1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 /* QLogic qed NIC Driver 3 * Copyright (c) 2015-2017 QLogic Corporation 4 * Copyright (c) 2019-2020 Marvell International Ltd. 5 */ 6 7 #include <linux/types.h> 8 #include <asm/byteorder.h> 9 #include <linux/io.h> 10 #include <linux/bitops.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/errno.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/pci.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include "qed.h" 20 #include "qed_hsi.h" 21 #include "qed_hw.h" 22 #include "qed_init_ops.h" 23 #include "qed_int.h" 24 #include "qed_mcp.h" 25 #include "qed_reg_addr.h" 26 #include "qed_sp.h" 27 #include "qed_sriov.h" 28 #include "qed_vf.h" 29 30 struct qed_pi_info { 31 qed_int_comp_cb_t comp_cb; 32 void *cookie; 33 }; 34 35 struct qed_sb_sp_info { 36 struct qed_sb_info sb_info; 37 38 /* per protocol index data */ 39 struct qed_pi_info pi_info_arr[PIS_PER_SB]; 40 }; 41 42 enum qed_attention_type { 43 QED_ATTN_TYPE_ATTN, 44 QED_ATTN_TYPE_PARITY, 45 }; 46 47 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \ 48 ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn) 49 50 struct aeu_invert_reg_bit { 51 char bit_name[30]; 52 53 #define ATTENTION_PARITY (1 << 0) 54 55 #define ATTENTION_LENGTH_MASK (0x00000ff0) 56 #define ATTENTION_LENGTH_SHIFT (4) 57 #define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \ 58 ATTENTION_LENGTH_SHIFT) 59 #define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT) 60 #define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY) 61 #define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \ 62 ATTENTION_PARITY) 63 64 /* Multiple bits start with this offset */ 65 #define ATTENTION_OFFSET_MASK (0x000ff000) 66 #define ATTENTION_OFFSET_SHIFT (12) 67 68 #define ATTENTION_BB_MASK (0x00700000) 69 #define ATTENTION_BB_SHIFT (20) 70 #define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT) 71 #define ATTENTION_BB_DIFFERENT BIT(23) 72 73 #define ATTENTION_CLEAR_ENABLE BIT(28) 74 unsigned int flags; 75 76 /* Callback to call if attention will be triggered */ 77 int (*cb)(struct qed_hwfn *p_hwfn); 78 79 enum block_id block_index; 80 }; 81 82 struct aeu_invert_reg { 83 struct aeu_invert_reg_bit bits[32]; 84 }; 85 86 #define MAX_ATTN_GRPS (8) 87 #define NUM_ATTN_REGS (9) 88 89 /* Specific HW attention callbacks */ 90 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn) 91 { 92 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE); 93 94 /* This might occur on certain instances; Log it once then mask it */ 95 DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n", 96 tmp); 97 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK, 98 0xffffffff); 99 100 return 0; 101 } 102 103 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1) 104 #define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1) 105 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0) 106 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf) 107 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1) 108 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1) 109 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5) 110 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff) 111 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6) 112 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf) 113 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14) 114 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff) 115 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18) 116 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn) 117 { 118 u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 119 PSWHST_REG_INCORRECT_ACCESS_VALID); 120 121 if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) { 122 u32 addr, data, length; 123 124 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 125 PSWHST_REG_INCORRECT_ACCESS_ADDRESS); 126 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 127 PSWHST_REG_INCORRECT_ACCESS_DATA); 128 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 129 PSWHST_REG_INCORRECT_ACCESS_LENGTH); 130 131 DP_INFO(p_hwfn->cdev, 132 "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n", 133 addr, length, 134 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID), 135 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID), 136 (u8) GET_FIELD(data, 137 ATTENTION_INCORRECT_ACCESS_VF_VALID), 138 (u8) GET_FIELD(data, 139 ATTENTION_INCORRECT_ACCESS_CLIENT), 140 (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR), 141 (u8) GET_FIELD(data, 142 ATTENTION_INCORRECT_ACCESS_BYTE_EN), 143 data); 144 } 145 146 return 0; 147 } 148 149 #define QED_GRC_ATTENTION_VALID_BIT (1 << 0) 150 #define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff) 151 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0) 152 #define QED_GRC_ATTENTION_RDWR_BIT (1 << 23) 153 #define QED_GRC_ATTENTION_MASTER_MASK (0xf) 154 #define QED_GRC_ATTENTION_MASTER_SHIFT (24) 155 #define QED_GRC_ATTENTION_PF_MASK (0xf) 156 #define QED_GRC_ATTENTION_PF_SHIFT (0) 157 #define QED_GRC_ATTENTION_VF_MASK (0xff) 158 #define QED_GRC_ATTENTION_VF_SHIFT (4) 159 #define QED_GRC_ATTENTION_PRIV_MASK (0x3) 160 #define QED_GRC_ATTENTION_PRIV_SHIFT (14) 161 #define QED_GRC_ATTENTION_PRIV_VF (0) 162 static const char *attn_master_to_str(u8 master) 163 { 164 switch (master) { 165 case 1: return "PXP"; 166 case 2: return "MCP"; 167 case 3: return "MSDM"; 168 case 4: return "PSDM"; 169 case 5: return "YSDM"; 170 case 6: return "USDM"; 171 case 7: return "TSDM"; 172 case 8: return "XSDM"; 173 case 9: return "DBU"; 174 case 10: return "DMAE"; 175 default: 176 return "Unknown"; 177 } 178 } 179 180 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn) 181 { 182 u32 tmp, tmp2; 183 184 /* We've already cleared the timeout interrupt register, so we learn 185 * of interrupts via the validity register 186 */ 187 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 188 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID); 189 if (!(tmp & QED_GRC_ATTENTION_VALID_BIT)) 190 goto out; 191 192 /* Read the GRC timeout information */ 193 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 194 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0); 195 tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 196 GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1); 197 198 DP_INFO(p_hwfn->cdev, 199 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n", 200 tmp2, tmp, 201 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from", 202 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2, 203 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)), 204 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF), 205 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) == 206 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)", 207 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF)); 208 209 out: 210 /* Regardles of anything else, clean the validity bit */ 211 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, 212 GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0); 213 return 0; 214 } 215 216 #define PGLUE_ATTENTION_VALID (1 << 29) 217 #define PGLUE_ATTENTION_RD_VALID (1 << 26) 218 #define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf) 219 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20) 220 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1) 221 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19) 222 #define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff) 223 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24) 224 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1) 225 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21) 226 #define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1) 227 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22) 228 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1) 229 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23) 230 #define PGLUE_ATTENTION_ICPL_VALID (1 << 23) 231 #define PGLUE_ATTENTION_ZLR_VALID (1 << 25) 232 #define PGLUE_ATTENTION_ILT_VALID (1 << 23) 233 234 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 235 bool hw_init) 236 { 237 char msg[256]; 238 u32 tmp; 239 240 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2); 241 if (tmp & PGLUE_ATTENTION_VALID) { 242 u32 addr_lo, addr_hi, details; 243 244 addr_lo = qed_rd(p_hwfn, p_ptt, 245 PGLUE_B_REG_TX_ERR_WR_ADD_31_0); 246 addr_hi = qed_rd(p_hwfn, p_ptt, 247 PGLUE_B_REG_TX_ERR_WR_ADD_63_32); 248 details = qed_rd(p_hwfn, p_ptt, 249 PGLUE_B_REG_TX_ERR_WR_DETAILS); 250 251 snprintf(msg, sizeof(msg), 252 "Illegal write by chip to [%08x:%08x] blocked.\n" 253 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" 254 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]", 255 addr_hi, addr_lo, details, 256 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), 257 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), 258 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID), 259 tmp, 260 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR), 261 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME), 262 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN)); 263 264 if (hw_init) 265 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); 266 else 267 DP_NOTICE(p_hwfn, "%s\n", msg); 268 } 269 270 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2); 271 if (tmp & PGLUE_ATTENTION_RD_VALID) { 272 u32 addr_lo, addr_hi, details; 273 274 addr_lo = qed_rd(p_hwfn, p_ptt, 275 PGLUE_B_REG_TX_ERR_RD_ADD_31_0); 276 addr_hi = qed_rd(p_hwfn, p_ptt, 277 PGLUE_B_REG_TX_ERR_RD_ADD_63_32); 278 details = qed_rd(p_hwfn, p_ptt, 279 PGLUE_B_REG_TX_ERR_RD_DETAILS); 280 281 DP_NOTICE(p_hwfn, 282 "Illegal read by chip from [%08x:%08x] blocked.\n" 283 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n" 284 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n", 285 addr_hi, addr_lo, details, 286 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID), 287 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID), 288 GET_FIELD(details, 289 PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0, 290 tmp, 291 GET_FIELD(tmp, 292 PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0, 293 GET_FIELD(tmp, 294 PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0, 295 GET_FIELD(tmp, 296 PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0); 297 } 298 299 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL); 300 if (tmp & PGLUE_ATTENTION_ICPL_VALID) { 301 snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp); 302 303 if (hw_init) 304 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg); 305 else 306 DP_NOTICE(p_hwfn, "%s\n", msg); 307 } 308 309 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS); 310 if (tmp & PGLUE_ATTENTION_ZLR_VALID) { 311 u32 addr_hi, addr_lo; 312 313 addr_lo = qed_rd(p_hwfn, p_ptt, 314 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0); 315 addr_hi = qed_rd(p_hwfn, p_ptt, 316 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32); 317 318 DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n", 319 tmp, addr_hi, addr_lo); 320 } 321 322 tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2); 323 if (tmp & PGLUE_ATTENTION_ILT_VALID) { 324 u32 addr_hi, addr_lo, details; 325 326 addr_lo = qed_rd(p_hwfn, p_ptt, 327 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0); 328 addr_hi = qed_rd(p_hwfn, p_ptt, 329 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32); 330 details = qed_rd(p_hwfn, p_ptt, 331 PGLUE_B_REG_VF_ILT_ERR_DETAILS); 332 333 DP_NOTICE(p_hwfn, 334 "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n", 335 details, tmp, addr_hi, addr_lo); 336 } 337 338 /* Clear the indications */ 339 qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2)); 340 341 return 0; 342 } 343 344 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn) 345 { 346 return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false); 347 } 348 349 static int qed_fw_assertion(struct qed_hwfn *p_hwfn) 350 { 351 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT, 352 "FW assertion!\n"); 353 354 /* Clear assert indications */ 355 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0); 356 357 return -EINVAL; 358 } 359 360 static int qed_general_attention_35(struct qed_hwfn *p_hwfn) 361 { 362 DP_INFO(p_hwfn, "General attention 35!\n"); 363 364 return 0; 365 } 366 367 #define QED_DORQ_ATTENTION_REASON_MASK (0xfffff) 368 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff) 369 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0) 370 #define QED_DORQ_ATTENTION_SIZE_MASK (0x7f) 371 #define QED_DORQ_ATTENTION_SIZE_SHIFT (16) 372 373 #define QED_DB_REC_COUNT 1000 374 #define QED_DB_REC_INTERVAL 100 375 376 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn, 377 struct qed_ptt *p_ptt) 378 { 379 u32 count = QED_DB_REC_COUNT; 380 u32 usage = 1; 381 382 /* Flush any pending (e)dpms as they may never arrive */ 383 qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1); 384 385 /* wait for usage to zero or count to run out. This is necessary since 386 * EDPM doorbell transactions can take multiple 64b cycles, and as such 387 * can "split" over the pci. Possibly, the doorbell drop can happen with 388 * half an EDPM in the queue and other half dropped. Another EDPM 389 * doorbell to the same address (from doorbell recovery mechanism or 390 * from the doorbelling entity) could have first half dropped and second 391 * half interpreted as continuation of the first. To prevent such 392 * malformed doorbells from reaching the device, flush the queue before 393 * releasing the overflow sticky indication. 394 */ 395 while (count-- && usage) { 396 usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT); 397 udelay(QED_DB_REC_INTERVAL); 398 } 399 400 /* should have been depleted by now */ 401 if (usage) { 402 DP_NOTICE(p_hwfn->cdev, 403 "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n", 404 QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage); 405 return -EBUSY; 406 } 407 408 return 0; 409 } 410 411 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 412 { 413 u32 attn_ovfl, cur_ovfl; 414 int rc; 415 416 attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT, 417 &p_hwfn->db_recovery_info.overflow); 418 cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); 419 if (!cur_ovfl && !attn_ovfl) 420 return 0; 421 422 DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n", 423 attn_ovfl, cur_ovfl); 424 425 if (cur_ovfl && !p_hwfn->db_bar_no_edpm) { 426 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); 427 if (rc) 428 return rc; 429 } 430 431 /* Release overflow sticky indication (stop silently dropping everything) */ 432 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); 433 434 /* Repeat all last doorbells (doorbell drop recovery) */ 435 qed_db_recovery_execute(p_hwfn); 436 437 return 0; 438 } 439 440 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn) 441 { 442 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; 443 u32 overflow; 444 int rc; 445 446 overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY); 447 if (!overflow) 448 goto out; 449 450 /* Run PF doorbell recovery in next periodic handler */ 451 set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow); 452 453 if (!p_hwfn->db_bar_no_edpm) { 454 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt); 455 if (rc) 456 goto out; 457 } 458 459 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0); 460 out: 461 /* Schedule the handler even if overflow was not detected */ 462 qed_periodic_db_rec_start(p_hwfn); 463 } 464 465 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn) 466 { 467 u32 int_sts, first_drop_reason, details, address, all_drops_reason; 468 struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt; 469 470 int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS); 471 if (int_sts == 0xdeadbeaf) { 472 DP_NOTICE(p_hwfn->cdev, 473 "DORQ is being reset, skipping int_sts handler\n"); 474 475 return 0; 476 } 477 478 /* int_sts may be zero since all PFs were interrupted for doorbell 479 * overflow but another one already handled it. Can abort here. If 480 * This PF also requires overflow recovery we will be interrupted again. 481 * The masked almost full indication may also be set. Ignoring. 482 */ 483 if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) 484 return 0; 485 486 DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts); 487 488 /* check if db_drop or overflow happened */ 489 if (int_sts & (DORQ_REG_INT_STS_DB_DROP | 490 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) { 491 /* Obtain data about db drop/overflow */ 492 first_drop_reason = qed_rd(p_hwfn, p_ptt, 493 DORQ_REG_DB_DROP_REASON) & 494 QED_DORQ_ATTENTION_REASON_MASK; 495 details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS); 496 address = qed_rd(p_hwfn, p_ptt, 497 DORQ_REG_DB_DROP_DETAILS_ADDRESS); 498 all_drops_reason = qed_rd(p_hwfn, p_ptt, 499 DORQ_REG_DB_DROP_DETAILS_REASON); 500 501 /* Log info */ 502 DP_NOTICE(p_hwfn->cdev, 503 "Doorbell drop occurred\n" 504 "Address\t\t0x%08x\t(second BAR address)\n" 505 "FID\t\t0x%04x\t\t(Opaque FID)\n" 506 "Size\t\t0x%04x\t\t(in bytes)\n" 507 "1st drop reason\t0x%08x\t(details on first drop since last handling)\n" 508 "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n", 509 address, 510 GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE), 511 GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4, 512 first_drop_reason, all_drops_reason); 513 514 /* Clear the doorbell drop details and prepare for next drop */ 515 qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0); 516 517 /* Mark interrupt as handled (note: even if drop was due to a different 518 * reason than overflow we mark as handled) 519 */ 520 qed_wr(p_hwfn, 521 p_ptt, 522 DORQ_REG_INT_STS_WR, 523 DORQ_REG_INT_STS_DB_DROP | 524 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR); 525 526 /* If there are no indications other than drop indications, success */ 527 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP | 528 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR | 529 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0) 530 return 0; 531 } 532 533 /* Some other indication was present - non recoverable */ 534 DP_INFO(p_hwfn, "DORQ fatal attention\n"); 535 536 return -EINVAL; 537 } 538 539 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn) 540 { 541 if (p_hwfn->cdev->recov_in_prog) 542 return 0; 543 544 p_hwfn->db_recovery_info.dorq_attn = true; 545 qed_dorq_attn_overflow(p_hwfn); 546 547 return qed_dorq_attn_int_sts(p_hwfn); 548 } 549 550 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn) 551 { 552 if (p_hwfn->db_recovery_info.dorq_attn) 553 goto out; 554 555 /* Call DORQ callback if the attention was missed */ 556 qed_dorq_attn_cb(p_hwfn); 557 out: 558 p_hwfn->db_recovery_info.dorq_attn = false; 559 } 560 561 /* Instead of major changes to the data-structure, we have a some 'special' 562 * identifiers for sources that changed meaning between adapters. 563 */ 564 enum aeu_invert_reg_special_type { 565 AEU_INVERT_REG_SPECIAL_CNIG_0, 566 AEU_INVERT_REG_SPECIAL_CNIG_1, 567 AEU_INVERT_REG_SPECIAL_CNIG_2, 568 AEU_INVERT_REG_SPECIAL_CNIG_3, 569 AEU_INVERT_REG_SPECIAL_MAX, 570 }; 571 572 static struct aeu_invert_reg_bit 573 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = { 574 {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 575 {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 576 {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 577 {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG}, 578 }; 579 580 /* Notice aeu_invert_reg must be defined in the same order of bits as HW; */ 581 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = { 582 { 583 { /* After Invert 1 */ 584 {"GPIO0 function%d", 585 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, 586 } 587 }, 588 589 { 590 { /* After Invert 2 */ 591 {"PGLUE config_space", ATTENTION_SINGLE, 592 NULL, MAX_BLOCK_ID}, 593 {"PGLUE misc_flr", ATTENTION_SINGLE, 594 NULL, MAX_BLOCK_ID}, 595 {"PGLUE B RBC", ATTENTION_PAR_INT, 596 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B}, 597 {"PGLUE misc_mctp", ATTENTION_SINGLE, 598 NULL, MAX_BLOCK_ID}, 599 {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 600 {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 601 {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 602 {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) | 603 (1 << ATTENTION_OFFSET_SHIFT), 604 NULL, MAX_BLOCK_ID}, 605 {"PCIE glue/PXP VPD %d", 606 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS}, 607 } 608 }, 609 610 { 611 { /* After Invert 3 */ 612 {"General Attention %d", 613 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID}, 614 } 615 }, 616 617 { 618 { /* After Invert 4 */ 619 {"General Attention 32", ATTENTION_SINGLE | 620 ATTENTION_CLEAR_ENABLE, qed_fw_assertion, 621 MAX_BLOCK_ID}, 622 {"General Attention %d", 623 (2 << ATTENTION_LENGTH_SHIFT) | 624 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID}, 625 {"General Attention 35", ATTENTION_SINGLE | 626 ATTENTION_CLEAR_ENABLE, qed_general_attention_35, 627 MAX_BLOCK_ID}, 628 {"NWS Parity", 629 ATTENTION_PAR | ATTENTION_BB_DIFFERENT | 630 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0), 631 NULL, BLOCK_NWS}, 632 {"NWS Interrupt", 633 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | 634 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1), 635 NULL, BLOCK_NWS}, 636 {"NWM Parity", 637 ATTENTION_PAR | ATTENTION_BB_DIFFERENT | 638 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2), 639 NULL, BLOCK_NWM}, 640 {"NWM Interrupt", 641 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT | 642 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3), 643 NULL, BLOCK_NWM}, 644 {"MCP CPU", ATTENTION_SINGLE, 645 qed_mcp_attn_cb, MAX_BLOCK_ID}, 646 {"MCP Watchdog timer", ATTENTION_SINGLE, 647 NULL, MAX_BLOCK_ID}, 648 {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID}, 649 {"AVS stop status ready", ATTENTION_SINGLE, 650 NULL, MAX_BLOCK_ID}, 651 {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, 652 {"MSTAT per-path", ATTENTION_PAR_INT, 653 NULL, MAX_BLOCK_ID}, 654 {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT), 655 NULL, MAX_BLOCK_ID}, 656 {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG}, 657 {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB}, 658 {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB}, 659 {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB}, 660 {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS}, 661 } 662 }, 663 664 { 665 { /* After Invert 5 */ 666 {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC}, 667 {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1}, 668 {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2}, 669 {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB}, 670 {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF}, 671 {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM}, 672 {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM}, 673 {"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM}, 674 {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM}, 675 {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM}, 676 {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM}, 677 {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM}, 678 {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM}, 679 {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM}, 680 {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM}, 681 {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM}, 682 } 683 }, 684 685 { 686 { /* After Invert 6 */ 687 {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM}, 688 {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM}, 689 {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM}, 690 {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM}, 691 {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM}, 692 {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM}, 693 {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM}, 694 {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM}, 695 {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM}, 696 {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD}, 697 {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD}, 698 {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD}, 699 {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD}, 700 {"DORQ", ATTENTION_PAR_INT, 701 qed_dorq_attn_cb, BLOCK_DORQ}, 702 {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG}, 703 {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC}, 704 } 705 }, 706 707 { 708 { /* After Invert 7 */ 709 {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC}, 710 {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU}, 711 {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE}, 712 {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU}, 713 {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID}, 714 {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU}, 715 {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU}, 716 {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM}, 717 {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC}, 718 {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF}, 719 {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF}, 720 {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS}, 721 {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC}, 722 {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS}, 723 {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE}, 724 {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS}, 725 {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ}, 726 } 727 }, 728 729 { 730 { /* After Invert 8 */ 731 {"PSWRQ (pci_clk)", ATTENTION_PAR_INT, 732 NULL, BLOCK_PSWRQ2}, 733 {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR}, 734 {"PSWWR (pci_clk)", ATTENTION_PAR_INT, 735 NULL, BLOCK_PSWWR2}, 736 {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD}, 737 {"PSWRD (pci_clk)", ATTENTION_PAR_INT, 738 NULL, BLOCK_PSWRD2}, 739 {"PSWHST", ATTENTION_PAR_INT, 740 qed_pswhst_attn_cb, BLOCK_PSWHST}, 741 {"PSWHST (pci_clk)", ATTENTION_PAR_INT, 742 NULL, BLOCK_PSWHST2}, 743 {"GRC", ATTENTION_PAR_INT, 744 qed_grc_attn_cb, BLOCK_GRC}, 745 {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU}, 746 {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI}, 747 {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 748 {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 749 {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 750 {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 751 {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 752 {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID}, 753 {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS}, 754 {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE, 755 NULL, BLOCK_PGLCS}, 756 {"PERST_B assertion", ATTENTION_SINGLE, 757 NULL, MAX_BLOCK_ID}, 758 {"PERST_B deassertion", ATTENTION_SINGLE, 759 NULL, MAX_BLOCK_ID}, 760 {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT), 761 NULL, MAX_BLOCK_ID}, 762 } 763 }, 764 765 { 766 { /* After Invert 9 */ 767 {"MCP Latched memory", ATTENTION_PAR, 768 NULL, MAX_BLOCK_ID}, 769 {"MCP Latched scratchpad cache", ATTENTION_SINGLE, 770 NULL, MAX_BLOCK_ID}, 771 {"MCP Latched ump_tx", ATTENTION_PAR, 772 NULL, MAX_BLOCK_ID}, 773 {"MCP Latched scratchpad", ATTENTION_PAR, 774 NULL, MAX_BLOCK_ID}, 775 {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT), 776 NULL, MAX_BLOCK_ID}, 777 } 778 }, 779 }; 780 781 static struct aeu_invert_reg_bit * 782 qed_int_aeu_translate(struct qed_hwfn *p_hwfn, 783 struct aeu_invert_reg_bit *p_bit) 784 { 785 if (!QED_IS_BB(p_hwfn->cdev)) 786 return p_bit; 787 788 if (!(p_bit->flags & ATTENTION_BB_DIFFERENT)) 789 return p_bit; 790 791 return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >> 792 ATTENTION_BB_SHIFT]; 793 } 794 795 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn, 796 struct aeu_invert_reg_bit *p_bit) 797 { 798 return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags & 799 ATTENTION_PARITY); 800 } 801 802 #define ATTN_STATE_BITS (0xfff) 803 #define ATTN_BITS_MASKABLE (0x3ff) 804 struct qed_sb_attn_info { 805 /* Virtual & Physical address of the SB */ 806 struct atten_status_block *sb_attn; 807 dma_addr_t sb_phys; 808 809 /* Last seen running index */ 810 u16 index; 811 812 /* A mask of the AEU bits resulting in a parity error */ 813 u32 parity_mask[NUM_ATTN_REGS]; 814 815 /* A pointer to the attention description structure */ 816 struct aeu_invert_reg *p_aeu_desc; 817 818 /* Previously asserted attentions, which are still unasserted */ 819 u16 known_attn; 820 821 /* Cleanup address for the link's general hw attention */ 822 u32 mfw_attn_addr; 823 }; 824 825 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn, 826 struct qed_sb_attn_info *p_sb_desc) 827 { 828 u16 rc = 0, index; 829 830 index = le16_to_cpu(p_sb_desc->sb_attn->sb_index); 831 if (p_sb_desc->index != index) { 832 p_sb_desc->index = index; 833 rc = QED_SB_ATT_IDX; 834 } 835 836 return rc; 837 } 838 839 /** 840 * qed_int_assertion() - Handle asserted attention bits. 841 * 842 * @p_hwfn: HW device data. 843 * @asserted_bits: Newly asserted bits. 844 * 845 * Return: Zero value. 846 */ 847 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits) 848 { 849 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; 850 u32 igu_mask; 851 852 /* Mask the source of the attention in the IGU */ 853 igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); 854 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n", 855 igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE)); 856 igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE); 857 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask); 858 859 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 860 "inner known ATTN state: 0x%04x --> 0x%04x\n", 861 sb_attn_sw->known_attn, 862 sb_attn_sw->known_attn | asserted_bits); 863 sb_attn_sw->known_attn |= asserted_bits; 864 865 /* Handle MCP events */ 866 if (asserted_bits & 0x100) { 867 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt); 868 /* Clean the MCP attention */ 869 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, 870 sb_attn_sw->mfw_attn_addr, 0); 871 } 872 873 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + 874 GTT_BAR0_MAP_REG_IGU_CMD + 875 ((IGU_CMD_ATTN_BIT_SET_UPPER - 876 IGU_CMD_INT_ACK_BASE) << 3), 877 (u32)asserted_bits); 878 879 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n", 880 asserted_bits); 881 882 return 0; 883 } 884 885 static void qed_int_attn_print(struct qed_hwfn *p_hwfn, 886 enum block_id id, 887 enum dbg_attn_type type, bool b_clear) 888 { 889 struct dbg_attn_block_result attn_results; 890 enum dbg_status status; 891 892 memset(&attn_results, 0, sizeof(attn_results)); 893 894 status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type, 895 b_clear, &attn_results); 896 if (status != DBG_STATUS_OK) 897 DP_NOTICE(p_hwfn, 898 "Failed to parse attention information [status: %s]\n", 899 qed_dbg_get_status_str(status)); 900 else 901 qed_dbg_parse_attn(p_hwfn, &attn_results); 902 } 903 904 /** 905 * qed_int_deassertion_aeu_bit() - Handles the effects of a single 906 * cause of the attention. 907 * 908 * @p_hwfn: HW device data. 909 * @p_aeu: Descriptor of an AEU bit which caused the attention. 910 * @aeu_en_reg: Register offset of the AEU enable reg. which configured 911 * this bit to this group. 912 * @p_bit_name: AEU bit description for logging purposes. 913 * @bitmask: Index of this bit in the aeu_en_reg. 914 * 915 * Return: Zero on success, negative errno otherwise. 916 */ 917 static int 918 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn, 919 struct aeu_invert_reg_bit *p_aeu, 920 u32 aeu_en_reg, 921 const char *p_bit_name, u32 bitmask) 922 { 923 bool b_fatal = false; 924 int rc = -EINVAL; 925 u32 val; 926 927 DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n", 928 p_bit_name, bitmask); 929 930 /* Call callback before clearing the interrupt status */ 931 if (p_aeu->cb) { 932 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n", 933 p_bit_name); 934 rc = p_aeu->cb(p_hwfn); 935 } 936 937 if (rc) 938 b_fatal = true; 939 940 /* Print HW block interrupt registers */ 941 if (p_aeu->block_index != MAX_BLOCK_ID) 942 qed_int_attn_print(p_hwfn, p_aeu->block_index, 943 ATTN_TYPE_INTERRUPT, !b_fatal); 944 945 /* Reach assertion if attention is fatal */ 946 if (b_fatal) 947 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN, 948 "`%s': Fatal attention\n", 949 p_bit_name); 950 else /* If the attention is benign, no need to prevent it */ 951 goto out; 952 953 /* Prevent this Attention from being asserted in the future */ 954 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); 955 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask)); 956 DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n", 957 p_bit_name); 958 959 /* Re-enable FW aassertion (Gen 32) interrupts */ 960 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 961 MISC_REG_AEU_ENABLE4_IGU_OUT_0); 962 val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32; 963 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, 964 MISC_REG_AEU_ENABLE4_IGU_OUT_0, val); 965 966 out: 967 return rc; 968 } 969 970 /** 971 * qed_int_deassertion_parity() - Handle a single parity AEU source. 972 * 973 * @p_hwfn: HW device data. 974 * @p_aeu: Descriptor of an AEU bit which caused the parity. 975 * @aeu_en_reg: Address of the AEU enable register. 976 * @bit_index: Index (0-31) of an AEU bit. 977 */ 978 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn, 979 struct aeu_invert_reg_bit *p_aeu, 980 u32 aeu_en_reg, u8 bit_index) 981 { 982 u32 block_id = p_aeu->block_index, mask, val; 983 984 DP_NOTICE(p_hwfn->cdev, 985 "%s parity attention is set [address 0x%08x, bit %d]\n", 986 p_aeu->bit_name, aeu_en_reg, bit_index); 987 988 if (block_id != MAX_BLOCK_ID) { 989 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false); 990 991 /* In BB, there's a single parity bit for several blocks */ 992 if (block_id == BLOCK_BTB) { 993 qed_int_attn_print(p_hwfn, BLOCK_OPTE, 994 ATTN_TYPE_PARITY, false); 995 qed_int_attn_print(p_hwfn, BLOCK_MCP, 996 ATTN_TYPE_PARITY, false); 997 } 998 } 999 1000 /* Prevent this parity error from being re-asserted */ 1001 mask = ~BIT(bit_index); 1002 val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg); 1003 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask); 1004 DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n", 1005 p_aeu->bit_name); 1006 } 1007 1008 /** 1009 * qed_int_deassertion() - Handle deassertion of previously asserted 1010 * attentions. 1011 * 1012 * @p_hwfn: HW device data. 1013 * @deasserted_bits: newly deasserted bits. 1014 * 1015 * Return: Zero value. 1016 */ 1017 static int qed_int_deassertion(struct qed_hwfn *p_hwfn, 1018 u16 deasserted_bits) 1019 { 1020 struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn; 1021 u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en; 1022 u8 i, j, k, bit_idx; 1023 int rc = 0; 1024 1025 /* Read the attention registers in the AEU */ 1026 for (i = 0; i < NUM_ATTN_REGS; i++) { 1027 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, 1028 MISC_REG_AEU_AFTER_INVERT_1_IGU + 1029 i * 0x4); 1030 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1031 "Deasserted bits [%d]: %08x\n", 1032 i, aeu_inv_arr[i]); 1033 } 1034 1035 /* Find parity attentions first */ 1036 for (i = 0; i < NUM_ATTN_REGS; i++) { 1037 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i]; 1038 u32 parities; 1039 1040 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32); 1041 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); 1042 1043 /* Skip register in which no parity bit is currently set */ 1044 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en; 1045 if (!parities) 1046 continue; 1047 1048 for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { 1049 struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j]; 1050 1051 if (qed_int_is_parity_flag(p_hwfn, p_bit) && 1052 !!(parities & BIT(bit_idx))) 1053 qed_int_deassertion_parity(p_hwfn, p_bit, 1054 aeu_en, bit_idx); 1055 1056 bit_idx += ATTENTION_LENGTH(p_bit->flags); 1057 } 1058 } 1059 1060 /* Find non-parity cause for attention and act */ 1061 for (k = 0; k < MAX_ATTN_GRPS; k++) { 1062 struct aeu_invert_reg_bit *p_aeu; 1063 1064 /* Handle only groups whose attention is currently deasserted */ 1065 if (!(deasserted_bits & (1 << k))) 1066 continue; 1067 1068 for (i = 0; i < NUM_ATTN_REGS; i++) { 1069 u32 bits; 1070 1071 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + 1072 i * sizeof(u32) + 1073 k * sizeof(u32) * NUM_ATTN_REGS; 1074 1075 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en); 1076 bits = aeu_inv_arr[i] & en; 1077 1078 /* Skip if no bit from this group is currently set */ 1079 if (!bits) 1080 continue; 1081 1082 /* Find all set bits from current register which belong 1083 * to current group, making them responsible for the 1084 * previous assertion. 1085 */ 1086 for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) { 1087 long unsigned int bitmask; 1088 u8 bit, bit_len; 1089 1090 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j]; 1091 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu); 1092 1093 bit = bit_idx; 1094 bit_len = ATTENTION_LENGTH(p_aeu->flags); 1095 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) { 1096 /* Skip Parity */ 1097 bit++; 1098 bit_len--; 1099 } 1100 1101 bitmask = bits & (((1 << bit_len) - 1) << bit); 1102 bitmask >>= bit; 1103 1104 if (bitmask) { 1105 u32 flags = p_aeu->flags; 1106 char bit_name[30]; 1107 u8 num; 1108 1109 num = (u8)find_first_bit(&bitmask, 1110 bit_len); 1111 1112 /* Some bits represent more than a 1113 * single interrupt. Correctly print 1114 * their name. 1115 */ 1116 if (ATTENTION_LENGTH(flags) > 2 || 1117 ((flags & ATTENTION_PAR_INT) && 1118 ATTENTION_LENGTH(flags) > 1)) 1119 snprintf(bit_name, 30, 1120 p_aeu->bit_name, num); 1121 else 1122 strlcpy(bit_name, 1123 p_aeu->bit_name, 30); 1124 1125 /* We now need to pass bitmask in its 1126 * correct position. 1127 */ 1128 bitmask <<= bit; 1129 1130 /* Handle source of the attention */ 1131 qed_int_deassertion_aeu_bit(p_hwfn, 1132 p_aeu, 1133 aeu_en, 1134 bit_name, 1135 bitmask); 1136 } 1137 1138 bit_idx += ATTENTION_LENGTH(p_aeu->flags); 1139 } 1140 } 1141 } 1142 1143 /* Handle missed DORQ attention */ 1144 qed_dorq_attn_handler(p_hwfn); 1145 1146 /* Clear IGU indication for the deasserted bits */ 1147 DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview + 1148 GTT_BAR0_MAP_REG_IGU_CMD + 1149 ((IGU_CMD_ATTN_BIT_CLR_UPPER - 1150 IGU_CMD_INT_ACK_BASE) << 3), 1151 ~((u32)deasserted_bits)); 1152 1153 /* Unmask deasserted attentions in IGU */ 1154 aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE); 1155 aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE); 1156 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask); 1157 1158 /* Clear deassertion from inner state */ 1159 sb_attn_sw->known_attn &= ~deasserted_bits; 1160 1161 return rc; 1162 } 1163 1164 static int qed_int_attentions(struct qed_hwfn *p_hwfn) 1165 { 1166 struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn; 1167 struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn; 1168 u32 attn_bits = 0, attn_acks = 0; 1169 u16 asserted_bits, deasserted_bits; 1170 __le16 index; 1171 int rc = 0; 1172 1173 /* Read current attention bits/acks - safeguard against attentions 1174 * by guaranting work on a synchronized timeframe 1175 */ 1176 do { 1177 index = p_sb_attn->sb_index; 1178 /* finish reading index before the loop condition */ 1179 dma_rmb(); 1180 attn_bits = le32_to_cpu(p_sb_attn->atten_bits); 1181 attn_acks = le32_to_cpu(p_sb_attn->atten_ack); 1182 } while (index != p_sb_attn->sb_index); 1183 p_sb_attn->sb_index = index; 1184 1185 /* Attention / Deassertion are meaningful (and in correct state) 1186 * only when they differ and consistent with known state - deassertion 1187 * when previous attention & current ack, and assertion when current 1188 * attention with no previous attention 1189 */ 1190 asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) & 1191 ~p_sb_attn_sw->known_attn; 1192 deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) & 1193 p_sb_attn_sw->known_attn; 1194 1195 if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) { 1196 DP_INFO(p_hwfn, 1197 "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n", 1198 index, attn_bits, attn_acks, asserted_bits, 1199 deasserted_bits, p_sb_attn_sw->known_attn); 1200 } else if (asserted_bits == 0x100) { 1201 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1202 "MFW indication via attention\n"); 1203 } else { 1204 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1205 "MFW indication [deassertion]\n"); 1206 } 1207 1208 if (asserted_bits) { 1209 rc = qed_int_assertion(p_hwfn, asserted_bits); 1210 if (rc) 1211 return rc; 1212 } 1213 1214 if (deasserted_bits) 1215 rc = qed_int_deassertion(p_hwfn, deasserted_bits); 1216 1217 return rc; 1218 } 1219 1220 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn, 1221 void __iomem *igu_addr, u32 ack_cons) 1222 { 1223 u32 igu_ack; 1224 1225 igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) | 1226 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) | 1227 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) | 1228 (IGU_SEG_ACCESS_ATTN << 1229 IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT)); 1230 1231 DIRECT_REG_WR(igu_addr, igu_ack); 1232 1233 /* Both segments (interrupts & acks) are written to same place address; 1234 * Need to guarantee all commands will be received (in-order) by HW. 1235 */ 1236 barrier(); 1237 } 1238 1239 void qed_int_sp_dpc(struct tasklet_struct *t) 1240 { 1241 struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc); 1242 struct qed_pi_info *pi_info = NULL; 1243 struct qed_sb_attn_info *sb_attn; 1244 struct qed_sb_info *sb_info; 1245 int arr_size; 1246 u16 rc = 0; 1247 1248 if (!p_hwfn->p_sp_sb) { 1249 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n"); 1250 return; 1251 } 1252 1253 sb_info = &p_hwfn->p_sp_sb->sb_info; 1254 arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr); 1255 if (!sb_info) { 1256 DP_ERR(p_hwfn->cdev, 1257 "Status block is NULL - cannot ack interrupts\n"); 1258 return; 1259 } 1260 1261 if (!p_hwfn->p_sb_attn) { 1262 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn"); 1263 return; 1264 } 1265 sb_attn = p_hwfn->p_sb_attn; 1266 1267 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n", 1268 p_hwfn, p_hwfn->my_id); 1269 1270 /* Disable ack for def status block. Required both for msix + 1271 * inta in non-mask mode, in inta does no harm. 1272 */ 1273 qed_sb_ack(sb_info, IGU_INT_DISABLE, 0); 1274 1275 /* Gather Interrupts/Attentions information */ 1276 if (!sb_info->sb_virt) { 1277 DP_ERR(p_hwfn->cdev, 1278 "Interrupt Status block is NULL - cannot check for new interrupts!\n"); 1279 } else { 1280 u32 tmp_index = sb_info->sb_ack; 1281 1282 rc = qed_sb_update_sb_idx(sb_info); 1283 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, 1284 "Interrupt indices: 0x%08x --> 0x%08x\n", 1285 tmp_index, sb_info->sb_ack); 1286 } 1287 1288 if (!sb_attn || !sb_attn->sb_attn) { 1289 DP_ERR(p_hwfn->cdev, 1290 "Attentions Status block is NULL - cannot check for new attentions!\n"); 1291 } else { 1292 u16 tmp_index = sb_attn->index; 1293 1294 rc |= qed_attn_update_idx(p_hwfn, sb_attn); 1295 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR, 1296 "Attention indices: 0x%08x --> 0x%08x\n", 1297 tmp_index, sb_attn->index); 1298 } 1299 1300 /* Check if we expect interrupts at this time. if not just ack them */ 1301 if (!(rc & QED_SB_EVENT_MASK)) { 1302 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); 1303 return; 1304 } 1305 1306 /* Check the validity of the DPC ptt. If not ack interrupts and fail */ 1307 if (!p_hwfn->p_dpc_ptt) { 1308 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n"); 1309 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); 1310 return; 1311 } 1312 1313 if (rc & QED_SB_ATT_IDX) 1314 qed_int_attentions(p_hwfn); 1315 1316 if (rc & QED_SB_IDX) { 1317 int pi; 1318 1319 /* Look for a free index */ 1320 for (pi = 0; pi < arr_size; pi++) { 1321 pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi]; 1322 if (pi_info->comp_cb) 1323 pi_info->comp_cb(p_hwfn, pi_info->cookie); 1324 } 1325 } 1326 1327 if (sb_attn && (rc & QED_SB_ATT_IDX)) 1328 /* This should be done before the interrupts are enabled, 1329 * since otherwise a new attention will be generated. 1330 */ 1331 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index); 1332 1333 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1); 1334 } 1335 1336 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn) 1337 { 1338 struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn; 1339 1340 if (!p_sb) 1341 return; 1342 1343 if (p_sb->sb_attn) 1344 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 1345 SB_ATTN_ALIGNED_SIZE(p_hwfn), 1346 p_sb->sb_attn, p_sb->sb_phys); 1347 kfree(p_sb); 1348 p_hwfn->p_sb_attn = NULL; 1349 } 1350 1351 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn, 1352 struct qed_ptt *p_ptt) 1353 { 1354 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; 1355 1356 memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn)); 1357 1358 sb_info->index = 0; 1359 sb_info->known_attn = 0; 1360 1361 /* Configure Attention Status Block in IGU */ 1362 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L, 1363 lower_32_bits(p_hwfn->p_sb_attn->sb_phys)); 1364 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H, 1365 upper_32_bits(p_hwfn->p_sb_attn->sb_phys)); 1366 } 1367 1368 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn, 1369 struct qed_ptt *p_ptt, 1370 void *sb_virt_addr, dma_addr_t sb_phy_addr) 1371 { 1372 struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn; 1373 int i, j, k; 1374 1375 sb_info->sb_attn = sb_virt_addr; 1376 sb_info->sb_phys = sb_phy_addr; 1377 1378 /* Set the pointer to the AEU descriptors */ 1379 sb_info->p_aeu_desc = aeu_descs; 1380 1381 /* Calculate Parity Masks */ 1382 memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS); 1383 for (i = 0; i < NUM_ATTN_REGS; i++) { 1384 /* j is array index, k is bit index */ 1385 for (j = 0, k = 0; k < 32 && j < 32; j++) { 1386 struct aeu_invert_reg_bit *p_aeu; 1387 1388 p_aeu = &aeu_descs[i].bits[j]; 1389 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) 1390 sb_info->parity_mask[i] |= 1 << k; 1391 1392 k += ATTENTION_LENGTH(p_aeu->flags); 1393 } 1394 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1395 "Attn Mask [Reg %d]: 0x%08x\n", 1396 i, sb_info->parity_mask[i]); 1397 } 1398 1399 /* Set the address of cleanup for the mcp attention */ 1400 sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) + 1401 MISC_REG_AEU_GENERAL_ATTN_0; 1402 1403 qed_int_sb_attn_setup(p_hwfn, p_ptt); 1404 } 1405 1406 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn, 1407 struct qed_ptt *p_ptt) 1408 { 1409 struct qed_dev *cdev = p_hwfn->cdev; 1410 struct qed_sb_attn_info *p_sb; 1411 dma_addr_t p_phys = 0; 1412 void *p_virt; 1413 1414 /* SB struct */ 1415 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); 1416 if (!p_sb) 1417 return -ENOMEM; 1418 1419 /* SB ring */ 1420 p_virt = dma_alloc_coherent(&cdev->pdev->dev, 1421 SB_ATTN_ALIGNED_SIZE(p_hwfn), 1422 &p_phys, GFP_KERNEL); 1423 1424 if (!p_virt) { 1425 kfree(p_sb); 1426 return -ENOMEM; 1427 } 1428 1429 /* Attention setup */ 1430 p_hwfn->p_sb_attn = p_sb; 1431 qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys); 1432 1433 return 0; 1434 } 1435 1436 /* coalescing timeout = timeset << (timer_res + 1) */ 1437 #define QED_CAU_DEF_RX_USECS 24 1438 #define QED_CAU_DEF_TX_USECS 48 1439 1440 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn, 1441 struct cau_sb_entry *p_sb_entry, 1442 u8 pf_id, u16 vf_number, u8 vf_valid) 1443 { 1444 struct qed_dev *cdev = p_hwfn->cdev; 1445 u32 cau_state, params = 0, data = 0; 1446 u8 timer_res; 1447 1448 memset(p_sb_entry, 0, sizeof(*p_sb_entry)); 1449 1450 SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id); 1451 SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number); 1452 SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid); 1453 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F); 1454 SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F); 1455 1456 cau_state = CAU_HC_DISABLE_STATE; 1457 1458 if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { 1459 cau_state = CAU_HC_ENABLE_STATE; 1460 if (!cdev->rx_coalesce_usecs) 1461 cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS; 1462 if (!cdev->tx_coalesce_usecs) 1463 cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS; 1464 } 1465 1466 /* Coalesce = (timeset << timer-res), timeset is 7bit wide */ 1467 if (cdev->rx_coalesce_usecs <= 0x7F) 1468 timer_res = 0; 1469 else if (cdev->rx_coalesce_usecs <= 0xFF) 1470 timer_res = 1; 1471 else 1472 timer_res = 2; 1473 1474 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); 1475 1476 if (cdev->tx_coalesce_usecs <= 0x7F) 1477 timer_res = 0; 1478 else if (cdev->tx_coalesce_usecs <= 0xFF) 1479 timer_res = 1; 1480 else 1481 timer_res = 2; 1482 1483 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); 1484 p_sb_entry->params = cpu_to_le32(params); 1485 1486 SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state); 1487 SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state); 1488 p_sb_entry->data = cpu_to_le32(data); 1489 } 1490 1491 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn, 1492 struct qed_ptt *p_ptt, 1493 u16 igu_sb_id, 1494 u32 pi_index, 1495 enum qed_coalescing_fsm coalescing_fsm, 1496 u8 timeset) 1497 { 1498 u32 sb_offset, pi_offset; 1499 u32 prod = 0; 1500 1501 if (IS_VF(p_hwfn->cdev)) 1502 return; 1503 1504 SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset); 1505 if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE) 1506 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0); 1507 else 1508 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1); 1509 1510 sb_offset = igu_sb_id * PIS_PER_SB; 1511 pi_offset = sb_offset + pi_index; 1512 1513 if (p_hwfn->hw_init_done) 1514 qed_wr(p_hwfn, p_ptt, 1515 CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod); 1516 else 1517 STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset, 1518 prod); 1519 } 1520 1521 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn, 1522 struct qed_ptt *p_ptt, 1523 dma_addr_t sb_phys, 1524 u16 igu_sb_id, u16 vf_number, u8 vf_valid) 1525 { 1526 struct cau_sb_entry sb_entry; 1527 1528 qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id, 1529 vf_number, vf_valid); 1530 1531 if (p_hwfn->hw_init_done) { 1532 /* Wide-bus, initialize via DMAE */ 1533 u64 phys_addr = (u64)sb_phys; 1534 1535 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr, 1536 CAU_REG_SB_ADDR_MEMORY + 1537 igu_sb_id * sizeof(u64), 2, NULL); 1538 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry, 1539 CAU_REG_SB_VAR_MEMORY + 1540 igu_sb_id * sizeof(u64), 2, NULL); 1541 } else { 1542 /* Initialize Status Block Address */ 1543 STORE_RT_REG_AGG(p_hwfn, 1544 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET + 1545 igu_sb_id * 2, 1546 sb_phys); 1547 1548 STORE_RT_REG_AGG(p_hwfn, 1549 CAU_REG_SB_VAR_MEMORY_RT_OFFSET + 1550 igu_sb_id * 2, 1551 sb_entry); 1552 } 1553 1554 /* Configure pi coalescing if set */ 1555 if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) { 1556 u8 num_tc = p_hwfn->hw_info.num_hw_tc; 1557 u8 timeset, timer_res; 1558 u8 i; 1559 1560 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */ 1561 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F) 1562 timer_res = 0; 1563 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF) 1564 timer_res = 1; 1565 else 1566 timer_res = 2; 1567 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res); 1568 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI, 1569 QED_COAL_RX_STATE_MACHINE, timeset); 1570 1571 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F) 1572 timer_res = 0; 1573 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF) 1574 timer_res = 1; 1575 else 1576 timer_res = 2; 1577 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res); 1578 for (i = 0; i < num_tc; i++) { 1579 qed_int_cau_conf_pi(p_hwfn, p_ptt, 1580 igu_sb_id, TX_PI(i), 1581 QED_COAL_TX_STATE_MACHINE, 1582 timeset); 1583 } 1584 } 1585 } 1586 1587 void qed_int_sb_setup(struct qed_hwfn *p_hwfn, 1588 struct qed_ptt *p_ptt, struct qed_sb_info *sb_info) 1589 { 1590 /* zero status block and ack counter */ 1591 sb_info->sb_ack = 0; 1592 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); 1593 1594 if (IS_PF(p_hwfn->cdev)) 1595 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys, 1596 sb_info->igu_sb_id, 0, 0); 1597 } 1598 1599 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf) 1600 { 1601 struct qed_igu_block *p_block; 1602 u16 igu_id; 1603 1604 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 1605 igu_id++) { 1606 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; 1607 1608 if (!(p_block->status & QED_IGU_STATUS_VALID) || 1609 !(p_block->status & QED_IGU_STATUS_FREE)) 1610 continue; 1611 1612 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf) 1613 return p_block; 1614 } 1615 1616 return NULL; 1617 } 1618 1619 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id) 1620 { 1621 struct qed_igu_block *p_block; 1622 u16 igu_id; 1623 1624 for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); 1625 igu_id++) { 1626 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id]; 1627 1628 if (!(p_block->status & QED_IGU_STATUS_VALID) || 1629 !p_block->is_pf || 1630 p_block->vector_number != vector_id) 1631 continue; 1632 1633 return igu_id; 1634 } 1635 1636 return QED_SB_INVALID_IDX; 1637 } 1638 1639 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id) 1640 { 1641 u16 igu_sb_id; 1642 1643 /* Assuming continuous set of IGU SBs dedicated for given PF */ 1644 if (sb_id == QED_SP_SB_ID) 1645 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id; 1646 else if (IS_PF(p_hwfn->cdev)) 1647 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1); 1648 else 1649 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id); 1650 1651 if (sb_id == QED_SP_SB_ID) 1652 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1653 "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id); 1654 else 1655 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1656 "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id); 1657 1658 return igu_sb_id; 1659 } 1660 1661 int qed_int_sb_init(struct qed_hwfn *p_hwfn, 1662 struct qed_ptt *p_ptt, 1663 struct qed_sb_info *sb_info, 1664 void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id) 1665 { 1666 sb_info->sb_virt = sb_virt_addr; 1667 sb_info->sb_phys = sb_phy_addr; 1668 1669 sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id); 1670 1671 if (sb_id != QED_SP_SB_ID) { 1672 if (IS_PF(p_hwfn->cdev)) { 1673 struct qed_igu_info *p_info; 1674 struct qed_igu_block *p_block; 1675 1676 p_info = p_hwfn->hw_info.p_igu_info; 1677 p_block = &p_info->entry[sb_info->igu_sb_id]; 1678 1679 p_block->sb_info = sb_info; 1680 p_block->status &= ~QED_IGU_STATUS_FREE; 1681 p_info->usage.free_cnt--; 1682 } else { 1683 qed_vf_set_sb_info(p_hwfn, sb_id, sb_info); 1684 } 1685 } 1686 1687 sb_info->cdev = p_hwfn->cdev; 1688 1689 /* The igu address will hold the absolute address that needs to be 1690 * written to for a specific status block 1691 */ 1692 if (IS_PF(p_hwfn->cdev)) { 1693 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + 1694 GTT_BAR0_MAP_REG_IGU_CMD + 1695 (sb_info->igu_sb_id << 3); 1696 } else { 1697 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview + 1698 PXP_VF_BAR0_START_IGU + 1699 ((IGU_CMD_INT_ACK_BASE + 1700 sb_info->igu_sb_id) << 3); 1701 } 1702 1703 sb_info->flags |= QED_SB_INFO_INIT; 1704 1705 qed_int_sb_setup(p_hwfn, p_ptt, sb_info); 1706 1707 return 0; 1708 } 1709 1710 int qed_int_sb_release(struct qed_hwfn *p_hwfn, 1711 struct qed_sb_info *sb_info, u16 sb_id) 1712 { 1713 struct qed_igu_block *p_block; 1714 struct qed_igu_info *p_info; 1715 1716 if (!sb_info) 1717 return 0; 1718 1719 /* zero status block and ack counter */ 1720 sb_info->sb_ack = 0; 1721 memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt)); 1722 1723 if (IS_VF(p_hwfn->cdev)) { 1724 qed_vf_set_sb_info(p_hwfn, sb_id, NULL); 1725 return 0; 1726 } 1727 1728 p_info = p_hwfn->hw_info.p_igu_info; 1729 p_block = &p_info->entry[sb_info->igu_sb_id]; 1730 1731 /* Vector 0 is reserved to Default SB */ 1732 if (!p_block->vector_number) { 1733 DP_ERR(p_hwfn, "Do Not free sp sb using this function"); 1734 return -EINVAL; 1735 } 1736 1737 /* Lose reference to client's SB info, and fix counters */ 1738 p_block->sb_info = NULL; 1739 p_block->status |= QED_IGU_STATUS_FREE; 1740 p_info->usage.free_cnt++; 1741 1742 return 0; 1743 } 1744 1745 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn) 1746 { 1747 struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb; 1748 1749 if (!p_sb) 1750 return; 1751 1752 if (p_sb->sb_info.sb_virt) 1753 dma_free_coherent(&p_hwfn->cdev->pdev->dev, 1754 SB_ALIGNED_SIZE(p_hwfn), 1755 p_sb->sb_info.sb_virt, 1756 p_sb->sb_info.sb_phys); 1757 kfree(p_sb); 1758 p_hwfn->p_sp_sb = NULL; 1759 } 1760 1761 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1762 { 1763 struct qed_sb_sp_info *p_sb; 1764 dma_addr_t p_phys = 0; 1765 void *p_virt; 1766 1767 /* SB struct */ 1768 p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL); 1769 if (!p_sb) 1770 return -ENOMEM; 1771 1772 /* SB ring */ 1773 p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, 1774 SB_ALIGNED_SIZE(p_hwfn), 1775 &p_phys, GFP_KERNEL); 1776 if (!p_virt) { 1777 kfree(p_sb); 1778 return -ENOMEM; 1779 } 1780 1781 /* Status Block setup */ 1782 p_hwfn->p_sp_sb = p_sb; 1783 qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt, 1784 p_phys, QED_SP_SB_ID); 1785 1786 memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr)); 1787 1788 return 0; 1789 } 1790 1791 int qed_int_register_cb(struct qed_hwfn *p_hwfn, 1792 qed_int_comp_cb_t comp_cb, 1793 void *cookie, u8 *sb_idx, __le16 **p_fw_cons) 1794 { 1795 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; 1796 int rc = -ENOMEM; 1797 u8 pi; 1798 1799 /* Look for a free index */ 1800 for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) { 1801 if (p_sp_sb->pi_info_arr[pi].comp_cb) 1802 continue; 1803 1804 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb; 1805 p_sp_sb->pi_info_arr[pi].cookie = cookie; 1806 *sb_idx = pi; 1807 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi]; 1808 rc = 0; 1809 break; 1810 } 1811 1812 return rc; 1813 } 1814 1815 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi) 1816 { 1817 struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb; 1818 1819 if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL) 1820 return -ENOMEM; 1821 1822 p_sp_sb->pi_info_arr[pi].comp_cb = NULL; 1823 p_sp_sb->pi_info_arr[pi].cookie = NULL; 1824 1825 return 0; 1826 } 1827 1828 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn) 1829 { 1830 return p_hwfn->p_sp_sb->sb_info.igu_sb_id; 1831 } 1832 1833 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn, 1834 struct qed_ptt *p_ptt, enum qed_int_mode int_mode) 1835 { 1836 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN; 1837 1838 p_hwfn->cdev->int_mode = int_mode; 1839 switch (p_hwfn->cdev->int_mode) { 1840 case QED_INT_MODE_INTA: 1841 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN; 1842 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 1843 break; 1844 1845 case QED_INT_MODE_MSI: 1846 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; 1847 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 1848 break; 1849 1850 case QED_INT_MODE_MSIX: 1851 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN; 1852 break; 1853 case QED_INT_MODE_POLL: 1854 break; 1855 } 1856 1857 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf); 1858 } 1859 1860 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn, 1861 struct qed_ptt *p_ptt) 1862 { 1863 1864 /* Configure AEU signal change to produce attentions */ 1865 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0); 1866 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff); 1867 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff); 1868 qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff); 1869 1870 /* Unmask AEU signals toward IGU */ 1871 qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff); 1872 } 1873 1874 int 1875 qed_int_igu_enable(struct qed_hwfn *p_hwfn, 1876 struct qed_ptt *p_ptt, enum qed_int_mode int_mode) 1877 { 1878 int rc = 0; 1879 1880 qed_int_igu_enable_attn(p_hwfn, p_ptt); 1881 1882 if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) { 1883 rc = qed_slowpath_irq_req(p_hwfn); 1884 if (rc) { 1885 DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n"); 1886 return -EINVAL; 1887 } 1888 p_hwfn->b_int_requested = true; 1889 } 1890 /* Enable interrupt Generation */ 1891 qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode); 1892 p_hwfn->b_int_enabled = 1; 1893 1894 return rc; 1895 } 1896 1897 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 1898 { 1899 p_hwfn->b_int_enabled = 0; 1900 1901 if (IS_VF(p_hwfn->cdev)) 1902 return; 1903 1904 qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0); 1905 } 1906 1907 #define IGU_CLEANUP_SLEEP_LENGTH (1000) 1908 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn, 1909 struct qed_ptt *p_ptt, 1910 u16 igu_sb_id, 1911 bool cleanup_set, u16 opaque_fid) 1912 { 1913 u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0; 1914 u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id; 1915 u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH; 1916 1917 /* Set the data field */ 1918 SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0); 1919 SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0); 1920 SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET); 1921 1922 /* Set the control register */ 1923 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr); 1924 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid); 1925 SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR); 1926 1927 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data); 1928 1929 barrier(); 1930 1931 qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl); 1932 1933 /* calculate where to read the status bit from */ 1934 sb_bit = 1 << (igu_sb_id % 32); 1935 sb_bit_addr = igu_sb_id / 32 * sizeof(u32); 1936 1937 sb_bit_addr += IGU_REG_CLEANUP_STATUS_0; 1938 1939 /* Now wait for the command to complete */ 1940 do { 1941 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr); 1942 1943 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0)) 1944 break; 1945 1946 usleep_range(5000, 10000); 1947 } while (--sleep_cnt); 1948 1949 if (!sleep_cnt) 1950 DP_NOTICE(p_hwfn, 1951 "Timeout waiting for clear status 0x%08x [for sb %d]\n", 1952 val, igu_sb_id); 1953 } 1954 1955 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn, 1956 struct qed_ptt *p_ptt, 1957 u16 igu_sb_id, u16 opaque, bool b_set) 1958 { 1959 struct qed_igu_block *p_block; 1960 int pi, i; 1961 1962 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; 1963 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 1964 "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n", 1965 igu_sb_id, 1966 p_block->function_id, 1967 p_block->is_pf, p_block->vector_number); 1968 1969 /* Set */ 1970 if (b_set) 1971 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque); 1972 1973 /* Clear */ 1974 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque); 1975 1976 /* Wait for the IGU SB to cleanup */ 1977 for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) { 1978 u32 val; 1979 1980 val = qed_rd(p_hwfn, p_ptt, 1981 IGU_REG_WRITE_DONE_PENDING + 1982 ((igu_sb_id / 32) * 4)); 1983 if (val & BIT((igu_sb_id % 32))) 1984 usleep_range(10, 20); 1985 else 1986 break; 1987 } 1988 if (i == IGU_CLEANUP_SLEEP_LENGTH) 1989 DP_NOTICE(p_hwfn, 1990 "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n", 1991 igu_sb_id); 1992 1993 /* Clear the CAU for the SB */ 1994 for (pi = 0; pi < 12; pi++) 1995 qed_wr(p_hwfn, p_ptt, 1996 CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0); 1997 } 1998 1999 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn, 2000 struct qed_ptt *p_ptt, 2001 bool b_set, bool b_slowpath) 2002 { 2003 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 2004 struct qed_igu_block *p_block; 2005 u16 igu_sb_id = 0; 2006 u32 val = 0; 2007 2008 val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION); 2009 val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN; 2010 val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN; 2011 qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val); 2012 2013 for (igu_sb_id = 0; 2014 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { 2015 p_block = &p_info->entry[igu_sb_id]; 2016 2017 if (!(p_block->status & QED_IGU_STATUS_VALID) || 2018 !p_block->is_pf || 2019 (p_block->status & QED_IGU_STATUS_DSB)) 2020 continue; 2021 2022 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id, 2023 p_hwfn->hw_info.opaque_fid, 2024 b_set); 2025 } 2026 2027 if (b_slowpath) 2028 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, 2029 p_info->igu_dsb_id, 2030 p_hwfn->hw_info.opaque_fid, 2031 b_set); 2032 } 2033 2034 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2035 { 2036 struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info; 2037 struct qed_igu_block *p_block; 2038 int pf_sbs, vf_sbs; 2039 u16 igu_sb_id; 2040 u32 val, rval; 2041 2042 if (!RESC_NUM(p_hwfn, QED_SB)) { 2043 p_info->b_allow_pf_vf_change = false; 2044 } else { 2045 /* Use the numbers the MFW have provided - 2046 * don't forget MFW accounts for the default SB as well. 2047 */ 2048 p_info->b_allow_pf_vf_change = true; 2049 2050 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) { 2051 DP_INFO(p_hwfn, 2052 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n", 2053 RESC_NUM(p_hwfn, QED_SB) - 1, 2054 p_info->usage.cnt); 2055 p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1; 2056 } 2057 2058 if (IS_PF_SRIOV(p_hwfn)) { 2059 u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs; 2060 2061 if (vfs != p_info->usage.iov_cnt) 2062 DP_VERBOSE(p_hwfn, 2063 NETIF_MSG_INTR, 2064 "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n", 2065 p_info->usage.iov_cnt, vfs); 2066 2067 /* At this point we know how many SBs we have totally 2068 * in IGU + number of PF SBs. So we can validate that 2069 * we'd have sufficient for VF. 2070 */ 2071 if (vfs > p_info->usage.free_cnt + 2072 p_info->usage.free_cnt_iov - p_info->usage.cnt) { 2073 DP_NOTICE(p_hwfn, 2074 "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n", 2075 p_info->usage.free_cnt + 2076 p_info->usage.free_cnt_iov, 2077 p_info->usage.cnt, vfs); 2078 return -EINVAL; 2079 } 2080 2081 /* Currently cap the number of VFs SBs by the 2082 * number of VFs. 2083 */ 2084 p_info->usage.iov_cnt = vfs; 2085 } 2086 } 2087 2088 /* Mark all SBs as free, now in the right PF/VFs division */ 2089 p_info->usage.free_cnt = p_info->usage.cnt; 2090 p_info->usage.free_cnt_iov = p_info->usage.iov_cnt; 2091 p_info->usage.orig = p_info->usage.cnt; 2092 p_info->usage.iov_orig = p_info->usage.iov_cnt; 2093 2094 /* We now proceed to re-configure the IGU cam to reflect the initial 2095 * configuration. We can start with the Default SB. 2096 */ 2097 pf_sbs = p_info->usage.cnt; 2098 vf_sbs = p_info->usage.iov_cnt; 2099 2100 for (igu_sb_id = p_info->igu_dsb_id; 2101 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { 2102 p_block = &p_info->entry[igu_sb_id]; 2103 val = 0; 2104 2105 if (!(p_block->status & QED_IGU_STATUS_VALID)) 2106 continue; 2107 2108 if (p_block->status & QED_IGU_STATUS_DSB) { 2109 p_block->function_id = p_hwfn->rel_pf_id; 2110 p_block->is_pf = 1; 2111 p_block->vector_number = 0; 2112 p_block->status = QED_IGU_STATUS_VALID | 2113 QED_IGU_STATUS_PF | 2114 QED_IGU_STATUS_DSB; 2115 } else if (pf_sbs) { 2116 pf_sbs--; 2117 p_block->function_id = p_hwfn->rel_pf_id; 2118 p_block->is_pf = 1; 2119 p_block->vector_number = p_info->usage.cnt - pf_sbs; 2120 p_block->status = QED_IGU_STATUS_VALID | 2121 QED_IGU_STATUS_PF | 2122 QED_IGU_STATUS_FREE; 2123 } else if (vf_sbs) { 2124 p_block->function_id = 2125 p_hwfn->cdev->p_iov_info->first_vf_in_pf + 2126 p_info->usage.iov_cnt - vf_sbs; 2127 p_block->is_pf = 0; 2128 p_block->vector_number = 0; 2129 p_block->status = QED_IGU_STATUS_VALID | 2130 QED_IGU_STATUS_FREE; 2131 vf_sbs--; 2132 } else { 2133 p_block->function_id = 0; 2134 p_block->is_pf = 0; 2135 p_block->vector_number = 0; 2136 } 2137 2138 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, 2139 p_block->function_id); 2140 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf); 2141 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, 2142 p_block->vector_number); 2143 2144 /* VF entries would be enabled when VF is initializaed */ 2145 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf); 2146 2147 rval = qed_rd(p_hwfn, p_ptt, 2148 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); 2149 2150 if (rval != val) { 2151 qed_wr(p_hwfn, p_ptt, 2152 IGU_REG_MAPPING_MEMORY + 2153 sizeof(u32) * igu_sb_id, val); 2154 2155 DP_VERBOSE(p_hwfn, 2156 NETIF_MSG_INTR, 2157 "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n", 2158 igu_sb_id, 2159 p_block->function_id, 2160 p_block->is_pf, 2161 p_block->vector_number, rval, val); 2162 } 2163 } 2164 2165 return 0; 2166 } 2167 2168 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn, 2169 struct qed_ptt *p_ptt, u16 igu_sb_id) 2170 { 2171 u32 val = qed_rd(p_hwfn, p_ptt, 2172 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id); 2173 struct qed_igu_block *p_block; 2174 2175 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id]; 2176 2177 /* Fill the block information */ 2178 p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER); 2179 p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID); 2180 p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER); 2181 p_block->igu_sb_id = igu_sb_id; 2182 } 2183 2184 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2185 { 2186 struct qed_igu_info *p_igu_info; 2187 struct qed_igu_block *p_block; 2188 u32 min_vf = 0, max_vf = 0; 2189 u16 igu_sb_id; 2190 2191 p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL); 2192 if (!p_hwfn->hw_info.p_igu_info) 2193 return -ENOMEM; 2194 2195 p_igu_info = p_hwfn->hw_info.p_igu_info; 2196 2197 /* Distinguish between existent and non-existent default SB */ 2198 p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX; 2199 2200 /* Find the range of VF ids whose SB belong to this PF */ 2201 if (p_hwfn->cdev->p_iov_info) { 2202 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; 2203 2204 min_vf = p_iov->first_vf_in_pf; 2205 max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs; 2206 } 2207 2208 for (igu_sb_id = 0; 2209 igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) { 2210 /* Read current entry; Notice it might not belong to this PF */ 2211 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id); 2212 p_block = &p_igu_info->entry[igu_sb_id]; 2213 2214 if ((p_block->is_pf) && 2215 (p_block->function_id == p_hwfn->rel_pf_id)) { 2216 p_block->status = QED_IGU_STATUS_PF | 2217 QED_IGU_STATUS_VALID | 2218 QED_IGU_STATUS_FREE; 2219 2220 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) 2221 p_igu_info->usage.cnt++; 2222 } else if (!(p_block->is_pf) && 2223 (p_block->function_id >= min_vf) && 2224 (p_block->function_id < max_vf)) { 2225 /* Available for VFs of this PF */ 2226 p_block->status = QED_IGU_STATUS_VALID | 2227 QED_IGU_STATUS_FREE; 2228 2229 if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX) 2230 p_igu_info->usage.iov_cnt++; 2231 } 2232 2233 /* Mark the First entry belonging to the PF or its VFs 2234 * as the default SB [we'll reset IGU prior to first usage]. 2235 */ 2236 if ((p_block->status & QED_IGU_STATUS_VALID) && 2237 (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) { 2238 p_igu_info->igu_dsb_id = igu_sb_id; 2239 p_block->status |= QED_IGU_STATUS_DSB; 2240 } 2241 2242 /* limit number of prints by having each PF print only its 2243 * entries with the exception of PF0 which would print 2244 * everything. 2245 */ 2246 if ((p_block->status & QED_IGU_STATUS_VALID) || 2247 (p_hwfn->abs_pf_id == 0)) { 2248 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 2249 "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n", 2250 igu_sb_id, p_block->function_id, 2251 p_block->is_pf, p_block->vector_number); 2252 } 2253 } 2254 2255 if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) { 2256 DP_NOTICE(p_hwfn, 2257 "IGU CAM returned invalid values igu_dsb_id=0x%x\n", 2258 p_igu_info->igu_dsb_id); 2259 return -EINVAL; 2260 } 2261 2262 /* All non default SB are considered free at this point */ 2263 p_igu_info->usage.free_cnt = p_igu_info->usage.cnt; 2264 p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt; 2265 2266 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, 2267 "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n", 2268 p_igu_info->igu_dsb_id, 2269 p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt); 2270 2271 return 0; 2272 } 2273 2274 /** 2275 * qed_int_igu_init_rt() - Initialize IGU runtime registers. 2276 * 2277 * @p_hwfn: HW device data. 2278 */ 2279 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn) 2280 { 2281 u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN; 2282 2283 STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf); 2284 } 2285 2286 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn) 2287 { 2288 u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER - 2289 IGU_CMD_INT_ACK_BASE; 2290 u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER - 2291 IGU_CMD_INT_ACK_BASE; 2292 u32 intr_status_hi = 0, intr_status_lo = 0; 2293 u64 intr_status = 0; 2294 2295 intr_status_lo = REG_RD(p_hwfn, 2296 GTT_BAR0_MAP_REG_IGU_CMD + 2297 lsb_igu_cmd_addr * 8); 2298 intr_status_hi = REG_RD(p_hwfn, 2299 GTT_BAR0_MAP_REG_IGU_CMD + 2300 msb_igu_cmd_addr * 8); 2301 intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo; 2302 2303 return intr_status; 2304 } 2305 2306 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn) 2307 { 2308 tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc); 2309 p_hwfn->b_sp_dpc_enabled = true; 2310 } 2311 2312 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2313 { 2314 int rc = 0; 2315 2316 rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt); 2317 if (rc) 2318 return rc; 2319 2320 rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt); 2321 2322 return rc; 2323 } 2324 2325 void qed_int_free(struct qed_hwfn *p_hwfn) 2326 { 2327 qed_int_sp_sb_free(p_hwfn); 2328 qed_int_sb_attn_free(p_hwfn); 2329 } 2330 2331 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) 2332 { 2333 qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info); 2334 qed_int_sb_attn_setup(p_hwfn, p_ptt); 2335 qed_int_sp_dpc_setup(p_hwfn); 2336 } 2337 2338 void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn, 2339 struct qed_sb_cnt_info *p_sb_cnt_info) 2340 { 2341 struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info; 2342 2343 if (!info || !p_sb_cnt_info) 2344 return; 2345 2346 memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info)); 2347 } 2348 2349 void qed_int_disable_post_isr_release(struct qed_dev *cdev) 2350 { 2351 int i; 2352 2353 for_each_hwfn(cdev, i) 2354 cdev->hwfns[i].b_int_requested = false; 2355 } 2356 2357 void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable) 2358 { 2359 cdev->attn_clr_en = clr_enable; 2360 } 2361 2362 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 2363 u8 timer_res, u16 sb_id, bool tx) 2364 { 2365 struct cau_sb_entry sb_entry; 2366 u32 params; 2367 int rc; 2368 2369 if (!p_hwfn->hw_init_done) { 2370 DP_ERR(p_hwfn, "hardware not initialized yet\n"); 2371 return -EINVAL; 2372 } 2373 2374 rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY + 2375 sb_id * sizeof(u64), 2376 (u64)(uintptr_t)&sb_entry, 2, NULL); 2377 if (rc) { 2378 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc); 2379 return rc; 2380 } 2381 2382 params = le32_to_cpu(sb_entry.params); 2383 2384 if (tx) 2385 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res); 2386 else 2387 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res); 2388 2389 sb_entry.params = cpu_to_le32(params); 2390 2391 rc = qed_dmae_host2grc(p_hwfn, p_ptt, 2392 (u64)(uintptr_t)&sb_entry, 2393 CAU_REG_SB_VAR_MEMORY + 2394 sb_id * sizeof(u64), 2, NULL); 2395 if (rc) { 2396 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc); 2397 return rc; 2398 } 2399 2400 return rc; 2401 } 2402 2403 int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, 2404 struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info) 2405 { 2406 u16 sbid = p_sb->igu_sb_id; 2407 u32 i; 2408 2409 if (IS_VF(p_hwfn->cdev)) 2410 return -EINVAL; 2411 2412 if (sbid >= NUM_OF_SBS(p_hwfn->cdev)) 2413 return -EINVAL; 2414 2415 p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4); 2416 p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4); 2417 2418 for (i = 0; i < PIS_PER_SB; i++) 2419 p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt, 2420 CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4); 2421 2422 return 0; 2423 } 2424