1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55 
56 struct qed_pi_info {
57 	qed_int_comp_cb_t	comp_cb;
58 	void			*cookie;
59 };
60 
61 struct qed_sb_sp_info {
62 	struct qed_sb_info	sb_info;
63 
64 	/* per protocol index data */
65 	struct qed_pi_info	pi_info_arr[PIS_PER_SB];
66 };
67 
68 enum qed_attention_type {
69 	QED_ATTN_TYPE_ATTN,
70 	QED_ATTN_TYPE_PARITY,
71 };
72 
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74 	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75 
76 struct aeu_invert_reg_bit {
77 	char bit_name[30];
78 
79 #define ATTENTION_PARITY                (1 << 0)
80 
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84 					 ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88 					 ATTENTION_PARITY)
89 
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93 
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98 
99 	unsigned int flags;
100 
101 	/* Callback to call if attention will be triggered */
102 	int (*cb)(struct qed_hwfn *p_hwfn);
103 
104 	enum block_id block_index;
105 };
106 
107 struct aeu_invert_reg {
108 	struct aeu_invert_reg_bit bits[32];
109 };
110 
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113 
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118 
119 	/* This might occur on certain instances; Log it once then mask it */
120 	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121 		tmp);
122 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123 	       0xffffffff);
124 
125 	return 0;
126 }
127 
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143 	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144 			 PSWHST_REG_INCORRECT_ACCESS_VALID);
145 
146 	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147 		u32 addr, data, length;
148 
149 		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150 			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151 		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152 			      PSWHST_REG_INCORRECT_ACCESS_DATA);
153 		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154 				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155 
156 		DP_INFO(p_hwfn->cdev,
157 			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158 			addr, length,
159 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161 			(u8) GET_FIELD(data,
162 				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
163 			(u8) GET_FIELD(data,
164 				       ATTENTION_INCORRECT_ACCESS_CLIENT),
165 			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166 			(u8) GET_FIELD(data,
167 				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168 			data);
169 	}
170 
171 	return 0;
172 }
173 
174 #define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
177 #define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
180 #define QED_GRC_ATTENTION_PF_MASK	(0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT	(0)
182 #define QED_GRC_ATTENTION_VF_MASK	(0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT	(4)
184 #define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
186 #define QED_GRC_ATTENTION_PRIV_VF	(0)
187 static const char *attn_master_to_str(u8 master)
188 {
189 	switch (master) {
190 	case 1: return "PXP";
191 	case 2: return "MCP";
192 	case 3: return "MSDM";
193 	case 4: return "PSDM";
194 	case 5: return "YSDM";
195 	case 6: return "USDM";
196 	case 7: return "TSDM";
197 	case 8: return "XSDM";
198 	case 9: return "DBU";
199 	case 10: return "DMAE";
200 	default:
201 		return "Unknown";
202 	}
203 }
204 
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207 	u32 tmp, tmp2;
208 
209 	/* We've already cleared the timeout interrupt register, so we learn
210 	 * of interrupts via the validity register
211 	 */
212 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213 		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214 	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215 		goto out;
216 
217 	/* Read the GRC timeout information */
218 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219 		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220 	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221 		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222 
223 	DP_INFO(p_hwfn->cdev,
224 		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225 		tmp2, tmp,
226 		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227 		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228 		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229 		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230 		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231 		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Ireelevant)",
232 		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233 
234 out:
235 	/* Regardles of anything else, clean the validity bit */
236 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237 	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238 	return 0;
239 }
240 
241 #define PGLUE_ATTENTION_VALID			(1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID		(1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
255 #define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
258 static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259 {
260 	u32 tmp;
261 
262 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263 		     PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264 	if (tmp & PGLUE_ATTENTION_VALID) {
265 		u32 addr_lo, addr_hi, details;
266 
267 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268 				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270 				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272 				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
273 
274 		DP_INFO(p_hwfn,
275 			"Illegal write by chip to [%08x:%08x] blocked.\n"
276 			"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277 			"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278 			addr_hi, addr_lo, details,
279 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281 			GET_FIELD(details,
282 				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283 			tmp,
284 			GET_FIELD(tmp,
285 				  PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286 			GET_FIELD(tmp,
287 				  PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288 			GET_FIELD(tmp,
289 				  PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290 	}
291 
292 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293 		     PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294 	if (tmp & PGLUE_ATTENTION_RD_VALID) {
295 		u32 addr_lo, addr_hi, details;
296 
297 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298 				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300 				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302 				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
303 
304 		DP_INFO(p_hwfn,
305 			"Illegal read by chip from [%08x:%08x] blocked.\n"
306 			" Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307 			" Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308 			addr_hi, addr_lo, details,
309 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310 			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311 			GET_FIELD(details,
312 				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313 			tmp,
314 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315 									 : 0,
316 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317 			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318 									: 0);
319 	}
320 
321 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322 		     PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323 	if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324 		DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
325 
326 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327 		     PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328 	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329 		u32 addr_hi, addr_lo;
330 
331 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334 				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335 
336 		DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337 			tmp, addr_hi, addr_lo);
338 	}
339 
340 	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341 		     PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342 	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343 		u32 addr_hi, addr_lo, details;
344 
345 		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346 				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347 		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348 				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349 		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350 				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351 
352 		DP_INFO(p_hwfn,
353 			"ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354 			details, tmp, addr_hi, addr_lo);
355 	}
356 
357 	/* Clear the indications */
358 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359 	       PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360 
361 	return 0;
362 }
363 
364 #define QED_DORQ_ATTENTION_REASON_MASK	(0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_SIZE_MASK	(0x7f)
367 #define QED_DORQ_ATTENTION_SIZE_SHIFT	(16)
368 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369 {
370 	u32 reason;
371 
372 	reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373 			QED_DORQ_ATTENTION_REASON_MASK;
374 	if (reason) {
375 		u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376 				     DORQ_REG_DB_DROP_DETAILS);
377 
378 		DP_INFO(p_hwfn->cdev,
379 			"DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
380 			qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381 			       DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382 			(u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383 			GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384 			reason);
385 	}
386 
387 	return -EINVAL;
388 }
389 
390 /* Instead of major changes to the data-structure, we have a some 'special'
391  * identifiers for sources that changed meaning between adapters.
392  */
393 enum aeu_invert_reg_special_type {
394 	AEU_INVERT_REG_SPECIAL_CNIG_0,
395 	AEU_INVERT_REG_SPECIAL_CNIG_1,
396 	AEU_INVERT_REG_SPECIAL_CNIG_2,
397 	AEU_INVERT_REG_SPECIAL_CNIG_3,
398 	AEU_INVERT_REG_SPECIAL_MAX,
399 };
400 
401 static struct aeu_invert_reg_bit
402 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403 	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404 	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405 	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406 	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407 };
408 
409 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
410 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411 	{
412 		{       /* After Invert 1 */
413 			{"GPIO0 function%d",
414 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
415 		}
416 	},
417 
418 	{
419 		{       /* After Invert 2 */
420 			{"PGLUE config_space", ATTENTION_SINGLE,
421 			 NULL, MAX_BLOCK_ID},
422 			{"PGLUE misc_flr", ATTENTION_SINGLE,
423 			 NULL, MAX_BLOCK_ID},
424 			{"PGLUE B RBC", ATTENTION_PAR_INT,
425 			 qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426 			{"PGLUE misc_mctp", ATTENTION_SINGLE,
427 			 NULL, MAX_BLOCK_ID},
428 			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429 			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
430 			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
431 			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
432 					  (1 << ATTENTION_OFFSET_SHIFT),
433 			 NULL, MAX_BLOCK_ID},
434 			{"PCIE glue/PXP VPD %d",
435 			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
436 		}
437 	},
438 
439 	{
440 		{       /* After Invert 3 */
441 			{"General Attention %d",
442 			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
443 		}
444 	},
445 
446 	{
447 		{       /* After Invert 4 */
448 			{"General Attention 32", ATTENTION_SINGLE,
449 			 NULL, MAX_BLOCK_ID},
450 			{"General Attention %d",
451 			 (2 << ATTENTION_LENGTH_SHIFT) |
452 			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
453 			{"General Attention 35", ATTENTION_SINGLE,
454 			 NULL, MAX_BLOCK_ID},
455 			{"NWS Parity",
456 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458 			 NULL, BLOCK_NWS},
459 			{"NWS Interrupt",
460 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462 			 NULL, BLOCK_NWS},
463 			{"NWM Parity",
464 			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466 			 NULL, BLOCK_NWM},
467 			{"NWM Interrupt",
468 			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469 			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470 			 NULL, BLOCK_NWM},
471 			{"MCP CPU", ATTENTION_SINGLE,
472 			 qed_mcp_attn_cb, MAX_BLOCK_ID},
473 			{"MCP Watchdog timer", ATTENTION_SINGLE,
474 			 NULL, MAX_BLOCK_ID},
475 			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
476 			{"AVS stop status ready", ATTENTION_SINGLE,
477 			 NULL, MAX_BLOCK_ID},
478 			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479 			{"MSTAT per-path", ATTENTION_PAR_INT,
480 			 NULL, MAX_BLOCK_ID},
481 			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
482 			 NULL, MAX_BLOCK_ID},
483 			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484 			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485 			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486 			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487 			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
488 		}
489 	},
490 
491 	{
492 		{       /* After Invert 5 */
493 			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494 			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495 			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496 			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497 			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498 			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499 			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500 			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501 			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502 			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503 			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504 			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505 			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506 			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507 			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508 			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
509 		}
510 	},
511 
512 	{
513 		{       /* After Invert 6 */
514 			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515 			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516 			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517 			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518 			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519 			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520 			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521 			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522 			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523 			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524 			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525 			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526 			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527 			{"DORQ", ATTENTION_PAR_INT,
528 			 qed_dorq_attn_cb, BLOCK_DORQ},
529 			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530 			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
531 		}
532 	},
533 
534 	{
535 		{       /* After Invert 7 */
536 			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537 			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538 			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539 			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540 			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541 			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542 			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543 			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544 			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545 			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546 			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547 			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548 			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549 			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550 			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551 			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552 			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
553 		}
554 	},
555 
556 	{
557 		{       /* After Invert 8 */
558 			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559 			 NULL, BLOCK_PSWRQ2},
560 			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561 			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562 			 NULL, BLOCK_PSWWR2},
563 			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564 			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565 			 NULL, BLOCK_PSWRD2},
566 			{"PSWHST", ATTENTION_PAR_INT,
567 			 qed_pswhst_attn_cb, BLOCK_PSWHST},
568 			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569 			 NULL, BLOCK_PSWHST2},
570 			{"GRC",	ATTENTION_PAR_INT,
571 			 qed_grc_attn_cb, BLOCK_GRC},
572 			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573 			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574 			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575 			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576 			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577 			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578 			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579 			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580 			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
581 			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
582 			 NULL, BLOCK_PGLCS},
583 			{"PERST_B assertion", ATTENTION_SINGLE,
584 			 NULL, MAX_BLOCK_ID},
585 			{"PERST_B deassertion", ATTENTION_SINGLE,
586 			 NULL, MAX_BLOCK_ID},
587 			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
588 			 NULL, MAX_BLOCK_ID},
589 		}
590 	},
591 
592 	{
593 		{       /* After Invert 9 */
594 			{"MCP Latched memory", ATTENTION_PAR,
595 			 NULL, MAX_BLOCK_ID},
596 			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
597 			 NULL, MAX_BLOCK_ID},
598 			{"MCP Latched ump_tx", ATTENTION_PAR,
599 			 NULL, MAX_BLOCK_ID},
600 			{"MCP Latched scratchpad", ATTENTION_PAR,
601 			 NULL, MAX_BLOCK_ID},
602 			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
603 			 NULL, MAX_BLOCK_ID},
604 		}
605 	},
606 };
607 
608 static struct aeu_invert_reg_bit *
609 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610 		      struct aeu_invert_reg_bit *p_bit)
611 {
612 	if (!QED_IS_BB(p_hwfn->cdev))
613 		return p_bit;
614 
615 	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616 		return p_bit;
617 
618 	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619 				  ATTENTION_BB_SHIFT];
620 }
621 
622 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623 				   struct aeu_invert_reg_bit *p_bit)
624 {
625 	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626 		   ATTENTION_PARITY);
627 }
628 
629 #define ATTN_STATE_BITS         (0xfff)
630 #define ATTN_BITS_MASKABLE      (0x3ff)
631 struct qed_sb_attn_info {
632 	/* Virtual & Physical address of the SB */
633 	struct atten_status_block       *sb_attn;
634 	dma_addr_t			sb_phys;
635 
636 	/* Last seen running index */
637 	u16				index;
638 
639 	/* A mask of the AEU bits resulting in a parity error */
640 	u32				parity_mask[NUM_ATTN_REGS];
641 
642 	/* A pointer to the attention description structure */
643 	struct aeu_invert_reg		*p_aeu_desc;
644 
645 	/* Previously asserted attentions, which are still unasserted */
646 	u16				known_attn;
647 
648 	/* Cleanup address for the link's general hw attention */
649 	u32				mfw_attn_addr;
650 };
651 
652 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
653 				      struct qed_sb_attn_info *p_sb_desc)
654 {
655 	u16 rc = 0, index;
656 
657 	/* Make certain HW write took affect */
658 	mmiowb();
659 
660 	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661 	if (p_sb_desc->index != index) {
662 		p_sb_desc->index	= index;
663 		rc		      = QED_SB_ATT_IDX;
664 	}
665 
666 	/* Make certain we got a consistent view with HW */
667 	mmiowb();
668 
669 	return rc;
670 }
671 
672 /**
673  *  @brief qed_int_assertion - handles asserted attention bits
674  *
675  *  @param p_hwfn
676  *  @param asserted_bits newly asserted bits
677  *  @return int
678  */
679 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
680 {
681 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682 	u32 igu_mask;
683 
684 	/* Mask the source of the attention in the IGU */
685 	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
686 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687 		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688 	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690 
691 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692 		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
693 		   sb_attn_sw->known_attn,
694 		   sb_attn_sw->known_attn | asserted_bits);
695 	sb_attn_sw->known_attn |= asserted_bits;
696 
697 	/* Handle MCP events */
698 	if (asserted_bits & 0x100) {
699 		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700 		/* Clean the MCP attention */
701 		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702 		       sb_attn_sw->mfw_attn_addr, 0);
703 	}
704 
705 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706 		      GTT_BAR0_MAP_REG_IGU_CMD +
707 		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
708 			IGU_CMD_INT_ACK_BASE) << 3),
709 		      (u32)asserted_bits);
710 
711 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712 		   asserted_bits);
713 
714 	return 0;
715 }
716 
717 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718 			       enum block_id id,
719 			       enum dbg_attn_type type, bool b_clear)
720 {
721 	struct dbg_attn_block_result attn_results;
722 	enum dbg_status status;
723 
724 	memset(&attn_results, 0, sizeof(attn_results));
725 
726 	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727 				   b_clear, &attn_results);
728 	if (status != DBG_STATUS_OK)
729 		DP_NOTICE(p_hwfn,
730 			  "Failed to parse attention information [status: %s]\n",
731 			  qed_dbg_get_status_str(status));
732 	else
733 		qed_dbg_parse_attn(p_hwfn, &attn_results);
734 }
735 
736 /**
737  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738  * cause of the attention
739  *
740  * @param p_hwfn
741  * @param p_aeu - descriptor of an AEU bit which caused the attention
742  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743  *  this bit to this group.
744  * @param bit_index - index of this bit in the aeu_en_reg
745  *
746  * @return int
747  */
748 static int
749 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750 			    struct aeu_invert_reg_bit *p_aeu,
751 			    u32 aeu_en_reg,
752 			    const char *p_bit_name, u32 bitmask)
753 {
754 	bool b_fatal = false;
755 	int rc = -EINVAL;
756 	u32 val;
757 
758 	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
759 		p_bit_name, bitmask);
760 
761 	/* Call callback before clearing the interrupt status */
762 	if (p_aeu->cb) {
763 		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
764 			p_bit_name);
765 		rc = p_aeu->cb(p_hwfn);
766 	}
767 
768 	if (rc)
769 		b_fatal = true;
770 
771 	/* Print HW block interrupt registers */
772 	if (p_aeu->block_index != MAX_BLOCK_ID)
773 		qed_int_attn_print(p_hwfn, p_aeu->block_index,
774 				   ATTN_TYPE_INTERRUPT, !b_fatal);
775 
776 
777 	/* If the attention is benign, no need to prevent it */
778 	if (!rc)
779 		goto out;
780 
781 	/* Prevent this Attention from being asserted in the future */
782 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
783 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
784 	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
785 		p_bit_name);
786 
787 out:
788 	return rc;
789 }
790 
791 /**
792  * @brief qed_int_deassertion_parity - handle a single parity AEU source
793  *
794  * @param p_hwfn
795  * @param p_aeu - descriptor of an AEU bit which caused the parity
796  * @param aeu_en_reg - address of the AEU enable register
797  * @param bit_index
798  */
799 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
800 				       struct aeu_invert_reg_bit *p_aeu,
801 				       u32 aeu_en_reg, u8 bit_index)
802 {
803 	u32 block_id = p_aeu->block_index, mask, val;
804 
805 	DP_NOTICE(p_hwfn->cdev,
806 		  "%s parity attention is set [address 0x%08x, bit %d]\n",
807 		  p_aeu->bit_name, aeu_en_reg, bit_index);
808 
809 	if (block_id != MAX_BLOCK_ID) {
810 		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
811 
812 		/* In BB, there's a single parity bit for several blocks */
813 		if (block_id == BLOCK_BTB) {
814 			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
815 					   ATTN_TYPE_PARITY, false);
816 			qed_int_attn_print(p_hwfn, BLOCK_MCP,
817 					   ATTN_TYPE_PARITY, false);
818 		}
819 	}
820 
821 	/* Prevent this parity error from being re-asserted */
822 	mask = ~BIT(bit_index);
823 	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
824 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
825 	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
826 		p_aeu->bit_name);
827 }
828 
829 /**
830  * @brief - handles deassertion of previously asserted attentions.
831  *
832  * @param p_hwfn
833  * @param deasserted_bits - newly deasserted bits
834  * @return int
835  *
836  */
837 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
838 			       u16 deasserted_bits)
839 {
840 	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
841 	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
842 	u8 i, j, k, bit_idx;
843 	int rc = 0;
844 
845 	/* Read the attention registers in the AEU */
846 	for (i = 0; i < NUM_ATTN_REGS; i++) {
847 		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
848 					MISC_REG_AEU_AFTER_INVERT_1_IGU +
849 					i * 0x4);
850 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
851 			   "Deasserted bits [%d]: %08x\n",
852 			   i, aeu_inv_arr[i]);
853 	}
854 
855 	/* Find parity attentions first */
856 	for (i = 0; i < NUM_ATTN_REGS; i++) {
857 		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
858 		u32 parities;
859 
860 		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
861 		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
862 
863 		/* Skip register in which no parity bit is currently set */
864 		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
865 		if (!parities)
866 			continue;
867 
868 		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869 			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870 
871 			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
872 			    !!(parities & BIT(bit_idx)))
873 				qed_int_deassertion_parity(p_hwfn, p_bit,
874 							   aeu_en, bit_idx);
875 
876 			bit_idx += ATTENTION_LENGTH(p_bit->flags);
877 		}
878 	}
879 
880 	/* Find non-parity cause for attention and act */
881 	for (k = 0; k < MAX_ATTN_GRPS; k++) {
882 		struct aeu_invert_reg_bit *p_aeu;
883 
884 		/* Handle only groups whose attention is currently deasserted */
885 		if (!(deasserted_bits & (1 << k)))
886 			continue;
887 
888 		for (i = 0; i < NUM_ATTN_REGS; i++) {
889 			u32 bits;
890 
891 			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892 				 i * sizeof(u32) +
893 				 k * sizeof(u32) * NUM_ATTN_REGS;
894 
895 			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
896 			bits = aeu_inv_arr[i] & en;
897 
898 			/* Skip if no bit from this group is currently set */
899 			if (!bits)
900 				continue;
901 
902 			/* Find all set bits from current register which belong
903 			 * to current group, making them responsible for the
904 			 * previous assertion.
905 			 */
906 			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
907 				long unsigned int bitmask;
908 				u8 bit, bit_len;
909 
910 				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
911 				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
912 
913 				bit = bit_idx;
914 				bit_len = ATTENTION_LENGTH(p_aeu->flags);
915 				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
916 					/* Skip Parity */
917 					bit++;
918 					bit_len--;
919 				}
920 
921 				bitmask = bits & (((1 << bit_len) - 1) << bit);
922 				bitmask >>= bit;
923 
924 				if (bitmask) {
925 					u32 flags = p_aeu->flags;
926 					char bit_name[30];
927 					u8 num;
928 
929 					num = (u8)find_first_bit(&bitmask,
930 								 bit_len);
931 
932 					/* Some bits represent more than a
933 					 * a single interrupt. Correctly print
934 					 * their name.
935 					 */
936 					if (ATTENTION_LENGTH(flags) > 2 ||
937 					    ((flags & ATTENTION_PAR_INT) &&
938 					     ATTENTION_LENGTH(flags) > 1))
939 						snprintf(bit_name, 30,
940 							 p_aeu->bit_name, num);
941 					else
942 						strncpy(bit_name,
943 							p_aeu->bit_name, 30);
944 
945 					/* We now need to pass bitmask in its
946 					 * correct position.
947 					 */
948 					bitmask <<= bit;
949 
950 					/* Handle source of the attention */
951 					qed_int_deassertion_aeu_bit(p_hwfn,
952 								    p_aeu,
953 								    aeu_en,
954 								    bit_name,
955 								    bitmask);
956 				}
957 
958 				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
959 			}
960 		}
961 	}
962 
963 	/* Clear IGU indication for the deasserted bits */
964 	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
965 				    GTT_BAR0_MAP_REG_IGU_CMD +
966 				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
967 				      IGU_CMD_INT_ACK_BASE) << 3),
968 				    ~((u32)deasserted_bits));
969 
970 	/* Unmask deasserted attentions in IGU */
971 	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
972 	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
973 	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
974 
975 	/* Clear deassertion from inner state */
976 	sb_attn_sw->known_attn &= ~deasserted_bits;
977 
978 	return rc;
979 }
980 
981 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
982 {
983 	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
984 	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
985 	u32 attn_bits = 0, attn_acks = 0;
986 	u16 asserted_bits, deasserted_bits;
987 	__le16 index;
988 	int rc = 0;
989 
990 	/* Read current attention bits/acks - safeguard against attentions
991 	 * by guaranting work on a synchronized timeframe
992 	 */
993 	do {
994 		index = p_sb_attn->sb_index;
995 		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
996 		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
997 	} while (index != p_sb_attn->sb_index);
998 	p_sb_attn->sb_index = index;
999 
1000 	/* Attention / Deassertion are meaningful (and in correct state)
1001 	 * only when they differ and consistent with known state - deassertion
1002 	 * when previous attention & current ack, and assertion when current
1003 	 * attention with no previous attention
1004 	 */
1005 	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1006 		~p_sb_attn_sw->known_attn;
1007 	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1008 		p_sb_attn_sw->known_attn;
1009 
1010 	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1011 		DP_INFO(p_hwfn,
1012 			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1013 			index, attn_bits, attn_acks, asserted_bits,
1014 			deasserted_bits, p_sb_attn_sw->known_attn);
1015 	} else if (asserted_bits == 0x100) {
1016 		DP_INFO(p_hwfn, "MFW indication via attention\n");
1017 	} else {
1018 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1019 			   "MFW indication [deassertion]\n");
1020 	}
1021 
1022 	if (asserted_bits) {
1023 		rc = qed_int_assertion(p_hwfn, asserted_bits);
1024 		if (rc)
1025 			return rc;
1026 	}
1027 
1028 	if (deasserted_bits)
1029 		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1030 
1031 	return rc;
1032 }
1033 
1034 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1035 			    void __iomem *igu_addr, u32 ack_cons)
1036 {
1037 	struct igu_prod_cons_update igu_ack = { 0 };
1038 
1039 	igu_ack.sb_id_and_flags =
1040 		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1041 		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1042 		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1043 		 (IGU_SEG_ACCESS_ATTN <<
1044 		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1045 
1046 	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1047 
1048 	/* Both segments (interrupts & acks) are written to same place address;
1049 	 * Need to guarantee all commands will be received (in-order) by HW.
1050 	 */
1051 	mmiowb();
1052 	barrier();
1053 }
1054 
1055 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1056 {
1057 	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1058 	struct qed_pi_info *pi_info = NULL;
1059 	struct qed_sb_attn_info *sb_attn;
1060 	struct qed_sb_info *sb_info;
1061 	int arr_size;
1062 	u16 rc = 0;
1063 
1064 	if (!p_hwfn->p_sp_sb) {
1065 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1066 		return;
1067 	}
1068 
1069 	sb_info = &p_hwfn->p_sp_sb->sb_info;
1070 	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1071 	if (!sb_info) {
1072 		DP_ERR(p_hwfn->cdev,
1073 		       "Status block is NULL - cannot ack interrupts\n");
1074 		return;
1075 	}
1076 
1077 	if (!p_hwfn->p_sb_attn) {
1078 		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1079 		return;
1080 	}
1081 	sb_attn = p_hwfn->p_sb_attn;
1082 
1083 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1084 		   p_hwfn, p_hwfn->my_id);
1085 
1086 	/* Disable ack for def status block. Required both for msix +
1087 	 * inta in non-mask mode, in inta does no harm.
1088 	 */
1089 	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1090 
1091 	/* Gather Interrupts/Attentions information */
1092 	if (!sb_info->sb_virt) {
1093 		DP_ERR(p_hwfn->cdev,
1094 		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1095 	} else {
1096 		u32 tmp_index = sb_info->sb_ack;
1097 
1098 		rc = qed_sb_update_sb_idx(sb_info);
1099 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1100 			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1101 			   tmp_index, sb_info->sb_ack);
1102 	}
1103 
1104 	if (!sb_attn || !sb_attn->sb_attn) {
1105 		DP_ERR(p_hwfn->cdev,
1106 		       "Attentions Status block is NULL - cannot check for new attentions!\n");
1107 	} else {
1108 		u16 tmp_index = sb_attn->index;
1109 
1110 		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1111 		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1112 			   "Attention indices: 0x%08x --> 0x%08x\n",
1113 			   tmp_index, sb_attn->index);
1114 	}
1115 
1116 	/* Check if we expect interrupts at this time. if not just ack them */
1117 	if (!(rc & QED_SB_EVENT_MASK)) {
1118 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1119 		return;
1120 	}
1121 
1122 	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1123 	if (!p_hwfn->p_dpc_ptt) {
1124 		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1125 		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1126 		return;
1127 	}
1128 
1129 	if (rc & QED_SB_ATT_IDX)
1130 		qed_int_attentions(p_hwfn);
1131 
1132 	if (rc & QED_SB_IDX) {
1133 		int pi;
1134 
1135 		/* Look for a free index */
1136 		for (pi = 0; pi < arr_size; pi++) {
1137 			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1138 			if (pi_info->comp_cb)
1139 				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1140 		}
1141 	}
1142 
1143 	if (sb_attn && (rc & QED_SB_ATT_IDX))
1144 		/* This should be done before the interrupts are enabled,
1145 		 * since otherwise a new attention will be generated.
1146 		 */
1147 		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1148 
1149 	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1150 }
1151 
1152 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1153 {
1154 	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1155 
1156 	if (!p_sb)
1157 		return;
1158 
1159 	if (p_sb->sb_attn)
1160 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1161 				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1162 				  p_sb->sb_attn, p_sb->sb_phys);
1163 	kfree(p_sb);
1164 	p_hwfn->p_sb_attn = NULL;
1165 }
1166 
1167 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1168 				  struct qed_ptt *p_ptt)
1169 {
1170 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1171 
1172 	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1173 
1174 	sb_info->index = 0;
1175 	sb_info->known_attn = 0;
1176 
1177 	/* Configure Attention Status Block in IGU */
1178 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1179 	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1180 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1181 	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1182 }
1183 
1184 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1185 				 struct qed_ptt *p_ptt,
1186 				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
1187 {
1188 	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1189 	int i, j, k;
1190 
1191 	sb_info->sb_attn = sb_virt_addr;
1192 	sb_info->sb_phys = sb_phy_addr;
1193 
1194 	/* Set the pointer to the AEU descriptors */
1195 	sb_info->p_aeu_desc = aeu_descs;
1196 
1197 	/* Calculate Parity Masks */
1198 	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1199 	for (i = 0; i < NUM_ATTN_REGS; i++) {
1200 		/* j is array index, k is bit index */
1201 		for (j = 0, k = 0; k < 32; j++) {
1202 			struct aeu_invert_reg_bit *p_aeu;
1203 
1204 			p_aeu = &aeu_descs[i].bits[j];
1205 			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1206 				sb_info->parity_mask[i] |= 1 << k;
1207 
1208 			k += ATTENTION_LENGTH(p_aeu->flags);
1209 		}
1210 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1211 			   "Attn Mask [Reg %d]: 0x%08x\n",
1212 			   i, sb_info->parity_mask[i]);
1213 	}
1214 
1215 	/* Set the address of cleanup for the mcp attention */
1216 	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1217 				 MISC_REG_AEU_GENERAL_ATTN_0;
1218 
1219 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1220 }
1221 
1222 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1223 				 struct qed_ptt *p_ptt)
1224 {
1225 	struct qed_dev *cdev = p_hwfn->cdev;
1226 	struct qed_sb_attn_info *p_sb;
1227 	dma_addr_t p_phys = 0;
1228 	void *p_virt;
1229 
1230 	/* SB struct */
1231 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1232 	if (!p_sb)
1233 		return -ENOMEM;
1234 
1235 	/* SB ring  */
1236 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1237 				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1238 				    &p_phys, GFP_KERNEL);
1239 
1240 	if (!p_virt) {
1241 		kfree(p_sb);
1242 		return -ENOMEM;
1243 	}
1244 
1245 	/* Attention setup */
1246 	p_hwfn->p_sb_attn = p_sb;
1247 	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1248 
1249 	return 0;
1250 }
1251 
1252 /* coalescing timeout = timeset << (timer_res + 1) */
1253 #define QED_CAU_DEF_RX_USECS 24
1254 #define QED_CAU_DEF_TX_USECS 48
1255 
1256 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1257 			   struct cau_sb_entry *p_sb_entry,
1258 			   u8 pf_id, u16 vf_number, u8 vf_valid)
1259 {
1260 	struct qed_dev *cdev = p_hwfn->cdev;
1261 	u32 cau_state;
1262 	u8 timer_res;
1263 
1264 	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1265 
1266 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1267 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1268 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1269 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1270 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1271 
1272 	cau_state = CAU_HC_DISABLE_STATE;
1273 
1274 	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1275 		cau_state = CAU_HC_ENABLE_STATE;
1276 		if (!cdev->rx_coalesce_usecs)
1277 			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1278 		if (!cdev->tx_coalesce_usecs)
1279 			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1280 	}
1281 
1282 	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1283 	if (cdev->rx_coalesce_usecs <= 0x7F)
1284 		timer_res = 0;
1285 	else if (cdev->rx_coalesce_usecs <= 0xFF)
1286 		timer_res = 1;
1287 	else
1288 		timer_res = 2;
1289 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1290 
1291 	if (cdev->tx_coalesce_usecs <= 0x7F)
1292 		timer_res = 0;
1293 	else if (cdev->tx_coalesce_usecs <= 0xFF)
1294 		timer_res = 1;
1295 	else
1296 		timer_res = 2;
1297 	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1298 
1299 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1300 	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1301 }
1302 
1303 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1304 			 struct qed_ptt *p_ptt,
1305 			 dma_addr_t sb_phys,
1306 			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1307 {
1308 	struct cau_sb_entry sb_entry;
1309 
1310 	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1311 			      vf_number, vf_valid);
1312 
1313 	if (p_hwfn->hw_init_done) {
1314 		/* Wide-bus, initialize via DMAE */
1315 		u64 phys_addr = (u64)sb_phys;
1316 
1317 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1318 				  CAU_REG_SB_ADDR_MEMORY +
1319 				  igu_sb_id * sizeof(u64), 2, 0);
1320 		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1321 				  CAU_REG_SB_VAR_MEMORY +
1322 				  igu_sb_id * sizeof(u64), 2, 0);
1323 	} else {
1324 		/* Initialize Status Block Address */
1325 		STORE_RT_REG_AGG(p_hwfn,
1326 				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1327 				 igu_sb_id * 2,
1328 				 sb_phys);
1329 
1330 		STORE_RT_REG_AGG(p_hwfn,
1331 				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1332 				 igu_sb_id * 2,
1333 				 sb_entry);
1334 	}
1335 
1336 	/* Configure pi coalescing if set */
1337 	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1338 		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1339 		u8 timeset, timer_res;
1340 		u8 i;
1341 
1342 		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1343 		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1344 			timer_res = 0;
1345 		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1346 			timer_res = 1;
1347 		else
1348 			timer_res = 2;
1349 		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1350 		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1351 				    QED_COAL_RX_STATE_MACHINE, timeset);
1352 
1353 		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1354 			timer_res = 0;
1355 		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1356 			timer_res = 1;
1357 		else
1358 			timer_res = 2;
1359 		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1360 		for (i = 0; i < num_tc; i++) {
1361 			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1362 					    igu_sb_id, TX_PI(i),
1363 					    QED_COAL_TX_STATE_MACHINE,
1364 					    timeset);
1365 		}
1366 	}
1367 }
1368 
1369 void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1370 			 struct qed_ptt *p_ptt,
1371 			 u16 igu_sb_id,
1372 			 u32 pi_index,
1373 			 enum qed_coalescing_fsm coalescing_fsm,
1374 			 u8 timeset)
1375 {
1376 	struct cau_pi_entry pi_entry;
1377 	u32 sb_offset, pi_offset;
1378 
1379 	if (IS_VF(p_hwfn->cdev))
1380 		return;
1381 
1382 	sb_offset = igu_sb_id * PIS_PER_SB;
1383 	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1384 
1385 	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1386 	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1387 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1388 	else
1389 		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1390 
1391 	pi_offset = sb_offset + pi_index;
1392 	if (p_hwfn->hw_init_done) {
1393 		qed_wr(p_hwfn, p_ptt,
1394 		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1395 		       *((u32 *)&(pi_entry)));
1396 	} else {
1397 		STORE_RT_REG(p_hwfn,
1398 			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1399 			     *((u32 *)&(pi_entry)));
1400 	}
1401 }
1402 
1403 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1404 		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1405 {
1406 	/* zero status block and ack counter */
1407 	sb_info->sb_ack = 0;
1408 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1409 
1410 	if (IS_PF(p_hwfn->cdev))
1411 		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1412 				    sb_info->igu_sb_id, 0, 0);
1413 }
1414 
1415 /**
1416  * @brief qed_get_igu_sb_id - given a sw sb_id return the
1417  *        igu_sb_id
1418  *
1419  * @param p_hwfn
1420  * @param sb_id
1421  *
1422  * @return u16
1423  */
1424 static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1425 {
1426 	u16 igu_sb_id;
1427 
1428 	/* Assuming continuous set of IGU SBs dedicated for given PF */
1429 	if (sb_id == QED_SP_SB_ID)
1430 		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1431 	else if (IS_PF(p_hwfn->cdev))
1432 		igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
1433 	else
1434 		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1435 
1436 	if (sb_id == QED_SP_SB_ID)
1437 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1438 			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1439 	else
1440 		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1441 			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1442 
1443 	return igu_sb_id;
1444 }
1445 
1446 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1447 		    struct qed_ptt *p_ptt,
1448 		    struct qed_sb_info *sb_info,
1449 		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1450 {
1451 	sb_info->sb_virt = sb_virt_addr;
1452 	sb_info->sb_phys = sb_phy_addr;
1453 
1454 	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1455 
1456 	if (sb_id != QED_SP_SB_ID) {
1457 		p_hwfn->sbs_info[sb_id] = sb_info;
1458 		p_hwfn->num_sbs++;
1459 	}
1460 
1461 	sb_info->cdev = p_hwfn->cdev;
1462 
1463 	/* The igu address will hold the absolute address that needs to be
1464 	 * written to for a specific status block
1465 	 */
1466 	if (IS_PF(p_hwfn->cdev)) {
1467 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1468 						  GTT_BAR0_MAP_REG_IGU_CMD +
1469 						  (sb_info->igu_sb_id << 3);
1470 	} else {
1471 		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1472 						  PXP_VF_BAR0_START_IGU +
1473 						  ((IGU_CMD_INT_ACK_BASE +
1474 						    sb_info->igu_sb_id) << 3);
1475 	}
1476 
1477 	sb_info->flags |= QED_SB_INFO_INIT;
1478 
1479 	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1480 
1481 	return 0;
1482 }
1483 
1484 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1485 		       struct qed_sb_info *sb_info, u16 sb_id)
1486 {
1487 	if (sb_id == QED_SP_SB_ID) {
1488 		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1489 		return -EINVAL;
1490 	}
1491 
1492 	/* zero status block and ack counter */
1493 	sb_info->sb_ack = 0;
1494 	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1495 
1496 	if (p_hwfn->sbs_info[sb_id] != NULL) {
1497 		p_hwfn->sbs_info[sb_id] = NULL;
1498 		p_hwfn->num_sbs--;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1505 {
1506 	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1507 
1508 	if (!p_sb)
1509 		return;
1510 
1511 	if (p_sb->sb_info.sb_virt)
1512 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1513 				  SB_ALIGNED_SIZE(p_hwfn),
1514 				  p_sb->sb_info.sb_virt,
1515 				  p_sb->sb_info.sb_phys);
1516 	kfree(p_sb);
1517 	p_hwfn->p_sp_sb = NULL;
1518 }
1519 
1520 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1521 {
1522 	struct qed_sb_sp_info *p_sb;
1523 	dma_addr_t p_phys = 0;
1524 	void *p_virt;
1525 
1526 	/* SB struct */
1527 	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1528 	if (!p_sb)
1529 		return -ENOMEM;
1530 
1531 	/* SB ring  */
1532 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1533 				    SB_ALIGNED_SIZE(p_hwfn),
1534 				    &p_phys, GFP_KERNEL);
1535 	if (!p_virt) {
1536 		kfree(p_sb);
1537 		return -ENOMEM;
1538 	}
1539 
1540 	/* Status Block setup */
1541 	p_hwfn->p_sp_sb = p_sb;
1542 	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1543 			p_phys, QED_SP_SB_ID);
1544 
1545 	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1546 
1547 	return 0;
1548 }
1549 
1550 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1551 			qed_int_comp_cb_t comp_cb,
1552 			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1553 {
1554 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1555 	int rc = -ENOMEM;
1556 	u8 pi;
1557 
1558 	/* Look for a free index */
1559 	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1560 		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1561 			continue;
1562 
1563 		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1564 		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1565 		*sb_idx = pi;
1566 		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1567 		rc = 0;
1568 		break;
1569 	}
1570 
1571 	return rc;
1572 }
1573 
1574 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1575 {
1576 	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1577 
1578 	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1579 		return -ENOMEM;
1580 
1581 	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1582 	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1583 
1584 	return 0;
1585 }
1586 
1587 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1588 {
1589 	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1590 }
1591 
1592 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1593 			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1594 {
1595 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1596 
1597 	p_hwfn->cdev->int_mode = int_mode;
1598 	switch (p_hwfn->cdev->int_mode) {
1599 	case QED_INT_MODE_INTA:
1600 		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1601 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1602 		break;
1603 
1604 	case QED_INT_MODE_MSI:
1605 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1606 		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1607 		break;
1608 
1609 	case QED_INT_MODE_MSIX:
1610 		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1611 		break;
1612 	case QED_INT_MODE_POLL:
1613 		break;
1614 	}
1615 
1616 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1617 }
1618 
1619 int qed_int_igu_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1620 		       enum qed_int_mode int_mode)
1621 {
1622 	int rc = 0;
1623 
1624 	/* Configure AEU signal change to produce attentions */
1625 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1626 	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1627 	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1628 	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1629 
1630 	/* Flush the writes to IGU */
1631 	mmiowb();
1632 
1633 	/* Unmask AEU signals toward IGU */
1634 	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1635 	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1636 		rc = qed_slowpath_irq_req(p_hwfn);
1637 		if (rc) {
1638 			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1639 			return -EINVAL;
1640 		}
1641 		p_hwfn->b_int_requested = true;
1642 	}
1643 	/* Enable interrupt Generation */
1644 	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1645 	p_hwfn->b_int_enabled = 1;
1646 
1647 	return rc;
1648 }
1649 
1650 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1651 {
1652 	p_hwfn->b_int_enabled = 0;
1653 
1654 	if (IS_VF(p_hwfn->cdev))
1655 		return;
1656 
1657 	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1658 }
1659 
1660 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1661 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1662 				   struct qed_ptt *p_ptt,
1663 				   u32 sb_id, bool cleanup_set, u16 opaque_fid)
1664 {
1665 	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1666 	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
1667 	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1668 
1669 	/* Set the data field */
1670 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1671 	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1672 	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1673 
1674 	/* Set the control register */
1675 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1676 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1677 	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1678 
1679 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1680 
1681 	barrier();
1682 
1683 	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1684 
1685 	/* Flush the write to IGU */
1686 	mmiowb();
1687 
1688 	/* calculate where to read the status bit from */
1689 	sb_bit = 1 << (sb_id % 32);
1690 	sb_bit_addr = sb_id / 32 * sizeof(u32);
1691 
1692 	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1693 
1694 	/* Now wait for the command to complete */
1695 	do {
1696 		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1697 
1698 		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1699 			break;
1700 
1701 		usleep_range(5000, 10000);
1702 	} while (--sleep_cnt);
1703 
1704 	if (!sleep_cnt)
1705 		DP_NOTICE(p_hwfn,
1706 			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1707 			  val, sb_id);
1708 }
1709 
1710 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1711 				     struct qed_ptt *p_ptt,
1712 				     u32 sb_id, u16 opaque, bool b_set)
1713 {
1714 	int pi, i;
1715 
1716 	/* Set */
1717 	if (b_set)
1718 		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
1719 
1720 	/* Clear */
1721 	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
1722 
1723 	/* Wait for the IGU SB to cleanup */
1724 	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1725 		u32 val;
1726 
1727 		val = qed_rd(p_hwfn, p_ptt,
1728 			     IGU_REG_WRITE_DONE_PENDING + ((sb_id / 32) * 4));
1729 		if (val & (1 << (sb_id % 32)))
1730 			usleep_range(10, 20);
1731 		else
1732 			break;
1733 	}
1734 	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1735 		DP_NOTICE(p_hwfn,
1736 			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1737 			  sb_id);
1738 
1739 	/* Clear the CAU for the SB */
1740 	for (pi = 0; pi < 12; pi++)
1741 		qed_wr(p_hwfn, p_ptt,
1742 		       CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
1743 }
1744 
1745 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1746 			      struct qed_ptt *p_ptt,
1747 			      bool b_set, bool b_slowpath)
1748 {
1749 	u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
1750 	u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
1751 	u32 sb_id = 0, val = 0;
1752 
1753 	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1754 	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1755 	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1756 	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1757 
1758 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1759 		   "IGU cleaning SBs [%d,...,%d]\n",
1760 		   igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
1761 
1762 	for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
1763 		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1764 						p_hwfn->hw_info.opaque_fid,
1765 						b_set);
1766 
1767 	if (!b_slowpath)
1768 		return;
1769 
1770 	sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1771 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1772 		   "IGU cleaning slowpath SB [%d]\n", sb_id);
1773 	qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
1774 					p_hwfn->hw_info.opaque_fid, b_set);
1775 }
1776 
1777 static u32 qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1778 				      struct qed_ptt *p_ptt, u16 sb_id)
1779 {
1780 	u32 val = qed_rd(p_hwfn, p_ptt,
1781 			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * sb_id);
1782 	struct qed_igu_block *p_block;
1783 
1784 	p_block = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
1785 
1786 	/* stop scanning when hit first invalid PF entry */
1787 	if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1788 	    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1789 		goto out;
1790 
1791 	/* Fill the block information */
1792 	p_block->status		= QED_IGU_STATUS_VALID;
1793 	p_block->function_id	= GET_FIELD(val,
1794 					    IGU_MAPPING_LINE_FUNCTION_NUMBER);
1795 	p_block->is_pf		= GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
1796 	p_block->vector_number	= GET_FIELD(val,
1797 					    IGU_MAPPING_LINE_VECTOR_NUMBER);
1798 
1799 	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1800 		   "IGU_BLOCK: [SB 0x%04x, Value in CAM 0x%08x] func_id = %d is_pf = %d vector_num = 0x%x\n",
1801 		   sb_id, val, p_block->function_id,
1802 		   p_block->is_pf, p_block->vector_number);
1803 
1804 out:
1805 	return val;
1806 }
1807 
1808 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1809 {
1810 	struct qed_igu_info *p_igu_info;
1811 	u32 val, min_vf = 0, max_vf = 0;
1812 	u16 sb_id, last_iov_sb_id = 0;
1813 	struct qed_igu_block *blk;
1814 	u16 prev_sb_id = 0xFF;
1815 
1816 	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
1817 	if (!p_hwfn->hw_info.p_igu_info)
1818 		return -ENOMEM;
1819 
1820 	p_igu_info = p_hwfn->hw_info.p_igu_info;
1821 
1822 	/* Initialize base sb / sb cnt for PFs and VFs */
1823 	p_igu_info->igu_base_sb		= 0xffff;
1824 	p_igu_info->igu_sb_cnt		= 0;
1825 	p_igu_info->igu_dsb_id		= 0xffff;
1826 	p_igu_info->igu_base_sb_iov	= 0xffff;
1827 
1828 	if (p_hwfn->cdev->p_iov_info) {
1829 		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
1830 
1831 		min_vf	= p_iov->first_vf_in_pf;
1832 		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
1833 	}
1834 
1835 	for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1836 	     sb_id++) {
1837 		blk = &p_igu_info->igu_map.igu_blocks[sb_id];
1838 
1839 		val	= qed_int_igu_read_cam_block(p_hwfn, p_ptt, sb_id);
1840 
1841 		/* stop scanning when hit first invalid PF entry */
1842 		if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
1843 		    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
1844 			break;
1845 
1846 		if (blk->is_pf) {
1847 			if (blk->function_id == p_hwfn->rel_pf_id) {
1848 				blk->status |= QED_IGU_STATUS_PF;
1849 
1850 				if (blk->vector_number == 0) {
1851 					if (p_igu_info->igu_dsb_id == 0xffff)
1852 						p_igu_info->igu_dsb_id = sb_id;
1853 				} else {
1854 					if (p_igu_info->igu_base_sb ==
1855 					    0xffff) {
1856 						p_igu_info->igu_base_sb = sb_id;
1857 					} else if (prev_sb_id != sb_id - 1) {
1858 						DP_NOTICE(p_hwfn->cdev,
1859 							  "consecutive igu vectors for HWFN %x broken",
1860 							  p_hwfn->rel_pf_id);
1861 						break;
1862 					}
1863 					prev_sb_id = sb_id;
1864 					/* we don't count the default */
1865 					(p_igu_info->igu_sb_cnt)++;
1866 				}
1867 			}
1868 		} else {
1869 			if ((blk->function_id >= min_vf) &&
1870 			    (blk->function_id < max_vf)) {
1871 				/* Available for VFs of this PF */
1872 				if (p_igu_info->igu_base_sb_iov == 0xffff) {
1873 					p_igu_info->igu_base_sb_iov = sb_id;
1874 				} else if (last_iov_sb_id != sb_id - 1) {
1875 					if (!val) {
1876 						DP_VERBOSE(p_hwfn->cdev,
1877 							   NETIF_MSG_INTR,
1878 							   "First uninitialized IGU CAM entry at index 0x%04x\n",
1879 							   sb_id);
1880 					} else {
1881 						DP_NOTICE(p_hwfn->cdev,
1882 							  "Consecutive igu vectors for HWFN %x vfs is broken [jumps from %04x to %04x]\n",
1883 							  p_hwfn->rel_pf_id,
1884 							  last_iov_sb_id,
1885 							  sb_id); }
1886 					break;
1887 				}
1888 				blk->status |= QED_IGU_STATUS_FREE;
1889 				p_hwfn->hw_info.p_igu_info->free_blks++;
1890 				last_iov_sb_id = sb_id;
1891 			}
1892 		}
1893 	}
1894 
1895 	/* There's a possibility the igu_sb_cnt_iov doesn't properly reflect
1896 	 * the number of VF SBs [especially for first VF on engine, as we can't
1897 	 * differentiate between empty entries and its entries].
1898 	 * Since we don't really support more SBs than VFs today, prevent any
1899 	 * such configuration by sanitizing the number of SBs to equal the
1900 	 * number of VFs.
1901 	 */
1902 	if (IS_PF_SRIOV(p_hwfn)) {
1903 		u16 total_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
1904 
1905 		if (total_vfs < p_igu_info->free_blks) {
1906 			DP_VERBOSE(p_hwfn,
1907 				   (NETIF_MSG_INTR | QED_MSG_IOV),
1908 				   "Limiting number of SBs for IOV - %04x --> %04x\n",
1909 				   p_igu_info->free_blks,
1910 				   p_hwfn->cdev->p_iov_info->total_vfs);
1911 			p_igu_info->free_blks = total_vfs;
1912 		} else if (total_vfs > p_igu_info->free_blks) {
1913 			DP_NOTICE(p_hwfn,
1914 				  "IGU has only %04x SBs for VFs while the device has %04x VFs\n",
1915 				  p_igu_info->free_blks, total_vfs);
1916 			return -EINVAL;
1917 		}
1918 	}
1919 	p_igu_info->igu_sb_cnt_iov = p_igu_info->free_blks;
1920 
1921 	DP_VERBOSE(
1922 		p_hwfn,
1923 		NETIF_MSG_INTR,
1924 		"IGU igu_base_sb=0x%x [IOV 0x%x] igu_sb_cnt=%d [IOV 0x%x] igu_dsb_id=0x%x\n",
1925 		p_igu_info->igu_base_sb,
1926 		p_igu_info->igu_base_sb_iov,
1927 		p_igu_info->igu_sb_cnt,
1928 		p_igu_info->igu_sb_cnt_iov,
1929 		p_igu_info->igu_dsb_id);
1930 
1931 	if (p_igu_info->igu_base_sb == 0xffff ||
1932 	    p_igu_info->igu_dsb_id == 0xffff ||
1933 	    p_igu_info->igu_sb_cnt == 0) {
1934 		DP_NOTICE(p_hwfn,
1935 			  "IGU CAM returned invalid values igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
1936 			   p_igu_info->igu_base_sb,
1937 			   p_igu_info->igu_sb_cnt,
1938 			   p_igu_info->igu_dsb_id);
1939 		return -EINVAL;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 /**
1946  * @brief Initialize igu runtime registers
1947  *
1948  * @param p_hwfn
1949  */
1950 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
1951 {
1952 	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
1953 
1954 	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
1955 }
1956 
1957 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
1958 {
1959 	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
1960 			       IGU_CMD_INT_ACK_BASE;
1961 	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
1962 			       IGU_CMD_INT_ACK_BASE;
1963 	u32 intr_status_hi = 0, intr_status_lo = 0;
1964 	u64 intr_status = 0;
1965 
1966 	intr_status_lo = REG_RD(p_hwfn,
1967 				GTT_BAR0_MAP_REG_IGU_CMD +
1968 				lsb_igu_cmd_addr * 8);
1969 	intr_status_hi = REG_RD(p_hwfn,
1970 				GTT_BAR0_MAP_REG_IGU_CMD +
1971 				msb_igu_cmd_addr * 8);
1972 	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
1973 
1974 	return intr_status;
1975 }
1976 
1977 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
1978 {
1979 	tasklet_init(p_hwfn->sp_dpc,
1980 		     qed_int_sp_dpc, (unsigned long)p_hwfn);
1981 	p_hwfn->b_sp_dpc_enabled = true;
1982 }
1983 
1984 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
1985 {
1986 	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
1987 	if (!p_hwfn->sp_dpc)
1988 		return -ENOMEM;
1989 
1990 	return 0;
1991 }
1992 
1993 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
1994 {
1995 	kfree(p_hwfn->sp_dpc);
1996 	p_hwfn->sp_dpc = NULL;
1997 }
1998 
1999 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2000 {
2001 	int rc = 0;
2002 
2003 	rc = qed_int_sp_dpc_alloc(p_hwfn);
2004 	if (rc)
2005 		return rc;
2006 
2007 	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2008 	if (rc)
2009 		return rc;
2010 
2011 	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2012 
2013 	return rc;
2014 }
2015 
2016 void qed_int_free(struct qed_hwfn *p_hwfn)
2017 {
2018 	qed_int_sp_sb_free(p_hwfn);
2019 	qed_int_sb_attn_free(p_hwfn);
2020 	qed_int_sp_dpc_free(p_hwfn);
2021 }
2022 
2023 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2024 {
2025 	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2026 	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2027 	qed_int_sp_dpc_setup(p_hwfn);
2028 }
2029 
2030 void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2031 			 struct qed_sb_cnt_info *p_sb_cnt_info)
2032 {
2033 	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2034 
2035 	if (!info || !p_sb_cnt_info)
2036 		return;
2037 
2038 	p_sb_cnt_info->sb_cnt		= info->igu_sb_cnt;
2039 	p_sb_cnt_info->sb_iov_cnt	= info->igu_sb_cnt_iov;
2040 	p_sb_cnt_info->sb_free_blk	= info->free_blks;
2041 }
2042 
2043 u16 qed_int_queue_id_from_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
2044 {
2045 	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2046 
2047 	/* Determine origin of SB id */
2048 	if ((sb_id >= p_info->igu_base_sb) &&
2049 	    (sb_id < p_info->igu_base_sb + p_info->igu_sb_cnt)) {
2050 		return sb_id - p_info->igu_base_sb;
2051 	} else if ((sb_id >= p_info->igu_base_sb_iov) &&
2052 		   (sb_id < p_info->igu_base_sb_iov + p_info->igu_sb_cnt_iov)) {
2053 		/* We want the first VF queue to be adjacent to the
2054 		 * last PF queue. Since L2 queues can be partial to
2055 		 * SBs, we'll use the feature instead.
2056 		 */
2057 		return sb_id - p_info->igu_base_sb_iov +
2058 		       FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
2059 	} else {
2060 		DP_NOTICE(p_hwfn, "SB %d not in range for function\n", sb_id);
2061 		return 0;
2062 	}
2063 }
2064 
2065 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2066 {
2067 	int i;
2068 
2069 	for_each_hwfn(cdev, i)
2070 		cdev->hwfns[i].b_int_requested = false;
2071 }
2072 
2073 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2074 			  u8 timer_res, u16 sb_id, bool tx)
2075 {
2076 	struct cau_sb_entry sb_entry;
2077 	int rc;
2078 
2079 	if (!p_hwfn->hw_init_done) {
2080 		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2081 		return -EINVAL;
2082 	}
2083 
2084 	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2085 			       sb_id * sizeof(u64),
2086 			       (u64)(uintptr_t)&sb_entry, 2, 0);
2087 	if (rc) {
2088 		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2089 		return rc;
2090 	}
2091 
2092 	if (tx)
2093 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2094 	else
2095 		SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2096 
2097 	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2098 			       (u64)(uintptr_t)&sb_entry,
2099 			       CAU_REG_SB_VAR_MEMORY +
2100 			       sb_id * sizeof(u64), 2, 0);
2101 	if (rc) {
2102 		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2103 		return rc;
2104 	}
2105 
2106 	return rc;
2107 }
2108