1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55 
56 struct qed_pi_info {
57 	qed_int_comp_cb_t	comp_cb;
58 	void			*cookie;
59 };
60 
61 struct qed_sb_sp_info {
62 	struct qed_sb_info sb_info;
63 
64 	/* per protocol index data */
65 	struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67 
68 enum qed_attention_type {
69 	QED_ATTN_TYPE_ATTN,
70 	QED_ATTN_TYPE_PARITY,
71 };
72 
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75 
76 struct aeu_invert_reg_bit {
77 	char bit_name[30];
78 
79 #define ATTENTION_PARITY                (1 << 0)
80 
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84 					 ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88 					 ATTENTION_PARITY)
89 
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93 
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98 
99 	unsigned int flags;
100 
101 	/* Callback to call if attention will be triggered */
102 	int (*cb)(struct qed_hwfn *p_hwfn);
103 
104 	enum block_id block_index;
105 };
106 
107 struct aeu_invert_reg {
108 	struct aeu_invert_reg_bit bits[32];
109 };
110 
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113 
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118 
119 	/* This might occur on certain instances; Log it once then mask it */
120 	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 		tmp);
122 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 	       0xffffffff);
124 
125 	return 0;
126 }
127 
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 			 PSWHST_REG_INCORRECT_ACCESS_VALID);
145 
146 	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 		u32 addr, data, length;
148 
149 		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 			      PSWHST_REG_INCORRECT_ACCESS_DATA);
153 		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155 
156 		DP_INFO(p_hwfn->cdev,
157 			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 			addr, length,
159 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 			(u8) GET_FIELD(data,
162 				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 			(u8) GET_FIELD(data,
164 				       ATTENTION_INCORRECT_ACCESS_CLIENT),
165 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 			(u8) GET_FIELD(data,
167 				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 			data);
169 	}
170 
171 	return 0;
172 }
173 
174 #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
177 #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
180 #define QED_GRC_ATTENTION_PF_MASK	(0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT	(0)
182 #define QED_GRC_ATTENTION_VF_MASK	(0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT	(4)
184 #define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
186 #define QED_GRC_ATTENTION_PRIV_VF	(0)
187 static const char *attn_master_to_str(u8 master)
188 {
189 	switch (master) {
190 	case 1: return "PXP";
191 	case 2: return "MCP";
192 	case 3: return "MSDM";
193 	case 4: return "PSDM";
194 	case 5: return "YSDM";
195 	case 6: return "USDM";
196 	case 7: return "TSDM";
197 	case 8: return "XSDM";
198 	case 9: return "DBU";
199 	case 10: return "DMAE";
200 	default:
201 		return "Unknown";
202 	}
203 }
204 
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207 	u32 tmp, tmp2;
208 
209 	/* We've already cleared the timeout interrupt register, so we learn
210 	 * of interrupts via the validity register
211 	 */
212 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 		goto out;
216 
217 	/* Read the GRC timeout information */
218 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222 
223 	DP_INFO(p_hwfn->cdev,
224 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 		tmp2, tmp,
226 		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232 		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233 
234 out:
235 	/* Regardles of anything else, clean the validity bit */
236 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 	return 0;
239 }
240 
241 #define PGLUE_ATTENTION_VALID			(1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID		(1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
255 #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
258 
259 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn,
260 				struct qed_ptt *p_ptt)
261 {
262 	u32 tmp;
263 
264 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
265 	if (tmp & PGLUE_ATTENTION_VALID) {
266 		u32 addr_lo, addr_hi, details;
267 
268 		addr_lo = qed_rd(p_hwfn, p_ptt,
269 				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
270 		addr_hi = qed_rd(p_hwfn, p_ptt,
271 				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
272 		details = qed_rd(p_hwfn, p_ptt,
273 				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
274 
275 		DP_NOTICE(p_hwfn,
276 			  "Illegal write by chip to [%08x:%08x] blocked.\n"
277 			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
278 			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
279 			  addr_hi, addr_lo, details,
280 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
281 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
282 			  GET_FIELD(details,
283 				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
284 			  tmp,
285 			  GET_FIELD(tmp,
286 				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
287 			  GET_FIELD(tmp,
288 				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
289 			  GET_FIELD(tmp,
290 				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
291 	}
292 
293 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 	if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 		u32 addr_lo, addr_hi, details;
296 
297 		addr_lo = qed_rd(p_hwfn, p_ptt,
298 				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 		addr_hi = qed_rd(p_hwfn, p_ptt,
300 				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 		details = qed_rd(p_hwfn, p_ptt,
302 				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303 
304 		DP_NOTICE(p_hwfn,
305 			  "Illegal read by chip from [%08x:%08x] blocked.\n"
306 			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 			  addr_hi, addr_lo, details,
309 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 			  GET_FIELD(details,
312 				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 			  tmp,
314 			  GET_FIELD(tmp,
315 				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
316 			  GET_FIELD(tmp,
317 				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
318 			  GET_FIELD(tmp,
319 				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
320 	}
321 
322 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 	if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 		DP_NOTICE(p_hwfn, "ICPL error - %08x\n", tmp);
325 
326 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
327 	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
328 		u32 addr_hi, addr_lo;
329 
330 		addr_lo = qed_rd(p_hwfn, p_ptt,
331 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
332 		addr_hi = qed_rd(p_hwfn, p_ptt,
333 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
334 
335 		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
336 			  tmp, addr_hi, addr_lo);
337 	}
338 
339 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
340 	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
341 		u32 addr_hi, addr_lo, details;
342 
343 		addr_lo = qed_rd(p_hwfn, p_ptt,
344 				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
345 		addr_hi = qed_rd(p_hwfn, p_ptt,
346 				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
347 		details = qed_rd(p_hwfn, p_ptt,
348 				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
349 
350 		DP_NOTICE(p_hwfn,
351 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
352 			  details, tmp, addr_hi, addr_lo);
353 	}
354 
355 	/* Clear the indications */
356 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
357 
358 	return 0;
359 }
360 
361 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
362 {
363 	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
364 }
365 
366 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
367 #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
368 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
369 #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
370 #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
371 
372 #define QED_DB_REC_COUNT                        1000
373 #define QED_DB_REC_INTERVAL                     100
374 
375 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
376 				  struct qed_ptt *p_ptt)
377 {
378 	u32 count = QED_DB_REC_COUNT;
379 	u32 usage = 1;
380 
381 	/* wait for usage to zero or count to run out. This is necessary since
382 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
383 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
384 	 * half an EDPM in the queue and other half dropped. Another EDPM
385 	 * doorbell to the same address (from doorbell recovery mechanism or
386 	 * from the doorbelling entity) could have first half dropped and second
387 	 * half interpreted as continuation of the first. To prevent such
388 	 * malformed doorbells from reaching the device, flush the queue before
389 	 * releasing the overflow sticky indication.
390 	 */
391 	while (count-- && usage) {
392 		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
393 		udelay(QED_DB_REC_INTERVAL);
394 	}
395 
396 	/* should have been depleted by now */
397 	if (usage) {
398 		DP_NOTICE(p_hwfn->cdev,
399 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
400 			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
401 		return -EBUSY;
402 	}
403 
404 	return 0;
405 }
406 
407 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
408 {
409 	u32 overflow;
410 	int rc;
411 
412 	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
413 	DP_NOTICE(p_hwfn, "PF Overflow sticky 0x%x\n", overflow);
414 	if (!overflow) {
415 		qed_db_recovery_execute(p_hwfn, DB_REC_ONCE);
416 		return 0;
417 	}
418 
419 	if (qed_edpm_enabled(p_hwfn)) {
420 		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
421 		if (rc)
422 			return rc;
423 	}
424 
425 	/* Flush any pending (e)dpm as they may never arrive */
426 	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
427 
428 	/* Release overflow sticky indication (stop silently dropping everything) */
429 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
430 
431 	/* Repeat all last doorbells (doorbell drop recovery) */
432 	qed_db_recovery_execute(p_hwfn, DB_REC_REAL_DEAL);
433 
434 	return 0;
435 }
436 
437 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
438 {
439 	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
440 	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
441 	int rc;
442 
443 	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
444 	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
445 
446 	/* int_sts may be zero since all PFs were interrupted for doorbell
447 	 * overflow but another one already handled it. Can abort here. If
448 	 * This PF also requires overflow recovery we will be interrupted again.
449 	 * The masked almost full indication may also be set. Ignoring.
450 	 */
451 	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
452 		return 0;
453 
454 	/* check if db_drop or overflow happened */
455 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
456 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
457 		/* Obtain data about db drop/overflow */
458 		first_drop_reason = qed_rd(p_hwfn, p_ptt,
459 					   DORQ_REG_DB_DROP_REASON) &
460 		    QED_DORQ_ATTENTION_REASON_MASK;
461 		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
462 		address = qed_rd(p_hwfn, p_ptt,
463 				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
464 		all_drops_reason = qed_rd(p_hwfn, p_ptt,
465 					  DORQ_REG_DB_DROP_DETAILS_REASON);
466 
467 		/* Log info */
468 		DP_NOTICE(p_hwfn->cdev,
469 			  "Doorbell drop occurred\n"
470 			  "Address\t\t0x%08x\t(second BAR address)\n"
471 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
472 			  "Size\t\t0x%04x\t\t(in bytes)\n"
473 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
474 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
475 			  address,
476 			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
477 			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
478 			  first_drop_reason, all_drops_reason);
479 
480 		rc = qed_db_rec_handler(p_hwfn, p_ptt);
481 		qed_periodic_db_rec_start(p_hwfn);
482 		if (rc)
483 			return rc;
484 
485 		/* Clear the doorbell drop details and prepare for next drop */
486 		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
487 
488 		/* Mark interrupt as handled (note: even if drop was due to a different
489 		 * reason than overflow we mark as handled)
490 		 */
491 		qed_wr(p_hwfn,
492 		       p_ptt,
493 		       DORQ_REG_INT_STS_WR,
494 		       DORQ_REG_INT_STS_DB_DROP |
495 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
496 
497 		/* If there are no indications other than drop indications, success */
498 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
499 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
500 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
501 			return 0;
502 	}
503 
504 	/* Some other indication was present - non recoverable */
505 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
506 
507 	return -EINVAL;
508 }
509 
510 /* Instead of major changes to the data-structure, we have a some 'special'
511  * identifiers for sources that changed meaning between adapters.
512  */
513 enum aeu_invert_reg_special_type {
514 	AEU_INVERT_REG_SPECIAL_CNIG_0,
515 	AEU_INVERT_REG_SPECIAL_CNIG_1,
516 	AEU_INVERT_REG_SPECIAL_CNIG_2,
517 	AEU_INVERT_REG_SPECIAL_CNIG_3,
518 	AEU_INVERT_REG_SPECIAL_MAX,
519 };
520 
521 static struct aeu_invert_reg_bit
522 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
523 	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
524 	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
525 	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
526 	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
527 };
528 
529 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
530 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
531 	{
532 		{       /* After Invert 1 */
533 			{"GPIO0 function%d",
534 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
535 		}
536 	},
537 
538 	{
539 		{       /* After Invert 2 */
540 			{"PGLUE config_space", ATTENTION_SINGLE,
541 			 NULL, MAX_BLOCK_ID},
542 			{"PGLUE misc_flr", ATTENTION_SINGLE,
543 			 NULL, MAX_BLOCK_ID},
544 			{"PGLUE B RBC", ATTENTION_PAR_INT,
545 			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
546 			{"PGLUE misc_mctp", ATTENTION_SINGLE,
547 			 NULL, MAX_BLOCK_ID},
548 			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
549 			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
550 			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
551 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
552 					  (1 << ATTENTION_OFFSET_SHIFT),
553 			 NULL, MAX_BLOCK_ID},
554 			{"PCIE glue/PXP VPD %d",
555 			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
556 		}
557 	},
558 
559 	{
560 		{       /* After Invert 3 */
561 			{"General Attention %d",
562 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
563 		}
564 	},
565 
566 	{
567 		{       /* After Invert 4 */
568 			{"General Attention 32", ATTENTION_SINGLE,
569 			 NULL, MAX_BLOCK_ID},
570 			{"General Attention %d",
571 			 (2 << ATTENTION_LENGTH_SHIFT) |
572 			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
573 			{"General Attention 35", ATTENTION_SINGLE,
574 			 NULL, MAX_BLOCK_ID},
575 			{"NWS Parity",
576 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
577 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
578 			 NULL, BLOCK_NWS},
579 			{"NWS Interrupt",
580 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
581 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
582 			 NULL, BLOCK_NWS},
583 			{"NWM Parity",
584 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
585 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
586 			 NULL, BLOCK_NWM},
587 			{"NWM Interrupt",
588 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
589 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
590 			 NULL, BLOCK_NWM},
591 			{"MCP CPU", ATTENTION_SINGLE,
592 			 qed_mcp_attn_cb, MAX_BLOCK_ID},
593 			{"MCP Watchdog timer", ATTENTION_SINGLE,
594 			 NULL, MAX_BLOCK_ID},
595 			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
596 			{"AVS stop status ready", ATTENTION_SINGLE,
597 			 NULL, MAX_BLOCK_ID},
598 			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
599 			{"MSTAT per-path", ATTENTION_PAR_INT,
600 			 NULL, MAX_BLOCK_ID},
601 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
602 			 NULL, MAX_BLOCK_ID},
603 			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
604 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
605 			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
606 			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
607 			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
608 		}
609 	},
610 
611 	{
612 		{       /* After Invert 5 */
613 			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
614 			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
615 			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
616 			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
617 			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
618 			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
619 			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
620 			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
621 			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
622 			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
623 			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
624 			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
625 			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
626 			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
627 			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
628 			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
629 		}
630 	},
631 
632 	{
633 		{       /* After Invert 6 */
634 			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
635 			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
636 			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
637 			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
638 			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
639 			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
640 			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
641 			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
642 			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
643 			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
644 			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
645 			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
646 			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
647 			{"DORQ", ATTENTION_PAR_INT,
648 			 qed_dorq_attn_cb, BLOCK_DORQ},
649 			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
650 			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
651 		}
652 	},
653 
654 	{
655 		{       /* After Invert 7 */
656 			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
657 			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
658 			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
659 			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
660 			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
661 			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
662 			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
663 			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
664 			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
665 			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
666 			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
667 			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
668 			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
669 			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
670 			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
671 			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
672 			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
673 		}
674 	},
675 
676 	{
677 		{       /* After Invert 8 */
678 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
679 			 NULL, BLOCK_PSWRQ2},
680 			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
681 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
682 			 NULL, BLOCK_PSWWR2},
683 			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
684 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
685 			 NULL, BLOCK_PSWRD2},
686 			{"PSWHST", ATTENTION_PAR_INT,
687 			 qed_pswhst_attn_cb, BLOCK_PSWHST},
688 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
689 			 NULL, BLOCK_PSWHST2},
690 			{"GRC",	ATTENTION_PAR_INT,
691 			 qed_grc_attn_cb, BLOCK_GRC},
692 			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
693 			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
694 			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
695 			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
696 			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
697 			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
698 			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
699 			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
700 			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
701 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
702 			 NULL, BLOCK_PGLCS},
703 			{"PERST_B assertion", ATTENTION_SINGLE,
704 			 NULL, MAX_BLOCK_ID},
705 			{"PERST_B deassertion", ATTENTION_SINGLE,
706 			 NULL, MAX_BLOCK_ID},
707 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
708 			 NULL, MAX_BLOCK_ID},
709 		}
710 	},
711 
712 	{
713 		{       /* After Invert 9 */
714 			{"MCP Latched memory", ATTENTION_PAR,
715 			 NULL, MAX_BLOCK_ID},
716 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
717 			 NULL, MAX_BLOCK_ID},
718 			{"MCP Latched ump_tx", ATTENTION_PAR,
719 			 NULL, MAX_BLOCK_ID},
720 			{"MCP Latched scratchpad", ATTENTION_PAR,
721 			 NULL, MAX_BLOCK_ID},
722 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
723 			 NULL, MAX_BLOCK_ID},
724 		}
725 	},
726 };
727 
728 static struct aeu_invert_reg_bit *
729 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
730 		      struct aeu_invert_reg_bit *p_bit)
731 {
732 	if (!QED_IS_BB(p_hwfn->cdev))
733 		return p_bit;
734 
735 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
736 		return p_bit;
737 
738 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
739 				  ATTENTION_BB_SHIFT];
740 }
741 
742 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
743 				   struct aeu_invert_reg_bit *p_bit)
744 {
745 	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
746 		   ATTENTION_PARITY);
747 }
748 
749 #define ATTN_STATE_BITS         (0xfff)
750 #define ATTN_BITS_MASKABLE      (0x3ff)
751 struct qed_sb_attn_info {
752 	/* Virtual & Physical address of the SB */
753 	struct atten_status_block       *sb_attn;
754 	dma_addr_t			sb_phys;
755 
756 	/* Last seen running index */
757 	u16				index;
758 
759 	/* A mask of the AEU bits resulting in a parity error */
760 	u32				parity_mask[NUM_ATTN_REGS];
761 
762 	/* A pointer to the attention description structure */
763 	struct aeu_invert_reg		*p_aeu_desc;
764 
765 	/* Previously asserted attentions, which are still unasserted */
766 	u16				known_attn;
767 
768 	/* Cleanup address for the link's general hw attention */
769 	u32				mfw_attn_addr;
770 };
771 
772 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
773 				      struct qed_sb_attn_info *p_sb_desc)
774 {
775 	u16 rc = 0, index;
776 
777 	/* Make certain HW write took affect */
778 	mmiowb();
779 
780 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
781 	if (p_sb_desc->index != index) {
782 		p_sb_desc->index	= index;
783 		rc		      = QED_SB_ATT_IDX;
784 	}
785 
786 	/* Make certain we got a consistent view with HW */
787 	mmiowb();
788 
789 	return rc;
790 }
791 
792 /**
793  *  @brief qed_int_assertion - handles asserted attention bits
794  *
795  *  @param p_hwfn
796  *  @param asserted_bits newly asserted bits
797  *  @return int
798  */
799 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
800 {
801 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
802 	u32 igu_mask;
803 
804 	/* Mask the source of the attention in the IGU */
805 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
806 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
807 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
808 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
809 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
810 
811 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
812 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
813 		   sb_attn_sw->known_attn,
814 		   sb_attn_sw->known_attn | asserted_bits);
815 	sb_attn_sw->known_attn |= asserted_bits;
816 
817 	/* Handle MCP events */
818 	if (asserted_bits & 0x100) {
819 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
820 		/* Clean the MCP attention */
821 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
822 		       sb_attn_sw->mfw_attn_addr, 0);
823 	}
824 
825 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
826 		      GTT_BAR0_MAP_REG_IGU_CMD +
827 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
828 			IGU_CMD_INT_ACK_BASE) << 3),
829 		      (u32)asserted_bits);
830 
831 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
832 		   asserted_bits);
833 
834 	return 0;
835 }
836 
837 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
838 			       enum block_id id,
839 			       enum dbg_attn_type type, bool b_clear)
840 {
841 	struct dbg_attn_block_result attn_results;
842 	enum dbg_status status;
843 
844 	memset(&attn_results, 0, sizeof(attn_results));
845 
846 	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
847 				   b_clear, &attn_results);
848 	if (status != DBG_STATUS_OK)
849 		DP_NOTICE(p_hwfn,
850 			  "Failed to parse attention information [status: %s]\n",
851 			  qed_dbg_get_status_str(status));
852 	else
853 		qed_dbg_parse_attn(p_hwfn, &attn_results);
854 }
855 
856 /**
857  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
858  * cause of the attention
859  *
860  * @param p_hwfn
861  * @param p_aeu - descriptor of an AEU bit which caused the attention
862  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
863  *  this bit to this group.
864  * @param bit_index - index of this bit in the aeu_en_reg
865  *
866  * @return int
867  */
868 static int
869 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
870 			    struct aeu_invert_reg_bit *p_aeu,
871 			    u32 aeu_en_reg,
872 			    const char *p_bit_name, u32 bitmask)
873 {
874 	bool b_fatal = false;
875 	int rc = -EINVAL;
876 	u32 val;
877 
878 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
879 		p_bit_name, bitmask);
880 
881 	/* Call callback before clearing the interrupt status */
882 	if (p_aeu->cb) {
883 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
884 			p_bit_name);
885 		rc = p_aeu->cb(p_hwfn);
886 	}
887 
888 	if (rc)
889 		b_fatal = true;
890 
891 	/* Print HW block interrupt registers */
892 	if (p_aeu->block_index != MAX_BLOCK_ID)
893 		qed_int_attn_print(p_hwfn, p_aeu->block_index,
894 				   ATTN_TYPE_INTERRUPT, !b_fatal);
895 
896 
897 	/* If the attention is benign, no need to prevent it */
898 	if (!rc)
899 		goto out;
900 
901 	/* Prevent this Attention from being asserted in the future */
902 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
903 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
904 	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
905 		p_bit_name);
906 
907 out:
908 	return rc;
909 }
910 
911 /**
912  * @brief qed_int_deassertion_parity - handle a single parity AEU source
913  *
914  * @param p_hwfn
915  * @param p_aeu - descriptor of an AEU bit which caused the parity
916  * @param aeu_en_reg - address of the AEU enable register
917  * @param bit_index
918  */
919 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
920 				       struct aeu_invert_reg_bit *p_aeu,
921 				       u32 aeu_en_reg, u8 bit_index)
922 {
923 	u32 block_id = p_aeu->block_index, mask, val;
924 
925 	DP_NOTICE(p_hwfn->cdev,
926 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
927 		  p_aeu->bit_name, aeu_en_reg, bit_index);
928 
929 	if (block_id != MAX_BLOCK_ID) {
930 		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
931 
932 		/* In BB, there's a single parity bit for several blocks */
933 		if (block_id == BLOCK_BTB) {
934 			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
935 					   ATTN_TYPE_PARITY, false);
936 			qed_int_attn_print(p_hwfn, BLOCK_MCP,
937 					   ATTN_TYPE_PARITY, false);
938 		}
939 	}
940 
941 	/* Prevent this parity error from being re-asserted */
942 	mask = ~BIT(bit_index);
943 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
944 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
945 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
946 		p_aeu->bit_name);
947 }
948 
949 /**
950  * @brief - handles deassertion of previously asserted attentions.
951  *
952  * @param p_hwfn
953  * @param deasserted_bits - newly deasserted bits
954  * @return int
955  *
956  */
957 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
958 			       u16 deasserted_bits)
959 {
960 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
961 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
962 	u8 i, j, k, bit_idx;
963 	int rc = 0;
964 
965 	/* Read the attention registers in the AEU */
966 	for (i = 0; i < NUM_ATTN_REGS; i++) {
967 		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
968 					MISC_REG_AEU_AFTER_INVERT_1_IGU +
969 					i * 0x4);
970 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
971 			   "Deasserted bits [%d]: %08x\n",
972 			   i, aeu_inv_arr[i]);
973 	}
974 
975 	/* Find parity attentions first */
976 	for (i = 0; i < NUM_ATTN_REGS; i++) {
977 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
978 		u32 parities;
979 
980 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
981 		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
982 
983 		/* Skip register in which no parity bit is currently set */
984 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
985 		if (!parities)
986 			continue;
987 
988 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
989 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
990 
991 			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
992 			    !!(parities & BIT(bit_idx)))
993 				qed_int_deassertion_parity(p_hwfn, p_bit,
994 							   aeu_en, bit_idx);
995 
996 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
997 		}
998 	}
999 
1000 	/* Find non-parity cause for attention and act */
1001 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1002 		struct aeu_invert_reg_bit *p_aeu;
1003 
1004 		/* Handle only groups whose attention is currently deasserted */
1005 		if (!(deasserted_bits & (1 << k)))
1006 			continue;
1007 
1008 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1009 			u32 bits;
1010 
1011 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1012 				 i * sizeof(u32) +
1013 				 k * sizeof(u32) * NUM_ATTN_REGS;
1014 
1015 			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1016 			bits = aeu_inv_arr[i] & en;
1017 
1018 			/* Skip if no bit from this group is currently set */
1019 			if (!bits)
1020 				continue;
1021 
1022 			/* Find all set bits from current register which belong
1023 			 * to current group, making them responsible for the
1024 			 * previous assertion.
1025 			 */
1026 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1027 				long unsigned int bitmask;
1028 				u8 bit, bit_len;
1029 
1030 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1031 				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1032 
1033 				bit = bit_idx;
1034 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1035 				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1036 					/* Skip Parity */
1037 					bit++;
1038 					bit_len--;
1039 				}
1040 
1041 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1042 				bitmask >>= bit;
1043 
1044 				if (bitmask) {
1045 					u32 flags = p_aeu->flags;
1046 					char bit_name[30];
1047 					u8 num;
1048 
1049 					num = (u8)find_first_bit(&bitmask,
1050 								 bit_len);
1051 
1052 					/* Some bits represent more than a
1053 					 * a single interrupt. Correctly print
1054 					 * their name.
1055 					 */
1056 					if (ATTENTION_LENGTH(flags) > 2 ||
1057 					    ((flags & ATTENTION_PAR_INT) &&
1058 					     ATTENTION_LENGTH(flags) > 1))
1059 						snprintf(bit_name, 30,
1060 							 p_aeu->bit_name, num);
1061 					else
1062 						strncpy(bit_name,
1063 							p_aeu->bit_name, 30);
1064 
1065 					/* We now need to pass bitmask in its
1066 					 * correct position.
1067 					 */
1068 					bitmask <<= bit;
1069 
1070 					/* Handle source of the attention */
1071 					qed_int_deassertion_aeu_bit(p_hwfn,
1072 								    p_aeu,
1073 								    aeu_en,
1074 								    bit_name,
1075 								    bitmask);
1076 				}
1077 
1078 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1079 			}
1080 		}
1081 	}
1082 
1083 	/* Clear IGU indication for the deasserted bits */
1084 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1085 				    GTT_BAR0_MAP_REG_IGU_CMD +
1086 				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1087 				      IGU_CMD_INT_ACK_BASE) << 3),
1088 				    ~((u32)deasserted_bits));
1089 
1090 	/* Unmask deasserted attentions in IGU */
1091 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1092 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1093 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1094 
1095 	/* Clear deassertion from inner state */
1096 	sb_attn_sw->known_attn &= ~deasserted_bits;
1097 
1098 	return rc;
1099 }
1100 
1101 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1102 {
1103 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1104 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1105 	u32 attn_bits = 0, attn_acks = 0;
1106 	u16 asserted_bits, deasserted_bits;
1107 	__le16 index;
1108 	int rc = 0;
1109 
1110 	/* Read current attention bits/acks - safeguard against attentions
1111 	 * by guaranting work on a synchronized timeframe
1112 	 */
1113 	do {
1114 		index = p_sb_attn->sb_index;
1115 		/* finish reading index before the loop condition */
1116 		dma_rmb();
1117 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1118 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1119 	} while (index != p_sb_attn->sb_index);
1120 	p_sb_attn->sb_index = index;
1121 
1122 	/* Attention / Deassertion are meaningful (and in correct state)
1123 	 * only when they differ and consistent with known state - deassertion
1124 	 * when previous attention & current ack, and assertion when current
1125 	 * attention with no previous attention
1126 	 */
1127 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1128 		~p_sb_attn_sw->known_attn;
1129 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1130 		p_sb_attn_sw->known_attn;
1131 
1132 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1133 		DP_INFO(p_hwfn,
1134 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1135 			index, attn_bits, attn_acks, asserted_bits,
1136 			deasserted_bits, p_sb_attn_sw->known_attn);
1137 	} else if (asserted_bits == 0x100) {
1138 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1139 	} else {
1140 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1141 			   "MFW indication [deassertion]\n");
1142 	}
1143 
1144 	if (asserted_bits) {
1145 		rc = qed_int_assertion(p_hwfn, asserted_bits);
1146 		if (rc)
1147 			return rc;
1148 	}
1149 
1150 	if (deasserted_bits)
1151 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1152 
1153 	return rc;
1154 }
1155 
1156 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1157 			    void __iomem *igu_addr, u32 ack_cons)
1158 {
1159 	struct igu_prod_cons_update igu_ack = { 0 };
1160 
1161 	igu_ack.sb_id_and_flags =
1162 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1163 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1164 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1165 		 (IGU_SEG_ACCESS_ATTN <<
1166 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1167 
1168 	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1169 
1170 	/* Both segments (interrupts & acks) are written to same place address;
1171 	 * Need to guarantee all commands will be received (in-order) by HW.
1172 	 */
1173 	mmiowb();
1174 	barrier();
1175 }
1176 
1177 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1178 {
1179 	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1180 	struct qed_pi_info *pi_info = NULL;
1181 	struct qed_sb_attn_info *sb_attn;
1182 	struct qed_sb_info *sb_info;
1183 	int arr_size;
1184 	u16 rc = 0;
1185 
1186 	if (!p_hwfn->p_sp_sb) {
1187 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1188 		return;
1189 	}
1190 
1191 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1192 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1193 	if (!sb_info) {
1194 		DP_ERR(p_hwfn->cdev,
1195 		       "Status block is NULL - cannot ack interrupts\n");
1196 		return;
1197 	}
1198 
1199 	if (!p_hwfn->p_sb_attn) {
1200 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1201 		return;
1202 	}
1203 	sb_attn = p_hwfn->p_sb_attn;
1204 
1205 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1206 		   p_hwfn, p_hwfn->my_id);
1207 
1208 	/* Disable ack for def status block. Required both for msix +
1209 	 * inta in non-mask mode, in inta does no harm.
1210 	 */
1211 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1212 
1213 	/* Gather Interrupts/Attentions information */
1214 	if (!sb_info->sb_virt) {
1215 		DP_ERR(p_hwfn->cdev,
1216 		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1217 	} else {
1218 		u32 tmp_index = sb_info->sb_ack;
1219 
1220 		rc = qed_sb_update_sb_idx(sb_info);
1221 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1222 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1223 			   tmp_index, sb_info->sb_ack);
1224 	}
1225 
1226 	if (!sb_attn || !sb_attn->sb_attn) {
1227 		DP_ERR(p_hwfn->cdev,
1228 		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1229 	} else {
1230 		u16 tmp_index = sb_attn->index;
1231 
1232 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1233 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1234 			   "Attention indices: 0x%08x --> 0x%08x\n",
1235 			   tmp_index, sb_attn->index);
1236 	}
1237 
1238 	/* Check if we expect interrupts at this time. if not just ack them */
1239 	if (!(rc & QED_SB_EVENT_MASK)) {
1240 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1241 		return;
1242 	}
1243 
1244 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1245 	if (!p_hwfn->p_dpc_ptt) {
1246 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1247 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1248 		return;
1249 	}
1250 
1251 	if (rc & QED_SB_ATT_IDX)
1252 		qed_int_attentions(p_hwfn);
1253 
1254 	if (rc & QED_SB_IDX) {
1255 		int pi;
1256 
1257 		/* Look for a free index */
1258 		for (pi = 0; pi < arr_size; pi++) {
1259 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1260 			if (pi_info->comp_cb)
1261 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1262 		}
1263 	}
1264 
1265 	if (sb_attn && (rc & QED_SB_ATT_IDX))
1266 		/* This should be done before the interrupts are enabled,
1267 		 * since otherwise a new attention will be generated.
1268 		 */
1269 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1270 
1271 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1272 }
1273 
1274 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1275 {
1276 	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1277 
1278 	if (!p_sb)
1279 		return;
1280 
1281 	if (p_sb->sb_attn)
1282 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1283 				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1284 				  p_sb->sb_attn, p_sb->sb_phys);
1285 	kfree(p_sb);
1286 	p_hwfn->p_sb_attn = NULL;
1287 }
1288 
1289 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1290 				  struct qed_ptt *p_ptt)
1291 {
1292 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1293 
1294 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1295 
1296 	sb_info->index = 0;
1297 	sb_info->known_attn = 0;
1298 
1299 	/* Configure Attention Status Block in IGU */
1300 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1301 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1302 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1303 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1304 }
1305 
1306 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1307 				 struct qed_ptt *p_ptt,
1308 				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1309 {
1310 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1311 	int i, j, k;
1312 
1313 	sb_info->sb_attn = sb_virt_addr;
1314 	sb_info->sb_phys = sb_phy_addr;
1315 
1316 	/* Set the pointer to the AEU descriptors */
1317 	sb_info->p_aeu_desc = aeu_descs;
1318 
1319 	/* Calculate Parity Masks */
1320 	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1321 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1322 		/* j is array index, k is bit index */
1323 		for (j = 0, k = 0; k < 32; j++) {
1324 			struct aeu_invert_reg_bit *p_aeu;
1325 
1326 			p_aeu = &aeu_descs[i].bits[j];
1327 			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1328 				sb_info->parity_mask[i] |= 1 << k;
1329 
1330 			k += ATTENTION_LENGTH(p_aeu->flags);
1331 		}
1332 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1333 			   "Attn Mask [Reg %d]: 0x%08x\n",
1334 			   i, sb_info->parity_mask[i]);
1335 	}
1336 
1337 	/* Set the address of cleanup for the mcp attention */
1338 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1339 				 MISC_REG_AEU_GENERAL_ATTN_0;
1340 
1341 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1342 }
1343 
1344 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1345 				 struct qed_ptt *p_ptt)
1346 {
1347 	struct qed_dev *cdev = p_hwfn->cdev;
1348 	struct qed_sb_attn_info *p_sb;
1349 	dma_addr_t p_phys = 0;
1350 	void *p_virt;
1351 
1352 	/* SB struct */
1353 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1354 	if (!p_sb)
1355 		return -ENOMEM;
1356 
1357 	/* SB ring  */
1358 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1359 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1360 				    &p_phys, GFP_KERNEL);
1361 
1362 	if (!p_virt) {
1363 		kfree(p_sb);
1364 		return -ENOMEM;
1365 	}
1366 
1367 	/* Attention setup */
1368 	p_hwfn->p_sb_attn = p_sb;
1369 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1370 
1371 	return 0;
1372 }
1373 
1374 /* coalescing timeout = timeset << (timer_res + 1) */
1375 #define QED_CAU_DEF_RX_USECS 24
1376 #define QED_CAU_DEF_TX_USECS 48
1377 
1378 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1379 			   struct cau_sb_entry *p_sb_entry,
1380 			   u8 pf_id, u16 vf_number, u8 vf_valid)
1381 {
1382 	struct qed_dev *cdev = p_hwfn->cdev;
1383 	u32 cau_state;
1384 	u8 timer_res;
1385 
1386 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1387 
1388 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1389 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1390 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1391 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1392 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1393 
1394 	cau_state = CAU_HC_DISABLE_STATE;
1395 
1396 	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1397 		cau_state = CAU_HC_ENABLE_STATE;
1398 		if (!cdev->rx_coalesce_usecs)
1399 			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1400 		if (!cdev->tx_coalesce_usecs)
1401 			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1402 	}
1403 
1404 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1405 	if (cdev->rx_coalesce_usecs <= 0x7F)
1406 		timer_res = 0;
1407 	else if (cdev->rx_coalesce_usecs <= 0xFF)
1408 		timer_res = 1;
1409 	else
1410 		timer_res = 2;
1411 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1412 
1413 	if (cdev->tx_coalesce_usecs <= 0x7F)
1414 		timer_res = 0;
1415 	else if (cdev->tx_coalesce_usecs <= 0xFF)
1416 		timer_res = 1;
1417 	else
1418 		timer_res = 2;
1419 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1420 
1421 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1422 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1423 }
1424 
1425 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1426 				struct qed_ptt *p_ptt,
1427 				u16 igu_sb_id,
1428 				u32 pi_index,
1429 				enum qed_coalescing_fsm coalescing_fsm,
1430 				u8 timeset)
1431 {
1432 	struct cau_pi_entry pi_entry;
1433 	u32 sb_offset, pi_offset;
1434 
1435 	if (IS_VF(p_hwfn->cdev))
1436 		return;
1437 
1438 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1439 	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1440 
1441 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1442 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1443 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1444 	else
1445 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1446 
1447 	pi_offset = sb_offset + pi_index;
1448 	if (p_hwfn->hw_init_done) {
1449 		qed_wr(p_hwfn, p_ptt,
1450 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1451 		       *((u32 *)&(pi_entry)));
1452 	} else {
1453 		STORE_RT_REG(p_hwfn,
1454 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1455 			     *((u32 *)&(pi_entry)));
1456 	}
1457 }
1458 
1459 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1460 			 struct qed_ptt *p_ptt,
1461 			 dma_addr_t sb_phys,
1462 			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1463 {
1464 	struct cau_sb_entry sb_entry;
1465 
1466 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1467 			      vf_number, vf_valid);
1468 
1469 	if (p_hwfn->hw_init_done) {
1470 		/* Wide-bus, initialize via DMAE */
1471 		u64 phys_addr = (u64)sb_phys;
1472 
1473 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1474 				  CAU_REG_SB_ADDR_MEMORY +
1475 				  igu_sb_id * sizeof(u64), 2, 0);
1476 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1477 				  CAU_REG_SB_VAR_MEMORY +
1478 				  igu_sb_id * sizeof(u64), 2, 0);
1479 	} else {
1480 		/* Initialize Status Block Address */
1481 		STORE_RT_REG_AGG(p_hwfn,
1482 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1483 				 igu_sb_id * 2,
1484 				 sb_phys);
1485 
1486 		STORE_RT_REG_AGG(p_hwfn,
1487 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1488 				 igu_sb_id * 2,
1489 				 sb_entry);
1490 	}
1491 
1492 	/* Configure pi coalescing if set */
1493 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1494 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1495 		u8 timeset, timer_res;
1496 		u8 i;
1497 
1498 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1499 		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1500 			timer_res = 0;
1501 		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1502 			timer_res = 1;
1503 		else
1504 			timer_res = 2;
1505 		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1506 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1507 				    QED_COAL_RX_STATE_MACHINE, timeset);
1508 
1509 		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1510 			timer_res = 0;
1511 		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1512 			timer_res = 1;
1513 		else
1514 			timer_res = 2;
1515 		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1516 		for (i = 0; i < num_tc; i++) {
1517 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1518 					    igu_sb_id, TX_PI(i),
1519 					    QED_COAL_TX_STATE_MACHINE,
1520 					    timeset);
1521 		}
1522 	}
1523 }
1524 
1525 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1526 		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1527 {
1528 	/* zero status block and ack counter */
1529 	sb_info->sb_ack = 0;
1530 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1531 
1532 	if (IS_PF(p_hwfn->cdev))
1533 		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1534 				    sb_info->igu_sb_id, 0, 0);
1535 }
1536 
1537 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1538 {
1539 	struct qed_igu_block *p_block;
1540 	u16 igu_id;
1541 
1542 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1543 	     igu_id++) {
1544 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1545 
1546 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1547 		    !(p_block->status & QED_IGU_STATUS_FREE))
1548 			continue;
1549 
1550 		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1551 			return p_block;
1552 	}
1553 
1554 	return NULL;
1555 }
1556 
1557 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1558 {
1559 	struct qed_igu_block *p_block;
1560 	u16 igu_id;
1561 
1562 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1563 	     igu_id++) {
1564 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1565 
1566 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1567 		    !p_block->is_pf ||
1568 		    p_block->vector_number != vector_id)
1569 			continue;
1570 
1571 		return igu_id;
1572 	}
1573 
1574 	return QED_SB_INVALID_IDX;
1575 }
1576 
1577 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1578 {
1579 	u16 igu_sb_id;
1580 
1581 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1582 	if (sb_id == QED_SP_SB_ID)
1583 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1584 	else if (IS_PF(p_hwfn->cdev))
1585 		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1586 	else
1587 		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1588 
1589 	if (sb_id == QED_SP_SB_ID)
1590 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1591 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1592 	else
1593 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1594 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1595 
1596 	return igu_sb_id;
1597 }
1598 
1599 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1600 		    struct qed_ptt *p_ptt,
1601 		    struct qed_sb_info *sb_info,
1602 		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1603 {
1604 	sb_info->sb_virt = sb_virt_addr;
1605 	sb_info->sb_phys = sb_phy_addr;
1606 
1607 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1608 
1609 	if (sb_id != QED_SP_SB_ID) {
1610 		if (IS_PF(p_hwfn->cdev)) {
1611 			struct qed_igu_info *p_info;
1612 			struct qed_igu_block *p_block;
1613 
1614 			p_info = p_hwfn->hw_info.p_igu_info;
1615 			p_block = &p_info->entry[sb_info->igu_sb_id];
1616 
1617 			p_block->sb_info = sb_info;
1618 			p_block->status &= ~QED_IGU_STATUS_FREE;
1619 			p_info->usage.free_cnt--;
1620 		} else {
1621 			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1622 		}
1623 	}
1624 
1625 	sb_info->cdev = p_hwfn->cdev;
1626 
1627 	/* The igu address will hold the absolute address that needs to be
1628 	 * written to for a specific status block
1629 	 */
1630 	if (IS_PF(p_hwfn->cdev)) {
1631 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1632 						  GTT_BAR0_MAP_REG_IGU_CMD +
1633 						  (sb_info->igu_sb_id << 3);
1634 	} else {
1635 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1636 						  PXP_VF_BAR0_START_IGU +
1637 						  ((IGU_CMD_INT_ACK_BASE +
1638 						    sb_info->igu_sb_id) << 3);
1639 	}
1640 
1641 	sb_info->flags |= QED_SB_INFO_INIT;
1642 
1643 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1644 
1645 	return 0;
1646 }
1647 
1648 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1649 		       struct qed_sb_info *sb_info, u16 sb_id)
1650 {
1651 	struct qed_igu_block *p_block;
1652 	struct qed_igu_info *p_info;
1653 
1654 	if (!sb_info)
1655 		return 0;
1656 
1657 	/* zero status block and ack counter */
1658 	sb_info->sb_ack = 0;
1659 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1660 
1661 	if (IS_VF(p_hwfn->cdev)) {
1662 		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1663 		return 0;
1664 	}
1665 
1666 	p_info = p_hwfn->hw_info.p_igu_info;
1667 	p_block = &p_info->entry[sb_info->igu_sb_id];
1668 
1669 	/* Vector 0 is reserved to Default SB */
1670 	if (!p_block->vector_number) {
1671 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1672 		return -EINVAL;
1673 	}
1674 
1675 	/* Lose reference to client's SB info, and fix counters */
1676 	p_block->sb_info = NULL;
1677 	p_block->status |= QED_IGU_STATUS_FREE;
1678 	p_info->usage.free_cnt++;
1679 
1680 	return 0;
1681 }
1682 
1683 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1684 {
1685 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1686 
1687 	if (!p_sb)
1688 		return;
1689 
1690 	if (p_sb->sb_info.sb_virt)
1691 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1692 				  SB_ALIGNED_SIZE(p_hwfn),
1693 				  p_sb->sb_info.sb_virt,
1694 				  p_sb->sb_info.sb_phys);
1695 	kfree(p_sb);
1696 	p_hwfn->p_sp_sb = NULL;
1697 }
1698 
1699 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1700 {
1701 	struct qed_sb_sp_info *p_sb;
1702 	dma_addr_t p_phys = 0;
1703 	void *p_virt;
1704 
1705 	/* SB struct */
1706 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1707 	if (!p_sb)
1708 		return -ENOMEM;
1709 
1710 	/* SB ring  */
1711 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1712 				    SB_ALIGNED_SIZE(p_hwfn),
1713 				    &p_phys, GFP_KERNEL);
1714 	if (!p_virt) {
1715 		kfree(p_sb);
1716 		return -ENOMEM;
1717 	}
1718 
1719 	/* Status Block setup */
1720 	p_hwfn->p_sp_sb = p_sb;
1721 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1722 			p_phys, QED_SP_SB_ID);
1723 
1724 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1725 
1726 	return 0;
1727 }
1728 
1729 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1730 			qed_int_comp_cb_t comp_cb,
1731 			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1732 {
1733 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1734 	int rc = -ENOMEM;
1735 	u8 pi;
1736 
1737 	/* Look for a free index */
1738 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1739 		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1740 			continue;
1741 
1742 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1743 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1744 		*sb_idx = pi;
1745 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1746 		rc = 0;
1747 		break;
1748 	}
1749 
1750 	return rc;
1751 }
1752 
1753 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1754 {
1755 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1756 
1757 	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1758 		return -ENOMEM;
1759 
1760 	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1761 	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1762 
1763 	return 0;
1764 }
1765 
1766 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1767 {
1768 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1769 }
1770 
1771 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1772 			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1773 {
1774 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1775 
1776 	p_hwfn->cdev->int_mode = int_mode;
1777 	switch (p_hwfn->cdev->int_mode) {
1778 	case QED_INT_MODE_INTA:
1779 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1780 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1781 		break;
1782 
1783 	case QED_INT_MODE_MSI:
1784 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1785 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1786 		break;
1787 
1788 	case QED_INT_MODE_MSIX:
1789 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1790 		break;
1791 	case QED_INT_MODE_POLL:
1792 		break;
1793 	}
1794 
1795 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1796 }
1797 
1798 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1799 				    struct qed_ptt *p_ptt)
1800 {
1801 
1802 	/* Configure AEU signal change to produce attentions */
1803 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1804 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1805 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1806 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1807 
1808 	/* Flush the writes to IGU */
1809 	mmiowb();
1810 
1811 	/* Unmask AEU signals toward IGU */
1812 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1813 }
1814 
1815 int
1816 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1817 		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1818 {
1819 	int rc = 0;
1820 
1821 	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1822 
1823 	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1824 		rc = qed_slowpath_irq_req(p_hwfn);
1825 		if (rc) {
1826 			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1827 			return -EINVAL;
1828 		}
1829 		p_hwfn->b_int_requested = true;
1830 	}
1831 	/* Enable interrupt Generation */
1832 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1833 	p_hwfn->b_int_enabled = 1;
1834 
1835 	return rc;
1836 }
1837 
1838 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1839 {
1840 	p_hwfn->b_int_enabled = 0;
1841 
1842 	if (IS_VF(p_hwfn->cdev))
1843 		return;
1844 
1845 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1846 }
1847 
1848 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1849 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1850 				   struct qed_ptt *p_ptt,
1851 				   u16 igu_sb_id,
1852 				   bool cleanup_set, u16 opaque_fid)
1853 {
1854 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1855 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1856 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1857 
1858 	/* Set the data field */
1859 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1860 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1861 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1862 
1863 	/* Set the control register */
1864 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1865 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1866 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1867 
1868 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1869 
1870 	barrier();
1871 
1872 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1873 
1874 	/* Flush the write to IGU */
1875 	mmiowb();
1876 
1877 	/* calculate where to read the status bit from */
1878 	sb_bit = 1 << (igu_sb_id % 32);
1879 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1880 
1881 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1882 
1883 	/* Now wait for the command to complete */
1884 	do {
1885 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1886 
1887 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1888 			break;
1889 
1890 		usleep_range(5000, 10000);
1891 	} while (--sleep_cnt);
1892 
1893 	if (!sleep_cnt)
1894 		DP_NOTICE(p_hwfn,
1895 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1896 			  val, igu_sb_id);
1897 }
1898 
1899 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1900 				     struct qed_ptt *p_ptt,
1901 				     u16 igu_sb_id, u16 opaque, bool b_set)
1902 {
1903 	struct qed_igu_block *p_block;
1904 	int pi, i;
1905 
1906 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1907 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1908 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1909 		   igu_sb_id,
1910 		   p_block->function_id,
1911 		   p_block->is_pf, p_block->vector_number);
1912 
1913 	/* Set */
1914 	if (b_set)
1915 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1916 
1917 	/* Clear */
1918 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1919 
1920 	/* Wait for the IGU SB to cleanup */
1921 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1922 		u32 val;
1923 
1924 		val = qed_rd(p_hwfn, p_ptt,
1925 			     IGU_REG_WRITE_DONE_PENDING +
1926 			     ((igu_sb_id / 32) * 4));
1927 		if (val & BIT((igu_sb_id % 32)))
1928 			usleep_range(10, 20);
1929 		else
1930 			break;
1931 	}
1932 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1933 		DP_NOTICE(p_hwfn,
1934 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1935 			  igu_sb_id);
1936 
1937 	/* Clear the CAU for the SB */
1938 	for (pi = 0; pi < 12; pi++)
1939 		qed_wr(p_hwfn, p_ptt,
1940 		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1941 }
1942 
1943 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1944 			      struct qed_ptt *p_ptt,
1945 			      bool b_set, bool b_slowpath)
1946 {
1947 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1948 	struct qed_igu_block *p_block;
1949 	u16 igu_sb_id = 0;
1950 	u32 val = 0;
1951 
1952 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1953 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1954 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1955 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1956 
1957 	for (igu_sb_id = 0;
1958 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1959 		p_block = &p_info->entry[igu_sb_id];
1960 
1961 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1962 		    !p_block->is_pf ||
1963 		    (p_block->status & QED_IGU_STATUS_DSB))
1964 			continue;
1965 
1966 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1967 						p_hwfn->hw_info.opaque_fid,
1968 						b_set);
1969 	}
1970 
1971 	if (b_slowpath)
1972 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
1973 						p_info->igu_dsb_id,
1974 						p_hwfn->hw_info.opaque_fid,
1975 						b_set);
1976 }
1977 
1978 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1979 {
1980 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1981 	struct qed_igu_block *p_block;
1982 	int pf_sbs, vf_sbs;
1983 	u16 igu_sb_id;
1984 	u32 val, rval;
1985 
1986 	if (!RESC_NUM(p_hwfn, QED_SB)) {
1987 		p_info->b_allow_pf_vf_change = false;
1988 	} else {
1989 		/* Use the numbers the MFW have provided -
1990 		 * don't forget MFW accounts for the default SB as well.
1991 		 */
1992 		p_info->b_allow_pf_vf_change = true;
1993 
1994 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
1995 			DP_INFO(p_hwfn,
1996 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
1997 				RESC_NUM(p_hwfn, QED_SB) - 1,
1998 				p_info->usage.cnt);
1999 			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2000 		}
2001 
2002 		if (IS_PF_SRIOV(p_hwfn)) {
2003 			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2004 
2005 			if (vfs != p_info->usage.iov_cnt)
2006 				DP_VERBOSE(p_hwfn,
2007 					   NETIF_MSG_INTR,
2008 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2009 					   p_info->usage.iov_cnt, vfs);
2010 
2011 			/* At this point we know how many SBs we have totally
2012 			 * in IGU + number of PF SBs. So we can validate that
2013 			 * we'd have sufficient for VF.
2014 			 */
2015 			if (vfs > p_info->usage.free_cnt +
2016 			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2017 				DP_NOTICE(p_hwfn,
2018 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2019 					  p_info->usage.free_cnt +
2020 					  p_info->usage.free_cnt_iov,
2021 					  p_info->usage.cnt, vfs);
2022 				return -EINVAL;
2023 			}
2024 
2025 			/* Currently cap the number of VFs SBs by the
2026 			 * number of VFs.
2027 			 */
2028 			p_info->usage.iov_cnt = vfs;
2029 		}
2030 	}
2031 
2032 	/* Mark all SBs as free, now in the right PF/VFs division */
2033 	p_info->usage.free_cnt = p_info->usage.cnt;
2034 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2035 	p_info->usage.orig = p_info->usage.cnt;
2036 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2037 
2038 	/* We now proceed to re-configure the IGU cam to reflect the initial
2039 	 * configuration. We can start with the Default SB.
2040 	 */
2041 	pf_sbs = p_info->usage.cnt;
2042 	vf_sbs = p_info->usage.iov_cnt;
2043 
2044 	for (igu_sb_id = p_info->igu_dsb_id;
2045 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2046 		p_block = &p_info->entry[igu_sb_id];
2047 		val = 0;
2048 
2049 		if (!(p_block->status & QED_IGU_STATUS_VALID))
2050 			continue;
2051 
2052 		if (p_block->status & QED_IGU_STATUS_DSB) {
2053 			p_block->function_id = p_hwfn->rel_pf_id;
2054 			p_block->is_pf = 1;
2055 			p_block->vector_number = 0;
2056 			p_block->status = QED_IGU_STATUS_VALID |
2057 					  QED_IGU_STATUS_PF |
2058 					  QED_IGU_STATUS_DSB;
2059 		} else if (pf_sbs) {
2060 			pf_sbs--;
2061 			p_block->function_id = p_hwfn->rel_pf_id;
2062 			p_block->is_pf = 1;
2063 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2064 			p_block->status = QED_IGU_STATUS_VALID |
2065 					  QED_IGU_STATUS_PF |
2066 					  QED_IGU_STATUS_FREE;
2067 		} else if (vf_sbs) {
2068 			p_block->function_id =
2069 			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2070 			    p_info->usage.iov_cnt - vf_sbs;
2071 			p_block->is_pf = 0;
2072 			p_block->vector_number = 0;
2073 			p_block->status = QED_IGU_STATUS_VALID |
2074 					  QED_IGU_STATUS_FREE;
2075 			vf_sbs--;
2076 		} else {
2077 			p_block->function_id = 0;
2078 			p_block->is_pf = 0;
2079 			p_block->vector_number = 0;
2080 		}
2081 
2082 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2083 			  p_block->function_id);
2084 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2085 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2086 			  p_block->vector_number);
2087 
2088 		/* VF entries would be enabled when VF is initializaed */
2089 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2090 
2091 		rval = qed_rd(p_hwfn, p_ptt,
2092 			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2093 
2094 		if (rval != val) {
2095 			qed_wr(p_hwfn, p_ptt,
2096 			       IGU_REG_MAPPING_MEMORY +
2097 			       sizeof(u32) * igu_sb_id, val);
2098 
2099 			DP_VERBOSE(p_hwfn,
2100 				   NETIF_MSG_INTR,
2101 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2102 				   igu_sb_id,
2103 				   p_block->function_id,
2104 				   p_block->is_pf,
2105 				   p_block->vector_number, rval, val);
2106 		}
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2113 				       struct qed_ptt *p_ptt, u16 igu_sb_id)
2114 {
2115 	u32 val = qed_rd(p_hwfn, p_ptt,
2116 			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2117 	struct qed_igu_block *p_block;
2118 
2119 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2120 
2121 	/* Fill the block information */
2122 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2123 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2124 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2125 	p_block->igu_sb_id = igu_sb_id;
2126 }
2127 
2128 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2129 {
2130 	struct qed_igu_info *p_igu_info;
2131 	struct qed_igu_block *p_block;
2132 	u32 min_vf = 0, max_vf = 0;
2133 	u16 igu_sb_id;
2134 
2135 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2136 	if (!p_hwfn->hw_info.p_igu_info)
2137 		return -ENOMEM;
2138 
2139 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2140 
2141 	/* Distinguish between existent and non-existent default SB */
2142 	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2143 
2144 	/* Find the range of VF ids whose SB belong to this PF */
2145 	if (p_hwfn->cdev->p_iov_info) {
2146 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2147 
2148 		min_vf	= p_iov->first_vf_in_pf;
2149 		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2150 	}
2151 
2152 	for (igu_sb_id = 0;
2153 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2154 		/* Read current entry; Notice it might not belong to this PF */
2155 		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2156 		p_block = &p_igu_info->entry[igu_sb_id];
2157 
2158 		if ((p_block->is_pf) &&
2159 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2160 			p_block->status = QED_IGU_STATUS_PF |
2161 					  QED_IGU_STATUS_VALID |
2162 					  QED_IGU_STATUS_FREE;
2163 
2164 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2165 				p_igu_info->usage.cnt++;
2166 		} else if (!(p_block->is_pf) &&
2167 			   (p_block->function_id >= min_vf) &&
2168 			   (p_block->function_id < max_vf)) {
2169 			/* Available for VFs of this PF */
2170 			p_block->status = QED_IGU_STATUS_VALID |
2171 					  QED_IGU_STATUS_FREE;
2172 
2173 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2174 				p_igu_info->usage.iov_cnt++;
2175 		}
2176 
2177 		/* Mark the First entry belonging to the PF or its VFs
2178 		 * as the default SB [we'll reset IGU prior to first usage].
2179 		 */
2180 		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2181 		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2182 			p_igu_info->igu_dsb_id = igu_sb_id;
2183 			p_block->status |= QED_IGU_STATUS_DSB;
2184 		}
2185 
2186 		/* limit number of prints by having each PF print only its
2187 		 * entries with the exception of PF0 which would print
2188 		 * everything.
2189 		 */
2190 		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2191 		    (p_hwfn->abs_pf_id == 0)) {
2192 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2193 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2194 				   igu_sb_id, p_block->function_id,
2195 				   p_block->is_pf, p_block->vector_number);
2196 		}
2197 	}
2198 
2199 	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2200 		DP_NOTICE(p_hwfn,
2201 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2202 			  p_igu_info->igu_dsb_id);
2203 		return -EINVAL;
2204 	}
2205 
2206 	/* All non default SB are considered free at this point */
2207 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2208 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2209 
2210 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2211 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2212 		   p_igu_info->igu_dsb_id,
2213 		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2214 
2215 	return 0;
2216 }
2217 
2218 /**
2219  * @brief Initialize igu runtime registers
2220  *
2221  * @param p_hwfn
2222  */
2223 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2224 {
2225 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2226 
2227 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2228 }
2229 
2230 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2231 {
2232 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2233 			       IGU_CMD_INT_ACK_BASE;
2234 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2235 			       IGU_CMD_INT_ACK_BASE;
2236 	u32 intr_status_hi = 0, intr_status_lo = 0;
2237 	u64 intr_status = 0;
2238 
2239 	intr_status_lo = REG_RD(p_hwfn,
2240 				GTT_BAR0_MAP_REG_IGU_CMD +
2241 				lsb_igu_cmd_addr * 8);
2242 	intr_status_hi = REG_RD(p_hwfn,
2243 				GTT_BAR0_MAP_REG_IGU_CMD +
2244 				msb_igu_cmd_addr * 8);
2245 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2246 
2247 	return intr_status;
2248 }
2249 
2250 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2251 {
2252 	tasklet_init(p_hwfn->sp_dpc,
2253 		     qed_int_sp_dpc, (unsigned long)p_hwfn);
2254 	p_hwfn->b_sp_dpc_enabled = true;
2255 }
2256 
2257 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2258 {
2259 	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2260 	if (!p_hwfn->sp_dpc)
2261 		return -ENOMEM;
2262 
2263 	return 0;
2264 }
2265 
2266 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2267 {
2268 	kfree(p_hwfn->sp_dpc);
2269 	p_hwfn->sp_dpc = NULL;
2270 }
2271 
2272 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2273 {
2274 	int rc = 0;
2275 
2276 	rc = qed_int_sp_dpc_alloc(p_hwfn);
2277 	if (rc)
2278 		return rc;
2279 
2280 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2281 	if (rc)
2282 		return rc;
2283 
2284 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2285 
2286 	return rc;
2287 }
2288 
2289 void qed_int_free(struct qed_hwfn *p_hwfn)
2290 {
2291 	qed_int_sp_sb_free(p_hwfn);
2292 	qed_int_sb_attn_free(p_hwfn);
2293 	qed_int_sp_dpc_free(p_hwfn);
2294 }
2295 
2296 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2297 {
2298 	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2299 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2300 	qed_int_sp_dpc_setup(p_hwfn);
2301 }
2302 
2303 void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2304 			 struct qed_sb_cnt_info *p_sb_cnt_info)
2305 {
2306 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2307 
2308 	if (!info || !p_sb_cnt_info)
2309 		return;
2310 
2311 	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2312 }
2313 
2314 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2315 {
2316 	int i;
2317 
2318 	for_each_hwfn(cdev, i)
2319 		cdev->hwfns[i].b_int_requested = false;
2320 }
2321 
2322 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2323 			  u8 timer_res, u16 sb_id, bool tx)
2324 {
2325 	struct cau_sb_entry sb_entry;
2326 	int rc;
2327 
2328 	if (!p_hwfn->hw_init_done) {
2329 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2334 			       sb_id * sizeof(u64),
2335 			       (u64)(uintptr_t)&sb_entry, 2, 0);
2336 	if (rc) {
2337 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2338 		return rc;
2339 	}
2340 
2341 	if (tx)
2342 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2343 	else
2344 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2345 
2346 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2347 			       (u64)(uintptr_t)&sb_entry,
2348 			       CAU_REG_SB_VAR_MEMORY +
2349 			       sb_id * sizeof(u64), 2, 0);
2350 	if (rc) {
2351 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2352 		return rc;
2353 	}
2354 
2355 	return rc;
2356 }
2357