1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <asm/byteorder.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/string.h> 15 #include <linux/etherdevice.h> 16 #include "qed.h" 17 #include "qed_cxt.h" 18 #include "qed_dcbx.h" 19 #include "qed_hsi.h" 20 #include "qed_mfw_hsi.h" 21 #include "qed_hw.h" 22 #include "qed_mcp.h" 23 #include "qed_reg_addr.h" 24 #include "qed_sriov.h" 25 26 #define GRCBASE_MCP 0xe00000 27 28 #define QED_MCP_RESP_ITER_US 10 29 30 #define QED_DRV_MB_MAX_RETRIES (500 * 1000) /* Account for 5 sec */ 31 #define QED_MCP_RESET_RETRIES (50 * 1000) /* Account for 500 msec */ 32 33 #define DRV_INNER_WR(_p_hwfn, _p_ptt, _ptr, _offset, _val) \ 34 qed_wr(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + (_offset)), \ 35 _val) 36 37 #define DRV_INNER_RD(_p_hwfn, _p_ptt, _ptr, _offset) \ 38 qed_rd(_p_hwfn, _p_ptt, (_p_hwfn->mcp_info->_ptr + (_offset))) 39 40 #define DRV_MB_WR(_p_hwfn, _p_ptt, _field, _val) \ 41 DRV_INNER_WR(p_hwfn, _p_ptt, drv_mb_addr, \ 42 offsetof(struct public_drv_mb, _field), _val) 43 44 #define DRV_MB_RD(_p_hwfn, _p_ptt, _field) \ 45 DRV_INNER_RD(_p_hwfn, _p_ptt, drv_mb_addr, \ 46 offsetof(struct public_drv_mb, _field)) 47 48 #define PDA_COMP (((FW_MAJOR_VERSION) + (FW_MINOR_VERSION << 8)) << \ 49 DRV_ID_PDA_COMP_VER_SHIFT) 50 51 #define MCP_BYTES_PER_MBIT_SHIFT 17 52 53 bool qed_mcp_is_init(struct qed_hwfn *p_hwfn) 54 { 55 if (!p_hwfn->mcp_info || !p_hwfn->mcp_info->public_base) 56 return false; 57 return true; 58 } 59 60 void qed_mcp_cmd_port_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 61 { 62 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 63 PUBLIC_PORT); 64 u32 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, addr); 65 66 p_hwfn->mcp_info->port_addr = SECTION_ADDR(mfw_mb_offsize, 67 MFW_PORT(p_hwfn)); 68 DP_VERBOSE(p_hwfn, QED_MSG_SP, 69 "port_addr = 0x%x, port_id 0x%02x\n", 70 p_hwfn->mcp_info->port_addr, MFW_PORT(p_hwfn)); 71 } 72 73 void qed_mcp_read_mb(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 74 { 75 u32 length = MFW_DRV_MSG_MAX_DWORDS(p_hwfn->mcp_info->mfw_mb_length); 76 u32 tmp, i; 77 78 if (!p_hwfn->mcp_info->public_base) 79 return; 80 81 for (i = 0; i < length; i++) { 82 tmp = qed_rd(p_hwfn, p_ptt, 83 p_hwfn->mcp_info->mfw_mb_addr + 84 (i << 2) + sizeof(u32)); 85 86 /* The MB data is actually BE; Need to force it to cpu */ 87 ((u32 *)p_hwfn->mcp_info->mfw_mb_cur)[i] = 88 be32_to_cpu((__force __be32)tmp); 89 } 90 } 91 92 struct qed_mcp_cmd_elem { 93 struct list_head list; 94 struct qed_mcp_mb_params *p_mb_params; 95 u16 expected_seq_num; 96 bool b_is_completed; 97 }; 98 99 /* Must be called while cmd_lock is acquired */ 100 static struct qed_mcp_cmd_elem * 101 qed_mcp_cmd_add_elem(struct qed_hwfn *p_hwfn, 102 struct qed_mcp_mb_params *p_mb_params, 103 u16 expected_seq_num) 104 { 105 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 106 107 p_cmd_elem = kzalloc(sizeof(*p_cmd_elem), GFP_ATOMIC); 108 if (!p_cmd_elem) 109 goto out; 110 111 p_cmd_elem->p_mb_params = p_mb_params; 112 p_cmd_elem->expected_seq_num = expected_seq_num; 113 list_add(&p_cmd_elem->list, &p_hwfn->mcp_info->cmd_list); 114 out: 115 return p_cmd_elem; 116 } 117 118 /* Must be called while cmd_lock is acquired */ 119 static void qed_mcp_cmd_del_elem(struct qed_hwfn *p_hwfn, 120 struct qed_mcp_cmd_elem *p_cmd_elem) 121 { 122 list_del(&p_cmd_elem->list); 123 kfree(p_cmd_elem); 124 } 125 126 /* Must be called while cmd_lock is acquired */ 127 static struct qed_mcp_cmd_elem *qed_mcp_cmd_get_elem(struct qed_hwfn *p_hwfn, 128 u16 seq_num) 129 { 130 struct qed_mcp_cmd_elem *p_cmd_elem = NULL; 131 132 list_for_each_entry(p_cmd_elem, &p_hwfn->mcp_info->cmd_list, list) { 133 if (p_cmd_elem->expected_seq_num == seq_num) 134 return p_cmd_elem; 135 } 136 137 return NULL; 138 } 139 140 int qed_mcp_free(struct qed_hwfn *p_hwfn) 141 { 142 if (p_hwfn->mcp_info) { 143 struct qed_mcp_cmd_elem *p_cmd_elem = NULL, *p_tmp; 144 145 kfree(p_hwfn->mcp_info->mfw_mb_cur); 146 kfree(p_hwfn->mcp_info->mfw_mb_shadow); 147 148 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 149 list_for_each_entry_safe(p_cmd_elem, 150 p_tmp, 151 &p_hwfn->mcp_info->cmd_list, list) { 152 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 153 } 154 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 155 } 156 157 kfree(p_hwfn->mcp_info); 158 p_hwfn->mcp_info = NULL; 159 160 return 0; 161 } 162 163 /* Maximum of 1 sec to wait for the SHMEM ready indication */ 164 #define QED_MCP_SHMEM_RDY_MAX_RETRIES 20 165 #define QED_MCP_SHMEM_RDY_ITER_MS 50 166 167 static int qed_load_mcp_offsets(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 168 { 169 struct qed_mcp_info *p_info = p_hwfn->mcp_info; 170 u8 cnt = QED_MCP_SHMEM_RDY_MAX_RETRIES; 171 u8 msec = QED_MCP_SHMEM_RDY_ITER_MS; 172 u32 drv_mb_offsize, mfw_mb_offsize; 173 u32 mcp_pf_id = MCP_PF_ID(p_hwfn); 174 175 p_info->public_base = qed_rd(p_hwfn, p_ptt, MISC_REG_SHARED_MEM_ADDR); 176 if (!p_info->public_base) { 177 DP_NOTICE(p_hwfn, 178 "The address of the MCP scratch-pad is not configured\n"); 179 return -EINVAL; 180 } 181 182 p_info->public_base |= GRCBASE_MCP; 183 184 /* Get the MFW MB address and number of supported messages */ 185 mfw_mb_offsize = qed_rd(p_hwfn, p_ptt, 186 SECTION_OFFSIZE_ADDR(p_info->public_base, 187 PUBLIC_MFW_MB)); 188 p_info->mfw_mb_addr = SECTION_ADDR(mfw_mb_offsize, mcp_pf_id); 189 p_info->mfw_mb_length = (u16)qed_rd(p_hwfn, p_ptt, 190 p_info->mfw_mb_addr + 191 offsetof(struct public_mfw_mb, 192 sup_msgs)); 193 194 /* The driver can notify that there was an MCP reset, and might read the 195 * SHMEM values before the MFW has completed initializing them. 196 * To avoid this, the "sup_msgs" field in the MFW mailbox is used as a 197 * data ready indication. 198 */ 199 while (!p_info->mfw_mb_length && --cnt) { 200 msleep(msec); 201 p_info->mfw_mb_length = 202 (u16)qed_rd(p_hwfn, p_ptt, 203 p_info->mfw_mb_addr + 204 offsetof(struct public_mfw_mb, sup_msgs)); 205 } 206 207 if (!cnt) { 208 DP_NOTICE(p_hwfn, 209 "Failed to get the SHMEM ready notification after %d msec\n", 210 QED_MCP_SHMEM_RDY_MAX_RETRIES * msec); 211 return -EBUSY; 212 } 213 214 /* Calculate the driver and MFW mailbox address */ 215 drv_mb_offsize = qed_rd(p_hwfn, p_ptt, 216 SECTION_OFFSIZE_ADDR(p_info->public_base, 217 PUBLIC_DRV_MB)); 218 p_info->drv_mb_addr = SECTION_ADDR(drv_mb_offsize, mcp_pf_id); 219 DP_VERBOSE(p_hwfn, QED_MSG_SP, 220 "drv_mb_offsiz = 0x%x, drv_mb_addr = 0x%x mcp_pf_id = 0x%x\n", 221 drv_mb_offsize, p_info->drv_mb_addr, mcp_pf_id); 222 223 /* Get the current driver mailbox sequence before sending 224 * the first command 225 */ 226 p_info->drv_mb_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_mb_header) & 227 DRV_MSG_SEQ_NUMBER_MASK; 228 229 /* Get current FW pulse sequence */ 230 p_info->drv_pulse_seq = DRV_MB_RD(p_hwfn, p_ptt, drv_pulse_mb) & 231 DRV_PULSE_SEQ_MASK; 232 233 p_info->mcp_hist = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 234 235 return 0; 236 } 237 238 int qed_mcp_cmd_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 239 { 240 struct qed_mcp_info *p_info; 241 u32 size; 242 243 /* Allocate mcp_info structure */ 244 p_hwfn->mcp_info = kzalloc(sizeof(*p_hwfn->mcp_info), GFP_KERNEL); 245 if (!p_hwfn->mcp_info) 246 goto err; 247 p_info = p_hwfn->mcp_info; 248 249 /* Initialize the MFW spinlock */ 250 spin_lock_init(&p_info->cmd_lock); 251 spin_lock_init(&p_info->link_lock); 252 spin_lock_init(&p_info->unload_lock); 253 254 INIT_LIST_HEAD(&p_info->cmd_list); 255 256 if (qed_load_mcp_offsets(p_hwfn, p_ptt) != 0) { 257 DP_NOTICE(p_hwfn, "MCP is not initialized\n"); 258 /* Do not free mcp_info here, since public_base indicate that 259 * the MCP is not initialized 260 */ 261 return 0; 262 } 263 264 size = MFW_DRV_MSG_MAX_DWORDS(p_info->mfw_mb_length) * sizeof(u32); 265 p_info->mfw_mb_cur = kzalloc(size, GFP_KERNEL); 266 p_info->mfw_mb_shadow = kzalloc(size, GFP_KERNEL); 267 if (!p_info->mfw_mb_cur || !p_info->mfw_mb_shadow) 268 goto err; 269 270 return 0; 271 272 err: 273 qed_mcp_free(p_hwfn); 274 return -ENOMEM; 275 } 276 277 static void qed_mcp_reread_offsets(struct qed_hwfn *p_hwfn, 278 struct qed_ptt *p_ptt) 279 { 280 u32 generic_por_0 = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 281 282 /* Use MCP history register to check if MCP reset occurred between init 283 * time and now. 284 */ 285 if (p_hwfn->mcp_info->mcp_hist != generic_por_0) { 286 DP_VERBOSE(p_hwfn, 287 QED_MSG_SP, 288 "Rereading MCP offsets [mcp_hist 0x%08x, generic_por_0 0x%08x]\n", 289 p_hwfn->mcp_info->mcp_hist, generic_por_0); 290 291 qed_load_mcp_offsets(p_hwfn, p_ptt); 292 qed_mcp_cmd_port_init(p_hwfn, p_ptt); 293 } 294 } 295 296 int qed_mcp_reset(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 297 { 298 u32 org_mcp_reset_seq, seq, delay = QED_MCP_RESP_ITER_US, cnt = 0; 299 int rc = 0; 300 301 if (p_hwfn->mcp_info->b_block_cmd) { 302 DP_NOTICE(p_hwfn, 303 "The MFW is not responsive. Avoid sending MCP_RESET mailbox command.\n"); 304 return -EBUSY; 305 } 306 307 /* Ensure that only a single thread is accessing the mailbox */ 308 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 309 310 org_mcp_reset_seq = qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0); 311 312 /* Set drv command along with the updated sequence */ 313 qed_mcp_reread_offsets(p_hwfn, p_ptt); 314 seq = ++p_hwfn->mcp_info->drv_mb_seq; 315 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (DRV_MSG_CODE_MCP_RESET | seq)); 316 317 do { 318 /* Wait for MFW response */ 319 udelay(delay); 320 /* Give the FW up to 500 second (50*1000*10usec) */ 321 } while ((org_mcp_reset_seq == qed_rd(p_hwfn, p_ptt, 322 MISCS_REG_GENERIC_POR_0)) && 323 (cnt++ < QED_MCP_RESET_RETRIES)); 324 325 if (org_mcp_reset_seq != 326 qed_rd(p_hwfn, p_ptt, MISCS_REG_GENERIC_POR_0)) { 327 DP_VERBOSE(p_hwfn, QED_MSG_SP, 328 "MCP was reset after %d usec\n", cnt * delay); 329 } else { 330 DP_ERR(p_hwfn, "Failed to reset MCP\n"); 331 rc = -EAGAIN; 332 } 333 334 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 335 336 return rc; 337 } 338 339 /* Must be called while cmd_lock is acquired */ 340 static bool qed_mcp_has_pending_cmd(struct qed_hwfn *p_hwfn) 341 { 342 struct qed_mcp_cmd_elem *p_cmd_elem; 343 344 /* There is at most one pending command at a certain time, and if it 345 * exists - it is placed at the HEAD of the list. 346 */ 347 if (!list_empty(&p_hwfn->mcp_info->cmd_list)) { 348 p_cmd_elem = list_first_entry(&p_hwfn->mcp_info->cmd_list, 349 struct qed_mcp_cmd_elem, list); 350 return !p_cmd_elem->b_is_completed; 351 } 352 353 return false; 354 } 355 356 /* Must be called while cmd_lock is acquired */ 357 static int 358 qed_mcp_update_pending_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 359 { 360 struct qed_mcp_mb_params *p_mb_params; 361 struct qed_mcp_cmd_elem *p_cmd_elem; 362 u32 mcp_resp; 363 u16 seq_num; 364 365 mcp_resp = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_header); 366 seq_num = (u16)(mcp_resp & FW_MSG_SEQ_NUMBER_MASK); 367 368 /* Return if no new non-handled response has been received */ 369 if (seq_num != p_hwfn->mcp_info->drv_mb_seq) 370 return -EAGAIN; 371 372 p_cmd_elem = qed_mcp_cmd_get_elem(p_hwfn, seq_num); 373 if (!p_cmd_elem) { 374 DP_ERR(p_hwfn, 375 "Failed to find a pending mailbox cmd that expects sequence number %d\n", 376 seq_num); 377 return -EINVAL; 378 } 379 380 p_mb_params = p_cmd_elem->p_mb_params; 381 382 /* Get the MFW response along with the sequence number */ 383 p_mb_params->mcp_resp = mcp_resp; 384 385 /* Get the MFW param */ 386 p_mb_params->mcp_param = DRV_MB_RD(p_hwfn, p_ptt, fw_mb_param); 387 388 /* Get the union data */ 389 if (p_mb_params->p_data_dst && p_mb_params->data_dst_size) { 390 u32 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 391 offsetof(struct public_drv_mb, 392 union_data); 393 qed_memcpy_from(p_hwfn, p_ptt, p_mb_params->p_data_dst, 394 union_data_addr, p_mb_params->data_dst_size); 395 } 396 397 p_cmd_elem->b_is_completed = true; 398 399 return 0; 400 } 401 402 /* Must be called while cmd_lock is acquired */ 403 static void __qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 404 struct qed_ptt *p_ptt, 405 struct qed_mcp_mb_params *p_mb_params, 406 u16 seq_num) 407 { 408 union drv_union_data union_data; 409 u32 union_data_addr; 410 411 /* Set the union data */ 412 union_data_addr = p_hwfn->mcp_info->drv_mb_addr + 413 offsetof(struct public_drv_mb, union_data); 414 memset(&union_data, 0, sizeof(union_data)); 415 if (p_mb_params->p_data_src && p_mb_params->data_src_size) 416 memcpy(&union_data, p_mb_params->p_data_src, 417 p_mb_params->data_src_size); 418 qed_memcpy_to(p_hwfn, p_ptt, union_data_addr, &union_data, 419 sizeof(union_data)); 420 421 /* Set the drv param */ 422 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_param, p_mb_params->param); 423 424 /* Set the drv command along with the sequence number */ 425 DRV_MB_WR(p_hwfn, p_ptt, drv_mb_header, (p_mb_params->cmd | seq_num)); 426 427 DP_VERBOSE(p_hwfn, QED_MSG_SP, 428 "MFW mailbox: command 0x%08x param 0x%08x\n", 429 (p_mb_params->cmd | seq_num), p_mb_params->param); 430 } 431 432 static void qed_mcp_cmd_set_blocking(struct qed_hwfn *p_hwfn, bool block_cmd) 433 { 434 p_hwfn->mcp_info->b_block_cmd = block_cmd; 435 436 DP_INFO(p_hwfn, "%s sending of mailbox commands to the MFW\n", 437 block_cmd ? "Block" : "Unblock"); 438 } 439 440 static void qed_mcp_print_cpu_info(struct qed_hwfn *p_hwfn, 441 struct qed_ptt *p_ptt) 442 { 443 u32 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2; 444 u32 delay = QED_MCP_RESP_ITER_US; 445 446 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 447 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 448 cpu_pc_0 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 449 udelay(delay); 450 cpu_pc_1 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 451 udelay(delay); 452 cpu_pc_2 = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_PROGRAM_COUNTER); 453 454 DP_NOTICE(p_hwfn, 455 "MCP CPU info: mode 0x%08x, state 0x%08x, pc {0x%08x, 0x%08x, 0x%08x}\n", 456 cpu_mode, cpu_state, cpu_pc_0, cpu_pc_1, cpu_pc_2); 457 } 458 459 static int 460 _qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 461 struct qed_ptt *p_ptt, 462 struct qed_mcp_mb_params *p_mb_params, 463 u32 max_retries, u32 usecs) 464 { 465 u32 cnt = 0, msecs = DIV_ROUND_UP(usecs, 1000); 466 struct qed_mcp_cmd_elem *p_cmd_elem; 467 u16 seq_num; 468 int rc = 0; 469 470 /* Wait until the mailbox is non-occupied */ 471 do { 472 /* Exit the loop if there is no pending command, or if the 473 * pending command is completed during this iteration. 474 * The spinlock stays locked until the command is sent. 475 */ 476 477 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 478 479 if (!qed_mcp_has_pending_cmd(p_hwfn)) 480 break; 481 482 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 483 if (!rc) 484 break; 485 else if (rc != -EAGAIN) 486 goto err; 487 488 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 489 490 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 491 msleep(msecs); 492 else 493 udelay(usecs); 494 } while (++cnt < max_retries); 495 496 if (cnt >= max_retries) { 497 DP_NOTICE(p_hwfn, 498 "The MFW mailbox is occupied by an uncompleted command. Failed to send command 0x%08x [param 0x%08x].\n", 499 p_mb_params->cmd, p_mb_params->param); 500 return -EAGAIN; 501 } 502 503 /* Send the mailbox command */ 504 qed_mcp_reread_offsets(p_hwfn, p_ptt); 505 seq_num = ++p_hwfn->mcp_info->drv_mb_seq; 506 p_cmd_elem = qed_mcp_cmd_add_elem(p_hwfn, p_mb_params, seq_num); 507 if (!p_cmd_elem) { 508 rc = -ENOMEM; 509 goto err; 510 } 511 512 __qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, seq_num); 513 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 514 515 /* Wait for the MFW response */ 516 do { 517 /* Exit the loop if the command is already completed, or if the 518 * command is completed during this iteration. 519 * The spinlock stays locked until the list element is removed. 520 */ 521 522 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) 523 msleep(msecs); 524 else 525 udelay(usecs); 526 527 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 528 529 if (p_cmd_elem->b_is_completed) 530 break; 531 532 rc = qed_mcp_update_pending_cmd(p_hwfn, p_ptt); 533 if (!rc) 534 break; 535 else if (rc != -EAGAIN) 536 goto err; 537 538 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 539 } while (++cnt < max_retries); 540 541 if (cnt >= max_retries) { 542 DP_NOTICE(p_hwfn, 543 "The MFW failed to respond to command 0x%08x [param 0x%08x].\n", 544 p_mb_params->cmd, p_mb_params->param); 545 qed_mcp_print_cpu_info(p_hwfn, p_ptt); 546 547 spin_lock_bh(&p_hwfn->mcp_info->cmd_lock); 548 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 549 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 550 551 if (!QED_MB_FLAGS_IS_SET(p_mb_params, AVOID_BLOCK)) 552 qed_mcp_cmd_set_blocking(p_hwfn, true); 553 554 qed_hw_err_notify(p_hwfn, p_ptt, 555 QED_HW_ERR_MFW_RESP_FAIL, NULL); 556 return -EAGAIN; 557 } 558 559 qed_mcp_cmd_del_elem(p_hwfn, p_cmd_elem); 560 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 561 562 DP_VERBOSE(p_hwfn, 563 QED_MSG_SP, 564 "MFW mailbox: response 0x%08x param 0x%08x [after %d.%03d ms]\n", 565 p_mb_params->mcp_resp, 566 p_mb_params->mcp_param, 567 (cnt * usecs) / 1000, (cnt * usecs) % 1000); 568 569 /* Clear the sequence number from the MFW response */ 570 p_mb_params->mcp_resp &= FW_MSG_CODE_MASK; 571 572 return 0; 573 574 err: 575 spin_unlock_bh(&p_hwfn->mcp_info->cmd_lock); 576 return rc; 577 } 578 579 static int qed_mcp_cmd_and_union(struct qed_hwfn *p_hwfn, 580 struct qed_ptt *p_ptt, 581 struct qed_mcp_mb_params *p_mb_params) 582 { 583 size_t union_data_size = sizeof(union drv_union_data); 584 u32 max_retries = QED_DRV_MB_MAX_RETRIES; 585 u32 usecs = QED_MCP_RESP_ITER_US; 586 587 /* MCP not initialized */ 588 if (!qed_mcp_is_init(p_hwfn)) { 589 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 590 return -EBUSY; 591 } 592 593 if (p_hwfn->mcp_info->b_block_cmd) { 594 DP_NOTICE(p_hwfn, 595 "The MFW is not responsive. Avoid sending mailbox command 0x%08x [param 0x%08x].\n", 596 p_mb_params->cmd, p_mb_params->param); 597 return -EBUSY; 598 } 599 600 if (p_mb_params->data_src_size > union_data_size || 601 p_mb_params->data_dst_size > union_data_size) { 602 DP_ERR(p_hwfn, 603 "The provided size is larger than the union data size [src_size %u, dst_size %u, union_data_size %zu]\n", 604 p_mb_params->data_src_size, 605 p_mb_params->data_dst_size, union_data_size); 606 return -EINVAL; 607 } 608 609 if (QED_MB_FLAGS_IS_SET(p_mb_params, CAN_SLEEP)) { 610 max_retries = DIV_ROUND_UP(max_retries, 1000); 611 usecs *= 1000; 612 } 613 614 return _qed_mcp_cmd_and_union(p_hwfn, p_ptt, p_mb_params, max_retries, 615 usecs); 616 } 617 618 static int _qed_mcp_cmd(struct qed_hwfn *p_hwfn, 619 struct qed_ptt *p_ptt, 620 u32 cmd, 621 u32 param, 622 u32 *o_mcp_resp, 623 u32 *o_mcp_param, 624 bool can_sleep) 625 { 626 struct qed_mcp_mb_params mb_params; 627 int rc; 628 629 memset(&mb_params, 0, sizeof(mb_params)); 630 mb_params.cmd = cmd; 631 mb_params.param = param; 632 mb_params.flags = can_sleep ? QED_MB_FLAG_CAN_SLEEP : 0; 633 634 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 635 if (rc) 636 return rc; 637 638 *o_mcp_resp = mb_params.mcp_resp; 639 *o_mcp_param = mb_params.mcp_param; 640 641 return 0; 642 } 643 644 int qed_mcp_cmd(struct qed_hwfn *p_hwfn, 645 struct qed_ptt *p_ptt, 646 u32 cmd, 647 u32 param, 648 u32 *o_mcp_resp, 649 u32 *o_mcp_param) 650 { 651 return (_qed_mcp_cmd(p_hwfn, p_ptt, cmd, param, 652 o_mcp_resp, o_mcp_param, true)); 653 } 654 655 int qed_mcp_cmd_nosleep(struct qed_hwfn *p_hwfn, 656 struct qed_ptt *p_ptt, 657 u32 cmd, 658 u32 param, 659 u32 *o_mcp_resp, 660 u32 *o_mcp_param) 661 { 662 return (_qed_mcp_cmd(p_hwfn, p_ptt, cmd, param, 663 o_mcp_resp, o_mcp_param, false)); 664 } 665 666 static int 667 qed_mcp_nvm_wr_cmd(struct qed_hwfn *p_hwfn, 668 struct qed_ptt *p_ptt, 669 u32 cmd, 670 u32 param, 671 u32 *o_mcp_resp, 672 u32 *o_mcp_param, u32 i_txn_size, u32 *i_buf) 673 { 674 struct qed_mcp_mb_params mb_params; 675 int rc; 676 677 memset(&mb_params, 0, sizeof(mb_params)); 678 mb_params.cmd = cmd; 679 mb_params.param = param; 680 mb_params.p_data_src = i_buf; 681 mb_params.data_src_size = (u8)i_txn_size; 682 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 683 if (rc) 684 return rc; 685 686 *o_mcp_resp = mb_params.mcp_resp; 687 *o_mcp_param = mb_params.mcp_param; 688 689 /* nvm_info needs to be updated */ 690 p_hwfn->nvm_info.valid = false; 691 692 return 0; 693 } 694 695 int qed_mcp_nvm_rd_cmd(struct qed_hwfn *p_hwfn, 696 struct qed_ptt *p_ptt, 697 u32 cmd, 698 u32 param, 699 u32 *o_mcp_resp, 700 u32 *o_mcp_param, 701 u32 *o_txn_size, u32 *o_buf, bool b_can_sleep) 702 { 703 struct qed_mcp_mb_params mb_params; 704 u8 raw_data[MCP_DRV_NVM_BUF_LEN]; 705 int rc; 706 707 memset(&mb_params, 0, sizeof(mb_params)); 708 mb_params.cmd = cmd; 709 mb_params.param = param; 710 mb_params.p_data_dst = raw_data; 711 712 /* Use the maximal value since the actual one is part of the response */ 713 mb_params.data_dst_size = MCP_DRV_NVM_BUF_LEN; 714 if (b_can_sleep) 715 mb_params.flags = QED_MB_FLAG_CAN_SLEEP; 716 717 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 718 if (rc) 719 return rc; 720 721 *o_mcp_resp = mb_params.mcp_resp; 722 *o_mcp_param = mb_params.mcp_param; 723 724 *o_txn_size = *o_mcp_param; 725 memcpy(o_buf, raw_data, *o_txn_size); 726 727 return 0; 728 } 729 730 static bool 731 qed_mcp_can_force_load(u8 drv_role, 732 u8 exist_drv_role, 733 enum qed_override_force_load override_force_load) 734 { 735 bool can_force_load = false; 736 737 switch (override_force_load) { 738 case QED_OVERRIDE_FORCE_LOAD_ALWAYS: 739 can_force_load = true; 740 break; 741 case QED_OVERRIDE_FORCE_LOAD_NEVER: 742 can_force_load = false; 743 break; 744 default: 745 can_force_load = (drv_role == DRV_ROLE_OS && 746 exist_drv_role == DRV_ROLE_PREBOOT) || 747 (drv_role == DRV_ROLE_KDUMP && 748 exist_drv_role == DRV_ROLE_OS); 749 break; 750 } 751 752 return can_force_load; 753 } 754 755 static int qed_mcp_cancel_load_req(struct qed_hwfn *p_hwfn, 756 struct qed_ptt *p_ptt) 757 { 758 u32 resp = 0, param = 0; 759 int rc; 760 761 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CANCEL_LOAD_REQ, 0, 762 &resp, ¶m); 763 if (rc) 764 DP_NOTICE(p_hwfn, 765 "Failed to send cancel load request, rc = %d\n", rc); 766 767 return rc; 768 } 769 770 #define BITMAP_IDX_FOR_CONFIG_QEDE BIT(0) 771 #define BITMAP_IDX_FOR_CONFIG_QED_SRIOV BIT(1) 772 #define BITMAP_IDX_FOR_CONFIG_QEDR BIT(2) 773 #define BITMAP_IDX_FOR_CONFIG_QEDF BIT(4) 774 #define BITMAP_IDX_FOR_CONFIG_QEDI BIT(5) 775 #define BITMAP_IDX_FOR_CONFIG_QED_LL2 BIT(6) 776 777 static u32 qed_get_config_bitmap(void) 778 { 779 u32 config_bitmap = 0x0; 780 781 if (IS_ENABLED(CONFIG_QEDE)) 782 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDE; 783 784 if (IS_ENABLED(CONFIG_QED_SRIOV)) 785 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QED_SRIOV; 786 787 if (IS_ENABLED(CONFIG_QED_RDMA)) 788 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDR; 789 790 if (IS_ENABLED(CONFIG_QED_FCOE)) 791 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDF; 792 793 if (IS_ENABLED(CONFIG_QED_ISCSI)) 794 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QEDI; 795 796 if (IS_ENABLED(CONFIG_QED_LL2)) 797 config_bitmap |= BITMAP_IDX_FOR_CONFIG_QED_LL2; 798 799 return config_bitmap; 800 } 801 802 struct qed_load_req_in_params { 803 u8 hsi_ver; 804 #define QED_LOAD_REQ_HSI_VER_DEFAULT 0 805 #define QED_LOAD_REQ_HSI_VER_1 1 806 u32 drv_ver_0; 807 u32 drv_ver_1; 808 u32 fw_ver; 809 u8 drv_role; 810 u8 timeout_val; 811 u8 force_cmd; 812 bool avoid_eng_reset; 813 }; 814 815 struct qed_load_req_out_params { 816 u32 load_code; 817 u32 exist_drv_ver_0; 818 u32 exist_drv_ver_1; 819 u32 exist_fw_ver; 820 u8 exist_drv_role; 821 u8 mfw_hsi_ver; 822 bool drv_exists; 823 }; 824 825 static int 826 __qed_mcp_load_req(struct qed_hwfn *p_hwfn, 827 struct qed_ptt *p_ptt, 828 struct qed_load_req_in_params *p_in_params, 829 struct qed_load_req_out_params *p_out_params) 830 { 831 struct qed_mcp_mb_params mb_params; 832 struct load_req_stc load_req; 833 struct load_rsp_stc load_rsp; 834 u32 hsi_ver; 835 int rc; 836 837 memset(&load_req, 0, sizeof(load_req)); 838 load_req.drv_ver_0 = p_in_params->drv_ver_0; 839 load_req.drv_ver_1 = p_in_params->drv_ver_1; 840 load_req.fw_ver = p_in_params->fw_ver; 841 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_ROLE, p_in_params->drv_role); 842 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_LOCK_TO, 843 p_in_params->timeout_val); 844 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FORCE, 845 p_in_params->force_cmd); 846 QED_MFW_SET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0, 847 p_in_params->avoid_eng_reset); 848 849 hsi_ver = (p_in_params->hsi_ver == QED_LOAD_REQ_HSI_VER_DEFAULT) ? 850 DRV_ID_MCP_HSI_VER_CURRENT : 851 (p_in_params->hsi_ver << DRV_ID_MCP_HSI_VER_SHIFT); 852 853 memset(&mb_params, 0, sizeof(mb_params)); 854 mb_params.cmd = DRV_MSG_CODE_LOAD_REQ; 855 mb_params.param = PDA_COMP | hsi_ver | p_hwfn->cdev->drv_type; 856 mb_params.p_data_src = &load_req; 857 mb_params.data_src_size = sizeof(load_req); 858 mb_params.p_data_dst = &load_rsp; 859 mb_params.data_dst_size = sizeof(load_rsp); 860 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 861 862 DP_VERBOSE(p_hwfn, QED_MSG_SP, 863 "Load Request: param 0x%08x [init_hw %d, drv_type %d, hsi_ver %d, pda 0x%04x]\n", 864 mb_params.param, 865 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_INIT_HW), 866 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_DRV_TYPE), 867 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_MCP_HSI_VER), 868 QED_MFW_GET_FIELD(mb_params.param, DRV_ID_PDA_COMP_VER)); 869 870 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1) { 871 DP_VERBOSE(p_hwfn, QED_MSG_SP, 872 "Load Request: drv_ver 0x%08x_0x%08x, fw_ver 0x%08x, misc0 0x%08x [role %d, timeout %d, force %d, flags0 0x%x]\n", 873 load_req.drv_ver_0, 874 load_req.drv_ver_1, 875 load_req.fw_ver, 876 load_req.misc0, 877 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_ROLE), 878 QED_MFW_GET_FIELD(load_req.misc0, 879 LOAD_REQ_LOCK_TO), 880 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FORCE), 881 QED_MFW_GET_FIELD(load_req.misc0, LOAD_REQ_FLAGS0)); 882 } 883 884 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 885 if (rc) { 886 DP_NOTICE(p_hwfn, "Failed to send load request, rc = %d\n", rc); 887 return rc; 888 } 889 890 DP_VERBOSE(p_hwfn, QED_MSG_SP, 891 "Load Response: resp 0x%08x\n", mb_params.mcp_resp); 892 p_out_params->load_code = mb_params.mcp_resp; 893 894 if (p_in_params->hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 895 p_out_params->load_code != FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 896 DP_VERBOSE(p_hwfn, 897 QED_MSG_SP, 898 "Load Response: exist_drv_ver 0x%08x_0x%08x, exist_fw_ver 0x%08x, misc0 0x%08x [exist_role %d, mfw_hsi %d, flags0 0x%x]\n", 899 load_rsp.drv_ver_0, 900 load_rsp.drv_ver_1, 901 load_rsp.fw_ver, 902 load_rsp.misc0, 903 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE), 904 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI), 905 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0)); 906 907 p_out_params->exist_drv_ver_0 = load_rsp.drv_ver_0; 908 p_out_params->exist_drv_ver_1 = load_rsp.drv_ver_1; 909 p_out_params->exist_fw_ver = load_rsp.fw_ver; 910 p_out_params->exist_drv_role = 911 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_ROLE); 912 p_out_params->mfw_hsi_ver = 913 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_HSI); 914 p_out_params->drv_exists = 915 QED_MFW_GET_FIELD(load_rsp.misc0, LOAD_RSP_FLAGS0) & 916 LOAD_RSP_FLAGS0_DRV_EXISTS; 917 } 918 919 return 0; 920 } 921 922 static int eocre_get_mfw_drv_role(struct qed_hwfn *p_hwfn, 923 enum qed_drv_role drv_role, 924 u8 *p_mfw_drv_role) 925 { 926 switch (drv_role) { 927 case QED_DRV_ROLE_OS: 928 *p_mfw_drv_role = DRV_ROLE_OS; 929 break; 930 case QED_DRV_ROLE_KDUMP: 931 *p_mfw_drv_role = DRV_ROLE_KDUMP; 932 break; 933 default: 934 DP_ERR(p_hwfn, "Unexpected driver role %d\n", drv_role); 935 return -EINVAL; 936 } 937 938 return 0; 939 } 940 941 enum qed_load_req_force { 942 QED_LOAD_REQ_FORCE_NONE, 943 QED_LOAD_REQ_FORCE_PF, 944 QED_LOAD_REQ_FORCE_ALL, 945 }; 946 947 static void qed_get_mfw_force_cmd(struct qed_hwfn *p_hwfn, 948 enum qed_load_req_force force_cmd, 949 u8 *p_mfw_force_cmd) 950 { 951 switch (force_cmd) { 952 case QED_LOAD_REQ_FORCE_NONE: 953 *p_mfw_force_cmd = LOAD_REQ_FORCE_NONE; 954 break; 955 case QED_LOAD_REQ_FORCE_PF: 956 *p_mfw_force_cmd = LOAD_REQ_FORCE_PF; 957 break; 958 case QED_LOAD_REQ_FORCE_ALL: 959 *p_mfw_force_cmd = LOAD_REQ_FORCE_ALL; 960 break; 961 } 962 } 963 964 int qed_mcp_load_req(struct qed_hwfn *p_hwfn, 965 struct qed_ptt *p_ptt, 966 struct qed_load_req_params *p_params) 967 { 968 struct qed_load_req_out_params out_params; 969 struct qed_load_req_in_params in_params; 970 u8 mfw_drv_role, mfw_force_cmd; 971 int rc; 972 973 memset(&in_params, 0, sizeof(in_params)); 974 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_DEFAULT; 975 in_params.drv_ver_1 = qed_get_config_bitmap(); 976 in_params.fw_ver = STORM_FW_VERSION; 977 rc = eocre_get_mfw_drv_role(p_hwfn, p_params->drv_role, &mfw_drv_role); 978 if (rc) 979 return rc; 980 981 in_params.drv_role = mfw_drv_role; 982 in_params.timeout_val = p_params->timeout_val; 983 qed_get_mfw_force_cmd(p_hwfn, 984 QED_LOAD_REQ_FORCE_NONE, &mfw_force_cmd); 985 986 in_params.force_cmd = mfw_force_cmd; 987 in_params.avoid_eng_reset = p_params->avoid_eng_reset; 988 989 memset(&out_params, 0, sizeof(out_params)); 990 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 991 if (rc) 992 return rc; 993 994 /* First handle cases where another load request should/might be sent: 995 * - MFW expects the old interface [HSI version = 1] 996 * - MFW responds that a force load request is required 997 */ 998 if (out_params.load_code == FW_MSG_CODE_DRV_LOAD_REFUSED_HSI_1) { 999 DP_INFO(p_hwfn, 1000 "MFW refused a load request due to HSI > 1. Resending with HSI = 1\n"); 1001 1002 in_params.hsi_ver = QED_LOAD_REQ_HSI_VER_1; 1003 memset(&out_params, 0, sizeof(out_params)); 1004 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, &out_params); 1005 if (rc) 1006 return rc; 1007 } else if (out_params.load_code == 1008 FW_MSG_CODE_DRV_LOAD_REFUSED_REQUIRES_FORCE) { 1009 if (qed_mcp_can_force_load(in_params.drv_role, 1010 out_params.exist_drv_role, 1011 p_params->override_force_load)) { 1012 DP_INFO(p_hwfn, 1013 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}]\n", 1014 in_params.drv_role, in_params.fw_ver, 1015 in_params.drv_ver_0, in_params.drv_ver_1, 1016 out_params.exist_drv_role, 1017 out_params.exist_fw_ver, 1018 out_params.exist_drv_ver_0, 1019 out_params.exist_drv_ver_1); 1020 1021 qed_get_mfw_force_cmd(p_hwfn, 1022 QED_LOAD_REQ_FORCE_ALL, 1023 &mfw_force_cmd); 1024 1025 in_params.force_cmd = mfw_force_cmd; 1026 memset(&out_params, 0, sizeof(out_params)); 1027 rc = __qed_mcp_load_req(p_hwfn, p_ptt, &in_params, 1028 &out_params); 1029 if (rc) 1030 return rc; 1031 } else { 1032 DP_NOTICE(p_hwfn, 1033 "A force load is required [{role, fw_ver, drv_ver}: loading={%d, 0x%08x, x%08x_0x%08x}, existing={%d, 0x%08x, 0x%08x_0x%08x}] - Avoid\n", 1034 in_params.drv_role, in_params.fw_ver, 1035 in_params.drv_ver_0, in_params.drv_ver_1, 1036 out_params.exist_drv_role, 1037 out_params.exist_fw_ver, 1038 out_params.exist_drv_ver_0, 1039 out_params.exist_drv_ver_1); 1040 DP_NOTICE(p_hwfn, 1041 "Avoid sending a force load request to prevent disruption of active PFs\n"); 1042 1043 qed_mcp_cancel_load_req(p_hwfn, p_ptt); 1044 return -EBUSY; 1045 } 1046 } 1047 1048 /* Now handle the other types of responses. 1049 * The "REFUSED_HSI_1" and "REFUSED_REQUIRES_FORCE" responses are not 1050 * expected here after the additional revised load requests were sent. 1051 */ 1052 switch (out_params.load_code) { 1053 case FW_MSG_CODE_DRV_LOAD_ENGINE: 1054 case FW_MSG_CODE_DRV_LOAD_PORT: 1055 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 1056 if (out_params.mfw_hsi_ver != QED_LOAD_REQ_HSI_VER_1 && 1057 out_params.drv_exists) { 1058 /* The role and fw/driver version match, but the PF is 1059 * already loaded and has not been unloaded gracefully. 1060 */ 1061 DP_NOTICE(p_hwfn, 1062 "PF is already loaded\n"); 1063 return -EINVAL; 1064 } 1065 break; 1066 default: 1067 DP_NOTICE(p_hwfn, 1068 "Unexpected refusal to load request [resp 0x%08x]. Aborting.\n", 1069 out_params.load_code); 1070 return -EBUSY; 1071 } 1072 1073 p_params->load_code = out_params.load_code; 1074 1075 return 0; 1076 } 1077 1078 int qed_mcp_load_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1079 { 1080 u32 resp = 0, param = 0; 1081 int rc; 1082 1083 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_LOAD_DONE, 0, &resp, 1084 ¶m); 1085 if (rc) { 1086 DP_NOTICE(p_hwfn, 1087 "Failed to send a LOAD_DONE command, rc = %d\n", rc); 1088 return rc; 1089 } 1090 1091 /* Check if there is a DID mismatch between nvm-cfg/efuse */ 1092 if (param & FW_MB_PARAM_LOAD_DONE_DID_EFUSE_ERROR) 1093 DP_NOTICE(p_hwfn, 1094 "warning: device configuration is not supported on this board type. The device may not function as expected.\n"); 1095 1096 return 0; 1097 } 1098 1099 #define MFW_COMPLETION_MAX_ITER 5000 1100 #define MFW_COMPLETION_INTERVAL_MS 1 1101 1102 int qed_mcp_unload_req(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1103 { 1104 struct qed_mcp_mb_params mb_params; 1105 u32 cnt = MFW_COMPLETION_MAX_ITER; 1106 u32 wol_param; 1107 int rc; 1108 1109 switch (p_hwfn->cdev->wol_config) { 1110 case QED_OV_WOL_DISABLED: 1111 wol_param = DRV_MB_PARAM_UNLOAD_WOL_DISABLED; 1112 break; 1113 case QED_OV_WOL_ENABLED: 1114 wol_param = DRV_MB_PARAM_UNLOAD_WOL_ENABLED; 1115 break; 1116 default: 1117 DP_NOTICE(p_hwfn, 1118 "Unknown WoL configuration %02x\n", 1119 p_hwfn->cdev->wol_config); 1120 fallthrough; 1121 case QED_OV_WOL_DEFAULT: 1122 wol_param = DRV_MB_PARAM_UNLOAD_WOL_MCP; 1123 } 1124 1125 memset(&mb_params, 0, sizeof(mb_params)); 1126 mb_params.cmd = DRV_MSG_CODE_UNLOAD_REQ; 1127 mb_params.param = wol_param; 1128 mb_params.flags = QED_MB_FLAG_CAN_SLEEP | QED_MB_FLAG_AVOID_BLOCK; 1129 1130 spin_lock_bh(&p_hwfn->mcp_info->unload_lock); 1131 set_bit(QED_MCP_BYPASS_PROC_BIT, 1132 &p_hwfn->mcp_info->mcp_handling_status); 1133 spin_unlock_bh(&p_hwfn->mcp_info->unload_lock); 1134 1135 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1136 1137 while (test_bit(QED_MCP_IN_PROCESSING_BIT, 1138 &p_hwfn->mcp_info->mcp_handling_status) && --cnt) 1139 msleep(MFW_COMPLETION_INTERVAL_MS); 1140 1141 if (!cnt) 1142 DP_NOTICE(p_hwfn, 1143 "Failed to wait MFW event completion after %d msec\n", 1144 MFW_COMPLETION_MAX_ITER * MFW_COMPLETION_INTERVAL_MS); 1145 1146 return rc; 1147 } 1148 1149 int qed_mcp_unload_done(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1150 { 1151 struct qed_mcp_mb_params mb_params; 1152 struct mcp_mac wol_mac; 1153 1154 memset(&mb_params, 0, sizeof(mb_params)); 1155 mb_params.cmd = DRV_MSG_CODE_UNLOAD_DONE; 1156 1157 /* Set the primary MAC if WoL is enabled */ 1158 if (p_hwfn->cdev->wol_config == QED_OV_WOL_ENABLED) { 1159 u8 *p_mac = p_hwfn->cdev->wol_mac; 1160 1161 memset(&wol_mac, 0, sizeof(wol_mac)); 1162 wol_mac.mac_upper = p_mac[0] << 8 | p_mac[1]; 1163 wol_mac.mac_lower = p_mac[2] << 24 | p_mac[3] << 16 | 1164 p_mac[4] << 8 | p_mac[5]; 1165 1166 DP_VERBOSE(p_hwfn, 1167 (QED_MSG_SP | NETIF_MSG_IFDOWN), 1168 "Setting WoL MAC: %pM --> [%08x,%08x]\n", 1169 p_mac, wol_mac.mac_upper, wol_mac.mac_lower); 1170 1171 mb_params.p_data_src = &wol_mac; 1172 mb_params.data_src_size = sizeof(wol_mac); 1173 } 1174 1175 return qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1176 } 1177 1178 static void qed_mcp_handle_vf_flr(struct qed_hwfn *p_hwfn, 1179 struct qed_ptt *p_ptt) 1180 { 1181 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1182 PUBLIC_PATH); 1183 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1184 u32 path_addr = SECTION_ADDR(mfw_path_offsize, 1185 QED_PATH_ID(p_hwfn)); 1186 u32 disabled_vfs[VF_MAX_STATIC / 32]; 1187 int i; 1188 1189 DP_VERBOSE(p_hwfn, 1190 QED_MSG_SP, 1191 "Reading Disabled VF information from [offset %08x], path_addr %08x\n", 1192 mfw_path_offsize, path_addr); 1193 1194 for (i = 0; i < (VF_MAX_STATIC / 32); i++) { 1195 disabled_vfs[i] = qed_rd(p_hwfn, p_ptt, 1196 path_addr + 1197 offsetof(struct public_path, 1198 mcp_vf_disabled) + 1199 sizeof(u32) * i); 1200 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1201 "FLR-ed VFs [%08x,...,%08x] - %08x\n", 1202 i * 32, (i + 1) * 32 - 1, disabled_vfs[i]); 1203 } 1204 1205 if (qed_iov_mark_vf_flr(p_hwfn, disabled_vfs)) 1206 qed_schedule_iov(p_hwfn, QED_IOV_WQ_FLR_FLAG); 1207 } 1208 1209 int qed_mcp_ack_vf_flr(struct qed_hwfn *p_hwfn, 1210 struct qed_ptt *p_ptt, u32 *vfs_to_ack) 1211 { 1212 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1213 PUBLIC_FUNC); 1214 u32 mfw_func_offsize = qed_rd(p_hwfn, p_ptt, addr); 1215 u32 func_addr = SECTION_ADDR(mfw_func_offsize, 1216 MCP_PF_ID(p_hwfn)); 1217 struct qed_mcp_mb_params mb_params; 1218 int rc; 1219 int i; 1220 1221 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1222 DP_VERBOSE(p_hwfn, (QED_MSG_SP | QED_MSG_IOV), 1223 "Acking VFs [%08x,...,%08x] - %08x\n", 1224 i * 32, (i + 1) * 32 - 1, vfs_to_ack[i]); 1225 1226 memset(&mb_params, 0, sizeof(mb_params)); 1227 mb_params.cmd = DRV_MSG_CODE_VF_DISABLED_DONE; 1228 mb_params.p_data_src = vfs_to_ack; 1229 mb_params.data_src_size = VF_MAX_STATIC / 8; 1230 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1231 if (rc) { 1232 DP_NOTICE(p_hwfn, "Failed to pass ACK for VF flr to MFW\n"); 1233 return -EBUSY; 1234 } 1235 1236 /* Clear the ACK bits */ 1237 for (i = 0; i < (VF_MAX_STATIC / 32); i++) 1238 qed_wr(p_hwfn, p_ptt, 1239 func_addr + 1240 offsetof(struct public_func, drv_ack_vf_disabled) + 1241 i * sizeof(u32), 0); 1242 1243 return rc; 1244 } 1245 1246 static void qed_mcp_handle_transceiver_change(struct qed_hwfn *p_hwfn, 1247 struct qed_ptt *p_ptt) 1248 { 1249 u32 transceiver_state; 1250 1251 transceiver_state = qed_rd(p_hwfn, p_ptt, 1252 p_hwfn->mcp_info->port_addr + 1253 offsetof(struct public_port, 1254 transceiver_data)); 1255 1256 DP_VERBOSE(p_hwfn, 1257 (NETIF_MSG_HW | QED_MSG_SP), 1258 "Received transceiver state update [0x%08x] from mfw [Addr 0x%x]\n", 1259 transceiver_state, 1260 (u32)(p_hwfn->mcp_info->port_addr + 1261 offsetof(struct public_port, transceiver_data))); 1262 1263 transceiver_state = GET_FIELD(transceiver_state, 1264 ETH_TRANSCEIVER_STATE); 1265 1266 if (transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT) 1267 DP_NOTICE(p_hwfn, "Transceiver is present.\n"); 1268 else 1269 DP_NOTICE(p_hwfn, "Transceiver is unplugged.\n"); 1270 } 1271 1272 static void qed_mcp_read_eee_config(struct qed_hwfn *p_hwfn, 1273 struct qed_ptt *p_ptt, 1274 struct qed_mcp_link_state *p_link) 1275 { 1276 u32 eee_status, val; 1277 1278 p_link->eee_adv_caps = 0; 1279 p_link->eee_lp_adv_caps = 0; 1280 eee_status = qed_rd(p_hwfn, 1281 p_ptt, 1282 p_hwfn->mcp_info->port_addr + 1283 offsetof(struct public_port, eee_status)); 1284 p_link->eee_active = !!(eee_status & EEE_ACTIVE_BIT); 1285 val = (eee_status & EEE_LD_ADV_STATUS_MASK) >> EEE_LD_ADV_STATUS_OFFSET; 1286 if (val & EEE_1G_ADV) 1287 p_link->eee_adv_caps |= QED_EEE_1G_ADV; 1288 if (val & EEE_10G_ADV) 1289 p_link->eee_adv_caps |= QED_EEE_10G_ADV; 1290 val = (eee_status & EEE_LP_ADV_STATUS_MASK) >> EEE_LP_ADV_STATUS_OFFSET; 1291 if (val & EEE_1G_ADV) 1292 p_link->eee_lp_adv_caps |= QED_EEE_1G_ADV; 1293 if (val & EEE_10G_ADV) 1294 p_link->eee_lp_adv_caps |= QED_EEE_10G_ADV; 1295 } 1296 1297 static u32 qed_mcp_get_shmem_func(struct qed_hwfn *p_hwfn, 1298 struct qed_ptt *p_ptt, 1299 struct public_func *p_data, int pfid) 1300 { 1301 u32 addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1302 PUBLIC_FUNC); 1303 u32 mfw_path_offsize = qed_rd(p_hwfn, p_ptt, addr); 1304 u32 func_addr; 1305 u32 i, size; 1306 1307 func_addr = SECTION_ADDR(mfw_path_offsize, pfid); 1308 memset(p_data, 0, sizeof(*p_data)); 1309 1310 size = min_t(u32, sizeof(*p_data), QED_SECTION_SIZE(mfw_path_offsize)); 1311 for (i = 0; i < size / sizeof(u32); i++) 1312 ((u32 *)p_data)[i] = qed_rd(p_hwfn, p_ptt, 1313 func_addr + (i << 2)); 1314 return size; 1315 } 1316 1317 static void qed_read_pf_bandwidth(struct qed_hwfn *p_hwfn, 1318 struct public_func *p_shmem_info) 1319 { 1320 struct qed_mcp_function_info *p_info; 1321 1322 p_info = &p_hwfn->mcp_info->func_info; 1323 1324 p_info->bandwidth_min = QED_MFW_GET_FIELD(p_shmem_info->config, 1325 FUNC_MF_CFG_MIN_BW); 1326 if (p_info->bandwidth_min < 1 || p_info->bandwidth_min > 100) { 1327 DP_INFO(p_hwfn, 1328 "bandwidth minimum out of bounds [%02x]. Set to 1\n", 1329 p_info->bandwidth_min); 1330 p_info->bandwidth_min = 1; 1331 } 1332 1333 p_info->bandwidth_max = QED_MFW_GET_FIELD(p_shmem_info->config, 1334 FUNC_MF_CFG_MAX_BW); 1335 if (p_info->bandwidth_max < 1 || p_info->bandwidth_max > 100) { 1336 DP_INFO(p_hwfn, 1337 "bandwidth maximum out of bounds [%02x]. Set to 100\n", 1338 p_info->bandwidth_max); 1339 p_info->bandwidth_max = 100; 1340 } 1341 } 1342 1343 static void qed_mcp_handle_link_change(struct qed_hwfn *p_hwfn, 1344 struct qed_ptt *p_ptt, bool b_reset) 1345 { 1346 struct qed_mcp_link_state *p_link; 1347 u8 max_bw, min_bw; 1348 u32 status = 0; 1349 1350 /* Prevent SW/attentions from doing this at the same time */ 1351 spin_lock_bh(&p_hwfn->mcp_info->link_lock); 1352 1353 p_link = &p_hwfn->mcp_info->link_output; 1354 memset(p_link, 0, sizeof(*p_link)); 1355 if (!b_reset) { 1356 status = qed_rd(p_hwfn, p_ptt, 1357 p_hwfn->mcp_info->port_addr + 1358 offsetof(struct public_port, link_status)); 1359 DP_VERBOSE(p_hwfn, (NETIF_MSG_LINK | QED_MSG_SP), 1360 "Received link update [0x%08x] from mfw [Addr 0x%x]\n", 1361 status, 1362 (u32)(p_hwfn->mcp_info->port_addr + 1363 offsetof(struct public_port, link_status))); 1364 } else { 1365 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1366 "Resetting link indications\n"); 1367 goto out; 1368 } 1369 1370 if (p_hwfn->b_drv_link_init) { 1371 /* Link indication with modern MFW arrives as per-PF 1372 * indication. 1373 */ 1374 if (p_hwfn->mcp_info->capabilities & 1375 FW_MB_PARAM_FEATURE_SUPPORT_VLINK) { 1376 struct public_func shmem_info; 1377 1378 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, 1379 MCP_PF_ID(p_hwfn)); 1380 p_link->link_up = !!(shmem_info.status & 1381 FUNC_STATUS_VIRTUAL_LINK_UP); 1382 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1383 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1384 "Virtual link_up = %d\n", p_link->link_up); 1385 } else { 1386 p_link->link_up = !!(status & LINK_STATUS_LINK_UP); 1387 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1388 "Physical link_up = %d\n", p_link->link_up); 1389 } 1390 } else { 1391 p_link->link_up = false; 1392 } 1393 1394 p_link->full_duplex = true; 1395 switch ((status & LINK_STATUS_SPEED_AND_DUPLEX_MASK)) { 1396 case LINK_STATUS_SPEED_AND_DUPLEX_100G: 1397 p_link->speed = 100000; 1398 break; 1399 case LINK_STATUS_SPEED_AND_DUPLEX_50G: 1400 p_link->speed = 50000; 1401 break; 1402 case LINK_STATUS_SPEED_AND_DUPLEX_40G: 1403 p_link->speed = 40000; 1404 break; 1405 case LINK_STATUS_SPEED_AND_DUPLEX_25G: 1406 p_link->speed = 25000; 1407 break; 1408 case LINK_STATUS_SPEED_AND_DUPLEX_20G: 1409 p_link->speed = 20000; 1410 break; 1411 case LINK_STATUS_SPEED_AND_DUPLEX_10G: 1412 p_link->speed = 10000; 1413 break; 1414 case LINK_STATUS_SPEED_AND_DUPLEX_1000THD: 1415 p_link->full_duplex = false; 1416 fallthrough; 1417 case LINK_STATUS_SPEED_AND_DUPLEX_1000TFD: 1418 p_link->speed = 1000; 1419 break; 1420 default: 1421 p_link->speed = 0; 1422 p_link->link_up = 0; 1423 } 1424 1425 if (p_link->link_up && p_link->speed) 1426 p_link->line_speed = p_link->speed; 1427 else 1428 p_link->line_speed = 0; 1429 1430 max_bw = p_hwfn->mcp_info->func_info.bandwidth_max; 1431 min_bw = p_hwfn->mcp_info->func_info.bandwidth_min; 1432 1433 /* Max bandwidth configuration */ 1434 __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw); 1435 1436 /* Min bandwidth configuration */ 1437 __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw); 1438 qed_configure_vp_wfq_on_link_change(p_hwfn->cdev, p_ptt, 1439 p_link->min_pf_rate); 1440 1441 p_link->an = !!(status & LINK_STATUS_AUTO_NEGOTIATE_ENABLED); 1442 p_link->an_complete = !!(status & 1443 LINK_STATUS_AUTO_NEGOTIATE_COMPLETE); 1444 p_link->parallel_detection = !!(status & 1445 LINK_STATUS_PARALLEL_DETECTION_USED); 1446 p_link->pfc_enabled = !!(status & LINK_STATUS_PFC_ENABLED); 1447 1448 p_link->partner_adv_speed |= 1449 (status & LINK_STATUS_LINK_PARTNER_1000TFD_CAPABLE) ? 1450 QED_LINK_PARTNER_SPEED_1G_FD : 0; 1451 p_link->partner_adv_speed |= 1452 (status & LINK_STATUS_LINK_PARTNER_1000THD_CAPABLE) ? 1453 QED_LINK_PARTNER_SPEED_1G_HD : 0; 1454 p_link->partner_adv_speed |= 1455 (status & LINK_STATUS_LINK_PARTNER_10G_CAPABLE) ? 1456 QED_LINK_PARTNER_SPEED_10G : 0; 1457 p_link->partner_adv_speed |= 1458 (status & LINK_STATUS_LINK_PARTNER_20G_CAPABLE) ? 1459 QED_LINK_PARTNER_SPEED_20G : 0; 1460 p_link->partner_adv_speed |= 1461 (status & LINK_STATUS_LINK_PARTNER_25G_CAPABLE) ? 1462 QED_LINK_PARTNER_SPEED_25G : 0; 1463 p_link->partner_adv_speed |= 1464 (status & LINK_STATUS_LINK_PARTNER_40G_CAPABLE) ? 1465 QED_LINK_PARTNER_SPEED_40G : 0; 1466 p_link->partner_adv_speed |= 1467 (status & LINK_STATUS_LINK_PARTNER_50G_CAPABLE) ? 1468 QED_LINK_PARTNER_SPEED_50G : 0; 1469 p_link->partner_adv_speed |= 1470 (status & LINK_STATUS_LINK_PARTNER_100G_CAPABLE) ? 1471 QED_LINK_PARTNER_SPEED_100G : 0; 1472 1473 p_link->partner_tx_flow_ctrl_en = 1474 !!(status & LINK_STATUS_TX_FLOW_CONTROL_ENABLED); 1475 p_link->partner_rx_flow_ctrl_en = 1476 !!(status & LINK_STATUS_RX_FLOW_CONTROL_ENABLED); 1477 1478 switch (status & LINK_STATUS_LINK_PARTNER_FLOW_CONTROL_MASK) { 1479 case LINK_STATUS_LINK_PARTNER_SYMMETRIC_PAUSE: 1480 p_link->partner_adv_pause = QED_LINK_PARTNER_SYMMETRIC_PAUSE; 1481 break; 1482 case LINK_STATUS_LINK_PARTNER_ASYMMETRIC_PAUSE: 1483 p_link->partner_adv_pause = QED_LINK_PARTNER_ASYMMETRIC_PAUSE; 1484 break; 1485 case LINK_STATUS_LINK_PARTNER_BOTH_PAUSE: 1486 p_link->partner_adv_pause = QED_LINK_PARTNER_BOTH_PAUSE; 1487 break; 1488 default: 1489 p_link->partner_adv_pause = 0; 1490 } 1491 1492 p_link->sfp_tx_fault = !!(status & LINK_STATUS_SFP_TX_FAULT); 1493 1494 if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) 1495 qed_mcp_read_eee_config(p_hwfn, p_ptt, p_link); 1496 1497 if (p_hwfn->mcp_info->capabilities & 1498 FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) { 1499 switch (status & LINK_STATUS_FEC_MODE_MASK) { 1500 case LINK_STATUS_FEC_MODE_NONE: 1501 p_link->fec_active = QED_FEC_MODE_NONE; 1502 break; 1503 case LINK_STATUS_FEC_MODE_FIRECODE_CL74: 1504 p_link->fec_active = QED_FEC_MODE_FIRECODE; 1505 break; 1506 case LINK_STATUS_FEC_MODE_RS_CL91: 1507 p_link->fec_active = QED_FEC_MODE_RS; 1508 break; 1509 default: 1510 p_link->fec_active = QED_FEC_MODE_AUTO; 1511 } 1512 } else { 1513 p_link->fec_active = QED_FEC_MODE_UNSUPPORTED; 1514 } 1515 1516 qed_link_update(p_hwfn, p_ptt); 1517 out: 1518 spin_unlock_bh(&p_hwfn->mcp_info->link_lock); 1519 } 1520 1521 int qed_mcp_set_link(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_up) 1522 { 1523 struct qed_mcp_link_params *params = &p_hwfn->mcp_info->link_input; 1524 struct qed_mcp_mb_params mb_params; 1525 struct eth_phy_cfg phy_cfg; 1526 u32 cmd, fec_bit = 0; 1527 u32 val, ext_speed; 1528 int rc = 0; 1529 1530 /* Set the shmem configuration according to params */ 1531 memset(&phy_cfg, 0, sizeof(phy_cfg)); 1532 cmd = b_up ? DRV_MSG_CODE_INIT_PHY : DRV_MSG_CODE_LINK_RESET; 1533 if (!params->speed.autoneg) 1534 phy_cfg.speed = params->speed.forced_speed; 1535 phy_cfg.pause |= (params->pause.autoneg) ? ETH_PAUSE_AUTONEG : 0; 1536 phy_cfg.pause |= (params->pause.forced_rx) ? ETH_PAUSE_RX : 0; 1537 phy_cfg.pause |= (params->pause.forced_tx) ? ETH_PAUSE_TX : 0; 1538 phy_cfg.adv_speed = params->speed.advertised_speeds; 1539 phy_cfg.loopback_mode = params->loopback_mode; 1540 1541 /* There are MFWs that share this capability regardless of whether 1542 * this is feasible or not. And given that at the very least adv_caps 1543 * would be set internally by qed, we want to make sure LFA would 1544 * still work. 1545 */ 1546 if ((p_hwfn->mcp_info->capabilities & 1547 FW_MB_PARAM_FEATURE_SUPPORT_EEE) && params->eee.enable) { 1548 phy_cfg.eee_cfg |= EEE_CFG_EEE_ENABLED; 1549 if (params->eee.tx_lpi_enable) 1550 phy_cfg.eee_cfg |= EEE_CFG_TX_LPI; 1551 if (params->eee.adv_caps & QED_EEE_1G_ADV) 1552 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_1G; 1553 if (params->eee.adv_caps & QED_EEE_10G_ADV) 1554 phy_cfg.eee_cfg |= EEE_CFG_ADV_SPEED_10G; 1555 phy_cfg.eee_cfg |= (params->eee.tx_lpi_timer << 1556 EEE_TX_TIMER_USEC_OFFSET) & 1557 EEE_TX_TIMER_USEC_MASK; 1558 } 1559 1560 if (p_hwfn->mcp_info->capabilities & 1561 FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) { 1562 if (params->fec & QED_FEC_MODE_NONE) 1563 fec_bit |= FEC_FORCE_MODE_NONE; 1564 else if (params->fec & QED_FEC_MODE_FIRECODE) 1565 fec_bit |= FEC_FORCE_MODE_FIRECODE; 1566 else if (params->fec & QED_FEC_MODE_RS) 1567 fec_bit |= FEC_FORCE_MODE_RS; 1568 else if (params->fec & QED_FEC_MODE_AUTO) 1569 fec_bit |= FEC_FORCE_MODE_AUTO; 1570 1571 SET_MFW_FIELD(phy_cfg.fec_mode, FEC_FORCE_MODE, fec_bit); 1572 } 1573 1574 if (p_hwfn->mcp_info->capabilities & 1575 FW_MB_PARAM_FEATURE_SUPPORT_EXT_SPEED_FEC_CONTROL) { 1576 ext_speed = 0; 1577 if (params->ext_speed.autoneg) 1578 ext_speed |= ETH_EXT_SPEED_NONE; 1579 1580 val = params->ext_speed.forced_speed; 1581 if (val & QED_EXT_SPEED_1G) 1582 ext_speed |= ETH_EXT_SPEED_1G; 1583 if (val & QED_EXT_SPEED_10G) 1584 ext_speed |= ETH_EXT_SPEED_10G; 1585 if (val & QED_EXT_SPEED_25G) 1586 ext_speed |= ETH_EXT_SPEED_25G; 1587 if (val & QED_EXT_SPEED_40G) 1588 ext_speed |= ETH_EXT_SPEED_40G; 1589 if (val & QED_EXT_SPEED_50G_R) 1590 ext_speed |= ETH_EXT_SPEED_50G_BASE_R; 1591 if (val & QED_EXT_SPEED_50G_R2) 1592 ext_speed |= ETH_EXT_SPEED_50G_BASE_R2; 1593 if (val & QED_EXT_SPEED_100G_R2) 1594 ext_speed |= ETH_EXT_SPEED_100G_BASE_R2; 1595 if (val & QED_EXT_SPEED_100G_R4) 1596 ext_speed |= ETH_EXT_SPEED_100G_BASE_R4; 1597 if (val & QED_EXT_SPEED_100G_P4) 1598 ext_speed |= ETH_EXT_SPEED_100G_BASE_P4; 1599 1600 SET_MFW_FIELD(phy_cfg.extended_speed, ETH_EXT_SPEED, 1601 ext_speed); 1602 1603 ext_speed = 0; 1604 1605 val = params->ext_speed.advertised_speeds; 1606 if (val & QED_EXT_SPEED_MASK_1G) 1607 ext_speed |= ETH_EXT_ADV_SPEED_1G; 1608 if (val & QED_EXT_SPEED_MASK_10G) 1609 ext_speed |= ETH_EXT_ADV_SPEED_10G; 1610 if (val & QED_EXT_SPEED_MASK_25G) 1611 ext_speed |= ETH_EXT_ADV_SPEED_25G; 1612 if (val & QED_EXT_SPEED_MASK_40G) 1613 ext_speed |= ETH_EXT_ADV_SPEED_40G; 1614 if (val & QED_EXT_SPEED_MASK_50G_R) 1615 ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R; 1616 if (val & QED_EXT_SPEED_MASK_50G_R2) 1617 ext_speed |= ETH_EXT_ADV_SPEED_50G_BASE_R2; 1618 if (val & QED_EXT_SPEED_MASK_100G_R2) 1619 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R2; 1620 if (val & QED_EXT_SPEED_MASK_100G_R4) 1621 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_R4; 1622 if (val & QED_EXT_SPEED_MASK_100G_P4) 1623 ext_speed |= ETH_EXT_ADV_SPEED_100G_BASE_P4; 1624 1625 phy_cfg.extended_speed |= ext_speed; 1626 1627 SET_MFW_FIELD(phy_cfg.fec_mode, FEC_EXTENDED_MODE, 1628 params->ext_fec_mode); 1629 } 1630 1631 p_hwfn->b_drv_link_init = b_up; 1632 1633 if (b_up) { 1634 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 1635 "Configuring Link: Speed 0x%08x, Pause 0x%08x, Adv. Speed 0x%08x, Loopback 0x%08x, FEC 0x%08x, Ext. Speed 0x%08x\n", 1636 phy_cfg.speed, phy_cfg.pause, phy_cfg.adv_speed, 1637 phy_cfg.loopback_mode, phy_cfg.fec_mode, 1638 phy_cfg.extended_speed); 1639 } else { 1640 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Resetting link\n"); 1641 } 1642 1643 memset(&mb_params, 0, sizeof(mb_params)); 1644 mb_params.cmd = cmd; 1645 mb_params.p_data_src = &phy_cfg; 1646 mb_params.data_src_size = sizeof(phy_cfg); 1647 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1648 1649 /* if mcp fails to respond we must abort */ 1650 if (rc) { 1651 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 1652 return rc; 1653 } 1654 1655 /* Mimic link-change attention, done for several reasons: 1656 * - On reset, there's no guarantee MFW would trigger 1657 * an attention. 1658 * - On initialization, older MFWs might not indicate link change 1659 * during LFA, so we'll never get an UP indication. 1660 */ 1661 qed_mcp_handle_link_change(p_hwfn, p_ptt, !b_up); 1662 1663 return 0; 1664 } 1665 1666 u32 qed_get_process_kill_counter(struct qed_hwfn *p_hwfn, 1667 struct qed_ptt *p_ptt) 1668 { 1669 u32 path_offsize_addr, path_offsize, path_addr, proc_kill_cnt; 1670 1671 if (IS_VF(p_hwfn->cdev)) 1672 return -EINVAL; 1673 1674 path_offsize_addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, 1675 PUBLIC_PATH); 1676 path_offsize = qed_rd(p_hwfn, p_ptt, path_offsize_addr); 1677 path_addr = SECTION_ADDR(path_offsize, QED_PATH_ID(p_hwfn)); 1678 1679 proc_kill_cnt = qed_rd(p_hwfn, p_ptt, 1680 path_addr + 1681 offsetof(struct public_path, process_kill)) & 1682 PROCESS_KILL_COUNTER_MASK; 1683 1684 return proc_kill_cnt; 1685 } 1686 1687 static void qed_mcp_handle_process_kill(struct qed_hwfn *p_hwfn, 1688 struct qed_ptt *p_ptt) 1689 { 1690 struct qed_dev *cdev = p_hwfn->cdev; 1691 u32 proc_kill_cnt; 1692 1693 /* Prevent possible attentions/interrupts during the recovery handling 1694 * and till its load phase, during which they will be re-enabled. 1695 */ 1696 qed_int_igu_disable_int(p_hwfn, p_ptt); 1697 1698 DP_NOTICE(p_hwfn, "Received a process kill indication\n"); 1699 1700 /* The following operations should be done once, and thus in CMT mode 1701 * are carried out by only the first HW function. 1702 */ 1703 if (p_hwfn != QED_LEADING_HWFN(cdev)) 1704 return; 1705 1706 if (cdev->recov_in_prog) { 1707 DP_NOTICE(p_hwfn, 1708 "Ignoring the indication since a recovery process is already in progress\n"); 1709 return; 1710 } 1711 1712 cdev->recov_in_prog = true; 1713 1714 proc_kill_cnt = qed_get_process_kill_counter(p_hwfn, p_ptt); 1715 DP_NOTICE(p_hwfn, "Process kill counter: %d\n", proc_kill_cnt); 1716 1717 qed_schedule_recovery_handler(p_hwfn); 1718 } 1719 1720 static void qed_mcp_send_protocol_stats(struct qed_hwfn *p_hwfn, 1721 struct qed_ptt *p_ptt, 1722 enum MFW_DRV_MSG_TYPE type) 1723 { 1724 enum qed_mcp_protocol_type stats_type; 1725 union qed_mcp_protocol_stats stats; 1726 struct qed_mcp_mb_params mb_params; 1727 u32 hsi_param; 1728 1729 switch (type) { 1730 case MFW_DRV_MSG_GET_LAN_STATS: 1731 stats_type = QED_MCP_LAN_STATS; 1732 hsi_param = DRV_MSG_CODE_STATS_TYPE_LAN; 1733 break; 1734 case MFW_DRV_MSG_GET_FCOE_STATS: 1735 stats_type = QED_MCP_FCOE_STATS; 1736 hsi_param = DRV_MSG_CODE_STATS_TYPE_FCOE; 1737 break; 1738 case MFW_DRV_MSG_GET_ISCSI_STATS: 1739 stats_type = QED_MCP_ISCSI_STATS; 1740 hsi_param = DRV_MSG_CODE_STATS_TYPE_ISCSI; 1741 break; 1742 case MFW_DRV_MSG_GET_RDMA_STATS: 1743 stats_type = QED_MCP_RDMA_STATS; 1744 hsi_param = DRV_MSG_CODE_STATS_TYPE_RDMA; 1745 break; 1746 default: 1747 DP_NOTICE(p_hwfn, "Invalid protocol type %d\n", type); 1748 return; 1749 } 1750 1751 qed_get_protocol_stats(p_hwfn->cdev, stats_type, &stats); 1752 1753 memset(&mb_params, 0, sizeof(mb_params)); 1754 mb_params.cmd = DRV_MSG_CODE_GET_STATS; 1755 mb_params.param = hsi_param; 1756 mb_params.p_data_src = &stats; 1757 mb_params.data_src_size = sizeof(stats); 1758 qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1759 } 1760 1761 static void qed_mcp_update_bw(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1762 { 1763 struct qed_mcp_function_info *p_info; 1764 struct public_func shmem_info; 1765 u32 resp = 0, param = 0; 1766 1767 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1768 1769 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 1770 1771 p_info = &p_hwfn->mcp_info->func_info; 1772 1773 qed_configure_pf_min_bandwidth(p_hwfn->cdev, p_info->bandwidth_min); 1774 qed_configure_pf_max_bandwidth(p_hwfn->cdev, p_info->bandwidth_max); 1775 1776 /* Acknowledge the MFW */ 1777 qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_BW_UPDATE_ACK, 0, &resp, 1778 ¶m); 1779 } 1780 1781 static void qed_mcp_update_stag(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1782 { 1783 struct public_func shmem_info; 1784 u32 resp = 0, param = 0; 1785 1786 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1787 1788 p_hwfn->mcp_info->func_info.ovlan = (u16)shmem_info.ovlan_stag & 1789 FUNC_MF_CFG_OV_STAG_MASK; 1790 p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan; 1791 if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) { 1792 if (p_hwfn->hw_info.ovlan != QED_MCP_VLAN_UNSET) { 1793 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 1794 p_hwfn->hw_info.ovlan); 1795 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 1); 1796 1797 /* Configure DB to add external vlan to EDPM packets */ 1798 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 1); 1799 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 1800 p_hwfn->hw_info.ovlan); 1801 } else { 1802 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_EN, 0); 1803 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_FUNC_TAG_VALUE, 0); 1804 qed_wr(p_hwfn, p_ptt, DORQ_REG_TAG1_OVRD_MODE, 0); 1805 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_EXT_VID_BB_K2, 0); 1806 } 1807 1808 qed_sp_pf_update_stag(p_hwfn); 1809 } 1810 1811 DP_VERBOSE(p_hwfn, QED_MSG_SP, "ovlan = %d hw_mode = 0x%x\n", 1812 p_hwfn->mcp_info->func_info.ovlan, p_hwfn->hw_info.hw_mode); 1813 1814 /* Acknowledge the MFW */ 1815 qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_S_TAG_UPDATE_ACK, 0, 1816 &resp, ¶m); 1817 } 1818 1819 static void qed_mcp_handle_fan_failure(struct qed_hwfn *p_hwfn, 1820 struct qed_ptt *p_ptt) 1821 { 1822 /* A single notification should be sent to upper driver in CMT mode */ 1823 if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev)) 1824 return; 1825 1826 qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_FAN_FAIL, 1827 "Fan failure was detected on the network interface card and it's going to be shut down.\n"); 1828 } 1829 1830 struct qed_mdump_cmd_params { 1831 u32 cmd; 1832 void *p_data_src; 1833 u8 data_src_size; 1834 void *p_data_dst; 1835 u8 data_dst_size; 1836 u32 mcp_resp; 1837 }; 1838 1839 static int 1840 qed_mcp_mdump_cmd(struct qed_hwfn *p_hwfn, 1841 struct qed_ptt *p_ptt, 1842 struct qed_mdump_cmd_params *p_mdump_cmd_params) 1843 { 1844 struct qed_mcp_mb_params mb_params; 1845 int rc; 1846 1847 memset(&mb_params, 0, sizeof(mb_params)); 1848 mb_params.cmd = DRV_MSG_CODE_MDUMP_CMD; 1849 mb_params.param = p_mdump_cmd_params->cmd; 1850 mb_params.p_data_src = p_mdump_cmd_params->p_data_src; 1851 mb_params.data_src_size = p_mdump_cmd_params->data_src_size; 1852 mb_params.p_data_dst = p_mdump_cmd_params->p_data_dst; 1853 mb_params.data_dst_size = p_mdump_cmd_params->data_dst_size; 1854 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 1855 if (rc) 1856 return rc; 1857 1858 p_mdump_cmd_params->mcp_resp = mb_params.mcp_resp; 1859 1860 if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_MDUMP_INVALID_CMD) { 1861 DP_INFO(p_hwfn, 1862 "The mdump sub command is unsupported by the MFW [mdump_cmd 0x%x]\n", 1863 p_mdump_cmd_params->cmd); 1864 rc = -EOPNOTSUPP; 1865 } else if (p_mdump_cmd_params->mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 1866 DP_INFO(p_hwfn, 1867 "The mdump command is not supported by the MFW\n"); 1868 rc = -EOPNOTSUPP; 1869 } 1870 1871 return rc; 1872 } 1873 1874 static int qed_mcp_mdump_ack(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1875 { 1876 struct qed_mdump_cmd_params mdump_cmd_params; 1877 1878 memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params)); 1879 mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_ACK; 1880 1881 return qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params); 1882 } 1883 1884 int 1885 qed_mcp_mdump_get_retain(struct qed_hwfn *p_hwfn, 1886 struct qed_ptt *p_ptt, 1887 struct mdump_retain_data_stc *p_mdump_retain) 1888 { 1889 struct qed_mdump_cmd_params mdump_cmd_params; 1890 int rc; 1891 1892 memset(&mdump_cmd_params, 0, sizeof(mdump_cmd_params)); 1893 mdump_cmd_params.cmd = DRV_MSG_CODE_MDUMP_GET_RETAIN; 1894 mdump_cmd_params.p_data_dst = p_mdump_retain; 1895 mdump_cmd_params.data_dst_size = sizeof(*p_mdump_retain); 1896 1897 rc = qed_mcp_mdump_cmd(p_hwfn, p_ptt, &mdump_cmd_params); 1898 if (rc) 1899 return rc; 1900 1901 if (mdump_cmd_params.mcp_resp != FW_MSG_CODE_OK) { 1902 DP_INFO(p_hwfn, 1903 "Failed to get the mdump retained data [mcp_resp 0x%x]\n", 1904 mdump_cmd_params.mcp_resp); 1905 return -EINVAL; 1906 } 1907 1908 return 0; 1909 } 1910 1911 static void qed_mcp_handle_critical_error(struct qed_hwfn *p_hwfn, 1912 struct qed_ptt *p_ptt) 1913 { 1914 struct mdump_retain_data_stc mdump_retain; 1915 int rc; 1916 1917 /* In CMT mode - no need for more than a single acknowledgment to the 1918 * MFW, and no more than a single notification to the upper driver. 1919 */ 1920 if (p_hwfn != QED_LEADING_HWFN(p_hwfn->cdev)) 1921 return; 1922 1923 rc = qed_mcp_mdump_get_retain(p_hwfn, p_ptt, &mdump_retain); 1924 if (rc == 0 && mdump_retain.valid) 1925 DP_NOTICE(p_hwfn, 1926 "The MFW notified that a critical error occurred in the device [epoch 0x%08x, pf 0x%x, status 0x%08x]\n", 1927 mdump_retain.epoch, 1928 mdump_retain.pf, mdump_retain.status); 1929 else 1930 DP_NOTICE(p_hwfn, 1931 "The MFW notified that a critical error occurred in the device\n"); 1932 1933 DP_NOTICE(p_hwfn, 1934 "Acknowledging the notification to not allow the MFW crash dump [driver debug data collection is preferable]\n"); 1935 qed_mcp_mdump_ack(p_hwfn, p_ptt); 1936 1937 qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_HW_ATTN, NULL); 1938 } 1939 1940 void qed_mcp_read_ufp_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1941 { 1942 struct public_func shmem_info; 1943 u32 port_cfg, val; 1944 1945 if (!test_bit(QED_MF_UFP_SPECIFIC, &p_hwfn->cdev->mf_bits)) 1946 return; 1947 1948 memset(&p_hwfn->ufp_info, 0, sizeof(p_hwfn->ufp_info)); 1949 port_cfg = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + 1950 offsetof(struct public_port, oem_cfg_port)); 1951 val = (port_cfg & OEM_CFG_CHANNEL_TYPE_MASK) >> 1952 OEM_CFG_CHANNEL_TYPE_OFFSET; 1953 if (val != OEM_CFG_CHANNEL_TYPE_STAGGED) 1954 DP_NOTICE(p_hwfn, 1955 "Incorrect UFP Channel type %d port_id 0x%02x\n", 1956 val, MFW_PORT(p_hwfn)); 1957 1958 val = (port_cfg & OEM_CFG_SCHED_TYPE_MASK) >> OEM_CFG_SCHED_TYPE_OFFSET; 1959 if (val == OEM_CFG_SCHED_TYPE_ETS) { 1960 p_hwfn->ufp_info.mode = QED_UFP_MODE_ETS; 1961 } else if (val == OEM_CFG_SCHED_TYPE_VNIC_BW) { 1962 p_hwfn->ufp_info.mode = QED_UFP_MODE_VNIC_BW; 1963 } else { 1964 p_hwfn->ufp_info.mode = QED_UFP_MODE_UNKNOWN; 1965 DP_NOTICE(p_hwfn, 1966 "Unknown UFP scheduling mode %d port_id 0x%02x\n", 1967 val, MFW_PORT(p_hwfn)); 1968 } 1969 1970 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 1971 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_TC_MASK) >> 1972 OEM_CFG_FUNC_TC_OFFSET; 1973 p_hwfn->ufp_info.tc = (u8)val; 1974 val = (shmem_info.oem_cfg_func & OEM_CFG_FUNC_HOST_PRI_CTRL_MASK) >> 1975 OEM_CFG_FUNC_HOST_PRI_CTRL_OFFSET; 1976 if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_VNIC) { 1977 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_VNIC; 1978 } else if (val == OEM_CFG_FUNC_HOST_PRI_CTRL_OS) { 1979 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_OS; 1980 } else { 1981 p_hwfn->ufp_info.pri_type = QED_UFP_PRI_UNKNOWN; 1982 DP_NOTICE(p_hwfn, 1983 "Unknown Host priority control %d port_id 0x%02x\n", 1984 val, MFW_PORT(p_hwfn)); 1985 } 1986 1987 DP_NOTICE(p_hwfn, 1988 "UFP shmem config: mode = %d tc = %d pri_type = %d port_id 0x%02x\n", 1989 p_hwfn->ufp_info.mode, p_hwfn->ufp_info.tc, 1990 p_hwfn->ufp_info.pri_type, MFW_PORT(p_hwfn)); 1991 } 1992 1993 static int 1994 qed_mcp_handle_ufp_event(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1995 { 1996 qed_mcp_read_ufp_config(p_hwfn, p_ptt); 1997 1998 if (p_hwfn->ufp_info.mode == QED_UFP_MODE_VNIC_BW) { 1999 p_hwfn->qm_info.ooo_tc = p_hwfn->ufp_info.tc; 2000 qed_hw_info_set_offload_tc(&p_hwfn->hw_info, 2001 p_hwfn->ufp_info.tc); 2002 2003 qed_qm_reconf(p_hwfn, p_ptt); 2004 } else if (p_hwfn->ufp_info.mode == QED_UFP_MODE_ETS) { 2005 /* Merge UFP TC with the dcbx TC data */ 2006 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2007 QED_DCBX_OPERATIONAL_MIB); 2008 } else { 2009 DP_ERR(p_hwfn, "Invalid sched type, discard the UFP config\n"); 2010 return -EINVAL; 2011 } 2012 2013 /* update storm FW with negotiation results */ 2014 qed_sp_pf_update_ufp(p_hwfn); 2015 2016 /* update stag pcp value */ 2017 qed_sp_pf_update_stag(p_hwfn); 2018 2019 return 0; 2020 } 2021 2022 int qed_mcp_handle_events(struct qed_hwfn *p_hwfn, 2023 struct qed_ptt *p_ptt) 2024 { 2025 struct qed_mcp_info *info = p_hwfn->mcp_info; 2026 int rc = 0; 2027 bool found = false; 2028 u16 i; 2029 2030 DP_VERBOSE(p_hwfn, QED_MSG_SP, "Received message from MFW\n"); 2031 2032 /* Read Messages from MFW */ 2033 qed_mcp_read_mb(p_hwfn, p_ptt); 2034 2035 /* Compare current messages to old ones */ 2036 for (i = 0; i < info->mfw_mb_length; i++) { 2037 if (info->mfw_mb_cur[i] == info->mfw_mb_shadow[i]) 2038 continue; 2039 2040 found = true; 2041 2042 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, 2043 "Msg [%d] - old CMD 0x%02x, new CMD 0x%02x\n", 2044 i, info->mfw_mb_shadow[i], info->mfw_mb_cur[i]); 2045 2046 spin_lock_bh(&p_hwfn->mcp_info->unload_lock); 2047 if (test_bit(QED_MCP_BYPASS_PROC_BIT, 2048 &p_hwfn->mcp_info->mcp_handling_status)) { 2049 spin_unlock_bh(&p_hwfn->mcp_info->unload_lock); 2050 DP_INFO(p_hwfn, 2051 "Msg [%d] is bypassed on unload flow\n", i); 2052 continue; 2053 } 2054 2055 set_bit(QED_MCP_IN_PROCESSING_BIT, 2056 &p_hwfn->mcp_info->mcp_handling_status); 2057 spin_unlock_bh(&p_hwfn->mcp_info->unload_lock); 2058 2059 switch (i) { 2060 case MFW_DRV_MSG_LINK_CHANGE: 2061 qed_mcp_handle_link_change(p_hwfn, p_ptt, false); 2062 break; 2063 case MFW_DRV_MSG_VF_DISABLED: 2064 qed_mcp_handle_vf_flr(p_hwfn, p_ptt); 2065 break; 2066 case MFW_DRV_MSG_LLDP_DATA_UPDATED: 2067 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2068 QED_DCBX_REMOTE_LLDP_MIB); 2069 break; 2070 case MFW_DRV_MSG_DCBX_REMOTE_MIB_UPDATED: 2071 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2072 QED_DCBX_REMOTE_MIB); 2073 break; 2074 case MFW_DRV_MSG_DCBX_OPERATIONAL_MIB_UPDATED: 2075 qed_dcbx_mib_update_event(p_hwfn, p_ptt, 2076 QED_DCBX_OPERATIONAL_MIB); 2077 break; 2078 case MFW_DRV_MSG_OEM_CFG_UPDATE: 2079 qed_mcp_handle_ufp_event(p_hwfn, p_ptt); 2080 break; 2081 case MFW_DRV_MSG_TRANSCEIVER_STATE_CHANGE: 2082 qed_mcp_handle_transceiver_change(p_hwfn, p_ptt); 2083 break; 2084 case MFW_DRV_MSG_ERROR_RECOVERY: 2085 qed_mcp_handle_process_kill(p_hwfn, p_ptt); 2086 break; 2087 case MFW_DRV_MSG_GET_LAN_STATS: 2088 case MFW_DRV_MSG_GET_FCOE_STATS: 2089 case MFW_DRV_MSG_GET_ISCSI_STATS: 2090 case MFW_DRV_MSG_GET_RDMA_STATS: 2091 qed_mcp_send_protocol_stats(p_hwfn, p_ptt, i); 2092 break; 2093 case MFW_DRV_MSG_BW_UPDATE: 2094 qed_mcp_update_bw(p_hwfn, p_ptt); 2095 break; 2096 case MFW_DRV_MSG_S_TAG_UPDATE: 2097 qed_mcp_update_stag(p_hwfn, p_ptt); 2098 break; 2099 case MFW_DRV_MSG_FAILURE_DETECTED: 2100 qed_mcp_handle_fan_failure(p_hwfn, p_ptt); 2101 break; 2102 case MFW_DRV_MSG_CRITICAL_ERROR_OCCURRED: 2103 qed_mcp_handle_critical_error(p_hwfn, p_ptt); 2104 break; 2105 case MFW_DRV_MSG_GET_TLV_REQ: 2106 qed_mfw_tlv_req(p_hwfn); 2107 break; 2108 default: 2109 DP_INFO(p_hwfn, "Unimplemented MFW message %d\n", i); 2110 rc = -EINVAL; 2111 } 2112 2113 clear_bit(QED_MCP_IN_PROCESSING_BIT, 2114 &p_hwfn->mcp_info->mcp_handling_status); 2115 } 2116 2117 /* ACK everything */ 2118 for (i = 0; i < MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length); i++) { 2119 __be32 val = cpu_to_be32(((u32 *)info->mfw_mb_cur)[i]); 2120 2121 /* MFW expect answer in BE, so we force write in that format */ 2122 qed_wr(p_hwfn, p_ptt, 2123 info->mfw_mb_addr + sizeof(u32) + 2124 MFW_DRV_MSG_MAX_DWORDS(info->mfw_mb_length) * 2125 sizeof(u32) + i * sizeof(u32), 2126 (__force u32)val); 2127 } 2128 2129 if (!found) { 2130 DP_NOTICE(p_hwfn, 2131 "Received an MFW message indication but no new message!\n"); 2132 rc = -EINVAL; 2133 } 2134 2135 /* Copy the new mfw messages into the shadow */ 2136 memcpy(info->mfw_mb_shadow, info->mfw_mb_cur, info->mfw_mb_length); 2137 2138 return rc; 2139 } 2140 2141 int qed_mcp_get_mfw_ver(struct qed_hwfn *p_hwfn, 2142 struct qed_ptt *p_ptt, 2143 u32 *p_mfw_ver, u32 *p_running_bundle_id) 2144 { 2145 u32 global_offsize, public_base; 2146 2147 if (IS_VF(p_hwfn->cdev)) { 2148 if (p_hwfn->vf_iov_info) { 2149 struct pfvf_acquire_resp_tlv *p_resp; 2150 2151 p_resp = &p_hwfn->vf_iov_info->acquire_resp; 2152 *p_mfw_ver = p_resp->pfdev_info.mfw_ver; 2153 return 0; 2154 } else { 2155 DP_VERBOSE(p_hwfn, 2156 QED_MSG_IOV, 2157 "VF requested MFW version prior to ACQUIRE\n"); 2158 return -EINVAL; 2159 } 2160 } 2161 2162 public_base = p_hwfn->mcp_info->public_base; 2163 global_offsize = qed_rd(p_hwfn, p_ptt, 2164 SECTION_OFFSIZE_ADDR(public_base, 2165 PUBLIC_GLOBAL)); 2166 *p_mfw_ver = 2167 qed_rd(p_hwfn, p_ptt, 2168 SECTION_ADDR(global_offsize, 2169 0) + offsetof(struct public_global, mfw_ver)); 2170 2171 if (p_running_bundle_id) { 2172 *p_running_bundle_id = qed_rd(p_hwfn, p_ptt, 2173 SECTION_ADDR(global_offsize, 0) + 2174 offsetof(struct public_global, 2175 running_bundle_id)); 2176 } 2177 2178 return 0; 2179 } 2180 2181 int qed_mcp_get_mbi_ver(struct qed_hwfn *p_hwfn, 2182 struct qed_ptt *p_ptt, u32 *p_mbi_ver) 2183 { 2184 u32 nvm_cfg_addr, nvm_cfg1_offset, mbi_ver_addr; 2185 2186 if (IS_VF(p_hwfn->cdev)) 2187 return -EINVAL; 2188 2189 /* Read the address of the nvm_cfg */ 2190 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2191 if (!nvm_cfg_addr) { 2192 DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); 2193 return -EINVAL; 2194 } 2195 2196 /* Read the offset of nvm_cfg1 */ 2197 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2198 2199 mbi_ver_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2200 offsetof(struct nvm_cfg1, glob) + 2201 offsetof(struct nvm_cfg1_glob, mbi_version); 2202 *p_mbi_ver = qed_rd(p_hwfn, p_ptt, 2203 mbi_ver_addr) & 2204 (NVM_CFG1_GLOB_MBI_VERSION_0_MASK | 2205 NVM_CFG1_GLOB_MBI_VERSION_1_MASK | 2206 NVM_CFG1_GLOB_MBI_VERSION_2_MASK); 2207 2208 return 0; 2209 } 2210 2211 int qed_mcp_get_media_type(struct qed_hwfn *p_hwfn, 2212 struct qed_ptt *p_ptt, u32 *p_media_type) 2213 { 2214 *p_media_type = MEDIA_UNSPECIFIED; 2215 2216 if (IS_VF(p_hwfn->cdev)) 2217 return -EINVAL; 2218 2219 if (!qed_mcp_is_init(p_hwfn)) { 2220 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2221 return -EBUSY; 2222 } 2223 2224 if (!p_ptt) { 2225 *p_media_type = MEDIA_UNSPECIFIED; 2226 return -EINVAL; 2227 } 2228 2229 *p_media_type = qed_rd(p_hwfn, p_ptt, 2230 p_hwfn->mcp_info->port_addr + 2231 offsetof(struct public_port, 2232 media_type)); 2233 2234 return 0; 2235 } 2236 2237 int qed_mcp_get_transceiver_data(struct qed_hwfn *p_hwfn, 2238 struct qed_ptt *p_ptt, 2239 u32 *p_transceiver_state, 2240 u32 *p_transceiver_type) 2241 { 2242 u32 transceiver_info; 2243 2244 *p_transceiver_type = ETH_TRANSCEIVER_TYPE_NONE; 2245 *p_transceiver_state = ETH_TRANSCEIVER_STATE_UPDATING; 2246 2247 if (IS_VF(p_hwfn->cdev)) 2248 return -EINVAL; 2249 2250 if (!qed_mcp_is_init(p_hwfn)) { 2251 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2252 return -EBUSY; 2253 } 2254 2255 transceiver_info = qed_rd(p_hwfn, p_ptt, 2256 p_hwfn->mcp_info->port_addr + 2257 offsetof(struct public_port, 2258 transceiver_data)); 2259 2260 *p_transceiver_state = (transceiver_info & 2261 ETH_TRANSCEIVER_STATE_MASK) >> 2262 ETH_TRANSCEIVER_STATE_OFFSET; 2263 2264 if (*p_transceiver_state == ETH_TRANSCEIVER_STATE_PRESENT) 2265 *p_transceiver_type = (transceiver_info & 2266 ETH_TRANSCEIVER_TYPE_MASK) >> 2267 ETH_TRANSCEIVER_TYPE_OFFSET; 2268 else 2269 *p_transceiver_type = ETH_TRANSCEIVER_TYPE_UNKNOWN; 2270 2271 return 0; 2272 } 2273 2274 static bool qed_is_transceiver_ready(u32 transceiver_state, 2275 u32 transceiver_type) 2276 { 2277 if ((transceiver_state & ETH_TRANSCEIVER_STATE_PRESENT) && 2278 ((transceiver_state & ETH_TRANSCEIVER_STATE_UPDATING) == 0x0) && 2279 (transceiver_type != ETH_TRANSCEIVER_TYPE_NONE)) 2280 return true; 2281 2282 return false; 2283 } 2284 2285 int qed_mcp_trans_speed_mask(struct qed_hwfn *p_hwfn, 2286 struct qed_ptt *p_ptt, u32 *p_speed_mask) 2287 { 2288 u32 transceiver_type, transceiver_state; 2289 int ret; 2290 2291 ret = qed_mcp_get_transceiver_data(p_hwfn, p_ptt, &transceiver_state, 2292 &transceiver_type); 2293 if (ret) 2294 return ret; 2295 2296 if (qed_is_transceiver_ready(transceiver_state, transceiver_type) == 2297 false) 2298 return -EINVAL; 2299 2300 switch (transceiver_type) { 2301 case ETH_TRANSCEIVER_TYPE_1G_LX: 2302 case ETH_TRANSCEIVER_TYPE_1G_SX: 2303 case ETH_TRANSCEIVER_TYPE_1G_PCC: 2304 case ETH_TRANSCEIVER_TYPE_1G_ACC: 2305 case ETH_TRANSCEIVER_TYPE_1000BASET: 2306 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2307 break; 2308 case ETH_TRANSCEIVER_TYPE_10G_SR: 2309 case ETH_TRANSCEIVER_TYPE_10G_LR: 2310 case ETH_TRANSCEIVER_TYPE_10G_LRM: 2311 case ETH_TRANSCEIVER_TYPE_10G_ER: 2312 case ETH_TRANSCEIVER_TYPE_10G_PCC: 2313 case ETH_TRANSCEIVER_TYPE_10G_ACC: 2314 case ETH_TRANSCEIVER_TYPE_4x10G: 2315 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2316 break; 2317 case ETH_TRANSCEIVER_TYPE_40G_LR4: 2318 case ETH_TRANSCEIVER_TYPE_40G_SR4: 2319 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_SR: 2320 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_LR: 2321 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2322 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2323 break; 2324 case ETH_TRANSCEIVER_TYPE_100G_AOC: 2325 case ETH_TRANSCEIVER_TYPE_100G_SR4: 2326 case ETH_TRANSCEIVER_TYPE_100G_LR4: 2327 case ETH_TRANSCEIVER_TYPE_100G_ER4: 2328 case ETH_TRANSCEIVER_TYPE_100G_ACC: 2329 *p_speed_mask = 2330 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2331 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G; 2332 break; 2333 case ETH_TRANSCEIVER_TYPE_25G_SR: 2334 case ETH_TRANSCEIVER_TYPE_25G_LR: 2335 case ETH_TRANSCEIVER_TYPE_25G_AOC: 2336 case ETH_TRANSCEIVER_TYPE_25G_ACC_S: 2337 case ETH_TRANSCEIVER_TYPE_25G_ACC_M: 2338 case ETH_TRANSCEIVER_TYPE_25G_ACC_L: 2339 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G; 2340 break; 2341 case ETH_TRANSCEIVER_TYPE_25G_CA_N: 2342 case ETH_TRANSCEIVER_TYPE_25G_CA_S: 2343 case ETH_TRANSCEIVER_TYPE_25G_CA_L: 2344 case ETH_TRANSCEIVER_TYPE_4x25G_CR: 2345 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2346 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2347 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2348 break; 2349 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_SR: 2350 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_25G_LR: 2351 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2352 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2353 break; 2354 case ETH_TRANSCEIVER_TYPE_40G_CR4: 2355 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_10G_40G_CR: 2356 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2357 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2358 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2359 break; 2360 case ETH_TRANSCEIVER_TYPE_100G_CR4: 2361 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_CR: 2362 *p_speed_mask = 2363 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2364 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G | 2365 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2366 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2367 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_20G | 2368 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2369 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2370 break; 2371 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_SR: 2372 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_LR: 2373 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_40G_100G_AOC: 2374 *p_speed_mask = 2375 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G | 2376 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G | 2377 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G | 2378 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G; 2379 break; 2380 case ETH_TRANSCEIVER_TYPE_XLPPI: 2381 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G; 2382 break; 2383 case ETH_TRANSCEIVER_TYPE_10G_BASET: 2384 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_SR: 2385 case ETH_TRANSCEIVER_TYPE_MULTI_RATE_1G_10G_LR: 2386 *p_speed_mask = NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G | 2387 NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G; 2388 break; 2389 default: 2390 DP_INFO(p_hwfn, "Unknown transceiver type 0x%x\n", 2391 transceiver_type); 2392 *p_speed_mask = 0xff; 2393 break; 2394 } 2395 2396 return 0; 2397 } 2398 2399 int qed_mcp_get_board_config(struct qed_hwfn *p_hwfn, 2400 struct qed_ptt *p_ptt, u32 *p_board_config) 2401 { 2402 u32 nvm_cfg_addr, nvm_cfg1_offset, port_cfg_addr; 2403 2404 if (IS_VF(p_hwfn->cdev)) 2405 return -EINVAL; 2406 2407 if (!qed_mcp_is_init(p_hwfn)) { 2408 DP_NOTICE(p_hwfn, "MFW is not initialized!\n"); 2409 return -EBUSY; 2410 } 2411 if (!p_ptt) { 2412 *p_board_config = NVM_CFG1_PORT_PORT_TYPE_UNDEFINED; 2413 return -EINVAL; 2414 } 2415 2416 nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); 2417 nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); 2418 port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + 2419 offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); 2420 *p_board_config = qed_rd(p_hwfn, p_ptt, 2421 port_cfg_addr + 2422 offsetof(struct nvm_cfg1_port, 2423 board_cfg)); 2424 2425 return 0; 2426 } 2427 2428 /* Old MFW has a global configuration for all PFs regarding RDMA support */ 2429 static void 2430 qed_mcp_get_shmem_proto_legacy(struct qed_hwfn *p_hwfn, 2431 enum qed_pci_personality *p_proto) 2432 { 2433 /* There wasn't ever a legacy MFW that published iwarp. 2434 * So at this point, this is either plain l2 or RoCE. 2435 */ 2436 if (test_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities)) 2437 *p_proto = QED_PCI_ETH_ROCE; 2438 else 2439 *p_proto = QED_PCI_ETH; 2440 2441 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 2442 "According to Legacy capabilities, L2 personality is %08x\n", 2443 (u32)*p_proto); 2444 } 2445 2446 static int 2447 qed_mcp_get_shmem_proto_mfw(struct qed_hwfn *p_hwfn, 2448 struct qed_ptt *p_ptt, 2449 enum qed_pci_personality *p_proto) 2450 { 2451 u32 resp = 0, param = 0; 2452 int rc; 2453 2454 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2455 DRV_MSG_CODE_GET_PF_RDMA_PROTOCOL, 0, &resp, ¶m); 2456 if (rc) 2457 return rc; 2458 if (resp != FW_MSG_CODE_OK) { 2459 DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, 2460 "MFW lacks support for command; Returns %08x\n", 2461 resp); 2462 return -EINVAL; 2463 } 2464 2465 switch (param) { 2466 case FW_MB_PARAM_GET_PF_RDMA_NONE: 2467 *p_proto = QED_PCI_ETH; 2468 break; 2469 case FW_MB_PARAM_GET_PF_RDMA_ROCE: 2470 *p_proto = QED_PCI_ETH_ROCE; 2471 break; 2472 case FW_MB_PARAM_GET_PF_RDMA_IWARP: 2473 *p_proto = QED_PCI_ETH_IWARP; 2474 break; 2475 case FW_MB_PARAM_GET_PF_RDMA_BOTH: 2476 *p_proto = QED_PCI_ETH_RDMA; 2477 break; 2478 default: 2479 DP_NOTICE(p_hwfn, 2480 "MFW answers GET_PF_RDMA_PROTOCOL but param is %08x\n", 2481 param); 2482 return -EINVAL; 2483 } 2484 2485 DP_VERBOSE(p_hwfn, 2486 NETIF_MSG_IFUP, 2487 "According to capabilities, L2 personality is %08x [resp %08x param %08x]\n", 2488 (u32)*p_proto, resp, param); 2489 return 0; 2490 } 2491 2492 static int 2493 qed_mcp_get_shmem_proto(struct qed_hwfn *p_hwfn, 2494 struct public_func *p_info, 2495 struct qed_ptt *p_ptt, 2496 enum qed_pci_personality *p_proto) 2497 { 2498 int rc = 0; 2499 2500 switch (p_info->config & FUNC_MF_CFG_PROTOCOL_MASK) { 2501 case FUNC_MF_CFG_PROTOCOL_ETHERNET: 2502 if (!IS_ENABLED(CONFIG_QED_RDMA)) 2503 *p_proto = QED_PCI_ETH; 2504 else if (qed_mcp_get_shmem_proto_mfw(p_hwfn, p_ptt, p_proto)) 2505 qed_mcp_get_shmem_proto_legacy(p_hwfn, p_proto); 2506 break; 2507 case FUNC_MF_CFG_PROTOCOL_ISCSI: 2508 *p_proto = QED_PCI_ISCSI; 2509 break; 2510 case FUNC_MF_CFG_PROTOCOL_FCOE: 2511 *p_proto = QED_PCI_FCOE; 2512 break; 2513 case FUNC_MF_CFG_PROTOCOL_ROCE: 2514 DP_NOTICE(p_hwfn, "RoCE personality is not a valid value!\n"); 2515 fallthrough; 2516 default: 2517 rc = -EINVAL; 2518 } 2519 2520 return rc; 2521 } 2522 2523 int qed_mcp_fill_shmem_func_info(struct qed_hwfn *p_hwfn, 2524 struct qed_ptt *p_ptt) 2525 { 2526 struct qed_mcp_function_info *info; 2527 struct public_func shmem_info; 2528 2529 qed_mcp_get_shmem_func(p_hwfn, p_ptt, &shmem_info, MCP_PF_ID(p_hwfn)); 2530 info = &p_hwfn->mcp_info->func_info; 2531 2532 info->pause_on_host = (shmem_info.config & 2533 FUNC_MF_CFG_PAUSE_ON_HOST_RING) ? 1 : 0; 2534 2535 if (qed_mcp_get_shmem_proto(p_hwfn, &shmem_info, p_ptt, 2536 &info->protocol)) { 2537 DP_ERR(p_hwfn, "Unknown personality %08x\n", 2538 (u32)(shmem_info.config & FUNC_MF_CFG_PROTOCOL_MASK)); 2539 return -EINVAL; 2540 } 2541 2542 qed_read_pf_bandwidth(p_hwfn, &shmem_info); 2543 2544 if (shmem_info.mac_upper || shmem_info.mac_lower) { 2545 info->mac[0] = (u8)(shmem_info.mac_upper >> 8); 2546 info->mac[1] = (u8)(shmem_info.mac_upper); 2547 info->mac[2] = (u8)(shmem_info.mac_lower >> 24); 2548 info->mac[3] = (u8)(shmem_info.mac_lower >> 16); 2549 info->mac[4] = (u8)(shmem_info.mac_lower >> 8); 2550 info->mac[5] = (u8)(shmem_info.mac_lower); 2551 2552 /* Store primary MAC for later possible WoL */ 2553 memcpy(&p_hwfn->cdev->wol_mac, info->mac, ETH_ALEN); 2554 } else { 2555 DP_NOTICE(p_hwfn, "MAC is 0 in shmem\n"); 2556 } 2557 2558 info->wwn_port = (u64)shmem_info.fcoe_wwn_port_name_lower | 2559 (((u64)shmem_info.fcoe_wwn_port_name_upper) << 32); 2560 info->wwn_node = (u64)shmem_info.fcoe_wwn_node_name_lower | 2561 (((u64)shmem_info.fcoe_wwn_node_name_upper) << 32); 2562 2563 info->ovlan = (u16)(shmem_info.ovlan_stag & FUNC_MF_CFG_OV_STAG_MASK); 2564 2565 info->mtu = (u16)shmem_info.mtu_size; 2566 2567 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_NONE; 2568 p_hwfn->cdev->wol_config = (u8)QED_OV_WOL_DEFAULT; 2569 if (qed_mcp_is_init(p_hwfn)) { 2570 u32 resp = 0, param = 0; 2571 int rc; 2572 2573 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2574 DRV_MSG_CODE_OS_WOL, 0, &resp, ¶m); 2575 if (rc) 2576 return rc; 2577 if (resp == FW_MSG_CODE_OS_WOL_SUPPORTED) 2578 p_hwfn->hw_info.b_wol_support = QED_WOL_SUPPORT_PME; 2579 } 2580 2581 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_IFUP), 2582 "Read configuration from shmem: pause_on_host %02x protocol %02x BW [%02x - %02x] MAC %pM wwn port %llx node %llx ovlan %04x wol %02x\n", 2583 info->pause_on_host, info->protocol, 2584 info->bandwidth_min, info->bandwidth_max, 2585 info->mac, 2586 info->wwn_port, info->wwn_node, 2587 info->ovlan, (u8)p_hwfn->hw_info.b_wol_support); 2588 2589 return 0; 2590 } 2591 2592 struct qed_mcp_link_params 2593 *qed_mcp_get_link_params(struct qed_hwfn *p_hwfn) 2594 { 2595 if (!p_hwfn || !p_hwfn->mcp_info) 2596 return NULL; 2597 return &p_hwfn->mcp_info->link_input; 2598 } 2599 2600 struct qed_mcp_link_state 2601 *qed_mcp_get_link_state(struct qed_hwfn *p_hwfn) 2602 { 2603 if (!p_hwfn || !p_hwfn->mcp_info) 2604 return NULL; 2605 return &p_hwfn->mcp_info->link_output; 2606 } 2607 2608 struct qed_mcp_link_capabilities 2609 *qed_mcp_get_link_capabilities(struct qed_hwfn *p_hwfn) 2610 { 2611 if (!p_hwfn || !p_hwfn->mcp_info) 2612 return NULL; 2613 return &p_hwfn->mcp_info->link_capabilities; 2614 } 2615 2616 int qed_mcp_drain(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2617 { 2618 u32 resp = 0, param = 0; 2619 int rc; 2620 2621 rc = qed_mcp_cmd(p_hwfn, p_ptt, 2622 DRV_MSG_CODE_NIG_DRAIN, 1000, &resp, ¶m); 2623 2624 /* Wait for the drain to complete before returning */ 2625 msleep(1020); 2626 2627 return rc; 2628 } 2629 2630 int qed_mcp_get_flash_size(struct qed_hwfn *p_hwfn, 2631 struct qed_ptt *p_ptt, u32 *p_flash_size) 2632 { 2633 u32 flash_size; 2634 2635 if (IS_VF(p_hwfn->cdev)) 2636 return -EINVAL; 2637 2638 flash_size = qed_rd(p_hwfn, p_ptt, MCP_REG_NVM_CFG4); 2639 flash_size = (flash_size & MCP_REG_NVM_CFG4_FLASH_SIZE) >> 2640 MCP_REG_NVM_CFG4_FLASH_SIZE_SHIFT; 2641 flash_size = (1 << (flash_size + MCP_BYTES_PER_MBIT_SHIFT)); 2642 2643 *p_flash_size = flash_size; 2644 2645 return 0; 2646 } 2647 2648 int qed_start_recovery_process(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2649 { 2650 struct qed_dev *cdev = p_hwfn->cdev; 2651 2652 if (cdev->recov_in_prog) { 2653 DP_NOTICE(p_hwfn, 2654 "Avoid triggering a recovery since such a process is already in progress\n"); 2655 return -EAGAIN; 2656 } 2657 2658 DP_NOTICE(p_hwfn, "Triggering a recovery process\n"); 2659 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_GENERAL_ATTN_35, 0x1); 2660 2661 return 0; 2662 } 2663 2664 #define QED_RECOVERY_PROLOG_SLEEP_MS 100 2665 2666 int qed_recovery_prolog(struct qed_dev *cdev) 2667 { 2668 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 2669 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; 2670 int rc; 2671 2672 /* Allow ongoing PCIe transactions to complete */ 2673 msleep(QED_RECOVERY_PROLOG_SLEEP_MS); 2674 2675 /* Clear the PF's internal FID_enable in the PXP */ 2676 rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false); 2677 if (rc) 2678 DP_NOTICE(p_hwfn, 2679 "qed_pglueb_set_pfid_enable() failed. rc = %d.\n", 2680 rc); 2681 2682 return rc; 2683 } 2684 2685 static int 2686 qed_mcp_config_vf_msix_bb(struct qed_hwfn *p_hwfn, 2687 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2688 { 2689 u32 resp = 0, param = 0, rc_param = 0; 2690 int rc; 2691 2692 /* Only Leader can configure MSIX, and need to take CMT into account */ 2693 if (!IS_LEAD_HWFN(p_hwfn)) 2694 return 0; 2695 num *= p_hwfn->cdev->num_hwfns; 2696 2697 param |= (vf_id << DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_SHIFT) & 2698 DRV_MB_PARAM_CFG_VF_MSIX_VF_ID_MASK; 2699 param |= (num << DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_SHIFT) & 2700 DRV_MB_PARAM_CFG_VF_MSIX_SB_NUM_MASK; 2701 2702 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_VF_MSIX, param, 2703 &resp, &rc_param); 2704 2705 if (resp != FW_MSG_CODE_DRV_CFG_VF_MSIX_DONE) { 2706 DP_NOTICE(p_hwfn, "VF[%d]: MFW failed to set MSI-X\n", vf_id); 2707 rc = -EINVAL; 2708 } else { 2709 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2710 "Requested 0x%02x MSI-x interrupts from VF 0x%02x\n", 2711 num, vf_id); 2712 } 2713 2714 return rc; 2715 } 2716 2717 static int 2718 qed_mcp_config_vf_msix_ah(struct qed_hwfn *p_hwfn, 2719 struct qed_ptt *p_ptt, u8 num) 2720 { 2721 u32 resp = 0, param = num, rc_param = 0; 2722 int rc; 2723 2724 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_CFG_PF_VFS_MSIX, 2725 param, &resp, &rc_param); 2726 2727 if (resp != FW_MSG_CODE_DRV_CFG_PF_VFS_MSIX_DONE) { 2728 DP_NOTICE(p_hwfn, "MFW failed to set MSI-X for VFs\n"); 2729 rc = -EINVAL; 2730 } else { 2731 DP_VERBOSE(p_hwfn, QED_MSG_IOV, 2732 "Requested 0x%02x MSI-x interrupts for VFs\n", num); 2733 } 2734 2735 return rc; 2736 } 2737 2738 int qed_mcp_config_vf_msix(struct qed_hwfn *p_hwfn, 2739 struct qed_ptt *p_ptt, u8 vf_id, u8 num) 2740 { 2741 if (QED_IS_BB(p_hwfn->cdev)) 2742 return qed_mcp_config_vf_msix_bb(p_hwfn, p_ptt, vf_id, num); 2743 else 2744 return qed_mcp_config_vf_msix_ah(p_hwfn, p_ptt, num); 2745 } 2746 2747 int 2748 qed_mcp_send_drv_version(struct qed_hwfn *p_hwfn, 2749 struct qed_ptt *p_ptt, 2750 struct qed_mcp_drv_version *p_ver) 2751 { 2752 struct qed_mcp_mb_params mb_params; 2753 struct drv_version_stc drv_version; 2754 __be32 val; 2755 u32 i; 2756 int rc; 2757 2758 memset(&drv_version, 0, sizeof(drv_version)); 2759 drv_version.version = p_ver->version; 2760 for (i = 0; i < (MCP_DRV_VER_STR_SIZE - 4) / sizeof(u32); i++) { 2761 val = cpu_to_be32(*((u32 *)&p_ver->name[i * sizeof(u32)])); 2762 *(__be32 *)&drv_version.name[i * sizeof(u32)] = val; 2763 } 2764 2765 memset(&mb_params, 0, sizeof(mb_params)); 2766 mb_params.cmd = DRV_MSG_CODE_SET_VERSION; 2767 mb_params.p_data_src = &drv_version; 2768 mb_params.data_src_size = sizeof(drv_version); 2769 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2770 if (rc) 2771 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2772 2773 return rc; 2774 } 2775 2776 /* A maximal 100 msec waiting time for the MCP to halt */ 2777 #define QED_MCP_HALT_SLEEP_MS 10 2778 #define QED_MCP_HALT_MAX_RETRIES 10 2779 2780 int qed_mcp_halt(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2781 { 2782 u32 resp = 0, param = 0, cpu_state, cnt = 0; 2783 int rc; 2784 2785 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MCP_HALT, 0, &resp, 2786 ¶m); 2787 if (rc) { 2788 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2789 return rc; 2790 } 2791 2792 do { 2793 msleep(QED_MCP_HALT_SLEEP_MS); 2794 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2795 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) 2796 break; 2797 } while (++cnt < QED_MCP_HALT_MAX_RETRIES); 2798 2799 if (cnt == QED_MCP_HALT_MAX_RETRIES) { 2800 DP_NOTICE(p_hwfn, 2801 "Failed to halt the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2802 qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE), cpu_state); 2803 return -EBUSY; 2804 } 2805 2806 qed_mcp_cmd_set_blocking(p_hwfn, true); 2807 2808 return 0; 2809 } 2810 2811 #define QED_MCP_RESUME_SLEEP_MS 10 2812 2813 int qed_mcp_resume(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2814 { 2815 u32 cpu_mode, cpu_state; 2816 2817 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_STATE, 0xffffffff); 2818 2819 cpu_mode = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_MODE); 2820 cpu_mode &= ~MCP_REG_CPU_MODE_SOFT_HALT; 2821 qed_wr(p_hwfn, p_ptt, MCP_REG_CPU_MODE, cpu_mode); 2822 msleep(QED_MCP_RESUME_SLEEP_MS); 2823 cpu_state = qed_rd(p_hwfn, p_ptt, MCP_REG_CPU_STATE); 2824 2825 if (cpu_state & MCP_REG_CPU_STATE_SOFT_HALTED) { 2826 DP_NOTICE(p_hwfn, 2827 "Failed to resume the MCP [CPU_MODE = 0x%08x, CPU_STATE = 0x%08x]\n", 2828 cpu_mode, cpu_state); 2829 return -EBUSY; 2830 } 2831 2832 qed_mcp_cmd_set_blocking(p_hwfn, false); 2833 2834 return 0; 2835 } 2836 2837 int qed_mcp_ov_update_current_config(struct qed_hwfn *p_hwfn, 2838 struct qed_ptt *p_ptt, 2839 enum qed_ov_client client) 2840 { 2841 u32 resp = 0, param = 0; 2842 u32 drv_mb_param; 2843 int rc; 2844 2845 switch (client) { 2846 case QED_OV_CLIENT_DRV: 2847 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OS; 2848 break; 2849 case QED_OV_CLIENT_USER: 2850 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_OTHER; 2851 break; 2852 case QED_OV_CLIENT_VENDOR_SPEC: 2853 drv_mb_param = DRV_MB_PARAM_OV_CURR_CFG_VENDOR_SPEC; 2854 break; 2855 default: 2856 DP_NOTICE(p_hwfn, "Invalid client type %d\n", client); 2857 return -EINVAL; 2858 } 2859 2860 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_CURR_CFG, 2861 drv_mb_param, &resp, ¶m); 2862 if (rc) 2863 DP_ERR(p_hwfn, "MCP response failure, aborting\n"); 2864 2865 return rc; 2866 } 2867 2868 int qed_mcp_ov_update_driver_state(struct qed_hwfn *p_hwfn, 2869 struct qed_ptt *p_ptt, 2870 enum qed_ov_driver_state drv_state) 2871 { 2872 u32 resp = 0, param = 0; 2873 u32 drv_mb_param; 2874 int rc; 2875 2876 switch (drv_state) { 2877 case QED_OV_DRIVER_STATE_NOT_LOADED: 2878 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_NOT_LOADED; 2879 break; 2880 case QED_OV_DRIVER_STATE_DISABLED: 2881 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_DISABLED; 2882 break; 2883 case QED_OV_DRIVER_STATE_ACTIVE: 2884 drv_mb_param = DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE_ACTIVE; 2885 break; 2886 default: 2887 DP_NOTICE(p_hwfn, "Invalid driver state %d\n", drv_state); 2888 return -EINVAL; 2889 } 2890 2891 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_DRIVER_STATE, 2892 drv_mb_param, &resp, ¶m); 2893 if (rc) 2894 DP_ERR(p_hwfn, "Failed to send driver state\n"); 2895 2896 return rc; 2897 } 2898 2899 int qed_mcp_ov_update_mtu(struct qed_hwfn *p_hwfn, 2900 struct qed_ptt *p_ptt, u16 mtu) 2901 { 2902 u32 resp = 0, param = 0; 2903 u32 drv_mb_param; 2904 int rc; 2905 2906 drv_mb_param = (u32)mtu << DRV_MB_PARAM_OV_MTU_SIZE_SHIFT; 2907 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_MTU, 2908 drv_mb_param, &resp, ¶m); 2909 if (rc) 2910 DP_ERR(p_hwfn, "Failed to send mtu value, rc = %d\n", rc); 2911 2912 return rc; 2913 } 2914 2915 int qed_mcp_ov_update_mac(struct qed_hwfn *p_hwfn, 2916 struct qed_ptt *p_ptt, const u8 *mac) 2917 { 2918 struct qed_mcp_mb_params mb_params; 2919 u32 mfw_mac[2]; 2920 int rc; 2921 2922 memset(&mb_params, 0, sizeof(mb_params)); 2923 mb_params.cmd = DRV_MSG_CODE_SET_VMAC; 2924 mb_params.param = DRV_MSG_CODE_VMAC_TYPE_MAC << 2925 DRV_MSG_CODE_VMAC_TYPE_SHIFT; 2926 mb_params.param |= MCP_PF_ID(p_hwfn); 2927 2928 /* MCP is BE, and on LE platforms PCI would swap access to SHMEM 2929 * in 32-bit granularity. 2930 * So the MAC has to be set in native order [and not byte order], 2931 * otherwise it would be read incorrectly by MFW after swap. 2932 */ 2933 mfw_mac[0] = mac[0] << 24 | mac[1] << 16 | mac[2] << 8 | mac[3]; 2934 mfw_mac[1] = mac[4] << 24 | mac[5] << 16; 2935 2936 mb_params.p_data_src = (u8 *)mfw_mac; 2937 mb_params.data_src_size = 8; 2938 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 2939 if (rc) 2940 DP_ERR(p_hwfn, "Failed to send mac address, rc = %d\n", rc); 2941 2942 /* Store primary MAC for later possible WoL */ 2943 memcpy(p_hwfn->cdev->wol_mac, mac, ETH_ALEN); 2944 2945 return rc; 2946 } 2947 2948 int qed_mcp_ov_update_wol(struct qed_hwfn *p_hwfn, 2949 struct qed_ptt *p_ptt, enum qed_ov_wol wol) 2950 { 2951 u32 resp = 0, param = 0; 2952 u32 drv_mb_param; 2953 int rc; 2954 2955 if (p_hwfn->hw_info.b_wol_support == QED_WOL_SUPPORT_NONE) { 2956 DP_VERBOSE(p_hwfn, QED_MSG_SP, 2957 "Can't change WoL configuration when WoL isn't supported\n"); 2958 return -EINVAL; 2959 } 2960 2961 switch (wol) { 2962 case QED_OV_WOL_DEFAULT: 2963 drv_mb_param = DRV_MB_PARAM_WOL_DEFAULT; 2964 break; 2965 case QED_OV_WOL_DISABLED: 2966 drv_mb_param = DRV_MB_PARAM_WOL_DISABLED; 2967 break; 2968 case QED_OV_WOL_ENABLED: 2969 drv_mb_param = DRV_MB_PARAM_WOL_ENABLED; 2970 break; 2971 default: 2972 DP_ERR(p_hwfn, "Invalid wol state %d\n", wol); 2973 return -EINVAL; 2974 } 2975 2976 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_WOL, 2977 drv_mb_param, &resp, ¶m); 2978 if (rc) 2979 DP_ERR(p_hwfn, "Failed to send wol mode, rc = %d\n", rc); 2980 2981 /* Store the WoL update for a future unload */ 2982 p_hwfn->cdev->wol_config = (u8)wol; 2983 2984 return rc; 2985 } 2986 2987 int qed_mcp_ov_update_eswitch(struct qed_hwfn *p_hwfn, 2988 struct qed_ptt *p_ptt, 2989 enum qed_ov_eswitch eswitch) 2990 { 2991 u32 resp = 0, param = 0; 2992 u32 drv_mb_param; 2993 int rc; 2994 2995 switch (eswitch) { 2996 case QED_OV_ESWITCH_NONE: 2997 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_NONE; 2998 break; 2999 case QED_OV_ESWITCH_VEB: 3000 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEB; 3001 break; 3002 case QED_OV_ESWITCH_VEPA: 3003 drv_mb_param = DRV_MB_PARAM_ESWITCH_MODE_VEPA; 3004 break; 3005 default: 3006 DP_ERR(p_hwfn, "Invalid eswitch mode %d\n", eswitch); 3007 return -EINVAL; 3008 } 3009 3010 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_OV_UPDATE_ESWITCH_MODE, 3011 drv_mb_param, &resp, ¶m); 3012 if (rc) 3013 DP_ERR(p_hwfn, "Failed to send eswitch mode, rc = %d\n", rc); 3014 3015 return rc; 3016 } 3017 3018 int qed_mcp_set_led(struct qed_hwfn *p_hwfn, 3019 struct qed_ptt *p_ptt, enum qed_led_mode mode) 3020 { 3021 u32 resp = 0, param = 0, drv_mb_param; 3022 int rc; 3023 3024 switch (mode) { 3025 case QED_LED_MODE_ON: 3026 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_ON; 3027 break; 3028 case QED_LED_MODE_OFF: 3029 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OFF; 3030 break; 3031 case QED_LED_MODE_RESTORE: 3032 drv_mb_param = DRV_MB_PARAM_SET_LED_MODE_OPER; 3033 break; 3034 default: 3035 DP_NOTICE(p_hwfn, "Invalid LED mode %d\n", mode); 3036 return -EINVAL; 3037 } 3038 3039 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_SET_LED_MODE, 3040 drv_mb_param, &resp, ¶m); 3041 3042 return rc; 3043 } 3044 3045 int qed_mcp_mask_parities(struct qed_hwfn *p_hwfn, 3046 struct qed_ptt *p_ptt, u32 mask_parities) 3047 { 3048 u32 resp = 0, param = 0; 3049 int rc; 3050 3051 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_MASK_PARITIES, 3052 mask_parities, &resp, ¶m); 3053 3054 if (rc) { 3055 DP_ERR(p_hwfn, 3056 "MCP response failure for mask parities, aborting\n"); 3057 } else if (resp != FW_MSG_CODE_OK) { 3058 DP_ERR(p_hwfn, 3059 "MCP did not acknowledge mask parity request. Old MFW?\n"); 3060 rc = -EINVAL; 3061 } 3062 3063 return rc; 3064 } 3065 3066 int qed_mcp_nvm_read(struct qed_dev *cdev, u32 addr, u8 *p_buf, u32 len) 3067 { 3068 u32 bytes_left = len, offset = 0, bytes_to_copy, read_len = 0; 3069 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3070 u32 resp = 0, resp_param = 0; 3071 struct qed_ptt *p_ptt; 3072 int rc = 0; 3073 3074 p_ptt = qed_ptt_acquire(p_hwfn); 3075 if (!p_ptt) 3076 return -EBUSY; 3077 3078 while (bytes_left > 0) { 3079 bytes_to_copy = min_t(u32, bytes_left, MCP_DRV_NVM_BUF_LEN); 3080 3081 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3082 DRV_MSG_CODE_NVM_READ_NVRAM, 3083 addr + offset + 3084 (bytes_to_copy << 3085 DRV_MB_PARAM_NVM_LEN_OFFSET), 3086 &resp, &resp_param, 3087 &read_len, 3088 (u32 *)(p_buf + offset), false); 3089 3090 if (rc || (resp != FW_MSG_CODE_NVM_OK)) { 3091 DP_NOTICE(cdev, "MCP command rc = %d\n", rc); 3092 break; 3093 } 3094 3095 /* This can be a lengthy process, and it's possible scheduler 3096 * isn't preemptible. Sleep a bit to prevent CPU hogging. 3097 */ 3098 if (bytes_left % 0x1000 < 3099 (bytes_left - read_len) % 0x1000) 3100 usleep_range(1000, 2000); 3101 3102 offset += read_len; 3103 bytes_left -= read_len; 3104 } 3105 3106 cdev->mcp_nvm_resp = resp; 3107 qed_ptt_release(p_hwfn, p_ptt); 3108 3109 return rc; 3110 } 3111 3112 int qed_mcp_nvm_resp(struct qed_dev *cdev, u8 *p_buf) 3113 { 3114 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3115 struct qed_ptt *p_ptt; 3116 3117 p_ptt = qed_ptt_acquire(p_hwfn); 3118 if (!p_ptt) 3119 return -EBUSY; 3120 3121 memcpy(p_buf, &cdev->mcp_nvm_resp, sizeof(cdev->mcp_nvm_resp)); 3122 qed_ptt_release(p_hwfn, p_ptt); 3123 3124 return 0; 3125 } 3126 3127 int qed_mcp_nvm_write(struct qed_dev *cdev, 3128 u32 cmd, u32 addr, u8 *p_buf, u32 len) 3129 { 3130 u32 buf_idx = 0, buf_size, nvm_cmd, nvm_offset, resp = 0, param; 3131 struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); 3132 struct qed_ptt *p_ptt; 3133 int rc = -EINVAL; 3134 3135 p_ptt = qed_ptt_acquire(p_hwfn); 3136 if (!p_ptt) 3137 return -EBUSY; 3138 3139 switch (cmd) { 3140 case QED_PUT_FILE_BEGIN: 3141 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_BEGIN; 3142 break; 3143 case QED_PUT_FILE_DATA: 3144 nvm_cmd = DRV_MSG_CODE_NVM_PUT_FILE_DATA; 3145 break; 3146 case QED_NVM_WRITE_NVRAM: 3147 nvm_cmd = DRV_MSG_CODE_NVM_WRITE_NVRAM; 3148 break; 3149 default: 3150 DP_NOTICE(p_hwfn, "Invalid nvm write command 0x%x\n", cmd); 3151 rc = -EINVAL; 3152 goto out; 3153 } 3154 3155 buf_size = min_t(u32, (len - buf_idx), MCP_DRV_NVM_BUF_LEN); 3156 while (buf_idx < len) { 3157 if (cmd == QED_PUT_FILE_BEGIN) 3158 nvm_offset = addr; 3159 else 3160 nvm_offset = ((buf_size << 3161 DRV_MB_PARAM_NVM_LEN_OFFSET) | addr) + 3162 buf_idx; 3163 rc = qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, nvm_cmd, nvm_offset, 3164 &resp, ¶m, buf_size, 3165 (u32 *)&p_buf[buf_idx]); 3166 if (rc) { 3167 DP_NOTICE(cdev, "nvm write failed, rc = %d\n", rc); 3168 resp = FW_MSG_CODE_ERROR; 3169 break; 3170 } 3171 3172 if (resp != FW_MSG_CODE_OK && 3173 resp != FW_MSG_CODE_NVM_OK && 3174 resp != FW_MSG_CODE_NVM_PUT_FILE_FINISH_OK) { 3175 DP_NOTICE(cdev, 3176 "nvm write failed, resp = 0x%08x\n", resp); 3177 rc = -EINVAL; 3178 break; 3179 } 3180 3181 /* This can be a lengthy process, and it's possible scheduler 3182 * isn't pre-emptable. Sleep a bit to prevent CPU hogging. 3183 */ 3184 if (buf_idx % 0x1000 > (buf_idx + buf_size) % 0x1000) 3185 usleep_range(1000, 2000); 3186 3187 /* For MBI upgrade, MFW response includes the next buffer offset 3188 * to be delivered to MFW. 3189 */ 3190 if (param && cmd == QED_PUT_FILE_DATA) { 3191 buf_idx = 3192 QED_MFW_GET_FIELD(param, 3193 FW_MB_PARAM_NVM_PUT_FILE_REQ_OFFSET); 3194 buf_size = 3195 QED_MFW_GET_FIELD(param, 3196 FW_MB_PARAM_NVM_PUT_FILE_REQ_SIZE); 3197 } else { 3198 buf_idx += buf_size; 3199 buf_size = min_t(u32, (len - buf_idx), 3200 MCP_DRV_NVM_BUF_LEN); 3201 } 3202 } 3203 3204 cdev->mcp_nvm_resp = resp; 3205 out: 3206 qed_ptt_release(p_hwfn, p_ptt); 3207 3208 return rc; 3209 } 3210 3211 int qed_mcp_phy_sfp_read(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 3212 u32 port, u32 addr, u32 offset, u32 len, u8 *p_buf) 3213 { 3214 u32 bytes_left, bytes_to_copy, buf_size, nvm_offset = 0; 3215 u32 resp, param; 3216 int rc; 3217 3218 nvm_offset |= (port << DRV_MB_PARAM_TRANSCEIVER_PORT_OFFSET) & 3219 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK; 3220 nvm_offset |= (addr << DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_OFFSET) & 3221 DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK; 3222 3223 addr = offset; 3224 offset = 0; 3225 bytes_left = len; 3226 while (bytes_left > 0) { 3227 bytes_to_copy = min_t(u32, bytes_left, 3228 MAX_I2C_TRANSACTION_SIZE); 3229 nvm_offset &= (DRV_MB_PARAM_TRANSCEIVER_I2C_ADDRESS_MASK | 3230 DRV_MB_PARAM_TRANSCEIVER_PORT_MASK); 3231 nvm_offset |= ((addr + offset) << 3232 DRV_MB_PARAM_TRANSCEIVER_OFFSET_OFFSET) & 3233 DRV_MB_PARAM_TRANSCEIVER_OFFSET_MASK; 3234 nvm_offset |= (bytes_to_copy << 3235 DRV_MB_PARAM_TRANSCEIVER_SIZE_OFFSET) & 3236 DRV_MB_PARAM_TRANSCEIVER_SIZE_MASK; 3237 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3238 DRV_MSG_CODE_TRANSCEIVER_READ, 3239 nvm_offset, &resp, ¶m, &buf_size, 3240 (u32 *)(p_buf + offset), true); 3241 if (rc) { 3242 DP_NOTICE(p_hwfn, 3243 "Failed to send a transceiver read command to the MFW. rc = %d.\n", 3244 rc); 3245 return rc; 3246 } 3247 3248 if (resp == FW_MSG_CODE_TRANSCEIVER_NOT_PRESENT) 3249 return -ENODEV; 3250 else if (resp != FW_MSG_CODE_TRANSCEIVER_DIAG_OK) 3251 return -EINVAL; 3252 3253 offset += buf_size; 3254 bytes_left -= buf_size; 3255 } 3256 3257 return 0; 3258 } 3259 3260 int qed_mcp_bist_register_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3261 { 3262 u32 drv_mb_param = 0, rsp, param; 3263 int rc = 0; 3264 3265 drv_mb_param = (DRV_MB_PARAM_BIST_REGISTER_TEST << 3266 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3267 3268 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3269 drv_mb_param, &rsp, ¶m); 3270 3271 if (rc) 3272 return rc; 3273 3274 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3275 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 3276 rc = -EAGAIN; 3277 3278 return rc; 3279 } 3280 3281 int qed_mcp_bist_clock_test(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3282 { 3283 u32 drv_mb_param, rsp, param; 3284 int rc = 0; 3285 3286 drv_mb_param = (DRV_MB_PARAM_BIST_CLOCK_TEST << 3287 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3288 3289 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3290 drv_mb_param, &rsp, ¶m); 3291 3292 if (rc) 3293 return rc; 3294 3295 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3296 (param != DRV_MB_PARAM_BIST_RC_PASSED)) 3297 rc = -EAGAIN; 3298 3299 return rc; 3300 } 3301 3302 int qed_mcp_bist_nvm_get_num_images(struct qed_hwfn *p_hwfn, 3303 struct qed_ptt *p_ptt, 3304 u32 *num_images) 3305 { 3306 u32 drv_mb_param = 0, rsp; 3307 int rc = 0; 3308 3309 drv_mb_param = (DRV_MB_PARAM_BIST_NVM_TEST_NUM_IMAGES << 3310 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT); 3311 3312 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_BIST_TEST, 3313 drv_mb_param, &rsp, num_images); 3314 if (rc) 3315 return rc; 3316 3317 if (((rsp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK)) 3318 rc = -EINVAL; 3319 3320 return rc; 3321 } 3322 3323 int qed_mcp_bist_nvm_get_image_att(struct qed_hwfn *p_hwfn, 3324 struct qed_ptt *p_ptt, 3325 struct bist_nvm_image_att *p_image_att, 3326 u32 image_index) 3327 { 3328 u32 buf_size = 0, param, resp = 0, resp_param = 0; 3329 int rc; 3330 3331 param = DRV_MB_PARAM_BIST_NVM_TEST_IMAGE_BY_INDEX << 3332 DRV_MB_PARAM_BIST_TEST_INDEX_SHIFT; 3333 param |= image_index << DRV_MB_PARAM_BIST_TEST_IMAGE_INDEX_SHIFT; 3334 3335 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 3336 DRV_MSG_CODE_BIST_TEST, param, 3337 &resp, &resp_param, 3338 &buf_size, 3339 (u32 *)p_image_att, false); 3340 if (rc) 3341 return rc; 3342 3343 if (((resp & FW_MSG_CODE_MASK) != FW_MSG_CODE_OK) || 3344 (p_image_att->return_code != 1)) 3345 rc = -EINVAL; 3346 3347 return rc; 3348 } 3349 3350 int qed_mcp_nvm_info_populate(struct qed_hwfn *p_hwfn) 3351 { 3352 struct qed_nvm_image_info nvm_info; 3353 struct qed_ptt *p_ptt; 3354 int rc; 3355 u32 i; 3356 3357 if (p_hwfn->nvm_info.valid) 3358 return 0; 3359 3360 p_ptt = qed_ptt_acquire(p_hwfn); 3361 if (!p_ptt) { 3362 DP_ERR(p_hwfn, "failed to acquire ptt\n"); 3363 return -EBUSY; 3364 } 3365 3366 /* Acquire from MFW the amount of available images */ 3367 nvm_info.num_images = 0; 3368 rc = qed_mcp_bist_nvm_get_num_images(p_hwfn, 3369 p_ptt, &nvm_info.num_images); 3370 if (rc == -EOPNOTSUPP) { 3371 DP_INFO(p_hwfn, "DRV_MSG_CODE_BIST_TEST is not supported\n"); 3372 goto out; 3373 } else if (rc || !nvm_info.num_images) { 3374 DP_ERR(p_hwfn, "Failed getting number of images\n"); 3375 goto err0; 3376 } 3377 3378 nvm_info.image_att = kmalloc_array(nvm_info.num_images, 3379 sizeof(struct bist_nvm_image_att), 3380 GFP_KERNEL); 3381 if (!nvm_info.image_att) { 3382 rc = -ENOMEM; 3383 goto err0; 3384 } 3385 3386 /* Iterate over images and get their attributes */ 3387 for (i = 0; i < nvm_info.num_images; i++) { 3388 rc = qed_mcp_bist_nvm_get_image_att(p_hwfn, p_ptt, 3389 &nvm_info.image_att[i], i); 3390 if (rc) { 3391 DP_ERR(p_hwfn, 3392 "Failed getting image index %d attributes\n", i); 3393 goto err1; 3394 } 3395 3396 DP_VERBOSE(p_hwfn, QED_MSG_SP, "image index %d, size %x\n", i, 3397 nvm_info.image_att[i].len); 3398 } 3399 out: 3400 /* Update hwfn's nvm_info */ 3401 if (nvm_info.num_images) { 3402 p_hwfn->nvm_info.num_images = nvm_info.num_images; 3403 kfree(p_hwfn->nvm_info.image_att); 3404 p_hwfn->nvm_info.image_att = nvm_info.image_att; 3405 p_hwfn->nvm_info.valid = true; 3406 } 3407 3408 qed_ptt_release(p_hwfn, p_ptt); 3409 return 0; 3410 3411 err1: 3412 kfree(nvm_info.image_att); 3413 err0: 3414 qed_ptt_release(p_hwfn, p_ptt); 3415 return rc; 3416 } 3417 3418 void qed_mcp_nvm_info_free(struct qed_hwfn *p_hwfn) 3419 { 3420 kfree(p_hwfn->nvm_info.image_att); 3421 p_hwfn->nvm_info.image_att = NULL; 3422 p_hwfn->nvm_info.valid = false; 3423 } 3424 3425 int 3426 qed_mcp_get_nvm_image_att(struct qed_hwfn *p_hwfn, 3427 enum qed_nvm_images image_id, 3428 struct qed_nvm_image_att *p_image_att) 3429 { 3430 enum nvm_image_type type; 3431 int rc; 3432 u32 i; 3433 3434 /* Translate image_id into MFW definitions */ 3435 switch (image_id) { 3436 case QED_NVM_IMAGE_ISCSI_CFG: 3437 type = NVM_TYPE_ISCSI_CFG; 3438 break; 3439 case QED_NVM_IMAGE_FCOE_CFG: 3440 type = NVM_TYPE_FCOE_CFG; 3441 break; 3442 case QED_NVM_IMAGE_MDUMP: 3443 type = NVM_TYPE_MDUMP; 3444 break; 3445 case QED_NVM_IMAGE_NVM_CFG1: 3446 type = NVM_TYPE_NVM_CFG1; 3447 break; 3448 case QED_NVM_IMAGE_DEFAULT_CFG: 3449 type = NVM_TYPE_DEFAULT_CFG; 3450 break; 3451 case QED_NVM_IMAGE_NVM_META: 3452 type = NVM_TYPE_NVM_META; 3453 break; 3454 default: 3455 DP_NOTICE(p_hwfn, "Unknown request of image_id %08x\n", 3456 image_id); 3457 return -EINVAL; 3458 } 3459 3460 rc = qed_mcp_nvm_info_populate(p_hwfn); 3461 if (rc) 3462 return rc; 3463 3464 for (i = 0; i < p_hwfn->nvm_info.num_images; i++) 3465 if (type == p_hwfn->nvm_info.image_att[i].image_type) 3466 break; 3467 if (i == p_hwfn->nvm_info.num_images) { 3468 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 3469 "Failed to find nvram image of type %08x\n", 3470 image_id); 3471 return -ENOENT; 3472 } 3473 3474 p_image_att->start_addr = p_hwfn->nvm_info.image_att[i].nvm_start_addr; 3475 p_image_att->length = p_hwfn->nvm_info.image_att[i].len; 3476 3477 return 0; 3478 } 3479 3480 int qed_mcp_get_nvm_image(struct qed_hwfn *p_hwfn, 3481 enum qed_nvm_images image_id, 3482 u8 *p_buffer, u32 buffer_len) 3483 { 3484 struct qed_nvm_image_att image_att; 3485 int rc; 3486 3487 memset(p_buffer, 0, buffer_len); 3488 3489 rc = qed_mcp_get_nvm_image_att(p_hwfn, image_id, &image_att); 3490 if (rc) 3491 return rc; 3492 3493 /* Validate sizes - both the image's and the supplied buffer's */ 3494 if (image_att.length <= 4) { 3495 DP_VERBOSE(p_hwfn, QED_MSG_STORAGE, 3496 "Image [%d] is too small - only %d bytes\n", 3497 image_id, image_att.length); 3498 return -EINVAL; 3499 } 3500 3501 if (image_att.length > buffer_len) { 3502 DP_VERBOSE(p_hwfn, 3503 QED_MSG_STORAGE, 3504 "Image [%d] is too big - %08x bytes where only %08x are available\n", 3505 image_id, image_att.length, buffer_len); 3506 return -ENOMEM; 3507 } 3508 3509 return qed_mcp_nvm_read(p_hwfn->cdev, image_att.start_addr, 3510 p_buffer, image_att.length); 3511 } 3512 3513 static enum resource_id_enum qed_mcp_get_mfw_res_id(enum qed_resources res_id) 3514 { 3515 enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID; 3516 3517 switch (res_id) { 3518 case QED_SB: 3519 mfw_res_id = RESOURCE_NUM_SB_E; 3520 break; 3521 case QED_L2_QUEUE: 3522 mfw_res_id = RESOURCE_NUM_L2_QUEUE_E; 3523 break; 3524 case QED_VPORT: 3525 mfw_res_id = RESOURCE_NUM_VPORT_E; 3526 break; 3527 case QED_RSS_ENG: 3528 mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E; 3529 break; 3530 case QED_PQ: 3531 mfw_res_id = RESOURCE_NUM_PQ_E; 3532 break; 3533 case QED_RL: 3534 mfw_res_id = RESOURCE_NUM_RL_E; 3535 break; 3536 case QED_MAC: 3537 case QED_VLAN: 3538 /* Each VFC resource can accommodate both a MAC and a VLAN */ 3539 mfw_res_id = RESOURCE_VFC_FILTER_E; 3540 break; 3541 case QED_ILT: 3542 mfw_res_id = RESOURCE_ILT_E; 3543 break; 3544 case QED_LL2_RAM_QUEUE: 3545 mfw_res_id = RESOURCE_LL2_QUEUE_E; 3546 break; 3547 case QED_LL2_CTX_QUEUE: 3548 mfw_res_id = RESOURCE_LL2_CQS_E; 3549 break; 3550 case QED_RDMA_CNQ_RAM: 3551 case QED_CMDQS_CQS: 3552 /* CNQ/CMDQS are the same resource */ 3553 mfw_res_id = RESOURCE_CQS_E; 3554 break; 3555 case QED_RDMA_STATS_QUEUE: 3556 mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E; 3557 break; 3558 case QED_BDQ: 3559 mfw_res_id = RESOURCE_BDQ_E; 3560 break; 3561 default: 3562 break; 3563 } 3564 3565 return mfw_res_id; 3566 } 3567 3568 #define QED_RESC_ALLOC_VERSION_MAJOR 2 3569 #define QED_RESC_ALLOC_VERSION_MINOR 0 3570 #define QED_RESC_ALLOC_VERSION \ 3571 ((QED_RESC_ALLOC_VERSION_MAJOR << \ 3572 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR_SHIFT) | \ 3573 (QED_RESC_ALLOC_VERSION_MINOR << \ 3574 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR_SHIFT)) 3575 3576 struct qed_resc_alloc_in_params { 3577 u32 cmd; 3578 enum qed_resources res_id; 3579 u32 resc_max_val; 3580 }; 3581 3582 struct qed_resc_alloc_out_params { 3583 u32 mcp_resp; 3584 u32 mcp_param; 3585 u32 resc_num; 3586 u32 resc_start; 3587 u32 vf_resc_num; 3588 u32 vf_resc_start; 3589 u32 flags; 3590 }; 3591 3592 static int 3593 qed_mcp_resc_allocation_msg(struct qed_hwfn *p_hwfn, 3594 struct qed_ptt *p_ptt, 3595 struct qed_resc_alloc_in_params *p_in_params, 3596 struct qed_resc_alloc_out_params *p_out_params) 3597 { 3598 struct qed_mcp_mb_params mb_params; 3599 struct resource_info mfw_resc_info; 3600 int rc; 3601 3602 memset(&mfw_resc_info, 0, sizeof(mfw_resc_info)); 3603 3604 mfw_resc_info.res_id = qed_mcp_get_mfw_res_id(p_in_params->res_id); 3605 if (mfw_resc_info.res_id == RESOURCE_NUM_INVALID) { 3606 DP_ERR(p_hwfn, 3607 "Failed to match resource %d [%s] with the MFW resources\n", 3608 p_in_params->res_id, 3609 qed_hw_get_resc_name(p_in_params->res_id)); 3610 return -EINVAL; 3611 } 3612 3613 switch (p_in_params->cmd) { 3614 case DRV_MSG_SET_RESOURCE_VALUE_MSG: 3615 mfw_resc_info.size = p_in_params->resc_max_val; 3616 fallthrough; 3617 case DRV_MSG_GET_RESOURCE_ALLOC_MSG: 3618 break; 3619 default: 3620 DP_ERR(p_hwfn, "Unexpected resource alloc command [0x%08x]\n", 3621 p_in_params->cmd); 3622 return -EINVAL; 3623 } 3624 3625 memset(&mb_params, 0, sizeof(mb_params)); 3626 mb_params.cmd = p_in_params->cmd; 3627 mb_params.param = QED_RESC_ALLOC_VERSION; 3628 mb_params.p_data_src = &mfw_resc_info; 3629 mb_params.data_src_size = sizeof(mfw_resc_info); 3630 mb_params.p_data_dst = mb_params.p_data_src; 3631 mb_params.data_dst_size = mb_params.data_src_size; 3632 3633 DP_VERBOSE(p_hwfn, 3634 QED_MSG_SP, 3635 "Resource message request: cmd 0x%08x, res_id %d [%s], hsi_version %d.%d, val 0x%x\n", 3636 p_in_params->cmd, 3637 p_in_params->res_id, 3638 qed_hw_get_resc_name(p_in_params->res_id), 3639 QED_MFW_GET_FIELD(mb_params.param, 3640 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3641 QED_MFW_GET_FIELD(mb_params.param, 3642 DRV_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3643 p_in_params->resc_max_val); 3644 3645 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3646 if (rc) 3647 return rc; 3648 3649 p_out_params->mcp_resp = mb_params.mcp_resp; 3650 p_out_params->mcp_param = mb_params.mcp_param; 3651 p_out_params->resc_num = mfw_resc_info.size; 3652 p_out_params->resc_start = mfw_resc_info.offset; 3653 p_out_params->vf_resc_num = mfw_resc_info.vf_size; 3654 p_out_params->vf_resc_start = mfw_resc_info.vf_offset; 3655 p_out_params->flags = mfw_resc_info.flags; 3656 3657 DP_VERBOSE(p_hwfn, 3658 QED_MSG_SP, 3659 "Resource message response: mfw_hsi_version %d.%d, num 0x%x, start 0x%x, vf_num 0x%x, vf_start 0x%x, flags 0x%08x\n", 3660 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3661 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MAJOR), 3662 QED_MFW_GET_FIELD(p_out_params->mcp_param, 3663 FW_MB_PARAM_RESOURCE_ALLOC_VERSION_MINOR), 3664 p_out_params->resc_num, 3665 p_out_params->resc_start, 3666 p_out_params->vf_resc_num, 3667 p_out_params->vf_resc_start, p_out_params->flags); 3668 3669 return 0; 3670 } 3671 3672 int 3673 qed_mcp_set_resc_max_val(struct qed_hwfn *p_hwfn, 3674 struct qed_ptt *p_ptt, 3675 enum qed_resources res_id, 3676 u32 resc_max_val, u32 *p_mcp_resp) 3677 { 3678 struct qed_resc_alloc_out_params out_params; 3679 struct qed_resc_alloc_in_params in_params; 3680 int rc; 3681 3682 memset(&in_params, 0, sizeof(in_params)); 3683 in_params.cmd = DRV_MSG_SET_RESOURCE_VALUE_MSG; 3684 in_params.res_id = res_id; 3685 in_params.resc_max_val = resc_max_val; 3686 memset(&out_params, 0, sizeof(out_params)); 3687 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3688 &out_params); 3689 if (rc) 3690 return rc; 3691 3692 *p_mcp_resp = out_params.mcp_resp; 3693 3694 return 0; 3695 } 3696 3697 int 3698 qed_mcp_get_resc_info(struct qed_hwfn *p_hwfn, 3699 struct qed_ptt *p_ptt, 3700 enum qed_resources res_id, 3701 u32 *p_mcp_resp, u32 *p_resc_num, u32 *p_resc_start) 3702 { 3703 struct qed_resc_alloc_out_params out_params; 3704 struct qed_resc_alloc_in_params in_params; 3705 int rc; 3706 3707 memset(&in_params, 0, sizeof(in_params)); 3708 in_params.cmd = DRV_MSG_GET_RESOURCE_ALLOC_MSG; 3709 in_params.res_id = res_id; 3710 memset(&out_params, 0, sizeof(out_params)); 3711 rc = qed_mcp_resc_allocation_msg(p_hwfn, p_ptt, &in_params, 3712 &out_params); 3713 if (rc) 3714 return rc; 3715 3716 *p_mcp_resp = out_params.mcp_resp; 3717 3718 if (*p_mcp_resp == FW_MSG_CODE_RESOURCE_ALLOC_OK) { 3719 *p_resc_num = out_params.resc_num; 3720 *p_resc_start = out_params.resc_start; 3721 } 3722 3723 return 0; 3724 } 3725 3726 int qed_mcp_initiate_pf_flr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3727 { 3728 u32 mcp_resp, mcp_param; 3729 3730 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_INITIATE_PF_FLR, 0, 3731 &mcp_resp, &mcp_param); 3732 } 3733 3734 static int qed_mcp_resource_cmd(struct qed_hwfn *p_hwfn, 3735 struct qed_ptt *p_ptt, 3736 u32 param, u32 *p_mcp_resp, u32 *p_mcp_param) 3737 { 3738 int rc; 3739 3740 rc = qed_mcp_cmd_nosleep(p_hwfn, p_ptt, DRV_MSG_CODE_RESOURCE_CMD, 3741 param, p_mcp_resp, p_mcp_param); 3742 if (rc) 3743 return rc; 3744 3745 if (*p_mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3746 DP_INFO(p_hwfn, 3747 "The resource command is unsupported by the MFW\n"); 3748 return -EINVAL; 3749 } 3750 3751 if (*p_mcp_param == RESOURCE_OPCODE_UNKNOWN_CMD) { 3752 u8 opcode = QED_MFW_GET_FIELD(param, RESOURCE_CMD_REQ_OPCODE); 3753 3754 DP_NOTICE(p_hwfn, 3755 "The resource command is unknown to the MFW [param 0x%08x, opcode %d]\n", 3756 param, opcode); 3757 return -EINVAL; 3758 } 3759 3760 return rc; 3761 } 3762 3763 static int 3764 __qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3765 struct qed_ptt *p_ptt, 3766 struct qed_resc_lock_params *p_params) 3767 { 3768 u32 param = 0, mcp_resp, mcp_param; 3769 u8 opcode; 3770 int rc; 3771 3772 switch (p_params->timeout) { 3773 case QED_MCP_RESC_LOCK_TO_DEFAULT: 3774 opcode = RESOURCE_OPCODE_REQ; 3775 p_params->timeout = 0; 3776 break; 3777 case QED_MCP_RESC_LOCK_TO_NONE: 3778 opcode = RESOURCE_OPCODE_REQ_WO_AGING; 3779 p_params->timeout = 0; 3780 break; 3781 default: 3782 opcode = RESOURCE_OPCODE_REQ_W_AGING; 3783 break; 3784 } 3785 3786 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3787 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3788 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_AGE, p_params->timeout); 3789 3790 DP_VERBOSE(p_hwfn, 3791 QED_MSG_SP, 3792 "Resource lock request: param 0x%08x [age %d, opcode %d, resource %d]\n", 3793 param, p_params->timeout, opcode, p_params->resource); 3794 3795 /* Attempt to acquire the resource */ 3796 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3797 if (rc) 3798 return rc; 3799 3800 /* Analyze the response */ 3801 p_params->owner = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OWNER); 3802 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3803 3804 DP_VERBOSE(p_hwfn, 3805 QED_MSG_SP, 3806 "Resource lock response: mcp_param 0x%08x [opcode %d, owner %d]\n", 3807 mcp_param, opcode, p_params->owner); 3808 3809 switch (opcode) { 3810 case RESOURCE_OPCODE_GNT: 3811 p_params->b_granted = true; 3812 break; 3813 case RESOURCE_OPCODE_BUSY: 3814 p_params->b_granted = false; 3815 break; 3816 default: 3817 DP_NOTICE(p_hwfn, 3818 "Unexpected opcode in resource lock response [mcp_param 0x%08x, opcode %d]\n", 3819 mcp_param, opcode); 3820 return -EINVAL; 3821 } 3822 3823 return 0; 3824 } 3825 3826 int 3827 qed_mcp_resc_lock(struct qed_hwfn *p_hwfn, 3828 struct qed_ptt *p_ptt, struct qed_resc_lock_params *p_params) 3829 { 3830 u32 retry_cnt = 0; 3831 int rc; 3832 3833 do { 3834 /* No need for an interval before the first iteration */ 3835 if (retry_cnt) { 3836 if (p_params->sleep_b4_retry) { 3837 u16 retry_interval_in_ms = 3838 DIV_ROUND_UP(p_params->retry_interval, 3839 1000); 3840 3841 msleep(retry_interval_in_ms); 3842 } else { 3843 udelay(p_params->retry_interval); 3844 } 3845 } 3846 3847 rc = __qed_mcp_resc_lock(p_hwfn, p_ptt, p_params); 3848 if (rc) 3849 return rc; 3850 3851 if (p_params->b_granted) 3852 break; 3853 } while (retry_cnt++ < p_params->retry_num); 3854 3855 return 0; 3856 } 3857 3858 int 3859 qed_mcp_resc_unlock(struct qed_hwfn *p_hwfn, 3860 struct qed_ptt *p_ptt, 3861 struct qed_resc_unlock_params *p_params) 3862 { 3863 u32 param = 0, mcp_resp, mcp_param; 3864 u8 opcode; 3865 int rc; 3866 3867 opcode = p_params->b_force ? RESOURCE_OPCODE_FORCE_RELEASE 3868 : RESOURCE_OPCODE_RELEASE; 3869 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_RESC, p_params->resource); 3870 QED_MFW_SET_FIELD(param, RESOURCE_CMD_REQ_OPCODE, opcode); 3871 3872 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3873 "Resource unlock request: param 0x%08x [opcode %d, resource %d]\n", 3874 param, opcode, p_params->resource); 3875 3876 /* Attempt to release the resource */ 3877 rc = qed_mcp_resource_cmd(p_hwfn, p_ptt, param, &mcp_resp, &mcp_param); 3878 if (rc) 3879 return rc; 3880 3881 /* Analyze the response */ 3882 opcode = QED_MFW_GET_FIELD(mcp_param, RESOURCE_CMD_RSP_OPCODE); 3883 3884 DP_VERBOSE(p_hwfn, QED_MSG_SP, 3885 "Resource unlock response: mcp_param 0x%08x [opcode %d]\n", 3886 mcp_param, opcode); 3887 3888 switch (opcode) { 3889 case RESOURCE_OPCODE_RELEASED_PREVIOUS: 3890 DP_INFO(p_hwfn, 3891 "Resource unlock request for an already released resource [%d]\n", 3892 p_params->resource); 3893 fallthrough; 3894 case RESOURCE_OPCODE_RELEASED: 3895 p_params->b_released = true; 3896 break; 3897 case RESOURCE_OPCODE_WRONG_OWNER: 3898 p_params->b_released = false; 3899 break; 3900 default: 3901 DP_NOTICE(p_hwfn, 3902 "Unexpected opcode in resource unlock response [mcp_param 0x%08x, opcode %d]\n", 3903 mcp_param, opcode); 3904 return -EINVAL; 3905 } 3906 3907 return 0; 3908 } 3909 3910 void qed_mcp_resc_lock_default_init(struct qed_resc_lock_params *p_lock, 3911 struct qed_resc_unlock_params *p_unlock, 3912 enum qed_resc_lock 3913 resource, bool b_is_permanent) 3914 { 3915 if (p_lock) { 3916 memset(p_lock, 0, sizeof(*p_lock)); 3917 3918 /* Permanent resources don't require aging, and there's no 3919 * point in trying to acquire them more than once since it's 3920 * unexpected another entity would release them. 3921 */ 3922 if (b_is_permanent) { 3923 p_lock->timeout = QED_MCP_RESC_LOCK_TO_NONE; 3924 } else { 3925 p_lock->retry_num = QED_MCP_RESC_LOCK_RETRY_CNT_DFLT; 3926 p_lock->retry_interval = 3927 QED_MCP_RESC_LOCK_RETRY_VAL_DFLT; 3928 p_lock->sleep_b4_retry = true; 3929 } 3930 3931 p_lock->resource = resource; 3932 } 3933 3934 if (p_unlock) { 3935 memset(p_unlock, 0, sizeof(*p_unlock)); 3936 p_unlock->resource = resource; 3937 } 3938 } 3939 3940 bool qed_mcp_is_smart_an_supported(struct qed_hwfn *p_hwfn) 3941 { 3942 return !!(p_hwfn->mcp_info->capabilities & 3943 FW_MB_PARAM_FEATURE_SUPPORT_SMARTLINQ); 3944 } 3945 3946 int qed_mcp_get_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3947 { 3948 u32 mcp_resp; 3949 int rc; 3950 3951 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MFW_FEATURE_SUPPORT, 3952 0, &mcp_resp, &p_hwfn->mcp_info->capabilities); 3953 if (!rc) 3954 DP_VERBOSE(p_hwfn, (QED_MSG_SP | NETIF_MSG_PROBE), 3955 "MFW supported features: %08x\n", 3956 p_hwfn->mcp_info->capabilities); 3957 3958 return rc; 3959 } 3960 3961 int qed_mcp_set_capabilities(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3962 { 3963 u32 mcp_resp, mcp_param, features; 3964 3965 features = DRV_MB_PARAM_FEATURE_SUPPORT_PORT_EEE | 3966 DRV_MB_PARAM_FEATURE_SUPPORT_FUNC_VLINK | 3967 DRV_MB_PARAM_FEATURE_SUPPORT_PORT_FEC_CONTROL; 3968 3969 return qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_FEATURE_SUPPORT, 3970 features, &mcp_resp, &mcp_param); 3971 } 3972 3973 int qed_mcp_get_engine_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 3974 { 3975 struct qed_mcp_mb_params mb_params = {0}; 3976 struct qed_dev *cdev = p_hwfn->cdev; 3977 u8 fir_valid, l2_valid; 3978 int rc; 3979 3980 mb_params.cmd = DRV_MSG_CODE_GET_ENGINE_CONFIG; 3981 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 3982 if (rc) 3983 return rc; 3984 3985 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 3986 DP_INFO(p_hwfn, 3987 "The get_engine_config command is unsupported by the MFW\n"); 3988 return -EOPNOTSUPP; 3989 } 3990 3991 fir_valid = QED_MFW_GET_FIELD(mb_params.mcp_param, 3992 FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALID); 3993 if (fir_valid) 3994 cdev->fir_affin = 3995 QED_MFW_GET_FIELD(mb_params.mcp_param, 3996 FW_MB_PARAM_ENG_CFG_FIR_AFFIN_VALUE); 3997 3998 l2_valid = QED_MFW_GET_FIELD(mb_params.mcp_param, 3999 FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALID); 4000 if (l2_valid) 4001 cdev->l2_affin_hint = 4002 QED_MFW_GET_FIELD(mb_params.mcp_param, 4003 FW_MB_PARAM_ENG_CFG_L2_AFFIN_VALUE); 4004 4005 DP_INFO(p_hwfn, 4006 "Engine affinity config: FIR={valid %hhd, value %hhd}, L2_hint={valid %hhd, value %hhd}\n", 4007 fir_valid, cdev->fir_affin, l2_valid, cdev->l2_affin_hint); 4008 4009 return 0; 4010 } 4011 4012 int qed_mcp_get_ppfid_bitmap(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 4013 { 4014 struct qed_mcp_mb_params mb_params = {0}; 4015 struct qed_dev *cdev = p_hwfn->cdev; 4016 int rc; 4017 4018 mb_params.cmd = DRV_MSG_CODE_GET_PPFID_BITMAP; 4019 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 4020 if (rc) 4021 return rc; 4022 4023 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 4024 DP_INFO(p_hwfn, 4025 "The get_ppfid_bitmap command is unsupported by the MFW\n"); 4026 return -EOPNOTSUPP; 4027 } 4028 4029 cdev->ppfid_bitmap = QED_MFW_GET_FIELD(mb_params.mcp_param, 4030 FW_MB_PARAM_PPFID_BITMAP); 4031 4032 DP_VERBOSE(p_hwfn, QED_MSG_SP, "PPFID bitmap 0x%hhx\n", 4033 cdev->ppfid_bitmap); 4034 4035 return 0; 4036 } 4037 4038 int qed_mcp_nvm_get_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 4039 u16 option_id, u8 entity_id, u16 flags, u8 *p_buf, 4040 u32 *p_len) 4041 { 4042 u32 mb_param = 0, resp, param; 4043 int rc; 4044 4045 QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id); 4046 if (flags & QED_NVM_CFG_OPTION_INIT) 4047 QED_MFW_SET_FIELD(mb_param, 4048 DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1); 4049 if (flags & QED_NVM_CFG_OPTION_FREE) 4050 QED_MFW_SET_FIELD(mb_param, 4051 DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1); 4052 if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) { 4053 QED_MFW_SET_FIELD(mb_param, 4054 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1); 4055 QED_MFW_SET_FIELD(mb_param, 4056 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID, 4057 entity_id); 4058 } 4059 4060 rc = qed_mcp_nvm_rd_cmd(p_hwfn, p_ptt, 4061 DRV_MSG_CODE_GET_NVM_CFG_OPTION, 4062 mb_param, &resp, ¶m, p_len, 4063 (u32 *)p_buf, false); 4064 4065 return rc; 4066 } 4067 4068 int qed_mcp_nvm_set_cfg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 4069 u16 option_id, u8 entity_id, u16 flags, u8 *p_buf, 4070 u32 len) 4071 { 4072 u32 mb_param = 0, resp, param; 4073 4074 QED_MFW_SET_FIELD(mb_param, DRV_MB_PARAM_NVM_CFG_OPTION_ID, option_id); 4075 if (flags & QED_NVM_CFG_OPTION_ALL) 4076 QED_MFW_SET_FIELD(mb_param, 4077 DRV_MB_PARAM_NVM_CFG_OPTION_ALL, 1); 4078 if (flags & QED_NVM_CFG_OPTION_INIT) 4079 QED_MFW_SET_FIELD(mb_param, 4080 DRV_MB_PARAM_NVM_CFG_OPTION_INIT, 1); 4081 if (flags & QED_NVM_CFG_OPTION_COMMIT) 4082 QED_MFW_SET_FIELD(mb_param, 4083 DRV_MB_PARAM_NVM_CFG_OPTION_COMMIT, 1); 4084 if (flags & QED_NVM_CFG_OPTION_FREE) 4085 QED_MFW_SET_FIELD(mb_param, 4086 DRV_MB_PARAM_NVM_CFG_OPTION_FREE, 1); 4087 if (flags & QED_NVM_CFG_OPTION_ENTITY_SEL) { 4088 QED_MFW_SET_FIELD(mb_param, 4089 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_SEL, 1); 4090 QED_MFW_SET_FIELD(mb_param, 4091 DRV_MB_PARAM_NVM_CFG_OPTION_ENTITY_ID, 4092 entity_id); 4093 } 4094 4095 return qed_mcp_nvm_wr_cmd(p_hwfn, p_ptt, 4096 DRV_MSG_CODE_SET_NVM_CFG_OPTION, 4097 mb_param, &resp, ¶m, len, (u32 *)p_buf); 4098 } 4099 4100 #define QED_MCP_DBG_DATA_MAX_SIZE MCP_DRV_NVM_BUF_LEN 4101 #define QED_MCP_DBG_DATA_MAX_HEADER_SIZE sizeof(u32) 4102 #define QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE \ 4103 (QED_MCP_DBG_DATA_MAX_SIZE - QED_MCP_DBG_DATA_MAX_HEADER_SIZE) 4104 4105 static int 4106 __qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn, 4107 struct qed_ptt *p_ptt, u8 *p_buf, u8 size) 4108 { 4109 struct qed_mcp_mb_params mb_params; 4110 int rc; 4111 4112 if (size > QED_MCP_DBG_DATA_MAX_SIZE) { 4113 DP_ERR(p_hwfn, 4114 "Debug data size is %d while it should not exceed %d\n", 4115 size, QED_MCP_DBG_DATA_MAX_SIZE); 4116 return -EINVAL; 4117 } 4118 4119 memset(&mb_params, 0, sizeof(mb_params)); 4120 mb_params.cmd = DRV_MSG_CODE_DEBUG_DATA_SEND; 4121 SET_MFW_FIELD(mb_params.param, DRV_MSG_CODE_DEBUG_DATA_SEND_SIZE, size); 4122 mb_params.p_data_src = p_buf; 4123 mb_params.data_src_size = size; 4124 rc = qed_mcp_cmd_and_union(p_hwfn, p_ptt, &mb_params); 4125 if (rc) 4126 return rc; 4127 4128 if (mb_params.mcp_resp == FW_MSG_CODE_UNSUPPORTED) { 4129 DP_INFO(p_hwfn, 4130 "The DEBUG_DATA_SEND command is unsupported by the MFW\n"); 4131 return -EOPNOTSUPP; 4132 } else if (mb_params.mcp_resp == (u32)FW_MSG_CODE_DEBUG_NOT_ENABLED) { 4133 DP_INFO(p_hwfn, "The DEBUG_DATA_SEND command is not enabled\n"); 4134 return -EBUSY; 4135 } else if (mb_params.mcp_resp != (u32)FW_MSG_CODE_DEBUG_DATA_SEND_OK) { 4136 DP_NOTICE(p_hwfn, 4137 "Failed to send debug data to the MFW [resp 0x%08x]\n", 4138 mb_params.mcp_resp); 4139 return -EINVAL; 4140 } 4141 4142 return 0; 4143 } 4144 4145 enum qed_mcp_dbg_data_type { 4146 QED_MCP_DBG_DATA_TYPE_RAW, 4147 }; 4148 4149 /* Header format: [31:28] PFID, [27:20] flags, [19:12] type, [11:0] S/N */ 4150 #define QED_MCP_DBG_DATA_HDR_SN_OFFSET 0 4151 #define QED_MCP_DBG_DATA_HDR_SN_MASK 0x00000fff 4152 #define QED_MCP_DBG_DATA_HDR_TYPE_OFFSET 12 4153 #define QED_MCP_DBG_DATA_HDR_TYPE_MASK 0x000ff000 4154 #define QED_MCP_DBG_DATA_HDR_FLAGS_OFFSET 20 4155 #define QED_MCP_DBG_DATA_HDR_FLAGS_MASK 0x0ff00000 4156 #define QED_MCP_DBG_DATA_HDR_PF_OFFSET 28 4157 #define QED_MCP_DBG_DATA_HDR_PF_MASK 0xf0000000 4158 4159 #define QED_MCP_DBG_DATA_HDR_FLAGS_FIRST 0x1 4160 #define QED_MCP_DBG_DATA_HDR_FLAGS_LAST 0x2 4161 4162 static int 4163 qed_mcp_send_debug_data(struct qed_hwfn *p_hwfn, 4164 struct qed_ptt *p_ptt, 4165 enum qed_mcp_dbg_data_type type, u8 *p_buf, u32 size) 4166 { 4167 u8 raw_data[QED_MCP_DBG_DATA_MAX_SIZE], *p_tmp_buf = p_buf; 4168 u32 tmp_size = size, *p_header, *p_payload; 4169 u8 flags = 0; 4170 u16 seq; 4171 int rc; 4172 4173 p_header = (u32 *)raw_data; 4174 p_payload = (u32 *)(raw_data + QED_MCP_DBG_DATA_MAX_HEADER_SIZE); 4175 4176 seq = (u16)atomic_inc_return(&p_hwfn->mcp_info->dbg_data_seq); 4177 4178 /* First chunk is marked as 'first' */ 4179 flags |= QED_MCP_DBG_DATA_HDR_FLAGS_FIRST; 4180 4181 *p_header = 0; 4182 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_SN, seq); 4183 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_TYPE, type); 4184 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags); 4185 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_PF, p_hwfn->abs_pf_id); 4186 4187 while (tmp_size > QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE) { 4188 memcpy(p_payload, p_tmp_buf, QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE); 4189 rc = __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data, 4190 QED_MCP_DBG_DATA_MAX_SIZE); 4191 if (rc) 4192 return rc; 4193 4194 /* Clear the 'first' marking after sending the first chunk */ 4195 if (p_tmp_buf == p_buf) { 4196 flags &= ~QED_MCP_DBG_DATA_HDR_FLAGS_FIRST; 4197 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, 4198 flags); 4199 } 4200 4201 p_tmp_buf += QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE; 4202 tmp_size -= QED_MCP_DBG_DATA_MAX_PAYLOAD_SIZE; 4203 } 4204 4205 /* Last chunk is marked as 'last' */ 4206 flags |= QED_MCP_DBG_DATA_HDR_FLAGS_LAST; 4207 SET_MFW_FIELD(*p_header, QED_MCP_DBG_DATA_HDR_FLAGS, flags); 4208 memcpy(p_payload, p_tmp_buf, tmp_size); 4209 4210 /* Casting the left size to u8 is ok since at this point it is <= 32 */ 4211 return __qed_mcp_send_debug_data(p_hwfn, p_ptt, raw_data, 4212 (u8)(QED_MCP_DBG_DATA_MAX_HEADER_SIZE + 4213 tmp_size)); 4214 } 4215 4216 int 4217 qed_mcp_send_raw_debug_data(struct qed_hwfn *p_hwfn, 4218 struct qed_ptt *p_ptt, u8 *p_buf, u32 size) 4219 { 4220 return qed_mcp_send_debug_data(p_hwfn, p_ptt, 4221 QED_MCP_DBG_DATA_TYPE_RAW, p_buf, size); 4222 } 4223 4224 bool qed_mcp_is_esl_supported(struct qed_hwfn *p_hwfn) 4225 { 4226 return !!(p_hwfn->mcp_info->capabilities & 4227 FW_MB_PARAM_FEATURE_SUPPORT_ENHANCED_SYS_LCK); 4228 } 4229 4230 int qed_mcp_get_esl_status(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool *active) 4231 { 4232 u32 resp = 0, param = 0; 4233 int rc; 4234 4235 rc = qed_mcp_cmd(p_hwfn, p_ptt, DRV_MSG_CODE_GET_MANAGEMENT_STATUS, 0, &resp, ¶m); 4236 if (rc) { 4237 DP_NOTICE(p_hwfn, "Failed to send ESL command, rc = %d\n", rc); 4238 return rc; 4239 } 4240 4241 *active = !!(param & FW_MB_PARAM_MANAGEMENT_STATUS_LOCKDOWN_ENABLED); 4242 4243 return 0; 4244 } 4245