1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <asm/byteorder.h> 9 #include <linux/io.h> 10 #include <linux/bitops.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/errno.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include "qed.h" 20 #include "qed_hsi.h" 21 #include "qed_hw.h" 22 #include "qed_init_ops.h" 23 #include "qed_int.h" 24 #include "qed_mcp.h" 25 #include "qed_reg_addr.h" 26 #include "qed_sp.h" 27 #include "qed_sriov.h" 28 #include "qed_vf.h" 29 30 struct qed_pi_info { 31 qed_int_comp_cb_t comp_cb; 32 void *cookie; 33 }; 34 35 struct qed_sb_sp_info { 36 struct qed_sb_info sb_info; 37 38 /* per protocol index data */ 39 struct qed_pi_info pi_info_arr[PIS_PER_SB_E4]; 40 }; 41 42 enum qed_attention_type { 43 QED_ATTN_TYPE_ATTN, 44 QED_ATTN_TYPE_PARITY, 45 }; 46 47 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \ 48 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn) 49 50 struct aeu_invert_reg_bit { 51 char bit_name[30]; 52 53 #define ATTENTION_PARITY (1 << 0) 54 55 #define ATTENTION_LENGTH_MASK (0x00000ff0) 56 #define ATTENTION_LENGTH_SHIFT (4) 57 #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \ 58 ATTENTION_LENGTH_SHIFT) 59 #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT) 60 #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY) 61 #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \ 62 ATTENTION_PARITY) 63 64 /* Multiple bits start with this offset */ 65 #define ATTENTION_OFFSET_MASK (0x000ff000) 66 #define ATTENTION_OFFSET_SHIFT (12) 67 68 #define ATTENTION_BB_MASK (0x00700000) 69 #define ATTENTION_BB_SHIFT (20) 70 #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT) 71 #define ATTENTION_BB_DIFFERENT BIT(23) 72 73 #define ATTENTION_CLEAR_ENABLE BIT(28) 74 unsigned int flags; 75 76 /* Callback to call if attention will be triggered */ 77 int (*cb)(struct qed_hwfn *p_hwfn); 78 79 enum block_id block_index; 80 }; 81 82 struct aeu_invert_reg { 83 struct aeu_invert_reg_bit bits[32]; 84 }; 85 86 #define MAX_ATTN_GRPS (8) 87 #define NUM_ATTN_REGS (9) 88 89 /* Specific HW attention callbacks */ 90 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn) 91 { 92 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE); 93 94 /* This might occur on certain instances; Log it once then mask it */ 95 DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n", 96 tmp); 97 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 98 0xffffffff); 99 100 return 0; 101 } 102 103 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1) 104 #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1) 105 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0) 106 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf) 107 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1) 108 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1) 109 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5) 110 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff) 111 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6) 112 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf) 113 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14) 114 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff) 115 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18) 116 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn) 117 { 118 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 119 PSWHST_REG_INCORRECT_ACCESS_VALID); 120 121 if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) { 122 u32 addr, data, length; 123 124 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 125 PSWHST_REG_INCORRECT_ACCESS_ADDRESS); 126 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 127 PSWHST_REG_INCORRECT_ACCESS_DATA); 128 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 129 PSWHST_REG_INCORRECT_ACCESS_LENGTH); 130 131 DP_INFO(p_hwfn->cdev, 132 "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n", 133 addr, length, 134 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID), 135 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID), 136 (u8) GET_FIELD(data, 137 ATTENTION_INCORRECT_ACCESS_VF_VALID), 138 (u8) GET_FIELD(data, 139 ATTENTION_INCORRECT_ACCESS_CLIENT), 140 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR), 141 (u8) GET_FIELD(data, 142 ATTENTION_INCORRECT_ACCESS_BYTE_EN), 143 data); 144 } 145 146 return 0; 147 } 148 149 #define QED_GRC_ATTENTION_VALID_BIT (1 << 0) 150 #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff) 151 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0) 152 #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23) 153 #define QED_GRC_ATTENTION_MASTER_MASK (0xf) 154 #define QED_GRC_ATTENTION_MASTER_SHIFT (24) 155 #define QED_GRC_ATTENTION_PF_MASK (0xf) 156 #define QED_GRC_ATTENTION_PF_SHIFT (0) 157 #define QED_GRC_ATTENTION_VF_MASK (0xff) 158 #define QED_GRC_ATTENTION_VF_SHIFT (4) 159 #define QED_GRC_ATTENTION_PRIV_MASK (0x3) 160 #define QED_GRC_ATTENTION_PRIV_SHIFT (14) 161 #define QED_GRC_ATTENTION_PRIV_VF (0) 162 static const char *attn_master_to_str(u8 master) 163 { 164 switch (master) { 165 case 1: return "PXP"; 166 case 2: return "MCP"; 167 case 3: return "MSDM"; 168 case 4: return "PSDM"; 169 case 5: return "YSDM"; 170 case 6: return "USDM"; 171 case 7: return "TSDM"; 172 case 8: return "XSDM"; 173 case 9: return "DBU"; 174 case 10: return "DMAE"; 175 default: 176 return "Unknown"; 177 } 178 } 179 180 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn) 181 { 182 u32 tmp, tmp2; 183 184 /* We've already cleared the timeout interrupt register, so we learn 185 * of interrupts via the validity register 186 */ 187 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 188 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID); 189 if (!(tmp & QED_GRC_ATTENTION_VALID_BIT)) 190 goto out; 191 192 /* Read the GRC timeout information */ 193 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 194 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0); 195 tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 196 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1); 197 198 DP_INFO(p_hwfn->cdev, 199 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n", 200 tmp2, tmp, 201 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from", 202 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2, 203 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)), 204 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF), 205 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) == 206 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)", 207 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF)); 208 209 out: 210 /* Regardles of anything else, clean the validity bit */ 211 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, 212 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0); 213 return 0; 214 } 215 216 #define PGLUE_ATTENTION_VALID (1 << 29) 217 #define PGLUE_ATTENTION_RD_VALID (1 << 26) 218 #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf) 219 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20) 220 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1) 221 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19) 222 #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff) 223 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24) 224 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1) 225 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21) 226 #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1) 227 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22) 228 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1) 229 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23) 230 #define PGLUE_ATTENTION_ICPL_VALID (1 << 23) 231 #define PGLUE_ATTENTION_ZLR_VALID (1 << 25) 232 #define PGLUE_ATTENTION_ILT_VALID (1 << 23) 233 234 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 235 bool hw_init) 236 { 237 char msg[256]; 238 u32 tmp; 239 240 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2); 241 if (tmp & PGLUE_ATTENTION_VALID) { 242 u32 addr_lo, addr_hi, details; 243 244 addr_lo = qed_rd(p_hwfn, p_ptt, 245 PGLUE_B_REG_TX_ERR_WR_ADD_31_0); 246 addr_hi = qed_rd(p_hwfn, p_ptt, 247 PGLUE_B_REG_TX_ERR_WR_ADD_63_32); 248 details = qed_rd(p_hwfn, p_ptt, 249 PGLUE_B_REG_TX_ERR_WR_DETAILS); 250 251 snprintf(msg, sizeof(msg), 252 "Illegal write by chip to [%08x:%08x] blocked.\n" 253 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" 254 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]", 255 addr_hi, addr_lo, details, 256 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), 257 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), 258 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID), 259 tmp, 260 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR), 261 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME), 262 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN)); 263 264 if (hw_init) 265 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); 266 else 267 DP_NOTICE(p_hwfn, "%s\n", msg); 268 } 269 270 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2); 271 if (tmp & PGLUE_ATTENTION_RD_VALID) { 272 u32 addr_lo, addr_hi, details; 273 274 addr_lo = qed_rd(p_hwfn, p_ptt, 275 PGLUE_B_REG_TX_ERR_RD_ADD_31_0); 276 addr_hi = qed_rd(p_hwfn, p_ptt, 277 PGLUE_B_REG_TX_ERR_RD_ADD_63_32); 278 details = qed_rd(p_hwfn, p_ptt, 279 PGLUE_B_REG_TX_ERR_RD_DETAILS); 280 281 DP_NOTICE(p_hwfn, 282 "Illegal read by chip from [%08x:%08x] blocked.\n" 283 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" 284 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n", 285 addr_hi, addr_lo, details, 286 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), 287 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), 288 GET_FIELD(details, 289 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0, 290 tmp, 291 GET_FIELD(tmp, 292 PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0, 293 GET_FIELD(tmp, 294 PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0, 295 GET_FIELD(tmp, 296 PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0); 297 } 298 299 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL); 300 if (tmp & PGLUE_ATTENTION_ICPL_VALID) { 301 snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp); 302 303 if (hw_init) 304 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); 305 else 306 DP_NOTICE(p_hwfn, "%s\n", msg); 307 } 308 309 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS); 310 if (tmp & PGLUE_ATTENTION_ZLR_VALID) { 311 u32 addr_hi, addr_lo; 312 313 addr_lo = qed_rd(p_hwfn, p_ptt, 314 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0); 315 addr_hi = qed_rd(p_hwfn, p_ptt, 316 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32); 317 318 DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n", 319 tmp, addr_hi, addr_lo); 320 } 321 322 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2); 323 if (tmp & PGLUE_ATTENTION_ILT_VALID) { 324 u32 addr_hi, addr_lo, details; 325 326 addr_lo = qed_rd(p_hwfn, p_ptt, 327 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0); 328 addr_hi = qed_rd(p_hwfn, p_ptt, 329 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32); 330 details = qed_rd(p_hwfn, p_ptt, 331 PGLUE_B_REG_VF_ILT_ERR_DETAILS); 332 333 DP_NOTICE(p_hwfn, 334 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n", 335 details, tmp, addr_hi, addr_lo); 336 } 337 338 /* Clear the indications */ 339 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2)); 340 341 return 0; 342 } 343 344 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn) 345 { 346 return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false); 347 } 348 349 static int qed_fw_assertion(struct qed_hwfn *p_hwfn) 350 { 351 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT, 352 "FW assertion!\n"); 353 354 return -EINVAL; 355 } 356 357 static int qed_general_attention_35(struct qed_hwfn *p_hwfn) 358 { 359 DP_INFO(p_hwfn, "General attention 35!\n"); 360 361 return 0; 362 } 363 364 #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff) 365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff) 366 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0) 367 #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f) 368 #define QED_DORQ_ATTENTION_SIZE_SHIFT (16) 369 370 #define QED_DB_REC_COUNT 1000 371 #define QED_DB_REC_INTERVAL 100 372 373 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn, 374 struct qed_ptt *p_ptt) 375 { 376 u32 count = QED_DB_REC_COUNT; 377 u32 usage = 1; 378 379 /* Flush any pending (e)dpms as they may never arrive */ 380 qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1); 381 382 /* wait for usage to zero or count to run out. This is necessary since 383 * EDPM doorbell transactions can take multiple 64b cycles, and as such 384 * can "split" over the pci. Possibly, the doorbell drop can happen with 385 * half an EDPM in the queue and other half dropped. Another EDPM 386 * doorbell to the same address (from doorbell recovery mechanism or 387 * from the doorbelling entity) could have first half dropped and second 388 * half interpreted as continuation of the first. To prevent such 389 * malformed doorbells from reaching the device, flush the queue before 390 * releasing the overflow sticky indication. 391 */ 392 while (count-- && usage) { 393 usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT); 394 udelay(QED_DB_REC_INTERVAL); 395 } 396 397 /* should have been depleted by now */ 398 if (usage) { 399 DP_NOTICE(p_hwfn->cdev, 400 "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n", 401 QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage); 402 return -EBUSY; 403 } 404 405 return 0; 406 } 407 408 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 409 { 410 u32 attn_ovfl, cur_ovfl; 411 int rc; 412 413 attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT, 414 &p_hwfn->db_recovery_info.overflow); 415 cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); 416 if (!cur_ovfl && !attn_ovfl) 417 return 0; 418 419 DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n", 420 attn_ovfl, cur_ovfl); 421 422 if (cur_ovfl && !p_hwfn->db_bar_no_edpm) { 423 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); 424 if (rc) 425 return rc; 426 } 427 428 /* Release overflow sticky indication (stop silently dropping everything) */ 429 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); 430 431 /* Repeat all last doorbells (doorbell drop recovery) */ 432 qed_db_recovery_execute(p_hwfn); 433 434 return 0; 435 } 436 437 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn) 438 { 439 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; 440 u32 overflow; 441 int rc; 442 443 overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); 444 if (!overflow) 445 goto out; 446 447 /* Run PF doorbell recovery in next periodic handler */ 448 set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); 449 450 if (!p_hwfn->db_bar_no_edpm) { 451 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); 452 if (rc) 453 goto out; 454 } 455 456 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); 457 out: 458 /* Schedule the handler even if overflow was not detected */ 459 qed_periodic_db_rec_start(p_hwfn); 460 } 461 462 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn) 463 { 464 u32 int_sts, first_drop_reason, details, address, all_drops_reason; 465 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; 466 467 /* int_sts may be zero since all PFs were interrupted for doorbell 468 * overflow but another one already handled it. Can abort here. If 469 * This PF also requires overflow recovery we will be interrupted again. 470 * The masked almost full indication may also be set. Ignoring. 471 */ 472 int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS); 473 if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) 474 return 0; 475 476 DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts); 477 478 /* check if db_drop or overflow happened */ 479 if (int_sts & (DORQ_REG_INT_STS_DB_DROP | 480 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) { 481 /* Obtain data about db drop/overflow */ 482 first_drop_reason = qed_rd(p_hwfn, p_ptt, 483 DORQ_REG_DB_DROP_REASON) & 484 QED_DORQ_ATTENTION_REASON_MASK; 485 details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS); 486 address = qed_rd(p_hwfn, p_ptt, 487 DORQ_REG_DB_DROP_DETAILS_ADDRESS); 488 all_drops_reason = qed_rd(p_hwfn, p_ptt, 489 DORQ_REG_DB_DROP_DETAILS_REASON); 490 491 /* Log info */ 492 DP_NOTICE(p_hwfn->cdev, 493 "Doorbell drop occurred\n" 494 "Address\t\t0x%08x\t(second BAR address)\n" 495 "FID\t\t0x%04x\t\t(Opaque FID)\n" 496 "Size\t\t0x%04x\t\t(in bytes)\n" 497 "1st drop reason\t0x%08x\t(details on first drop since last handling)\n" 498 "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n", 499 address, 500 GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE), 501 GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4, 502 first_drop_reason, all_drops_reason); 503 504 /* Clear the doorbell drop details and prepare for next drop */ 505 qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0); 506 507 /* Mark interrupt as handled (note: even if drop was due to a different 508 * reason than overflow we mark as handled) 509 */ 510 qed_wr(p_hwfn, 511 p_ptt, 512 DORQ_REG_INT_STS_WR, 513 DORQ_REG_INT_STS_DB_DROP | 514 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR); 515 516 /* If there are no indications other than drop indications, success */ 517 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP | 518 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR | 519 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0) 520 return 0; 521 } 522 523 /* Some other indication was present - non recoverable */ 524 DP_INFO(p_hwfn, "DORQ fatal attention\n"); 525 526 return -EINVAL; 527 } 528 529 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn) 530 { 531 p_hwfn->db_recovery_info.dorq_attn = true; 532 qed_dorq_attn_overflow(p_hwfn); 533 534 return qed_dorq_attn_int_sts(p_hwfn); 535 } 536 537 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn) 538 { 539 if (p_hwfn->db_recovery_info.dorq_attn) 540 goto out; 541 542 /* Call DORQ callback if the attention was missed */ 543 qed_dorq_attn_cb(p_hwfn); 544 out: 545 p_hwfn->db_recovery_info.dorq_attn = false; 546 } 547 548 /* Instead of major changes to the data-structure, we have a some 'special' 549 * identifiers for sources that changed meaning between adapters. 550 */ 551 enum aeu_invert_reg_special_type { 552 AEU_INVERT_REG_SPECIAL_CNIG_0, 553 AEU_INVERT_REG_SPECIAL_CNIG_1, 554 AEU_INVERT_REG_SPECIAL_CNIG_2, 555 AEU_INVERT_REG_SPECIAL_CNIG_3, 556 AEU_INVERT_REG_SPECIAL_MAX, 557 }; 558 559 static struct aeu_invert_reg_bit 560 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = { 561 {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 562 {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 563 {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 564 {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 565 }; 566 567 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */ 568 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = { 569 { 570 { /* After Invert 1 */ 571 {"GPIO0 function%d", 572 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, 573 } 574 }, 575 576 { 577 { /* After Invert 2 */ 578 {"PGLUE config_space", ATTENTION_SINGLE, 579 NULL, MAX_BLOCK_ID}, 580 {"PGLUE misc_flr", ATTENTION_SINGLE, 581 NULL, MAX_BLOCK_ID}, 582 {"PGLUE B RBC", ATTENTION_PAR_INT, 583 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B}, 584 {"PGLUE misc_mctp", ATTENTION_SINGLE, 585 NULL, MAX_BLOCK_ID}, 586 {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 587 {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 588 {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 589 {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | 590 (1 << ATTENTION_OFFSET_SHIFT), 591 NULL, MAX_BLOCK_ID}, 592 {"PCIE glue/PXP VPD %d", 593 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS}, 594 } 595 }, 596 597 { 598 { /* After Invert 3 */ 599 {"General Attention %d", 600 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, 601 } 602 }, 603 604 { 605 { /* After Invert 4 */ 606 {"General Attention 32", ATTENTION_SINGLE | 607 ATTENTION_CLEAR_ENABLE, qed_fw_assertion, 608 MAX_BLOCK_ID}, 609 {"General Attention %d", 610 (2 << ATTENTION_LENGTH_SHIFT) | 611 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, 612 {"General Attention 35", ATTENTION_SINGLE | 613 ATTENTION_CLEAR_ENABLE, qed_general_attention_35, 614 MAX_BLOCK_ID}, 615 {"NWS Parity", 616 ATTENTION_PAR | ATTENTION_BB_DIFFERENT | 617 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0), 618 NULL, BLOCK_NWS}, 619 {"NWS Interrupt", 620 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | 621 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), 622 NULL, BLOCK_NWS}, 623 {"NWM Parity", 624 ATTENTION_PAR | ATTENTION_BB_DIFFERENT | 625 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), 626 NULL, BLOCK_NWM}, 627 {"NWM Interrupt", 628 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | 629 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), 630 NULL, BLOCK_NWM}, 631 {"MCP CPU", ATTENTION_SINGLE, 632 qed_mcp_attn_cb, MAX_BLOCK_ID}, 633 {"MCP Watchdog timer", ATTENTION_SINGLE, 634 NULL, MAX_BLOCK_ID}, 635 {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 636 {"AVS stop status ready", ATTENTION_SINGLE, 637 NULL, MAX_BLOCK_ID}, 638 {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, 639 {"MSTAT per-path", ATTENTION_PAR_INT, 640 NULL, MAX_BLOCK_ID}, 641 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), 642 NULL, MAX_BLOCK_ID}, 643 {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG}, 644 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB}, 645 {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB}, 646 {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB}, 647 {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS}, 648 } 649 }, 650 651 { 652 { /* After Invert 5 */ 653 {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC}, 654 {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1}, 655 {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2}, 656 {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB}, 657 {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF}, 658 {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM}, 659 {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM}, 660 {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM}, 661 {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM}, 662 {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM}, 663 {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM}, 664 {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM}, 665 {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM}, 666 {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM}, 667 {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM}, 668 {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM}, 669 } 670 }, 671 672 { 673 { /* After Invert 6 */ 674 {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM}, 675 {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM}, 676 {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM}, 677 {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM}, 678 {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM}, 679 {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM}, 680 {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM}, 681 {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM}, 682 {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM}, 683 {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD}, 684 {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD}, 685 {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD}, 686 {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD}, 687 {"DORQ", ATTENTION_PAR_INT, 688 qed_dorq_attn_cb, BLOCK_DORQ}, 689 {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG}, 690 {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC}, 691 } 692 }, 693 694 { 695 { /* After Invert 7 */ 696 {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC}, 697 {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU}, 698 {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE}, 699 {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU}, 700 {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, 701 {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU}, 702 {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU}, 703 {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM}, 704 {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC}, 705 {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF}, 706 {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF}, 707 {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS}, 708 {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC}, 709 {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS}, 710 {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE}, 711 {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, 712 {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ}, 713 } 714 }, 715 716 { 717 { /* After Invert 8 */ 718 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, 719 NULL, BLOCK_PSWRQ2}, 720 {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR}, 721 {"PSWWR (pci_clk)", ATTENTION_PAR_INT, 722 NULL, BLOCK_PSWWR2}, 723 {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD}, 724 {"PSWRD (pci_clk)", ATTENTION_PAR_INT, 725 NULL, BLOCK_PSWRD2}, 726 {"PSWHST", ATTENTION_PAR_INT, 727 qed_pswhst_attn_cb, BLOCK_PSWHST}, 728 {"PSWHST (pci_clk)", ATTENTION_PAR_INT, 729 NULL, BLOCK_PSWHST2}, 730 {"GRC", ATTENTION_PAR_INT, 731 qed_grc_attn_cb, BLOCK_GRC}, 732 {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU}, 733 {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI}, 734 {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 735 {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 736 {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 737 {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 738 {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 739 {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 740 {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS}, 741 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, 742 NULL, BLOCK_PGLCS}, 743 {"PERST_B assertion", ATTENTION_SINGLE, 744 NULL, MAX_BLOCK_ID}, 745 {"PERST_B deassertion", ATTENTION_SINGLE, 746 NULL, MAX_BLOCK_ID}, 747 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), 748 NULL, MAX_BLOCK_ID}, 749 } 750 }, 751 752 { 753 { /* After Invert 9 */ 754 {"MCP Latched memory", ATTENTION_PAR, 755 NULL, MAX_BLOCK_ID}, 756 {"MCP Latched scratchpad cache", ATTENTION_SINGLE, 757 NULL, MAX_BLOCK_ID}, 758 {"MCP Latched ump_tx", ATTENTION_PAR, 759 NULL, MAX_BLOCK_ID}, 760 {"MCP Latched scratchpad", ATTENTION_PAR, 761 NULL, MAX_BLOCK_ID}, 762 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), 763 NULL, MAX_BLOCK_ID}, 764 } 765 }, 766 }; 767 768 static struct aeu_invert_reg_bit * 769 qed_int_aeu_translate(struct qed_hwfn *p_hwfn, 770 struct aeu_invert_reg_bit *p_bit) 771 { 772 if (!QED_IS_BB(p_hwfn->cdev)) 773 return p_bit; 774 775 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT)) 776 return p_bit; 777 778 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >> 779 ATTENTION_BB_SHIFT]; 780 } 781 782 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn, 783 struct aeu_invert_reg_bit *p_bit) 784 { 785 return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags & 786 ATTENTION_PARITY); 787 } 788 789 #define ATTN_STATE_BITS (0xfff) 790 #define ATTN_BITS_MASKABLE (0x3ff) 791 struct qed_sb_attn_info { 792 /* Virtual & Physical address of the SB */ 793 struct atten_status_block *sb_attn; 794 dma_addr_t sb_phys; 795 796 /* Last seen running index */ 797 u16 index; 798 799 /* A mask of the AEU bits resulting in a parity error */ 800 u32 parity_mask[NUM_ATTN_REGS]; 801 802 /* A pointer to the attention description structure */ 803 struct aeu_invert_reg *p_aeu_desc; 804 805 /* Previously asserted attentions, which are still unasserted */ 806 u16 known_attn; 807 808 /* Cleanup address for the link's general hw attention */ 809 u32 mfw_attn_addr; 810 }; 811 812 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn, 813 struct qed_sb_attn_info *p_sb_desc) 814 { 815 u16 rc = 0, index; 816 817 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index); 818 if (p_sb_desc->index != index) { 819 p_sb_desc->index = index; 820 rc = QED_SB_ATT_IDX; 821 } 822 823 return rc; 824 } 825 826 /** 827 * qed_int_assertion() - Handle asserted attention bits. 828 * 829 * @p_hwfn: HW device data. 830 * @asserted_bits: Newly asserted bits. 831 * 832 * Return: Zero value. 833 */ 834 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits) 835 { 836 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; 837 u32 igu_mask; 838 839 /* Mask the source of the attention in the IGU */ 840 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); 841 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n", 842 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE)); 843 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE); 844 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask); 845 846 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 847 "inner known ATTN state: 0x%04x --> 0x%04x\n", 848 sb_attn_sw->known_attn, 849 sb_attn_sw->known_attn | asserted_bits); 850 sb_attn_sw->known_attn |= asserted_bits; 851 852 /* Handle MCP events */ 853 if (asserted_bits & 0x100) { 854 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt); 855 /* Clean the MCP attention */ 856 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, 857 sb_attn_sw->mfw_attn_addr, 0); 858 } 859 860 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + 861 GTT_BAR0_MAP_REG_IGU_CMD + 862 ((IGU_CMD_ATTN_BIT_SET_UPPER - 863 IGU_CMD_INT_ACK_BASE) << 3), 864 (u32)asserted_bits); 865 866 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n", 867 asserted_bits); 868 869 return 0; 870 } 871 872 static void qed_int_attn_print(struct qed_hwfn *p_hwfn, 873 enum block_id id, 874 enum dbg_attn_type type, bool b_clear) 875 { 876 struct dbg_attn_block_result attn_results; 877 enum dbg_status status; 878 879 memset(&attn_results, 0, sizeof(attn_results)); 880 881 status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type, 882 b_clear, &attn_results); 883 if (status != DBG_STATUS_OK) 884 DP_NOTICE(p_hwfn, 885 "Failed to parse attention information [status: %s]\n", 886 qed_dbg_get_status_str(status)); 887 else 888 qed_dbg_parse_attn(p_hwfn, &attn_results); 889 } 890 891 /** 892 * qed_int_deassertion_aeu_bit() - Handles the effects of a single 893 * cause of the attention. 894 * 895 * @p_hwfn: HW device data. 896 * @p_aeu: Descriptor of an AEU bit which caused the attention. 897 * @aeu_en_reg: Register offset of the AEU enable reg. which configured 898 * this bit to this group. 899 * @p_bit_name: AEU bit description for logging purposes. 900 * @bitmask: Index of this bit in the aeu_en_reg. 901 * 902 * Return: Zero on success, negative errno otherwise. 903 */ 904 static int 905 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn, 906 struct aeu_invert_reg_bit *p_aeu, 907 u32 aeu_en_reg, 908 const char *p_bit_name, u32 bitmask) 909 { 910 bool b_fatal = false; 911 int rc = -EINVAL; 912 u32 val; 913 914 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n", 915 p_bit_name, bitmask); 916 917 /* Call callback before clearing the interrupt status */ 918 if (p_aeu->cb) { 919 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n", 920 p_bit_name); 921 rc = p_aeu->cb(p_hwfn); 922 } 923 924 if (rc) 925 b_fatal = true; 926 927 /* Print HW block interrupt registers */ 928 if (p_aeu->block_index != MAX_BLOCK_ID) 929 qed_int_attn_print(p_hwfn, p_aeu->block_index, 930 ATTN_TYPE_INTERRUPT, !b_fatal); 931 932 /* Reach assertion if attention is fatal */ 933 if (b_fatal) 934 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN, 935 "`%s': Fatal attention\n", 936 p_bit_name); 937 else /* If the attention is benign, no need to prevent it */ 938 goto out; 939 940 /* Prevent this Attention from being asserted in the future */ 941 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); 942 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask)); 943 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n", 944 p_bit_name); 945 946 out: 947 return rc; 948 } 949 950 /** 951 * qed_int_deassertion_parity() - Handle a single parity AEU source. 952 * 953 * @p_hwfn: HW device data. 954 * @p_aeu: Descriptor of an AEU bit which caused the parity. 955 * @aeu_en_reg: Address of the AEU enable register. 956 * @bit_index: Index (0-31) of an AEU bit. 957 */ 958 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn, 959 struct aeu_invert_reg_bit *p_aeu, 960 u32 aeu_en_reg, u8 bit_index) 961 { 962 u32 block_id = p_aeu->block_index, mask, val; 963 964 DP_NOTICE(p_hwfn->cdev, 965 "%s parity attention is set [address 0x%08x, bit %d]\n", 966 p_aeu->bit_name, aeu_en_reg, bit_index); 967 968 if (block_id != MAX_BLOCK_ID) { 969 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false); 970 971 /* In BB, there's a single parity bit for several blocks */ 972 if (block_id == BLOCK_BTB) { 973 qed_int_attn_print(p_hwfn, BLOCK_OPTE, 974 ATTN_TYPE_PARITY, false); 975 qed_int_attn_print(p_hwfn, BLOCK_MCP, 976 ATTN_TYPE_PARITY, false); 977 } 978 } 979 980 /* Prevent this parity error from being re-asserted */ 981 mask = ~BIT(bit_index); 982 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); 983 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask); 984 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n", 985 p_aeu->bit_name); 986 } 987 988 /** 989 * qed_int_deassertion() - Handle deassertion of previously asserted 990 * attentions. 991 * 992 * @p_hwfn: HW device data. 993 * @deasserted_bits: newly deasserted bits. 994 * 995 * Return: Zero value. 996 */ 997 static int qed_int_deassertion(struct qed_hwfn *p_hwfn, 998 u16 deasserted_bits) 999 { 1000 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; 1001 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en; 1002 u8 i, j, k, bit_idx; 1003 int rc = 0; 1004 1005 /* Read the attention registers in the AEU */ 1006 for (i = 0; i < NUM_ATTN_REGS; i++) { 1007 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 1008 MISC_REG_AEU_AFTER_INVERT_1_IGU + 1009 i * 0x4); 1010 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1011 "Deasserted bits [%d]: %08x\n", 1012 i, aeu_inv_arr[i]); 1013 } 1014 1015 /* Find parity attentions first */ 1016 for (i = 0; i < NUM_ATTN_REGS; i++) { 1017 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i]; 1018 u32 parities; 1019 1020 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32); 1021 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); 1022 1023 /* Skip register in which no parity bit is currently set */ 1024 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en; 1025 if (!parities) 1026 continue; 1027 1028 for (j = 0, bit_idx = 0; bit_idx < 32; j++) { 1029 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j]; 1030 1031 if (qed_int_is_parity_flag(p_hwfn, p_bit) && 1032 !!(parities & BIT(bit_idx))) 1033 qed_int_deassertion_parity(p_hwfn, p_bit, 1034 aeu_en, bit_idx); 1035 1036 bit_idx += ATTENTION_LENGTH(p_bit->flags); 1037 } 1038 } 1039 1040 /* Find non-parity cause for attention and act */ 1041 for (k = 0; k < MAX_ATTN_GRPS; k++) { 1042 struct aeu_invert_reg_bit *p_aeu; 1043 1044 /* Handle only groups whose attention is currently deasserted */ 1045 if (!(deasserted_bits & (1 << k))) 1046 continue; 1047 1048 for (i = 0; i < NUM_ATTN_REGS; i++) { 1049 u32 bits; 1050 1051 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + 1052 i * sizeof(u32) + 1053 k * sizeof(u32) * NUM_ATTN_REGS; 1054 1055 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); 1056 bits = aeu_inv_arr[i] & en; 1057 1058 /* Skip if no bit from this group is currently set */ 1059 if (!bits) 1060 continue; 1061 1062 /* Find all set bits from current register which belong 1063 * to current group, making them responsible for the 1064 * previous assertion. 1065 */ 1066 for (j = 0, bit_idx = 0; bit_idx < 32; j++) { 1067 long unsigned int bitmask; 1068 u8 bit, bit_len; 1069 1070 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j]; 1071 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu); 1072 1073 bit = bit_idx; 1074 bit_len = ATTENTION_LENGTH(p_aeu->flags); 1075 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) { 1076 /* Skip Parity */ 1077 bit++; 1078 bit_len--; 1079 } 1080 1081 bitmask = bits & (((1 << bit_len) - 1) << bit); 1082 bitmask >>= bit; 1083 1084 if (bitmask) { 1085 u32 flags = p_aeu->flags; 1086 char bit_name[30]; 1087 u8 num; 1088 1089 num = (u8)find_first_bit(&bitmask, 1090 bit_len); 1091 1092 /* Some bits represent more than a 1093 * a single interrupt. Correctly print 1094 * their name. 1095 */ 1096 if (ATTENTION_LENGTH(flags) > 2 || 1097 ((flags & ATTENTION_PAR_INT) && 1098 ATTENTION_LENGTH(flags) > 1)) 1099 snprintf(bit_name, 30, 1100 p_aeu->bit_name, num); 1101 else 1102 strlcpy(bit_name, 1103 p_aeu->bit_name, 30); 1104 1105 /* We now need to pass bitmask in its 1106 * correct position. 1107 */ 1108 bitmask <<= bit; 1109 1110 /* Handle source of the attention */ 1111 qed_int_deassertion_aeu_bit(p_hwfn, 1112 p_aeu, 1113 aeu_en, 1114 bit_name, 1115 bitmask); 1116 } 1117 1118 bit_idx += ATTENTION_LENGTH(p_aeu->flags); 1119 } 1120 } 1121 } 1122 1123 /* Handle missed DORQ attention */ 1124 qed_dorq_attn_handler(p_hwfn); 1125 1126 /* Clear IGU indication for the deasserted bits */ 1127 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + 1128 GTT_BAR0_MAP_REG_IGU_CMD + 1129 ((IGU_CMD_ATTN_BIT_CLR_UPPER - 1130 IGU_CMD_INT_ACK_BASE) << 3), 1131 ~((u32)deasserted_bits)); 1132 1133 /* Unmask deasserted attentions in IGU */ 1134 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); 1135 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE); 1136 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask); 1137 1138 /* Clear deassertion from inner state */ 1139 sb_attn_sw->known_attn &= ~deasserted_bits; 1140 1141 return rc; 1142 } 1143 1144 static int qed_int_attentions(struct qed_hwfn *p_hwfn) 1145 { 1146 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn; 1147 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn; 1148 u32 attn_bits = 0, attn_acks = 0; 1149 u16 asserted_bits, deasserted_bits; 1150 __le16 index; 1151 int rc = 0; 1152 1153 /* Read current attention bits/acks - safeguard against attentions 1154 * by guaranting work on a synchronized timeframe 1155 */ 1156 do { 1157 index = p_sb_attn->sb_index; 1158 /* finish reading index before the loop condition */ 1159 dma_rmb(); 1160 attn_bits = le32_to_cpu(p_sb_attn->atten_bits); 1161 attn_acks = le32_to_cpu(p_sb_attn->atten_ack); 1162 } while (index != p_sb_attn->sb_index); 1163 p_sb_attn->sb_index = index; 1164 1165 /* Attention / Deassertion are meaningful (and in correct state) 1166 * only when they differ and consistent with known state - deassertion 1167 * when previous attention & current ack, and assertion when current 1168 * attention with no previous attention 1169 */ 1170 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) & 1171 ~p_sb_attn_sw->known_attn; 1172 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) & 1173 p_sb_attn_sw->known_attn; 1174 1175 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) { 1176 DP_INFO(p_hwfn, 1177 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n", 1178 index, attn_bits, attn_acks, asserted_bits, 1179 deasserted_bits, p_sb_attn_sw->known_attn); 1180 } else if (asserted_bits == 0x100) { 1181 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1182 "MFW indication via attention\n"); 1183 } else { 1184 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1185 "MFW indication [deassertion]\n"); 1186 } 1187 1188 if (asserted_bits) { 1189 rc = qed_int_assertion(p_hwfn, asserted_bits); 1190 if (rc) 1191 return rc; 1192 } 1193 1194 if (deasserted_bits) 1195 rc = qed_int_deassertion(p_hwfn, deasserted_bits); 1196 1197 return rc; 1198 } 1199 1200 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn, 1201 void __iomem *igu_addr, u32 ack_cons) 1202 { 1203 u32 igu_ack; 1204 1205 igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) | 1206 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) | 1207 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) | 1208 (IGU_SEG_ACCESS_ATTN << 1209 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT)); 1210 1211 DIRECT_REG_WR(igu_addr, igu_ack); 1212 1213 /* Both segments (interrupts & acks) are written to same place address; 1214 * Need to guarantee all commands will be received (in-order) by HW. 1215 */ 1216 barrier(); 1217 } 1218 1219 void qed_int_sp_dpc(struct tasklet_struct *t) 1220 { 1221 struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc); 1222 struct qed_pi_info *pi_info = NULL; 1223 struct qed_sb_attn_info *sb_attn; 1224 struct qed_sb_info *sb_info; 1225 int arr_size; 1226 u16 rc = 0; 1227 1228 if (!p_hwfn->p_sp_sb) { 1229 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n"); 1230 return; 1231 } 1232 1233 sb_info = &p_hwfn->p_sp_sb->sb_info; 1234 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr); 1235 if (!sb_info) { 1236 DP_ERR(p_hwfn->cdev, 1237 "Status block is NULL - cannot ack interrupts\n"); 1238 return; 1239 } 1240 1241 if (!p_hwfn->p_sb_attn) { 1242 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn"); 1243 return; 1244 } 1245 sb_attn = p_hwfn->p_sb_attn; 1246 1247 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n", 1248 p_hwfn, p_hwfn->my_id); 1249 1250 /* Disable ack for def status block. Required both for msix + 1251 * inta in non-mask mode, in inta does no harm. 1252 */ 1253 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0); 1254 1255 /* Gather Interrupts/Attentions information */ 1256 if (!sb_info->sb_virt) { 1257 DP_ERR(p_hwfn->cdev, 1258 "Interrupt Status block is NULL - cannot check for new interrupts!\n"); 1259 } else { 1260 u32 tmp_index = sb_info->sb_ack; 1261 1262 rc = qed_sb_update_sb_idx(sb_info); 1263 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, 1264 "Interrupt indices: 0x%08x --> 0x%08x\n", 1265 tmp_index, sb_info->sb_ack); 1266 } 1267 1268 if (!sb_attn || !sb_attn->sb_attn) { 1269 DP_ERR(p_hwfn->cdev, 1270 "Attentions Status block is NULL - cannot check for new attentions!\n"); 1271 } else { 1272 u16 tmp_index = sb_attn->index; 1273 1274 rc |= qed_attn_update_idx(p_hwfn, sb_attn); 1275 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, 1276 "Attention indices: 0x%08x --> 0x%08x\n", 1277 tmp_index, sb_attn->index); 1278 } 1279 1280 /* Check if we expect interrupts at this time. if not just ack them */ 1281 if (!(rc & QED_SB_EVENT_MASK)) { 1282 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); 1283 return; 1284 } 1285 1286 /* Check the validity of the DPC ptt. If not ack interrupts and fail */ 1287 if (!p_hwfn->p_dpc_ptt) { 1288 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n"); 1289 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); 1290 return; 1291 } 1292 1293 if (rc & QED_SB_ATT_IDX) 1294 qed_int_attentions(p_hwfn); 1295 1296 if (rc & QED_SB_IDX) { 1297 int pi; 1298 1299 /* Look for a free index */ 1300 for (pi = 0; pi < arr_size; pi++) { 1301 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi]; 1302 if (pi_info->comp_cb) 1303 pi_info->comp_cb(p_hwfn, pi_info->cookie); 1304 } 1305 } 1306 1307 if (sb_attn && (rc & QED_SB_ATT_IDX)) 1308 /* This should be done before the interrupts are enabled, 1309 * since otherwise a new attention will be generated. 1310 */ 1311 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index); 1312 1313 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); 1314 } 1315 1316 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn) 1317 { 1318 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn; 1319 1320 if (!p_sb) 1321 return; 1322 1323 if (p_sb->sb_attn) 1324 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 1325 SB_ATTN_ALIGNED_SIZE(p_hwfn), 1326 p_sb->sb_attn, p_sb->sb_phys); 1327 kfree(p_sb); 1328 p_hwfn->p_sb_attn = NULL; 1329 } 1330 1331 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn, 1332 struct qed_ptt *p_ptt) 1333 { 1334 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; 1335 1336 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn)); 1337 1338 sb_info->index = 0; 1339 sb_info->known_attn = 0; 1340 1341 /* Configure Attention Status Block in IGU */ 1342 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L, 1343 lower_32_bits(p_hwfn->p_sb_attn->sb_phys)); 1344 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H, 1345 upper_32_bits(p_hwfn->p_sb_attn->sb_phys)); 1346 } 1347 1348 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn, 1349 struct qed_ptt *p_ptt, 1350 void *sb_virt_addr, dma_addr_t sb_phy_addr) 1351 { 1352 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; 1353 int i, j, k; 1354 1355 sb_info->sb_attn = sb_virt_addr; 1356 sb_info->sb_phys = sb_phy_addr; 1357 1358 /* Set the pointer to the AEU descriptors */ 1359 sb_info->p_aeu_desc = aeu_descs; 1360 1361 /* Calculate Parity Masks */ 1362 memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS); 1363 for (i = 0; i < NUM_ATTN_REGS; i++) { 1364 /* j is array index, k is bit index */ 1365 for (j = 0, k = 0; k < 32; j++) { 1366 struct aeu_invert_reg_bit *p_aeu; 1367 1368 p_aeu = &aeu_descs[i].bits[j]; 1369 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) 1370 sb_info->parity_mask[i] |= 1 << k; 1371 1372 k += ATTENTION_LENGTH(p_aeu->flags); 1373 } 1374 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1375 "Attn Mask [Reg %d]: 0x%08x\n", 1376 i, sb_info->parity_mask[i]); 1377 } 1378 1379 /* Set the address of cleanup for the mcp attention */ 1380 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) + 1381 MISC_REG_AEU_GENERAL_ATTN_0; 1382 1383 qed_int_sb_attn_setup(p_hwfn, p_ptt); 1384 } 1385 1386 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn, 1387 struct qed_ptt *p_ptt) 1388 { 1389 struct qed_dev *cdev = p_hwfn->cdev; 1390 struct qed_sb_attn_info *p_sb; 1391 dma_addr_t p_phys = 0; 1392 void *p_virt; 1393 1394 /* SB struct */ 1395 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); 1396 if (!p_sb) 1397 return -ENOMEM; 1398 1399 /* SB ring */ 1400 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 1401 SB_ATTN_ALIGNED_SIZE(p_hwfn), 1402 &p_phys, GFP_KERNEL); 1403 1404 if (!p_virt) { 1405 kfree(p_sb); 1406 return -ENOMEM; 1407 } 1408 1409 /* Attention setup */ 1410 p_hwfn->p_sb_attn = p_sb; 1411 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys); 1412 1413 return 0; 1414 } 1415 1416 /* coalescing timeout = timeset << (timer_res + 1) */ 1417 #define QED_CAU_DEF_RX_USECS 24 1418 #define QED_CAU_DEF_TX_USECS 48 1419 1420 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn, 1421 struct cau_sb_entry *p_sb_entry, 1422 u8 pf_id, u16 vf_number, u8 vf_valid) 1423 { 1424 struct qed_dev *cdev = p_hwfn->cdev; 1425 u32 cau_state, params = 0, data = 0; 1426 u8 timer_res; 1427 1428 memset(p_sb_entry, 0, sizeof(*p_sb_entry)); 1429 1430 SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id); 1431 SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number); 1432 SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid); 1433 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F); 1434 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F); 1435 1436 cau_state = CAU_HC_DISABLE_STATE; 1437 1438 if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { 1439 cau_state = CAU_HC_ENABLE_STATE; 1440 if (!cdev->rx_coalesce_usecs) 1441 cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS; 1442 if (!cdev->tx_coalesce_usecs) 1443 cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS; 1444 } 1445 1446 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */ 1447 if (cdev->rx_coalesce_usecs <= 0x7F) 1448 timer_res = 0; 1449 else if (cdev->rx_coalesce_usecs <= 0xFF) 1450 timer_res = 1; 1451 else 1452 timer_res = 2; 1453 1454 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); 1455 1456 if (cdev->tx_coalesce_usecs <= 0x7F) 1457 timer_res = 0; 1458 else if (cdev->tx_coalesce_usecs <= 0xFF) 1459 timer_res = 1; 1460 else 1461 timer_res = 2; 1462 1463 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); 1464 p_sb_entry->params = cpu_to_le32(params); 1465 1466 SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state); 1467 SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state); 1468 p_sb_entry->data = cpu_to_le32(data); 1469 } 1470 1471 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn, 1472 struct qed_ptt *p_ptt, 1473 u16 igu_sb_id, 1474 u32 pi_index, 1475 enum qed_coalescing_fsm coalescing_fsm, 1476 u8 timeset) 1477 { 1478 u32 sb_offset, pi_offset; 1479 u32 prod = 0; 1480 1481 if (IS_VF(p_hwfn->cdev)) 1482 return; 1483 1484 SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset); 1485 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE) 1486 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0); 1487 else 1488 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1); 1489 1490 sb_offset = igu_sb_id * PIS_PER_SB_E4; 1491 pi_offset = sb_offset + pi_index; 1492 1493 if (p_hwfn->hw_init_done) 1494 qed_wr(p_hwfn, p_ptt, 1495 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod); 1496 else 1497 STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset, 1498 prod); 1499 } 1500 1501 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn, 1502 struct qed_ptt *p_ptt, 1503 dma_addr_t sb_phys, 1504 u16 igu_sb_id, u16 vf_number, u8 vf_valid) 1505 { 1506 struct cau_sb_entry sb_entry; 1507 1508 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id, 1509 vf_number, vf_valid); 1510 1511 if (p_hwfn->hw_init_done) { 1512 /* Wide-bus, initialize via DMAE */ 1513 u64 phys_addr = (u64)sb_phys; 1514 1515 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr, 1516 CAU_REG_SB_ADDR_MEMORY + 1517 igu_sb_id * sizeof(u64), 2, NULL); 1518 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, 1519 CAU_REG_SB_VAR_MEMORY + 1520 igu_sb_id * sizeof(u64), 2, NULL); 1521 } else { 1522 /* Initialize Status Block Address */ 1523 STORE_RT_REG_AGG(p_hwfn, 1524 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET + 1525 igu_sb_id * 2, 1526 sb_phys); 1527 1528 STORE_RT_REG_AGG(p_hwfn, 1529 CAU_REG_SB_VAR_MEMORY_RT_OFFSET + 1530 igu_sb_id * 2, 1531 sb_entry); 1532 } 1533 1534 /* Configure pi coalescing if set */ 1535 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { 1536 u8 num_tc = p_hwfn->hw_info.num_hw_tc; 1537 u8 timeset, timer_res; 1538 u8 i; 1539 1540 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */ 1541 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F) 1542 timer_res = 0; 1543 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF) 1544 timer_res = 1; 1545 else 1546 timer_res = 2; 1547 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res); 1548 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI, 1549 QED_COAL_RX_STATE_MACHINE, timeset); 1550 1551 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F) 1552 timer_res = 0; 1553 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF) 1554 timer_res = 1; 1555 else 1556 timer_res = 2; 1557 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res); 1558 for (i = 0; i < num_tc; i++) { 1559 qed_int_cau_conf_pi(p_hwfn, p_ptt, 1560 igu_sb_id, TX_PI(i), 1561 QED_COAL_TX_STATE_MACHINE, 1562 timeset); 1563 } 1564 } 1565 } 1566 1567 void qed_int_sb_setup(struct qed_hwfn *p_hwfn, 1568 struct qed_ptt *p_ptt, struct qed_sb_info *sb_info) 1569 { 1570 /* zero status block and ack counter */ 1571 sb_info->sb_ack = 0; 1572 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); 1573 1574 if (IS_PF(p_hwfn->cdev)) 1575 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys, 1576 sb_info->igu_sb_id, 0, 0); 1577 } 1578 1579 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf) 1580 { 1581 struct qed_igu_block *p_block; 1582 u16 igu_id; 1583 1584 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 1585 igu_id++) { 1586 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; 1587 1588 if (!(p_block->status & QED_IGU_STATUS_VALID) || 1589 !(p_block->status & QED_IGU_STATUS_FREE)) 1590 continue; 1591 1592 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf) 1593 return p_block; 1594 } 1595 1596 return NULL; 1597 } 1598 1599 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id) 1600 { 1601 struct qed_igu_block *p_block; 1602 u16 igu_id; 1603 1604 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 1605 igu_id++) { 1606 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; 1607 1608 if (!(p_block->status & QED_IGU_STATUS_VALID) || 1609 !p_block->is_pf || 1610 p_block->vector_number != vector_id) 1611 continue; 1612 1613 return igu_id; 1614 } 1615 1616 return QED_SB_INVALID_IDX; 1617 } 1618 1619 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id) 1620 { 1621 u16 igu_sb_id; 1622 1623 /* Assuming continuous set of IGU SBs dedicated for given PF */ 1624 if (sb_id == QED_SP_SB_ID) 1625 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id; 1626 else if (IS_PF(p_hwfn->cdev)) 1627 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1); 1628 else 1629 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id); 1630 1631 if (sb_id == QED_SP_SB_ID) 1632 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1633 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id); 1634 else 1635 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1636 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id); 1637 1638 return igu_sb_id; 1639 } 1640 1641 int qed_int_sb_init(struct qed_hwfn *p_hwfn, 1642 struct qed_ptt *p_ptt, 1643 struct qed_sb_info *sb_info, 1644 void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id) 1645 { 1646 sb_info->sb_virt = sb_virt_addr; 1647 sb_info->sb_phys = sb_phy_addr; 1648 1649 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id); 1650 1651 if (sb_id != QED_SP_SB_ID) { 1652 if (IS_PF(p_hwfn->cdev)) { 1653 struct qed_igu_info *p_info; 1654 struct qed_igu_block *p_block; 1655 1656 p_info = p_hwfn->hw_info.p_igu_info; 1657 p_block = &p_info->entry[sb_info->igu_sb_id]; 1658 1659 p_block->sb_info = sb_info; 1660 p_block->status &= ~QED_IGU_STATUS_FREE; 1661 p_info->usage.free_cnt--; 1662 } else { 1663 qed_vf_set_sb_info(p_hwfn, sb_id, sb_info); 1664 } 1665 } 1666 1667 sb_info->cdev = p_hwfn->cdev; 1668 1669 /* The igu address will hold the absolute address that needs to be 1670 * written to for a specific status block 1671 */ 1672 if (IS_PF(p_hwfn->cdev)) { 1673 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + 1674 GTT_BAR0_MAP_REG_IGU_CMD + 1675 (sb_info->igu_sb_id << 3); 1676 } else { 1677 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + 1678 PXP_VF_BAR0_START_IGU + 1679 ((IGU_CMD_INT_ACK_BASE + 1680 sb_info->igu_sb_id) << 3); 1681 } 1682 1683 sb_info->flags |= QED_SB_INFO_INIT; 1684 1685 qed_int_sb_setup(p_hwfn, p_ptt, sb_info); 1686 1687 return 0; 1688 } 1689 1690 int qed_int_sb_release(struct qed_hwfn *p_hwfn, 1691 struct qed_sb_info *sb_info, u16 sb_id) 1692 { 1693 struct qed_igu_block *p_block; 1694 struct qed_igu_info *p_info; 1695 1696 if (!sb_info) 1697 return 0; 1698 1699 /* zero status block and ack counter */ 1700 sb_info->sb_ack = 0; 1701 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); 1702 1703 if (IS_VF(p_hwfn->cdev)) { 1704 qed_vf_set_sb_info(p_hwfn, sb_id, NULL); 1705 return 0; 1706 } 1707 1708 p_info = p_hwfn->hw_info.p_igu_info; 1709 p_block = &p_info->entry[sb_info->igu_sb_id]; 1710 1711 /* Vector 0 is reserved to Default SB */ 1712 if (!p_block->vector_number) { 1713 DP_ERR(p_hwfn, "Do Not free sp sb using this function"); 1714 return -EINVAL; 1715 } 1716 1717 /* Lose reference to client's SB info, and fix counters */ 1718 p_block->sb_info = NULL; 1719 p_block->status |= QED_IGU_STATUS_FREE; 1720 p_info->usage.free_cnt++; 1721 1722 return 0; 1723 } 1724 1725 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn) 1726 { 1727 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb; 1728 1729 if (!p_sb) 1730 return; 1731 1732 if (p_sb->sb_info.sb_virt) 1733 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 1734 SB_ALIGNED_SIZE(p_hwfn), 1735 p_sb->sb_info.sb_virt, 1736 p_sb->sb_info.sb_phys); 1737 kfree(p_sb); 1738 p_hwfn->p_sp_sb = NULL; 1739 } 1740 1741 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1742 { 1743 struct qed_sb_sp_info *p_sb; 1744 dma_addr_t p_phys = 0; 1745 void *p_virt; 1746 1747 /* SB struct */ 1748 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); 1749 if (!p_sb) 1750 return -ENOMEM; 1751 1752 /* SB ring */ 1753 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 1754 SB_ALIGNED_SIZE(p_hwfn), 1755 &p_phys, GFP_KERNEL); 1756 if (!p_virt) { 1757 kfree(p_sb); 1758 return -ENOMEM; 1759 } 1760 1761 /* Status Block setup */ 1762 p_hwfn->p_sp_sb = p_sb; 1763 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt, 1764 p_phys, QED_SP_SB_ID); 1765 1766 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr)); 1767 1768 return 0; 1769 } 1770 1771 int qed_int_register_cb(struct qed_hwfn *p_hwfn, 1772 qed_int_comp_cb_t comp_cb, 1773 void *cookie, u8 *sb_idx, __le16 **p_fw_cons) 1774 { 1775 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; 1776 int rc = -ENOMEM; 1777 u8 pi; 1778 1779 /* Look for a free index */ 1780 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) { 1781 if (p_sp_sb->pi_info_arr[pi].comp_cb) 1782 continue; 1783 1784 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb; 1785 p_sp_sb->pi_info_arr[pi].cookie = cookie; 1786 *sb_idx = pi; 1787 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi]; 1788 rc = 0; 1789 break; 1790 } 1791 1792 return rc; 1793 } 1794 1795 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi) 1796 { 1797 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; 1798 1799 if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL) 1800 return -ENOMEM; 1801 1802 p_sp_sb->pi_info_arr[pi].comp_cb = NULL; 1803 p_sp_sb->pi_info_arr[pi].cookie = NULL; 1804 1805 return 0; 1806 } 1807 1808 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn) 1809 { 1810 return p_hwfn->p_sp_sb->sb_info.igu_sb_id; 1811 } 1812 1813 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn, 1814 struct qed_ptt *p_ptt, enum qed_int_mode int_mode) 1815 { 1816 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN; 1817 1818 p_hwfn->cdev->int_mode = int_mode; 1819 switch (p_hwfn->cdev->int_mode) { 1820 case QED_INT_MODE_INTA: 1821 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN; 1822 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 1823 break; 1824 1825 case QED_INT_MODE_MSI: 1826 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; 1827 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 1828 break; 1829 1830 case QED_INT_MODE_MSIX: 1831 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; 1832 break; 1833 case QED_INT_MODE_POLL: 1834 break; 1835 } 1836 1837 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf); 1838 } 1839 1840 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn, 1841 struct qed_ptt *p_ptt) 1842 { 1843 1844 /* Configure AEU signal change to produce attentions */ 1845 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0); 1846 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff); 1847 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff); 1848 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff); 1849 1850 /* Unmask AEU signals toward IGU */ 1851 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff); 1852 } 1853 1854 int 1855 qed_int_igu_enable(struct qed_hwfn *p_hwfn, 1856 struct qed_ptt *p_ptt, enum qed_int_mode int_mode) 1857 { 1858 int rc = 0; 1859 1860 qed_int_igu_enable_attn(p_hwfn, p_ptt); 1861 1862 if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) { 1863 rc = qed_slowpath_irq_req(p_hwfn); 1864 if (rc) { 1865 DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n"); 1866 return -EINVAL; 1867 } 1868 p_hwfn->b_int_requested = true; 1869 } 1870 /* Enable interrupt Generation */ 1871 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode); 1872 p_hwfn->b_int_enabled = 1; 1873 1874 return rc; 1875 } 1876 1877 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1878 { 1879 p_hwfn->b_int_enabled = 0; 1880 1881 if (IS_VF(p_hwfn->cdev)) 1882 return; 1883 1884 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0); 1885 } 1886 1887 #define IGU_CLEANUP_SLEEP_LENGTH (1000) 1888 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn, 1889 struct qed_ptt *p_ptt, 1890 u16 igu_sb_id, 1891 bool cleanup_set, u16 opaque_fid) 1892 { 1893 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0; 1894 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id; 1895 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH; 1896 1897 /* Set the data field */ 1898 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0); 1899 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0); 1900 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET); 1901 1902 /* Set the control register */ 1903 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr); 1904 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid); 1905 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR); 1906 1907 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data); 1908 1909 barrier(); 1910 1911 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl); 1912 1913 /* calculate where to read the status bit from */ 1914 sb_bit = 1 << (igu_sb_id % 32); 1915 sb_bit_addr = igu_sb_id / 32 * sizeof(u32); 1916 1917 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0; 1918 1919 /* Now wait for the command to complete */ 1920 do { 1921 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr); 1922 1923 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0)) 1924 break; 1925 1926 usleep_range(5000, 10000); 1927 } while (--sleep_cnt); 1928 1929 if (!sleep_cnt) 1930 DP_NOTICE(p_hwfn, 1931 "Timeout waiting for clear status 0x%08x [for sb %d]\n", 1932 val, igu_sb_id); 1933 } 1934 1935 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn, 1936 struct qed_ptt *p_ptt, 1937 u16 igu_sb_id, u16 opaque, bool b_set) 1938 { 1939 struct qed_igu_block *p_block; 1940 int pi, i; 1941 1942 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; 1943 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1944 "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n", 1945 igu_sb_id, 1946 p_block->function_id, 1947 p_block->is_pf, p_block->vector_number); 1948 1949 /* Set */ 1950 if (b_set) 1951 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque); 1952 1953 /* Clear */ 1954 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque); 1955 1956 /* Wait for the IGU SB to cleanup */ 1957 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) { 1958 u32 val; 1959 1960 val = qed_rd(p_hwfn, p_ptt, 1961 IGU_REG_WRITE_DONE_PENDING + 1962 ((igu_sb_id / 32) * 4)); 1963 if (val & BIT((igu_sb_id % 32))) 1964 usleep_range(10, 20); 1965 else 1966 break; 1967 } 1968 if (i == IGU_CLEANUP_SLEEP_LENGTH) 1969 DP_NOTICE(p_hwfn, 1970 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n", 1971 igu_sb_id); 1972 1973 /* Clear the CAU for the SB */ 1974 for (pi = 0; pi < 12; pi++) 1975 qed_wr(p_hwfn, p_ptt, 1976 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0); 1977 } 1978 1979 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn, 1980 struct qed_ptt *p_ptt, 1981 bool b_set, bool b_slowpath) 1982 { 1983 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 1984 struct qed_igu_block *p_block; 1985 u16 igu_sb_id = 0; 1986 u32 val = 0; 1987 1988 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION); 1989 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN; 1990 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN; 1991 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val); 1992 1993 for (igu_sb_id = 0; 1994 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { 1995 p_block = &p_info->entry[igu_sb_id]; 1996 1997 if (!(p_block->status & QED_IGU_STATUS_VALID) || 1998 !p_block->is_pf || 1999 (p_block->status & QED_IGU_STATUS_DSB)) 2000 continue; 2001 2002 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id, 2003 p_hwfn->hw_info.opaque_fid, 2004 b_set); 2005 } 2006 2007 if (b_slowpath) 2008 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 2009 p_info->igu_dsb_id, 2010 p_hwfn->hw_info.opaque_fid, 2011 b_set); 2012 } 2013 2014 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2015 { 2016 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 2017 struct qed_igu_block *p_block; 2018 int pf_sbs, vf_sbs; 2019 u16 igu_sb_id; 2020 u32 val, rval; 2021 2022 if (!RESC_NUM(p_hwfn, QED_SB)) { 2023 p_info->b_allow_pf_vf_change = false; 2024 } else { 2025 /* Use the numbers the MFW have provided - 2026 * don't forget MFW accounts for the default SB as well. 2027 */ 2028 p_info->b_allow_pf_vf_change = true; 2029 2030 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) { 2031 DP_INFO(p_hwfn, 2032 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n", 2033 RESC_NUM(p_hwfn, QED_SB) - 1, 2034 p_info->usage.cnt); 2035 p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1; 2036 } 2037 2038 if (IS_PF_SRIOV(p_hwfn)) { 2039 u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs; 2040 2041 if (vfs != p_info->usage.iov_cnt) 2042 DP_VERBOSE(p_hwfn, 2043 NETIF_MSG_INTR, 2044 "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n", 2045 p_info->usage.iov_cnt, vfs); 2046 2047 /* At this point we know how many SBs we have totally 2048 * in IGU + number of PF SBs. So we can validate that 2049 * we'd have sufficient for VF. 2050 */ 2051 if (vfs > p_info->usage.free_cnt + 2052 p_info->usage.free_cnt_iov - p_info->usage.cnt) { 2053 DP_NOTICE(p_hwfn, 2054 "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n", 2055 p_info->usage.free_cnt + 2056 p_info->usage.free_cnt_iov, 2057 p_info->usage.cnt, vfs); 2058 return -EINVAL; 2059 } 2060 2061 /* Currently cap the number of VFs SBs by the 2062 * number of VFs. 2063 */ 2064 p_info->usage.iov_cnt = vfs; 2065 } 2066 } 2067 2068 /* Mark all SBs as free, now in the right PF/VFs division */ 2069 p_info->usage.free_cnt = p_info->usage.cnt; 2070 p_info->usage.free_cnt_iov = p_info->usage.iov_cnt; 2071 p_info->usage.orig = p_info->usage.cnt; 2072 p_info->usage.iov_orig = p_info->usage.iov_cnt; 2073 2074 /* We now proceed to re-configure the IGU cam to reflect the initial 2075 * configuration. We can start with the Default SB. 2076 */ 2077 pf_sbs = p_info->usage.cnt; 2078 vf_sbs = p_info->usage.iov_cnt; 2079 2080 for (igu_sb_id = p_info->igu_dsb_id; 2081 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { 2082 p_block = &p_info->entry[igu_sb_id]; 2083 val = 0; 2084 2085 if (!(p_block->status & QED_IGU_STATUS_VALID)) 2086 continue; 2087 2088 if (p_block->status & QED_IGU_STATUS_DSB) { 2089 p_block->function_id = p_hwfn->rel_pf_id; 2090 p_block->is_pf = 1; 2091 p_block->vector_number = 0; 2092 p_block->status = QED_IGU_STATUS_VALID | 2093 QED_IGU_STATUS_PF | 2094 QED_IGU_STATUS_DSB; 2095 } else if (pf_sbs) { 2096 pf_sbs--; 2097 p_block->function_id = p_hwfn->rel_pf_id; 2098 p_block->is_pf = 1; 2099 p_block->vector_number = p_info->usage.cnt - pf_sbs; 2100 p_block->status = QED_IGU_STATUS_VALID | 2101 QED_IGU_STATUS_PF | 2102 QED_IGU_STATUS_FREE; 2103 } else if (vf_sbs) { 2104 p_block->function_id = 2105 p_hwfn->cdev->p_iov_info->first_vf_in_pf + 2106 p_info->usage.iov_cnt - vf_sbs; 2107 p_block->is_pf = 0; 2108 p_block->vector_number = 0; 2109 p_block->status = QED_IGU_STATUS_VALID | 2110 QED_IGU_STATUS_FREE; 2111 vf_sbs--; 2112 } else { 2113 p_block->function_id = 0; 2114 p_block->is_pf = 0; 2115 p_block->vector_number = 0; 2116 } 2117 2118 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, 2119 p_block->function_id); 2120 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf); 2121 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, 2122 p_block->vector_number); 2123 2124 /* VF entries would be enabled when VF is initializaed */ 2125 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf); 2126 2127 rval = qed_rd(p_hwfn, p_ptt, 2128 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); 2129 2130 if (rval != val) { 2131 qed_wr(p_hwfn, p_ptt, 2132 IGU_REG_MAPPING_MEMORY + 2133 sizeof(u32) * igu_sb_id, val); 2134 2135 DP_VERBOSE(p_hwfn, 2136 NETIF_MSG_INTR, 2137 "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n", 2138 igu_sb_id, 2139 p_block->function_id, 2140 p_block->is_pf, 2141 p_block->vector_number, rval, val); 2142 } 2143 } 2144 2145 return 0; 2146 } 2147 2148 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn, 2149 struct qed_ptt *p_ptt, u16 igu_sb_id) 2150 { 2151 u32 val = qed_rd(p_hwfn, p_ptt, 2152 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); 2153 struct qed_igu_block *p_block; 2154 2155 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; 2156 2157 /* Fill the block information */ 2158 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER); 2159 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID); 2160 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER); 2161 p_block->igu_sb_id = igu_sb_id; 2162 } 2163 2164 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2165 { 2166 struct qed_igu_info *p_igu_info; 2167 struct qed_igu_block *p_block; 2168 u32 min_vf = 0, max_vf = 0; 2169 u16 igu_sb_id; 2170 2171 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL); 2172 if (!p_hwfn->hw_info.p_igu_info) 2173 return -ENOMEM; 2174 2175 p_igu_info = p_hwfn->hw_info.p_igu_info; 2176 2177 /* Distinguish between existent and non-existent default SB */ 2178 p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX; 2179 2180 /* Find the range of VF ids whose SB belong to this PF */ 2181 if (p_hwfn->cdev->p_iov_info) { 2182 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 2183 2184 min_vf = p_iov->first_vf_in_pf; 2185 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs; 2186 } 2187 2188 for (igu_sb_id = 0; 2189 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { 2190 /* Read current entry; Notice it might not belong to this PF */ 2191 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id); 2192 p_block = &p_igu_info->entry[igu_sb_id]; 2193 2194 if ((p_block->is_pf) && 2195 (p_block->function_id == p_hwfn->rel_pf_id)) { 2196 p_block->status = QED_IGU_STATUS_PF | 2197 QED_IGU_STATUS_VALID | 2198 QED_IGU_STATUS_FREE; 2199 2200 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) 2201 p_igu_info->usage.cnt++; 2202 } else if (!(p_block->is_pf) && 2203 (p_block->function_id >= min_vf) && 2204 (p_block->function_id < max_vf)) { 2205 /* Available for VFs of this PF */ 2206 p_block->status = QED_IGU_STATUS_VALID | 2207 QED_IGU_STATUS_FREE; 2208 2209 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) 2210 p_igu_info->usage.iov_cnt++; 2211 } 2212 2213 /* Mark the First entry belonging to the PF or its VFs 2214 * as the default SB [we'll reset IGU prior to first usage]. 2215 */ 2216 if ((p_block->status & QED_IGU_STATUS_VALID) && 2217 (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) { 2218 p_igu_info->igu_dsb_id = igu_sb_id; 2219 p_block->status |= QED_IGU_STATUS_DSB; 2220 } 2221 2222 /* limit number of prints by having each PF print only its 2223 * entries with the exception of PF0 which would print 2224 * everything. 2225 */ 2226 if ((p_block->status & QED_IGU_STATUS_VALID) || 2227 (p_hwfn->abs_pf_id == 0)) { 2228 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 2229 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n", 2230 igu_sb_id, p_block->function_id, 2231 p_block->is_pf, p_block->vector_number); 2232 } 2233 } 2234 2235 if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) { 2236 DP_NOTICE(p_hwfn, 2237 "IGU CAM returned invalid values igu_dsb_id=0x%x\n", 2238 p_igu_info->igu_dsb_id); 2239 return -EINVAL; 2240 } 2241 2242 /* All non default SB are considered free at this point */ 2243 p_igu_info->usage.free_cnt = p_igu_info->usage.cnt; 2244 p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt; 2245 2246 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 2247 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n", 2248 p_igu_info->igu_dsb_id, 2249 p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt); 2250 2251 return 0; 2252 } 2253 2254 /** 2255 * qed_int_igu_init_rt() - Initialize IGU runtime registers. 2256 * 2257 * @p_hwfn: HW device data. 2258 */ 2259 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn) 2260 { 2261 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN; 2262 2263 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf); 2264 } 2265 2266 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn) 2267 { 2268 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - 2269 IGU_CMD_INT_ACK_BASE; 2270 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - 2271 IGU_CMD_INT_ACK_BASE; 2272 u32 intr_status_hi = 0, intr_status_lo = 0; 2273 u64 intr_status = 0; 2274 2275 intr_status_lo = REG_RD(p_hwfn, 2276 GTT_BAR0_MAP_REG_IGU_CMD + 2277 lsb_igu_cmd_addr * 8); 2278 intr_status_hi = REG_RD(p_hwfn, 2279 GTT_BAR0_MAP_REG_IGU_CMD + 2280 msb_igu_cmd_addr * 8); 2281 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo; 2282 2283 return intr_status; 2284 } 2285 2286 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn) 2287 { 2288 tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc); 2289 p_hwfn->b_sp_dpc_enabled = true; 2290 } 2291 2292 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2293 { 2294 int rc = 0; 2295 2296 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt); 2297 if (rc) 2298 return rc; 2299 2300 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt); 2301 2302 return rc; 2303 } 2304 2305 void qed_int_free(struct qed_hwfn *p_hwfn) 2306 { 2307 qed_int_sp_sb_free(p_hwfn); 2308 qed_int_sb_attn_free(p_hwfn); 2309 } 2310 2311 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2312 { 2313 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info); 2314 qed_int_sb_attn_setup(p_hwfn, p_ptt); 2315 qed_int_sp_dpc_setup(p_hwfn); 2316 } 2317 2318 void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn, 2319 struct qed_sb_cnt_info *p_sb_cnt_info) 2320 { 2321 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info; 2322 2323 if (!info || !p_sb_cnt_info) 2324 return; 2325 2326 memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info)); 2327 } 2328 2329 void qed_int_disable_post_isr_release(struct qed_dev *cdev) 2330 { 2331 int i; 2332 2333 for_each_hwfn(cdev, i) 2334 cdev->hwfns[i].b_int_requested = false; 2335 } 2336 2337 void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable) 2338 { 2339 cdev->attn_clr_en = clr_enable; 2340 } 2341 2342 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 2343 u8 timer_res, u16 sb_id, bool tx) 2344 { 2345 struct cau_sb_entry sb_entry; 2346 u32 params; 2347 int rc; 2348 2349 if (!p_hwfn->hw_init_done) { 2350 DP_ERR(p_hwfn, "hardware not initialized yet\n"); 2351 return -EINVAL; 2352 } 2353 2354 rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY + 2355 sb_id * sizeof(u64), 2356 (u64)(uintptr_t)&sb_entry, 2, NULL); 2357 if (rc) { 2358 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc); 2359 return rc; 2360 } 2361 2362 params = le32_to_cpu(sb_entry.params); 2363 2364 if (tx) 2365 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); 2366 else 2367 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); 2368 2369 sb_entry.params = cpu_to_le32(params); 2370 2371 rc = qed_dmae_host2grc(p_hwfn, p_ptt, 2372 (u64)(uintptr_t)&sb_entry, 2373 CAU_REG_SB_VAR_MEMORY + 2374 sb_id * sizeof(u64), 2, NULL); 2375 if (rc) { 2376 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc); 2377 return rc; 2378 } 2379 2380 return rc; 2381 } 2382