x0; 773 774 if (IS_ENABLED(CONFIG_QEDE)) 775 config_bitmap |= CONFIG_QEDE_BITMAP_IDX; 776 777 if (IS_ENABLED(CONFIG_QED_SRIOV)) 778 config_bitmap |= CONFIG_QED_SRIOV_BITMAP_IDX; 779 780 if (IS_ENABLED(CONFIG_QED_RDMA)) 781 config_bitmap |= CONFIG_QEDR_BITMAP_IDX; 782 783 if (IS_ENABLED(CONFIG_QED_FCOE)) 784 config_bitmap |= CONFIG_QEDF_BITMAP_IDX; 785 786 if (IS_ENABLED(CONFIG_QED_ISCSI)) 787 config_bitmap |= CONFIG_QEDI_BITMAP_IDX; 788 789 if (IS_ENABLED(CONFIG_QED_LL2)) 790 config_bitmap |= CONFIG_QED_LL2_BITMAP_IDX; 791 792 return config_bitmap; 793 } 794 795 struct qed_load_req_in_params { 796 u8 hsi_ver; 797 #define QED_LOAD_REQ_HSI_VER_DEFAULT 0 798 #define QED_LOAD_REQ_HSI_VER_1 1 799 u32 drv_ver_0; 800 u32 drv_ver_1; 801 u32 fw_ver; 802 u8 drv_role; 803 u8 timeout_val; 804 u8 force_cmd; 805 bool avoid_eng_reset; 806 }; 807 808 struct qed_load_req_out_params { 809 u32 load_code; 810 u32 exist_drv_ver_0; 811 u32 exist_drv_ver_1; 812 u32 exist_fw_ver; 813 u8 exist_drv_role; 814 u8 mfw_hsi_ver; 815 bool drv_exists; 816 }; 817 818 static int 819 __qed_mcp_load_req(struct qed_hwfn *p_hwfn, 820 struct qed_ptt *p_ptt, 821 struct qed_load_req_in_params *p_in_params, 822 struct qed_load_req_out_params *p_out_params) 823 { 824 struct qed_mcp_mb_params mb_params; 825 struct load_req_stc load_req; 826 struct load_rsp_stc load_rsp; 827 u32 hsi_ver; 828 int rc; 829 830 memset(&load_req, 0, sizeof(load_req)); 831 load_req.drv_ver_0 = p_in_params->drv_ver_0; 832 load_req.drv_ver_1 = p_in_params->drv_ver_1; 833 load_req.fw_ver = p_in_params->fw_ver; 834 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role); 835 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO, 836 p_in_params->timeout_val); 837 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE, 838 p_in_params->force_cmd); 839 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0, 840 p_in_params->avoid_eng_reset); 841 842 hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ? 843 DRV_ID_MCP_HSI_VER_CURRENT : 844 (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT); 845 846 memset(&mb_params, 0, sizeof(mb_params)); 847 mb_params.cmd = DRV_MSG_CODE_LOAD_REQ; 848 mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type; 849 mb_params.p_data_src = &load_req; 850 mb_params.data_src_size = sizeof(load_req); 851 mb_params.p_data_dst = &load_rsp; 852 mb_params.data_dst_size = sizeof(load_rsp); 853 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 854 855 DP_VERBOSE(p_hwfn, QED_MSG_SP, 856 "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n", 857 mb_params.param, 858 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW), 859 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE), 860 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER), 861 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER)); 862 863 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) { 864 DP_VERBOSE(p_hwfn, QED_MSG_SP, 865 "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n", 866 load_req.drv_ver_0, 867 load_req.drv_ver_1, 868 load_req.fw_ver, 869 load_req.misc0, 870 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE), 871 QED_MFW_GET_FIELD(load_req.misc0, 872 LOAD_REQ_LOCK_TO), 873 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE), 874 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0)); 875 } 876 877 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 878 if (rc) { 879 DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc); 880 return rc; 881 } 882 883 DP_VERBOSE(p_hwfn, QED_MSG_SP, 884 "Load Response: resp 0x%08x\n", mb_params.mcp_resp); 885 p_out_params->load_code = mb_params.mcp_resp; 886 887 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 888 p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 889 DP_VERBOSE(p_hwfn, 890 QED_MSG_SP, 891 "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n", 892 load_rsp.drv_ver_0, 893 load_rsp.drv_ver_1, 894 load_rsp.fw_ver, 895 load_rsp.misc0, 896 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE), 897 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI), 898 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0)); 899 900 p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0; 901 p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1; 902 p_out_params->exist_fw_ver = load_rsp.fw_ver; 903 p_out_params->exist_drv_role = 904 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE); 905 p_out_params->mfw_hsi_ver = 906 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI); 907 p_out_params->drv_exists = 908 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) & 909 LOAD_RSP_FLAGS0_DRV_EXISTS; 910 } 911 912 return 0; 913 } 914 915 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn, 916 enum qed_drv_role drv_role, 917 u8 *p_mfw_drv_role) 918 { 919 switch (drv_role) { 920 case QED_DRV_ROLE_OS: 921 *p_mfw_drv_role = DRV_ROLE_OS; 922 break; 923 case QED_DRV_ROLE_KDUMP: 924 *p_mfw_drv_role = DRV_ROLE_KDUMP; 925 break; 926 default: 927 DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role); 928 return -EINVAL; 929 } 930 931 return 0; 932 } 933 934 enum qed_load_req_force { 935 QED_LOAD_REQ_FORCE_NONE, 936 QED_LOAD_REQ_FORCE_PF, 937 QED_LOAD_REQ_FORCE_ALL, 938 }; 939 940 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn, 941 942 enum qed_load_req_force force_cmd, 943 u8 *p_mfw_force_cmd) 944 { 945 switch (force_cmd) { 946 case QED_LOAD_REQ_FORCE_NONE: 947 *p_mfw_force_cmd = LOAD_REQ_FORCE_NONE; 948 break; 949 case QED_LOAD_REQ_FORCE_PF: 950 *p_mfw_force_cmd = LOAD_REQ_FORCE_PF; 951 break; 952 case QED_LOAD_REQ_FORCE_ALL: 953 *p_mfw_force_cmd = LOAD_REQ_FORCE_ALL; 954 break; 955 } 956 } 957 958 int qed_mcp_load_req(struct qed_hwfn *p_hwfn, 959 struct qed_ptt *p_ptt, 960 struct qed_load_req_params *p_params) 961 { 962 struct qed_load_req_out_params out_params; 963 struct qed_load_req_in_params in_params; 964 u8 mfw_drv_role, mfw_force_cmd; 965 int rc; 966 967 memset(&in_params, 0, sizeof(in_params)); 968 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT; 969 in_params.drv_ver_0 = QED_VERSION; 970 in_params.drv_ver_1 = qed_get_config_bitmap(); 971 in_params.fw_ver = STORM_FW_VERSION; 972 rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role); 973 if (rc) 974 return rc; 975 976 in_params.drv_role = mfw_drv_role; 977 in_params.timeout_val = p_params->timeout_val; 978 qed_get_mfw_force_cmd(p_hwfn, 979 QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd); 980 981 in_params.force_cmd = mfw_force_cmd; 982 in_params.avoid_eng_reset = p_params->avoid_eng_reset; 983 984 memset(&out_params, 0, sizeof(out_params)); 985 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 986 if (rc) 987 return rc; 988 989 /* First handle cases where another load request should/might be sent: 990 * - MFW expects the old interface [HSI version = 1] 991 * - MFW responds that a force load request is required 992 */ 993 if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 994 DP_INFO(p_hwfn, 995 "MFW refused a load request due to HSI > 1. Resending with HSI = 1\n"); 996 997 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1; 998 memset(&out_params, 0, sizeof(out_params)); 999 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 1000 if (rc) 1001 return rc; 1002 } else if (out_params.load_code == 1003 FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) { 1004 if (qed_mcp_can_force_load(in_params.drv_role, 1005 out_params.exist_drv_role, 1006 p_params->override_force_load)) { 1007 DP_INFO(p_hwfn, 1008 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n", 1009 in_params.drv_role, in_params.fw_ver, 1010 in_params.drv_ver_0, in_params.drv_ver_1, 1011 out_params.exist_drv_role, 1012 out_params.exist_fw_ver, 1013 out_params.exist_drv_ver_0, 1014 out_params.exist_drv_ver_1); 1015 1016 qed_get_mfw_force_cmd(p_hwfn, 1017 QED_LOAD_REQ_FORCE_ALL, 1018 &mfw_force_cmd); 1019 1020 in_params.force_cmd = mfw_force_cmd; 1021 memset(&out_params, 0, sizeof(out_params)); 1022 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, 1023 &out_params); 1024 if (rc) 1025 return rc; 1026 } else { 1027 DP_NOTICE(p_hwfn, 1028 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n", 1029 in_params.drv_role, in_params.fw_ver, 1030 in_params.drv_ver_0, in_params.drv_ver_1, 1031 out_params.exist_drv_role, 1032 out_params.exist_fw_ver, 1033 out_params.exist_drv_ver_0, 1034 out_params.exist_drv_ver_1); 1035 DP_NOTICE(p_hwfn, 1036 "Avoid sending a force load request to prevent disruption of active PFs\n"); 1037 1038 qed_mcp_cancel_load_req(p_hwfn, p_ptt); 1039 return -EBUSY; 1040 } 1041 } 1042 1043 /* Now handle the other types of responses. 1044 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not 1045 * expected here after the additional revised load requests were sent. 1046 */ 1047 switch (out_params.load_code) { 1048 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1049 case FW_MSG_CODE_DRV_LOAD_PORT: 1050 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1051 if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 1052 out_params.drv_exists) { 1053 /* The role and fw/driver version match, but the PF is 1054 * already loaded and has not been unloaded gracefully. 1055 */ 1056 DP_NOTICE(p_hwfn, 1057 "PF is already loaded\n"); 1058 return -EINVAL; 1059 } 1060 break; 1061 default: 1062 DP_NOTICE(p_hwfn, 1063 "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n", 1064 out_params.load_code); 1065 return -EBUSY; 1066 } 1067 1068 p_params->load_code = out_params.load_code; 1069 1070 return 0; 1071 } 1072 1073 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1074 { 1075 struct qed_mcp_mb_params mb_params; 1076 u32 wol_param; 1077 1078 switch (p_hwfn->cdev->wol_config) { 1079 case QED_OV_WOL_DISABLED: 1080 wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED; 1081 break; 1082 case QED_OV_WOL_ENABLED: 1083 wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED; 1084 break; 1085 default: 1086 DP_NOTICE(p_hwfn, 1087 "Unknown WoL configuration %02x\n", 1088 p_hwfn->cdev->wol_config); 1089 /* Fallthrough */ 1090 case QED_OV_WOL_DEFAULT: 1091 wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP; 1092 } 1093 1094 memset(&mb_params, 0, sizeof(mb_params)); 1095 mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ; 1096 mb_params.param = wol_param; 1097 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 1098 1099 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1100 } 1101 1102 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1103 { 1104 struct qed_mcp_mb_params mb_params; 1105 struct mcp_mac wol_mac; 1106 1107 memset(&mb_params, 0, sizeof(mb_params)); 1108 mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE; 1109 1110 /* Set the primary MAC if WoL is enabled */ 1111 if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) { 1112 u8 *p_mac = p_hwfn->cdev->wol_mac; 1113 1114 memset(&wol_mac, 0, sizeof(wol_mac)); 1115 wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1]; 1116 wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 | 1117 p_mac[4] << 8 | p_mac[5]; 1118 1119 DP_VERBOSE(p_hwfn, 1120 (QED_MSG_SP | NETIF_MSG_IFDOWN), 1121 "Setting WoL MAC: %pM --> [%08x,%08x]\n", 1122 p_mac, wol_mac.mac_upper, wol_mac.mac_lower); 1123 1124 mb_params.p_data_src = &wol_mac; 1125 mb_params.data_src_size = sizeof(wol_mac); 1126 } 1127 1128 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1129 } 1130 1131 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn, 1132 struct qed_ptt *p_ptt) 1133 { 1134 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1135 PUBLIC_PATH); 1136 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1137 u32 path_addr = SECTION_ADDR(mfw_path_offsize, 1138 QED_PATH_ID(p_hwfn)); 1139 u32 disabled_vfs[VF_MAX_STATIC / 32]; 1140 int i; 1141 1142 DP_VERBOSE(p_hwfn, 1143 QED_MSG_SP, 1144 "Reading Disabled VF information from [offset %08x], path_addr %08x\n", 1145 mfw_path_offsize, path_addr); 1146 1147 for (i = 0; i < (VF_MAX_STATIC / 32); i++) { 1148 disabled_vfs[i] = qed_rd(p_hwfn, p_ptt, 1149 path_addr + 1150 offsetof(struct public_path, 1151 mcp_vf_disabled) + 1152 sizeof(u32) * i); 1153 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1154 "FLR-ed VFs [%08x,...,%08x] - %08x\n", 1155 i * 32, (i + 1) * 32 - 1, disabled_vfs[i]); 1156 } 1157 1158 if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs)) 1159 qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG); 1160 } 1161 1162 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn, 1163 struct qed_ptt *p_ptt, u32 *vfs_to_ack) 1164 { 1165 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1166 PUBLIC_FUNC); 1167 u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr); 1168 u32 func_addr = SECTION_ADDR(mfw_func_offsize, 1169 MCP_PF_ID(p_hwfn)); 1170 struct qed_mcp_mb_params mb_params; 1171 int rc; 1172 int i; 1173 1174 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1175 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1176 "Acking VFs [%08x,...,%08x] - %08x\n", 1177 i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]); 1178 1179 memset(&mb_params, 0, sizeof(mb_params)); 1180 mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE; 1181 mb_params.p_data_src = vfs_to_ack; 1182 mb_params.data_src_size = VF_MAX_STATIC / 8; 1183 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1184 if (rc) { 1185 DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n"); 1186 return -EBUSY; 1187 } 1188 1189 /* Clear the ACK bits */ 1190 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1191 qed_wr(p_hwfn, p_ptt, 1192 func_addr + 1193 offsetof(struct public_func, drv_ack_vf_disabled) + 1194 i * sizeof(u32), 0); 1195 1196 return rc; 1197 } 1198 1199 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn, 1200 struct qed_ptt *p_ptt) 1201 { 1202 u32 transceiver_state; 1203 1204 transceiver_state = qed_rd(p_hwfn, p_ptt, 1205 p_hwfn->mcp_info->port_addr + 1206 offsetof(struct public_port, 1207 transceiver_data)); 1208 1209 DP_VERBOSE(p_hwfn, 1210 (NETIF_MSG_HW | QED_MSG_SP), 1211 "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n", 1212 transceiver_state, 1213 (u32)(p_hwfn->mcp_info->port_addr + 1214 offsetof(struct public_port, transceiver_data))); 1215 1216 transceiver_state = GET_FIELD(transceiver_state, 1217 ETH_TRANSCEIVER_STATE); 1218 1219 if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT) 1220 DP_NOTICE(p_hwfn, "Transceiver is present.\n"); 1221 else 1222 DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n"); 1223 } 1224 1225 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn, 1226 struct qed_ptt *p_ptt, 1227 struct qed_mcp_link_state *p_link) 1228 { 1229 u32 eee_status, val; 1230 1231 p_link->eee_adv_caps = 0; 1232 p_link->eee_lp_adv_caps = 0; 1233 eee_status = qed_rd(p_hwfn, 1234 p_ptt, 1235 p_hwfn->mcp_info->port_addr + 1236 offsetof(struct public_port, eee_status)); 1237 p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT); 1238 val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET; 1239 if (val & EEE_1G_ADV) 1240 p_link->eee_adv_caps |= QED_EEE_1G_ADV; 1241 if (val & EEE_10G_ADV) 1242 p_link->eee_adv_caps |= QED_EEE_10G_ADV; 1243 val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET; 1244 if (val & EEE_1G_ADV) 1245 p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV; 1246 if (val & EEE_10G_ADV) 1247 p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV; 1248 } 1249 1250 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn, 1251 struct qed_ptt *p_ptt, bool b_reset) 1252 { 1253 struct qed_mcp_link_state *p_link; 1254 u8 max_bw, min_bw; 1255 u32 status = 0; 1256 1257 /* Prevent SW/attentions from doing this at the same time */ 1258 spin_lock_bh(&p_hwfn->mcp_info->link_lock); 1259 1260 p_link = &p_hwfn->mcp_info->link_output; 1261 memset(p_link, 0, sizeof(*p_link)); 1262 if (!b_reset) { 1263 status = qed_rd(p_hwfn, p_ptt, 1264 p_hwfn->mcp_info->port_addr + 1265 offsetof(struct public_port, link_status)); 1266 DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP), 1267 "Received link update [0x%08x] from mfw [Addr 0x%x]\n", 1268 status, 1269 (u32)(p_hwfn->mcp_info->port_addr + 1270 offsetof(struct public_port, link_status))); 1271 } else { 1272 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1273 "Resetting link indications\n"); 1274 goto out; 1275 } 1276 1277 if (p_hwfn->b_drv_link_init) 1278 p_link->link_up = !!(status & LINK_STATUS_LINK_UP); 1279 else 1280 p_link->link_up = false; 1281 1282 p_link->full_duplex = true; 1283 switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) { 1284 case LINK_STATUS_SPEED_AND_DUPLEX_100G: 1285 p_link->speed = 100000; 1286 break; 1287 case LINK_STATUS_SPEED_AND_DUPLEX_50G: 1288 p_link->speed = 50000; 1289 break; 1290 case LINK_STATUS_SPEED_AND_DUPLEX_40G: 1291 p_link->speed = 40000; 1292 break; 1293 case LINK_STATUS_SPEED_AND_DUPLEX_25G: 1294 p_link->speed = 25000; 1295 break; 1296 case LINK_STATUS_SPEED_AND_DUPLEX_20G: 1297 p_link->speed = 20000; 1298 break; 1299 case LINK_STATUS_SPEED_AND_DUPLEX_10G: 1300 p_link->speed = 10000; 1301 break; 1302 case LINK_STATUS_SPEED_AND_DUPLEX_1000THD: 1303 p_link->full_duplex = false; 1304 /* Fall-through */ 1305 case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD: 1306 p_link->speed = 1000; 1307 break; 1308 default: 1309 p_link->speed = 0; 1310 p_link->link_up = 0; 1311 } 1312 1313 if (p_link->link_up && p_link->speed) 1314 p_link->line_speed = p_link->speed; 1315 else 1316 p_link->line_speed = 0; 1317 1318 max_bw = p_hwfn->mcp_info->func_info.bandwidth_max; 1319 min_bw = p_hwfn->mcp_info->func_info.bandwidth_min; 1320 1321 /* Max bandwidth configuration */ 1322 __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw); 1323 1324 /* Min bandwidth configuration */ 1325 __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw); 1326 qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt, 1327 p_link->min_pf_rate); 1328 1329 p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED); 1330 p_link->an_complete = !!(status & 1331 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE); 1332 p_link->parallel_detection = !!(status & 1333 LINK_STATUS_PARALLEL_DETECTION_USED); 1334 p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED); 1335 1336 p_link->partner_adv_speed |= 1337 (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ? 1338 QED_LINK_PARTNER_SPEED_1G_FD : 0; 1339 p_link->partner_adv_speed |= 1340 (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ? 1341 QED_LINK_PARTNER_SPEED_1G_HD : 0; 1342 p_link->partner_adv_speed |= 1343 (status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ? 1344 QED_LINK_PARTNER_SPEED_10G : 0; 1345 p_link->partner_adv_speed |= 1346 (status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ? 1347 QED_LINK_PARTNER_SPEED_20G : 0; 1348 p_link->partner_adv_speed |= 1349 (status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ? 1350 QED_LINK_PARTNER_SPEED_25G : 0; 1351 p_link->partner_adv_speed |= 1352 (status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ? 1353 QED_LINK_PARTNER_SPEED_40G : 0; 1354 p_link->partner_adv_speed |= 1355 (status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ? 1356 QED_LINK_PARTNER_SPEED_50G : 0; 1357 p_link->partner_adv_speed |= 1358 (status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ? 1359 QED_LINK_PARTNER_SPEED_100G : 0; 1360 1361 p_link->partner_tx_flow_ctrl_en = 1362 !!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED); 1363 p_link->partner_rx_flow_ctrl_en = 1364 !!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED); 1365 1366 switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) { 1367 case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE: 1368 p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE; 1369 break; 1370 case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE: 1371 p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE; 1372 break; 1373 case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE: 1374 p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE; 1375 break; 1376 default: 1377 p_link->partner_adv_pause = 0; 1378 } 1379 1380 p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT); 1381 1382 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) 1383 qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link); 1384 1385 qed_link_update(p_hwfn); 1386 out: 1387 spin_unlock_bh(&p_hwfn->mcp_info->link_lock); 1388 } 1389 1390 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up) 1391 { 1392 struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input; 1393 struct qed_mcp_mb_params mb_params; 1394 struct eth_phy_cfg phy_cfg; 1395 int rc = 0; 1396 u32 cmd; 1397 1398 /* Set the shmem configuration according to params */ 1399 memset(&phy_cfg, 0, sizeof(phy_cfg)); 1400 cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET; 1401 if (!params->speed.autoneg) 1402 phy_cfg.speed = params->speed.forced_speed; 1403 phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0; 1404 phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0; 1405 phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0; 1406 phy_cfg.adv_speed = params->speed.advertised_speeds; 1407 phy_cfg.loopback_mode = params->loopback_mode; 1408 1409 /* There are MFWs that share this capability regardless of whether 1410 * this is feasible or not. And given that at the very least adv_caps 1411 * would be set internally by qed, we want to make sure LFA would 1412 * still work. 1413 */ 1414 if ((p_hwfn->mcp_info->capabilities & 1415 FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) { 1416 phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED; 1417 if (params->eee.tx_lpi_enable) 1418 phy_cfg.eee_cfg |= EEE_CFG_TX_LPI; 1419 if (params->eee.adv_caps & QED_EEE_1G_ADV) 1420 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G; 1421 if (params->eee.adv_caps & QED_EEE_10G_ADV) 1422 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G; 1423 phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer << 1424 EEE_TX_TIMER_USEC_OFFSET) & 1425 EEE_TX_TIMER_USEC_MASK; 1426 } 1427 1428 p_hwfn->b_drv_link_init = b_up; 1429 1430 if (b_up) { 1431 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1432 "Configuring Link: Speed 0x%08x, Pause 0x%08x, adv_speed 0x%08x, loopback 0x%08x, features 0x%08x\n", 1433 phy_cfg.speed, 1434 phy_cfg.pause, 1435 phy_cfg.adv_speed, 1436 phy_cfg.loopback_mode, 1437 phy_cfg.feature_config_flags); 1438 } else { 1439 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1440 "Resetting link\n"); 1441 } 1442 1443 memset(&mb_params, 0, sizeof(mb_params)); 1444 mb_params.cmd = cmd; 1445 mb_params.p_data_src = &phy_cfg; 1446 mb_params.data_src_size = sizeof(phy_cfg); 1447 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1448 1449 /* if mcp fails to respond we must abort */ 1450 if (rc) { 1451 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 1452 return rc; 1453 } 1454 1455 /* Mimic link-change attention, done for several reasons: 1456 * - On reset, there's no guarantee MFW would trigger 1457 * an attention. 1458 * - On initialization, older MFWs might not indicate link change 1459 * during LFA, so we'll never get an UP indication. 1460 */ 1461 qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up); 1462 1463 return 0; 1464 } 1465 1466 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn, 1467 struct qed_ptt *p_ptt, 1468 enum MFW_DRV_MSG_TYPE type) 1469 { 1470 enum qed_mcp_protocol_type stats_type; 1471 union qed_mcp_protocol_stats stats; 1472 struct qed_mcp_mb_params mb_params; 1473 u32 hsi_param; 1474 1475 switch (type) { 1476 case MFW_DRV_MSG_GET_LAN_STATS: 1477 stats_type = QED_MCP_LAN_STATS; 1478 hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN; 1479 break; 1480 case MFW_DRV_MSG_GET_FCOE_STATS: 1481 stats_type = QED_MCP_FCOE_STATS; 1482 hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE; 1483 break; 1484 case MFW_DRV_MSG_GET_ISCSI_STATS: 1485 stats_type = QED_MCP_ISCSI_STATS; 1486 hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI; 1487 break; 1488 case MFW_DRV_MSG_GET_RDMA_STATS: 1489 stats_type = QED_MCP_RDMA_STATS; 1490 hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA; 1491 break; 1492 default: 1493 DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type); 1494 return; 1495 } 1496 1497 qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats); 1498 1499 memset(&mb_params, 0, sizeof(mb_params)); 1500 mb_params.cmd = DRV_MSG_CODE_GET_STATS; 1501 mb_params.param = hsi_param; 1502 mb_params.p_data_src = &stats; 1503 mb_params.data_src_size = sizeof(stats); 1504 qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1505 } 1506 1507 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn, 1508 struct public_func *p_shmem_info) 1509 { 1510 struct qed_mcp_function_info *p_info; 1511 1512 p_info = &p_hwfn->mcp_info->func_info; 1513 1514 p_info->bandwidth_min = (p_shmem_info->config & 1515 FUNC_MF_CFG_MIN_BW_MASK) >> 1516 FUNC_MF_CFG_MIN_BW_SHIFT; 1517 if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) { 1518 DP_INFO(p_hwfn, 1519 "bandwidth minimum out of bounds [%02x]. Set to 1\n", 1520 p_info->bandwidth_min); 1521 p_info->bandwidth_min = 1; 1522 } 1523 1524 p_info->bandwidth_max = (p_shmem_info->config & 1525 FUNC_MF_CFG_MAX_BW_MASK) >> 1526 FUNC_MF_CFG_MAX_BW_SHIFT; 1527 if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) { 1528 DP_INFO(p_hwfn, 1529 "bandwidth maximum out of bounds [%02x]. Set to 100\n", 1530 p_info->bandwidth_max); 1531 p_info->bandwidth_max = 100; 1532 } 1533 } 1534 1535 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn, 1536 struct qed_ptt *p_ptt, 1537 struct public_func *p_data, int pfid) 1538 { 1539 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1540 PUBLIC_FUNC); 1541 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1542 u32 func_addr = SECTION_ADDR(mfw_path_offsize, pfid); 1543 u32 i, size; 1544 1545 memset(p_data, 0, sizeof(*p_data)); 1546 1547 size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize)); 1548 for (i = 0; i < size / sizeof(u32); i++) 1549 ((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt, 1550 func_addr + (i << 2)); 1551 return size; 1552 } 1553 1554 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1555 { 1556 struct qed_mcp_function_info *p_info; 1557 struct public_func shmem_info; 1558 u32 resp = 0, param = 0; 1559 1560 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1561 1562 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1563 1564 p_info = &p_hwfn->mcp_info->func_info; 1565 1566 qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min); 1567 qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max); 1568 1569 /* Acknowledge the MFW */ 1570 qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp, 1571 ¶m); 1572 } 1573 1574 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1575 { 1576 struct public_func shmem_info; 1577 u32 resp = 0, param = 0; 1578 1579 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1580 1581 p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag & 1582 FUNC_MF_CFG_OV_STAG_MASK; 1583 p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan; 1584 if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) { 1585 if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) { 1586 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 1587 p_hwfn->hw_info.ovlan); 1588 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1); 1589 1590 /* Configure DB to add external vlan to EDPM packets */ 1591 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1); 1592 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 1593 p_hwfn->hw_info.ovlan); 1594 } else { 1595 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0); 1596 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0); 1597 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0); 1598 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0); 1599 } 1600 1601 qed_sp_pf_update_stag(p_hwfn); 1602 } 1603 1604 DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan = %d hw_mode = 0x%x\n", 1605 p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode); 1606 1607 /* Acknowledge the MFW */ 1608 qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0, 1609 &resp, ¶m); 1610 } 1611 1612 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1613 { 1614 struct public_func shmem_info; 1615 u32 port_cfg, val; 1616 1617 if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits)) 1618 return; 1619 1620 memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info)); 1621 port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 1622 offsetof(struct public_port, oem_cfg_port)); 1623 val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >> 1624 OEM_CFG_CHANNEL_TYPE_OFFSET; 1625 if (val != OEM_CFG_CHANNEL_TYPE_STAGGED) 1626 DP_NOTICE(p_hwfn, "Incorrect UFP Channel type %d\n", val); 1627 1628 val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET; 1629 if (val == OEM_CFG_SCHED_TYPE_ETS) { 1630 p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS; 1631 } else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) { 1632 p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW; 1633 } else { 1634 p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN; 1635 DP_NOTICE(p_hwfn, "Unknown UFP scheduling mode %d\n", val); 1636 } 1637 1638 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1639 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >> 1640 OEM_CFG_FUNC_TC_OFFSET; 1641 p_hwfn->ufp_info.tc = (u8)val; 1642 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >> 1643 OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET; 1644 if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) { 1645 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC; 1646 } else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) { 1647 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS; 1648 } else { 1649 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN; 1650 DP_NOTICE(p_hwfn, "Unknown Host priority control %d\n", val); 1651 } 1652 1653 DP_NOTICE(p_hwfn, 1654 "UFP shmem config: mode = %d tc = %d pri_type = %d\n", 1655 p_hwfn->ufp_info.mode, 1656 p_hwfn->ufp_info.tc, p_hwfn->ufp_info.pri_type); 1657 } 1658 1659 static int 1660 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1661 { 1662 qed_mcp_read_ufp_config(p_hwfn, p_ptt); 1663 1664 if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) { 1665 p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc; 1666 qed_hw_info_set_offload_tc(&p_hwfn->hw_info, 1667 p_hwfn->ufp_info.tc); 1668 1669 qed_qm_reconf(p_hwfn, p_ptt); 1670 } else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) { 1671 /* Merge UFP TC with the dcbx TC data */ 1672 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 1673 QED_DCBX_OPERATIONAL_MIB); 1674 } else { 1675 DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n"); 1676 return -EINVAL; 1677 } 1678 1679 /* update storm FW with negotiation results */ 1680 qed_sp_pf_update_ufp(p_hwfn); 1681 1682 /* update stag pcp value */ 1683 qed_sp_pf_update_stag(p_hwfn); 1684 1685 return 0; 1686 } 1687 1688 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn, 1689 struct qed_ptt *p_ptt) 1690 { 1691 struct qed_mcp_info *info = p_hwfn->mcp_info; 1692 int rc = 0; 1693 bool found = false; 1694 u16 i; 1695 1696 DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n"); 1697 1698 /* Read Messages from MFW */ 1699 qed_mcp_read_mb(p_hwfn, p_ptt); 1700 1701 /* Compare current messages to old ones */ 1702 for (i = 0; i < info->mfw_mb_length; i++) { 1703 if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i]) 1704 continue; 1705 1706 found = true; 1707 1708 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1709 "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n", 1710 i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]); 1711 1712 switch (i) { 1713 case MFW_DRV_MSG_LINK_CHANGE: 1714 qed_mcp_handle_link_change(p_hwfn, p_ptt, false); 1715 break; 1716 case MFW_DRV_MSG_VF_DISABLED: 1717 qed_mcp_handle_vf_flr(p_hwfn, p_ptt); 1718 break; 1719 case MFW_DRV_MSG_LLDP_DATA_UPDATED: 1720 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 1721 QED_DCBX_REMOTE_LLDP_MIB); 1722 break; 1723 case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED: 1724 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 1725 QED_DCBX_REMOTE_MIB); 1726 break; 1727 case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED: 1728 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 1729 QED_DCBX_OPERATIONAL_MIB); 1730 break; 1731 case MFW_DRV_MSG_OEM_CFG_UPDATE: 1732 qed_mcp_handle_ufp_event(p_hwfn, p_ptt); 1733 break; 1734 case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE: 1735 qed_mcp_handle_transceiver_change(p_hwfn, p_ptt); 1736 break; 1737 case MFW_DRV_MSG_GET_LAN_STATS: 1738 case MFW_DRV_MSG_GET_FCOE_STATS: 1739 case MFW_DRV_MSG_GET_ISCSI_STATS: 1740 case MFW_DRV_MSG_GET_RDMA_STATS: 1741 qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i); 1742 break; 1743 case MFW_DRV_MSG_BW_UPDATE: 1744 qed_mcp_update_bw(p_hwfn, p_ptt); 1745 break; 1746 case MFW_DRV_MSG_S_TAG_UPDATE: 1747 qed_mcp_update_stag(p_hwfn, p_ptt); 1748 break; 1749 case MFW_DRV_MSG_GET_TLV_REQ: 1750 qed_mfw_tlv_req(p_hwfn); 1751 break; 1752 default: 1753 DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i); 1754 rc = -EINVAL; 1755 } 1756 } 1757 1758 /* ACK everything */ 1759 for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) { 1760 __be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]); 1761 1762 /* MFW expect answer in BE, so we force write in that format */ 1763 qed_wr(p_hwfn, p_ptt, 1764 info->mfw_mb_addr + sizeof(u32) + 1765 MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) * 1766 sizeof(u32) + i * sizeof(u32), 1767 (__force u32)val); 1768 } 1769 1770 if (!found) { 1771 DP_NOTICE(p_hwfn, 1772 "Received an MFW message indication but no new message!\n"); 1773 rc = -EINVAL; 1774 } 1775 1776 /* Copy the new mfw messages into the shadow */ 1777 memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length); 1778 1779 return rc; 1780 } 1781 1782 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn, 1783 struct qed_ptt *p_ptt, 1784 u32 *p_mfw_ver, u32 *p_running_bundle_id) 1785 { 1786 u32 global_offsize; 1787 1788 if (IS_VF(p_hwfn->cdev)) { 1789 if (p_hwfn->vf_iov_info) { 1790 struct pfvf_acquire_resp_tlv *p_resp; 1791 1792 p_resp = &p_hwfn->vf_iov_info->acquire_resp; 1793 *p_mfw_ver = p_resp->pfdev_info.mfw_ver; 1794 return 0; 1795 } else { 1796 DP_VERBOSE(p_hwfn, 1797 QED_MSG_IOV, 1798 "VF requested MFW version prior to ACQUIRE\n"); 1799 return -EINVAL; 1800 } 1801 } 1802 1803 global_offsize = qed_rd(p_hwfn, p_ptt, 1804 SECTION_OFFSIZE_ADDR(p_hwfn-> 1805 mcp_info->public_base, 1806 PUBLIC_GLOBAL)); 1807 *p_mfw_ver = 1808 qed_rd(p_hwfn, p_ptt, 1809 SECTION_ADDR(global_offsize, 1810 0) + offsetof(struct public_global, mfw_ver)); 1811 1812 if (p_running_bundle_id != NULL) { 1813 *p_running_bundle_id = qed_rd(p_hwfn, p_ptt, 1814 SECTION_ADDR(global_offsize, 0) + 1815 offsetof(struct public_global, 1816 running_bundle_id)); 1817 } 1818 1819 return 0; 1820 } 1821 1822 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn, 1823 struct qed_ptt *p_ptt, u32 *p_mbi_ver) 1824 { 1825 u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr; 1826 1827 if (IS_VF(p_hwfn->cdev)) 1828 return -EINVAL; 1829 1830 /* Read the address of the nvm_cfg */ 1831 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 1832 if (!nvm_cfg_addr) { 1833 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 1834 return -EINVAL; 1835 } 1836 1837 /* Read the offset of nvm_cfg1 */ 1838 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 1839 1840 mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 1841 offsetof(struct nvm_cfg1, glob) + 1842 offsetof(struct nvm_cfg1_glob, mbi_version); 1843 *p_mbi_ver = qed_rd(p_hwfn, p_ptt, 1844 mbi_ver_addr) & 1845 (NVM_CFG1_GLOB_MBI_VERSION_0_MASK | 1846 NVM_CFG1_GLOB_MBI_VERSION_1_MASK | 1847 NVM_CFG1_GLOB_MBI_VERSION_2_MASK); 1848 1849 return 0; 1850 } 1851 1852 int qed_mcp_get_media_type(struct qed_dev *cdev, u32 *p_media_type) 1853 { 1854 struct qed_hwfn *p_hwfn = &cdev->hwfns[0]; 1855 struct qed_ptt *p_ptt; 1856 1857 if (IS_VF(cdev)) 1858 return -EINVAL; 1859 1860 if (!qed_mcp_is_init(p_hwfn)) { 1861 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 1862 return -EBUSY; 1863 } 1864 1865 *p_media_type = MEDIA_UNSPECIFIED; 1866 1867 p_ptt = qed_ptt_acquire(p_hwfn); 1868 if (!p_ptt) 1869 return -EBUSY; 1870 1871 *p_media_type = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 1872 offsetof(struct public_port, media_type)); 1873 1874 qed_ptt_release(p_hwfn, p_ptt); 1875 1876 return 0; 1877 } 1878 1879 /* Old MFW has a global configuration for all PFs regarding RDMA support */ 1880 static void 1881 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn, 1882 enum qed_pci_personality *p_proto) 1883 { 1884 /* There wasn't ever a legacy MFW that published iwarp. 1885 * So at this point, this is either plain l2 or RoCE. 1886 */ 1887 if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities)) 1888 *p_proto = QED_PCI_ETH_ROCE; 1889 else 1890 *p_proto = QED_PCI_ETH; 1891 1892 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 1893 "According to Legacy capabilities, L2 personality is %08x\n", 1894 (u32) *p_proto); 1895 } 1896 1897 static int 1898 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn, 1899 struct qed_ptt *p_ptt, 1900 enum qed_pci_personality *p_proto) 1901 { 1902 u32 resp = 0, param = 0; 1903 int rc; 1904 1905 rc = qed_mcp_cmd(p_hwfn, p_ptt, 1906 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, ¶m); 1907 if (rc) 1908 return rc; 1909 if (resp != FW_MSG_CODE_OK) { 1910 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 1911 "MFW lacks support for command; Returns %08x\n", 1912 resp); 1913 return -EINVAL; 1914 } 1915 1916 switch (param) { 1917 case FW_MB_PARAM_GET_PF_RDMA_NONE: 1918 *p_proto = QED_PCI_ETH; 1919 break; 1920 case FW_MB_PARAM_GET_PF_RDMA_ROCE: 1921 *p_proto = QED_PCI_ETH_ROCE; 1922 break; 1923 case FW_MB_PARAM_GET_PF_RDMA_IWARP: 1924 *p_proto = QED_PCI_ETH_IWARP; 1925 break; 1926 case FW_MB_PARAM_GET_PF_RDMA_BOTH: 1927 *p_proto = QED_PCI_ETH_RDMA; 1928 break; 1929 default: 1930 DP_NOTICE(p_hwfn, 1931 "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n", 1932 param); 1933 return -EINVAL; 1934 } 1935 1936 DP_VERBOSE(p_hwfn, 1937 NETIF_MSG_IFUP, 1938 "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n", 1939 (u32) *p_proto, resp, param); 1940 return 0; 1941 } 1942 1943 static int 1944 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn, 1945 struct public_func *p_info, 1946 struct qed_ptt *p_ptt, 1947 enum qed_pci_personality *p_proto) 1948 { 1949 int rc = 0; 1950 1951 switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) { 1952 case FUNC_MF_CFG_PROTOCOL_ETHERNET: 1953 if (!IS_ENABLED(CONFIG_QED_RDMA)) 1954 *p_proto = QED_PCI_ETH; 1955 else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto)) 1956 qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto); 1957 break; 1958 case FUNC_MF_CFG_PROTOCOL_ISCSI: 1959 *p_proto = QED_PCI_ISCSI; 1960 break; 1961 case FUNC_MF_CFG_PROTOCOL_FCOE: 1962 *p_proto = QED_PCI_FCOE; 1963 break; 1964 case FUNC_MF_CFG_PROTOCOL_ROCE: 1965 DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n"); 1966 /* Fallthrough */ 1967 default: 1968 rc = -EINVAL; 1969 } 1970 1971 return rc; 1972 } 1973 1974 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn, 1975 struct qed_ptt *p_ptt) 1976 { 1977 struct qed_mcp_function_info *info; 1978 struct public_func shmem_info; 1979 1980 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1981 info = &p_hwfn->mcp_info->func_info; 1982 1983 info->pause_on_host = (shmem_info.config & 1984 FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0; 1985 1986 if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt, 1987 &info->protocol)) { 1988 DP_ERR(p_hwfn, "Unknown personality %08x\n", 1989 (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK)); 1990 return -EINVAL; 1991 } 1992 1993 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1994 1995 if (shmem_info.mac_upper || shmem_info.mac_lower) { 1996 info->mac[0] = (u8)(shmem_info.mac_upper >> 8); 1997 info->mac[1] = (u8)(shmem_info.mac_upper); 1998 info->mac[2] = (u8)(shmem_info.mac_lower >> 24); 1999 info->mac[3] = (u8)(shmem_info.mac_lower >> 16); 2000 info->mac[4] = (u8)(shmem_info.mac_lower >> 8); 2001 info->mac[5] = (u8)(shmem_info.mac_lower); 2002 2003 /* Store primary MAC for later possible WoL */ 2004 memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN); 2005 } else { 2006 DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n"); 2007 } 2008 2009 info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower | 2010 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32); 2011 info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower | 2012 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32); 2013 2014 info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK); 2015 2016 info->mtu = (u16)shmem_info.mtu_size; 2017 2018 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE; 2019 p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT; 2020 if (qed_mcp_is_init(p_hwfn)) { 2021 u32 resp = 0, param = 0; 2022 int rc; 2023 2024 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2025 DRV_MSG_CODE_OS_WOL, 0, &resp, ¶m); 2026 if (rc) 2027 return rc; 2028 if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED) 2029 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME; 2030 } 2031 2032 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP), 2033 "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %02x:%02x:%02x:%02x:%02x:%02x wwn port %llx node %llx ovlan %04x wol %02x\n", 2034 info->pause_on_host, info->protocol, 2035 info->bandwidth_min, info->bandwidth_max, 2036 info->mac[0], info->mac[1], info->mac[2], 2037 info->mac[3], info->mac[4], info->mac[5], 2038 info->wwn_port, info->wwn_node, 2039 info->ovlan, (u8)p_hwfn->hw_info.b_wol_support); 2040 2041 return 0; 2042 } 2043 2044 struct qed_mcp_link_params 2045 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn) 2046 { 2047 if (!p_hwfn || !p_hwfn->mcp_info) 2048 return NULL; 2049 return &p_hwfn->mcp_info->link_input; 2050 } 2051 2052 struct qed_mcp_link_state 2053 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn) 2054 { 2055 if (!p_hwfn || !p_hwfn->mcp_info) 2056 return NULL; 2057 return &p_hwfn->mcp_info->link_output; 2058 } 2059 2060 struct qed_mcp_link_capabilities 2061 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn) 2062 { 2063 if (!p_hwfn || !p_hwfn->mcp_info) 2064 return NULL; 2065 return &p_hwfn->mcp_info->link_capabilities; 2066 } 2067 2068 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2069 { 2070 u32 resp = 0, param = 0; 2071 int rc; 2072 2073 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2074 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, ¶m); 2075 2076 /* Wait for the drain to complete before returning */ 2077 msleep(1020); 2078 2079 return rc; 2080 } 2081 2082 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn, 2083 struct qed_ptt *p_ptt, u32 *p_flash_size) 2084 { 2085 u32 flash_size; 2086 2087 if (IS_VF(p_hwfn->cdev)) 2088 return -EINVAL; 2089 2090 flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4); 2091 flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >> 2092 MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT; 2093 flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT)); 2094 2095 *p_flash_size = flash_size; 2096 2097 return 0; 2098 } 2099 2100 static int 2101 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn, 2102 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2103 { 2104 u32 resp = 0, param = 0, rc_param = 0; 2105 int rc; 2106 2107 /* Only Leader can configure MSIX, and need to take CMT into account */ 2108 if (!IS_LEAD_HWFN(p_hwfn)) 2109 return 0; 2110 num *= p_hwfn->cdev->num_hwfns; 2111 2112 param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) & 2113 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK; 2114 param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) & 2115 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK; 2116 2117 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param, 2118 &resp, &rc_param); 2119 2120 if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) { 2121 DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id); 2122 rc = -EINVAL; 2123 } else { 2124 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2125 "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n", 2126 num, vf_id); 2127 } 2128 2129 return rc; 2130 } 2131 2132 static int 2133 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn, 2134 struct qed_ptt *p_ptt, u8 num) 2135 { 2136 u32 resp = 0, param = num, rc_param = 0; 2137 int rc; 2138 2139 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX, 2140 param, &resp, &rc_param); 2141 2142 if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) { 2143 DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n"); 2144 rc = -EINVAL; 2145 } else { 2146 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2147 "Requested 0x%02x MSI-x interrupts for VFs\n", num); 2148 } 2149 2150 return rc; 2151 } 2152 2153 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn, 2154 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2155 { 2156 if (QED_IS_BB(p_hwfn->cdev)) 2157 return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num); 2158 else 2159 return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num); 2160 } 2161 2162 int 2163 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn, 2164 struct qed_ptt *p_ptt, 2165 struct qed_mcp_drv_version *p_ver) 2166 { 2167 struct qed_mcp_mb_params mb_params; 2168 struct drv_version_stc drv_version; 2169 __be32 val; 2170 u32 i; 2171 int rc; 2172 2173 memset(&drv_version, 0, sizeof(drv_version)); 2174 drv_version.version = p_ver->version; 2175 for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) { 2176 val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)])); 2177 *(__be32 *)&drv_version.name[i * sizeof(u32)] = val; 2178 } 2179 2180 memset(&mb_params, 0, sizeof(mb_params)); 2181 mb_params.cmd = DRV_MSG_CODE_SET_VERSION; 2182 mb_params.p_data_src = &drv_version; 2183 mb_params.data_src_size = sizeof(drv_version); 2184 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2185 if (rc) 2186 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2187 2188 return rc; 2189 } 2190 2191 /* A maximal 100 msec waiting time for the MCP to halt */ 2192 #define QED_MCP_HALT_SLEEP_MS 10 2193 #define QED_MCP_HALT_MAX_RETRIES 10 2194 2195 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2196 { 2197 u32 resp = 0, param = 0, cpu_state, cnt = 0; 2198 int rc; 2199 2200 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp, 2201 ¶m); 2202 if (rc) { 2203 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2204 return rc; 2205 } 2206 2207 do { 2208 msleep(QED_MCP_HALT_SLEEP_MS); 2209 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2210 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) 2211 break; 2212 } while (++cnt < QED_MCP_HALT_MAX_RETRIES); 2213 2214 if (cnt == QED_MCP_HALT_MAX_RETRIES) { 2215 DP_NOTICE(p_hwfn, 2216 "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2217 qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state); 2218 return -EBUSY; 2219 } 2220 2221 qed_mcp_cmd_set_blocking(p_hwfn, true); 2222 2223 return 0; 2224 } 2225 2226 #define QED_MCP_RESUME_SLEEP_MS 10 2227 2228 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2229 { 2230 u32 cpu_mode, cpu_state; 2231 2232 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff); 2233 2234 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 2235 cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT; 2236 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode); 2237 msleep(QED_MCP_RESUME_SLEEP_MS); 2238 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2239 2240 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) { 2241 DP_NOTICE(p_hwfn, 2242 "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2243 cpu_mode, cpu_state); 2244 return -EBUSY; 2245 } 2246 2247 qed_mcp_cmd_set_blocking(p_hwfn, false); 2248 2249 return 0; 2250 } 2251 2252 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn, 2253 struct qed_ptt *p_ptt, 2254 enum qed_ov_client client) 2255 { 2256 u32 resp = 0, param = 0; 2257 u32 drv_mb_param; 2258 int rc; 2259 2260 switch (client) { 2261 case QED_OV_CLIENT_DRV: 2262 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS; 2263 break; 2264 case QED_OV_CLIENT_USER: 2265 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER; 2266 break; 2267 case QED_OV_CLIENT_VENDOR_SPEC: 2268 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC; 2269 break; 2270 default: 2271 DP_NOTICE(p_hwfn, "Invalid client type %d\n", client); 2272 return -EINVAL; 2273 } 2274 2275 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG, 2276 drv_mb_param, &resp, ¶m); 2277 if (rc) 2278 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2279 2280 return rc; 2281 } 2282 2283 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn, 2284 struct qed_ptt *p_ptt, 2285 enum qed_ov_driver_state drv_state) 2286 { 2287 u32 resp = 0, param = 0; 2288 u32 drv_mb_param; 2289 int rc; 2290 2291 switch (drv_state) { 2292 case QED_OV_DRIVER_STATE_NOT_LOADED: 2293 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED; 2294 break; 2295 case QED_OV_DRIVER_STATE_DISABLED: 2296 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED; 2297 break; 2298 case QED_OV_DRIVER_STATE_ACTIVE: 2299 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE; 2300 break; 2301 default: 2302 DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state); 2303 return -EINVAL; 2304 } 2305 2306 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE, 2307 drv_mb_param, &resp, ¶m); 2308 if (rc) 2309 DP_ERR(p_hwfn, "Failed to send driver state\n"); 2310 2311 return rc; 2312 } 2313 2314 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn, 2315 struct qed_ptt *p_ptt, u16 mtu) 2316 { 2317 u32 resp = 0, param = 0; 2318 u32 drv_mb_param; 2319 int rc; 2320 2321 drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT; 2322 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU, 2323 drv_mb_param, &resp, ¶m); 2324 if (rc) 2325 DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc); 2326 2327 return rc; 2328 } 2329 2330 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn, 2331 struct qed_ptt *p_ptt, u8 *mac) 2332 { 2333 struct qed_mcp_mb_params mb_params; 2334 u32 mfw_mac[2]; 2335 int rc; 2336 2337 memset(&mb_params, 0, sizeof(mb_params)); 2338 mb_params.cmd = DRV_MSG_CODE_SET_VMAC; 2339 mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC << 2340 DRV_MSG_CODE_VMAC_TYPE_SHIFT; 2341 mb_params.param |= MCP_PF_ID(p_hwfn); 2342 2343 /* MCP is BE, and on LE platforms PCI would swap access to SHMEM 2344 * in 32-bit granularity. 2345 * So the MAC has to be set in native order [and not byte order], 2346 * otherwise it would be read incorrectly by MFW after swap. 2347 */ 2348 mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3]; 2349 mfw_mac[1] = mac[4] << 24 | mac[5] << 16; 2350 2351 mb_params.p_data_src = (u8 *)mfw_mac; 2352 mb_params.data_src_size = 8; 2353 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2354 if (rc) 2355 DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc); 2356 2357 /* Store primary MAC for later possible WoL */ 2358 memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN); 2359 2360 return rc; 2361 } 2362 2363 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn, 2364 struct qed_ptt *p_ptt, enum qed_ov_wol wol) 2365 { 2366 u32 resp = 0, param = 0; 2367 u32 drv_mb_param; 2368 int rc; 2369 2370 if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) { 2371 DP_VERBOSE(p_hwfn, QED_MSG_SP, 2372 "Can't change WoL configuration when WoL isn't supported\n"); 2373 return -EINVAL; 2374 } 2375 2376 switch (wol) { 2377 case QED_OV_WOL_DEFAULT: 2378 drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT; 2379 break; 2380 case QED_OV_WOL_DISABLED: 2381 drv_mb_param = DRV_MB_PARAM_WOL_DISABLED; 2382 break; 2383 case QED_OV_WOL_ENABLED: 2384 drv_mb_param = DRV_MB_PARAM_WOL_ENABLED; 2385 break; 2386 default: 2387 DP_ERR(p_hwfn, "Invalid wol state %d\n", wol); 2388 return -EINVAL; 2389 } 2390 2391 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL, 2392 drv_mb_param, &resp, ¶m); 2393 if (rc) 2394 DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc); 2395 2396 /* Store the WoL update for a future unload */ 2397 p_hwfn->cdev->wol_config = (u8)wol; 2398 2399 return rc; 2400 } 2401 2402 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn, 2403 struct qed_ptt *p_ptt, 2404 enum qed_ov_eswitch eswitch) 2405 { 2406 u32 resp = 0, param = 0; 2407 u32 drv_mb_param; 2408 int rc; 2409 2410 switch (eswitch) { 2411 case QED_OV_ESWITCH_NONE: 2412 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE; 2413 break; 2414 case QED_OV_ESWITCH_VEB: 2415 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB; 2416 break; 2417 case QED_OV_ESWITCH_VEPA: 2418 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA; 2419 break; 2420 default: 2421 DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch); 2422 return -EINVAL; 2423 } 2424 2425 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE, 2426 drv_mb_param, &resp, ¶m); 2427 if (rc) 2428 DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc); 2429 2430 return rc; 2431 } 2432 2433 int qed_mcp_set_led(struct qed_hwfn *p_hwfn, 2434 struct qed_ptt *p_ptt, enum qed_led_mode mode) 2435 { 2436 u32 resp = 0, param = 0, drv_mb_param; 2437 int rc; 2438 2439 switch (mode) { 2440 case QED_LED_MODE_ON: 2441 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON; 2442 break; 2443 case QED_LED_MODE_OFF: 2444 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF; 2445 break; 2446 case QED_LED_MODE_RESTORE: 2447 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER; 2448 break; 2449 default: 2450 DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode); 2451 return -EINVAL; 2452 } 2453 2454 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE, 2455 drv_mb_param, &resp, ¶m); 2456 2457 return rc; 2458 } 2459 2460 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn, 2461 struct qed_ptt *p_ptt, u32 mask_parities) 2462 { 2463 u32 resp = 0, param = 0; 2464 int rc; 2465 2466 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES, 2467 mask_parities, &resp, ¶m); 2468 2469 if (rc) { 2470 DP_ERR(p_hwfn, 2471 "MCP response failure for mask parities, aborting\n"); 2472 } else if (resp != FW_MSG_CODE_OK) { 2473 DP_ERR(p_hwfn, 2474 "MCP did not acknowledge mask parity request. Old MFW?\n"); 2475 rc = -EINVAL; 2476 } 2477 2478 return rc; 2479 } 2480 2481 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len) 2482 { 2483 u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0; 2484 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2485 u32 resp = 0, resp_param = 0; 2486 struct qed_ptt *p_ptt; 2487 int rc = 0; 2488 2489 p_ptt = qed_ptt_acquire(p_hwfn); 2490 if (!p_ptt) 2491 return -EBUSY; 2492 2493 while (bytes_left > 0) { 2494 bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN); 2495 2496 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 2497 DRV_MSG_CODE_NVM_READ_NVRAM, 2498 addr + offset + 2499 (bytes_to_copy << 2500 DRV_MB_PARAM_NVM_LEN_OFFSET), 2501 &resp, &resp_param, 2502 &read_len, 2503 (u32 *)(p_buf + offset)); 2504 2505 if (rc || (resp != FW_MSG_CODE_NVM_OK)) { 2506 DP_NOTICE(cdev, "MCP command rc = %d\n", rc); 2507 break; 2508 } 2509 2510 /* This can be a lengthy process, and it's possible scheduler 2511 * isn't preemptable. Sleep a bit to prevent CPU hogging. 2512 */ 2513 if (bytes_left % 0x1000 < 2514 (bytes_left - read_len) % 0x1000) 2515 usleep_range(1000, 2000); 2516 2517 offset += read_len; 2518 bytes_left -= read_len; 2519 } 2520 2521 cdev->mcp_nvm_resp = resp; 2522 qed_ptt_release(p_hwfn, p_ptt); 2523 2524 return rc; 2525 } 2526 2527 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf) 2528 { 2529 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2530 struct qed_ptt *p_ptt; 2531 2532 p_ptt = qed_ptt_acquire(p_hwfn); 2533 if (!p_ptt) 2534 return -EBUSY; 2535 2536 memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp)); 2537 qed_ptt_release(p_hwfn, p_ptt); 2538 2539 return 0; 2540 } 2541 2542 int qed_mcp_nvm_put_file_begin(struct qed_dev *cdev, u32 addr) 2543 { 2544 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2545 struct qed_ptt *p_ptt; 2546 u32 resp, param; 2547 int rc; 2548 2549 p_ptt = qed_ptt_acquire(p_hwfn); 2550 if (!p_ptt) 2551 return -EBUSY; 2552 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_NVM_PUT_FILE_BEGIN, addr, 2553 &resp, ¶m); 2554 cdev->mcp_nvm_resp = resp; 2555 qed_ptt_release(p_hwfn, p_ptt); 2556 2557 return rc; 2558 } 2559 2560 int qed_mcp_nvm_write(struct qed_dev *cdev, 2561 u32 cmd, u32 addr, u8 *p_buf, u32 len) 2562 { 2563 u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param; 2564 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2565 struct qed_ptt *p_ptt; 2566 int rc = -EINVAL; 2567 2568 p_ptt = qed_ptt_acquire(p_hwfn); 2569 if (!p_ptt) 2570 return -EBUSY; 2571 2572 switch (cmd) { 2573 case QED_PUT_FILE_DATA: 2574 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA; 2575 break; 2576 case QED_NVM_WRITE_NVRAM: 2577 nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM; 2578 break; 2579 default: 2580 DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd); 2581 rc = -EINVAL; 2582 goto out; 2583 } 2584 2585 while (buf_idx < len) { 2586 buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN); 2587 nvm_offset = ((buf_size << DRV_MB_PARAM_NVM_LEN_OFFSET) | 2588 addr) + buf_idx; 2589 rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset, 2590 &resp, ¶m, buf_size, 2591 (u32 *)&p_buf[buf_idx]); 2592 if (rc) { 2593 DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc); 2594 resp = FW_MSG_CODE_ERROR; 2595 break; 2596 } 2597 2598 if (resp != FW_MSG_CODE_OK && 2599 resp != FW_MSG_CODE_NVM_OK && 2600 resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) { 2601 DP_NOTICE(cdev, 2602 "nvm write failed, resp = 0x%08x\n", resp); 2603 rc = -EINVAL; 2604 break; 2605 } 2606 2607 /* This can be a lengthy process, and it's possible scheduler 2608 * isn't pre-emptable. Sleep a bit to prevent CPU hogging. 2609 */ 2610 if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000) 2611 usleep_range(1000, 2000); 2612 2613 buf_idx += buf_size; 2614 } 2615 2616 cdev->mcp_nvm_resp = resp; 2617 out: 2618 qed_ptt_release(p_hwfn, p_ptt); 2619 2620 return rc; 2621 } 2622 2623 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 2624 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf) 2625 { 2626 u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0; 2627 u32 resp, param; 2628 int rc; 2629 2630 nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) & 2631 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK; 2632 nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) & 2633 DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK; 2634 2635 addr = offset; 2636 offset = 0; 2637 bytes_left = len; 2638 while (bytes_left > 0) { 2639 bytes_to_copy = min_t(u32, bytes_left, 2640 MAX_I2C_TRANSACTION_SIZE); 2641 nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK | 2642 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK); 2643 nvm_offset |= ((addr + offset) << 2644 DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) & 2645 DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK; 2646 nvm_offset |= (bytes_to_copy << 2647 DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) & 2648 DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK; 2649 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 2650 DRV_MSG_CODE_TRANSCEIVER_READ, 2651 nvm_offset, &resp, ¶m, &buf_size, 2652 (u32 *)(p_buf + offset)); 2653 if (rc) { 2654 DP_NOTICE(p_hwfn, 2655 "Failed to send a transceiver read command to the MFW. rc = %d.\n", 2656 rc); 2657 return rc; 2658 } 2659 2660 if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT) 2661 return -ENODEV; 2662 else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK) 2663 return -EINVAL; 2664 2665 offset += buf_size; 2666 bytes_left -= buf_size; 2667 } 2668 2669 return 0; 2670 } 2671 2672 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2673 { 2674 u32 drv_mb_param = 0, rsp, param; 2675 int rc = 0; 2676 2677 drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST << 2678 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 2679 2680 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 2681 drv_mb_param, &rsp, ¶m); 2682 2683 if (rc) 2684 return rc; 2685 2686 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 2687 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 2688 rc = -EAGAIN; 2689 2690 return rc; 2691 } 2692 2693 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2694 { 2695 u32 drv_mb_param, rsp, param; 2696 int rc = 0; 2697 2698 drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST << 2699 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 2700 2701 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 2702 drv_mb_param, &rsp, ¶m); 2703 2704 if (rc) 2705 return rc; 2706 2707 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 2708 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 2709 rc = -EAGAIN; 2710 2711 return rc; 2712 } 2713 2714 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn, 2715 struct qed_ptt *p_ptt, 2716 u32 *num_images) 2717 { 2718 u32 drv_mb_param = 0, rsp; 2719 int rc = 0; 2720 2721 drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES << 2722 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 2723 2724 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 2725 drv_mb_param, &rsp, num_images); 2726 if (rc) 2727 return rc; 2728 2729 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK)) 2730 rc = -EINVAL; 2731 2732 return rc; 2733 } 2734 2735 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn, 2736 struct qed_ptt *p_ptt, 2737 struct bist_nvm_image_att *p_image_att, 2738 u32 image_index) 2739 { 2740 u32 buf_size = 0, param, resp = 0, resp_param = 0; 2741 int rc; 2742 2743 param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX << 2744 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT; 2745 param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT; 2746 2747 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 2748 DRV_MSG_CODE_BIST_TEST, param, 2749 &resp, &resp_param, 2750 &buf_size, 2751 (u32 *)p_image_att); 2752 if (rc) 2753 return rc; 2754 2755 if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 2756 (p_image_att->return_code != 1)) 2757 rc = -EINVAL; 2758 2759 return rc; 2760 } 2761 2762 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn) 2763 { 2764 struct qed_nvm_image_info nvm_info; 2765 struct qed_ptt *p_ptt; 2766 int rc; 2767 u32 i; 2768 2769 if (p_hwfn->nvm_info.valid) 2770 return 0; 2771 2772 p_ptt = qed_ptt_acquire(p_hwfn); 2773 if (!p_ptt) { 2774 DP_ERR(p_hwfn, "failed to acquire ptt\n"); 2775 return -EBUSY; 2776 } 2777 2778 /* Acquire from MFW the amount of available images */ 2779 nvm_info.num_images = 0; 2780 rc = qed_mcp_bist_nvm_get_num_images(p_hwfn, 2781 p_ptt, &nvm_info.num_images); 2782 if (rc == -EOPNOTSUPP) { 2783 DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n"); 2784 goto out; 2785 } else if (rc || !nvm_info.num_images) { 2786 DP_ERR(p_hwfn, "Failed getting number of images\n"); 2787 goto err0; 2788 } 2789 2790 nvm_info.image_att = kmalloc_array(nvm_info.num_images, 2791 sizeof(struct bist_nvm_image_att), 2792 GFP_KERNEL); 2793 if (!nvm_info.image_att) { 2794 rc = -ENOMEM; 2795 goto err0; 2796 } 2797 2798 /* Iterate over images and get their attributes */ 2799 for (i = 0; i < nvm_info.num_images; i++) { 2800 rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt, 2801 &nvm_info.image_att[i], i); 2802 if (rc) { 2803 DP_ERR(p_hwfn, 2804 "Failed getting image index %d attributes\n", i); 2805 goto err1; 2806 } 2807 2808 DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i, 2809 nvm_info.image_att[i].len); 2810 } 2811 out: 2812 /* Update hwfn's nvm_info */ 2813 if (nvm_info.num_images) { 2814 p_hwfn->nvm_info.num_images = nvm_info.num_images; 2815 kfree(p_hwfn->nvm_info.image_att); 2816 p_hwfn->nvm_info.image_att = nvm_info.image_att; 2817 p_hwfn->nvm_info.valid = true; 2818 } 2819 2820 qed_ptt_release(p_hwfn, p_ptt); 2821 return 0; 2822 2823 err1: 2824 kfree(nvm_info.image_att); 2825 err0: 2826 qed_ptt_release(p_hwfn, p_ptt); 2827 return rc; 2828 } 2829 2830 int 2831 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn, 2832 enum qed_nvm_images image_id, 2833 struct qed_nvm_image_att *p_image_att) 2834 { 2835 enum nvm_image_type type; 2836 u32 i; 2837 2838 /* Translate image_id into MFW definitions */ 2839 switch (image_id) { 2840 case QED_NVM_IMAGE_ISCSI_CFG: 2841 type = NVM_TYPE_ISCSI_CFG; 2842 break; 2843 case QED_NVM_IMAGE_FCOE_CFG: 2844 type = NVM_TYPE_FCOE_CFG; 2845 break; 2846 case QED_NVM_IMAGE_NVM_CFG1: 2847 type = NVM_TYPE_NVM_CFG1; 2848 break; 2849 case QED_NVM_IMAGE_DEFAULT_CFG: 2850 type = NVM_TYPE_DEFAULT_CFG; 2851 break; 2852 case QED_NVM_IMAGE_NVM_META: 2853 type = NVM_TYPE_META; 2854 break; 2855 default: 2856 DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n", 2857 image_id); 2858 return -EINVAL; 2859 } 2860 2861 qed_mcp_nvm_info_populate(p_hwfn); 2862 for (i = 0; i < p_hwfn->nvm_info.num_images; i++) 2863 if (type == p_hwfn->nvm_info.image_att[i].image_type) 2864 break; 2865 if (i == p_hwfn->nvm_info.num_images) { 2866 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 2867 "Failed to find nvram image of type %08x\n", 2868 image_id); 2869 return -ENOENT; 2870 } 2871 2872 p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr; 2873 p_image_att->length = p_hwfn->nvm_info.image_att[i].len; 2874 2875 return 0; 2876 } 2877 2878 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn, 2879 enum qed_nvm_images image_id, 2880 u8 *p_buffer, u32 buffer_len) 2881 { 2882 struct qed_nvm_image_att image_att; 2883 int rc; 2884 2885 memset(p_buffer, 0, buffer_len); 2886 2887 rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att); 2888 if (rc) 2889 return rc; 2890 2891 /* Validate sizes - both the image's and the supplied buffer's */ 2892 if (image_att.length <= 4) { 2893 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 2894 "Image [%d] is too small - only %d bytes\n", 2895 image_id, image_att.length); 2896 return -EINVAL; 2897 } 2898 2899 if (image_att.length > buffer_len) { 2900 DP_VERBOSE(p_hwfn, 2901 QED_MSG_STORAGE, 2902 "Image [%d] is too big - %08x bytes where only %08x are available\n", 2903 image_id, image_att.length, buffer_len); 2904 return -ENOMEM; 2905 } 2906 2907 return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr, 2908 p_buffer, image_att.length); 2909 } 2910 2911 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id) 2912 { 2913 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID; 2914 2915 switch (res_id) { 2916 case QED_SB: 2917 mfw_res_id = RESOURCE_NUM_SB_E; 2918 break; 2919 case QED_L2_QUEUE: 2920 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E; 2921 break; 2922 case QED_VPORT: 2923 mfw_res_id = RESOURCE_NUM_VPORT_E; 2924 break; 2925 case QED_RSS_ENG: 2926 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E; 2927 break; 2928 case QED_PQ: 2929 mfw_res_id = RESOURCE_NUM_PQ_E; 2930 break; 2931 case QED_RL: 2932 mfw_res_id = RESOURCE_NUM_RL_E; 2933 break; 2934 case QED_MAC: 2935 case QED_VLAN: 2936 /* Each VFC resource can accommodate both a MAC and a VLAN */ 2937 mfw_res_id = RESOURCE_VFC_FILTER_E; 2938 break; 2939 case QED_ILT: 2940 mfw_res_id = RESOURCE_ILT_E; 2941 break; 2942 case QED_LL2_QUEUE: 2943 mfw_res_id = RESOURCE_LL2_QUEUE_E; 2944 break; 2945 case QED_RDMA_CNQ_RAM: 2946 case QED_CMDQS_CQS: 2947 /* CNQ/CMDQS are the same resource */ 2948 mfw_res_id = RESOURCE_CQS_E; 2949 break; 2950 case QED_RDMA_STATS_QUEUE: 2951 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E; 2952 break; 2953 case QED_BDQ: 2954 mfw_res_id = RESOURCE_BDQ_E; 2955 break; 2956 default: 2957 break; 2958 } 2959 2960 return mfw_res_id; 2961 } 2962 2963 #define QED_RESC_ALLOC_VERSION_MAJOR 2 2964 #define QED_RESC_ALLOC_VERSION_MINOR 0 2965 #define QED_RESC_ALLOC_VERSION \ 2966 ((QED_RESC_ALLOC_VERSION_MAJOR << \ 2967 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \ 2968 (QED_RESC_ALLOC_VERSION_MINOR << \ 2969 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT)) 2970 2971 struct qed_resc_alloc_in_params { 2972 u32 cmd; 2973 enum qed_resources res_id; 2974 u32 resc_max_val; 2975 }; 2976 2977 struct qed_resc_alloc_out_params { 2978 u32 mcp_resp; 2979 u32 mcp_param; 2980 u32 resc_num; 2981 u32 resc_start; 2982 u32 vf_resc_num; 2983 u32 vf_resc_start; 2984 u32 flags; 2985 }; 2986 2987 static int 2988 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn, 2989 struct qed_ptt *p_ptt, 2990 struct qed_resc_alloc_in_params *p_in_params, 2991 struct qed_resc_alloc_out_params *p_out_params) 2992 { 2993 struct qed_mcp_mb_params mb_params; 2994 struct resource_info mfw_resc_info; 2995 int rc; 2996 2997 memset(&mfw_resc_info, 0, sizeof(mfw_resc_info)); 2998 2999 mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id); 3000 if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) { 3001 DP_ERR(p_hwfn, 3002 "Failed to match resource %d [%s] with the MFW resources\n", 3003 p_in_params->res_id, 3004 qed_hw_get_resc_name(p_in_params->res_id)); 3005 return -EINVAL; 3006 } 3007 3008 switch (p_in_params->cmd) { 3009 case DRV_MSG_SET_RESOURCE_VALUE_MSG: 3010 mfw_resc_info.size = p_in_params->resc_max_val; 3011 /* Fallthrough */ 3012 case DRV_MSG_GET_RESOURCE_ALLOC_MSG: 3013 break; 3014 default: 3015 DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n", 3016 p_in_params->cmd); 3017 return -EINVAL; 3018 } 3019 3020 memset(&mb_params, 0, sizeof(mb_params)); 3021 mb_params.cmd = p_in_params->cmd; 3022 mb_params.param = QED_RESC_ALLOC_VERSION; 3023 mb_params.p_data_src = &mfw_resc_info; 3024 mb_params.data_src_size = sizeof(mfw_resc_info); 3025 mb_params.p_data_dst = mb_params.p_data_src; 3026 mb_params.data_dst_size = mb_params.data_src_size; 3027 3028 DP_VERBOSE(p_hwfn, 3029 QED_MSG_SP, 3030 "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n", 3031 p_in_params->cmd, 3032 p_in_params->res_id, 3033 qed_hw_get_resc_name(p_in_params->res_id), 3034 QED_MFW_GET_FIELD(mb_params.param, 3035 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3036 QED_MFW_GET_FIELD(mb_params.param, 3037 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3038 p_in_params->resc_max_val); 3039 3040 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3041 if (rc) 3042 return rc; 3043 3044 p_out_params->mcp_resp = mb_params.mcp_resp; 3045 p_out_params->mcp_param = mb_params.mcp_param; 3046 p_out_params->resc_num = mfw_resc_info.size; 3047 p_out_params->resc_start = mfw_resc_info.offset; 3048 p_out_params->vf_resc_num = mfw_resc_info.vf_size; 3049 p_out_params->vf_resc_start = mfw_resc_info.vf_offset; 3050 p_out_params->flags = mfw_resc_info.flags; 3051 3052 DP_VERBOSE(p_hwfn, 3053 QED_MSG_SP, 3054 "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n", 3055 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3056 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3057 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3058 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3059 p_out_params->resc_num, 3060 p_out_params->resc_start, 3061 p_out_params->vf_resc_num, 3062 p_out_params->vf_resc_start, p_out_params->flags); 3063 3064 return 0; 3065 } 3066 3067 int 3068 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn, 3069 struct qed_ptt *p_ptt, 3070 enum qed_resources res_id, 3071 u32 resc_max_val, u32 *p_mcp_resp) 3072 { 3073 struct qed_resc_alloc_out_params out_params; 3074 struct qed_resc_alloc_in_params in_params; 3075 int rc; 3076 3077 memset(&in_params, 0, sizeof(in_params)); 3078 in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG; 3079 in_params.res_id = res_id; 3080 in_params.resc_max_val = resc_max_val; 3081 memset(&out_params, 0, sizeof(out_params)); 3082 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3083 &out_params); 3084 if (rc) 3085 return rc; 3086 3087 *p_mcp_resp = out_params.mcp_resp; 3088 3089 return 0; 3090 } 3091 3092 int 3093 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn, 3094 struct qed_ptt *p_ptt, 3095 enum qed_resources res_id, 3096 u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start) 3097 { 3098 struct qed_resc_alloc_out_params out_params; 3099 struct qed_resc_alloc_in_params in_params; 3100 int rc; 3101 3102 memset(&in_params, 0, sizeof(in_params)); 3103 in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG; 3104 in_params.res_id = res_id; 3105 memset(&out_params, 0, sizeof(out_params)); 3106 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3107 &out_params); 3108 if (rc) 3109 return rc; 3110 3111 *p_mcp_resp = out_params.mcp_resp; 3112 3113 if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) { 3114 *p_resc_num = out_params.resc_num; 3115 *p_resc_start = out_params.resc_start; 3116 } 3117 3118 return 0; 3119 } 3120 3121 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3122 { 3123 u32 mcp_resp, mcp_param; 3124 3125 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0, 3126 &mcp_resp, &mcp_param); 3127 } 3128 3129 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn, 3130 struct qed_ptt *p_ptt, 3131 u32 param, u32 *p_mcp_resp, u32 *p_mcp_param) 3132 { 3133 int rc; 3134 3135 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, param, 3136 p_mcp_resp, p_mcp_param); 3137 if (rc) 3138 return rc; 3139 3140 if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3141 DP_INFO(p_hwfn, 3142 "The resource command is unsupported by the MFW\n"); 3143 return -EINVAL; 3144 } 3145 3146 if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) { 3147 u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE); 3148 3149 DP_NOTICE(p_hwfn, 3150 "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n", 3151 param, opcode); 3152 return -EINVAL; 3153 } 3154 3155 return rc; 3156 } 3157 3158 static int 3159 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3160 struct qed_ptt *p_ptt, 3161 struct qed_resc_lock_params *p_params) 3162 { 3163 u32 param = 0, mcp_resp, mcp_param; 3164 u8 opcode; 3165 int rc; 3166 3167 switch (p_params->timeout) { 3168 case QED_MCP_RESC_LOCK_TO_DEFAULT: 3169 opcode = RESOURCE_OPCODE_REQ; 3170 p_params->timeout = 0; 3171 break; 3172 case QED_MCP_RESC_LOCK_TO_NONE: 3173 opcode = RESOURCE_OPCODE_REQ_WO_AGING; 3174 p_params->timeout = 0; 3175 break; 3176 default: 3177 opcode = RESOURCE_OPCODE_REQ_W_AGING; 3178 break; 3179 } 3180 3181 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3182 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3183 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout); 3184 3185 DP_VERBOSE(p_hwfn, 3186 QED_MSG_SP, 3187 "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n", 3188 param, p_params->timeout, opcode, p_params->resource); 3189 3190 /* Attempt to acquire the resource */ 3191 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3192 if (rc) 3193 return rc; 3194 3195 /* Analyze the response */ 3196 p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER); 3197 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3198 3199 DP_VERBOSE(p_hwfn, 3200 QED_MSG_SP, 3201 "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n", 3202 mcp_param, opcode, p_params->owner); 3203 3204 switch (opcode) { 3205 case RESOURCE_OPCODE_GNT: 3206 p_params->b_granted = true; 3207 break; 3208 case RESOURCE_OPCODE_BUSY: 3209 p_params->b_granted = false; 3210 break; 3211 default: 3212 DP_NOTICE(p_hwfn, 3213 "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n", 3214 mcp_param, opcode); 3215 return -EINVAL; 3216 } 3217 3218 return 0; 3219 } 3220 3221 int 3222 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3223 struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params) 3224 { 3225 u32 retry_cnt = 0; 3226 int rc; 3227 3228 do { 3229 /* No need for an interval before the first iteration */ 3230 if (retry_cnt) { 3231 if (p_params->sleep_b4_retry) { 3232 u16 retry_interval_in_ms = 3233 DIV_ROUND_UP(p_params->retry_interval, 3234 1000); 3235 3236 msleep(retry_interval_in_ms); 3237 } else { 3238 udelay(p_params->retry_interval); 3239 } 3240 } 3241 3242 rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params); 3243 if (rc) 3244 return rc; 3245 3246 if (p_params->b_granted) 3247 break; 3248 } while (retry_cnt++ < p_params->retry_num); 3249 3250 return 0; 3251 } 3252 3253 int 3254 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn, 3255 struct qed_ptt *p_ptt, 3256 struct qed_resc_unlock_params *p_params) 3257 { 3258 u32 param = 0, mcp_resp, mcp_param; 3259 u8 opcode; 3260 int rc; 3261 3262 opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE 3263 : RESOURCE_OPCODE_RELEASE; 3264 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3265 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3266 3267 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3268 "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n", 3269 param, opcode, p_params->resource); 3270 3271 /* Attempt to release the resource */ 3272 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3273 if (rc) 3274 return rc; 3275 3276 /* Analyze the response */ 3277 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3278 3279 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3280 "Resource unlock response: mcp_param 0x%08x [opcode %d]\n", 3281 mcp_param, opcode); 3282 3283 switch (opcode) { 3284 case RESOURCE_OPCODE_RELEASED_PREVIOUS: 3285 DP_INFO(p_hwfn, 3286 "Resource unlock request for an already released resource [%d]\n", 3287 p_params->resource); 3288 /* Fallthrough */ 3289 case RESOURCE_OPCODE_RELEASED: 3290 p_params->b_released = true; 3291 break; 3292 case RESOURCE_OPCODE_WRONG_OWNER: 3293 p_params->b_released = false; 3294 break; 3295 default: 3296 DP_NOTICE(p_hwfn, 3297 "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n", 3298 mcp_param, opcode); 3299 return -EINVAL; 3300 } 3301 3302 return 0; 3303 } 3304 3305 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock, 3306 struct qed_resc_unlock_params *p_unlock, 3307 enum qed_resc_lock 3308 resource, bool b_is_permanent) 3309 { 3310 if (p_lock) { 3311 memset(p_lock, 0, sizeof(*p_lock)); 3312 3313 /* Permanent resources don't require aging, and there's no 3314 * point in trying to acquire them more than once since it's 3315 * unexpected another entity would release them. 3316 */ 3317 if (b_is_permanent) { 3318 p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE; 3319 } else { 3320 p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT; 3321 p_lock->retry_interval = 3322 QED_MCP_RESC_LOCK_RETRY_VAL_DFLT; 3323 p_lock->sleep_b4_retry = true; 3324 } 3325 3326 p_lock->resource = resource; 3327 } 3328 3329 if (p_unlock) { 3330 memset(p_unlock, 0, sizeof(*p_unlock)); 3331 p_unlock->resource = resource; 3332 } 3333 } 3334 3335 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3336 { 3337 u32 mcp_resp; 3338 int rc; 3339 3340 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT, 3341 0, &mcp_resp, &p_hwfn->mcp_info->capabilities); 3342 if (!rc) 3343 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE), 3344 "MFW supported features: %08x\n", 3345 p_hwfn->mcp_info->capabilities); 3346 3347 return rc; 3348 } 3349 3350 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3351 { 3352 u32 mcp_resp, mcp_param, features; 3353 3354 features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE; 3355 3356 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT, 3357 features, &mcp_resp, &mcp_param); 3358 } 3359