1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55 
56 struct qed_pi_info {
57 	qed_int_comp_cb_t	comp_cb;
58 	void			*cookie;
59 };
60 
61 struct qed_sb_sp_info {
62 	struct qed_sb_info	sb_info;
63 
64 	/* per protocol index data */
65 	struct qed_pi_info	pi_info_arr[PIS_PER_SB];
66 };
67 
68 enum qed_attention_type {
69 	QED_ATTN_TYPE_ATTN,
70 	QED_ATTN_TYPE_PARITY,
71 };
72 
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75 
76 struct aeu_invert_reg_bit {
77 	char bit_name[30];
78 
79 #define ATTENTION_PARITY                (1 << 0)
80 
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84 					 ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88 					 ATTENTION_PARITY)
89 
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93 
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98 
99 	unsigned int flags;
100 
101 	/* Callback to call if attention will be triggered */
102 	int (*cb)(struct qed_hwfn *p_hwfn);
103 
104 	enum block_id block_index;
105 };
106 
107 struct aeu_invert_reg {
108 	struct aeu_invert_reg_bit bits[32];
109 };
110 
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113 
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118 
119 	/* This might occur on certain instances; Log it once then mask it */
120 	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 		tmp);
122 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 	       0xffffffff);
124 
125 	return 0;
126 }
127 
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 			 PSWHST_REG_INCORRECT_ACCESS_VALID);
145 
146 	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 		u32 addr, data, length;
148 
149 		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 			      PSWHST_REG_INCORRECT_ACCESS_DATA);
153 		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155 
156 		DP_INFO(p_hwfn->cdev,
157 			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 			addr, length,
159 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 			(u8) GET_FIELD(data,
162 				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 			(u8) GET_FIELD(data,
164 				       ATTENTION_INCORRECT_ACCESS_CLIENT),
165 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 			(u8) GET_FIELD(data,
167 				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 			data);
169 	}
170 
171 	return 0;
172 }
173 
174 #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
177 #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
180 #define QED_GRC_ATTENTION_PF_MASK	(0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT	(0)
182 #define QED_GRC_ATTENTION_VF_MASK	(0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT	(4)
184 #define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
186 #define QED_GRC_ATTENTION_PRIV_VF	(0)
187 static const char *attn_master_to_str(u8 master)
188 {
189 	switch (master) {
190 	case 1: return "PXP";
191 	case 2: return "MCP";
192 	case 3: return "MSDM";
193 	case 4: return "PSDM";
194 	case 5: return "YSDM";
195 	case 6: return "USDM";
196 	case 7: return "TSDM";
197 	case 8: return "XSDM";
198 	case 9: return "DBU";
199 	case 10: return "DMAE";
200 	default:
201 		return "Unknown";
202 	}
203 }
204 
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207 	u32 tmp, tmp2;
208 
209 	/* We've already cleared the timeout interrupt register, so we learn
210 	 * of interrupts via the validity register
211 	 */
212 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 		goto out;
216 
217 	/* Read the GRC timeout information */
218 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222 
223 	DP_INFO(p_hwfn->cdev,
224 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 		tmp2, tmp,
226 		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Ireelevant)",
232 		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233 
234 out:
235 	/* Regardles of anything else, clean the validity bit */
236 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 	return 0;
239 }
240 
241 #define PGLUE_ATTENTION_VALID			(1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID		(1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
255 #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
258 static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259 {
260 	u32 tmp;
261 
262 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263 		     PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264 	if (tmp & PGLUE_ATTENTION_VALID) {
265 		u32 addr_lo, addr_hi, details;
266 
267 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270 				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272 				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
273 
274 		DP_INFO(p_hwfn,
275 			"Illegal write by chip to [%08x:%08x] blocked.\n"
276 			"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277 			"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278 			addr_hi, addr_lo, details,
279 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281 			GET_FIELD(details,
282 				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283 			tmp,
284 			GET_FIELD(tmp,
285 				  PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286 			GET_FIELD(tmp,
287 				  PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288 			GET_FIELD(tmp,
289 				  PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290 	}
291 
292 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293 		     PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 	if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 		u32 addr_lo, addr_hi, details;
296 
297 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298 				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300 				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302 				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303 
304 		DP_INFO(p_hwfn,
305 			"Illegal read by chip from [%08x:%08x] blocked.\n"
306 			" Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 			" Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 			addr_hi, addr_lo, details,
309 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 			GET_FIELD(details,
312 				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 			tmp,
314 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315 									 : 0,
316 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318 									: 0);
319 	}
320 
321 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322 		     PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 	if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 		DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
325 
326 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327 		     PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328 	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329 		u32 addr_hi, addr_lo;
330 
331 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335 
336 		DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337 			tmp, addr_hi, addr_lo);
338 	}
339 
340 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341 		     PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342 	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343 		u32 addr_hi, addr_lo, details;
344 
345 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346 				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348 				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350 				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351 
352 		DP_INFO(p_hwfn,
353 			"ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354 			details, tmp, addr_hi, addr_lo);
355 	}
356 
357 	/* Clear the indications */
358 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359 	       PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360 
361 	return 0;
362 }
363 
364 #define QED_DORQ_ATTENTION_REASON_MASK	(0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_SIZE_MASK	(0x7f)
367 #define QED_DORQ_ATTENTION_SIZE_SHIFT	(16)
368 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369 {
370 	u32 reason;
371 
372 	reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373 			QED_DORQ_ATTENTION_REASON_MASK;
374 	if (reason) {
375 		u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376 				     DORQ_REG_DB_DROP_DETAILS);
377 
378 		DP_INFO(p_hwfn->cdev,
379 			"DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
380 			qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381 			       DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382 			(u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383 			GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384 			reason);
385 	}
386 
387 	return -EINVAL;
388 }
389 
390 /* Instead of major changes to the data-structure, we have a some 'special'
391  * identifiers for sources that changed meaning between adapters.
392  */
393 enum aeu_invert_reg_special_type {
394 	AEU_INVERT_REG_SPECIAL_CNIG_0,
395 	AEU_INVERT_REG_SPECIAL_CNIG_1,
396 	AEU_INVERT_REG_SPECIAL_CNIG_2,
397 	AEU_INVERT_REG_SPECIAL_CNIG_3,
398 	AEU_INVERT_REG_SPECIAL_MAX,
399 };
400 
401 static struct aeu_invert_reg_bit
402 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403 	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404 	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405 	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406 	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407 };
408 
409 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
410 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411 	{
412 		{       /* After Invert 1 */
413 			{"GPIO0 function%d",
414 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
415 		}
416 	},
417 
418 	{
419 		{       /* After Invert 2 */
420 			{"PGLUE config_space", ATTENTION_SINGLE,
421 			 NULL, MAX_BLOCK_ID},
422 			{"PGLUE misc_flr", ATTENTION_SINGLE,
423 			 NULL, MAX_BLOCK_ID},
424 			{"PGLUE B RBC", ATTENTION_PAR_INT,
425 			 qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426 			{"PGLUE misc_mctp", ATTENTION_SINGLE,
427 			 NULL, MAX_BLOCK_ID},
428 			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429 			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
430 			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
431 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
432 					  (1 << ATTENTION_OFFSET_SHIFT),
433 			 NULL, MAX_BLOCK_ID},
434 			{"PCIE glue/PXP VPD %d",
435 			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
436 		}
437 	},
438 
439 	{
440 		{       /* After Invert 3 */
441 			{"General Attention %d",
442 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
443 		}
444 	},
445 
446 	{
447 		{       /* After Invert 4 */
448 			{"General Attention 32", ATTENTION_SINGLE,
449 			 NULL, MAX_BLOCK_ID},
450 			{"General Attention %d",
451 			 (2 << ATTENTION_LENGTH_SHIFT) |
452 			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
453 			{"General Attention 35", ATTENTION_SINGLE,
454 			 NULL, MAX_BLOCK_ID},
455 			{"NWS Parity",
456 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458 			 NULL, BLOCK_NWS},
459 			{"NWS Interrupt",
460 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462 			 NULL, BLOCK_NWS},
463 			{"NWM Parity",
464 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466 			 NULL, BLOCK_NWM},
467 			{"NWM Interrupt",
468 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470 			 NULL, BLOCK_NWM},
471 			{"MCP CPU", ATTENTION_SINGLE,
472 			 qed_mcp_attn_cb, MAX_BLOCK_ID},
473 			{"MCP Watchdog timer", ATTENTION_SINGLE,
474 			 NULL, MAX_BLOCK_ID},
475 			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
476 			{"AVS stop status ready", ATTENTION_SINGLE,
477 			 NULL, MAX_BLOCK_ID},
478 			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479 			{"MSTAT per-path", ATTENTION_PAR_INT,
480 			 NULL, MAX_BLOCK_ID},
481 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
482 			 NULL, MAX_BLOCK_ID},
483 			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485 			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486 			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487 			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
488 		}
489 	},
490 
491 	{
492 		{       /* After Invert 5 */
493 			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494 			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495 			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496 			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497 			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498 			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499 			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500 			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501 			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502 			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503 			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504 			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505 			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506 			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507 			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508 			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
509 		}
510 	},
511 
512 	{
513 		{       /* After Invert 6 */
514 			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515 			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516 			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517 			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518 			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519 			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520 			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521 			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522 			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523 			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524 			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525 			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526 			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527 			{"DORQ", ATTENTION_PAR_INT,
528 			 qed_dorq_attn_cb, BLOCK_DORQ},
529 			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530 			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
531 		}
532 	},
533 
534 	{
535 		{       /* After Invert 7 */
536 			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537 			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538 			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539 			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540 			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541 			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542 			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543 			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544 			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545 			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546 			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547 			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548 			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549 			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550 			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551 			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552 			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
553 		}
554 	},
555 
556 	{
557 		{       /* After Invert 8 */
558 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559 			 NULL, BLOCK_PSWRQ2},
560 			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562 			 NULL, BLOCK_PSWWR2},
563 			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565 			 NULL, BLOCK_PSWRD2},
566 			{"PSWHST", ATTENTION_PAR_INT,
567 			 qed_pswhst_attn_cb, BLOCK_PSWHST},
568 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569 			 NULL, BLOCK_PSWHST2},
570 			{"GRC",	ATTENTION_PAR_INT,
571 			 qed_grc_attn_cb, BLOCK_GRC},
572 			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573 			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574 			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575 			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576 			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577 			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578 			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579 			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580 			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
581 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
582 			 NULL, BLOCK_PGLCS},
583 			{"PERST_B assertion", ATTENTION_SINGLE,
584 			 NULL, MAX_BLOCK_ID},
585 			{"PERST_B deassertion", ATTENTION_SINGLE,
586 			 NULL, MAX_BLOCK_ID},
587 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
588 			 NULL, MAX_BLOCK_ID},
589 		}
590 	},
591 
592 	{
593 		{       /* After Invert 9 */
594 			{"MCP Latched memory", ATTENTION_PAR,
595 			 NULL, MAX_BLOCK_ID},
596 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
597 			 NULL, MAX_BLOCK_ID},
598 			{"MCP Latched ump_tx", ATTENTION_PAR,
599 			 NULL, MAX_BLOCK_ID},
600 			{"MCP Latched scratchpad", ATTENTION_PAR,
601 			 NULL, MAX_BLOCK_ID},
602 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
603 			 NULL, MAX_BLOCK_ID},
604 		}
605 	},
606 };
607 
608 static struct aeu_invert_reg_bit *
609 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610 		      struct aeu_invert_reg_bit *p_bit)
611 {
612 	if (!QED_IS_BB(p_hwfn->cdev))
613 		return p_bit;
614 
615 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616 		return p_bit;
617 
618 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619 				  ATTENTION_BB_SHIFT];
620 }
621 
622 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623 				   struct aeu_invert_reg_bit *p_bit)
624 {
625 	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626 		   ATTENTION_PARITY);
627 }
628 
629 #define ATTN_STATE_BITS         (0xfff)
630 #define ATTN_BITS_MASKABLE      (0x3ff)
631 struct qed_sb_attn_info {
632 	/* Virtual & Physical address of the SB */
633 	struct atten_status_block       *sb_attn;
634 	dma_addr_t			sb_phys;
635 
636 	/* Last seen running index */
637 	u16				index;
638 
639 	/* A mask of the AEU bits resulting in a parity error */
640 	u32				parity_mask[NUM_ATTN_REGS];
641 
642 	/* A pointer to the attention description structure */
643 	struct aeu_invert_reg		*p_aeu_desc;
644 
645 	/* Previously asserted attentions, which are still unasserted */
646 	u16				known_attn;
647 
648 	/* Cleanup address for the link's general hw attention */
649 	u32				mfw_attn_addr;
650 };
651 
652 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
653 				      struct qed_sb_attn_info *p_sb_desc)
654 {
655 	u16 rc = 0, index;
656 
657 	/* Make certain HW write took affect */
658 	mmiowb();
659 
660 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661 	if (p_sb_desc->index != index) {
662 		p_sb_desc->index	= index;
663 		rc		      = QED_SB_ATT_IDX;
664 	}
665 
666 	/* Make certain we got a consistent view with HW */
667 	mmiowb();
668 
669 	return rc;
670 }
671 
672 /**
673  *  @brief qed_int_assertion - handles asserted attention bits
674  *
675  *  @param p_hwfn
676  *  @param asserted_bits newly asserted bits
677  *  @return int
678  */
679 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
680 {
681 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682 	u32 igu_mask;
683 
684 	/* Mask the source of the attention in the IGU */
685 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
686 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690 
691 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
693 		   sb_attn_sw->known_attn,
694 		   sb_attn_sw->known_attn | asserted_bits);
695 	sb_attn_sw->known_attn |= asserted_bits;
696 
697 	/* Handle MCP events */
698 	if (asserted_bits & 0x100) {
699 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700 		/* Clean the MCP attention */
701 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702 		       sb_attn_sw->mfw_attn_addr, 0);
703 	}
704 
705 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706 		      GTT_BAR0_MAP_REG_IGU_CMD +
707 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
708 			IGU_CMD_INT_ACK_BASE) << 3),
709 		      (u32)asserted_bits);
710 
711 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712 		   asserted_bits);
713 
714 	return 0;
715 }
716 
717 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718 			       enum block_id id,
719 			       enum dbg_attn_type type, bool b_clear)
720 {
721 	struct dbg_attn_block_result attn_results;
722 	enum dbg_status status;
723 
724 	memset(&attn_results, 0, sizeof(attn_results));
725 
726 	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727 				   b_clear, &attn_results);
728 	if (status != DBG_STATUS_OK)
729 		DP_NOTICE(p_hwfn,
730 			  "Failed to parse attention information [status: %s]\n",
731 			  qed_dbg_get_status_str(status));
732 	else
733 		qed_dbg_parse_attn(p_hwfn, &attn_results);
734 }
735 
736 /**
737  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738  * cause of the attention
739  *
740  * @param p_hwfn
741  * @param p_aeu - descriptor of an AEU bit which caused the attention
742  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743  *  this bit to this group.
744  * @param bit_index - index of this bit in the aeu_en_reg
745  *
746  * @return int
747  */
748 static int
749 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750 			    struct aeu_invert_reg_bit *p_aeu,
751 			    u32 aeu_en_reg,
752 			    u32 bitmask)
753 {
754 	bool b_fatal = false;
755 	int rc = -EINVAL;
756 	u32 val;
757 
758 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
759 		p_aeu->bit_name, bitmask);
760 
761 	/* Call callback before clearing the interrupt status */
762 	if (p_aeu->cb) {
763 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
764 			p_aeu->bit_name);
765 		rc = p_aeu->cb(p_hwfn);
766 	}
767 
768 	if (rc)
769 		b_fatal = true;
770 
771 	/* Print HW block interrupt registers */
772 	if (p_aeu->block_index != MAX_BLOCK_ID)
773 		qed_int_attn_print(p_hwfn, p_aeu->block_index,
774 				   ATTN_TYPE_INTERRUPT, !b_fatal);
775 
776 
777 	/* If the attention is benign, no need to prevent it */
778 	if (!rc)
779 		goto out;
780 
781 	/* Prevent this Attention from being asserted in the future */
782 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
783 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
784 	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
785 		p_aeu->bit_name);
786 
787 out:
788 	return rc;
789 }
790 
791 /**
792  * @brief qed_int_deassertion_parity - handle a single parity AEU source
793  *
794  * @param p_hwfn
795  * @param p_aeu - descriptor of an AEU bit which caused the parity
796  * @param bit_index
797  */
798 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
799 				       struct aeu_invert_reg_bit *p_aeu,
800 				       u8 bit_index)
801 {
802 	u32 block_id = p_aeu->block_index;
803 
804 	DP_INFO(p_hwfn->cdev, "%s[%d] parity attention is set\n",
805 		p_aeu->bit_name, bit_index);
806 
807 	if (block_id != MAX_BLOCK_ID) {
808 		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
809 
810 		/* In BB, there's a single parity bit for several blocks */
811 		if (block_id == BLOCK_BTB) {
812 			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
813 					   ATTN_TYPE_PARITY, false);
814 			qed_int_attn_print(p_hwfn, BLOCK_MCP,
815 					   ATTN_TYPE_PARITY, false);
816 		}
817 	}
818 }
819 
820 /**
821  * @brief - handles deassertion of previously asserted attentions.
822  *
823  * @param p_hwfn
824  * @param deasserted_bits - newly deasserted bits
825  * @return int
826  *
827  */
828 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
829 			       u16 deasserted_bits)
830 {
831 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
832 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask;
833 	u8 i, j, k, bit_idx;
834 	int rc = 0;
835 
836 	/* Read the attention registers in the AEU */
837 	for (i = 0; i < NUM_ATTN_REGS; i++) {
838 		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
839 					MISC_REG_AEU_AFTER_INVERT_1_IGU +
840 					i * 0x4);
841 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
842 			   "Deasserted bits [%d]: %08x\n",
843 			   i, aeu_inv_arr[i]);
844 	}
845 
846 	/* Find parity attentions first */
847 	for (i = 0; i < NUM_ATTN_REGS; i++) {
848 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
849 		u32 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
850 				MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
851 				i * sizeof(u32));
852 		u32 parities;
853 
854 		/* Skip register in which no parity bit is currently set */
855 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
856 		if (!parities)
857 			continue;
858 
859 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
860 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
861 
862 			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
863 			    !!(parities & BIT(bit_idx)))
864 				qed_int_deassertion_parity(p_hwfn, p_bit,
865 							   bit_idx);
866 
867 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
868 		}
869 	}
870 
871 	/* Find non-parity cause for attention and act */
872 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
873 		struct aeu_invert_reg_bit *p_aeu;
874 
875 		/* Handle only groups whose attention is currently deasserted */
876 		if (!(deasserted_bits & (1 << k)))
877 			continue;
878 
879 		for (i = 0; i < NUM_ATTN_REGS; i++) {
880 			u32 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
881 				     i * sizeof(u32) +
882 				     k * sizeof(u32) * NUM_ATTN_REGS;
883 			u32 en, bits;
884 
885 			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
886 			bits = aeu_inv_arr[i] & en;
887 
888 			/* Skip if no bit from this group is currently set */
889 			if (!bits)
890 				continue;
891 
892 			/* Find all set bits from current register which belong
893 			 * to current group, making them responsible for the
894 			 * previous assertion.
895 			 */
896 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
897 				u8 bit, bit_len;
898 				u32 bitmask;
899 
900 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
901 				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
902 
903 				bit = bit_idx;
904 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
905 				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
906 					/* Skip Parity */
907 					bit++;
908 					bit_len--;
909 				}
910 
911 				bitmask = bits & (((1 << bit_len) - 1) << bit);
912 				if (bitmask) {
913 					/* Handle source of the attention */
914 					qed_int_deassertion_aeu_bit(p_hwfn,
915 								    p_aeu,
916 								    aeu_en,
917 								    bitmask);
918 				}
919 
920 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
921 			}
922 		}
923 	}
924 
925 	/* Clear IGU indication for the deasserted bits */
926 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
927 				    GTT_BAR0_MAP_REG_IGU_CMD +
928 				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
929 				      IGU_CMD_INT_ACK_BASE) << 3),
930 				    ~((u32)deasserted_bits));
931 
932 	/* Unmask deasserted attentions in IGU */
933 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
934 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
935 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
936 
937 	/* Clear deassertion from inner state */
938 	sb_attn_sw->known_attn &= ~deasserted_bits;
939 
940 	return rc;
941 }
942 
943 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
944 {
945 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
946 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
947 	u32 attn_bits = 0, attn_acks = 0;
948 	u16 asserted_bits, deasserted_bits;
949 	__le16 index;
950 	int rc = 0;
951 
952 	/* Read current attention bits/acks - safeguard against attentions
953 	 * by guaranting work on a synchronized timeframe
954 	 */
955 	do {
956 		index = p_sb_attn->sb_index;
957 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
958 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
959 	} while (index != p_sb_attn->sb_index);
960 	p_sb_attn->sb_index = index;
961 
962 	/* Attention / Deassertion are meaningful (and in correct state)
963 	 * only when they differ and consistent with known state - deassertion
964 	 * when previous attention & current ack, and assertion when current
965 	 * attention with no previous attention
966 	 */
967 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
968 		~p_sb_attn_sw->known_attn;
969 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
970 		p_sb_attn_sw->known_attn;
971 
972 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
973 		DP_INFO(p_hwfn,
974 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
975 			index, attn_bits, attn_acks, asserted_bits,
976 			deasserted_bits, p_sb_attn_sw->known_attn);
977 	} else if (asserted_bits == 0x100) {
978 		DP_INFO(p_hwfn, "MFW indication via attention\n");
979 	} else {
980 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
981 			   "MFW indication [deassertion]\n");
982 	}
983 
984 	if (asserted_bits) {
985 		rc = qed_int_assertion(p_hwfn, asserted_bits);
986 		if (rc)
987 			return rc;
988 	}
989 
990 	if (deasserted_bits)
991 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
992 
993 	return rc;
994 }
995 
996 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
997 			    void __iomem *igu_addr, u32 ack_cons)
998 {
999 	struct igu_prod_cons_update igu_ack = { 0 };
1000 
1001 	igu_ack.sb_id_and_flags =
1002 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1003 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1004 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1005 		 (IGU_SEG_ACCESS_ATTN <<
1006 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1007 
1008 	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1009 
1010 	/* Both segments (interrupts & acks) are written to same place address;
1011 	 * Need to guarantee all commands will be received (in-order) by HW.
1012 	 */
1013 	mmiowb();
1014 	barrier();
1015 }
1016 
1017 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1018 {
1019 	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1020 	struct qed_pi_info *pi_info = NULL;
1021 	struct qed_sb_attn_info *sb_attn;
1022 	struct qed_sb_info *sb_info;
1023 	int arr_size;
1024 	u16 rc = 0;
1025 
1026 	if (!p_hwfn->p_sp_sb) {
1027 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1028 		return;
1029 	}
1030 
1031 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1032 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1033 	if (!sb_info) {
1034 		DP_ERR(p_hwfn->cdev,
1035 		       "Status block is NULL - cannot ack interrupts\n");
1036 		return;
1037 	}
1038 
1039 	if (!p_hwfn->p_sb_attn) {
1040 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1041 		return;
1042 	}
1043 	sb_attn = p_hwfn->p_sb_attn;
1044 
1045 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1046 		   p_hwfn, p_hwfn->my_id);
1047 
1048 	/* Disable ack for def status block. Required both for msix +
1049 	 * inta in non-mask mode, in inta does no harm.
1050 	 */
1051 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1052 
1053 	/* Gather Interrupts/Attentions information */
1054 	if (!sb_info->sb_virt) {
1055 		DP_ERR(p_hwfn->cdev,
1056 		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1057 	} else {
1058 		u32 tmp_index = sb_info->sb_ack;
1059 
1060 		rc = qed_sb_update_sb_idx(sb_info);
1061 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1062 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1063 			   tmp_index, sb_info->sb_ack);
1064 	}
1065 
1066 	if (!sb_attn || !sb_attn->sb_attn) {
1067 		DP_ERR(p_hwfn->cdev,
1068 		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1069 	} else {
1070 		u16 tmp_index = sb_attn->index;
1071 
1072 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1073 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1074 			   "Attention indices: 0x%08x --> 0x%08x\n",
1075 			   tmp_index, sb_attn->index);
1076 	}
1077 
1078 	/* Check if we expect interrupts at this time. if not just ack them */
1079 	if (!(rc & QED_SB_EVENT_MASK)) {
1080 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1081 		return;
1082 	}
1083 
1084 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1085 	if (!p_hwfn->p_dpc_ptt) {
1086 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1087 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1088 		return;
1089 	}
1090 
1091 	if (rc & QED_SB_ATT_IDX)
1092 		qed_int_attentions(p_hwfn);
1093 
1094 	if (rc & QED_SB_IDX) {
1095 		int pi;
1096 
1097 		/* Look for a free index */
1098 		for (pi = 0; pi < arr_size; pi++) {
1099 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1100 			if (pi_info->comp_cb)
1101 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1102 		}
1103 	}
1104 
1105 	if (sb_attn && (rc & QED_SB_ATT_IDX))
1106 		/* This should be done before the interrupts are enabled,
1107 		 * since otherwise a new attention will be generated.
1108 		 */
1109 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1110 
1111 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1112 }
1113 
1114 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1115 {
1116 	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1117 
1118 	if (!p_sb)
1119 		return;
1120 
1121 	if (p_sb->sb_attn)
1122 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1123 				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1124 				  p_sb->sb_attn, p_sb->sb_phys);
1125 	kfree(p_sb);
1126 	p_hwfn->p_sb_attn = NULL;
1127 }
1128 
1129 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1130 				  struct qed_ptt *p_ptt)
1131 {
1132 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1133 
1134 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1135 
1136 	sb_info->index = 0;
1137 	sb_info->known_attn = 0;
1138 
1139 	/* Configure Attention Status Block in IGU */
1140 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1141 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1142 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1143 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1144 }
1145 
1146 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1147 				 struct qed_ptt *p_ptt,
1148 				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1149 {
1150 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1151 	int i, j, k;
1152 
1153 	sb_info->sb_attn = sb_virt_addr;
1154 	sb_info->sb_phys = sb_phy_addr;
1155 
1156 	/* Set the pointer to the AEU descriptors */
1157 	sb_info->p_aeu_desc = aeu_descs;
1158 
1159 	/* Calculate Parity Masks */
1160 	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1161 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1162 		/* j is array index, k is bit index */
1163 		for (j = 0, k = 0; k < 32; j++) {
1164 			struct aeu_invert_reg_bit *p_aeu;
1165 
1166 			p_aeu = &aeu_descs[i].bits[j];
1167 			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1168 				sb_info->parity_mask[i] |= 1 << k;
1169 
1170 			k += ATTENTION_LENGTH(p_aeu->flags);
1171 		}
1172 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1173 			   "Attn Mask [Reg %d]: 0x%08x\n",
1174 			   i, sb_info->parity_mask[i]);
1175 	}
1176 
1177 	/* Set the address of cleanup for the mcp attention */
1178 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1179 				 MISC_REG_AEU_GENERAL_ATTN_0;
1180 
1181 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1182 }
1183 
1184 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1185 				 struct qed_ptt *p_ptt)
1186 {
1187 	struct qed_dev *cdev = p_hwfn->cdev;
1188 	struct qed_sb_attn_info *p_sb;
1189 	dma_addr_t p_phys = 0;
1190 	void *p_virt;
1191 
1192 	/* SB struct */
1193 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1194 	if (!p_sb)
1195 		return -ENOMEM;
1196 
1197 	/* SB ring  */
1198 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1199 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1200 				    &p_phys, GFP_KERNEL);
1201 
1202 	if (!p_virt) {
1203 		kfree(p_sb);
1204 		return -ENOMEM;
1205 	}
1206 
1207 	/* Attention setup */
1208 	p_hwfn->p_sb_attn = p_sb;
1209 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1210 
1211 	return 0;
1212 }
1213 
1214 /* coalescing timeout = timeset << (timer_res + 1) */
1215 #define QED_CAU_DEF_RX_USECS 24
1216 #define QED_CAU_DEF_TX_USECS 48
1217 
1218 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1219 			   struct cau_sb_entry *p_sb_entry,
1220 			   u8 pf_id, u16 vf_number, u8 vf_valid)
1221 {
1222 	struct qed_dev *cdev = p_hwfn->cdev;
1223 	u32 cau_state;
1224 	u8 timer_res;
1225 
1226 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1227 
1228 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1229 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1230 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1231 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1232 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1233 
1234 	cau_state = CAU_HC_DISABLE_STATE;
1235 
1236 	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1237 		cau_state = CAU_HC_ENABLE_STATE;
1238 		if (!cdev->rx_coalesce_usecs)
1239 			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1240 		if (!cdev->tx_coalesce_usecs)
1241 			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1242 	}
1243 
1244 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1245 	if (cdev->rx_coalesce_usecs <= 0x7F)
1246 		timer_res = 0;
1247 	else if (cdev->rx_coalesce_usecs <= 0xFF)
1248 		timer_res = 1;
1249 	else
1250 		timer_res = 2;
1251 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1252 
1253 	if (cdev->tx_coalesce_usecs <= 0x7F)
1254 		timer_res = 0;
1255 	else if (cdev->tx_coalesce_usecs <= 0xFF)
1256 		timer_res = 1;
1257 	else
1258 		timer_res = 2;
1259 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1260 
1261 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1262 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1263 }
1264 
1265 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1266 			 struct qed_ptt *p_ptt,
1267 			 dma_addr_t sb_phys,
1268 			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1269 {
1270 	struct cau_sb_entry sb_entry;
1271 
1272 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1273 			      vf_number, vf_valid);
1274 
1275 	if (p_hwfn->hw_init_done) {
1276 		/* Wide-bus, initialize via DMAE */
1277 		u64 phys_addr = (u64)sb_phys;
1278 
1279 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1280 				  CAU_REG_SB_ADDR_MEMORY +
1281 				  igu_sb_id * sizeof(u64), 2, 0);
1282 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1283 				  CAU_REG_SB_VAR_MEMORY +
1284 				  igu_sb_id * sizeof(u64), 2, 0);
1285 	} else {
1286 		/* Initialize Status Block Address */
1287 		STORE_RT_REG_AGG(p_hwfn,
1288 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1289 				 igu_sb_id * 2,
1290 				 sb_phys);
1291 
1292 		STORE_RT_REG_AGG(p_hwfn,
1293 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1294 				 igu_sb_id * 2,
1295 				 sb_entry);
1296 	}
1297 
1298 	/* Configure pi coalescing if set */
1299 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1300 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1301 		u8 timeset, timer_res;
1302 		u8 i;
1303 
1304 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1305 		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1306 			timer_res = 0;
1307 		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1308 			timer_res = 1;
1309 		else
1310 			timer_res = 2;
1311 		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1312 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1313 				    QED_COAL_RX_STATE_MACHINE, timeset);
1314 
1315 		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1316 			timer_res = 0;
1317 		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1318 			timer_res = 1;
1319 		else
1320 			timer_res = 2;
1321 		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1322 		for (i = 0; i < num_tc; i++) {
1323 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1324 					    igu_sb_id, TX_PI(i),
1325 					    QED_COAL_TX_STATE_MACHINE,
1326 					    timeset);
1327 		}
1328 	}
1329 }
1330 
1331 void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1332 			 struct qed_ptt *p_ptt,
1333 			 u16 igu_sb_id,
1334 			 u32 pi_index,
1335 			 enum qed_coalescing_fsm coalescing_fsm,
1336 			 u8 timeset)
1337 {
1338 	struct cau_pi_entry pi_entry;
1339 	u32 sb_offset, pi_offset;
1340 
1341 	if (IS_VF(p_hwfn->cdev))
1342 		return;
1343 
1344 	sb_offset = igu_sb_id * PIS_PER_SB;
1345 	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1346 
1347 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1348 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1349 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1350 	else
1351 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1352 
1353 	pi_offset = sb_offset + pi_index;
1354 	if (p_hwfn->hw_init_done) {
1355 		qed_wr(p_hwfn, p_ptt,
1356 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1357 		       *((u32 *)&(pi_entry)));
1358 	} else {
1359 		STORE_RT_REG(p_hwfn,
1360 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1361 			     *((u32 *)&(pi_entry)));
1362 	}
1363 }
1364 
1365 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1366 		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1367 {
1368 	/* zero status block and ack counter */
1369 	sb_info->sb_ack = 0;
1370 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1371 
1372 	if (IS_PF(p_hwfn->cdev))
1373 		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1374 				    sb_info->igu_sb_id, 0, 0);
1375 }
1376 
1377 /**
1378  * @brief qed_get_igu_sb_id - given a sw sb_id return the
1379  *        igu_sb_id
1380  *
1381  * @param p_hwfn
1382  * @param sb_id
1383  *
1384  * @return u16
1385  */
1386 static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1387 {
1388 	u16 igu_sb_id;
1389 
1390 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1391 	if (sb_id == QED_SP_SB_ID)
1392 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1393 	else if (IS_PF(p_hwfn->cdev))
1394 		igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
1395 	else
1396 		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1397 
1398 	if (sb_id == QED_SP_SB_ID)
1399 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1400 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1401 	else
1402 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1403 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1404 
1405 	return igu_sb_id;
1406 }
1407 
1408 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1409 		    struct qed_ptt *p_ptt,
1410 		    struct qed_sb_info *sb_info,
1411 		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1412 {
1413 	sb_info->sb_virt = sb_virt_addr;
1414 	sb_info->sb_phys = sb_phy_addr;
1415 
1416 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1417 
1418 	if (sb_id != QED_SP_SB_ID) {
1419 		p_hwfn->sbs_info[sb_id] = sb_info;
1420 		p_hwfn->num_sbs++;
1421 	}
1422 
1423 	sb_info->cdev = p_hwfn->cdev;
1424 
1425 	/* The igu address will hold the absolute address that needs to be
1426 	 * written to for a specific status block
1427 	 */
1428 	if (IS_PF(p_hwfn->cdev)) {
1429 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1430 						  GTT_BAR0_MAP_REG_IGU_CMD +
1431 						  (sb_info->igu_sb_id << 3);
1432 	} else {
1433 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1434 						  PXP_VF_BAR0_START_IGU +
1435 						  ((IGU_CMD_INT_ACK_BASE +
1436 						    sb_info->igu_sb_id) << 3);
1437 	}
1438 
1439 	sb_info->flags |= QED_SB_INFO_INIT;
1440 
1441 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1442 
1443 	return 0;
1444 }
1445 
1446 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1447 		       struct qed_sb_info *sb_info, u16 sb_id)
1448 {
1449 	if (sb_id == QED_SP_SB_ID) {
1450 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1451 		return -EINVAL;
1452 	}
1453 
1454 	/* zero status block and ack counter */
1455 	sb_info->sb_ack = 0;
1456 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1457 
1458 	if (p_hwfn->sbs_info[sb_id] != NULL) {
1459 		p_hwfn->sbs_info[sb_id] = NULL;
1460 		p_hwfn->num_sbs--;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1467 {
1468 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1469 
1470 	if (!p_sb)
1471 		return;
1472 
1473 	if (p_sb->sb_info.sb_virt)
1474 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1475 				  SB_ALIGNED_SIZE(p_hwfn),
1476 				  p_sb->sb_info.sb_virt,
1477 				  p_sb->sb_info.sb_phys);
1478 	kfree(p_sb);
1479 	p_hwfn->p_sp_sb = NULL;
1480 }
1481 
1482 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1483 {
1484 	struct qed_sb_sp_info *p_sb;
1485 	dma_addr_t p_phys = 0;
1486 	void *p_virt;
1487 
1488 	/* SB struct */
1489 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1490 	if (!p_sb)
1491 		return -ENOMEM;
1492 
1493 	/* SB ring  */
1494 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1495 				    SB_ALIGNED_SIZE(p_hwfn),
1496 				    &p_phys, GFP_KERNEL);
1497 	if (!p_virt) {
1498 		kfree(p_sb);
1499 		return -ENOMEM;
1500 	}
1501 
1502 	/* Status Block setup */
1503 	p_hwfn->p_sp_sb = p_sb;
1504 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1505 			p_phys, QED_SP_SB_ID);
1506 
1507 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1508 
1509 	return 0;
1510 }
1511 
1512 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1513 			qed_int_comp_cb_t comp_cb,
1514 			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1515 {
1516 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1517 	int rc = -ENOMEM;
1518 	u8 pi;
1519 
1520 	/* Look for a free index */
1521 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1522 		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1523 			continue;
1524 
1525 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1526 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1527 		*sb_idx = pi;
1528 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1529 		rc = 0;
1530 		break;
1531 	}
1532 
1533 	return rc;
1534 }
1535 
1536 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1537 {
1538 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1539 
1540 	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1541 		return -ENOMEM;
1542 
1543 	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1544 	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1545 
1546 	return 0;
1547 }
1548 
1549 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1550 {
1551 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1552 }
1553 
1554 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1555 			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1556 {
1557 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1558 
1559 	p_hwfn->cdev->int_mode = int_mode;
1560 	switch (p_hwfn->cdev->int_mode) {
1561 	case QED_INT_MODE_INTA:
1562 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1563 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1564 		break;
1565 
1566 	case QED_INT_MODE_MSI:
1567 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1568 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1569 		break;
1570 
1571 	case QED_INT_MODE_MSIX:
1572 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1573 		break;
1574 	case QED_INT_MODE_POLL:
1575 		break;
1576 	}
1577 
1578 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1579 }
1580 
1581 int qed_int_igu_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1582 		       enum qed_int_mode int_mode)
1583 {
1584 	int rc = 0;
1585 
1586 	/* Configure AEU signal change to produce attentions */
1587 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1588 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1589 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1590 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1591 
1592 	/* Flush the writes to IGU */
1593 	mmiowb();
1594 
1595 	/* Unmask AEU signals toward IGU */
1596 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1597 	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1598 		rc = qed_slowpath_irq_req(p_hwfn);
1599 		if (rc) {
1600 			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1601 			return -EINVAL;
1602 		}
1603 		p_hwfn->b_int_requested = true;
1604 	}
1605 	/* Enable interrupt Generation */
1606 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1607 	p_hwfn->b_int_enabled = 1;
1608 
1609 	return rc;
1610 }
1611 
1612 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1613 {
1614 	p_hwfn->b_int_enabled = 0;
1615 
1616 	if (IS_VF(p_hwfn->cdev))
1617 		return;
1618 
1619 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1620 }
1621 
1622 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1623 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1624 				   struct qed_ptt *p_ptt,
1625 				   u32 sb_id, bool cleanup_set, u16 opaque_fid)
1626 {
1627 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1628 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
1629 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1630 
1631 	/* Set the data field */
1632 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1633 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1634 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1635 
1636 	/* Set the control register */
1637 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1638 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1639 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1640 
1641 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1642 
1643 	barrier();
1644 
1645 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1646 
1647 	/* Flush the write to IGU */
1648 	mmiowb();
1649 
1650 	/* calculate where to read the status bit from */
1651 	sb_bit = 1 << (sb_id % 32);
1652 	sb_bit_addr = sb_id / 32 * sizeof(u32);
1653 
1654 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1655 
1656 	/* Now wait for the command to complete */
1657 	do {
1658 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1659 
1660 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1661 			break;
1662 
1663 		usleep_range(5000, 10000);
1664 	} while (--sleep_cnt);
1665 
1666 	if (!sleep_cnt)
1667 		DP_NOTICE(p_hwfn,
1668 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1669 			  val, sb_id);
1670 }
1671 
1672 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1673 				     struct qed_ptt *p_ptt,
1674 				     u32 sb_id, u16 opaque, bool b_set)
1675 {
1676 	int pi, i;
1677 
1678 	/* Set */
1679 	if (b_set)
1680 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
1681 
1682 	/* Clear */
1683 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
1684 
1685 	/* Wait for the IGU SB to cleanup */
1686 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1687 		u32 val;
1688 
1689 		val = qed_rd(p_hwfn, p_ptt,
1690 			     IGU_REG_WRITE_DONE_PENDING + ((sb_id / 32) * 4));
1691 		if (val & (1 << (sb_id % 32)))
1692 			usleep_range(10, 20);
1693 		else
1694 			break;
1695 	}
1696 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1697 		DP_NOTICE(p_hwfn,
1698 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1699 			  sb_id);
1700 
1701 	/* Clear the CAU for the SB */
1702 	for (pi = 0; pi < 12; pi++)
1703 		qed_wr(p_hwfn, p_ptt,
1704 		       CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
1705 }
1706 
1707 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1708 			      struct qed_ptt *p_ptt,
1709 			      bool b_set, bool b_slowpath)
1710 {
1711 	u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
1712 	u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
1713 	u32 sb_id = 0, val = 0;
1714 
1715 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1716 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1717 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1718 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1719 
1720 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1721 		   "IGU cleaning SBs [%d,...,%d]\n",
1722 		   igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
1723 
1724 	for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
1725 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1726 						p_hwfn->hw_info.opaque_fid,
1727 						b_set);
1728 
1729 	if (!b_slowpath)
1730 		return;
1731 
1732 	sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1733 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1734 		   "IGU cleaning slowpath SB [%d]\n", sb_id);
1735 	qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1736 					p_hwfn->hw_info.opaque_fid, b_set);
1737 }
1738 
1739 static u32 qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1740 				      struct qed_ptt *p_ptt, u16 sb_id)
1741 {
1742 	u32 val = qed_rd(p_hwfn, p_ptt,
1743 			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * sb_id);
1744 	struct qed_igu_block *p_block;
1745 
1746 	p_block = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
1747 
1748 	/* stop scanning when hit first invalid PF entry */
1749 	if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1750 	    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1751 		goto out;
1752 
1753 	/* Fill the block information */
1754 	p_block->status		= QED_IGU_STATUS_VALID;
1755 	p_block->function_id	= GET_FIELD(val,
1756 					    IGU_MAPPING_LINE_FUNCTION_NUMBER);
1757 	p_block->is_pf		= GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
1758 	p_block->vector_number	= GET_FIELD(val,
1759 					    IGU_MAPPING_LINE_VECTOR_NUMBER);
1760 
1761 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1762 		   "IGU_BLOCK: [SB 0x%04x, Value in CAM 0x%08x] func_id = %d is_pf = %d vector_num = 0x%x\n",
1763 		   sb_id, val, p_block->function_id,
1764 		   p_block->is_pf, p_block->vector_number);
1765 
1766 out:
1767 	return val;
1768 }
1769 
1770 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1771 {
1772 	struct qed_igu_info *p_igu_info;
1773 	u32 val, min_vf = 0, max_vf = 0;
1774 	u16 sb_id, last_iov_sb_id = 0;
1775 	struct qed_igu_block *blk;
1776 	u16 prev_sb_id = 0xFF;
1777 
1778 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
1779 	if (!p_hwfn->hw_info.p_igu_info)
1780 		return -ENOMEM;
1781 
1782 	p_igu_info = p_hwfn->hw_info.p_igu_info;
1783 
1784 	/* Initialize base sb / sb cnt for PFs and VFs */
1785 	p_igu_info->igu_base_sb		= 0xffff;
1786 	p_igu_info->igu_sb_cnt		= 0;
1787 	p_igu_info->igu_dsb_id		= 0xffff;
1788 	p_igu_info->igu_base_sb_iov	= 0xffff;
1789 
1790 	if (p_hwfn->cdev->p_iov_info) {
1791 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
1792 
1793 		min_vf	= p_iov->first_vf_in_pf;
1794 		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
1795 	}
1796 
1797 	for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1798 	     sb_id++) {
1799 		blk = &p_igu_info->igu_map.igu_blocks[sb_id];
1800 
1801 		val	= qed_int_igu_read_cam_block(p_hwfn, p_ptt, sb_id);
1802 
1803 		/* stop scanning when hit first invalid PF entry */
1804 		if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1805 		    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1806 			break;
1807 
1808 		if (blk->is_pf) {
1809 			if (blk->function_id == p_hwfn->rel_pf_id) {
1810 				blk->status |= QED_IGU_STATUS_PF;
1811 
1812 				if (blk->vector_number == 0) {
1813 					if (p_igu_info->igu_dsb_id == 0xffff)
1814 						p_igu_info->igu_dsb_id = sb_id;
1815 				} else {
1816 					if (p_igu_info->igu_base_sb ==
1817 					    0xffff) {
1818 						p_igu_info->igu_base_sb = sb_id;
1819 					} else if (prev_sb_id != sb_id - 1) {
1820 						DP_NOTICE(p_hwfn->cdev,
1821 							  "consecutive igu vectors for HWFN %x broken",
1822 							  p_hwfn->rel_pf_id);
1823 						break;
1824 					}
1825 					prev_sb_id = sb_id;
1826 					/* we don't count the default */
1827 					(p_igu_info->igu_sb_cnt)++;
1828 				}
1829 			}
1830 		} else {
1831 			if ((blk->function_id >= min_vf) &&
1832 			    (blk->function_id < max_vf)) {
1833 				/* Available for VFs of this PF */
1834 				if (p_igu_info->igu_base_sb_iov == 0xffff) {
1835 					p_igu_info->igu_base_sb_iov = sb_id;
1836 				} else if (last_iov_sb_id != sb_id - 1) {
1837 					if (!val) {
1838 						DP_VERBOSE(p_hwfn->cdev,
1839 							   NETIF_MSG_INTR,
1840 							   "First uninitialized IGU CAM entry at index 0x%04x\n",
1841 							   sb_id);
1842 					} else {
1843 						DP_NOTICE(p_hwfn->cdev,
1844 							  "Consecutive igu vectors for HWFN %x vfs is broken [jumps from %04x to %04x]\n",
1845 							  p_hwfn->rel_pf_id,
1846 							  last_iov_sb_id,
1847 							  sb_id); }
1848 					break;
1849 				}
1850 				blk->status |= QED_IGU_STATUS_FREE;
1851 				p_hwfn->hw_info.p_igu_info->free_blks++;
1852 				last_iov_sb_id = sb_id;
1853 			}
1854 		}
1855 	}
1856 
1857 	/* There's a possibility the igu_sb_cnt_iov doesn't properly reflect
1858 	 * the number of VF SBs [especially for first VF on engine, as we can't
1859 	 * differentiate between empty entries and its entries].
1860 	 * Since we don't really support more SBs than VFs today, prevent any
1861 	 * such configuration by sanitizing the number of SBs to equal the
1862 	 * number of VFs.
1863 	 */
1864 	if (IS_PF_SRIOV(p_hwfn)) {
1865 		u16 total_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
1866 
1867 		if (total_vfs < p_igu_info->free_blks) {
1868 			DP_VERBOSE(p_hwfn,
1869 				   (NETIF_MSG_INTR | QED_MSG_IOV),
1870 				   "Limiting number of SBs for IOV - %04x --> %04x\n",
1871 				   p_igu_info->free_blks,
1872 				   p_hwfn->cdev->p_iov_info->total_vfs);
1873 			p_igu_info->free_blks = total_vfs;
1874 		} else if (total_vfs > p_igu_info->free_blks) {
1875 			DP_NOTICE(p_hwfn,
1876 				  "IGU has only %04x SBs for VFs while the device has %04x VFs\n",
1877 				  p_igu_info->free_blks, total_vfs);
1878 			return -EINVAL;
1879 		}
1880 	}
1881 	p_igu_info->igu_sb_cnt_iov = p_igu_info->free_blks;
1882 
1883 	DP_VERBOSE(
1884 		p_hwfn,
1885 		NETIF_MSG_INTR,
1886 		"IGU igu_base_sb=0x%x [IOV 0x%x] igu_sb_cnt=%d [IOV 0x%x] igu_dsb_id=0x%x\n",
1887 		p_igu_info->igu_base_sb,
1888 		p_igu_info->igu_base_sb_iov,
1889 		p_igu_info->igu_sb_cnt,
1890 		p_igu_info->igu_sb_cnt_iov,
1891 		p_igu_info->igu_dsb_id);
1892 
1893 	if (p_igu_info->igu_base_sb == 0xffff ||
1894 	    p_igu_info->igu_dsb_id == 0xffff ||
1895 	    p_igu_info->igu_sb_cnt == 0) {
1896 		DP_NOTICE(p_hwfn,
1897 			  "IGU CAM returned invalid values igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
1898 			   p_igu_info->igu_base_sb,
1899 			   p_igu_info->igu_sb_cnt,
1900 			   p_igu_info->igu_dsb_id);
1901 		return -EINVAL;
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  * @brief Initialize igu runtime registers
1909  *
1910  * @param p_hwfn
1911  */
1912 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
1913 {
1914 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
1915 
1916 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
1917 }
1918 
1919 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
1920 {
1921 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
1922 			       IGU_CMD_INT_ACK_BASE;
1923 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
1924 			       IGU_CMD_INT_ACK_BASE;
1925 	u32 intr_status_hi = 0, intr_status_lo = 0;
1926 	u64 intr_status = 0;
1927 
1928 	intr_status_lo = REG_RD(p_hwfn,
1929 				GTT_BAR0_MAP_REG_IGU_CMD +
1930 				lsb_igu_cmd_addr * 8);
1931 	intr_status_hi = REG_RD(p_hwfn,
1932 				GTT_BAR0_MAP_REG_IGU_CMD +
1933 				msb_igu_cmd_addr * 8);
1934 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
1935 
1936 	return intr_status;
1937 }
1938 
1939 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
1940 {
1941 	tasklet_init(p_hwfn->sp_dpc,
1942 		     qed_int_sp_dpc, (unsigned long)p_hwfn);
1943 	p_hwfn->b_sp_dpc_enabled = true;
1944 }
1945 
1946 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
1947 {
1948 	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
1949 	if (!p_hwfn->sp_dpc)
1950 		return -ENOMEM;
1951 
1952 	return 0;
1953 }
1954 
1955 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
1956 {
1957 	kfree(p_hwfn->sp_dpc);
1958 	p_hwfn->sp_dpc = NULL;
1959 }
1960 
1961 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1962 {
1963 	int rc = 0;
1964 
1965 	rc = qed_int_sp_dpc_alloc(p_hwfn);
1966 	if (rc)
1967 		return rc;
1968 
1969 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
1970 	if (rc)
1971 		return rc;
1972 
1973 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
1974 
1975 	return rc;
1976 }
1977 
1978 void qed_int_free(struct qed_hwfn *p_hwfn)
1979 {
1980 	qed_int_sp_sb_free(p_hwfn);
1981 	qed_int_sb_attn_free(p_hwfn);
1982 	qed_int_sp_dpc_free(p_hwfn);
1983 }
1984 
1985 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1986 {
1987 	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
1988 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1989 	qed_int_sp_dpc_setup(p_hwfn);
1990 }
1991 
1992 void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
1993 			 struct qed_sb_cnt_info *p_sb_cnt_info)
1994 {
1995 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
1996 
1997 	if (!info || !p_sb_cnt_info)
1998 		return;
1999 
2000 	p_sb_cnt_info->sb_cnt		= info->igu_sb_cnt;
2001 	p_sb_cnt_info->sb_iov_cnt	= info->igu_sb_cnt_iov;
2002 	p_sb_cnt_info->sb_free_blk	= info->free_blks;
2003 }
2004 
2005 u16 qed_int_queue_id_from_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
2006 {
2007 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2008 
2009 	/* Determine origin of SB id */
2010 	if ((sb_id >= p_info->igu_base_sb) &&
2011 	    (sb_id < p_info->igu_base_sb + p_info->igu_sb_cnt)) {
2012 		return sb_id - p_info->igu_base_sb;
2013 	} else if ((sb_id >= p_info->igu_base_sb_iov) &&
2014 		   (sb_id < p_info->igu_base_sb_iov + p_info->igu_sb_cnt_iov)) {
2015 		/* We want the first VF queue to be adjacent to the
2016 		 * last PF queue. Since L2 queues can be partial to
2017 		 * SBs, we'll use the feature instead.
2018 		 */
2019 		return sb_id - p_info->igu_base_sb_iov +
2020 		       FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
2021 	} else {
2022 		DP_NOTICE(p_hwfn, "SB %d not in range for function\n", sb_id);
2023 		return 0;
2024 	}
2025 }
2026 
2027 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2028 {
2029 	int i;
2030 
2031 	for_each_hwfn(cdev, i)
2032 		cdev->hwfns[i].b_int_requested = false;
2033 }
2034 
2035 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2036 			  u8 timer_res, u16 sb_id, bool tx)
2037 {
2038 	struct cau_sb_entry sb_entry;
2039 	int rc;
2040 
2041 	if (!p_hwfn->hw_init_done) {
2042 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2043 		return -EINVAL;
2044 	}
2045 
2046 	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2047 			       sb_id * sizeof(u64),
2048 			       (u64)(uintptr_t)&sb_entry, 2, 0);
2049 	if (rc) {
2050 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2051 		return rc;
2052 	}
2053 
2054 	if (tx)
2055 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2056 	else
2057 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2058 
2059 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2060 			       (u64)(uintptr_t)&sb_entry,
2061 			       CAU_REG_SB_VAR_MEMORY +
2062 			       sb_id * sizeof(u64), 2, 0);
2063 	if (rc) {
2064 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2065 		return rc;
2066 	}
2067 
2068 	return rc;
2069 }
2070