1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55 
56 struct qed_pi_info {
57 	qed_int_comp_cb_t	comp_cb;
58 	void			*cookie;
59 };
60 
61 struct qed_sb_sp_info {
62 	struct qed_sb_info sb_info;
63 
64 	/* per protocol index data */
65 	struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67 
68 enum qed_attention_type {
69 	QED_ATTN_TYPE_ATTN,
70 	QED_ATTN_TYPE_PARITY,
71 };
72 
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75 
76 struct aeu_invert_reg_bit {
77 	char bit_name[30];
78 
79 #define ATTENTION_PARITY                (1 << 0)
80 
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84 					 ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88 					 ATTENTION_PARITY)
89 
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93 
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98 
99 	unsigned int flags;
100 
101 	/* Callback to call if attention will be triggered */
102 	int (*cb)(struct qed_hwfn *p_hwfn);
103 
104 	enum block_id block_index;
105 };
106 
107 struct aeu_invert_reg {
108 	struct aeu_invert_reg_bit bits[32];
109 };
110 
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113 
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118 
119 	/* This might occur on certain instances; Log it once then mask it */
120 	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 		tmp);
122 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 	       0xffffffff);
124 
125 	return 0;
126 }
127 
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 			 PSWHST_REG_INCORRECT_ACCESS_VALID);
145 
146 	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 		u32 addr, data, length;
148 
149 		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 			      PSWHST_REG_INCORRECT_ACCESS_DATA);
153 		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155 
156 		DP_INFO(p_hwfn->cdev,
157 			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 			addr, length,
159 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 			(u8) GET_FIELD(data,
162 				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 			(u8) GET_FIELD(data,
164 				       ATTENTION_INCORRECT_ACCESS_CLIENT),
165 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 			(u8) GET_FIELD(data,
167 				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 			data);
169 	}
170 
171 	return 0;
172 }
173 
174 #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
177 #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
180 #define QED_GRC_ATTENTION_PF_MASK	(0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT	(0)
182 #define QED_GRC_ATTENTION_VF_MASK	(0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT	(4)
184 #define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
186 #define QED_GRC_ATTENTION_PRIV_VF	(0)
187 static const char *attn_master_to_str(u8 master)
188 {
189 	switch (master) {
190 	case 1: return "PXP";
191 	case 2: return "MCP";
192 	case 3: return "MSDM";
193 	case 4: return "PSDM";
194 	case 5: return "YSDM";
195 	case 6: return "USDM";
196 	case 7: return "TSDM";
197 	case 8: return "XSDM";
198 	case 9: return "DBU";
199 	case 10: return "DMAE";
200 	default:
201 		return "Unknown";
202 	}
203 }
204 
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207 	u32 tmp, tmp2;
208 
209 	/* We've already cleared the timeout interrupt register, so we learn
210 	 * of interrupts via the validity register
211 	 */
212 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 		goto out;
216 
217 	/* Read the GRC timeout information */
218 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222 
223 	DP_INFO(p_hwfn->cdev,
224 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 		tmp2, tmp,
226 		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232 		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233 
234 out:
235 	/* Regardles of anything else, clean the validity bit */
236 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 	return 0;
239 }
240 
241 #define PGLUE_ATTENTION_VALID			(1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID		(1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
255 #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
258 
259 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn,
260 				struct qed_ptt *p_ptt)
261 {
262 	u32 tmp;
263 
264 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
265 	if (tmp & PGLUE_ATTENTION_VALID) {
266 		u32 addr_lo, addr_hi, details;
267 
268 		addr_lo = qed_rd(p_hwfn, p_ptt,
269 				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
270 		addr_hi = qed_rd(p_hwfn, p_ptt,
271 				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
272 		details = qed_rd(p_hwfn, p_ptt,
273 				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
274 
275 		DP_NOTICE(p_hwfn,
276 			  "Illegal write by chip to [%08x:%08x] blocked.\n"
277 			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
278 			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
279 			  addr_hi, addr_lo, details,
280 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
281 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
282 			  GET_FIELD(details,
283 				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
284 			  tmp,
285 			  GET_FIELD(tmp,
286 				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
287 			  GET_FIELD(tmp,
288 				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
289 			  GET_FIELD(tmp,
290 				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
291 	}
292 
293 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 	if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 		u32 addr_lo, addr_hi, details;
296 
297 		addr_lo = qed_rd(p_hwfn, p_ptt,
298 				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 		addr_hi = qed_rd(p_hwfn, p_ptt,
300 				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 		details = qed_rd(p_hwfn, p_ptt,
302 				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303 
304 		DP_NOTICE(p_hwfn,
305 			  "Illegal read by chip from [%08x:%08x] blocked.\n"
306 			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 			  addr_hi, addr_lo, details,
309 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 			  GET_FIELD(details,
312 				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 			  tmp,
314 			  GET_FIELD(tmp,
315 				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
316 			  GET_FIELD(tmp,
317 				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
318 			  GET_FIELD(tmp,
319 				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
320 	}
321 
322 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 	if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 		DP_NOTICE(p_hwfn, "ICPL error - %08x\n", tmp);
325 
326 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
327 	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
328 		u32 addr_hi, addr_lo;
329 
330 		addr_lo = qed_rd(p_hwfn, p_ptt,
331 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
332 		addr_hi = qed_rd(p_hwfn, p_ptt,
333 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
334 
335 		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
336 			  tmp, addr_hi, addr_lo);
337 	}
338 
339 	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
340 	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
341 		u32 addr_hi, addr_lo, details;
342 
343 		addr_lo = qed_rd(p_hwfn, p_ptt,
344 				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
345 		addr_hi = qed_rd(p_hwfn, p_ptt,
346 				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
347 		details = qed_rd(p_hwfn, p_ptt,
348 				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
349 
350 		DP_NOTICE(p_hwfn,
351 			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
352 			  details, tmp, addr_hi, addr_lo);
353 	}
354 
355 	/* Clear the indications */
356 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
357 
358 	return 0;
359 }
360 
361 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
362 {
363 	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
364 }
365 
366 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
367 #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
368 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
369 #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
370 #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
371 
372 #define QED_DB_REC_COUNT                        1000
373 #define QED_DB_REC_INTERVAL                     100
374 
375 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
376 				  struct qed_ptt *p_ptt)
377 {
378 	u32 count = QED_DB_REC_COUNT;
379 	u32 usage = 1;
380 
381 	/* Flush any pending (e)dpms as they may never arrive */
382 	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
383 
384 	/* wait for usage to zero or count to run out. This is necessary since
385 	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
386 	 * can "split" over the pci. Possibly, the doorbell drop can happen with
387 	 * half an EDPM in the queue and other half dropped. Another EDPM
388 	 * doorbell to the same address (from doorbell recovery mechanism or
389 	 * from the doorbelling entity) could have first half dropped and second
390 	 * half interpreted as continuation of the first. To prevent such
391 	 * malformed doorbells from reaching the device, flush the queue before
392 	 * releasing the overflow sticky indication.
393 	 */
394 	while (count-- && usage) {
395 		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
396 		udelay(QED_DB_REC_INTERVAL);
397 	}
398 
399 	/* should have been depleted by now */
400 	if (usage) {
401 		DP_NOTICE(p_hwfn->cdev,
402 			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
403 			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
404 		return -EBUSY;
405 	}
406 
407 	return 0;
408 }
409 
410 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
411 {
412 	u32 attn_ovfl, cur_ovfl;
413 	int rc;
414 
415 	attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
416 				       &p_hwfn->db_recovery_info.overflow);
417 	cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
418 	if (!cur_ovfl && !attn_ovfl)
419 		return 0;
420 
421 	DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
422 		  attn_ovfl, cur_ovfl);
423 
424 	if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
425 		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
426 		if (rc)
427 			return rc;
428 	}
429 
430 	/* Release overflow sticky indication (stop silently dropping everything) */
431 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
432 
433 	/* Repeat all last doorbells (doorbell drop recovery) */
434 	qed_db_recovery_execute(p_hwfn);
435 
436 	return 0;
437 }
438 
439 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
440 {
441 	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
442 	u32 overflow;
443 	int rc;
444 
445 	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
446 	if (!overflow)
447 		goto out;
448 
449 	/* Run PF doorbell recovery in next periodic handler */
450 	set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
451 
452 	if (!p_hwfn->db_bar_no_edpm) {
453 		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
454 		if (rc)
455 			goto out;
456 	}
457 
458 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
459 out:
460 	/* Schedule the handler even if overflow was not detected */
461 	qed_periodic_db_rec_start(p_hwfn);
462 }
463 
464 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
465 {
466 	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
467 	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
468 
469 	/* int_sts may be zero since all PFs were interrupted for doorbell
470 	 * overflow but another one already handled it. Can abort here. If
471 	 * This PF also requires overflow recovery we will be interrupted again.
472 	 * The masked almost full indication may also be set. Ignoring.
473 	 */
474 	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
475 	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
476 		return 0;
477 
478 	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
479 
480 	/* check if db_drop or overflow happened */
481 	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
482 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
483 		/* Obtain data about db drop/overflow */
484 		first_drop_reason = qed_rd(p_hwfn, p_ptt,
485 					   DORQ_REG_DB_DROP_REASON) &
486 		    QED_DORQ_ATTENTION_REASON_MASK;
487 		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
488 		address = qed_rd(p_hwfn, p_ptt,
489 				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
490 		all_drops_reason = qed_rd(p_hwfn, p_ptt,
491 					  DORQ_REG_DB_DROP_DETAILS_REASON);
492 
493 		/* Log info */
494 		DP_NOTICE(p_hwfn->cdev,
495 			  "Doorbell drop occurred\n"
496 			  "Address\t\t0x%08x\t(second BAR address)\n"
497 			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
498 			  "Size\t\t0x%04x\t\t(in bytes)\n"
499 			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
500 			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
501 			  address,
502 			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
503 			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
504 			  first_drop_reason, all_drops_reason);
505 
506 		/* Clear the doorbell drop details and prepare for next drop */
507 		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
508 
509 		/* Mark interrupt as handled (note: even if drop was due to a different
510 		 * reason than overflow we mark as handled)
511 		 */
512 		qed_wr(p_hwfn,
513 		       p_ptt,
514 		       DORQ_REG_INT_STS_WR,
515 		       DORQ_REG_INT_STS_DB_DROP |
516 		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
517 
518 		/* If there are no indications other than drop indications, success */
519 		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
520 				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
521 				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
522 			return 0;
523 	}
524 
525 	/* Some other indication was present - non recoverable */
526 	DP_INFO(p_hwfn, "DORQ fatal attention\n");
527 
528 	return -EINVAL;
529 }
530 
531 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
532 {
533 	p_hwfn->db_recovery_info.dorq_attn = true;
534 	qed_dorq_attn_overflow(p_hwfn);
535 
536 	return qed_dorq_attn_int_sts(p_hwfn);
537 }
538 
539 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
540 {
541 	if (p_hwfn->db_recovery_info.dorq_attn)
542 		goto out;
543 
544 	/* Call DORQ callback if the attention was missed */
545 	qed_dorq_attn_cb(p_hwfn);
546 out:
547 	p_hwfn->db_recovery_info.dorq_attn = false;
548 }
549 
550 /* Instead of major changes to the data-structure, we have a some 'special'
551  * identifiers for sources that changed meaning between adapters.
552  */
553 enum aeu_invert_reg_special_type {
554 	AEU_INVERT_REG_SPECIAL_CNIG_0,
555 	AEU_INVERT_REG_SPECIAL_CNIG_1,
556 	AEU_INVERT_REG_SPECIAL_CNIG_2,
557 	AEU_INVERT_REG_SPECIAL_CNIG_3,
558 	AEU_INVERT_REG_SPECIAL_MAX,
559 };
560 
561 static struct aeu_invert_reg_bit
562 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
563 	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
564 	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
565 	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
566 	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
567 };
568 
569 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
570 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
571 	{
572 		{       /* After Invert 1 */
573 			{"GPIO0 function%d",
574 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
575 		}
576 	},
577 
578 	{
579 		{       /* After Invert 2 */
580 			{"PGLUE config_space", ATTENTION_SINGLE,
581 			 NULL, MAX_BLOCK_ID},
582 			{"PGLUE misc_flr", ATTENTION_SINGLE,
583 			 NULL, MAX_BLOCK_ID},
584 			{"PGLUE B RBC", ATTENTION_PAR_INT,
585 			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
586 			{"PGLUE misc_mctp", ATTENTION_SINGLE,
587 			 NULL, MAX_BLOCK_ID},
588 			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
589 			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
590 			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
591 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
592 					  (1 << ATTENTION_OFFSET_SHIFT),
593 			 NULL, MAX_BLOCK_ID},
594 			{"PCIE glue/PXP VPD %d",
595 			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
596 		}
597 	},
598 
599 	{
600 		{       /* After Invert 3 */
601 			{"General Attention %d",
602 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
603 		}
604 	},
605 
606 	{
607 		{       /* After Invert 4 */
608 			{"General Attention 32", ATTENTION_SINGLE,
609 			 NULL, MAX_BLOCK_ID},
610 			{"General Attention %d",
611 			 (2 << ATTENTION_LENGTH_SHIFT) |
612 			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
613 			{"General Attention 35", ATTENTION_SINGLE,
614 			 NULL, MAX_BLOCK_ID},
615 			{"NWS Parity",
616 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
617 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
618 			 NULL, BLOCK_NWS},
619 			{"NWS Interrupt",
620 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
621 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
622 			 NULL, BLOCK_NWS},
623 			{"NWM Parity",
624 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
625 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
626 			 NULL, BLOCK_NWM},
627 			{"NWM Interrupt",
628 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
629 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
630 			 NULL, BLOCK_NWM},
631 			{"MCP CPU", ATTENTION_SINGLE,
632 			 qed_mcp_attn_cb, MAX_BLOCK_ID},
633 			{"MCP Watchdog timer", ATTENTION_SINGLE,
634 			 NULL, MAX_BLOCK_ID},
635 			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
636 			{"AVS stop status ready", ATTENTION_SINGLE,
637 			 NULL, MAX_BLOCK_ID},
638 			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
639 			{"MSTAT per-path", ATTENTION_PAR_INT,
640 			 NULL, MAX_BLOCK_ID},
641 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
642 			 NULL, MAX_BLOCK_ID},
643 			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
644 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
645 			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
646 			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
647 			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
648 		}
649 	},
650 
651 	{
652 		{       /* After Invert 5 */
653 			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
654 			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
655 			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
656 			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
657 			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
658 			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
659 			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
660 			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
661 			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
662 			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
663 			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
664 			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
665 			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
666 			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
667 			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
668 			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
669 		}
670 	},
671 
672 	{
673 		{       /* After Invert 6 */
674 			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
675 			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
676 			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
677 			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
678 			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
679 			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
680 			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
681 			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
682 			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
683 			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
684 			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
685 			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
686 			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
687 			{"DORQ", ATTENTION_PAR_INT,
688 			 qed_dorq_attn_cb, BLOCK_DORQ},
689 			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
690 			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
691 		}
692 	},
693 
694 	{
695 		{       /* After Invert 7 */
696 			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
697 			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
698 			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
699 			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
700 			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
701 			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
702 			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
703 			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
704 			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
705 			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
706 			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
707 			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
708 			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
709 			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
710 			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
711 			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
712 			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
713 		}
714 	},
715 
716 	{
717 		{       /* After Invert 8 */
718 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
719 			 NULL, BLOCK_PSWRQ2},
720 			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
721 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
722 			 NULL, BLOCK_PSWWR2},
723 			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
724 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
725 			 NULL, BLOCK_PSWRD2},
726 			{"PSWHST", ATTENTION_PAR_INT,
727 			 qed_pswhst_attn_cb, BLOCK_PSWHST},
728 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
729 			 NULL, BLOCK_PSWHST2},
730 			{"GRC",	ATTENTION_PAR_INT,
731 			 qed_grc_attn_cb, BLOCK_GRC},
732 			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
733 			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
734 			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
735 			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
736 			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
737 			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
738 			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
739 			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
740 			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
741 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
742 			 NULL, BLOCK_PGLCS},
743 			{"PERST_B assertion", ATTENTION_SINGLE,
744 			 NULL, MAX_BLOCK_ID},
745 			{"PERST_B deassertion", ATTENTION_SINGLE,
746 			 NULL, MAX_BLOCK_ID},
747 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
748 			 NULL, MAX_BLOCK_ID},
749 		}
750 	},
751 
752 	{
753 		{       /* After Invert 9 */
754 			{"MCP Latched memory", ATTENTION_PAR,
755 			 NULL, MAX_BLOCK_ID},
756 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
757 			 NULL, MAX_BLOCK_ID},
758 			{"MCP Latched ump_tx", ATTENTION_PAR,
759 			 NULL, MAX_BLOCK_ID},
760 			{"MCP Latched scratchpad", ATTENTION_PAR,
761 			 NULL, MAX_BLOCK_ID},
762 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
763 			 NULL, MAX_BLOCK_ID},
764 		}
765 	},
766 };
767 
768 static struct aeu_invert_reg_bit *
769 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
770 		      struct aeu_invert_reg_bit *p_bit)
771 {
772 	if (!QED_IS_BB(p_hwfn->cdev))
773 		return p_bit;
774 
775 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
776 		return p_bit;
777 
778 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
779 				  ATTENTION_BB_SHIFT];
780 }
781 
782 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
783 				   struct aeu_invert_reg_bit *p_bit)
784 {
785 	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
786 		   ATTENTION_PARITY);
787 }
788 
789 #define ATTN_STATE_BITS         (0xfff)
790 #define ATTN_BITS_MASKABLE      (0x3ff)
791 struct qed_sb_attn_info {
792 	/* Virtual & Physical address of the SB */
793 	struct atten_status_block       *sb_attn;
794 	dma_addr_t			sb_phys;
795 
796 	/* Last seen running index */
797 	u16				index;
798 
799 	/* A mask of the AEU bits resulting in a parity error */
800 	u32				parity_mask[NUM_ATTN_REGS];
801 
802 	/* A pointer to the attention description structure */
803 	struct aeu_invert_reg		*p_aeu_desc;
804 
805 	/* Previously asserted attentions, which are still unasserted */
806 	u16				known_attn;
807 
808 	/* Cleanup address for the link's general hw attention */
809 	u32				mfw_attn_addr;
810 };
811 
812 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
813 				      struct qed_sb_attn_info *p_sb_desc)
814 {
815 	u16 rc = 0, index;
816 
817 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
818 	if (p_sb_desc->index != index) {
819 		p_sb_desc->index	= index;
820 		rc		      = QED_SB_ATT_IDX;
821 	}
822 
823 	return rc;
824 }
825 
826 /**
827  *  @brief qed_int_assertion - handles asserted attention bits
828  *
829  *  @param p_hwfn
830  *  @param asserted_bits newly asserted bits
831  *  @return int
832  */
833 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
834 {
835 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
836 	u32 igu_mask;
837 
838 	/* Mask the source of the attention in the IGU */
839 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
840 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
841 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
842 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
843 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
844 
845 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
846 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
847 		   sb_attn_sw->known_attn,
848 		   sb_attn_sw->known_attn | asserted_bits);
849 	sb_attn_sw->known_attn |= asserted_bits;
850 
851 	/* Handle MCP events */
852 	if (asserted_bits & 0x100) {
853 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
854 		/* Clean the MCP attention */
855 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
856 		       sb_attn_sw->mfw_attn_addr, 0);
857 	}
858 
859 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
860 		      GTT_BAR0_MAP_REG_IGU_CMD +
861 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
862 			IGU_CMD_INT_ACK_BASE) << 3),
863 		      (u32)asserted_bits);
864 
865 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
866 		   asserted_bits);
867 
868 	return 0;
869 }
870 
871 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
872 			       enum block_id id,
873 			       enum dbg_attn_type type, bool b_clear)
874 {
875 	struct dbg_attn_block_result attn_results;
876 	enum dbg_status status;
877 
878 	memset(&attn_results, 0, sizeof(attn_results));
879 
880 	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
881 				   b_clear, &attn_results);
882 	if (status != DBG_STATUS_OK)
883 		DP_NOTICE(p_hwfn,
884 			  "Failed to parse attention information [status: %s]\n",
885 			  qed_dbg_get_status_str(status));
886 	else
887 		qed_dbg_parse_attn(p_hwfn, &attn_results);
888 }
889 
890 /**
891  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
892  * cause of the attention
893  *
894  * @param p_hwfn
895  * @param p_aeu - descriptor of an AEU bit which caused the attention
896  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
897  *  this bit to this group.
898  * @param bit_index - index of this bit in the aeu_en_reg
899  *
900  * @return int
901  */
902 static int
903 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
904 			    struct aeu_invert_reg_bit *p_aeu,
905 			    u32 aeu_en_reg,
906 			    const char *p_bit_name, u32 bitmask)
907 {
908 	bool b_fatal = false;
909 	int rc = -EINVAL;
910 	u32 val;
911 
912 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
913 		p_bit_name, bitmask);
914 
915 	/* Call callback before clearing the interrupt status */
916 	if (p_aeu->cb) {
917 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
918 			p_bit_name);
919 		rc = p_aeu->cb(p_hwfn);
920 	}
921 
922 	if (rc)
923 		b_fatal = true;
924 
925 	/* Print HW block interrupt registers */
926 	if (p_aeu->block_index != MAX_BLOCK_ID)
927 		qed_int_attn_print(p_hwfn, p_aeu->block_index,
928 				   ATTN_TYPE_INTERRUPT, !b_fatal);
929 
930 
931 	/* If the attention is benign, no need to prevent it */
932 	if (!rc)
933 		goto out;
934 
935 	/* Prevent this Attention from being asserted in the future */
936 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
937 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
938 	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
939 		p_bit_name);
940 
941 out:
942 	return rc;
943 }
944 
945 /**
946  * @brief qed_int_deassertion_parity - handle a single parity AEU source
947  *
948  * @param p_hwfn
949  * @param p_aeu - descriptor of an AEU bit which caused the parity
950  * @param aeu_en_reg - address of the AEU enable register
951  * @param bit_index
952  */
953 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
954 				       struct aeu_invert_reg_bit *p_aeu,
955 				       u32 aeu_en_reg, u8 bit_index)
956 {
957 	u32 block_id = p_aeu->block_index, mask, val;
958 
959 	DP_NOTICE(p_hwfn->cdev,
960 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
961 		  p_aeu->bit_name, aeu_en_reg, bit_index);
962 
963 	if (block_id != MAX_BLOCK_ID) {
964 		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
965 
966 		/* In BB, there's a single parity bit for several blocks */
967 		if (block_id == BLOCK_BTB) {
968 			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
969 					   ATTN_TYPE_PARITY, false);
970 			qed_int_attn_print(p_hwfn, BLOCK_MCP,
971 					   ATTN_TYPE_PARITY, false);
972 		}
973 	}
974 
975 	/* Prevent this parity error from being re-asserted */
976 	mask = ~BIT(bit_index);
977 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
978 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
979 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
980 		p_aeu->bit_name);
981 }
982 
983 /**
984  * @brief - handles deassertion of previously asserted attentions.
985  *
986  * @param p_hwfn
987  * @param deasserted_bits - newly deasserted bits
988  * @return int
989  *
990  */
991 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
992 			       u16 deasserted_bits)
993 {
994 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
995 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
996 	u8 i, j, k, bit_idx;
997 	int rc = 0;
998 
999 	/* Read the attention registers in the AEU */
1000 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1001 		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1002 					MISC_REG_AEU_AFTER_INVERT_1_IGU +
1003 					i * 0x4);
1004 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1005 			   "Deasserted bits [%d]: %08x\n",
1006 			   i, aeu_inv_arr[i]);
1007 	}
1008 
1009 	/* Find parity attentions first */
1010 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1011 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1012 		u32 parities;
1013 
1014 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1015 		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1016 
1017 		/* Skip register in which no parity bit is currently set */
1018 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1019 		if (!parities)
1020 			continue;
1021 
1022 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1023 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1024 
1025 			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1026 			    !!(parities & BIT(bit_idx)))
1027 				qed_int_deassertion_parity(p_hwfn, p_bit,
1028 							   aeu_en, bit_idx);
1029 
1030 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1031 		}
1032 	}
1033 
1034 	/* Find non-parity cause for attention and act */
1035 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1036 		struct aeu_invert_reg_bit *p_aeu;
1037 
1038 		/* Handle only groups whose attention is currently deasserted */
1039 		if (!(deasserted_bits & (1 << k)))
1040 			continue;
1041 
1042 		for (i = 0; i < NUM_ATTN_REGS; i++) {
1043 			u32 bits;
1044 
1045 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1046 				 i * sizeof(u32) +
1047 				 k * sizeof(u32) * NUM_ATTN_REGS;
1048 
1049 			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1050 			bits = aeu_inv_arr[i] & en;
1051 
1052 			/* Skip if no bit from this group is currently set */
1053 			if (!bits)
1054 				continue;
1055 
1056 			/* Find all set bits from current register which belong
1057 			 * to current group, making them responsible for the
1058 			 * previous assertion.
1059 			 */
1060 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1061 				long unsigned int bitmask;
1062 				u8 bit, bit_len;
1063 
1064 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1065 				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1066 
1067 				bit = bit_idx;
1068 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1069 				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1070 					/* Skip Parity */
1071 					bit++;
1072 					bit_len--;
1073 				}
1074 
1075 				bitmask = bits & (((1 << bit_len) - 1) << bit);
1076 				bitmask >>= bit;
1077 
1078 				if (bitmask) {
1079 					u32 flags = p_aeu->flags;
1080 					char bit_name[30];
1081 					u8 num;
1082 
1083 					num = (u8)find_first_bit(&bitmask,
1084 								 bit_len);
1085 
1086 					/* Some bits represent more than a
1087 					 * a single interrupt. Correctly print
1088 					 * their name.
1089 					 */
1090 					if (ATTENTION_LENGTH(flags) > 2 ||
1091 					    ((flags & ATTENTION_PAR_INT) &&
1092 					     ATTENTION_LENGTH(flags) > 1))
1093 						snprintf(bit_name, 30,
1094 							 p_aeu->bit_name, num);
1095 					else
1096 						strlcpy(bit_name,
1097 							p_aeu->bit_name, 30);
1098 
1099 					/* We now need to pass bitmask in its
1100 					 * correct position.
1101 					 */
1102 					bitmask <<= bit;
1103 
1104 					/* Handle source of the attention */
1105 					qed_int_deassertion_aeu_bit(p_hwfn,
1106 								    p_aeu,
1107 								    aeu_en,
1108 								    bit_name,
1109 								    bitmask);
1110 				}
1111 
1112 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1113 			}
1114 		}
1115 	}
1116 
1117 	/* Handle missed DORQ attention */
1118 	qed_dorq_attn_handler(p_hwfn);
1119 
1120 	/* Clear IGU indication for the deasserted bits */
1121 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1122 				    GTT_BAR0_MAP_REG_IGU_CMD +
1123 				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1124 				      IGU_CMD_INT_ACK_BASE) << 3),
1125 				    ~((u32)deasserted_bits));
1126 
1127 	/* Unmask deasserted attentions in IGU */
1128 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1129 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1130 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1131 
1132 	/* Clear deassertion from inner state */
1133 	sb_attn_sw->known_attn &= ~deasserted_bits;
1134 
1135 	return rc;
1136 }
1137 
1138 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1139 {
1140 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1141 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1142 	u32 attn_bits = 0, attn_acks = 0;
1143 	u16 asserted_bits, deasserted_bits;
1144 	__le16 index;
1145 	int rc = 0;
1146 
1147 	/* Read current attention bits/acks - safeguard against attentions
1148 	 * by guaranting work on a synchronized timeframe
1149 	 */
1150 	do {
1151 		index = p_sb_attn->sb_index;
1152 		/* finish reading index before the loop condition */
1153 		dma_rmb();
1154 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1155 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1156 	} while (index != p_sb_attn->sb_index);
1157 	p_sb_attn->sb_index = index;
1158 
1159 	/* Attention / Deassertion are meaningful (and in correct state)
1160 	 * only when they differ and consistent with known state - deassertion
1161 	 * when previous attention & current ack, and assertion when current
1162 	 * attention with no previous attention
1163 	 */
1164 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1165 		~p_sb_attn_sw->known_attn;
1166 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1167 		p_sb_attn_sw->known_attn;
1168 
1169 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1170 		DP_INFO(p_hwfn,
1171 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1172 			index, attn_bits, attn_acks, asserted_bits,
1173 			deasserted_bits, p_sb_attn_sw->known_attn);
1174 	} else if (asserted_bits == 0x100) {
1175 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1176 	} else {
1177 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1178 			   "MFW indication [deassertion]\n");
1179 	}
1180 
1181 	if (asserted_bits) {
1182 		rc = qed_int_assertion(p_hwfn, asserted_bits);
1183 		if (rc)
1184 			return rc;
1185 	}
1186 
1187 	if (deasserted_bits)
1188 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1189 
1190 	return rc;
1191 }
1192 
1193 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1194 			    void __iomem *igu_addr, u32 ack_cons)
1195 {
1196 	struct igu_prod_cons_update igu_ack = { 0 };
1197 
1198 	igu_ack.sb_id_and_flags =
1199 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1200 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1201 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1202 		 (IGU_SEG_ACCESS_ATTN <<
1203 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1204 
1205 	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1206 
1207 	/* Both segments (interrupts & acks) are written to same place address;
1208 	 * Need to guarantee all commands will be received (in-order) by HW.
1209 	 */
1210 	barrier();
1211 }
1212 
1213 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1214 {
1215 	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1216 	struct qed_pi_info *pi_info = NULL;
1217 	struct qed_sb_attn_info *sb_attn;
1218 	struct qed_sb_info *sb_info;
1219 	int arr_size;
1220 	u16 rc = 0;
1221 
1222 	if (!p_hwfn->p_sp_sb) {
1223 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1224 		return;
1225 	}
1226 
1227 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1228 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1229 	if (!sb_info) {
1230 		DP_ERR(p_hwfn->cdev,
1231 		       "Status block is NULL - cannot ack interrupts\n");
1232 		return;
1233 	}
1234 
1235 	if (!p_hwfn->p_sb_attn) {
1236 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1237 		return;
1238 	}
1239 	sb_attn = p_hwfn->p_sb_attn;
1240 
1241 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1242 		   p_hwfn, p_hwfn->my_id);
1243 
1244 	/* Disable ack for def status block. Required both for msix +
1245 	 * inta in non-mask mode, in inta does no harm.
1246 	 */
1247 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1248 
1249 	/* Gather Interrupts/Attentions information */
1250 	if (!sb_info->sb_virt) {
1251 		DP_ERR(p_hwfn->cdev,
1252 		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1253 	} else {
1254 		u32 tmp_index = sb_info->sb_ack;
1255 
1256 		rc = qed_sb_update_sb_idx(sb_info);
1257 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1258 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1259 			   tmp_index, sb_info->sb_ack);
1260 	}
1261 
1262 	if (!sb_attn || !sb_attn->sb_attn) {
1263 		DP_ERR(p_hwfn->cdev,
1264 		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1265 	} else {
1266 		u16 tmp_index = sb_attn->index;
1267 
1268 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1269 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1270 			   "Attention indices: 0x%08x --> 0x%08x\n",
1271 			   tmp_index, sb_attn->index);
1272 	}
1273 
1274 	/* Check if we expect interrupts at this time. if not just ack them */
1275 	if (!(rc & QED_SB_EVENT_MASK)) {
1276 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1277 		return;
1278 	}
1279 
1280 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1281 	if (!p_hwfn->p_dpc_ptt) {
1282 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1283 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1284 		return;
1285 	}
1286 
1287 	if (rc & QED_SB_ATT_IDX)
1288 		qed_int_attentions(p_hwfn);
1289 
1290 	if (rc & QED_SB_IDX) {
1291 		int pi;
1292 
1293 		/* Look for a free index */
1294 		for (pi = 0; pi < arr_size; pi++) {
1295 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1296 			if (pi_info->comp_cb)
1297 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1298 		}
1299 	}
1300 
1301 	if (sb_attn && (rc & QED_SB_ATT_IDX))
1302 		/* This should be done before the interrupts are enabled,
1303 		 * since otherwise a new attention will be generated.
1304 		 */
1305 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1306 
1307 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1308 }
1309 
1310 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1311 {
1312 	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1313 
1314 	if (!p_sb)
1315 		return;
1316 
1317 	if (p_sb->sb_attn)
1318 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1319 				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1320 				  p_sb->sb_attn, p_sb->sb_phys);
1321 	kfree(p_sb);
1322 	p_hwfn->p_sb_attn = NULL;
1323 }
1324 
1325 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1326 				  struct qed_ptt *p_ptt)
1327 {
1328 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1329 
1330 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1331 
1332 	sb_info->index = 0;
1333 	sb_info->known_attn = 0;
1334 
1335 	/* Configure Attention Status Block in IGU */
1336 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1337 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1338 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1339 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1340 }
1341 
1342 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1343 				 struct qed_ptt *p_ptt,
1344 				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1345 {
1346 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1347 	int i, j, k;
1348 
1349 	sb_info->sb_attn = sb_virt_addr;
1350 	sb_info->sb_phys = sb_phy_addr;
1351 
1352 	/* Set the pointer to the AEU descriptors */
1353 	sb_info->p_aeu_desc = aeu_descs;
1354 
1355 	/* Calculate Parity Masks */
1356 	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1357 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1358 		/* j is array index, k is bit index */
1359 		for (j = 0, k = 0; k < 32; j++) {
1360 			struct aeu_invert_reg_bit *p_aeu;
1361 
1362 			p_aeu = &aeu_descs[i].bits[j];
1363 			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1364 				sb_info->parity_mask[i] |= 1 << k;
1365 
1366 			k += ATTENTION_LENGTH(p_aeu->flags);
1367 		}
1368 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1369 			   "Attn Mask [Reg %d]: 0x%08x\n",
1370 			   i, sb_info->parity_mask[i]);
1371 	}
1372 
1373 	/* Set the address of cleanup for the mcp attention */
1374 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1375 				 MISC_REG_AEU_GENERAL_ATTN_0;
1376 
1377 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1378 }
1379 
1380 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1381 				 struct qed_ptt *p_ptt)
1382 {
1383 	struct qed_dev *cdev = p_hwfn->cdev;
1384 	struct qed_sb_attn_info *p_sb;
1385 	dma_addr_t p_phys = 0;
1386 	void *p_virt;
1387 
1388 	/* SB struct */
1389 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1390 	if (!p_sb)
1391 		return -ENOMEM;
1392 
1393 	/* SB ring  */
1394 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1395 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1396 				    &p_phys, GFP_KERNEL);
1397 
1398 	if (!p_virt) {
1399 		kfree(p_sb);
1400 		return -ENOMEM;
1401 	}
1402 
1403 	/* Attention setup */
1404 	p_hwfn->p_sb_attn = p_sb;
1405 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1406 
1407 	return 0;
1408 }
1409 
1410 /* coalescing timeout = timeset << (timer_res + 1) */
1411 #define QED_CAU_DEF_RX_USECS 24
1412 #define QED_CAU_DEF_TX_USECS 48
1413 
1414 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1415 			   struct cau_sb_entry *p_sb_entry,
1416 			   u8 pf_id, u16 vf_number, u8 vf_valid)
1417 {
1418 	struct qed_dev *cdev = p_hwfn->cdev;
1419 	u32 cau_state;
1420 	u8 timer_res;
1421 
1422 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1423 
1424 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1425 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1426 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1427 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1428 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1429 
1430 	cau_state = CAU_HC_DISABLE_STATE;
1431 
1432 	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1433 		cau_state = CAU_HC_ENABLE_STATE;
1434 		if (!cdev->rx_coalesce_usecs)
1435 			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1436 		if (!cdev->tx_coalesce_usecs)
1437 			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1438 	}
1439 
1440 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1441 	if (cdev->rx_coalesce_usecs <= 0x7F)
1442 		timer_res = 0;
1443 	else if (cdev->rx_coalesce_usecs <= 0xFF)
1444 		timer_res = 1;
1445 	else
1446 		timer_res = 2;
1447 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1448 
1449 	if (cdev->tx_coalesce_usecs <= 0x7F)
1450 		timer_res = 0;
1451 	else if (cdev->tx_coalesce_usecs <= 0xFF)
1452 		timer_res = 1;
1453 	else
1454 		timer_res = 2;
1455 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1456 
1457 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1458 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1459 }
1460 
1461 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1462 				struct qed_ptt *p_ptt,
1463 				u16 igu_sb_id,
1464 				u32 pi_index,
1465 				enum qed_coalescing_fsm coalescing_fsm,
1466 				u8 timeset)
1467 {
1468 	struct cau_pi_entry pi_entry;
1469 	u32 sb_offset, pi_offset;
1470 
1471 	if (IS_VF(p_hwfn->cdev))
1472 		return;
1473 
1474 	sb_offset = igu_sb_id * PIS_PER_SB_E4;
1475 	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1476 
1477 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1478 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1479 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1480 	else
1481 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1482 
1483 	pi_offset = sb_offset + pi_index;
1484 	if (p_hwfn->hw_init_done) {
1485 		qed_wr(p_hwfn, p_ptt,
1486 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1487 		       *((u32 *)&(pi_entry)));
1488 	} else {
1489 		STORE_RT_REG(p_hwfn,
1490 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1491 			     *((u32 *)&(pi_entry)));
1492 	}
1493 }
1494 
1495 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1496 			 struct qed_ptt *p_ptt,
1497 			 dma_addr_t sb_phys,
1498 			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1499 {
1500 	struct cau_sb_entry sb_entry;
1501 
1502 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1503 			      vf_number, vf_valid);
1504 
1505 	if (p_hwfn->hw_init_done) {
1506 		/* Wide-bus, initialize via DMAE */
1507 		u64 phys_addr = (u64)sb_phys;
1508 
1509 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1510 				  CAU_REG_SB_ADDR_MEMORY +
1511 				  igu_sb_id * sizeof(u64), 2, NULL);
1512 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1513 				  CAU_REG_SB_VAR_MEMORY +
1514 				  igu_sb_id * sizeof(u64), 2, NULL);
1515 	} else {
1516 		/* Initialize Status Block Address */
1517 		STORE_RT_REG_AGG(p_hwfn,
1518 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1519 				 igu_sb_id * 2,
1520 				 sb_phys);
1521 
1522 		STORE_RT_REG_AGG(p_hwfn,
1523 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1524 				 igu_sb_id * 2,
1525 				 sb_entry);
1526 	}
1527 
1528 	/* Configure pi coalescing if set */
1529 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1530 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1531 		u8 timeset, timer_res;
1532 		u8 i;
1533 
1534 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1535 		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1536 			timer_res = 0;
1537 		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1538 			timer_res = 1;
1539 		else
1540 			timer_res = 2;
1541 		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1542 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1543 				    QED_COAL_RX_STATE_MACHINE, timeset);
1544 
1545 		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1546 			timer_res = 0;
1547 		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1548 			timer_res = 1;
1549 		else
1550 			timer_res = 2;
1551 		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1552 		for (i = 0; i < num_tc; i++) {
1553 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1554 					    igu_sb_id, TX_PI(i),
1555 					    QED_COAL_TX_STATE_MACHINE,
1556 					    timeset);
1557 		}
1558 	}
1559 }
1560 
1561 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1562 		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1563 {
1564 	/* zero status block and ack counter */
1565 	sb_info->sb_ack = 0;
1566 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1567 
1568 	if (IS_PF(p_hwfn->cdev))
1569 		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1570 				    sb_info->igu_sb_id, 0, 0);
1571 }
1572 
1573 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1574 {
1575 	struct qed_igu_block *p_block;
1576 	u16 igu_id;
1577 
1578 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1579 	     igu_id++) {
1580 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1581 
1582 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1583 		    !(p_block->status & QED_IGU_STATUS_FREE))
1584 			continue;
1585 
1586 		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1587 			return p_block;
1588 	}
1589 
1590 	return NULL;
1591 }
1592 
1593 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1594 {
1595 	struct qed_igu_block *p_block;
1596 	u16 igu_id;
1597 
1598 	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1599 	     igu_id++) {
1600 		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1601 
1602 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1603 		    !p_block->is_pf ||
1604 		    p_block->vector_number != vector_id)
1605 			continue;
1606 
1607 		return igu_id;
1608 	}
1609 
1610 	return QED_SB_INVALID_IDX;
1611 }
1612 
1613 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1614 {
1615 	u16 igu_sb_id;
1616 
1617 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1618 	if (sb_id == QED_SP_SB_ID)
1619 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1620 	else if (IS_PF(p_hwfn->cdev))
1621 		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1622 	else
1623 		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1624 
1625 	if (sb_id == QED_SP_SB_ID)
1626 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1627 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1628 	else
1629 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1630 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1631 
1632 	return igu_sb_id;
1633 }
1634 
1635 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1636 		    struct qed_ptt *p_ptt,
1637 		    struct qed_sb_info *sb_info,
1638 		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1639 {
1640 	sb_info->sb_virt = sb_virt_addr;
1641 	sb_info->sb_phys = sb_phy_addr;
1642 
1643 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1644 
1645 	if (sb_id != QED_SP_SB_ID) {
1646 		if (IS_PF(p_hwfn->cdev)) {
1647 			struct qed_igu_info *p_info;
1648 			struct qed_igu_block *p_block;
1649 
1650 			p_info = p_hwfn->hw_info.p_igu_info;
1651 			p_block = &p_info->entry[sb_info->igu_sb_id];
1652 
1653 			p_block->sb_info = sb_info;
1654 			p_block->status &= ~QED_IGU_STATUS_FREE;
1655 			p_info->usage.free_cnt--;
1656 		} else {
1657 			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1658 		}
1659 	}
1660 
1661 	sb_info->cdev = p_hwfn->cdev;
1662 
1663 	/* The igu address will hold the absolute address that needs to be
1664 	 * written to for a specific status block
1665 	 */
1666 	if (IS_PF(p_hwfn->cdev)) {
1667 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1668 						  GTT_BAR0_MAP_REG_IGU_CMD +
1669 						  (sb_info->igu_sb_id << 3);
1670 	} else {
1671 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1672 						  PXP_VF_BAR0_START_IGU +
1673 						  ((IGU_CMD_INT_ACK_BASE +
1674 						    sb_info->igu_sb_id) << 3);
1675 	}
1676 
1677 	sb_info->flags |= QED_SB_INFO_INIT;
1678 
1679 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1680 
1681 	return 0;
1682 }
1683 
1684 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1685 		       struct qed_sb_info *sb_info, u16 sb_id)
1686 {
1687 	struct qed_igu_block *p_block;
1688 	struct qed_igu_info *p_info;
1689 
1690 	if (!sb_info)
1691 		return 0;
1692 
1693 	/* zero status block and ack counter */
1694 	sb_info->sb_ack = 0;
1695 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1696 
1697 	if (IS_VF(p_hwfn->cdev)) {
1698 		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1699 		return 0;
1700 	}
1701 
1702 	p_info = p_hwfn->hw_info.p_igu_info;
1703 	p_block = &p_info->entry[sb_info->igu_sb_id];
1704 
1705 	/* Vector 0 is reserved to Default SB */
1706 	if (!p_block->vector_number) {
1707 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1708 		return -EINVAL;
1709 	}
1710 
1711 	/* Lose reference to client's SB info, and fix counters */
1712 	p_block->sb_info = NULL;
1713 	p_block->status |= QED_IGU_STATUS_FREE;
1714 	p_info->usage.free_cnt++;
1715 
1716 	return 0;
1717 }
1718 
1719 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1720 {
1721 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1722 
1723 	if (!p_sb)
1724 		return;
1725 
1726 	if (p_sb->sb_info.sb_virt)
1727 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1728 				  SB_ALIGNED_SIZE(p_hwfn),
1729 				  p_sb->sb_info.sb_virt,
1730 				  p_sb->sb_info.sb_phys);
1731 	kfree(p_sb);
1732 	p_hwfn->p_sp_sb = NULL;
1733 }
1734 
1735 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1736 {
1737 	struct qed_sb_sp_info *p_sb;
1738 	dma_addr_t p_phys = 0;
1739 	void *p_virt;
1740 
1741 	/* SB struct */
1742 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1743 	if (!p_sb)
1744 		return -ENOMEM;
1745 
1746 	/* SB ring  */
1747 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1748 				    SB_ALIGNED_SIZE(p_hwfn),
1749 				    &p_phys, GFP_KERNEL);
1750 	if (!p_virt) {
1751 		kfree(p_sb);
1752 		return -ENOMEM;
1753 	}
1754 
1755 	/* Status Block setup */
1756 	p_hwfn->p_sp_sb = p_sb;
1757 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1758 			p_phys, QED_SP_SB_ID);
1759 
1760 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1761 
1762 	return 0;
1763 }
1764 
1765 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1766 			qed_int_comp_cb_t comp_cb,
1767 			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1768 {
1769 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1770 	int rc = -ENOMEM;
1771 	u8 pi;
1772 
1773 	/* Look for a free index */
1774 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1775 		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1776 			continue;
1777 
1778 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1779 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1780 		*sb_idx = pi;
1781 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1782 		rc = 0;
1783 		break;
1784 	}
1785 
1786 	return rc;
1787 }
1788 
1789 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1790 {
1791 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1792 
1793 	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1794 		return -ENOMEM;
1795 
1796 	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1797 	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1798 
1799 	return 0;
1800 }
1801 
1802 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1803 {
1804 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1805 }
1806 
1807 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1808 			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1809 {
1810 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1811 
1812 	p_hwfn->cdev->int_mode = int_mode;
1813 	switch (p_hwfn->cdev->int_mode) {
1814 	case QED_INT_MODE_INTA:
1815 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1816 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1817 		break;
1818 
1819 	case QED_INT_MODE_MSI:
1820 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1821 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1822 		break;
1823 
1824 	case QED_INT_MODE_MSIX:
1825 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1826 		break;
1827 	case QED_INT_MODE_POLL:
1828 		break;
1829 	}
1830 
1831 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1832 }
1833 
1834 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1835 				    struct qed_ptt *p_ptt)
1836 {
1837 
1838 	/* Configure AEU signal change to produce attentions */
1839 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1840 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1841 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1842 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1843 
1844 	/* Unmask AEU signals toward IGU */
1845 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1846 }
1847 
1848 int
1849 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1850 		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1851 {
1852 	int rc = 0;
1853 
1854 	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1855 
1856 	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1857 		rc = qed_slowpath_irq_req(p_hwfn);
1858 		if (rc) {
1859 			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1860 			return -EINVAL;
1861 		}
1862 		p_hwfn->b_int_requested = true;
1863 	}
1864 	/* Enable interrupt Generation */
1865 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1866 	p_hwfn->b_int_enabled = 1;
1867 
1868 	return rc;
1869 }
1870 
1871 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1872 {
1873 	p_hwfn->b_int_enabled = 0;
1874 
1875 	if (IS_VF(p_hwfn->cdev))
1876 		return;
1877 
1878 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1879 }
1880 
1881 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1882 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1883 				   struct qed_ptt *p_ptt,
1884 				   u16 igu_sb_id,
1885 				   bool cleanup_set, u16 opaque_fid)
1886 {
1887 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1888 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1889 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1890 
1891 	/* Set the data field */
1892 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1893 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1894 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1895 
1896 	/* Set the control register */
1897 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1898 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1899 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1900 
1901 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1902 
1903 	barrier();
1904 
1905 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1906 
1907 	/* calculate where to read the status bit from */
1908 	sb_bit = 1 << (igu_sb_id % 32);
1909 	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1910 
1911 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1912 
1913 	/* Now wait for the command to complete */
1914 	do {
1915 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1916 
1917 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1918 			break;
1919 
1920 		usleep_range(5000, 10000);
1921 	} while (--sleep_cnt);
1922 
1923 	if (!sleep_cnt)
1924 		DP_NOTICE(p_hwfn,
1925 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1926 			  val, igu_sb_id);
1927 }
1928 
1929 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1930 				     struct qed_ptt *p_ptt,
1931 				     u16 igu_sb_id, u16 opaque, bool b_set)
1932 {
1933 	struct qed_igu_block *p_block;
1934 	int pi, i;
1935 
1936 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1937 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1938 		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1939 		   igu_sb_id,
1940 		   p_block->function_id,
1941 		   p_block->is_pf, p_block->vector_number);
1942 
1943 	/* Set */
1944 	if (b_set)
1945 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1946 
1947 	/* Clear */
1948 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1949 
1950 	/* Wait for the IGU SB to cleanup */
1951 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1952 		u32 val;
1953 
1954 		val = qed_rd(p_hwfn, p_ptt,
1955 			     IGU_REG_WRITE_DONE_PENDING +
1956 			     ((igu_sb_id / 32) * 4));
1957 		if (val & BIT((igu_sb_id % 32)))
1958 			usleep_range(10, 20);
1959 		else
1960 			break;
1961 	}
1962 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1963 		DP_NOTICE(p_hwfn,
1964 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1965 			  igu_sb_id);
1966 
1967 	/* Clear the CAU for the SB */
1968 	for (pi = 0; pi < 12; pi++)
1969 		qed_wr(p_hwfn, p_ptt,
1970 		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1971 }
1972 
1973 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1974 			      struct qed_ptt *p_ptt,
1975 			      bool b_set, bool b_slowpath)
1976 {
1977 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1978 	struct qed_igu_block *p_block;
1979 	u16 igu_sb_id = 0;
1980 	u32 val = 0;
1981 
1982 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1983 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1984 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1985 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1986 
1987 	for (igu_sb_id = 0;
1988 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1989 		p_block = &p_info->entry[igu_sb_id];
1990 
1991 		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1992 		    !p_block->is_pf ||
1993 		    (p_block->status & QED_IGU_STATUS_DSB))
1994 			continue;
1995 
1996 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1997 						p_hwfn->hw_info.opaque_fid,
1998 						b_set);
1999 	}
2000 
2001 	if (b_slowpath)
2002 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2003 						p_info->igu_dsb_id,
2004 						p_hwfn->hw_info.opaque_fid,
2005 						b_set);
2006 }
2007 
2008 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2009 {
2010 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2011 	struct qed_igu_block *p_block;
2012 	int pf_sbs, vf_sbs;
2013 	u16 igu_sb_id;
2014 	u32 val, rval;
2015 
2016 	if (!RESC_NUM(p_hwfn, QED_SB)) {
2017 		p_info->b_allow_pf_vf_change = false;
2018 	} else {
2019 		/* Use the numbers the MFW have provided -
2020 		 * don't forget MFW accounts for the default SB as well.
2021 		 */
2022 		p_info->b_allow_pf_vf_change = true;
2023 
2024 		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2025 			DP_INFO(p_hwfn,
2026 				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2027 				RESC_NUM(p_hwfn, QED_SB) - 1,
2028 				p_info->usage.cnt);
2029 			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2030 		}
2031 
2032 		if (IS_PF_SRIOV(p_hwfn)) {
2033 			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2034 
2035 			if (vfs != p_info->usage.iov_cnt)
2036 				DP_VERBOSE(p_hwfn,
2037 					   NETIF_MSG_INTR,
2038 					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2039 					   p_info->usage.iov_cnt, vfs);
2040 
2041 			/* At this point we know how many SBs we have totally
2042 			 * in IGU + number of PF SBs. So we can validate that
2043 			 * we'd have sufficient for VF.
2044 			 */
2045 			if (vfs > p_info->usage.free_cnt +
2046 			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2047 				DP_NOTICE(p_hwfn,
2048 					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2049 					  p_info->usage.free_cnt +
2050 					  p_info->usage.free_cnt_iov,
2051 					  p_info->usage.cnt, vfs);
2052 				return -EINVAL;
2053 			}
2054 
2055 			/* Currently cap the number of VFs SBs by the
2056 			 * number of VFs.
2057 			 */
2058 			p_info->usage.iov_cnt = vfs;
2059 		}
2060 	}
2061 
2062 	/* Mark all SBs as free, now in the right PF/VFs division */
2063 	p_info->usage.free_cnt = p_info->usage.cnt;
2064 	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2065 	p_info->usage.orig = p_info->usage.cnt;
2066 	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2067 
2068 	/* We now proceed to re-configure the IGU cam to reflect the initial
2069 	 * configuration. We can start with the Default SB.
2070 	 */
2071 	pf_sbs = p_info->usage.cnt;
2072 	vf_sbs = p_info->usage.iov_cnt;
2073 
2074 	for (igu_sb_id = p_info->igu_dsb_id;
2075 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2076 		p_block = &p_info->entry[igu_sb_id];
2077 		val = 0;
2078 
2079 		if (!(p_block->status & QED_IGU_STATUS_VALID))
2080 			continue;
2081 
2082 		if (p_block->status & QED_IGU_STATUS_DSB) {
2083 			p_block->function_id = p_hwfn->rel_pf_id;
2084 			p_block->is_pf = 1;
2085 			p_block->vector_number = 0;
2086 			p_block->status = QED_IGU_STATUS_VALID |
2087 					  QED_IGU_STATUS_PF |
2088 					  QED_IGU_STATUS_DSB;
2089 		} else if (pf_sbs) {
2090 			pf_sbs--;
2091 			p_block->function_id = p_hwfn->rel_pf_id;
2092 			p_block->is_pf = 1;
2093 			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2094 			p_block->status = QED_IGU_STATUS_VALID |
2095 					  QED_IGU_STATUS_PF |
2096 					  QED_IGU_STATUS_FREE;
2097 		} else if (vf_sbs) {
2098 			p_block->function_id =
2099 			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2100 			    p_info->usage.iov_cnt - vf_sbs;
2101 			p_block->is_pf = 0;
2102 			p_block->vector_number = 0;
2103 			p_block->status = QED_IGU_STATUS_VALID |
2104 					  QED_IGU_STATUS_FREE;
2105 			vf_sbs--;
2106 		} else {
2107 			p_block->function_id = 0;
2108 			p_block->is_pf = 0;
2109 			p_block->vector_number = 0;
2110 		}
2111 
2112 		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2113 			  p_block->function_id);
2114 		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2115 		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2116 			  p_block->vector_number);
2117 
2118 		/* VF entries would be enabled when VF is initializaed */
2119 		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2120 
2121 		rval = qed_rd(p_hwfn, p_ptt,
2122 			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2123 
2124 		if (rval != val) {
2125 			qed_wr(p_hwfn, p_ptt,
2126 			       IGU_REG_MAPPING_MEMORY +
2127 			       sizeof(u32) * igu_sb_id, val);
2128 
2129 			DP_VERBOSE(p_hwfn,
2130 				   NETIF_MSG_INTR,
2131 				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2132 				   igu_sb_id,
2133 				   p_block->function_id,
2134 				   p_block->is_pf,
2135 				   p_block->vector_number, rval, val);
2136 		}
2137 	}
2138 
2139 	return 0;
2140 }
2141 
2142 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2143 				       struct qed_ptt *p_ptt, u16 igu_sb_id)
2144 {
2145 	u32 val = qed_rd(p_hwfn, p_ptt,
2146 			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2147 	struct qed_igu_block *p_block;
2148 
2149 	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2150 
2151 	/* Fill the block information */
2152 	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2153 	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2154 	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2155 	p_block->igu_sb_id = igu_sb_id;
2156 }
2157 
2158 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2159 {
2160 	struct qed_igu_info *p_igu_info;
2161 	struct qed_igu_block *p_block;
2162 	u32 min_vf = 0, max_vf = 0;
2163 	u16 igu_sb_id;
2164 
2165 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2166 	if (!p_hwfn->hw_info.p_igu_info)
2167 		return -ENOMEM;
2168 
2169 	p_igu_info = p_hwfn->hw_info.p_igu_info;
2170 
2171 	/* Distinguish between existent and non-existent default SB */
2172 	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2173 
2174 	/* Find the range of VF ids whose SB belong to this PF */
2175 	if (p_hwfn->cdev->p_iov_info) {
2176 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2177 
2178 		min_vf	= p_iov->first_vf_in_pf;
2179 		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2180 	}
2181 
2182 	for (igu_sb_id = 0;
2183 	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2184 		/* Read current entry; Notice it might not belong to this PF */
2185 		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2186 		p_block = &p_igu_info->entry[igu_sb_id];
2187 
2188 		if ((p_block->is_pf) &&
2189 		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2190 			p_block->status = QED_IGU_STATUS_PF |
2191 					  QED_IGU_STATUS_VALID |
2192 					  QED_IGU_STATUS_FREE;
2193 
2194 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2195 				p_igu_info->usage.cnt++;
2196 		} else if (!(p_block->is_pf) &&
2197 			   (p_block->function_id >= min_vf) &&
2198 			   (p_block->function_id < max_vf)) {
2199 			/* Available for VFs of this PF */
2200 			p_block->status = QED_IGU_STATUS_VALID |
2201 					  QED_IGU_STATUS_FREE;
2202 
2203 			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2204 				p_igu_info->usage.iov_cnt++;
2205 		}
2206 
2207 		/* Mark the First entry belonging to the PF or its VFs
2208 		 * as the default SB [we'll reset IGU prior to first usage].
2209 		 */
2210 		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2211 		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2212 			p_igu_info->igu_dsb_id = igu_sb_id;
2213 			p_block->status |= QED_IGU_STATUS_DSB;
2214 		}
2215 
2216 		/* limit number of prints by having each PF print only its
2217 		 * entries with the exception of PF0 which would print
2218 		 * everything.
2219 		 */
2220 		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2221 		    (p_hwfn->abs_pf_id == 0)) {
2222 			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2223 				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2224 				   igu_sb_id, p_block->function_id,
2225 				   p_block->is_pf, p_block->vector_number);
2226 		}
2227 	}
2228 
2229 	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2230 		DP_NOTICE(p_hwfn,
2231 			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2232 			  p_igu_info->igu_dsb_id);
2233 		return -EINVAL;
2234 	}
2235 
2236 	/* All non default SB are considered free at this point */
2237 	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2238 	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2239 
2240 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2241 		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2242 		   p_igu_info->igu_dsb_id,
2243 		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2244 
2245 	return 0;
2246 }
2247 
2248 /**
2249  * @brief Initialize igu runtime registers
2250  *
2251  * @param p_hwfn
2252  */
2253 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2254 {
2255 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2256 
2257 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2258 }
2259 
2260 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2261 {
2262 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2263 			       IGU_CMD_INT_ACK_BASE;
2264 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2265 			       IGU_CMD_INT_ACK_BASE;
2266 	u32 intr_status_hi = 0, intr_status_lo = 0;
2267 	u64 intr_status = 0;
2268 
2269 	intr_status_lo = REG_RD(p_hwfn,
2270 				GTT_BAR0_MAP_REG_IGU_CMD +
2271 				lsb_igu_cmd_addr * 8);
2272 	intr_status_hi = REG_RD(p_hwfn,
2273 				GTT_BAR0_MAP_REG_IGU_CMD +
2274 				msb_igu_cmd_addr * 8);
2275 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2276 
2277 	return intr_status;
2278 }
2279 
2280 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2281 {
2282 	tasklet_init(p_hwfn->sp_dpc,
2283 		     qed_int_sp_dpc, (unsigned long)p_hwfn);
2284 	p_hwfn->b_sp_dpc_enabled = true;
2285 }
2286 
2287 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2288 {
2289 	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2290 	if (!p_hwfn->sp_dpc)
2291 		return -ENOMEM;
2292 
2293 	return 0;
2294 }
2295 
2296 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2297 {
2298 	kfree(p_hwfn->sp_dpc);
2299 	p_hwfn->sp_dpc = NULL;
2300 }
2301 
2302 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2303 {
2304 	int rc = 0;
2305 
2306 	rc = qed_int_sp_dpc_alloc(p_hwfn);
2307 	if (rc)
2308 		return rc;
2309 
2310 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2311 	if (rc)
2312 		return rc;
2313 
2314 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2315 
2316 	return rc;
2317 }
2318 
2319 void qed_int_free(struct qed_hwfn *p_hwfn)
2320 {
2321 	qed_int_sp_sb_free(p_hwfn);
2322 	qed_int_sb_attn_free(p_hwfn);
2323 	qed_int_sp_dpc_free(p_hwfn);
2324 }
2325 
2326 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2327 {
2328 	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2329 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2330 	qed_int_sp_dpc_setup(p_hwfn);
2331 }
2332 
2333 void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2334 			 struct qed_sb_cnt_info *p_sb_cnt_info)
2335 {
2336 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2337 
2338 	if (!info || !p_sb_cnt_info)
2339 		return;
2340 
2341 	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2342 }
2343 
2344 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2345 {
2346 	int i;
2347 
2348 	for_each_hwfn(cdev, i)
2349 		cdev->hwfns[i].b_int_requested = false;
2350 }
2351 
2352 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2353 			  u8 timer_res, u16 sb_id, bool tx)
2354 {
2355 	struct cau_sb_entry sb_entry;
2356 	int rc;
2357 
2358 	if (!p_hwfn->hw_init_done) {
2359 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2360 		return -EINVAL;
2361 	}
2362 
2363 	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2364 			       sb_id * sizeof(u64),
2365 			       (u64)(uintptr_t)&sb_entry, 2, NULL);
2366 	if (rc) {
2367 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2368 		return rc;
2369 	}
2370 
2371 	if (tx)
2372 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2373 	else
2374 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2375 
2376 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2377 			       (u64)(uintptr_t)&sb_entry,
2378 			       CAU_REG_SB_VAR_MEMORY +
2379 			       sb_id * sizeof(u64), 2, NULL);
2380 	if (rc) {
2381 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2382 		return rc;
2383 	}
2384 
2385 	return rc;
2386 }
2387