xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_int.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/io.h>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include "qed.h"
20 #include "qed_hsi.h"
21 #include "qed_hw.h"
22 #include "qed_init_ops.h"
23 #include "qed_int.h"
24 #include "qed_mcp.h"
25 #include "qed_reg_addr.h"
26 #include "qed_sp.h"
27 #include "qed_sriov.h"
28 #include "qed_vf.h"
29 
30 struct qed_pi_info {
31 	qed_int_comp_cb_t	comp_cb;
32 	void			*cookie;
33 };
34 
35 struct qed_sb_sp_info {
36 	struct qed_sb_info sb_info;
37 
38 	/* per protocol index data */
39 	struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
40 };
41 
42 enum qed_attention_type {
43 	QED_ATTN_TYPE_ATTN,
44 	QED_ATTN_TYPE_PARITY,
45 };
46 
47 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
48 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
49 
50 struct aeu_invert_reg_bit {
51 	char bit_name[30];
52 
53 #define ATTENTION_PARITY                (1 << 0)
54 
55 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
56 #define ATTENTION_LENGTH_SHIFT          (4)
57 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
58 					 ATTENTION_LENGTH_SHIFT)
59 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
60 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
61 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
62 					 ATTENTION_PARITY)
63 
64 /* Multiple bits start with this offset */
65 #define ATTENTION_OFFSET_MASK           (0x000ff000)
66 #define ATTENTION_OFFSET_SHIFT          (12)
67 
68 #define ATTENTION_BB_MASK               (0x00700000)
69 #define ATTENTION_BB_SHIFT              (20)
70 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
71 #define ATTENTION_BB_DIFFERENT          BIT(23)
72 
73 #define ATTENTION_CLEAR_ENABLE          BIT(28)
74 	unsigned int flags;
75 
76 	/* Callback to call if attention will be triggered */
77 	int (*cb)(struct qed_hwfn *p_hwfn);
78 
79 	enum block_id block_index;
80 };
81 
82 struct aeu_invert_reg {
83 	struct aeu_invert_reg_bit bits[32];
84 };
85 
86 #define MAX_ATTN_GRPS           (8)
87 #define NUM_ATTN_REGS           (9)
88 
89 /* Specific HW attention callbacks */
90 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
91 {
92 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
93 
94 	/* This might occur on certain instances; Log it once then mask it */
95 	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
96 		tmp);
97 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
98 	       0xffffffff);
99 
100 	return 0;
101 }
102 
103 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
104 #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
105 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
106 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
107 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
108 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
109 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
110 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
111 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
112 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
113 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
114 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
115 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
116 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
117 {
118 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
119 			 PSWHST_REG_INCORRECT_ACCESS_VALID);
120 
121 	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
122 		u32 addr, data, length;
123 
124 		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
125 			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
126 		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127 			      PSWHST_REG_INCORRECT_ACCESS_DATA);
128 		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129 				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
130 
131 		DP_INFO(p_hwfn->cdev,
132 			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
133 			addr, length,
134 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
135 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
136 			(u8) GET_FIELD(data,
137 				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
138 			(u8) GET_FIELD(data,
139 				       ATTENTION_INCORRECT_ACCESS_CLIENT),
140 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
141 			(u8) GET_FIELD(data,
142 				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
143 			data);
144 	}
145 
146 	return 0;
147 }
148 
149 #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
150 #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
151 #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
152 #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
153 #define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
154 #define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
155 #define QED_GRC_ATTENTION_PF_MASK	(0xf)
156 #define QED_GRC_ATTENTION_PF_SHIFT	(0)
157 #define QED_GRC_ATTENTION_VF_MASK	(0xff)
158 #define QED_GRC_ATTENTION_VF_SHIFT	(4)
159 #define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
160 #define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
161 #define QED_GRC_ATTENTION_PRIV_VF	(0)
162 static const char *attn_master_to_str(u8 master)
163 {
164 	switch (master) {
165 	case 1: return "PXP";
166 	case 2: return "MCP";
167 	case 3: return "MSDM";
168 	case 4: return "PSDM";
169 	case 5: return "YSDM";
170 	case 6: return "USDM";
171 	case 7: return "TSDM";
172 	case 8: return "XSDM";
173 	case 9: return "DBU";
174 	case 10: return "DMAE";
175 	default:
176 		return "Unknown";
177 	}
178 }
179 
180 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
181 {
182 	u32 tmp, tmp2;
183 
184 	/* We've already cleared the timeout interrupt register, so we learn
185 	 * of interrupts via the validity register
186 	 */
187 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
188 		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
189 	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
190 		goto out;
191 
192 	/* Read the GRC timeout information */
193 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
194 		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
195 	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
196 		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
197 
198 	DP_INFO(p_hwfn->cdev,
199 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
200 		tmp2, tmp,
201 		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
202 		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
203 		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
204 		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
205 		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
206 		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
207 		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
208 
209 out:
210 	/* Regardles of anything else, clean the validity bit */
211 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
212 	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
213 	return 0;
214 }
215 
216 #define PGLUE_ATTENTION_VALID			(1 << 29)
217 #define PGLUE_ATTENTION_RD_VALID		(1 << 26)
218 #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
219 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
220 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
221 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
222 #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
223 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
224 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
225 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
226 #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
227 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
228 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
229 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
230 #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
231 #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
232 #define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
233 
234 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
235 				bool hw_init)
236 {
237 	char msg[256];
238 	u32 tmp;
239 
240 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
241 	if (tmp & PGLUE_ATTENTION_VALID) {
242 		u32 addr_lo, addr_hi, details;
243 
244 		addr_lo = qed_rd(p_hwfn, p_ptt,
245 				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
246 		addr_hi = qed_rd(p_hwfn, p_ptt,
247 				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
248 		details = qed_rd(p_hwfn, p_ptt,
249 				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
250 
251 		snprintf(msg, sizeof(msg),
252 			 "Illegal write by chip to [%08x:%08x] blocked.\n"
253 			 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
254 			 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
255 			 addr_hi, addr_lo, details,
256 			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
257 			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
258 			 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
259 			 tmp,
260 			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
261 			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
262 			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
263 
264 		if (hw_init)
265 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
266 		else
267 			DP_NOTICE(p_hwfn, "%s\n", msg);
268 	}
269 
270 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
271 	if (tmp & PGLUE_ATTENTION_RD_VALID) {
272 		u32 addr_lo, addr_hi, details;
273 
274 		addr_lo = qed_rd(p_hwfn, p_ptt,
275 				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
276 		addr_hi = qed_rd(p_hwfn, p_ptt,
277 				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
278 		details = qed_rd(p_hwfn, p_ptt,
279 				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
280 
281 		DP_NOTICE(p_hwfn,
282 			  "Illegal read by chip from [%08x:%08x] blocked.\n"
283 			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
284 			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
285 			  addr_hi, addr_lo, details,
286 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
287 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
288 			  GET_FIELD(details,
289 				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
290 			  tmp,
291 			  GET_FIELD(tmp,
292 				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
293 			  GET_FIELD(tmp,
294 				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
295 			  GET_FIELD(tmp,
296 				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
297 	}
298 
299 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
300 	if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
301 		snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
302 
303 		if (hw_init)
304 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
305 		else
306 			DP_NOTICE(p_hwfn, "%s\n", msg);
307 	}
308 
309 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
310 	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
311 		u32 addr_hi, addr_lo;
312 
313 		addr_lo = qed_rd(p_hwfn, p_ptt,
314 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
315 		addr_hi = qed_rd(p_hwfn, p_ptt,
316 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
317 
318 		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
319 			  tmp, addr_hi, addr_lo);
320 	}
321 
322 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
323 	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
324 		u32 addr_hi, addr_lo, details;
325 
326 		addr_lo = qed_rd(p_hwfn, p_ptt,
327 				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
328 		addr_hi = qed_rd(p_hwfn, p_ptt,
329 				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
330 		details = qed_rd(p_hwfn, p_ptt,
331 				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
332 
333 		DP_NOTICE(p_hwfn,
334 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
335 			  details, tmp, addr_hi, addr_lo);
336 	}
337 
338 	/* Clear the indications */
339 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
340 
341 	return 0;
342 }
343 
344 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
345 {
346 	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
347 }
348 
349 static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
350 {
351 	qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
352 			  "FW assertion!\n");
353 
354 	return -EINVAL;
355 }
356 
357 static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
358 {
359 	DP_INFO(p_hwfn, "General attention 35!\n");
360 
361 	return 0;
362 }
363 
364 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
366 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
367 #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
368 #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
369 
370 #define QED_DB_REC_COUNT                        1000
371 #define QED_DB_REC_INTERVAL                     100
372 
373 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
374 				  struct qed_ptt *p_ptt)
375 {
376 	u32 count = QED_DB_REC_COUNT;
377 	u32 usage = 1;
378 
379 	/* Flush any pending (e)dpms as they may never arrive */
380 	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
381 
382 	/* wait for usage to zero or count to run out. This is necessary since
383 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
384 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
385 	 * half an EDPM in the queue and other half dropped. Another EDPM
386 	 * doorbell to the same address (from doorbell recovery mechanism or
387 	 * from the doorbelling entity) could have first half dropped and second
388 	 * half interpreted as continuation of the first. To prevent such
389 	 * malformed doorbells from reaching the device, flush the queue before
390 	 * releasing the overflow sticky indication.
391 	 */
392 	while (count-- && usage) {
393 		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
394 		udelay(QED_DB_REC_INTERVAL);
395 	}
396 
397 	/* should have been depleted by now */
398 	if (usage) {
399 		DP_NOTICE(p_hwfn->cdev,
400 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
401 			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
402 		return -EBUSY;
403 	}
404 
405 	return 0;
406 }
407 
408 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
409 {
410 	u32 attn_ovfl, cur_ovfl;
411 	int rc;
412 
413 	attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
414 				       &p_hwfn->db_recovery_info.overflow);
415 	cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
416 	if (!cur_ovfl && !attn_ovfl)
417 		return 0;
418 
419 	DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
420 		  attn_ovfl, cur_ovfl);
421 
422 	if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
423 		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
424 		if (rc)
425 			return rc;
426 	}
427 
428 	/* Release overflow sticky indication (stop silently dropping everything) */
429 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
430 
431 	/* Repeat all last doorbells (doorbell drop recovery) */
432 	qed_db_recovery_execute(p_hwfn);
433 
434 	return 0;
435 }
436 
437 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
438 {
439 	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
440 	u32 overflow;
441 	int rc;
442 
443 	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
444 	if (!overflow)
445 		goto out;
446 
447 	/* Run PF doorbell recovery in next periodic handler */
448 	set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
449 
450 	if (!p_hwfn->db_bar_no_edpm) {
451 		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
452 		if (rc)
453 			goto out;
454 	}
455 
456 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
457 out:
458 	/* Schedule the handler even if overflow was not detected */
459 	qed_periodic_db_rec_start(p_hwfn);
460 }
461 
462 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
463 {
464 	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
465 	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
466 
467 	/* int_sts may be zero since all PFs were interrupted for doorbell
468 	 * overflow but another one already handled it. Can abort here. If
469 	 * This PF also requires overflow recovery we will be interrupted again.
470 	 * The masked almost full indication may also be set. Ignoring.
471 	 */
472 	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
473 	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
474 		return 0;
475 
476 	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
477 
478 	/* check if db_drop or overflow happened */
479 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
480 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
481 		/* Obtain data about db drop/overflow */
482 		first_drop_reason = qed_rd(p_hwfn, p_ptt,
483 					   DORQ_REG_DB_DROP_REASON) &
484 		    QED_DORQ_ATTENTION_REASON_MASK;
485 		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
486 		address = qed_rd(p_hwfn, p_ptt,
487 				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
488 		all_drops_reason = qed_rd(p_hwfn, p_ptt,
489 					  DORQ_REG_DB_DROP_DETAILS_REASON);
490 
491 		/* Log info */
492 		DP_NOTICE(p_hwfn->cdev,
493 			  "Doorbell drop occurred\n"
494 			  "Address\t\t0x%08x\t(second BAR address)\n"
495 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
496 			  "Size\t\t0x%04x\t\t(in bytes)\n"
497 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
498 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
499 			  address,
500 			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
501 			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
502 			  first_drop_reason, all_drops_reason);
503 
504 		/* Clear the doorbell drop details and prepare for next drop */
505 		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
506 
507 		/* Mark interrupt as handled (note: even if drop was due to a different
508 		 * reason than overflow we mark as handled)
509 		 */
510 		qed_wr(p_hwfn,
511 		       p_ptt,
512 		       DORQ_REG_INT_STS_WR,
513 		       DORQ_REG_INT_STS_DB_DROP |
514 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
515 
516 		/* If there are no indications other than drop indications, success */
517 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
518 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
519 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
520 			return 0;
521 	}
522 
523 	/* Some other indication was present - non recoverable */
524 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
525 
526 	return -EINVAL;
527 }
528 
529 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
530 {
531 	p_hwfn->db_recovery_info.dorq_attn = true;
532 	qed_dorq_attn_overflow(p_hwfn);
533 
534 	return qed_dorq_attn_int_sts(p_hwfn);
535 }
536 
537 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
538 {
539 	if (p_hwfn->db_recovery_info.dorq_attn)
540 		goto out;
541 
542 	/* Call DORQ callback if the attention was missed */
543 	qed_dorq_attn_cb(p_hwfn);
544 out:
545 	p_hwfn->db_recovery_info.dorq_attn = false;
546 }
547 
548 /* Instead of major changes to the data-structure, we have a some 'special'
549  * identifiers for sources that changed meaning between adapters.
550  */
551 enum aeu_invert_reg_special_type {
552 	AEU_INVERT_REG_SPECIAL_CNIG_0,
553 	AEU_INVERT_REG_SPECIAL_CNIG_1,
554 	AEU_INVERT_REG_SPECIAL_CNIG_2,
555 	AEU_INVERT_REG_SPECIAL_CNIG_3,
556 	AEU_INVERT_REG_SPECIAL_MAX,
557 };
558 
559 static struct aeu_invert_reg_bit
560 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
561 	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
562 	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
563 	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
564 	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
565 };
566 
567 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
568 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
569 	{
570 		{       /* After Invert 1 */
571 			{"GPIO0 function%d",
572 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
573 		}
574 	},
575 
576 	{
577 		{       /* After Invert 2 */
578 			{"PGLUE config_space", ATTENTION_SINGLE,
579 			 NULL, MAX_BLOCK_ID},
580 			{"PGLUE misc_flr", ATTENTION_SINGLE,
581 			 NULL, MAX_BLOCK_ID},
582 			{"PGLUE B RBC", ATTENTION_PAR_INT,
583 			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
584 			{"PGLUE misc_mctp", ATTENTION_SINGLE,
585 			 NULL, MAX_BLOCK_ID},
586 			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
587 			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
588 			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
589 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
590 					  (1 << ATTENTION_OFFSET_SHIFT),
591 			 NULL, MAX_BLOCK_ID},
592 			{"PCIE glue/PXP VPD %d",
593 			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
594 		}
595 	},
596 
597 	{
598 		{       /* After Invert 3 */
599 			{"General Attention %d",
600 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
601 		}
602 	},
603 
604 	{
605 		{       /* After Invert 4 */
606 			{"General Attention 32", ATTENTION_SINGLE |
607 			 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
608 			 MAX_BLOCK_ID},
609 			{"General Attention %d",
610 			 (2 << ATTENTION_LENGTH_SHIFT) |
611 			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
612 			{"General Attention 35", ATTENTION_SINGLE |
613 			 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
614 			 MAX_BLOCK_ID},
615 			{"NWS Parity",
616 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
617 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
618 			 NULL, BLOCK_NWS},
619 			{"NWS Interrupt",
620 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
621 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
622 			 NULL, BLOCK_NWS},
623 			{"NWM Parity",
624 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
625 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
626 			 NULL, BLOCK_NWM},
627 			{"NWM Interrupt",
628 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
629 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
630 			 NULL, BLOCK_NWM},
631 			{"MCP CPU", ATTENTION_SINGLE,
632 			 qed_mcp_attn_cb, MAX_BLOCK_ID},
633 			{"MCP Watchdog timer", ATTENTION_SINGLE,
634 			 NULL, MAX_BLOCK_ID},
635 			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
636 			{"AVS stop status ready", ATTENTION_SINGLE,
637 			 NULL, MAX_BLOCK_ID},
638 			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
639 			{"MSTAT per-path", ATTENTION_PAR_INT,
640 			 NULL, MAX_BLOCK_ID},
641 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
642 			 NULL, MAX_BLOCK_ID},
643 			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
644 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
645 			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
646 			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
647 			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
648 		}
649 	},
650 
651 	{
652 		{       /* After Invert 5 */
653 			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
654 			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
655 			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
656 			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
657 			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
658 			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
659 			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
660 			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
661 			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
662 			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
663 			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
664 			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
665 			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
666 			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
667 			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
668 			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
669 		}
670 	},
671 
672 	{
673 		{       /* After Invert 6 */
674 			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
675 			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
676 			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
677 			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
678 			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
679 			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
680 			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
681 			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
682 			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
683 			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
684 			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
685 			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
686 			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
687 			{"DORQ", ATTENTION_PAR_INT,
688 			 qed_dorq_attn_cb, BLOCK_DORQ},
689 			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
690 			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
691 		}
692 	},
693 
694 	{
695 		{       /* After Invert 7 */
696 			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
697 			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
698 			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
699 			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
700 			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
701 			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
702 			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
703 			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
704 			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
705 			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
706 			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
707 			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
708 			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
709 			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
710 			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
711 			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
712 			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
713 		}
714 	},
715 
716 	{
717 		{       /* After Invert 8 */
718 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
719 			 NULL, BLOCK_PSWRQ2},
720 			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
721 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
722 			 NULL, BLOCK_PSWWR2},
723 			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
724 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
725 			 NULL, BLOCK_PSWRD2},
726 			{"PSWHST", ATTENTION_PAR_INT,
727 			 qed_pswhst_attn_cb, BLOCK_PSWHST},
728 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
729 			 NULL, BLOCK_PSWHST2},
730 			{"GRC",	ATTENTION_PAR_INT,
731 			 qed_grc_attn_cb, BLOCK_GRC},
732 			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
733 			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
734 			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
735 			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
736 			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
737 			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
738 			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
739 			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
740 			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
741 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
742 			 NULL, BLOCK_PGLCS},
743 			{"PERST_B assertion", ATTENTION_SINGLE,
744 			 NULL, MAX_BLOCK_ID},
745 			{"PERST_B deassertion", ATTENTION_SINGLE,
746 			 NULL, MAX_BLOCK_ID},
747 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
748 			 NULL, MAX_BLOCK_ID},
749 		}
750 	},
751 
752 	{
753 		{       /* After Invert 9 */
754 			{"MCP Latched memory", ATTENTION_PAR,
755 			 NULL, MAX_BLOCK_ID},
756 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
757 			 NULL, MAX_BLOCK_ID},
758 			{"MCP Latched ump_tx", ATTENTION_PAR,
759 			 NULL, MAX_BLOCK_ID},
760 			{"MCP Latched scratchpad", ATTENTION_PAR,
761 			 NULL, MAX_BLOCK_ID},
762 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
763 			 NULL, MAX_BLOCK_ID},
764 		}
765 	},
766 };
767 
768 static struct aeu_invert_reg_bit *
769 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
770 		      struct aeu_invert_reg_bit *p_bit)
771 {
772 	if (!QED_IS_BB(p_hwfn->cdev))
773 		return p_bit;
774 
775 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
776 		return p_bit;
777 
778 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
779 				  ATTENTION_BB_SHIFT];
780 }
781 
782 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
783 				   struct aeu_invert_reg_bit *p_bit)
784 {
785 	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
786 		   ATTENTION_PARITY);
787 }
788 
789 #define ATTN_STATE_BITS         (0xfff)
790 #define ATTN_BITS_MASKABLE      (0x3ff)
791 struct qed_sb_attn_info {
792 	/* Virtual & Physical address of the SB */
793 	struct atten_status_block       *sb_attn;
794 	dma_addr_t			sb_phys;
795 
796 	/* Last seen running index */
797 	u16				index;
798 
799 	/* A mask of the AEU bits resulting in a parity error */
800 	u32				parity_mask[NUM_ATTN_REGS];
801 
802 	/* A pointer to the attention description structure */
803 	struct aeu_invert_reg		*p_aeu_desc;
804 
805 	/* Previously asserted attentions, which are still unasserted */
806 	u16				known_attn;
807 
808 	/* Cleanup address for the link's general hw attention */
809 	u32				mfw_attn_addr;
810 };
811 
812 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
813 				      struct qed_sb_attn_info *p_sb_desc)
814 {
815 	u16 rc = 0, index;
816 
817 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
818 	if (p_sb_desc->index != index) {
819 		p_sb_desc->index	= index;
820 		rc		      = QED_SB_ATT_IDX;
821 	}
822 
823 	return rc;
824 }
825 
826 /**
827  * qed_int_assertion() - Handle asserted attention bits.
828  *
829  * @p_hwfn: HW device data.
830  * @asserted_bits: Newly asserted bits.
831  *
832  * Return: Zero value.
833  */
834 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
835 {
836 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
837 	u32 igu_mask;
838 
839 	/* Mask the source of the attention in the IGU */
840 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
841 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
842 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
843 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
844 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
845 
846 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
847 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
848 		   sb_attn_sw->known_attn,
849 		   sb_attn_sw->known_attn | asserted_bits);
850 	sb_attn_sw->known_attn |= asserted_bits;
851 
852 	/* Handle MCP events */
853 	if (asserted_bits & 0x100) {
854 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
855 		/* Clean the MCP attention */
856 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
857 		       sb_attn_sw->mfw_attn_addr, 0);
858 	}
859 
860 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
861 		      GTT_BAR0_MAP_REG_IGU_CMD +
862 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
863 			IGU_CMD_INT_ACK_BASE) << 3),
864 		      (u32)asserted_bits);
865 
866 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
867 		   asserted_bits);
868 
869 	return 0;
870 }
871 
872 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
873 			       enum block_id id,
874 			       enum dbg_attn_type type, bool b_clear)
875 {
876 	struct dbg_attn_block_result attn_results;
877 	enum dbg_status status;
878 
879 	memset(&attn_results, 0, sizeof(attn_results));
880 
881 	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
882 				   b_clear, &attn_results);
883 	if (status != DBG_STATUS_OK)
884 		DP_NOTICE(p_hwfn,
885 			  "Failed to parse attention information [status: %s]\n",
886 			  qed_dbg_get_status_str(status));
887 	else
888 		qed_dbg_parse_attn(p_hwfn, &attn_results);
889 }
890 
891 /**
892  * qed_int_deassertion_aeu_bit() - Handles the effects of a single
893  * cause of the attention.
894  *
895  * @p_hwfn: HW device data.
896  * @p_aeu: Descriptor of an AEU bit which caused the attention.
897  * @aeu_en_reg: Register offset of the AEU enable reg. which configured
898  *              this bit to this group.
899  * @p_bit_name: AEU bit description for logging purposes.
900  * @bitmask: Index of this bit in the aeu_en_reg.
901  *
902  * Return: Zero on success, negative errno otherwise.
903  */
904 static int
905 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
906 			    struct aeu_invert_reg_bit *p_aeu,
907 			    u32 aeu_en_reg,
908 			    const char *p_bit_name, u32 bitmask)
909 {
910 	bool b_fatal = false;
911 	int rc = -EINVAL;
912 	u32 val;
913 
914 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
915 		p_bit_name, bitmask);
916 
917 	/* Call callback before clearing the interrupt status */
918 	if (p_aeu->cb) {
919 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
920 			p_bit_name);
921 		rc = p_aeu->cb(p_hwfn);
922 	}
923 
924 	if (rc)
925 		b_fatal = true;
926 
927 	/* Print HW block interrupt registers */
928 	if (p_aeu->block_index != MAX_BLOCK_ID)
929 		qed_int_attn_print(p_hwfn, p_aeu->block_index,
930 				   ATTN_TYPE_INTERRUPT, !b_fatal);
931 
932 	/* Reach assertion if attention is fatal */
933 	if (b_fatal)
934 		qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
935 				  "`%s': Fatal attention\n",
936 				  p_bit_name);
937 	else /* If the attention is benign, no need to prevent it */
938 		goto out;
939 
940 	/* Prevent this Attention from being asserted in the future */
941 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
942 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
943 	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
944 		p_bit_name);
945 
946 out:
947 	return rc;
948 }
949 
950 /**
951  * qed_int_deassertion_parity() - Handle a single parity AEU source.
952  *
953  * @p_hwfn: HW device data.
954  * @p_aeu: Descriptor of an AEU bit which caused the parity.
955  * @aeu_en_reg: Address of the AEU enable register.
956  * @bit_index: Index (0-31) of an AEU bit.
957  */
958 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
959 				       struct aeu_invert_reg_bit *p_aeu,
960 				       u32 aeu_en_reg, u8 bit_index)
961 {
962 	u32 block_id = p_aeu->block_index, mask, val;
963 
964 	DP_NOTICE(p_hwfn->cdev,
965 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
966 		  p_aeu->bit_name, aeu_en_reg, bit_index);
967 
968 	if (block_id != MAX_BLOCK_ID) {
969 		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
970 
971 		/* In BB, there's a single parity bit for several blocks */
972 		if (block_id == BLOCK_BTB) {
973 			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
974 					   ATTN_TYPE_PARITY, false);
975 			qed_int_attn_print(p_hwfn, BLOCK_MCP,
976 					   ATTN_TYPE_PARITY, false);
977 		}
978 	}
979 
980 	/* Prevent this parity error from being re-asserted */
981 	mask = ~BIT(bit_index);
982 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
983 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
984 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
985 		p_aeu->bit_name);
986 }
987 
988 /**
989  * qed_int_deassertion() - Handle deassertion of previously asserted
990  * attentions.
991  *
992  * @p_hwfn: HW device data.
993  * @deasserted_bits: newly deasserted bits.
994  *
995  * Return: Zero value.
996  */
997 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
998 			       u16 deasserted_bits)
999 {
1000 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1001 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1002 	u8 i, j, k, bit_idx;
1003 	int rc = 0;
1004 
1005 	/* Read the attention registers in the AEU */
1006 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1007 		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1008 					MISC_REG_AEU_AFTER_INVERT_1_IGU +
1009 					i * 0x4);
1010 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1011 			   "Deasserted bits [%d]: %08x\n",
1012 			   i, aeu_inv_arr[i]);
1013 	}
1014 
1015 	/* Find parity attentions first */
1016 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1017 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1018 		u32 parities;
1019 
1020 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1021 		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1022 
1023 		/* Skip register in which no parity bit is currently set */
1024 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1025 		if (!parities)
1026 			continue;
1027 
1028 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1029 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1030 
1031 			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1032 			    !!(parities & BIT(bit_idx)))
1033 				qed_int_deassertion_parity(p_hwfn, p_bit,
1034 							   aeu_en, bit_idx);
1035 
1036 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1037 		}
1038 	}
1039 
1040 	/* Find non-parity cause for attention and act */
1041 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1042 		struct aeu_invert_reg_bit *p_aeu;
1043 
1044 		/* Handle only groups whose attention is currently deasserted */
1045 		if (!(deasserted_bits & (1 << k)))
1046 			continue;
1047 
1048 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1049 			u32 bits;
1050 
1051 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1052 				 i * sizeof(u32) +
1053 				 k * sizeof(u32) * NUM_ATTN_REGS;
1054 
1055 			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1056 			bits = aeu_inv_arr[i] & en;
1057 
1058 			/* Skip if no bit from this group is currently set */
1059 			if (!bits)
1060 				continue;
1061 
1062 			/* Find all set bits from current register which belong
1063 			 * to current group, making them responsible for the
1064 			 * previous assertion.
1065 			 */
1066 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1067 				long unsigned int bitmask;
1068 				u8 bit, bit_len;
1069 
1070 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1071 				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1072 
1073 				bit = bit_idx;
1074 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1075 				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1076 					/* Skip Parity */
1077 					bit++;
1078 					bit_len--;
1079 				}
1080 
1081 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1082 				bitmask >>= bit;
1083 
1084 				if (bitmask) {
1085 					u32 flags = p_aeu->flags;
1086 					char bit_name[30];
1087 					u8 num;
1088 
1089 					num = (u8)find_first_bit(&bitmask,
1090 								 bit_len);
1091 
1092 					/* Some bits represent more than a
1093 					 * a single interrupt. Correctly print
1094 					 * their name.
1095 					 */
1096 					if (ATTENTION_LENGTH(flags) > 2 ||
1097 					    ((flags & ATTENTION_PAR_INT) &&
1098 					     ATTENTION_LENGTH(flags) > 1))
1099 						snprintf(bit_name, 30,
1100 							 p_aeu->bit_name, num);
1101 					else
1102 						strlcpy(bit_name,
1103 							p_aeu->bit_name, 30);
1104 
1105 					/* We now need to pass bitmask in its
1106 					 * correct position.
1107 					 */
1108 					bitmask <<= bit;
1109 
1110 					/* Handle source of the attention */
1111 					qed_int_deassertion_aeu_bit(p_hwfn,
1112 								    p_aeu,
1113 								    aeu_en,
1114 								    bit_name,
1115 								    bitmask);
1116 				}
1117 
1118 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1119 			}
1120 		}
1121 	}
1122 
1123 	/* Handle missed DORQ attention */
1124 	qed_dorq_attn_handler(p_hwfn);
1125 
1126 	/* Clear IGU indication for the deasserted bits */
1127 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1128 				    GTT_BAR0_MAP_REG_IGU_CMD +
1129 				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1130 				      IGU_CMD_INT_ACK_BASE) << 3),
1131 				    ~((u32)deasserted_bits));
1132 
1133 	/* Unmask deasserted attentions in IGU */
1134 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1135 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1136 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1137 
1138 	/* Clear deassertion from inner state */
1139 	sb_attn_sw->known_attn &= ~deasserted_bits;
1140 
1141 	return rc;
1142 }
1143 
1144 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1145 {
1146 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1147 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1148 	u32 attn_bits = 0, attn_acks = 0;
1149 	u16 asserted_bits, deasserted_bits;
1150 	__le16 index;
1151 	int rc = 0;
1152 
1153 	/* Read current attention bits/acks - safeguard against attentions
1154 	 * by guaranting work on a synchronized timeframe
1155 	 */
1156 	do {
1157 		index = p_sb_attn->sb_index;
1158 		/* finish reading index before the loop condition */
1159 		dma_rmb();
1160 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1161 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1162 	} while (index != p_sb_attn->sb_index);
1163 	p_sb_attn->sb_index = index;
1164 
1165 	/* Attention / Deassertion are meaningful (and in correct state)
1166 	 * only when they differ and consistent with known state - deassertion
1167 	 * when previous attention & current ack, and assertion when current
1168 	 * attention with no previous attention
1169 	 */
1170 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1171 		~p_sb_attn_sw->known_attn;
1172 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1173 		p_sb_attn_sw->known_attn;
1174 
1175 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1176 		DP_INFO(p_hwfn,
1177 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1178 			index, attn_bits, attn_acks, asserted_bits,
1179 			deasserted_bits, p_sb_attn_sw->known_attn);
1180 	} else if (asserted_bits == 0x100) {
1181 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1182 			   "MFW indication via attention\n");
1183 	} else {
1184 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1185 			   "MFW indication [deassertion]\n");
1186 	}
1187 
1188 	if (asserted_bits) {
1189 		rc = qed_int_assertion(p_hwfn, asserted_bits);
1190 		if (rc)
1191 			return rc;
1192 	}
1193 
1194 	if (deasserted_bits)
1195 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1196 
1197 	return rc;
1198 }
1199 
1200 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1201 			    void __iomem *igu_addr, u32 ack_cons)
1202 {
1203 	u32 igu_ack;
1204 
1205 	igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1206 		   (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1207 		   (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1208 		   (IGU_SEG_ACCESS_ATTN <<
1209 		    IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1210 
1211 	DIRECT_REG_WR(igu_addr, igu_ack);
1212 
1213 	/* Both segments (interrupts & acks) are written to same place address;
1214 	 * Need to guarantee all commands will be received (in-order) by HW.
1215 	 */
1216 	barrier();
1217 }
1218 
1219 void qed_int_sp_dpc(struct tasklet_struct *t)
1220 {
1221 	struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1222 	struct qed_pi_info *pi_info = NULL;
1223 	struct qed_sb_attn_info *sb_attn;
1224 	struct qed_sb_info *sb_info;
1225 	int arr_size;
1226 	u16 rc = 0;
1227 
1228 	if (!p_hwfn->p_sp_sb) {
1229 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1230 		return;
1231 	}
1232 
1233 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1234 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1235 	if (!sb_info) {
1236 		DP_ERR(p_hwfn->cdev,
1237 		       "Status block is NULL - cannot ack interrupts\n");
1238 		return;
1239 	}
1240 
1241 	if (!p_hwfn->p_sb_attn) {
1242 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1243 		return;
1244 	}
1245 	sb_attn = p_hwfn->p_sb_attn;
1246 
1247 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1248 		   p_hwfn, p_hwfn->my_id);
1249 
1250 	/* Disable ack for def status block. Required both for msix +
1251 	 * inta in non-mask mode, in inta does no harm.
1252 	 */
1253 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1254 
1255 	/* Gather Interrupts/Attentions information */
1256 	if (!sb_info->sb_virt) {
1257 		DP_ERR(p_hwfn->cdev,
1258 		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1259 	} else {
1260 		u32 tmp_index = sb_info->sb_ack;
1261 
1262 		rc = qed_sb_update_sb_idx(sb_info);
1263 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1264 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1265 			   tmp_index, sb_info->sb_ack);
1266 	}
1267 
1268 	if (!sb_attn || !sb_attn->sb_attn) {
1269 		DP_ERR(p_hwfn->cdev,
1270 		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1271 	} else {
1272 		u16 tmp_index = sb_attn->index;
1273 
1274 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1275 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1276 			   "Attention indices: 0x%08x --> 0x%08x\n",
1277 			   tmp_index, sb_attn->index);
1278 	}
1279 
1280 	/* Check if we expect interrupts at this time. if not just ack them */
1281 	if (!(rc & QED_SB_EVENT_MASK)) {
1282 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1283 		return;
1284 	}
1285 
1286 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1287 	if (!p_hwfn->p_dpc_ptt) {
1288 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1289 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1290 		return;
1291 	}
1292 
1293 	if (rc & QED_SB_ATT_IDX)
1294 		qed_int_attentions(p_hwfn);
1295 
1296 	if (rc & QED_SB_IDX) {
1297 		int pi;
1298 
1299 		/* Look for a free index */
1300 		for (pi = 0; pi < arr_size; pi++) {
1301 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1302 			if (pi_info->comp_cb)
1303 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1304 		}
1305 	}
1306 
1307 	if (sb_attn && (rc & QED_SB_ATT_IDX))
1308 		/* This should be done before the interrupts are enabled,
1309 		 * since otherwise a new attention will be generated.
1310 		 */
1311 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1312 
1313 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1314 }
1315 
1316 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1317 {
1318 	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1319 
1320 	if (!p_sb)
1321 		return;
1322 
1323 	if (p_sb->sb_attn)
1324 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1325 				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1326 				  p_sb->sb_attn, p_sb->sb_phys);
1327 	kfree(p_sb);
1328 	p_hwfn->p_sb_attn = NULL;
1329 }
1330 
1331 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1332 				  struct qed_ptt *p_ptt)
1333 {
1334 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1335 
1336 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1337 
1338 	sb_info->index = 0;
1339 	sb_info->known_attn = 0;
1340 
1341 	/* Configure Attention Status Block in IGU */
1342 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1343 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1344 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1345 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1346 }
1347 
1348 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1349 				 struct qed_ptt *p_ptt,
1350 				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1351 {
1352 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1353 	int i, j, k;
1354 
1355 	sb_info->sb_attn = sb_virt_addr;
1356 	sb_info->sb_phys = sb_phy_addr;
1357 
1358 	/* Set the pointer to the AEU descriptors */
1359 	sb_info->p_aeu_desc = aeu_descs;
1360 
1361 	/* Calculate Parity Masks */
1362 	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1363 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1364 		/* j is array index, k is bit index */
1365 		for (j = 0, k = 0; k < 32; j++) {
1366 			struct aeu_invert_reg_bit *p_aeu;
1367 
1368 			p_aeu = &aeu_descs[i].bits[j];
1369 			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1370 				sb_info->parity_mask[i] |= 1 << k;
1371 
1372 			k += ATTENTION_LENGTH(p_aeu->flags);
1373 		}
1374 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1375 			   "Attn Mask [Reg %d]: 0x%08x\n",
1376 			   i, sb_info->parity_mask[i]);
1377 	}
1378 
1379 	/* Set the address of cleanup for the mcp attention */
1380 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1381 				 MISC_REG_AEU_GENERAL_ATTN_0;
1382 
1383 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1384 }
1385 
1386 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1387 				 struct qed_ptt *p_ptt)
1388 {
1389 	struct qed_dev *cdev = p_hwfn->cdev;
1390 	struct qed_sb_attn_info *p_sb;
1391 	dma_addr_t p_phys = 0;
1392 	void *p_virt;
1393 
1394 	/* SB struct */
1395 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1396 	if (!p_sb)
1397 		return -ENOMEM;
1398 
1399 	/* SB ring  */
1400 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1401 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1402 				    &p_phys, GFP_KERNEL);
1403 
1404 	if (!p_virt) {
1405 		kfree(p_sb);
1406 		return -ENOMEM;
1407 	}
1408 
1409 	/* Attention setup */
1410 	p_hwfn->p_sb_attn = p_sb;
1411 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1412 
1413 	return 0;
1414 }
1415 
1416 /* coalescing timeout = timeset << (timer_res + 1) */
1417 #define QED_CAU_DEF_RX_USECS 24
1418 #define QED_CAU_DEF_TX_USECS 48
1419 
1420 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1421 			   struct cau_sb_entry *p_sb_entry,
1422 			   u8 pf_id, u16 vf_number, u8 vf_valid)
1423 {
1424 	struct qed_dev *cdev = p_hwfn->cdev;
1425 	u32 cau_state, params = 0, data = 0;
1426 	u8 timer_res;
1427 
1428 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1429 
1430 	SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1431 	SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1432 	SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1433 	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1434 	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1435 
1436 	cau_state = CAU_HC_DISABLE_STATE;
1437 
1438 	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1439 		cau_state = CAU_HC_ENABLE_STATE;
1440 		if (!cdev->rx_coalesce_usecs)
1441 			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1442 		if (!cdev->tx_coalesce_usecs)
1443 			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1444 	}
1445 
1446 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1447 	if (cdev->rx_coalesce_usecs <= 0x7F)
1448 		timer_res = 0;
1449 	else if (cdev->rx_coalesce_usecs <= 0xFF)
1450 		timer_res = 1;
1451 	else
1452 		timer_res = 2;
1453 
1454 	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1455 
1456 	if (cdev->tx_coalesce_usecs <= 0x7F)
1457 		timer_res = 0;
1458 	else if (cdev->tx_coalesce_usecs <= 0xFF)
1459 		timer_res = 1;
1460 	else
1461 		timer_res = 2;
1462 
1463 	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1464 	p_sb_entry->params = cpu_to_le32(params);
1465 
1466 	SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1467 	SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1468 	p_sb_entry->data = cpu_to_le32(data);
1469 }
1470 
1471 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1472 				struct qed_ptt *p_ptt,
1473 				u16 igu_sb_id,
1474 				u32 pi_index,
1475 				enum qed_coalescing_fsm coalescing_fsm,
1476 				u8 timeset)
1477 {
1478 	u32 sb_offset, pi_offset;
1479 	u32 prod = 0;
1480 
1481 	if (IS_VF(p_hwfn->cdev))
1482 		return;
1483 
1484 	SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1485 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1486 		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1487 	else
1488 		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1489 
1490 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1491 	pi_offset = sb_offset + pi_index;
1492 
1493 	if (p_hwfn->hw_init_done)
1494 		qed_wr(p_hwfn, p_ptt,
1495 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1496 	else
1497 		STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1498 			     prod);
1499 }
1500 
1501 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1502 			 struct qed_ptt *p_ptt,
1503 			 dma_addr_t sb_phys,
1504 			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1505 {
1506 	struct cau_sb_entry sb_entry;
1507 
1508 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1509 			      vf_number, vf_valid);
1510 
1511 	if (p_hwfn->hw_init_done) {
1512 		/* Wide-bus, initialize via DMAE */
1513 		u64 phys_addr = (u64)sb_phys;
1514 
1515 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1516 				  CAU_REG_SB_ADDR_MEMORY +
1517 				  igu_sb_id * sizeof(u64), 2, NULL);
1518 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1519 				  CAU_REG_SB_VAR_MEMORY +
1520 				  igu_sb_id * sizeof(u64), 2, NULL);
1521 	} else {
1522 		/* Initialize Status Block Address */
1523 		STORE_RT_REG_AGG(p_hwfn,
1524 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1525 				 igu_sb_id * 2,
1526 				 sb_phys);
1527 
1528 		STORE_RT_REG_AGG(p_hwfn,
1529 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1530 				 igu_sb_id * 2,
1531 				 sb_entry);
1532 	}
1533 
1534 	/* Configure pi coalescing if set */
1535 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1536 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1537 		u8 timeset, timer_res;
1538 		u8 i;
1539 
1540 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1541 		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1542 			timer_res = 0;
1543 		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1544 			timer_res = 1;
1545 		else
1546 			timer_res = 2;
1547 		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1548 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1549 				    QED_COAL_RX_STATE_MACHINE, timeset);
1550 
1551 		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1552 			timer_res = 0;
1553 		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1554 			timer_res = 1;
1555 		else
1556 			timer_res = 2;
1557 		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1558 		for (i = 0; i < num_tc; i++) {
1559 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1560 					    igu_sb_id, TX_PI(i),
1561 					    QED_COAL_TX_STATE_MACHINE,
1562 					    timeset);
1563 		}
1564 	}
1565 }
1566 
1567 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1568 		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1569 {
1570 	/* zero status block and ack counter */
1571 	sb_info->sb_ack = 0;
1572 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1573 
1574 	if (IS_PF(p_hwfn->cdev))
1575 		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1576 				    sb_info->igu_sb_id, 0, 0);
1577 }
1578 
1579 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1580 {
1581 	struct qed_igu_block *p_block;
1582 	u16 igu_id;
1583 
1584 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1585 	     igu_id++) {
1586 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1587 
1588 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1589 		    !(p_block->status & QED_IGU_STATUS_FREE))
1590 			continue;
1591 
1592 		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1593 			return p_block;
1594 	}
1595 
1596 	return NULL;
1597 }
1598 
1599 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1600 {
1601 	struct qed_igu_block *p_block;
1602 	u16 igu_id;
1603 
1604 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605 	     igu_id++) {
1606 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607 
1608 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609 		    !p_block->is_pf ||
1610 		    p_block->vector_number != vector_id)
1611 			continue;
1612 
1613 		return igu_id;
1614 	}
1615 
1616 	return QED_SB_INVALID_IDX;
1617 }
1618 
1619 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1620 {
1621 	u16 igu_sb_id;
1622 
1623 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1624 	if (sb_id == QED_SP_SB_ID)
1625 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1626 	else if (IS_PF(p_hwfn->cdev))
1627 		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1628 	else
1629 		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1630 
1631 	if (sb_id == QED_SP_SB_ID)
1632 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1633 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1634 	else
1635 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1636 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1637 
1638 	return igu_sb_id;
1639 }
1640 
1641 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1642 		    struct qed_ptt *p_ptt,
1643 		    struct qed_sb_info *sb_info,
1644 		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1645 {
1646 	sb_info->sb_virt = sb_virt_addr;
1647 	sb_info->sb_phys = sb_phy_addr;
1648 
1649 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1650 
1651 	if (sb_id != QED_SP_SB_ID) {
1652 		if (IS_PF(p_hwfn->cdev)) {
1653 			struct qed_igu_info *p_info;
1654 			struct qed_igu_block *p_block;
1655 
1656 			p_info = p_hwfn->hw_info.p_igu_info;
1657 			p_block = &p_info->entry[sb_info->igu_sb_id];
1658 
1659 			p_block->sb_info = sb_info;
1660 			p_block->status &= ~QED_IGU_STATUS_FREE;
1661 			p_info->usage.free_cnt--;
1662 		} else {
1663 			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1664 		}
1665 	}
1666 
1667 	sb_info->cdev = p_hwfn->cdev;
1668 
1669 	/* The igu address will hold the absolute address that needs to be
1670 	 * written to for a specific status block
1671 	 */
1672 	if (IS_PF(p_hwfn->cdev)) {
1673 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1674 						  GTT_BAR0_MAP_REG_IGU_CMD +
1675 						  (sb_info->igu_sb_id << 3);
1676 	} else {
1677 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1678 						  PXP_VF_BAR0_START_IGU +
1679 						  ((IGU_CMD_INT_ACK_BASE +
1680 						    sb_info->igu_sb_id) << 3);
1681 	}
1682 
1683 	sb_info->flags |= QED_SB_INFO_INIT;
1684 
1685 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1686 
1687 	return 0;
1688 }
1689 
1690 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1691 		       struct qed_sb_info *sb_info, u16 sb_id)
1692 {
1693 	struct qed_igu_block *p_block;
1694 	struct qed_igu_info *p_info;
1695 
1696 	if (!sb_info)
1697 		return 0;
1698 
1699 	/* zero status block and ack counter */
1700 	sb_info->sb_ack = 0;
1701 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1702 
1703 	if (IS_VF(p_hwfn->cdev)) {
1704 		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1705 		return 0;
1706 	}
1707 
1708 	p_info = p_hwfn->hw_info.p_igu_info;
1709 	p_block = &p_info->entry[sb_info->igu_sb_id];
1710 
1711 	/* Vector 0 is reserved to Default SB */
1712 	if (!p_block->vector_number) {
1713 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1714 		return -EINVAL;
1715 	}
1716 
1717 	/* Lose reference to client's SB info, and fix counters */
1718 	p_block->sb_info = NULL;
1719 	p_block->status |= QED_IGU_STATUS_FREE;
1720 	p_info->usage.free_cnt++;
1721 
1722 	return 0;
1723 }
1724 
1725 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1726 {
1727 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1728 
1729 	if (!p_sb)
1730 		return;
1731 
1732 	if (p_sb->sb_info.sb_virt)
1733 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1734 				  SB_ALIGNED_SIZE(p_hwfn),
1735 				  p_sb->sb_info.sb_virt,
1736 				  p_sb->sb_info.sb_phys);
1737 	kfree(p_sb);
1738 	p_hwfn->p_sp_sb = NULL;
1739 }
1740 
1741 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1742 {
1743 	struct qed_sb_sp_info *p_sb;
1744 	dma_addr_t p_phys = 0;
1745 	void *p_virt;
1746 
1747 	/* SB struct */
1748 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1749 	if (!p_sb)
1750 		return -ENOMEM;
1751 
1752 	/* SB ring  */
1753 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1754 				    SB_ALIGNED_SIZE(p_hwfn),
1755 				    &p_phys, GFP_KERNEL);
1756 	if (!p_virt) {
1757 		kfree(p_sb);
1758 		return -ENOMEM;
1759 	}
1760 
1761 	/* Status Block setup */
1762 	p_hwfn->p_sp_sb = p_sb;
1763 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1764 			p_phys, QED_SP_SB_ID);
1765 
1766 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1767 
1768 	return 0;
1769 }
1770 
1771 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1772 			qed_int_comp_cb_t comp_cb,
1773 			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1774 {
1775 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1776 	int rc = -ENOMEM;
1777 	u8 pi;
1778 
1779 	/* Look for a free index */
1780 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1781 		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1782 			continue;
1783 
1784 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1785 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1786 		*sb_idx = pi;
1787 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1788 		rc = 0;
1789 		break;
1790 	}
1791 
1792 	return rc;
1793 }
1794 
1795 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1796 {
1797 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1798 
1799 	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1800 		return -ENOMEM;
1801 
1802 	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1803 	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1804 
1805 	return 0;
1806 }
1807 
1808 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1809 {
1810 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1811 }
1812 
1813 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1814 			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1815 {
1816 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1817 
1818 	p_hwfn->cdev->int_mode = int_mode;
1819 	switch (p_hwfn->cdev->int_mode) {
1820 	case QED_INT_MODE_INTA:
1821 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1822 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1823 		break;
1824 
1825 	case QED_INT_MODE_MSI:
1826 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1827 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1828 		break;
1829 
1830 	case QED_INT_MODE_MSIX:
1831 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1832 		break;
1833 	case QED_INT_MODE_POLL:
1834 		break;
1835 	}
1836 
1837 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1838 }
1839 
1840 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1841 				    struct qed_ptt *p_ptt)
1842 {
1843 
1844 	/* Configure AEU signal change to produce attentions */
1845 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1846 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1847 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1848 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1849 
1850 	/* Unmask AEU signals toward IGU */
1851 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1852 }
1853 
1854 int
1855 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1856 		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1857 {
1858 	int rc = 0;
1859 
1860 	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1861 
1862 	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1863 		rc = qed_slowpath_irq_req(p_hwfn);
1864 		if (rc) {
1865 			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1866 			return -EINVAL;
1867 		}
1868 		p_hwfn->b_int_requested = true;
1869 	}
1870 	/* Enable interrupt Generation */
1871 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1872 	p_hwfn->b_int_enabled = 1;
1873 
1874 	return rc;
1875 }
1876 
1877 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1878 {
1879 	p_hwfn->b_int_enabled = 0;
1880 
1881 	if (IS_VF(p_hwfn->cdev))
1882 		return;
1883 
1884 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1885 }
1886 
1887 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1888 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1889 				   struct qed_ptt *p_ptt,
1890 				   u16 igu_sb_id,
1891 				   bool cleanup_set, u16 opaque_fid)
1892 {
1893 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1894 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1895 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1896 
1897 	/* Set the data field */
1898 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1899 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1900 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1901 
1902 	/* Set the control register */
1903 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1904 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1905 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1906 
1907 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1908 
1909 	barrier();
1910 
1911 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1912 
1913 	/* calculate where to read the status bit from */
1914 	sb_bit = 1 << (igu_sb_id % 32);
1915 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1916 
1917 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1918 
1919 	/* Now wait for the command to complete */
1920 	do {
1921 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1922 
1923 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1924 			break;
1925 
1926 		usleep_range(5000, 10000);
1927 	} while (--sleep_cnt);
1928 
1929 	if (!sleep_cnt)
1930 		DP_NOTICE(p_hwfn,
1931 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1932 			  val, igu_sb_id);
1933 }
1934 
1935 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1936 				     struct qed_ptt *p_ptt,
1937 				     u16 igu_sb_id, u16 opaque, bool b_set)
1938 {
1939 	struct qed_igu_block *p_block;
1940 	int pi, i;
1941 
1942 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1943 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1944 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1945 		   igu_sb_id,
1946 		   p_block->function_id,
1947 		   p_block->is_pf, p_block->vector_number);
1948 
1949 	/* Set */
1950 	if (b_set)
1951 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1952 
1953 	/* Clear */
1954 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1955 
1956 	/* Wait for the IGU SB to cleanup */
1957 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1958 		u32 val;
1959 
1960 		val = qed_rd(p_hwfn, p_ptt,
1961 			     IGU_REG_WRITE_DONE_PENDING +
1962 			     ((igu_sb_id / 32) * 4));
1963 		if (val & BIT((igu_sb_id % 32)))
1964 			usleep_range(10, 20);
1965 		else
1966 			break;
1967 	}
1968 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1969 		DP_NOTICE(p_hwfn,
1970 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1971 			  igu_sb_id);
1972 
1973 	/* Clear the CAU for the SB */
1974 	for (pi = 0; pi < 12; pi++)
1975 		qed_wr(p_hwfn, p_ptt,
1976 		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1977 }
1978 
1979 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1980 			      struct qed_ptt *p_ptt,
1981 			      bool b_set, bool b_slowpath)
1982 {
1983 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1984 	struct qed_igu_block *p_block;
1985 	u16 igu_sb_id = 0;
1986 	u32 val = 0;
1987 
1988 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1989 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1990 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1991 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1992 
1993 	for (igu_sb_id = 0;
1994 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1995 		p_block = &p_info->entry[igu_sb_id];
1996 
1997 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1998 		    !p_block->is_pf ||
1999 		    (p_block->status & QED_IGU_STATUS_DSB))
2000 			continue;
2001 
2002 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2003 						p_hwfn->hw_info.opaque_fid,
2004 						b_set);
2005 	}
2006 
2007 	if (b_slowpath)
2008 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2009 						p_info->igu_dsb_id,
2010 						p_hwfn->hw_info.opaque_fid,
2011 						b_set);
2012 }
2013 
2014 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2015 {
2016 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2017 	struct qed_igu_block *p_block;
2018 	int pf_sbs, vf_sbs;
2019 	u16 igu_sb_id;
2020 	u32 val, rval;
2021 
2022 	if (!RESC_NUM(p_hwfn, QED_SB)) {
2023 		p_info->b_allow_pf_vf_change = false;
2024 	} else {
2025 		/* Use the numbers the MFW have provided -
2026 		 * don't forget MFW accounts for the default SB as well.
2027 		 */
2028 		p_info->b_allow_pf_vf_change = true;
2029 
2030 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2031 			DP_INFO(p_hwfn,
2032 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2033 				RESC_NUM(p_hwfn, QED_SB) - 1,
2034 				p_info->usage.cnt);
2035 			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2036 		}
2037 
2038 		if (IS_PF_SRIOV(p_hwfn)) {
2039 			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2040 
2041 			if (vfs != p_info->usage.iov_cnt)
2042 				DP_VERBOSE(p_hwfn,
2043 					   NETIF_MSG_INTR,
2044 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2045 					   p_info->usage.iov_cnt, vfs);
2046 
2047 			/* At this point we know how many SBs we have totally
2048 			 * in IGU + number of PF SBs. So we can validate that
2049 			 * we'd have sufficient for VF.
2050 			 */
2051 			if (vfs > p_info->usage.free_cnt +
2052 			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2053 				DP_NOTICE(p_hwfn,
2054 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2055 					  p_info->usage.free_cnt +
2056 					  p_info->usage.free_cnt_iov,
2057 					  p_info->usage.cnt, vfs);
2058 				return -EINVAL;
2059 			}
2060 
2061 			/* Currently cap the number of VFs SBs by the
2062 			 * number of VFs.
2063 			 */
2064 			p_info->usage.iov_cnt = vfs;
2065 		}
2066 	}
2067 
2068 	/* Mark all SBs as free, now in the right PF/VFs division */
2069 	p_info->usage.free_cnt = p_info->usage.cnt;
2070 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2071 	p_info->usage.orig = p_info->usage.cnt;
2072 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2073 
2074 	/* We now proceed to re-configure the IGU cam to reflect the initial
2075 	 * configuration. We can start with the Default SB.
2076 	 */
2077 	pf_sbs = p_info->usage.cnt;
2078 	vf_sbs = p_info->usage.iov_cnt;
2079 
2080 	for (igu_sb_id = p_info->igu_dsb_id;
2081 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2082 		p_block = &p_info->entry[igu_sb_id];
2083 		val = 0;
2084 
2085 		if (!(p_block->status & QED_IGU_STATUS_VALID))
2086 			continue;
2087 
2088 		if (p_block->status & QED_IGU_STATUS_DSB) {
2089 			p_block->function_id = p_hwfn->rel_pf_id;
2090 			p_block->is_pf = 1;
2091 			p_block->vector_number = 0;
2092 			p_block->status = QED_IGU_STATUS_VALID |
2093 					  QED_IGU_STATUS_PF |
2094 					  QED_IGU_STATUS_DSB;
2095 		} else if (pf_sbs) {
2096 			pf_sbs--;
2097 			p_block->function_id = p_hwfn->rel_pf_id;
2098 			p_block->is_pf = 1;
2099 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2100 			p_block->status = QED_IGU_STATUS_VALID |
2101 					  QED_IGU_STATUS_PF |
2102 					  QED_IGU_STATUS_FREE;
2103 		} else if (vf_sbs) {
2104 			p_block->function_id =
2105 			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2106 			    p_info->usage.iov_cnt - vf_sbs;
2107 			p_block->is_pf = 0;
2108 			p_block->vector_number = 0;
2109 			p_block->status = QED_IGU_STATUS_VALID |
2110 					  QED_IGU_STATUS_FREE;
2111 			vf_sbs--;
2112 		} else {
2113 			p_block->function_id = 0;
2114 			p_block->is_pf = 0;
2115 			p_block->vector_number = 0;
2116 		}
2117 
2118 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2119 			  p_block->function_id);
2120 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2121 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2122 			  p_block->vector_number);
2123 
2124 		/* VF entries would be enabled when VF is initializaed */
2125 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2126 
2127 		rval = qed_rd(p_hwfn, p_ptt,
2128 			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2129 
2130 		if (rval != val) {
2131 			qed_wr(p_hwfn, p_ptt,
2132 			       IGU_REG_MAPPING_MEMORY +
2133 			       sizeof(u32) * igu_sb_id, val);
2134 
2135 			DP_VERBOSE(p_hwfn,
2136 				   NETIF_MSG_INTR,
2137 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2138 				   igu_sb_id,
2139 				   p_block->function_id,
2140 				   p_block->is_pf,
2141 				   p_block->vector_number, rval, val);
2142 		}
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2149 				       struct qed_ptt *p_ptt, u16 igu_sb_id)
2150 {
2151 	u32 val = qed_rd(p_hwfn, p_ptt,
2152 			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2153 	struct qed_igu_block *p_block;
2154 
2155 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2156 
2157 	/* Fill the block information */
2158 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2159 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2160 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2161 	p_block->igu_sb_id = igu_sb_id;
2162 }
2163 
2164 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2165 {
2166 	struct qed_igu_info *p_igu_info;
2167 	struct qed_igu_block *p_block;
2168 	u32 min_vf = 0, max_vf = 0;
2169 	u16 igu_sb_id;
2170 
2171 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2172 	if (!p_hwfn->hw_info.p_igu_info)
2173 		return -ENOMEM;
2174 
2175 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2176 
2177 	/* Distinguish between existent and non-existent default SB */
2178 	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2179 
2180 	/* Find the range of VF ids whose SB belong to this PF */
2181 	if (p_hwfn->cdev->p_iov_info) {
2182 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2183 
2184 		min_vf	= p_iov->first_vf_in_pf;
2185 		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2186 	}
2187 
2188 	for (igu_sb_id = 0;
2189 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2190 		/* Read current entry; Notice it might not belong to this PF */
2191 		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2192 		p_block = &p_igu_info->entry[igu_sb_id];
2193 
2194 		if ((p_block->is_pf) &&
2195 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2196 			p_block->status = QED_IGU_STATUS_PF |
2197 					  QED_IGU_STATUS_VALID |
2198 					  QED_IGU_STATUS_FREE;
2199 
2200 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2201 				p_igu_info->usage.cnt++;
2202 		} else if (!(p_block->is_pf) &&
2203 			   (p_block->function_id >= min_vf) &&
2204 			   (p_block->function_id < max_vf)) {
2205 			/* Available for VFs of this PF */
2206 			p_block->status = QED_IGU_STATUS_VALID |
2207 					  QED_IGU_STATUS_FREE;
2208 
2209 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2210 				p_igu_info->usage.iov_cnt++;
2211 		}
2212 
2213 		/* Mark the First entry belonging to the PF or its VFs
2214 		 * as the default SB [we'll reset IGU prior to first usage].
2215 		 */
2216 		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2217 		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2218 			p_igu_info->igu_dsb_id = igu_sb_id;
2219 			p_block->status |= QED_IGU_STATUS_DSB;
2220 		}
2221 
2222 		/* limit number of prints by having each PF print only its
2223 		 * entries with the exception of PF0 which would print
2224 		 * everything.
2225 		 */
2226 		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2227 		    (p_hwfn->abs_pf_id == 0)) {
2228 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2229 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2230 				   igu_sb_id, p_block->function_id,
2231 				   p_block->is_pf, p_block->vector_number);
2232 		}
2233 	}
2234 
2235 	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2236 		DP_NOTICE(p_hwfn,
2237 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2238 			  p_igu_info->igu_dsb_id);
2239 		return -EINVAL;
2240 	}
2241 
2242 	/* All non default SB are considered free at this point */
2243 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2244 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2245 
2246 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2247 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2248 		   p_igu_info->igu_dsb_id,
2249 		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2250 
2251 	return 0;
2252 }
2253 
2254 /**
2255  * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2256  *
2257  * @p_hwfn: HW device data.
2258  */
2259 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2260 {
2261 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2262 
2263 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2264 }
2265 
2266 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2267 {
2268 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2269 			       IGU_CMD_INT_ACK_BASE;
2270 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2271 			       IGU_CMD_INT_ACK_BASE;
2272 	u32 intr_status_hi = 0, intr_status_lo = 0;
2273 	u64 intr_status = 0;
2274 
2275 	intr_status_lo = REG_RD(p_hwfn,
2276 				GTT_BAR0_MAP_REG_IGU_CMD +
2277 				lsb_igu_cmd_addr * 8);
2278 	intr_status_hi = REG_RD(p_hwfn,
2279 				GTT_BAR0_MAP_REG_IGU_CMD +
2280 				msb_igu_cmd_addr * 8);
2281 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2282 
2283 	return intr_status;
2284 }
2285 
2286 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2287 {
2288 	tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
2289 	p_hwfn->b_sp_dpc_enabled = true;
2290 }
2291 
2292 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2293 {
2294 	int rc = 0;
2295 
2296 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2297 	if (rc)
2298 		return rc;
2299 
2300 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2301 
2302 	return rc;
2303 }
2304 
2305 void qed_int_free(struct qed_hwfn *p_hwfn)
2306 {
2307 	qed_int_sp_sb_free(p_hwfn);
2308 	qed_int_sb_attn_free(p_hwfn);
2309 }
2310 
2311 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2312 {
2313 	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2314 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2315 	qed_int_sp_dpc_setup(p_hwfn);
2316 }
2317 
2318 void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2319 			 struct qed_sb_cnt_info *p_sb_cnt_info)
2320 {
2321 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2322 
2323 	if (!info || !p_sb_cnt_info)
2324 		return;
2325 
2326 	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2327 }
2328 
2329 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2330 {
2331 	int i;
2332 
2333 	for_each_hwfn(cdev, i)
2334 		cdev->hwfns[i].b_int_requested = false;
2335 }
2336 
2337 void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2338 {
2339 	cdev->attn_clr_en = clr_enable;
2340 }
2341 
2342 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2343 			  u8 timer_res, u16 sb_id, bool tx)
2344 {
2345 	struct cau_sb_entry sb_entry;
2346 	u32 params;
2347 	int rc;
2348 
2349 	if (!p_hwfn->hw_init_done) {
2350 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2351 		return -EINVAL;
2352 	}
2353 
2354 	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2355 			       sb_id * sizeof(u64),
2356 			       (u64)(uintptr_t)&sb_entry, 2, NULL);
2357 	if (rc) {
2358 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2359 		return rc;
2360 	}
2361 
2362 	params = le32_to_cpu(sb_entry.params);
2363 
2364 	if (tx)
2365 		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2366 	else
2367 		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2368 
2369 	sb_entry.params = cpu_to_le32(params);
2370 
2371 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2372 			       (u64)(uintptr_t)&sb_entry,
2373 			       CAU_REG_SB_VAR_MEMORY +
2374 			       sb_id * sizeof(u64), 2, NULL);
2375 	if (rc) {
2376 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2377 		return rc;
2378 	}
2379 
2380 	return rc;
2381 }
2382