1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55 
56 struct qed_pi_info {
57 	qed_int_comp_cb_t	comp_cb;
58 	void			*cookie;
59 };
60 
61 struct qed_sb_sp_info {
62 	struct qed_sb_info sb_info;
63 
64 	/* per protocol index data */
65 	struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67 
68 enum qed_attention_type {
69 	QED_ATTN_TYPE_ATTN,
70 	QED_ATTN_TYPE_PARITY,
71 };
72 
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75 
76 struct aeu_invert_reg_bit {
77 	char bit_name[30];
78 
79 #define ATTENTION_PARITY                (1 << 0)
80 
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84 					 ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88 					 ATTENTION_PARITY)
89 
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93 
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98 
99 	unsigned int flags;
100 
101 	/* Callback to call if attention will be triggered */
102 	int (*cb)(struct qed_hwfn *p_hwfn);
103 
104 	enum block_id block_index;
105 };
106 
107 struct aeu_invert_reg {
108 	struct aeu_invert_reg_bit bits[32];
109 };
110 
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113 
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118 
119 	/* This might occur on certain instances; Log it once then mask it */
120 	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 		tmp);
122 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 	       0xffffffff);
124 
125 	return 0;
126 }
127 
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 			 PSWHST_REG_INCORRECT_ACCESS_VALID);
145 
146 	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 		u32 addr, data, length;
148 
149 		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 			      PSWHST_REG_INCORRECT_ACCESS_DATA);
153 		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155 
156 		DP_INFO(p_hwfn->cdev,
157 			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 			addr, length,
159 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 			(u8) GET_FIELD(data,
162 				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 			(u8) GET_FIELD(data,
164 				       ATTENTION_INCORRECT_ACCESS_CLIENT),
165 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 			(u8) GET_FIELD(data,
167 				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 			data);
169 	}
170 
171 	return 0;
172 }
173 
174 #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
177 #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
180 #define QED_GRC_ATTENTION_PF_MASK	(0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT	(0)
182 #define QED_GRC_ATTENTION_VF_MASK	(0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT	(4)
184 #define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
186 #define QED_GRC_ATTENTION_PRIV_VF	(0)
187 static const char *attn_master_to_str(u8 master)
188 {
189 	switch (master) {
190 	case 1: return "PXP";
191 	case 2: return "MCP";
192 	case 3: return "MSDM";
193 	case 4: return "PSDM";
194 	case 5: return "YSDM";
195 	case 6: return "USDM";
196 	case 7: return "TSDM";
197 	case 8: return "XSDM";
198 	case 9: return "DBU";
199 	case 10: return "DMAE";
200 	default:
201 		return "Unknown";
202 	}
203 }
204 
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207 	u32 tmp, tmp2;
208 
209 	/* We've already cleared the timeout interrupt register, so we learn
210 	 * of interrupts via the validity register
211 	 */
212 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 		goto out;
216 
217 	/* Read the GRC timeout information */
218 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222 
223 	DP_INFO(p_hwfn->cdev,
224 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 		tmp2, tmp,
226 		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232 		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233 
234 out:
235 	/* Regardles of anything else, clean the validity bit */
236 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 	return 0;
239 }
240 
241 #define PGLUE_ATTENTION_VALID			(1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID		(1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
255 #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
258 static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259 {
260 	u32 tmp;
261 
262 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263 		     PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264 	if (tmp & PGLUE_ATTENTION_VALID) {
265 		u32 addr_lo, addr_hi, details;
266 
267 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270 				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272 				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
273 
274 		DP_INFO(p_hwfn,
275 			"Illegal write by chip to [%08x:%08x] blocked.\n"
276 			"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277 			"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278 			addr_hi, addr_lo, details,
279 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281 			GET_FIELD(details,
282 				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283 			tmp,
284 			GET_FIELD(tmp,
285 				  PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286 			GET_FIELD(tmp,
287 				  PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288 			GET_FIELD(tmp,
289 				  PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290 	}
291 
292 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293 		     PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 	if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 		u32 addr_lo, addr_hi, details;
296 
297 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298 				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300 				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302 				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303 
304 		DP_INFO(p_hwfn,
305 			"Illegal read by chip from [%08x:%08x] blocked.\n"
306 			" Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 			" Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 			addr_hi, addr_lo, details,
309 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 			GET_FIELD(details,
312 				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 			tmp,
314 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315 									 : 0,
316 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318 									: 0);
319 	}
320 
321 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322 		     PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 	if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 		DP_INFO(p_hwfn, "ICPL error - %08x\n", tmp);
325 
326 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327 		     PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328 	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329 		u32 addr_hi, addr_lo;
330 
331 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335 
336 		DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337 			tmp, addr_hi, addr_lo);
338 	}
339 
340 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341 		     PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342 	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343 		u32 addr_hi, addr_lo, details;
344 
345 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346 				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348 				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350 				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351 
352 		DP_INFO(p_hwfn,
353 			"ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354 			details, tmp, addr_hi, addr_lo);
355 	}
356 
357 	/* Clear the indications */
358 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359 	       PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360 
361 	return 0;
362 }
363 
364 #define QED_DORQ_ATTENTION_REASON_MASK	(0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_SIZE_MASK	(0x7f)
367 #define QED_DORQ_ATTENTION_SIZE_SHIFT	(16)
368 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369 {
370 	u32 reason;
371 
372 	reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373 			QED_DORQ_ATTENTION_REASON_MASK;
374 	if (reason) {
375 		u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376 				     DORQ_REG_DB_DROP_DETAILS);
377 
378 		DP_INFO(p_hwfn->cdev,
379 			"DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
380 			qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381 			       DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382 			(u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383 			GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384 			reason);
385 	}
386 
387 	return -EINVAL;
388 }
389 
390 /* Instead of major changes to the data-structure, we have a some 'special'
391  * identifiers for sources that changed meaning between adapters.
392  */
393 enum aeu_invert_reg_special_type {
394 	AEU_INVERT_REG_SPECIAL_CNIG_0,
395 	AEU_INVERT_REG_SPECIAL_CNIG_1,
396 	AEU_INVERT_REG_SPECIAL_CNIG_2,
397 	AEU_INVERT_REG_SPECIAL_CNIG_3,
398 	AEU_INVERT_REG_SPECIAL_MAX,
399 };
400 
401 static struct aeu_invert_reg_bit
402 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403 	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404 	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405 	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406 	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407 };
408 
409 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
410 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411 	{
412 		{       /* After Invert 1 */
413 			{"GPIO0 function%d",
414 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
415 		}
416 	},
417 
418 	{
419 		{       /* After Invert 2 */
420 			{"PGLUE config_space", ATTENTION_SINGLE,
421 			 NULL, MAX_BLOCK_ID},
422 			{"PGLUE misc_flr", ATTENTION_SINGLE,
423 			 NULL, MAX_BLOCK_ID},
424 			{"PGLUE B RBC", ATTENTION_PAR_INT,
425 			 qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426 			{"PGLUE misc_mctp", ATTENTION_SINGLE,
427 			 NULL, MAX_BLOCK_ID},
428 			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429 			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
430 			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
431 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
432 					  (1 << ATTENTION_OFFSET_SHIFT),
433 			 NULL, MAX_BLOCK_ID},
434 			{"PCIE glue/PXP VPD %d",
435 			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
436 		}
437 	},
438 
439 	{
440 		{       /* After Invert 3 */
441 			{"General Attention %d",
442 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
443 		}
444 	},
445 
446 	{
447 		{       /* After Invert 4 */
448 			{"General Attention 32", ATTENTION_SINGLE,
449 			 NULL, MAX_BLOCK_ID},
450 			{"General Attention %d",
451 			 (2 << ATTENTION_LENGTH_SHIFT) |
452 			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
453 			{"General Attention 35", ATTENTION_SINGLE,
454 			 NULL, MAX_BLOCK_ID},
455 			{"NWS Parity",
456 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458 			 NULL, BLOCK_NWS},
459 			{"NWS Interrupt",
460 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462 			 NULL, BLOCK_NWS},
463 			{"NWM Parity",
464 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466 			 NULL, BLOCK_NWM},
467 			{"NWM Interrupt",
468 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470 			 NULL, BLOCK_NWM},
471 			{"MCP CPU", ATTENTION_SINGLE,
472 			 qed_mcp_attn_cb, MAX_BLOCK_ID},
473 			{"MCP Watchdog timer", ATTENTION_SINGLE,
474 			 NULL, MAX_BLOCK_ID},
475 			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
476 			{"AVS stop status ready", ATTENTION_SINGLE,
477 			 NULL, MAX_BLOCK_ID},
478 			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479 			{"MSTAT per-path", ATTENTION_PAR_INT,
480 			 NULL, MAX_BLOCK_ID},
481 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
482 			 NULL, MAX_BLOCK_ID},
483 			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485 			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486 			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487 			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
488 		}
489 	},
490 
491 	{
492 		{       /* After Invert 5 */
493 			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494 			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495 			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496 			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497 			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498 			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499 			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500 			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501 			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502 			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503 			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504 			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505 			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506 			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507 			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508 			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
509 		}
510 	},
511 
512 	{
513 		{       /* After Invert 6 */
514 			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515 			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516 			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517 			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518 			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519 			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520 			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521 			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522 			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523 			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524 			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525 			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526 			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527 			{"DORQ", ATTENTION_PAR_INT,
528 			 qed_dorq_attn_cb, BLOCK_DORQ},
529 			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530 			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
531 		}
532 	},
533 
534 	{
535 		{       /* After Invert 7 */
536 			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537 			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538 			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539 			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540 			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541 			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542 			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543 			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544 			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545 			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546 			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547 			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548 			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549 			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550 			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551 			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552 			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
553 		}
554 	},
555 
556 	{
557 		{       /* After Invert 8 */
558 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559 			 NULL, BLOCK_PSWRQ2},
560 			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562 			 NULL, BLOCK_PSWWR2},
563 			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565 			 NULL, BLOCK_PSWRD2},
566 			{"PSWHST", ATTENTION_PAR_INT,
567 			 qed_pswhst_attn_cb, BLOCK_PSWHST},
568 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569 			 NULL, BLOCK_PSWHST2},
570 			{"GRC",	ATTENTION_PAR_INT,
571 			 qed_grc_attn_cb, BLOCK_GRC},
572 			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573 			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574 			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575 			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576 			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577 			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578 			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579 			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580 			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
581 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
582 			 NULL, BLOCK_PGLCS},
583 			{"PERST_B assertion", ATTENTION_SINGLE,
584 			 NULL, MAX_BLOCK_ID},
585 			{"PERST_B deassertion", ATTENTION_SINGLE,
586 			 NULL, MAX_BLOCK_ID},
587 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
588 			 NULL, MAX_BLOCK_ID},
589 		}
590 	},
591 
592 	{
593 		{       /* After Invert 9 */
594 			{"MCP Latched memory", ATTENTION_PAR,
595 			 NULL, MAX_BLOCK_ID},
596 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
597 			 NULL, MAX_BLOCK_ID},
598 			{"MCP Latched ump_tx", ATTENTION_PAR,
599 			 NULL, MAX_BLOCK_ID},
600 			{"MCP Latched scratchpad", ATTENTION_PAR,
601 			 NULL, MAX_BLOCK_ID},
602 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
603 			 NULL, MAX_BLOCK_ID},
604 		}
605 	},
606 };
607 
608 static struct aeu_invert_reg_bit *
609 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610 		      struct aeu_invert_reg_bit *p_bit)
611 {
612 	if (!QED_IS_BB(p_hwfn->cdev))
613 		return p_bit;
614 
615 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616 		return p_bit;
617 
618 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619 				  ATTENTION_BB_SHIFT];
620 }
621 
622 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623 				   struct aeu_invert_reg_bit *p_bit)
624 {
625 	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626 		   ATTENTION_PARITY);
627 }
628 
629 #define ATTN_STATE_BITS         (0xfff)
630 #define ATTN_BITS_MASKABLE      (0x3ff)
631 struct qed_sb_attn_info {
632 	/* Virtual & Physical address of the SB */
633 	struct atten_status_block       *sb_attn;
634 	dma_addr_t			sb_phys;
635 
636 	/* Last seen running index */
637 	u16				index;
638 
639 	/* A mask of the AEU bits resulting in a parity error */
640 	u32				parity_mask[NUM_ATTN_REGS];
641 
642 	/* A pointer to the attention description structure */
643 	struct aeu_invert_reg		*p_aeu_desc;
644 
645 	/* Previously asserted attentions, which are still unasserted */
646 	u16				known_attn;
647 
648 	/* Cleanup address for the link's general hw attention */
649 	u32				mfw_attn_addr;
650 };
651 
652 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
653 				      struct qed_sb_attn_info *p_sb_desc)
654 {
655 	u16 rc = 0, index;
656 
657 	/* Make certain HW write took affect */
658 	mmiowb();
659 
660 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661 	if (p_sb_desc->index != index) {
662 		p_sb_desc->index	= index;
663 		rc		      = QED_SB_ATT_IDX;
664 	}
665 
666 	/* Make certain we got a consistent view with HW */
667 	mmiowb();
668 
669 	return rc;
670 }
671 
672 /**
673  *  @brief qed_int_assertion - handles asserted attention bits
674  *
675  *  @param p_hwfn
676  *  @param asserted_bits newly asserted bits
677  *  @return int
678  */
679 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
680 {
681 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682 	u32 igu_mask;
683 
684 	/* Mask the source of the attention in the IGU */
685 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
686 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690 
691 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
693 		   sb_attn_sw->known_attn,
694 		   sb_attn_sw->known_attn | asserted_bits);
695 	sb_attn_sw->known_attn |= asserted_bits;
696 
697 	/* Handle MCP events */
698 	if (asserted_bits & 0x100) {
699 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700 		/* Clean the MCP attention */
701 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702 		       sb_attn_sw->mfw_attn_addr, 0);
703 	}
704 
705 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706 		      GTT_BAR0_MAP_REG_IGU_CMD +
707 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
708 			IGU_CMD_INT_ACK_BASE) << 3),
709 		      (u32)asserted_bits);
710 
711 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712 		   asserted_bits);
713 
714 	return 0;
715 }
716 
717 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718 			       enum block_id id,
719 			       enum dbg_attn_type type, bool b_clear)
720 {
721 	struct dbg_attn_block_result attn_results;
722 	enum dbg_status status;
723 
724 	memset(&attn_results, 0, sizeof(attn_results));
725 
726 	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727 				   b_clear, &attn_results);
728 	if (status != DBG_STATUS_OK)
729 		DP_NOTICE(p_hwfn,
730 			  "Failed to parse attention information [status: %s]\n",
731 			  qed_dbg_get_status_str(status));
732 	else
733 		qed_dbg_parse_attn(p_hwfn, &attn_results);
734 }
735 
736 /**
737  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738  * cause of the attention
739  *
740  * @param p_hwfn
741  * @param p_aeu - descriptor of an AEU bit which caused the attention
742  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743  *  this bit to this group.
744  * @param bit_index - index of this bit in the aeu_en_reg
745  *
746  * @return int
747  */
748 static int
749 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750 			    struct aeu_invert_reg_bit *p_aeu,
751 			    u32 aeu_en_reg,
752 			    const char *p_bit_name, u32 bitmask)
753 {
754 	bool b_fatal = false;
755 	int rc = -EINVAL;
756 	u32 val;
757 
758 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
759 		p_bit_name, bitmask);
760 
761 	/* Call callback before clearing the interrupt status */
762 	if (p_aeu->cb) {
763 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
764 			p_bit_name);
765 		rc = p_aeu->cb(p_hwfn);
766 	}
767 
768 	if (rc)
769 		b_fatal = true;
770 
771 	/* Print HW block interrupt registers */
772 	if (p_aeu->block_index != MAX_BLOCK_ID)
773 		qed_int_attn_print(p_hwfn, p_aeu->block_index,
774 				   ATTN_TYPE_INTERRUPT, !b_fatal);
775 
776 
777 	/* If the attention is benign, no need to prevent it */
778 	if (!rc)
779 		goto out;
780 
781 	/* Prevent this Attention from being asserted in the future */
782 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
783 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
784 	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
785 		p_bit_name);
786 
787 out:
788 	return rc;
789 }
790 
791 /**
792  * @brief qed_int_deassertion_parity - handle a single parity AEU source
793  *
794  * @param p_hwfn
795  * @param p_aeu - descriptor of an AEU bit which caused the parity
796  * @param aeu_en_reg - address of the AEU enable register
797  * @param bit_index
798  */
799 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
800 				       struct aeu_invert_reg_bit *p_aeu,
801 				       u32 aeu_en_reg, u8 bit_index)
802 {
803 	u32 block_id = p_aeu->block_index, mask, val;
804 
805 	DP_NOTICE(p_hwfn->cdev,
806 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
807 		  p_aeu->bit_name, aeu_en_reg, bit_index);
808 
809 	if (block_id != MAX_BLOCK_ID) {
810 		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
811 
812 		/* In BB, there's a single parity bit for several blocks */
813 		if (block_id == BLOCK_BTB) {
814 			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
815 					   ATTN_TYPE_PARITY, false);
816 			qed_int_attn_print(p_hwfn, BLOCK_MCP,
817 					   ATTN_TYPE_PARITY, false);
818 		}
819 	}
820 
821 	/* Prevent this parity error from being re-asserted */
822 	mask = ~BIT(bit_index);
823 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
824 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
825 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
826 		p_aeu->bit_name);
827 }
828 
829 /**
830  * @brief - handles deassertion of previously asserted attentions.
831  *
832  * @param p_hwfn
833  * @param deasserted_bits - newly deasserted bits
834  * @return int
835  *
836  */
837 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
838 			       u16 deasserted_bits)
839 {
840 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
841 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
842 	u8 i, j, k, bit_idx;
843 	int rc = 0;
844 
845 	/* Read the attention registers in the AEU */
846 	for (i = 0; i < NUM_ATTN_REGS; i++) {
847 		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
848 					MISC_REG_AEU_AFTER_INVERT_1_IGU +
849 					i * 0x4);
850 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
851 			   "Deasserted bits [%d]: %08x\n",
852 			   i, aeu_inv_arr[i]);
853 	}
854 
855 	/* Find parity attentions first */
856 	for (i = 0; i < NUM_ATTN_REGS; i++) {
857 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
858 		u32 parities;
859 
860 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
861 		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
862 
863 		/* Skip register in which no parity bit is currently set */
864 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
865 		if (!parities)
866 			continue;
867 
868 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870 
871 			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
872 			    !!(parities & BIT(bit_idx)))
873 				qed_int_deassertion_parity(p_hwfn, p_bit,
874 							   aeu_en, bit_idx);
875 
876 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
877 		}
878 	}
879 
880 	/* Find non-parity cause for attention and act */
881 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
882 		struct aeu_invert_reg_bit *p_aeu;
883 
884 		/* Handle only groups whose attention is currently deasserted */
885 		if (!(deasserted_bits & (1 << k)))
886 			continue;
887 
888 		for (i = 0; i < NUM_ATTN_REGS; i++) {
889 			u32 bits;
890 
891 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892 				 i * sizeof(u32) +
893 				 k * sizeof(u32) * NUM_ATTN_REGS;
894 
895 			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
896 			bits = aeu_inv_arr[i] & en;
897 
898 			/* Skip if no bit from this group is currently set */
899 			if (!bits)
900 				continue;
901 
902 			/* Find all set bits from current register which belong
903 			 * to current group, making them responsible for the
904 			 * previous assertion.
905 			 */
906 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
907 				long unsigned int bitmask;
908 				u8 bit, bit_len;
909 
910 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
911 				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
912 
913 				bit = bit_idx;
914 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
915 				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
916 					/* Skip Parity */
917 					bit++;
918 					bit_len--;
919 				}
920 
921 				bitmask = bits & (((1 << bit_len) - 1) << bit);
922 				bitmask >>= bit;
923 
924 				if (bitmask) {
925 					u32 flags = p_aeu->flags;
926 					char bit_name[30];
927 					u8 num;
928 
929 					num = (u8)find_first_bit(&bitmask,
930 								 bit_len);
931 
932 					/* Some bits represent more than a
933 					 * a single interrupt. Correctly print
934 					 * their name.
935 					 */
936 					if (ATTENTION_LENGTH(flags) > 2 ||
937 					    ((flags & ATTENTION_PAR_INT) &&
938 					     ATTENTION_LENGTH(flags) > 1))
939 						snprintf(bit_name, 30,
940 							 p_aeu->bit_name, num);
941 					else
942 						strncpy(bit_name,
943 							p_aeu->bit_name, 30);
944 
945 					/* We now need to pass bitmask in its
946 					 * correct position.
947 					 */
948 					bitmask <<= bit;
949 
950 					/* Handle source of the attention */
951 					qed_int_deassertion_aeu_bit(p_hwfn,
952 								    p_aeu,
953 								    aeu_en,
954 								    bit_name,
955 								    bitmask);
956 				}
957 
958 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
959 			}
960 		}
961 	}
962 
963 	/* Clear IGU indication for the deasserted bits */
964 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
965 				    GTT_BAR0_MAP_REG_IGU_CMD +
966 				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
967 				      IGU_CMD_INT_ACK_BASE) << 3),
968 				    ~((u32)deasserted_bits));
969 
970 	/* Unmask deasserted attentions in IGU */
971 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
972 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
973 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
974 
975 	/* Clear deassertion from inner state */
976 	sb_attn_sw->known_attn &= ~deasserted_bits;
977 
978 	return rc;
979 }
980 
981 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
982 {
983 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
984 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
985 	u32 attn_bits = 0, attn_acks = 0;
986 	u16 asserted_bits, deasserted_bits;
987 	__le16 index;
988 	int rc = 0;
989 
990 	/* Read current attention bits/acks - safeguard against attentions
991 	 * by guaranting work on a synchronized timeframe
992 	 */
993 	do {
994 		index = p_sb_attn->sb_index;
995 		/* finish reading index before the loop condition */
996 		dma_rmb();
997 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
998 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
999 	} while (index != p_sb_attn->sb_index);
1000 	p_sb_attn->sb_index = index;
1001 
1002 	/* Attention / Deassertion are meaningful (and in correct state)
1003 	 * only when they differ and consistent with known state - deassertion
1004 	 * when previous attention & current ack, and assertion when current
1005 	 * attention with no previous attention
1006 	 */
1007 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1008 		~p_sb_attn_sw->known_attn;
1009 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1010 		p_sb_attn_sw->known_attn;
1011 
1012 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1013 		DP_INFO(p_hwfn,
1014 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1015 			index, attn_bits, attn_acks, asserted_bits,
1016 			deasserted_bits, p_sb_attn_sw->known_attn);
1017 	} else if (asserted_bits == 0x100) {
1018 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1019 	} else {
1020 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1021 			   "MFW indication [deassertion]\n");
1022 	}
1023 
1024 	if (asserted_bits) {
1025 		rc = qed_int_assertion(p_hwfn, asserted_bits);
1026 		if (rc)
1027 			return rc;
1028 	}
1029 
1030 	if (deasserted_bits)
1031 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1032 
1033 	return rc;
1034 }
1035 
1036 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1037 			    void __iomem *igu_addr, u32 ack_cons)
1038 {
1039 	struct igu_prod_cons_update igu_ack = { 0 };
1040 
1041 	igu_ack.sb_id_and_flags =
1042 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1043 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1044 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1045 		 (IGU_SEG_ACCESS_ATTN <<
1046 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1047 
1048 	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1049 
1050 	/* Both segments (interrupts & acks) are written to same place address;
1051 	 * Need to guarantee all commands will be received (in-order) by HW.
1052 	 */
1053 	mmiowb();
1054 	barrier();
1055 }
1056 
1057 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1058 {
1059 	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1060 	struct qed_pi_info *pi_info = NULL;
1061 	struct qed_sb_attn_info *sb_attn;
1062 	struct qed_sb_info *sb_info;
1063 	int arr_size;
1064 	u16 rc = 0;
1065 
1066 	if (!p_hwfn->p_sp_sb) {
1067 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1068 		return;
1069 	}
1070 
1071 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1072 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1073 	if (!sb_info) {
1074 		DP_ERR(p_hwfn->cdev,
1075 		       "Status block is NULL - cannot ack interrupts\n");
1076 		return;
1077 	}
1078 
1079 	if (!p_hwfn->p_sb_attn) {
1080 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1081 		return;
1082 	}
1083 	sb_attn = p_hwfn->p_sb_attn;
1084 
1085 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1086 		   p_hwfn, p_hwfn->my_id);
1087 
1088 	/* Disable ack for def status block. Required both for msix +
1089 	 * inta in non-mask mode, in inta does no harm.
1090 	 */
1091 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1092 
1093 	/* Gather Interrupts/Attentions information */
1094 	if (!sb_info->sb_virt) {
1095 		DP_ERR(p_hwfn->cdev,
1096 		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1097 	} else {
1098 		u32 tmp_index = sb_info->sb_ack;
1099 
1100 		rc = qed_sb_update_sb_idx(sb_info);
1101 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1102 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1103 			   tmp_index, sb_info->sb_ack);
1104 	}
1105 
1106 	if (!sb_attn || !sb_attn->sb_attn) {
1107 		DP_ERR(p_hwfn->cdev,
1108 		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1109 	} else {
1110 		u16 tmp_index = sb_attn->index;
1111 
1112 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1113 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1114 			   "Attention indices: 0x%08x --> 0x%08x\n",
1115 			   tmp_index, sb_attn->index);
1116 	}
1117 
1118 	/* Check if we expect interrupts at this time. if not just ack them */
1119 	if (!(rc & QED_SB_EVENT_MASK)) {
1120 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1121 		return;
1122 	}
1123 
1124 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1125 	if (!p_hwfn->p_dpc_ptt) {
1126 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1127 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1128 		return;
1129 	}
1130 
1131 	if (rc & QED_SB_ATT_IDX)
1132 		qed_int_attentions(p_hwfn);
1133 
1134 	if (rc & QED_SB_IDX) {
1135 		int pi;
1136 
1137 		/* Look for a free index */
1138 		for (pi = 0; pi < arr_size; pi++) {
1139 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1140 			if (pi_info->comp_cb)
1141 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1142 		}
1143 	}
1144 
1145 	if (sb_attn && (rc & QED_SB_ATT_IDX))
1146 		/* This should be done before the interrupts are enabled,
1147 		 * since otherwise a new attention will be generated.
1148 		 */
1149 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1150 
1151 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1152 }
1153 
1154 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1155 {
1156 	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1157 
1158 	if (!p_sb)
1159 		return;
1160 
1161 	if (p_sb->sb_attn)
1162 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1163 				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1164 				  p_sb->sb_attn, p_sb->sb_phys);
1165 	kfree(p_sb);
1166 	p_hwfn->p_sb_attn = NULL;
1167 }
1168 
1169 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1170 				  struct qed_ptt *p_ptt)
1171 {
1172 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1173 
1174 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1175 
1176 	sb_info->index = 0;
1177 	sb_info->known_attn = 0;
1178 
1179 	/* Configure Attention Status Block in IGU */
1180 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1181 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1182 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1183 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1184 }
1185 
1186 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1187 				 struct qed_ptt *p_ptt,
1188 				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1189 {
1190 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1191 	int i, j, k;
1192 
1193 	sb_info->sb_attn = sb_virt_addr;
1194 	sb_info->sb_phys = sb_phy_addr;
1195 
1196 	/* Set the pointer to the AEU descriptors */
1197 	sb_info->p_aeu_desc = aeu_descs;
1198 
1199 	/* Calculate Parity Masks */
1200 	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1201 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1202 		/* j is array index, k is bit index */
1203 		for (j = 0, k = 0; k < 32; j++) {
1204 			struct aeu_invert_reg_bit *p_aeu;
1205 
1206 			p_aeu = &aeu_descs[i].bits[j];
1207 			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1208 				sb_info->parity_mask[i] |= 1 << k;
1209 
1210 			k += ATTENTION_LENGTH(p_aeu->flags);
1211 		}
1212 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1213 			   "Attn Mask [Reg %d]: 0x%08x\n",
1214 			   i, sb_info->parity_mask[i]);
1215 	}
1216 
1217 	/* Set the address of cleanup for the mcp attention */
1218 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1219 				 MISC_REG_AEU_GENERAL_ATTN_0;
1220 
1221 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1222 }
1223 
1224 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1225 				 struct qed_ptt *p_ptt)
1226 {
1227 	struct qed_dev *cdev = p_hwfn->cdev;
1228 	struct qed_sb_attn_info *p_sb;
1229 	dma_addr_t p_phys = 0;
1230 	void *p_virt;
1231 
1232 	/* SB struct */
1233 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1234 	if (!p_sb)
1235 		return -ENOMEM;
1236 
1237 	/* SB ring  */
1238 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1239 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1240 				    &p_phys, GFP_KERNEL);
1241 
1242 	if (!p_virt) {
1243 		kfree(p_sb);
1244 		return -ENOMEM;
1245 	}
1246 
1247 	/* Attention setup */
1248 	p_hwfn->p_sb_attn = p_sb;
1249 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1250 
1251 	return 0;
1252 }
1253 
1254 /* coalescing timeout = timeset << (timer_res + 1) */
1255 #define QED_CAU_DEF_RX_USECS 24
1256 #define QED_CAU_DEF_TX_USECS 48
1257 
1258 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1259 			   struct cau_sb_entry *p_sb_entry,
1260 			   u8 pf_id, u16 vf_number, u8 vf_valid)
1261 {
1262 	struct qed_dev *cdev = p_hwfn->cdev;
1263 	u32 cau_state;
1264 	u8 timer_res;
1265 
1266 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1267 
1268 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1269 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1270 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1271 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1272 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1273 
1274 	cau_state = CAU_HC_DISABLE_STATE;
1275 
1276 	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1277 		cau_state = CAU_HC_ENABLE_STATE;
1278 		if (!cdev->rx_coalesce_usecs)
1279 			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1280 		if (!cdev->tx_coalesce_usecs)
1281 			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1282 	}
1283 
1284 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1285 	if (cdev->rx_coalesce_usecs <= 0x7F)
1286 		timer_res = 0;
1287 	else if (cdev->rx_coalesce_usecs <= 0xFF)
1288 		timer_res = 1;
1289 	else
1290 		timer_res = 2;
1291 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1292 
1293 	if (cdev->tx_coalesce_usecs <= 0x7F)
1294 		timer_res = 0;
1295 	else if (cdev->tx_coalesce_usecs <= 0xFF)
1296 		timer_res = 1;
1297 	else
1298 		timer_res = 2;
1299 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1300 
1301 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1302 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1303 }
1304 
1305 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1306 				struct qed_ptt *p_ptt,
1307 				u16 igu_sb_id,
1308 				u32 pi_index,
1309 				enum qed_coalescing_fsm coalescing_fsm,
1310 				u8 timeset)
1311 {
1312 	struct cau_pi_entry pi_entry;
1313 	u32 sb_offset, pi_offset;
1314 
1315 	if (IS_VF(p_hwfn->cdev))
1316 		return;
1317 
1318 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1319 	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1320 
1321 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1322 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1323 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1324 	else
1325 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1326 
1327 	pi_offset = sb_offset + pi_index;
1328 	if (p_hwfn->hw_init_done) {
1329 		qed_wr(p_hwfn, p_ptt,
1330 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1331 		       *((u32 *)&(pi_entry)));
1332 	} else {
1333 		STORE_RT_REG(p_hwfn,
1334 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1335 			     *((u32 *)&(pi_entry)));
1336 	}
1337 }
1338 
1339 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1340 			 struct qed_ptt *p_ptt,
1341 			 dma_addr_t sb_phys,
1342 			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1343 {
1344 	struct cau_sb_entry sb_entry;
1345 
1346 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1347 			      vf_number, vf_valid);
1348 
1349 	if (p_hwfn->hw_init_done) {
1350 		/* Wide-bus, initialize via DMAE */
1351 		u64 phys_addr = (u64)sb_phys;
1352 
1353 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1354 				  CAU_REG_SB_ADDR_MEMORY +
1355 				  igu_sb_id * sizeof(u64), 2, 0);
1356 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1357 				  CAU_REG_SB_VAR_MEMORY +
1358 				  igu_sb_id * sizeof(u64), 2, 0);
1359 	} else {
1360 		/* Initialize Status Block Address */
1361 		STORE_RT_REG_AGG(p_hwfn,
1362 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1363 				 igu_sb_id * 2,
1364 				 sb_phys);
1365 
1366 		STORE_RT_REG_AGG(p_hwfn,
1367 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1368 				 igu_sb_id * 2,
1369 				 sb_entry);
1370 	}
1371 
1372 	/* Configure pi coalescing if set */
1373 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1374 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1375 		u8 timeset, timer_res;
1376 		u8 i;
1377 
1378 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1379 		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1380 			timer_res = 0;
1381 		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1382 			timer_res = 1;
1383 		else
1384 			timer_res = 2;
1385 		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1386 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1387 				    QED_COAL_RX_STATE_MACHINE, timeset);
1388 
1389 		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1390 			timer_res = 0;
1391 		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1392 			timer_res = 1;
1393 		else
1394 			timer_res = 2;
1395 		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1396 		for (i = 0; i < num_tc; i++) {
1397 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1398 					    igu_sb_id, TX_PI(i),
1399 					    QED_COAL_TX_STATE_MACHINE,
1400 					    timeset);
1401 		}
1402 	}
1403 }
1404 
1405 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1406 		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1407 {
1408 	/* zero status block and ack counter */
1409 	sb_info->sb_ack = 0;
1410 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1411 
1412 	if (IS_PF(p_hwfn->cdev))
1413 		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1414 				    sb_info->igu_sb_id, 0, 0);
1415 }
1416 
1417 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1418 {
1419 	struct qed_igu_block *p_block;
1420 	u16 igu_id;
1421 
1422 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1423 	     igu_id++) {
1424 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1425 
1426 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1427 		    !(p_block->status & QED_IGU_STATUS_FREE))
1428 			continue;
1429 
1430 		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1431 			return p_block;
1432 	}
1433 
1434 	return NULL;
1435 }
1436 
1437 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1438 {
1439 	struct qed_igu_block *p_block;
1440 	u16 igu_id;
1441 
1442 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1443 	     igu_id++) {
1444 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1445 
1446 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1447 		    !p_block->is_pf ||
1448 		    p_block->vector_number != vector_id)
1449 			continue;
1450 
1451 		return igu_id;
1452 	}
1453 
1454 	return QED_SB_INVALID_IDX;
1455 }
1456 
1457 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1458 {
1459 	u16 igu_sb_id;
1460 
1461 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1462 	if (sb_id == QED_SP_SB_ID)
1463 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1464 	else if (IS_PF(p_hwfn->cdev))
1465 		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1466 	else
1467 		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1468 
1469 	if (sb_id == QED_SP_SB_ID)
1470 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1471 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1472 	else
1473 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1474 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1475 
1476 	return igu_sb_id;
1477 }
1478 
1479 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1480 		    struct qed_ptt *p_ptt,
1481 		    struct qed_sb_info *sb_info,
1482 		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1483 {
1484 	sb_info->sb_virt = sb_virt_addr;
1485 	sb_info->sb_phys = sb_phy_addr;
1486 
1487 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1488 
1489 	if (sb_id != QED_SP_SB_ID) {
1490 		if (IS_PF(p_hwfn->cdev)) {
1491 			struct qed_igu_info *p_info;
1492 			struct qed_igu_block *p_block;
1493 
1494 			p_info = p_hwfn->hw_info.p_igu_info;
1495 			p_block = &p_info->entry[sb_info->igu_sb_id];
1496 
1497 			p_block->sb_info = sb_info;
1498 			p_block->status &= ~QED_IGU_STATUS_FREE;
1499 			p_info->usage.free_cnt--;
1500 		} else {
1501 			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1502 		}
1503 	}
1504 
1505 	sb_info->cdev = p_hwfn->cdev;
1506 
1507 	/* The igu address will hold the absolute address that needs to be
1508 	 * written to for a specific status block
1509 	 */
1510 	if (IS_PF(p_hwfn->cdev)) {
1511 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1512 						  GTT_BAR0_MAP_REG_IGU_CMD +
1513 						  (sb_info->igu_sb_id << 3);
1514 	} else {
1515 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1516 						  PXP_VF_BAR0_START_IGU +
1517 						  ((IGU_CMD_INT_ACK_BASE +
1518 						    sb_info->igu_sb_id) << 3);
1519 	}
1520 
1521 	sb_info->flags |= QED_SB_INFO_INIT;
1522 
1523 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1524 
1525 	return 0;
1526 }
1527 
1528 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1529 		       struct qed_sb_info *sb_info, u16 sb_id)
1530 {
1531 	struct qed_igu_block *p_block;
1532 	struct qed_igu_info *p_info;
1533 
1534 	if (!sb_info)
1535 		return 0;
1536 
1537 	/* zero status block and ack counter */
1538 	sb_info->sb_ack = 0;
1539 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1540 
1541 	if (IS_VF(p_hwfn->cdev)) {
1542 		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1543 		return 0;
1544 	}
1545 
1546 	p_info = p_hwfn->hw_info.p_igu_info;
1547 	p_block = &p_info->entry[sb_info->igu_sb_id];
1548 
1549 	/* Vector 0 is reserved to Default SB */
1550 	if (!p_block->vector_number) {
1551 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1552 		return -EINVAL;
1553 	}
1554 
1555 	/* Lose reference to client's SB info, and fix counters */
1556 	p_block->sb_info = NULL;
1557 	p_block->status |= QED_IGU_STATUS_FREE;
1558 	p_info->usage.free_cnt++;
1559 
1560 	return 0;
1561 }
1562 
1563 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1564 {
1565 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1566 
1567 	if (!p_sb)
1568 		return;
1569 
1570 	if (p_sb->sb_info.sb_virt)
1571 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1572 				  SB_ALIGNED_SIZE(p_hwfn),
1573 				  p_sb->sb_info.sb_virt,
1574 				  p_sb->sb_info.sb_phys);
1575 	kfree(p_sb);
1576 	p_hwfn->p_sp_sb = NULL;
1577 }
1578 
1579 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1580 {
1581 	struct qed_sb_sp_info *p_sb;
1582 	dma_addr_t p_phys = 0;
1583 	void *p_virt;
1584 
1585 	/* SB struct */
1586 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1587 	if (!p_sb)
1588 		return -ENOMEM;
1589 
1590 	/* SB ring  */
1591 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1592 				    SB_ALIGNED_SIZE(p_hwfn),
1593 				    &p_phys, GFP_KERNEL);
1594 	if (!p_virt) {
1595 		kfree(p_sb);
1596 		return -ENOMEM;
1597 	}
1598 
1599 	/* Status Block setup */
1600 	p_hwfn->p_sp_sb = p_sb;
1601 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1602 			p_phys, QED_SP_SB_ID);
1603 
1604 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1605 
1606 	return 0;
1607 }
1608 
1609 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1610 			qed_int_comp_cb_t comp_cb,
1611 			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1612 {
1613 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1614 	int rc = -ENOMEM;
1615 	u8 pi;
1616 
1617 	/* Look for a free index */
1618 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1619 		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1620 			continue;
1621 
1622 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1623 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1624 		*sb_idx = pi;
1625 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1626 		rc = 0;
1627 		break;
1628 	}
1629 
1630 	return rc;
1631 }
1632 
1633 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1634 {
1635 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1636 
1637 	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1638 		return -ENOMEM;
1639 
1640 	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1641 	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1642 
1643 	return 0;
1644 }
1645 
1646 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1647 {
1648 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1649 }
1650 
1651 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1652 			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1653 {
1654 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1655 
1656 	p_hwfn->cdev->int_mode = int_mode;
1657 	switch (p_hwfn->cdev->int_mode) {
1658 	case QED_INT_MODE_INTA:
1659 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1660 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1661 		break;
1662 
1663 	case QED_INT_MODE_MSI:
1664 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1665 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1666 		break;
1667 
1668 	case QED_INT_MODE_MSIX:
1669 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1670 		break;
1671 	case QED_INT_MODE_POLL:
1672 		break;
1673 	}
1674 
1675 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1676 }
1677 
1678 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1679 				    struct qed_ptt *p_ptt)
1680 {
1681 
1682 	/* Configure AEU signal change to produce attentions */
1683 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1684 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1685 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1686 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1687 
1688 	/* Flush the writes to IGU */
1689 	mmiowb();
1690 
1691 	/* Unmask AEU signals toward IGU */
1692 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1693 }
1694 
1695 int
1696 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1697 		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1698 {
1699 	int rc = 0;
1700 
1701 	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1702 
1703 	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1704 		rc = qed_slowpath_irq_req(p_hwfn);
1705 		if (rc) {
1706 			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1707 			return -EINVAL;
1708 		}
1709 		p_hwfn->b_int_requested = true;
1710 	}
1711 	/* Enable interrupt Generation */
1712 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1713 	p_hwfn->b_int_enabled = 1;
1714 
1715 	return rc;
1716 }
1717 
1718 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1719 {
1720 	p_hwfn->b_int_enabled = 0;
1721 
1722 	if (IS_VF(p_hwfn->cdev))
1723 		return;
1724 
1725 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1726 }
1727 
1728 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1729 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1730 				   struct qed_ptt *p_ptt,
1731 				   u16 igu_sb_id,
1732 				   bool cleanup_set, u16 opaque_fid)
1733 {
1734 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1735 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1736 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1737 
1738 	/* Set the data field */
1739 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1740 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1741 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1742 
1743 	/* Set the control register */
1744 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1745 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1746 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1747 
1748 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1749 
1750 	barrier();
1751 
1752 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1753 
1754 	/* Flush the write to IGU */
1755 	mmiowb();
1756 
1757 	/* calculate where to read the status bit from */
1758 	sb_bit = 1 << (igu_sb_id % 32);
1759 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1760 
1761 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1762 
1763 	/* Now wait for the command to complete */
1764 	do {
1765 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1766 
1767 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1768 			break;
1769 
1770 		usleep_range(5000, 10000);
1771 	} while (--sleep_cnt);
1772 
1773 	if (!sleep_cnt)
1774 		DP_NOTICE(p_hwfn,
1775 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1776 			  val, igu_sb_id);
1777 }
1778 
1779 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1780 				     struct qed_ptt *p_ptt,
1781 				     u16 igu_sb_id, u16 opaque, bool b_set)
1782 {
1783 	struct qed_igu_block *p_block;
1784 	int pi, i;
1785 
1786 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1787 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1788 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1789 		   igu_sb_id,
1790 		   p_block->function_id,
1791 		   p_block->is_pf, p_block->vector_number);
1792 
1793 	/* Set */
1794 	if (b_set)
1795 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1796 
1797 	/* Clear */
1798 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1799 
1800 	/* Wait for the IGU SB to cleanup */
1801 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1802 		u32 val;
1803 
1804 		val = qed_rd(p_hwfn, p_ptt,
1805 			     IGU_REG_WRITE_DONE_PENDING +
1806 			     ((igu_sb_id / 32) * 4));
1807 		if (val & BIT((igu_sb_id % 32)))
1808 			usleep_range(10, 20);
1809 		else
1810 			break;
1811 	}
1812 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1813 		DP_NOTICE(p_hwfn,
1814 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1815 			  igu_sb_id);
1816 
1817 	/* Clear the CAU for the SB */
1818 	for (pi = 0; pi < 12; pi++)
1819 		qed_wr(p_hwfn, p_ptt,
1820 		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1821 }
1822 
1823 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1824 			      struct qed_ptt *p_ptt,
1825 			      bool b_set, bool b_slowpath)
1826 {
1827 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1828 	struct qed_igu_block *p_block;
1829 	u16 igu_sb_id = 0;
1830 	u32 val = 0;
1831 
1832 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1833 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1834 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1835 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1836 
1837 	for (igu_sb_id = 0;
1838 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1839 		p_block = &p_info->entry[igu_sb_id];
1840 
1841 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1842 		    !p_block->is_pf ||
1843 		    (p_block->status & QED_IGU_STATUS_DSB))
1844 			continue;
1845 
1846 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1847 						p_hwfn->hw_info.opaque_fid,
1848 						b_set);
1849 	}
1850 
1851 	if (b_slowpath)
1852 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
1853 						p_info->igu_dsb_id,
1854 						p_hwfn->hw_info.opaque_fid,
1855 						b_set);
1856 }
1857 
1858 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1859 {
1860 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1861 	struct qed_igu_block *p_block;
1862 	int pf_sbs, vf_sbs;
1863 	u16 igu_sb_id;
1864 	u32 val, rval;
1865 
1866 	if (!RESC_NUM(p_hwfn, QED_SB)) {
1867 		p_info->b_allow_pf_vf_change = false;
1868 	} else {
1869 		/* Use the numbers the MFW have provided -
1870 		 * don't forget MFW accounts for the default SB as well.
1871 		 */
1872 		p_info->b_allow_pf_vf_change = true;
1873 
1874 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
1875 			DP_INFO(p_hwfn,
1876 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
1877 				RESC_NUM(p_hwfn, QED_SB) - 1,
1878 				p_info->usage.cnt);
1879 			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
1880 		}
1881 
1882 		if (IS_PF_SRIOV(p_hwfn)) {
1883 			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
1884 
1885 			if (vfs != p_info->usage.iov_cnt)
1886 				DP_VERBOSE(p_hwfn,
1887 					   NETIF_MSG_INTR,
1888 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
1889 					   p_info->usage.iov_cnt, vfs);
1890 
1891 			/* At this point we know how many SBs we have totally
1892 			 * in IGU + number of PF SBs. So we can validate that
1893 			 * we'd have sufficient for VF.
1894 			 */
1895 			if (vfs > p_info->usage.free_cnt +
1896 			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
1897 				DP_NOTICE(p_hwfn,
1898 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
1899 					  p_info->usage.free_cnt +
1900 					  p_info->usage.free_cnt_iov,
1901 					  p_info->usage.cnt, vfs);
1902 				return -EINVAL;
1903 			}
1904 
1905 			/* Currently cap the number of VFs SBs by the
1906 			 * number of VFs.
1907 			 */
1908 			p_info->usage.iov_cnt = vfs;
1909 		}
1910 	}
1911 
1912 	/* Mark all SBs as free, now in the right PF/VFs division */
1913 	p_info->usage.free_cnt = p_info->usage.cnt;
1914 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
1915 	p_info->usage.orig = p_info->usage.cnt;
1916 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
1917 
1918 	/* We now proceed to re-configure the IGU cam to reflect the initial
1919 	 * configuration. We can start with the Default SB.
1920 	 */
1921 	pf_sbs = p_info->usage.cnt;
1922 	vf_sbs = p_info->usage.iov_cnt;
1923 
1924 	for (igu_sb_id = p_info->igu_dsb_id;
1925 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1926 		p_block = &p_info->entry[igu_sb_id];
1927 		val = 0;
1928 
1929 		if (!(p_block->status & QED_IGU_STATUS_VALID))
1930 			continue;
1931 
1932 		if (p_block->status & QED_IGU_STATUS_DSB) {
1933 			p_block->function_id = p_hwfn->rel_pf_id;
1934 			p_block->is_pf = 1;
1935 			p_block->vector_number = 0;
1936 			p_block->status = QED_IGU_STATUS_VALID |
1937 					  QED_IGU_STATUS_PF |
1938 					  QED_IGU_STATUS_DSB;
1939 		} else if (pf_sbs) {
1940 			pf_sbs--;
1941 			p_block->function_id = p_hwfn->rel_pf_id;
1942 			p_block->is_pf = 1;
1943 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
1944 			p_block->status = QED_IGU_STATUS_VALID |
1945 					  QED_IGU_STATUS_PF |
1946 					  QED_IGU_STATUS_FREE;
1947 		} else if (vf_sbs) {
1948 			p_block->function_id =
1949 			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
1950 			    p_info->usage.iov_cnt - vf_sbs;
1951 			p_block->is_pf = 0;
1952 			p_block->vector_number = 0;
1953 			p_block->status = QED_IGU_STATUS_VALID |
1954 					  QED_IGU_STATUS_FREE;
1955 			vf_sbs--;
1956 		} else {
1957 			p_block->function_id = 0;
1958 			p_block->is_pf = 0;
1959 			p_block->vector_number = 0;
1960 		}
1961 
1962 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
1963 			  p_block->function_id);
1964 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
1965 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
1966 			  p_block->vector_number);
1967 
1968 		/* VF entries would be enabled when VF is initializaed */
1969 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
1970 
1971 		rval = qed_rd(p_hwfn, p_ptt,
1972 			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1973 
1974 		if (rval != val) {
1975 			qed_wr(p_hwfn, p_ptt,
1976 			       IGU_REG_MAPPING_MEMORY +
1977 			       sizeof(u32) * igu_sb_id, val);
1978 
1979 			DP_VERBOSE(p_hwfn,
1980 				   NETIF_MSG_INTR,
1981 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
1982 				   igu_sb_id,
1983 				   p_block->function_id,
1984 				   p_block->is_pf,
1985 				   p_block->vector_number, rval, val);
1986 		}
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1993 				       struct qed_ptt *p_ptt, u16 igu_sb_id)
1994 {
1995 	u32 val = qed_rd(p_hwfn, p_ptt,
1996 			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1997 	struct qed_igu_block *p_block;
1998 
1999 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2000 
2001 	/* Fill the block information */
2002 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2003 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2004 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2005 	p_block->igu_sb_id = igu_sb_id;
2006 }
2007 
2008 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2009 {
2010 	struct qed_igu_info *p_igu_info;
2011 	struct qed_igu_block *p_block;
2012 	u32 min_vf = 0, max_vf = 0;
2013 	u16 igu_sb_id;
2014 
2015 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2016 	if (!p_hwfn->hw_info.p_igu_info)
2017 		return -ENOMEM;
2018 
2019 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2020 
2021 	/* Distinguish between existent and non-existent default SB */
2022 	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2023 
2024 	/* Find the range of VF ids whose SB belong to this PF */
2025 	if (p_hwfn->cdev->p_iov_info) {
2026 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2027 
2028 		min_vf	= p_iov->first_vf_in_pf;
2029 		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2030 	}
2031 
2032 	for (igu_sb_id = 0;
2033 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2034 		/* Read current entry; Notice it might not belong to this PF */
2035 		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2036 		p_block = &p_igu_info->entry[igu_sb_id];
2037 
2038 		if ((p_block->is_pf) &&
2039 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2040 			p_block->status = QED_IGU_STATUS_PF |
2041 					  QED_IGU_STATUS_VALID |
2042 					  QED_IGU_STATUS_FREE;
2043 
2044 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2045 				p_igu_info->usage.cnt++;
2046 		} else if (!(p_block->is_pf) &&
2047 			   (p_block->function_id >= min_vf) &&
2048 			   (p_block->function_id < max_vf)) {
2049 			/* Available for VFs of this PF */
2050 			p_block->status = QED_IGU_STATUS_VALID |
2051 					  QED_IGU_STATUS_FREE;
2052 
2053 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2054 				p_igu_info->usage.iov_cnt++;
2055 		}
2056 
2057 		/* Mark the First entry belonging to the PF or its VFs
2058 		 * as the default SB [we'll reset IGU prior to first usage].
2059 		 */
2060 		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2061 		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2062 			p_igu_info->igu_dsb_id = igu_sb_id;
2063 			p_block->status |= QED_IGU_STATUS_DSB;
2064 		}
2065 
2066 		/* limit number of prints by having each PF print only its
2067 		 * entries with the exception of PF0 which would print
2068 		 * everything.
2069 		 */
2070 		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2071 		    (p_hwfn->abs_pf_id == 0)) {
2072 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2073 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2074 				   igu_sb_id, p_block->function_id,
2075 				   p_block->is_pf, p_block->vector_number);
2076 		}
2077 	}
2078 
2079 	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2080 		DP_NOTICE(p_hwfn,
2081 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2082 			  p_igu_info->igu_dsb_id);
2083 		return -EINVAL;
2084 	}
2085 
2086 	/* All non default SB are considered free at this point */
2087 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2088 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2089 
2090 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2091 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2092 		   p_igu_info->igu_dsb_id,
2093 		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2094 
2095 	return 0;
2096 }
2097 
2098 /**
2099  * @brief Initialize igu runtime registers
2100  *
2101  * @param p_hwfn
2102  */
2103 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2104 {
2105 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2106 
2107 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2108 }
2109 
2110 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2111 {
2112 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2113 			       IGU_CMD_INT_ACK_BASE;
2114 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2115 			       IGU_CMD_INT_ACK_BASE;
2116 	u32 intr_status_hi = 0, intr_status_lo = 0;
2117 	u64 intr_status = 0;
2118 
2119 	intr_status_lo = REG_RD(p_hwfn,
2120 				GTT_BAR0_MAP_REG_IGU_CMD +
2121 				lsb_igu_cmd_addr * 8);
2122 	intr_status_hi = REG_RD(p_hwfn,
2123 				GTT_BAR0_MAP_REG_IGU_CMD +
2124 				msb_igu_cmd_addr * 8);
2125 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2126 
2127 	return intr_status;
2128 }
2129 
2130 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2131 {
2132 	tasklet_init(p_hwfn->sp_dpc,
2133 		     qed_int_sp_dpc, (unsigned long)p_hwfn);
2134 	p_hwfn->b_sp_dpc_enabled = true;
2135 }
2136 
2137 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2138 {
2139 	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2140 	if (!p_hwfn->sp_dpc)
2141 		return -ENOMEM;
2142 
2143 	return 0;
2144 }
2145 
2146 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2147 {
2148 	kfree(p_hwfn->sp_dpc);
2149 	p_hwfn->sp_dpc = NULL;
2150 }
2151 
2152 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2153 {
2154 	int rc = 0;
2155 
2156 	rc = qed_int_sp_dpc_alloc(p_hwfn);
2157 	if (rc)
2158 		return rc;
2159 
2160 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2161 	if (rc)
2162 		return rc;
2163 
2164 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2165 
2166 	return rc;
2167 }
2168 
2169 void qed_int_free(struct qed_hwfn *p_hwfn)
2170 {
2171 	qed_int_sp_sb_free(p_hwfn);
2172 	qed_int_sb_attn_free(p_hwfn);
2173 	qed_int_sp_dpc_free(p_hwfn);
2174 }
2175 
2176 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2177 {
2178 	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2179 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2180 	qed_int_sp_dpc_setup(p_hwfn);
2181 }
2182 
2183 void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2184 			 struct qed_sb_cnt_info *p_sb_cnt_info)
2185 {
2186 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2187 
2188 	if (!info || !p_sb_cnt_info)
2189 		return;
2190 
2191 	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2192 }
2193 
2194 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2195 {
2196 	int i;
2197 
2198 	for_each_hwfn(cdev, i)
2199 		cdev->hwfns[i].b_int_requested = false;
2200 }
2201 
2202 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2203 			  u8 timer_res, u16 sb_id, bool tx)
2204 {
2205 	struct cau_sb_entry sb_entry;
2206 	int rc;
2207 
2208 	if (!p_hwfn->hw_init_done) {
2209 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2210 		return -EINVAL;
2211 	}
2212 
2213 	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2214 			       sb_id * sizeof(u64),
2215 			       (u64)(uintptr_t)&sb_entry, 2, 0);
2216 	if (rc) {
2217 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2218 		return rc;
2219 	}
2220 
2221 	if (tx)
2222 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2223 	else
2224 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2225 
2226 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2227 			       (u64)(uintptr_t)&sb_entry,
2228 			       CAU_REG_SB_VAR_MEMORY +
2229 			       sb_id * sizeof(u64), 2, 0);
2230 	if (rc) {
2231 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2232 		return rc;
2233 	}
2234 
2235 	return rc;
2236 }
2237